Science.gov

Sample records for osteoporosis impaired glucose

  1. Epidemiology of Osteoporosis in Women with Cognitive Impairment

    ERIC Educational Resources Information Center

    Schrager, Sarina

    2006-01-01

    Osteoporosis is increasing due to the aging of the population. Women with cognitive impairment from childhood are at disproportionally high risk for osteoporosis and fractures. Suggested explanations for this increased risk include high use of anticonvulsant medications, lower peak bone densities, and higher rates of nonambulation. Down syndrome…

  2. Osteoporosis

    MedlinePlus

    ... Home > ePublications > Our ePublications > Osteoporosis fact sheet ePublications Osteoporosis fact sheet This information in Spanish (en español) Print this fact sheet Osteoporosis fact sheet (PDF, 412 KB) Related information Menopause ...

  3. Osteoporosis

    MedlinePlus

    ... IT? HIV AND OSTEOPOROSIS ANTACIDS AND BONE MINERAL DENSITY HOW DO I KNOW IF I HAVE OSTEOPOROSIS? ... have unusually high rates of low bone mineral density and broken bones. This may be because of ...

  4. Osteoporosis

    MedlinePlus

    Osteoporosis is a condition that leads to loss of bone mass. From the outside, osteoporotic bone is ... disease. Prevention is the best measure for treating osteoporosis by eating a recommended balanced diet including foods ...

  5. Osteoporosis

    SciTech Connect

    Riggs, B.L. Melton III, L.J. )

    1988-01-01

    This book contains 20 chapters. Some of the titles are: Radiology of asteoporosis; Quantitative computed tomography in assessment of osteoporosis; Nuclear medicine and densitometry; Assessment of bone turnover by histormorphometry in osteoporosis; and The biochemistry of bone.

  6. Osteoporosis

    MedlinePlus

    Osteoporosis is a disease that thins and weakens the bones. Your bones become fragile and break easily, ... United States, millions of people either already have osteoporosis or are at high risk due to low ...

  7. Osteoporosis management in patient with renal function impairment.

    PubMed

    Lima, Guilherme Alcantara Cunha; Paranhos Neto, Francisco de Paula; Pereira, Giselly Rosa Modesto; Gomes, Carlos Perez; Farias, Maria Lucia Fleiuss

    2014-07-01

    Aging is associated with decreases in bone quality and in glomerular filtration. Consequently, osteoporosis and chronic kidney disease (CKD) are common comorbid conditions in the elderly, and often coexist. Biochemical abnormalities in the homeostasis of calcium and phosphorus begin early in CKD, leading to an increase in fracture risk and cardiovascular complications since early stages of the disease. The ability of DXA (dual energy X-ray absorptiometry) to diagnose osteoporosis and to predict fractures in this population remains unclear. The management of the disease is also controversial: calcium and vitamin D, although recommended, must be prescribed with caution, considering vascular calcification risk and the development of adynamic bone disease. Furthermore, safety and effectiveness of osteoporosis drugs are not established in patients with CKD. Thus, risks and benefits of antiosteoporosis treatment must be considered individually. PMID:25166044

  8. [Osteoporosis].

    PubMed

    Hintze, Gerhard; Graf, Dieter

    2016-06-01

    Osteoporosis is among the main causes for bone fractures. In this overview we report on the prevalence of the disease, the diagnostic procedures, and the therapeutic options. The prevalence increases with age and women are more often affected than men. The diagnosis usually is made on the basis of dual X-ray absorptiometry. Prophylactic measures include a sufficient intake of calcium and vitamin D. Bisphosphonates play a central role in the pharmacotherapy of this disease. PMID:27439255

  9. Diagnosis of prediabetes in cats: glucose concentration cut points for impaired fasting glucose and impaired glucose tolerance.

    PubMed

    Reeve-Johnson, M K; Rand, J S; Vankan, D; Anderson, S T; Marshall, R; Morton, J M

    2016-10-01

    Diabetes is typically diagnosed in cats once clinical signs are evident. Diagnostic criteria for prediabetes in cats have not been defined. The objective of the study was to establish methodology and cut points for fasting and 2-h blood glucose concentrations in healthy client-owned senior cats (≥8 yr) using ear/paw samples and a portable glucose meter calibrated for feline blood. Of the 78 cats, 27 were ideal (body condition score [BCS] 4 or 5 of 9), 31 overweight (BCS 6 or 7), and 20 obese (BCS 8 or 9); 19 were Burmese and 59 non-Burmese. After an 18-24-h fast and an ear/paw blood glucose measurement using a portable glucose meter, glucose (0.5 g/kg bodyweight) was administered intravenous and blood glucose measured at 2 min and 2 h. Cut points for fasting and 2-h glucose concentrations were defined as the upper limits of 95% reference intervals using cats with BCS 4 or 5. The upper cut point for fasting glucose was 6.5 mmol/L. Of the overweight and obese cats, 1 (BCS 7) was above this cut point indicating evidence of impaired fasting glucose. The cut point for 2-h glucose was 9.8 mmol/L. A total of 7 cats (4 with BCS 8 or 9 including 1 Burmese; 3 with BCS 6 or 7, non-Burmese) were above this cut point and thus had evidence of impaired glucose tolerance. In conclusion, the methodology and cutpoints for diagnosis of prediabetes are defined for use in healthy cats 8 yr and older with a range of BCSs. PMID:27565231

  10. Impaired glucose metabolism treatment and carcinogenesis

    PubMed Central

    MATYSZEWSKI, ARTUR; CZARNECKA, ANNA; KAWECKI, MACIEJ; KORZEŃ, PIOTR; SAFIR, ILAN J.; KUKWA, WOJCIECH; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use of sulfonylurea derivatives correlates with an increased risk of developing a malignancy. Another form of treatment, insulin therapy, involves using various forms of insulin that differ in pharmacodynamics, pharmacokinetics and efficacy. Previous studies have indicated that certain insulin variants also affect the cancer risk. The results from analyses that address the safety of long-lasting insulin types raise the most concern regarding the increased risk of malignancy. Rapid development of novel diabetic medications and their widespread use carries the risk of potentially increased rates of cancer, unnoticeable in limited, randomized, controlled trials. In the present review, the results of clinical and epidemiological studies are evaluated to assess the safety of anti-hyperglycemic medications and their effect on cancer risk and outcomes. PMID:26622538

  11. Chinese herbal medicines for people with impaired glucose tolerance or impaired fasting blood glucose

    PubMed Central

    Grant, Suzanne J; Bensoussan, Alan; Chang, Dennis; Kiat, Hosen; Klupp, Nerida L; Liu, Jian Ping; Li, Xun

    2011-01-01

    Background Around 308 million people worldwide are estimated to have impaired glucose tolerance (IGT); 25% to 75% of these will develop diabetes within a decade of initial diagnosis. At diagnosis, half will have tissue-related damage and all have an increased risk for coronary heart disease. Objectives The objective of this review was to assess the effects and safety of Chinese herbal medicines for the treatment of people with impaired glucose tolerance or impaired fasting glucose (IFG). Search strategy We searched the following databases: The Cochrane Library, PubMed, EMBASE, AMED, a range of Chinese language databases, SIGLE and databases of ongoing trials. Selection criteria Randomised clinical trials comparing Chinese herbal medicines with placebo, no treatment, pharmacological or non-pharmacological interventions in people with IGT or IFG were considered. Data collection and analysis Two authors independently extracted data. Trials were assessed for risk of bias against key criteria: random sequence generation, allocation concealment, blinding of participants, outcome assessors and intervention providers, incomplete outcome data, selective outcome reporting and other sources of bias. Main results This review examined 16 trials lasting four weeks to two years involving 1391 participants receiving 15 different Chinese herbal medicines in eight different comparisons. No trial reported on mortality, morbidity or costs. No serious adverse events like severe hypoglycaemia were observed. Meta-analysis of eight trials showed that those receiving Chinese herbal medicines combined with lifestyle modification were more than twice as likely to have their fasting plasma glucose levels return to normal levels (i.e. fasting plasma glucose <7.8 mmol/L and 2hr blood glucose <11.1 mmol/L) compared to lifestyle modification alone (RR 2.07; 95% confidence intervall (CI) 1.52 to 2.82). Those receiving Chinese herbs were less likely to progress to diabetes over the duration of the

  12. Insulin Secretory Defect and Insulin Resistance in Isolated Impaired Fasting Glucose and Isolated Impaired Glucose Tolerance

    PubMed Central

    Aoyama-Sasabe, Sae; Fukushima, Mitsuo; Xin, Xin; Taniguchi, Ataru; Nakai, Yoshikatsu; Mitsui, Rie; Takahashi, Yoshitaka; Tsuji, Hideaki; Yabe, Daisuke; Yasuda, Koichiro; Kurose, Takeshi; Inagaki, Nobuya; Seino, Yutaka

    2016-01-01

    Objective. To investigate the characteristics of isolated impaired glucose tolerance (IGT) and isolated impaired fasting glucose (IFG), we analyzed the factors responsible for elevation of 2-hour postchallenge plasma glucose (2 h PG) and fasting plasma glucose (FPG) levels. Methods. We investigated the relationship between 2 h PG and FPG levels who underwent 75 g OGTT in 5620 Japanese subjects at initial examination for medical check-up. We compared clinical characteristics between isolated IGT and isolated IFG and analyzed the relationships of 2 h PG and FPG with clinical characteristics, the indices of insulin secretory capacity, and insulin sensitivity. Results. In a comparison between isolated IGT and isolated IFG, insulinogenic index was lower in isolated IGT than that of isolated IFG (0.43 ± 0.34 versus 0.50 ± 0.47, resp.; p < 0.01). ISI composite was lower in isolated IFG than that of isolated IGT (6.87 ± 3.38 versus 7.98 ± 4.03, resp.; p < 0.0001). In isolated IGT group, insulinogenic index showed a significant correlation with 2 h PG (r = −0.245, p < 0.0001) and had the strongest correlation with 2 h PG (β = −0.290). In isolated IFG group, ISI composite showed a significant correlation with FPG (r = −0.162, p < 0.0001) and had the strongest correlation with FPG (β = −0.214). Conclusions. We have elucidated that decreased early-phase insulin secretion is the most important factor responsible for elevation of 2 h PG levels in isolated IGT subjects, and decreased insulin sensitivity is the most important factor responsible for elevation of FPG levels in isolated IFG subjects. PMID:26788515

  13. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism. PMID:24704522

  14. Sleep restriction acutely impairs glucose tolerance in rats.

    PubMed

    Jha, Pawan K; Foppen, Ewout; Kalsbeek, Andries; Challet, Etienne

    2016-06-01

    Chronic sleep curtailment in humans has been related to impairment of glucose metabolism. To better understand the underlying mechanisms, the purpose of the present study was to investigate the effect of acute sleep deprivation on glucose tolerance in rats. A group of rats was challenged by 4-h sleep deprivation in the early rest period, leading to prolonged (16 h) wakefulness. Another group of rats was allowed to sleep during the first 4 h of the light period and sleep deprived in the next 4 h. During treatment, food was withdrawn to avoid a postmeal rise in plasma glucose. An intravenous glucose tolerance test (IVGTT) was performed immediately after the sleep deprivation period. Sleep deprivation at both times of the day similarly impaired glucose tolerance and reduced the early-phase insulin responses to a glucose challenge. Basal concentrations of plasma glucose, insulin, and corticosterone remained unchanged after sleep deprivation. Throughout IVGTTs, plasma corticosterone concentrations were not different between the control and sleep-deprived group. Together, these results demonstrate that independent of time of day and sleep pressure, short sleep deprivation during the resting phase favors glucose intolerance in rats by attenuating the first-phase insulin response to a glucose load. In conclusion, this study highlights the acute adverse effects of only a short sleep restriction on glucose homeostasis. PMID:27354542

  15. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    PubMed

    Cheng, Kim; Delghingaro-Augusto, Viviane; Nolan, Christopher J; Turner, Nigel; Hallahan, Nicole; Andrikopoulos, Sofianos; Gunton, Jenny E

    2012-01-01

    Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP) MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS). HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  16. Fetal growth and impaired glucose tolerance in men and women.

    PubMed

    Phipps, K; Barker, D J; Hales, C N; Fall, C H; Osmond, C; Clark, P M

    1993-03-01

    A follow-up study was carried out to determine whether reduced fetal growth is associated with the development of impaired glucose tolerance in men and women aged 50 years. Standard oral glucose tolerance tests were carried out on 140 men and 126 women born in Preston (Lancashire, UK) between 1935 and 1943, whose size at birth had been measured in detail. Those subjects found to have impaired glucose tolerance or non-insulin-dependent diabetes mellitus had lower birthweight, a smaller head circumference and were thinner at birth. They also had a higher ratio of placental weight to birthweight. The prevalence of impaired glucose tolerance or diabetes fell from 27% in subjects who weighed 2.50 kg (5.5 pounds) or less at birth to 6% in those who weighed more than 3.41 kg (7.5 pounds) (p < 0.002 after adjusting for body mass index). Plasma glucose concentrations taken at 2-h in the glucose tolerance test fell progressively as birthweight increased (p < 0.004), as did 2-h plasma insulin concentrations (p < 0.001). The trends with birthweight were independent of duration of gestation and must therefore be related to reduced rates of fetal growth. These findings confirm the association between impaired glucose tolerance in adult life and low birthweight previously reported in Hertfordshire (UK), and demonstrate it in women as well as men. It is suggested that the association reflects the long-term effects of reduced growth of the endocrine pancreas and other tissues in utero. This may be a consequence of maternal undernutrition. PMID:8462770

  17. High Glucose-Mediated Oxidative Stress Impairs Cell Migration

    PubMed Central

    Lamers, Marcelo L.; Almeida, Maíra E. S.; Vicente-Manzanares, Miguel; Horwitz, Alan F.; Santos, Marinilce F.

    2011-01-01

    Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients. PMID:21826213

  18. Metabolic inflexibility is a common feature of impaired fasting glycaemia and impaired glucose tolerance.

    PubMed

    Færch, Kristine; Vaag, Allan

    2011-12-01

    Metabolic flexibility reflects the ability to switch from lipid to carbohydrate oxidation during insulin stimulation. Impaired metabolic flexibility is related to insulin resistance and type 2 diabetes, but whether metabolic flexibility is impaired in individuals with the pre-diabetic states isolated impaired fasting glycaemia (i-IFG) and isolated impaired glucose tolerance (i-IGT) is unknown. Using the gold standard euglycaemic hyperinsulinaemic clamp technique combined with indirect calorimetry, we measured peripheral insulin sensitivity, lipid and glucose oxidation, and thus metabolic flexibility in 66 individuals with normal glucose tolerance (NGT, n = 20), i-IFG (n = 18) and i-IGT (n = 28). During insulin stimulation, individuals with i-IGT displayed reduced insulin sensitivity including reduced glucose oxidation. Interestingly, those with i-IFG exhibited reduced glucose oxidation and a slightly elevated lipid oxidation rate during insulin infusion despite having normal total peripheral glucose disposal. Thus, metabolic flexibility was significantly reduced in individuals with both i-IFG and i-IGT even after adjustment for BMI and insulin sensitivity. The data indicate that metabolic inflexibility may precede the development of overt peripheral insulin resistance in pre-diabetic individuals. However, prospective studies are needed to confirm this notion. PMID:21207234

  19. Impaired fasting glucose is associated with increased regional cerebral amyloid.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Wilkins, Heather M; Archer, Ashley E; Burns, Nicole C; Karcher, Rainer T; Graves, Rasinio S; Swerdlow, Russell H; Thyfault, John P; Burns, Jeffrey M

    2016-08-01

    The Alzheimer's disease risk gene apolipoprotein E epsilon 4 (APOE ε4) is associated with increased cerebral amyloid. Although impaired glucose metabolism is linked to Alzheimer's disease risk, the relationship between impaired glycemia and cerebral amyloid is unclear. To investigate the independent effects of APOE ε4 and impaired glycemia on cerebral amyloid, we stratified nondemented subjects (n = 73) into 4 groups: normal glucose, APOE ε4 noncarrier (control [CNT]; n = 31), normal glucose, APOE ε4 carrier (E4 only; n = 14) impaired glycemia, APOE ε4 noncarrier (IG only; n = 18), and impaired glycemia, APOE ε4 carrier (IG+E4; n = 10). Cerebral amyloid differed both globally (p = 0.023) and regionally; precuneus (p = 0.007), posterior cingulate (PCC; p = 0.020), superior parietal cortex (SPC; p = 0.029), anterior cingulate (p = 0.027), and frontal cortex (p = 0.018). Post hoc analyses revealed that E4 only subjects had increased cerebral amyloid versus CNT globally and regionally in the precuneus, PCC, SPC, anterior cingulate, and frontal cortex. In IG only subjects, increased cerebral amyloid compared with CNT was restricted to precuneus, PCC, and SPC. IG+E4 subjects exhibited higher cerebral amyloid only in the precuneus relative to CNT. These results indicate that impaired glycemia and APOE ε4 genotype are independent risk factors for regional cerebral amyloid deposition. However, APOE ε4 and impaired glycemia did not have an additive effect on cerebral amyloid. PMID:27318141

  20. Maternal Arsenic Exposure and Impaired Glucose Tolerance during Pregnancy

    PubMed Central

    Ettinger, Adrienne S.; Zota, Ami R.; Amarasiriwardena, Chitra J.; Hopkins, Marianne R.; Schwartz, Joel; Hu, Howard; Wright, Robert O.

    2009-01-01

    Background Accumulating evidence has shown an increased risk of type 2 diabetes in general populations exposed to arsenic, but little is known about exposures during pregnancy and the association with gestational diabetes (GD). Objectives We studied 532 women living proximate to the Tar Creek Superfund Site to investigate whether arsenic exposure is associated with impaired glucose tolerance during pregnancy. Methods Blood glucose was measured between 24 and 28 weeks gestation after a 1-hr oral glucose tolerance test (GTT) as part of routine prenatal care. Blood and hair were collected at delivery and analyzed for arsenic using inductively coupled plasma mass spectrometry with dynamic reaction cell. Results Arsenic concentrations ranged from 0.2 to 24.1 μg/L (ppb) (mean ± SD, 1.7 ±1.5) and 1.1 to 724.4 ng/g (ppb) (mean ± SD, 27.4 ± 61.6) in blood and hair, respectively. One-hour glucose levels ranged from 40 to 284 mg/dL (mean ± SD, 108.7 ± 29.5); impaired glucose tolerance was observed in 11.9% of women when using standard screening criterion (> 140 mg/dL). Adjusting for age, Native-American race, prepregnancy body mass index, Medicaid use, and marital status, women in the highest quartile of blood arsenic exposure had 2.8 higher odds of impaired GTT than women in the lowest quartile of exposure (95% confidence interval, 1.1–6.9) (p-trend = 0.008). Conclusions Among this population of pregnant women, arsenic exposure was associated with increased risk of impaired GTT at 24–28 weeks gestation and therefore may be associated with increased risk of GD. PMID:19654913

  1. On ceramides, other sphingolipids and impaired glucose homeostasis☆

    PubMed Central

    Larsen, Philip J.; Tennagels, Norbert

    2014-01-01

    In most people with type 2 diabetes, progression from obesity to diabetes is accompanied by elevated tissue exposures to a variety of lipids. Among these lipid species, ceramides and more complex sphingolipids have gained recent attention as being pathophysiologically relevant for the development of insulin resistance and impaired glycemic control. Upon excess intake of saturated fat, ceramides accumulate in insulin sensitive tissues either as a consequence of de novo synthesis or through mobilization from complex sphingolipids. Clinical studies have confirmed positive correlation between plasma and tissue levels of several ceramide species and insulin resistance. At the cellular level, it has been demonstrated that ceramides impair insulin signaling and intracellular handling of glucose and lipids with resulting deleterious effects on cellular metabolism. Hence, we are reviewing whether therapeutic interventions aiming at reducing tissue exposure to ceramides or other sphingolipids represent viable therapeutic approaches to improve glucose metabolism in people with diabetes. PMID:24749054

  2. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    PubMed

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  3. Impaired Glucose and Insulin Homeostasis in Moderate-Severe CKD.

    PubMed

    de Boer, Ian H; Zelnick, Leila; Afkarian, Maryam; Ayers, Ernest; Curtin, Laura; Himmelfarb, Jonathan; Ikizler, T Alp; Kahn, Steven E; Kestenbaum, Bryan; Utzschneider, Kristina

    2016-09-01

    Kidney disease leads to clinically relevant disturbances in glucose and insulin homeostasis, but the pathophysiology in moderate-severe CKD remains incompletely defined. In a cross-sectional study of 59 participants with nondiabetic CKD (mean eGFR =37.6 ml/min per 1.73 m(2)) and 39 healthy control subjects, we quantified insulin sensitivity, clearance, and secretion and glucose tolerance using hyperinsulinemic-euglycemic clamp and intravenous and oral glucose tolerance tests. Participants with CKD had lower insulin sensitivity than participants without CKD (mean[SD] 3.9[2.0] versus 5.0 [2.0] mg/min per µU/ml; P<0.01). Insulin clearance correlated with insulin sensitivity (r=0.72; P<0.001) and was also lower in participants with CKD than controls (876 [226] versus 998 [212] ml/min; P<0.01). Adjustment for physical activity, diet, fat mass, and fatfree mass in addition to demographics and smoking partially attenuated associations of CKD with insulin sensitivity (adjusted difference, -0.7; 95% confidence interval, -1.4 to 0.0 mg/min per µU/ml) and insulin clearance (adjusted difference, -85; 95% confidence interval, -160 to -10 ml/min). Among participants with CKD, eGFR did not significantly correlate with insulin sensitivity or clearance. Insulin secretion and glucose tolerance did not differ significantly between groups, but 65% of participants with CKD had impaired glucose tolerance. In conclusion, moderate-severe CKD associated with reductions in insulin sensitivity and clearance that are explained, in part, by differences in lifestyle and body composition. We did not observe a CKD-specific deficit in insulin secretion, but the combination of insulin resistance and inadequate augmentation of insulin secretion led to a high prevalence of impaired glucose tolerance.

  4. Dysglycaemia and Other Predictors for Progression or Regression from Impaired Fasting Glucose to Diabetes or Normoglycaemia

    PubMed Central

    de Abreu, L.; Holloway, Kara L.; Kotowicz, Mark A.; Pasco, Julie A.

    2015-01-01

    Aims. Diabetes mellitus is a growing health problem worldwide. This study aimed to describe dysglycaemia and determine the impact of body composition and clinical and lifestyle factors on the risk of progression or regression from impaired fasting glucose (IFG) to diabetes or normoglycaemia in Australian women. Methods. This study included 1167 women, aged 20–94 years, enrolled in the Geelong Osteoporosis Study. Multivariable logistic regression was used to identify predictors for progression to diabetes or regression to normoglycaemia (from IFG), over 10 years of follow-up. Results. At baseline the proportion of women with IFG was 33.8% and 6.5% had diabetes. Those with fasting dysglycaemia had higher obesity-related factors, lower serum HDL cholesterol, and lower physical activity. Over a decade, the incidence of progression from IFG to diabetes was 18.1 per 1,000 person-years (95% CI, 10.7–28.2). Fasting plasma glucose and serum triglycerides were important factors in both progression to diabetes and regression to normoglycaemia. Conclusions. Our results show a transitional process; those with IFG had risk factors intermediate to normoglycaemics and those with diabetes. This investigation may help target interventions to those with IFG at high risk of progression to diabetes and thereby prevent cases of diabetes. PMID:26273669

  5. Mechanisms of impaired fasting glucose and glucose intolerance induced by an approximate 50% pancreatectomy.

    PubMed

    Matveyenko, Aleksey V; Veldhuis, Johannes D; Butler, Peter C

    2006-08-01

    Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) often coexist and as such represent a potent risk factor for subsequent development of type 2 diabetes. beta-Cell mass is approximately 50% deficient in IFG and approximately 65% deficient in type 2 diabetes. To establish the effect of a approximately 50% deficit in beta-cell mass on carbohydrate metabolism, we performed a approximately 50% partial pancreatectomy versus sham surgery in 14 dogs. Insulin secretion was quantified from insulin concentrations measured in the portal vein at 1-min sampling intervals under basal conditions, after a 30-g oral glucose, and during a hyperglycemic clamp. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp combined with isotope dilution. Partial pancreatectomy resulted in IFG and IGT. After partial pancreatectomy both basal and glucose-stimulated insulin secretion were decreased through the mechanism of a selective approximately 50 and approximately 80% deficit in insulin pulse mass, respectively (P < 0.05). These defects in insulin secretion were partially offset by decreased hepatic insulin clearance (P < 0.05). Partial pancreatectomy also caused a approximately 40% decrease in insulin-stimulated glucose disposal (P < 0.05), insulin sensitivity after partial pancreatectomy being related to insulin pulse amplitude (r = 0.9, P < 0.01). We conclude that a approximately 50% deficit in beta-cell mass can recapitulate the alterations in glucose-mediated insulin secretion and insulin action in humans with IFG and IGT. These data support a mechanistic role of a deficit in beta-cell mass in the evolution of IFG/IGT and subsequently type 2 diabetes. PMID:16873700

  6. Unpredictable feeding impairs glucose tolerance in growing lambs.

    PubMed

    Jaquiery, Anne L; Oliver, Mark H; Landon-Lane, Nina; Matthews, Samuel J; Harding, Jane E; Bloomfield, Frank H

    2013-01-01

    Irregular eating is associated with insulin resistance and metabolic disease in adults but may affect young, growing children differently. We investigated the metabolic effects of unpredictable feeding in female juvenile lambs randomly assigned to receive, for six weeks, maintenance feed given twice daily in equal portions (Control Group, C; n = 24) or the same weekly feed amount in aliquots of variable size at unpredictable times (Unpredictable Group, U; n = 21). Intravenous glucose tolerance tests (IVGTT), insulin tolerance tests (ITT), and measurement of diurnal plasma cortisol concentrations were performed pre and post the dietary intervention. Groups were compared using t test and RM ANOVA. Weight gain was similar in both groups (C 18 ± 2%; U 16 ± 2% of initial body weight). Glucose area under the curve (AUC) was unchanged in C (AUC pre 818 ± 34, post 801 ± 33 mmol.min.l(-1)), but increased by 20% in U (pre 830 ± 25, post 1010 ± 19 mmol.min.l(-1); p<0.0001), with an inadequate insulin response to glucose load (log(AUC insulin first 40 minutes) post intervention C 1.49 ± 0.04 vs U 1.36 ± 0.04 ng.min.ml(-1); p = 0.03). Insulin tolerance and diurnal variation of plasma cortisol concentrations were not different between groups. Unpredictable feeding impairs insulin response to glucose in growing lambs despite high quality food and normal weight gain. Irregular eating warrants investigation as a potentially remediable risk factor for disordered glucose metabolism.

  7. Role of Galectin-3 in Obesity and Impaired Glucose Homeostasis

    PubMed Central

    Menini, Stefano; Iacobini, Carla; Blasetti Fantauzzi, Claudia; Pesce, Carlo M.; Pugliese, Giuseppe

    2016-01-01

    Galectin-3 is an important modulator of several biological functions. It has been implicated in numerous disease conditions, particularly in the long-term complications of diabetes because of its ability to bind the advanced glycation/lipoxidation end products that accumulate in target organs and exert their toxic effects by triggering proinflammatory and prooxidant pathways. Recent evidence suggests that galectin-3 may also participate in the development of obesity and type 2 diabetes. It has been shown that galectin-3 levels are higher in obese and diabetic individuals and parallel deterioration of glucose homeostasis. Two studies in galectin-3 knockout mice fed a high-fat diet (HFD) have shown increased adiposity and adipose tissue and systemic inflammation associated with altered glucose homeostasis, suggesting that galectin-3 negatively modulates the responsiveness of innate and adaptive immunity to overnutrition. However, these studies have also shown that impaired glucose homeostasis occurs in galectin-3 knockout animals independently of obesity. Moreover, another study reported decreased weight and fat mass in HFD-fed galectin-3 knockout mice. In vitro, galectin-3 was found to stimulate differentiation of preadipocytes into mature adipocytes. Altogether, these data indicate that galectin-3 deserves further attention in order to clarify its role as a potential player and therapeutic target in obesity and type 2 diabetes. PMID:26770660

  8. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy

    PubMed Central

    Bouchard, Luigi; Thibault, Stéphanie; Guay, Simon-Pierre; Santure, Marta; Monpetit, Alexandre; St-Pierre, Julie; Perron, Patrice; Brisson, Diane

    2010-01-01

    OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes. PMID:20724651

  9. Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose

    PubMed Central

    Goossens, Gijs H.; Moors, Chantalle C. M.; Jocken, Johan W. E.; van der Zijl, Nynke J.; Jans, Anneke; Konings, Ellen; Diamant, Michaela; Blaak, Ellen E.

    2016-01-01

    Altered skeletal muscle fatty acid (FA) metabolism contributes to insulin resistance. Here, we compared skeletal muscle FA handling between subjects with impaired fasting glucose (IFG; n = 12 (7 males)) and impaired glucose tolerance (IGT; n = 14 (7 males)) by measuring arterio-venous concentration differences across forearm muscle. [2H2]-palmitate was infused intravenously, labeling circulating endogenous triacylglycerol (TAG) and free fatty acids (FFA), whereas [U-13C]-palmitate was incorporated in a high-fat mixed-meal, labeling chylomicron-TAG. Skeletal muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid content, their fractional synthetic rate (FSR) and degree of saturation, and gene expression. Insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. Net skeletal muscle glucose uptake was lower (p = 0.018) and peripheral insulin sensitivity tended to be reduced (p = 0.064) in IGT as compared to IFG subjects. Furthermore, IGT showed higher skeletal muscle extraction of VLDL-TAG (p = 0.043), higher muscle TAG content (p = 0.025), higher saturation of FFA (p = 0.004), lower saturation of TAG (p = 0.017) and a tendency towards a lower TAG FSR (p = 0.073) and a lower saturation of DAG (p = 0.059) versus IFG individuals. Muscle oxidative gene expression was lower in IGT subjects. In conclusion, increased liver-derived TAG extraction and reduced lipid turnover of saturated FA, rather than DAG content, in skeletal muscle accompany the more pronounced insulin resistance in IGT versus IFG subjects. PMID:26985905

  10. Impaired glucose tolerance: influence by environmental and hereditary factors.

    PubMed

    Cederholm, J; Wibell, L

    1991-01-01

    The influence on impaired glucose tolerance (IGT) by obesity, physical leisure time activity (PLTA), family histories of diabetes mellitus (DM) and other characteristics were evaluated in a health survey of 807 middle-aged females and males, with the rate of IGT 8.4% (WHO-criteria). Independent (adjusted for covariates) odds ratios concerning IGT were estimated. The ratios were 5.3 with the presence of obesity and 2.2. (ns) with low compared to high PLTA. In a subgroup of summarized environmental factors (obesity and low PLTA versus no obesity and high PLTA, n = 339), the independent odds ratio for IGT was 9.6 with obesity and low PLTA. With one 1st degree DM relative the odds ratio for IGT was 3.1. The ratio was increased both with the presence of relatives with non-insulin-dependent diabetes mellitus and with the presence of relatives with insulin-treated diabetes. Diabetic mothers yielded a higher ratio for IGT than diabetic fathers. In conclusion, the independent relative risk for IGT in this Swedish middle-aged urban sample was about two times higher with environmental factors (obesity only/obesity with low PLTA) than with one 1st degree DM relative.

  11. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes.

    PubMed

    Ling, Zhaoli; Shu, Nan; Xu, Ping; Wang, Fan; Zhong, Zeyu; Sun, Binbin; Li, Feng; Zhang, Mian; Zhao, Kaijing; Tang, Xiange; Wang, Zhongjian; Zhu, Liang; Liu, Li; Liu, Xiaodong

    2016-01-15

    Accumulating evidences demonstrated that statins impaired glucose utilization. This study was aimed to investigate whether PXR was involved in the atorvastatin-impaired glucose utilization. Rifampicin/PCN served as PXR activator control. Glucose utilization, glucose uptake, protein levels of GLUT2, GCK, PDK2, PEPCK1 and G6Pase in HepG2 cells were measured. PXR inhibitors, PXR overexpression and PXR siRNA were applied to verify the role of PXR in atorvastatin-impaired glucose utilization in cells. Hypercholesterolemia rats induced by high fat diet feeding, orally received atorvastatin (5 and 10 mg/kg), pravastatin (10 mg/kg) for 14 days, or intraperitoneally received PCN (35 mg/kg) for 4 days. Results showed that glucose utilization was markedly inhibited by atorvastatin, simvastatin, pitavastatin, lovastatin and rifampicin. Neither rosuvastatin nor pravastatin showed the similar effect. Atorvastatin and pravastatin were selected for the following study. Atorvastatin and rifampicin significantly inhibited glucose uptake and down-regulated GLUT2 and GCK expressions. Similarly, overexpressed PXR significantly down-regulated GLUT2 and GCK expressions and impaired glucose utilization. Ketoconazole and resveratrol attenuated the impaired glucose utilization by atorvastatin and rifampicin in both parental and overexpressed PXR cells. PXR knockdown significantly up-regulated GLUT2 and GCK proteins and abolished the decreased glucose consumption and uptake by atorvastatin and rifampicin. Animal experiments showed that atorvastatin and PCN significantly elicited postprandial hyperglycemia, leading to increase in glucose AUC. Expressions of GLUT2 and GCK in rat livers were markedly down-regulated by atorvastatin and PCN. In conclusion, atorvastatin impaired glucose utilization in hepatocytes via repressing GLUT2 and GCK expressions, which may be partly due to PXR activation. PMID:26616219

  12. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes.

    PubMed

    Ling, Zhaoli; Shu, Nan; Xu, Ping; Wang, Fan; Zhong, Zeyu; Sun, Binbin; Li, Feng; Zhang, Mian; Zhao, Kaijing; Tang, Xiange; Wang, Zhongjian; Zhu, Liang; Liu, Li; Liu, Xiaodong

    2016-01-15

    Accumulating evidences demonstrated that statins impaired glucose utilization. This study was aimed to investigate whether PXR was involved in the atorvastatin-impaired glucose utilization. Rifampicin/PCN served as PXR activator control. Glucose utilization, glucose uptake, protein levels of GLUT2, GCK, PDK2, PEPCK1 and G6Pase in HepG2 cells were measured. PXR inhibitors, PXR overexpression and PXR siRNA were applied to verify the role of PXR in atorvastatin-impaired glucose utilization in cells. Hypercholesterolemia rats induced by high fat diet feeding, orally received atorvastatin (5 and 10 mg/kg), pravastatin (10 mg/kg) for 14 days, or intraperitoneally received PCN (35 mg/kg) for 4 days. Results showed that glucose utilization was markedly inhibited by atorvastatin, simvastatin, pitavastatin, lovastatin and rifampicin. Neither rosuvastatin nor pravastatin showed the similar effect. Atorvastatin and pravastatin were selected for the following study. Atorvastatin and rifampicin significantly inhibited glucose uptake and down-regulated GLUT2 and GCK expressions. Similarly, overexpressed PXR significantly down-regulated GLUT2 and GCK expressions and impaired glucose utilization. Ketoconazole and resveratrol attenuated the impaired glucose utilization by atorvastatin and rifampicin in both parental and overexpressed PXR cells. PXR knockdown significantly up-regulated GLUT2 and GCK proteins and abolished the decreased glucose consumption and uptake by atorvastatin and rifampicin. Animal experiments showed that atorvastatin and PCN significantly elicited postprandial hyperglycemia, leading to increase in glucose AUC. Expressions of GLUT2 and GCK in rat livers were markedly down-regulated by atorvastatin and PCN. In conclusion, atorvastatin impaired glucose utilization in hepatocytes via repressing GLUT2 and GCK expressions, which may be partly due to PXR activation.

  13. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  14. Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis

    PubMed Central

    de Andrade, I S; Zemdegs, J C S; de Souza, A P; Watanabe, R L H; Telles, M M; Nascimento, C M O; Oyama, L M; Ribeiro, E B

    2015-01-01

    Background/Objectives: Glucose from the diet may signal metabolic status to hypothalamic sites controlling energy homeostasis. Disruption of this mechanism may contribute to obesity but its relevance has not been established. The present experiments aimed at evaluating whether obesity induced by chronic high-fat intake affects the ability of hypothalamic glucose to control feeding. We hypothesized that glucose transport to the hypothalamus as well as glucose sensing and signaling could be impaired by high-fat feeding. Subjects/methods: Female Wistar rats were studied after 8 weeks on either control or high-lard diet. Daily food intake was measured after intracerebroventricular (i.c.v.) glucose. Glycemia and glucose content of medial hypothalamus microdialysates were measured in response to interperitoneal (i.p.) glucose or meal intake after an overnight fast. The effect of refeeding on whole hypothalamus levels of glucose transporter proteins (GLUT) 1, 2 and 4, AMPK and phosphorylated AMPK levels was determined by immunoblotting. Results: High-fat rats had higher body weight and fat content and serum leptin than control rats, but normal insulin levels and glucose tolerance. I.c.v. glucose inhibited food intake in control but failed to do so in high-fat rats. Either i.p. glucose or refeeding significantly increased glucose hypothalamic microdialysate levels in the control rats. These levels showed exacerbated increases in the high-fat rats. GLUT1 and 4 levels were not affected by refeeding. GLUT2 levels decreased and phosphor-AMPK levels increased in the high-fat rats but not in the controls. Conclusions: The findings suggest that, in the high-fat rats, a defective glucose sensing by decreased GLUT2 levels contributed to an inappropriate activation of AMPK after refeeding, despite increased extracellular glucose levels. These derangements were probably involved in the abolition of hypophagia in response to i.c.v. glucose. It is proposed that ‘glucose resistance

  15. Chronic sleep disturbance impairs glucose homeostasis in rats.

    PubMed

    Barf, R Paulien; Meerlo, Peter; Scheurink, Anton J W

    2010-01-01

    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory conditions. Three groups of animals were used: a sleep restriction group (RS), a group subjected to moderate sleep disturbance without restriction of sleep time (DS), and a home cage control group. To establish changes in glucose regulation, animals were subjected to intravenous glucose tolerance tests (IVGTTs) before and after 1 or 8 days of sleep restriction or disturbance. Data show that both RS and DS reduce body weight without affecting food intake and also lead to hyperglycemia and decreased insulin levels during an IVGTT. Acute sleep disturbance also caused hyperglycemia during an IVGTT, yet, without affecting the insulin response. In conclusion, both moderate and severe disturbances of sleep markedly affect glucose homeostasis and body weight control. PMID:20339560

  16. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  17. Rapamycin impairs HPD-induced beneficial effects on glucose homeostasis

    PubMed Central

    Chang, Geng-Ruei; Chiu, Yi-Shin; Wu, Ying-Ying; Lin, Yu-Chi; Hou, Po-Hsun; Mao, Frank Chiahung

    2015-01-01

    Background and Purpose Rapamycin, which is used clinically to treat graft rejection, has also been proposed to have an effect on metabolic syndrome; however, very little information is available on its effects in lean animals/humans. The purpose of this study was to characterize further the effects of the continuous use of rapamycin on glucose homeostasis in lean C57BL6/J mice. Experimental Approach Mice were fed a high-protein diet (HPD) for 12 weeks to develop a lean model and then were treated daily with rapamycin for 5 weeks while remaining on a HPD. Metabolic parameters, endocrine profiles, glucose tolerance tests, insulin sensitivity index, the expression of the glucose transporter GLUT4 and chromium distribution were measured in vivo. Key Results Lower body weight gain as well as a decreased caloric intake, fat pads, fatty liver scores, adipocyte size and glucose tolerance test values were observed in HPD-fed mice compared with mice fed a high-fat or standard diet. Despite these beneficial effects, rapamycin-treated lean mice showed greater glucose intolerance, reduced insulin sensitivity, lower muscle GLUT4 expression and changes in chromium levels in tissues even with high insulin levels. Conclusion and Implications Our findings demonstrate that continuous rapamycin administration may lead to the development of diabetes syndrome, as it was found to induce hyperglycaemia and glucose intolerance in a lean animal model. PMID:25884889

  18. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic β Cells

    NASA Astrophysics Data System (ADS)

    Unger, Roger H.

    1991-03-01

    Glucose uptake into pancreatic β cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia. In both autoimmune and nonautoimmune diabetes, this glucose transport is reduced as a consequence of down-regulation of the normal β-cell transporter. In autoimmune diabetes, circulating immunoglobulins can further impair this glucose transport by inhibiting functionally intact transporters. Insights into mechanisms of the unresponsiveness of β cells to hyperglycemia may improve the management and prevention of diabetes.

  19. Impaired Glucose Regulation is Associated with Poorer Performance on the Stroop Task

    PubMed Central

    Gluck, Marci E.; Ziker, Cindy; Schwegler, Matthew; Thearle, Marie; Votruba, Susanne B.; Krakoff, Jonathan

    2013-01-01

    Background Type 2 diabetes is a risk factor for development of cognitive dysfunction. Impairments in glucose regulation have been associated with poorer performance on tests of executive function and information processing speed. Methods We administered the Stroop Color Word Task, where higher interference scores are indicative of decreased selective attention, to 98 non-diabetic volunteers (64m; %fat=37±12; age=36±9 y, race=41 NA/30 C/13 H/14 AA) on our inpatient unit. After 3d on a weight maintaining diet, % body fat was measured by DXA and a 75g oral glucose tolerance test (OGTT) was administered. Impaired glucose regulation (IGR) was defined as: fasting plasma glucose ≥100 and ≤125 mg/dL and/or 2h plasma glucose between ≥140 and ≤199 mg/dL (IGR; n = 48; NGR; n = 50). Total and incremental area under the curve (AUC) for insulin and glucose were calculated. Results Stroop interference scores were not significantly associated with any measure of adiposity or insulin concentrations. Individuals with IGR had significantly higher interference scores than those with normal glucose regulation (NGR; p=0.003). Higher interference scores were significantly correlated with fasting plasma glucose concentrations (r=0.26, p = 0.007) and total glucose AUC (r=0.30, p = 0.02) and only trending so for iAUC and 2h plasma glucose (r=0.18, p=0.08; r=0.17, p=0.09 respectively). In separate multivariate linear models, fasting plasma glucose (p = 0.002) and total glucose AUC (p = 0.0005) remained significant predictors of Stroop interference scores, even after adjustment for age, sex, race, education and %fat. Conclusions Individuals with IGR had decreased performance on a test of selective attention. Fasting plasma glucose was more strongly associated with lower performance scores than 2h plasma glucose. Our results indicate that even mild hyperglycemia in the non-diabetic range is associated with attentional processing difficulties in a sample of younger adults. Whether

  20. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets.

    PubMed

    Bielohuby, Maximilian; Sisley, Stephanie; Sandoval, Darleen; Herbach, Nadja; Zengin, Ayse; Fischereder, Michael; Menhofer, Dominik; Stoehr, Barbara J M; Stemmer, Kerstin; Wanke, Rüdiger; Tschöp, Matthias H; Seeley, Randy J; Bidlingmaier, Martin

    2013-11-01

    Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.

  1. Impaired Glucose Tolerance in Healthy Men Treated with St. John's Wort.

    PubMed

    Stage, Tore Bjerregaard; Damkier, Per; Christensen, Mette Marie Hougaard; Nielsen, Lene Buch-Krogh; Højlund, Kurt; Brøsen, Kim

    2016-03-01

    The purpose of this study was to examine whether the over-the-counter herbal medicinal plant St. John's wort affects glucose tolerance in healthy men. To do this, we included 10 healthy men who were examined by a 2-hr oral glucose tolerance test on three occasions: A: baseline; B: after 21 days of treatment with St. John's wort; and C: at least 6 weeks after the last capsule of St. John's wort was ingested. Plasma glucose, serum insulin and C-peptide levels were measured during an oral glucose tolerance test and used for estimation of area under the concentration-time curve (AUC) as well as indices of insulin sensitivity and insulin secretion. We found that treatment with St. John's wort increased total and incremental glucose AUC and 2-hr plasma glucose levels. Surprisingly, this effect was sustained and even further increased 6 weeks after the last capsule of St. John's wort was taken. No effect on indices of insulin sensitivity was seen, but indices of insulin secretion were reduced even after adjustment for insulin sensitivity. In conclusion, this study indicates that long-term treatment with St. John's wort may impair glucose tolerance by reducing insulin secretion in young, healthy men. The unregulated use of this over-the-counter drug might be a risk factor for impaired glucose tolerance and type 2 diabetes.

  2. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells.

    PubMed

    Jaiswal, N; Maurya, C K; Pandey, J; Rai, A K; Tamrakar, A K

    2015-01-01

    High fructose consumption has implicated in insulin resistance and metabolic syndrome. Fructose is a highly lipogenic sugar that has intense metabolic effects in liver. Recent evidences suggest that fructose exposure to other tissues has substantial and profound metabolic consequences predisposing toward chronic conditions such as type 2 diabetes. Since skeletal muscle is the major site for glucose utilization, in the present study we define the effects of fructose exposure on glucose utilization in skeletal muscle cells. Upon fructose exposure, the L6 skeletal muscle cells displayed diminished glucose uptake, glucose transporter type 4 (GLUT4) translocation, and impaired insulin signaling. The exposure to fructose elevated reactive oxygen species (ROS) production in L6 myotubes, accompanied by activation of the stress/inflammation markers c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), and degradation of inhibitor of NF-κB (IκBα). We found that fructose caused impairment of glucose utilization and insulin signaling through ROS-mediated activation of JNK and ERK1/2 pathways, which was prevented in the presence of antioxidants. In conclusion, our data demonstrate that exposure to fructose induces cell-autonomous oxidative response through ROS production leading to impaired insulin signaling and attenuated glucose utilization in skeletal muscle cells.

  3. Assessment risk of osteoporosis in Chinese people: relationship among body mass index, serum lipid profiles, blood glucose, and bone mineral density

    PubMed Central

    Cui, Rongtao; Zhou, Lin; Li, Zuohong; Li, Qing; Qi, Zhiming; Zhang, Junyong

    2016-01-01

    Objective The aim of our study was to investigate the relationship among age, sex, body mass index (BMI), serum lipid profiles, blood glucose (BG), and bone mineral density (BMD), making an assessment of the risk of osteoporosis. Materials and methods A total of 1,035 male and 3,953 female healthy volunteers (aged 41–95 years) were recruited by an open invitation. The basic information, including age, sex, height, weight, waistline, hipline, menstrual cycle, and medical history, were collected by a questionnaire survey and physical examination. Serum lipid profiles, BG, postprandial blood glucose, and glycosylated hemoglobin were obtained after 12 hours fasting. BMD in lumbar spine was measured by dual-energy X-ray absorptiometry scanning. Results The age-adjusted BMD in females was significantly lower than in males. With aging, greater differences of BMD distribution exist in elderly females than in males (P<0.001), and the fastigium of bone mass loss was in the age range from 51 to 55 in females and from 61 to 65 years in males. After adjustment for sex, there were significant differences in BMD among BMI-stratified groups in both males and females. The subjects with a BMI of <18.5 had a higher incidence of osteoporosis than BMI ≥18.5 in both sexes. BMD in type 2 diabetes mellitus with a BG of >7.0 mmol/L was lower than in people with BG of ≤7.0 mmol/L (P<0.001). People with serum high-density lipoprotein cholesterol levels of ≥1.56 mmol/L had a greater prevalence of osteoporosis compared with high-density lipoprotein cholesterol ≤1.55 mmol/L. Logistic regression with odds ratios showed that no association was found among total cholesterol, triglyceride, low-density lipoprotein cholesterol, glycosylated hemoglobin, postprandial blood glucose and BMD. Conclusion The present study further confirmed that factors such as age, sex, weight, BMI, high-density lipoprotein cholesterol, and diabetes are significant predictors of osteoporosis in the Chinese people

  4. Yeast cells with impaired drug resistance accumulate glycerol and glucose.

    PubMed

    Dikicioglu, Duygu; Oc, Sebnem; Rash, Bharat M; Dunn, Warwick B; Pir, Pınar; Kell, Douglas B; Kirdar, Betul; Oliver, Stephen G

    2014-01-01

    Multiple drug resistance (MDR) in yeast is effected by two major superfamilies of membrane transporters: the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily. In the present work, we investigated the cellular responses to disruptions in both MFS (by deleting the transporter gene, QDR3) and ABC (by deleting the gene for the Pdr3 transcription factor) transporter systems by growing diploid homozygous deletion yeast strains in glucose- or ammonium-limited continuous cultures. The transcriptome and the metabolome profiles of these strains, as well as the flux distributions in the optimal solution space, reveal novel insights into the underlying mechanisms of action of QDR3 and PDR3. Our results show how cells rearrange their metabolism to cope with the problems that arise from the loss of these drug-resistance genes, which likely evolved to combat chemical attack from bacterial or fungal competitors. This is achieved through the accumulation of intracellular glucose, glycerol, and inorganic phosphate, as well as by repurposing genes that are known to function in other parts of metabolism in order to minimise the effects of toxic compounds. PMID:24157722

  5. Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

    PubMed

    Maioli, Mario; Pes, Giovanni Mario; Sanna, Manuela; Cherchi, Sara; Dettori, Mariella; Manca, Elena; Farris, Giovanni Antonio

    2008-06-01

    Sourdough bread has been reported to improve glucose metabolism in healthy subjects. In this study postprandial glycaemic and insulinaemic responses were evaluated in subjects with impaired glucose tolerance (IGT) who had a meal containing sourdough bread leavened with lactobacilli, in comparison to a reference meal containing bread leavened with baker yeast. Sixteen IGT subjects (age range 52-75, average BMI 29.9 +/- 4.2 kg/ m2) were randomly given a meal containing sourdough bread (A) and a meal containing the reference bread (B) in two separate occasions at the beginning of the study and after 7 days. Sourdough bread was leavened for 8 h using a starter containing autochthonous Saccharomyces cerevisiae and several bacilli able to produce a significant amount of D-and L-lactic acid, whereas the reference bread was leavened for 2 h with commercial baker yeast containing Saccharomyces cerevisiae. Plasma glucose and insulin levels were measured at time 0, 30, 60, 120, and 180 min. In IGT subjects sourdough bread induced a significantly lower plasma glucose response at 30 minutes (p = 0.048) and a smaller incremental area under curve (AUC) delta 0-30 and delta 0-60 min (p = 0.020 and 0.018 respectively) in comparison to the bread leavened with baker yeast. Plasma insulin response to this type of bread showed lower values at 30 min (p = 0.045) and a smaller AUC delta 0-30 min (p = 0.018). This study shows that in subjects with IGT glycaemic and insulinaemic responses after the consumption of sourdough bread are lower than after the bread leavened with baker yeast. This effect is likely due to the lactic acid produced during dough leavening as well as the reduced availability of simple carbohydrates. Thus, sour-dough bread may potentially be of benefit in subjects with impaired glucose metabolism.

  6. Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia.

    PubMed

    Moller, D E; Chang, P Y; Yaspelkis, B B; Flier, J S; Wallberg-Henriksson, H; Ivy, J L

    1996-06-01

    Impaired skeletal muscle insulin receptor function is a feature of common forms of insulin resistance, including obesity and noninsulin-dependent diabetes mellitus. However, the extent to which this defect accounts for impaired muscle glucose disposal or altered in vivo glucose homeostasis remains to be established. We recently showed that transgenic mice that overexpress dominant-negative insulin receptors specifically in striated muscle have a severe defect in muscle insulin receptor-mediated signaling and modest hyperinsulinemia. Here we performed hindlimb perfusion studies to determine the impact of this defect on muscle glucose uptake and metabolism. Maximal rates of insulin-stimulated muscle 3-O-methylglucose transport were reduced by 32-40% in transgenic mice with proportional defects involving total hindlimb [14C]glucose uptake, lactate production, and muscle glycogen synthesis. To address the hypothesis that muscle insulin resistance could promote an increase in the accretion of body fat, carcass analysis was performed using two independent lines of transgenic mice. Although body weights were normal, transgenic mice had a 22-38% increase in body fat, with a reciprocal decrease (10-15%) in body protein. Mean gonadal fat pad weight was also increased in transgenic mice. Skeletal muscle histology and fiber type distribution were not affected. To determine whether muscle-specific insulin resistance was sufficient to cause impaired glucose tolerance, oral glucose tolerance tests were performed with 6-month-old transgenic and control mice. Fasting glucose levels were increased by 25%, and peak values were 22-40% higher in transgenic mice. Transgenic mice also had a 37% decrease in plasma lactate levels and modest increases in levels of plasma triglycerides and FFA (29% and 15%, respectively). We conclude that 1) severe defects in muscle insulin receptor function result in impaired insulin-stimulated glucose uptake and metabolism in this tissue; 2) muscle

  7. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation.

    PubMed

    Mark, R J; Pang, Z; Geddes, J W; Uchida, K; Mattson, M P

    1997-02-01

    A deficit in glucose uptake and a deposition of amyloid beta-peptide (A beta) each occur in vulnerable brain regions in Alzheimer's disease (AD). It is not known whether mechanistic links exist between A beta deposition and impaired glucose transport. We now report that A beta impairs glucose transport in cultured rat hippocampal and cortical neurons by a mechanism involving membrane lipid peroxidation. A beta impaired 3H-deoxy-glucose transport in a concentration-dependent manner and with a time course preceding neurodegeneration. The decrease in glucose transport was followed by a decrease in cellular ATP levels. Impairment of glucose transport, ATP depletion, and cell death were each prevented in cultures pretreated with antioxidants. Exposure to FeSO4, an established inducer of lipid peroxidation, also impaired glucose transport. Immunoprecipitation and Western blot analyses showed that exposure of cultures to A beta induced conjugation of 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, to the neuronal glucose transport protein GLUT3. HNE induced a concentration-dependent impairment of glucose transport and subsequent ATP depletion. Impaired glucose transport was not caused by a decreased energy demand in the neurons, because ouabain, which inhibits Na+/K(+)-ATPase activity and thereby reduces neuronal ATP hydrolysis rate, had little or no effect on glucose transport. Collectively, the data demonstrate that lipid peroxidation mediates A beta-induced impairment of glucose transport in neurons and suggest that this action of A beta may contribute to decreased glucose uptake and neuronal degeneration in AD. PMID:8994059

  8. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    PubMed Central

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L. J.

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD. PMID:26483636

  9. Subjects with Impaired Fasting Glucose: Evolution in a Period of 6 Years

    PubMed Central

    Leiva, E.; Mujica, V.; Orrego, R.; Wehinger, S.; Soto, A.; Icaza, G.; Vásquez, M.; Díaz, L.; Andrews, M.; Arredondo, M.

    2014-01-01

    Aim. To study the evolution of impaired fasting glucose (IFG), considering glucose and HbA1c levels and risk factors associated, in a period of 6 years. Methods. We studied 94 subjects with impaired fasting glucose (IFG) that were diagnosed in 2005 and followed up to 2012. Glucose and HbA1c levels were determined. A descriptive analysis of contingence charts was performed in order to study the evolution in the development of type-2 diabetes mellitus (T2DM). Results. Twenty-eight of ninety-four subjects became T2DM; 51/94 remained with IFG; and 20/94 presented normal fasting glucose. From the 28 diabetic subjects, 9 had already developed diabetes and were under treatment with oral hypoglycemic agents; 5 were diagnosed with plasma glucose < 126 mg/dL, but with HbA1c over 6.5%. In those who developed diabetes, 15/28 had a family history of T2DM in first relative degree. Also, diabetic subjects had a BMI significantly higher than nodiabetics (t test: P < 0.01). The individuals that in 2005 had the highest BMI are those who currently have diabetes. Conclusion. The IFG constitutes a condition of high risk of developing T2DM in a few years, especially over 110 mg/dL and in obesity patients. PMID:25215305

  10. Pre-germinated brown rice reduced both blood glucose concentration and body weight in Vietnamese women with impaired glucose tolerance.

    PubMed

    Bui, Thi Nhung; Le, Thi Hop; Nguyen, Do Huy; Tran, Quang Binh; Nguyen, Thi Lam; Le, Danh Tuyen; Nguyen, Do Van Anh; Vu, Anh Linh; Aoto, Hiromichi; Okuhara, Yasuhide; Ito, Yukihiko; Yamamoto, Shigeru; Kise, Mitsuo

    2014-01-01

    We have reported that newly diagnosed type 2 diabetes mellitus (DM) patients in Vietnam have a low body mass index (BMI) of around 23 and that the major factor for this is high white rice (WR) intake. Brown rice (BR) is known to be beneficial in the control of blood glucose levels; however, it has the property of unpleasant palatability. Pre-germinated brown rice (PGBR) is slightly germinated by soaking BR in water as this reduces the hardness of BR and makes it easier to eat. This study was designed to evaluate the effect of a 4-mo PGBR administration on various parameters in Vietnamese women aged 45-65 y with impaired glucose tolerance (IGT). Sixty subjects were divided into a WR or PGBR group. For the first 2 wk, WR was replaced by 50% PGBR, then for 2 wk by 75% PGBR and from the second month 100%. Before the beginning of the study and at the end of the study, 1) anthropometric measurements, 2) a nutrition survey for 3 nonconsecutive days by the 24 h recall method and 3) blood biochemical examinations were conducted. Fasting plasma concentrations of glucose and lipids and the obesity-related measurements and blood pressure were favorably improved only in the PGBR diet group. The present results suggest that replacing WR with PGBR for 4 mo may be useful in controlling body weight as well as blood glucose and lipid levels in Vietnamese women with IGT.

  11. Osteoporosis in Men

    PubMed Central

    Khosla, Sundeep; Amin, Shreyasee; Orwoll, Eric

    2008-01-01

    With the aging of the population, there is a growing recognition that osteoporosis and fractures in men are a significant public health problem, and both hip and vertebral fractures are associated with increased morbidity and mortality in men. Osteoporosis in men is a heterogeneous clinical entity: whereas most men experience bone loss with aging, some men develop osteoporosis at a relatively young age, often for unexplained reasons (idiopathic osteoporosis). Declining sex steroid levels and other hormonal changes likely contribute to age-related bone loss, as do impairments in osteoblast number and/or activity. Secondary causes of osteoporosis also play a significant role in pathogenesis. Although there is ongoing controversy regarding whether osteoporosis in men should be diagnosed based on female- or male-specific reference ranges (because some evidence indicates that the risk of fracture is similar in women and men for a given level of bone mineral density), a diagnosis of osteoporosis in men is generally made based on male-specific reference ranges. Treatment consists both of nonpharmacological (lifestyle factors, calcium and vitamin D supplementation) and pharmacological (most commonly bisphosphonates or PTH) approaches, with efficacy similar to that seen in women. Increasing awareness of osteoporosis in men among physicians and the lay public is critical for the prevention of fractures in our aging male population. PMID:18451258

  12. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues.

    PubMed

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-05-19

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months' supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake.

  13. GDF-15 and Hepcidin Levels in Nonanemic Patients with Impaired Glucose Tolerance

    PubMed Central

    Altinova, Alev Eroglu; Akturk, Mujde; Gulbahar, Ozlem; Arslan, Emre; Ors Sendogan, Damla; Yetkin, Ilhan; Toruner, Fusun Balos

    2016-01-01

    Aims. Growth Differentiation Factor-15 (GDF-15) has been suggested as one of the regulators of hepcidin, an important regulatory peptide for iron deposition. Current data is conflicting about the relationship between hepcidin and disorders of glucose metabolism. We aimed to investigate serum hepcidin and GDF-15 concentrations and their associations with each other, in nonanemic subjects with impaired glucose tolerance (IGT) in comparison with the nonanemic subjects with normal glucose tolerance (NGT). Methods. Thirty-seven subjects with IGT and 32 control subjects with NGT, who were age-, gender-, and body mass index- (BMI-) matched, were included in the study. Results. Serum GDF-15 levels were significantly higher in IGT compared to NGT. There were no differences in hepcidin, interleukin-6, and high sensitive C-reactive protein levels between the groups. We found a positive correlation between GDF-15 and hepcidin levels. There were also positive correlations between GDF-15 and age, uric acid, creatinine, and area under the curve for glucose (AUC-G). Hepcidin was correlated positively with ferritin levels. In the multiple regression analysis, GDF-15 concentrations were independently associated with age, uric acid, and AUC-G. Conclusions. Impaired glucose tolerance is associated with increased GDF-15 levels even in the absence of anemia, but the levels of hepcidin are not significantly altered in prediabetic state.

  14. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues.

    PubMed

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months' supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  15. GDF-15 and Hepcidin Levels in Nonanemic Patients with Impaired Glucose Tolerance

    PubMed Central

    Altinova, Alev Eroglu; Akturk, Mujde; Gulbahar, Ozlem; Arslan, Emre; Ors Sendogan, Damla; Yetkin, Ilhan; Toruner, Fusun Balos

    2016-01-01

    Aims. Growth Differentiation Factor-15 (GDF-15) has been suggested as one of the regulators of hepcidin, an important regulatory peptide for iron deposition. Current data is conflicting about the relationship between hepcidin and disorders of glucose metabolism. We aimed to investigate serum hepcidin and GDF-15 concentrations and their associations with each other, in nonanemic subjects with impaired glucose tolerance (IGT) in comparison with the nonanemic subjects with normal glucose tolerance (NGT). Methods. Thirty-seven subjects with IGT and 32 control subjects with NGT, who were age-, gender-, and body mass index- (BMI-) matched, were included in the study. Results. Serum GDF-15 levels were significantly higher in IGT compared to NGT. There were no differences in hepcidin, interleukin-6, and high sensitive C-reactive protein levels between the groups. We found a positive correlation between GDF-15 and hepcidin levels. There were also positive correlations between GDF-15 and age, uric acid, creatinine, and area under the curve for glucose (AUC-G). Hepcidin was correlated positively with ferritin levels. In the multiple regression analysis, GDF-15 concentrations were independently associated with age, uric acid, and AUC-G. Conclusions. Impaired glucose tolerance is associated with increased GDF-15 levels even in the absence of anemia, but the levels of hepcidin are not significantly altered in prediabetic state. PMID:27642607

  16. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues

    PubMed Central

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months’ supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  17. Diurnal Cortisol Patterns, Future Diabetes, and Impaired Glucose Metabolism in the Whitehall II Cohort Study

    PubMed Central

    Kivimäki, Mika; Kumari, Meena; Steptoe, Andrew

    2016-01-01

    Context: The hypothalamic pituitary-adrenal axis is thought to play a role in type 2 diabetes (T2D). However, evidence for an association between cortisol and future glucose disturbance is sparse. Objective: The aim was to examine the association of diurnal cortisol secretion with future T2D and impaired glucose metabolism in a community-dwelling population. Design: This is a prospective cohort study of salivary cortisol measured at the 2002–2004 clinical examination of the Whitehall II study, United Kingdom. We measured cortisol (nmol/l) from six saliva samples obtained over the course of a day: at waking, +30 minutes, +2.5 hours, +8 hours, +12 hours, and bedtime. Participants who were normoglycemic in 2002–2004 (phase 7) were reexamined in 2012–2013 (phase 11). Setting: The occupational cohort was originally recruited in 1985–1988. Participants: A total of 3270 men and women with an average age of 60.85 years at phase 7 (2002–2004). Outcome Measures: Incident T2D and impaired fasting glucose in 2012–2013 were measured. Results: Raised evening cortisol at phase 7 was predictive of new-onset T2D at phase 11 (odds ratio [OR], 1.18; 95% confidence interval [CI], 1.01–1.37) with a trend for a flatter slope in participants with incident T2D (odds ratio, 1.15; 95% CI, 0.99–1.33). When expanding this analysis to a broader category of glucose disturbance we found that a flattened diurnal cortisol slope at phase 7 was predictive of future impaired fasting glucose or T2D at phase 11 (OR, 1.12; 95% CI, 1.02–1.22), as was high bedtime cortisol (OR, 1.10; 95% CI, 1.01–1.20). Conclusions: In this nonclinical population, alterations in diurnal cortisol patterns were predictive of future glucose disturbance. PMID:26647151

  18. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    PubMed

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  19. No difference in exogenous carbohydrate oxidation during exercise in children with and without impaired glucose tolerance.

    PubMed

    Chu, Lisa; Morrison, Katherine M; Riddell, Michael C; Raha, Sandeep; Timmons, Brian W

    2016-09-01

    The capacity to match carbohydrate (CHO) utilization with availability is impaired in insulin-resistant, obese adults at rest. Understanding exogenous carbohydrate (CHOexo) oxidation during exercise and its association to insulin resistance (IR) is important, especially in children at risk for type 2 diabetes. Our objective was to examine the oxidative efficiency of CHOexo during exercise in obese children with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). Children attended two visits and were identified as NGT (n = 22) or IGT (n = 12) based on 2-h oral glucose tolerance test (OGTT) glucose levels of <7.8 mmol/l or ≥7.8 mmol/l, respectively. Anthropometry, body composition, and aerobic fitness (V̇o2max) were assessed. Insulin and glucose at baseline, 30, 60, 90, and 120 min during the OGTT were used to calculate measures of insulin sensitivity. On a separate day, a (13)C-enriched CHO drink was ingested before exercise (3 × 20 min bouts) at 45% V̇o2max Breath measurements were collected to calculate CHOexo oxidative efficiency. CHOexo oxidative efficiency during exercise was similar in IGT (17.0 ± 3.6%) compared with NGT (17.1 ± 4.4%) (P = 0.90) despite lower whole body insulin sensitivity in IGT at rest (P = 0.02). Area under the curve for insulin (AUCins) measured at rest during the OGTT was greater in IGT compared with NGT (P = 0.04). The ability of skeletal muscle to utilize CHOexo was not impaired during exercise in children with IGT. PMID:27493197

  20. No difference in exogenous carbohydrate oxidation during exercise in children with and without impaired glucose tolerance.

    PubMed

    Chu, Lisa; Morrison, Katherine M; Riddell, Michael C; Raha, Sandeep; Timmons, Brian W

    2016-09-01

    The capacity to match carbohydrate (CHO) utilization with availability is impaired in insulin-resistant, obese adults at rest. Understanding exogenous carbohydrate (CHOexo) oxidation during exercise and its association to insulin resistance (IR) is important, especially in children at risk for type 2 diabetes. Our objective was to examine the oxidative efficiency of CHOexo during exercise in obese children with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). Children attended two visits and were identified as NGT (n = 22) or IGT (n = 12) based on 2-h oral glucose tolerance test (OGTT) glucose levels of <7.8 mmol/l or ≥7.8 mmol/l, respectively. Anthropometry, body composition, and aerobic fitness (V̇o2max) were assessed. Insulin and glucose at baseline, 30, 60, 90, and 120 min during the OGTT were used to calculate measures of insulin sensitivity. On a separate day, a (13)C-enriched CHO drink was ingested before exercise (3 × 20 min bouts) at 45% V̇o2max Breath measurements were collected to calculate CHOexo oxidative efficiency. CHOexo oxidative efficiency during exercise was similar in IGT (17.0 ± 3.6%) compared with NGT (17.1 ± 4.4%) (P = 0.90) despite lower whole body insulin sensitivity in IGT at rest (P = 0.02). Area under the curve for insulin (AUCins) measured at rest during the OGTT was greater in IGT compared with NGT (P = 0.04). The ability of skeletal muscle to utilize CHOexo was not impaired during exercise in children with IGT.

  1. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  2. Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine

    PubMed Central

    Gao, Ying-Ying; Chen, Li; Wang, Tao; Nie, Zheng-Wen; Zhang, Xia; Miao, Yi-Liang

    2016-01-01

    DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes’ DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes. PMID:27782163

  3. Accessibility of blood glucose monitoring systems for blind and visually impaired people.

    PubMed

    Uslan, Mark M; Eghtesadi, Khosrow; Burton, Darren

    2003-01-01

    Blindness and visual impairment are prevalent among people with diabetes. Blood glucose monitoring systems (BGMSs) have revolutionized diabetes care, but none of the 30 or so commercially available monitoring systems was designed to be fully accessible to blind and visually impaired persons. Seventeen BGMSs were evaluated for accessible use by people who are blind or visually impaired. Features and functionalities (e.g., operating procedures, user interface design, device specifications, and computer interface capabilities) were examined and tabulated, as was usability and accessibility. A subset of these systems with the highest degree of accessibility was selected and thoroughly examined and tested. Additionally, 12 people who are blind or visually impaired and who were issued BGMSs by their physician or diabetes educator were interviewed and videotaped using their meters. Of the 17 BGMSs, only four had voice output capability, an essential component of accessibility for blind and visually impaired persons. The six BGMSs without voice output that had the largest display fonts were found to have few accessibility features for visually impaired persons. Users indicated that voice output and portability were desired attributes of an accessible BGMS. None of the BGMSs evaluated had all of the required accessibility attributes, including the four systems that had voice output capability. The four systems with voice output were much bulkier and heavier than those that did not have this capability. Recommendations are made for design and development of BGMSs that would increase effective usage by blind and visually impaired persons, including integrating text to speech and streamlining the blood glucose monitoring process. PMID:12828828

  4. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    PubMed Central

    2011-01-01

    Background Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM) increased the expression of glucose transporter protein-1 (GLUT1) in primary human brain endothelial cell (hBEC, main component of BBB) without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB) aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity. PMID:21426580

  5. Effect of Chinese Herbal Medicine Jinlida Granule in Treatment of Patients with Impaired Glucose Tolerance

    PubMed Central

    Shi, Ya-Lin; Liu, Wen-Juan; Zhang, Xiao-Fang; Su, Wei-Juan; Chen, Ning-Ning; Lu, Shu-Hua; Wang, Li-Ying; Shi, Xiu-Lin; Li, Zhi-Bin; Yang, Shu-Yu

    2016-01-01

    Background: Diabetes mellitus (DM) remains a major health problem worldwide. Several clinical trials have shown the superiority of the Traditional Chinese Medicine in delaying or reversing the development and progression of DM. This study aimed to evaluate the efficacy of Jinlida (JLD) granule, a Chinese herbal recipe, in the treatment of impaired glucose tolerance (IGT) and its effect on the prevention of DM. Methods: Sixty-five IGT patients were randomized to receive one bag of JLD granules three times daily (JLD group, n = 34) or no drug intervention (control group, n = 31) for 12 weeks. Oral glucose tolerance test, glycated hemoglobin A1c (HbA1c), body mass index, blood lipids levels, fasting insulin, and insulin resistance calculated using homeostatic model assessment (HOMA-IR) of all the patients were observed and compared before and after the treatment. Results: Sixty-one participants completed the trial (32 in JLD group and 29 in the control group). There were statistically significant decreases in HbA1c (P < 0.001), 2-h plasma glucose (P < 0.001), and HOMA-IR (P = 0.029) in JLD group compared with the control group after 12 weeks of treatment. After 12 weeks of treatment, two (6.9%) patients returned to normal blood glucose, and five (17.2%) patients turned into DM in control group, while in the JLD group, 14 (43.8%) returned to normal blood glucose and 2 (6.2%) turned into DM. There was a significant difference in the number of subjects who had normal glucose at the end of the study between two groups (P = 0.001). Conclusions: JLD granule effectively improved glucose control, increased the conversion of IGT to normal glucose, and improved the insulin resistance in patients with IGT. This Chinese herbal medicine may have a clinical value for IGT. PMID:27647185

  6. Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice

    PubMed Central

    Uchida, Kunitoshi; Dezaki, Katsuya; Damdindorj, Boldbaatar; Inada, Hitoshi; Shiuchi, Tetsuya; Mori, Yasuo; Yada, Toshihiko; Minokoshi, Yasuhiko; Tominaga, Makoto

    2011-01-01

    OBJECTIVE TRPM2 is a Ca2+-permeable nonselective cation channel activated by adenosine dinucleotides. We previously demonstrated that TRPM2 is activated by coapplication of heat and intracellular cyclic adenosine 5′-diphosphoribose, which has been suggested to be involved in intracellular Ca2+ increase in immunocytes and pancreatic β-cells. To clarify the involvement of TRPM2 in insulin secretion, we analyzed TRPM2 knockout (TRPM2-KO) mice. RESEARCH DESIGN AND METHODS Oral and intraperitoneal glucose tolerance tests (OGTT and IPGTT) were performed in TRPM2-KO and wild-type mice. We also measured cytosolic free Ca2+ in single pancreatic cells using fura-2 microfluorometry and insulin secretion from pancreatic islets. RESULTS Basal blood glucose levels were higher in TRPM2-KO mice than in wild-type mice without any difference in plasma insulin levels. The OGTT and IPGTT demonstrated that blood glucose levels in TRPM2-KO mice were higher than those in wild-type mice, which was associated with an impairment in insulin secretion. In isolated β-cells, smaller intracellular Ca2+ increase was observed in response to high concentrations of glucose and incretin hormone in TRPM2-KO cells than in wild-type cells. Moreover, insulin secretion from the islets of TRPM2-KO mice in response to glucose and incretin hormone treatment was impaired, whereas the response to tolbutamide, an ATP-sensitive potassium channel inhibitor, was not different between the two groups. CONCLUSIONS These results indicate that TRPM2 is involved in insulin secretion stimulated by glucose and that further potentiated by incretins. Thus, TRPM2 may be a new target for diabetes therapy. PMID:20921208

  7. Acute Inactivity Impairs Glycemic Control but Not Blood Flow to Glucose Ingestion

    PubMed Central

    Reynolds, Leryn J; Credeur, Daniel P; Holwerda, Seth W; Leidy, Heather J; Fadel, Paul J; Thyfault, John P

    2014-01-01

    Purpose Insulin-stimulated increases in skeletal muscle blood flow play a role in glucose disposal. Indeed, 7 days of aerobic exercise in type 2 diabetes patients increased blood flow responses to an oral glucose tolerance test (OGTT) and improved glucose tolerance. More recent work suggests that reduced daily physical activity impairs glycemic control (GC) in healthy individuals. Herein, we sought to determine if an acute reduction in daily activity (from >10,000 to <5,000 steps/day) for 5 days (RA5) in healthy individuals reduced insulin-stimulated blood flow and GC in parallel and if a 1 day return to activity (RTA1) improved these outcomes. Methods OGTTs were performed as a stimulus to increase insulin in 14 healthy, recreationally active men (24±1.1 yrs) at baseline, RA5, and RTA1. Measures of insulin sensitivity (Matsuda index) and femoral and brachial artery blood flow were made during the OGTT. Free living measures of GC including peak postprandial glucose (peak PPG) were also made via continuous glucose monitoring. Results Femoral and brachial artery blood flow increased during the OGTT but neither was significantly impacted by changes in physical activity (p>0.05). However, insulin sensitivity was decreased by RA5 (11.3±1.5 to 8.0±1.0; p<0.05). Likewise, free living GC measures of peak post prandial blood glucose (113±3 to 123±5 mg/dL; p<0.05) was significantly increased at RA5. Interestingly, insulin sensitivity and GC as assessed by peak PPG were not restored after RTA1 (p>0.05). Conclusions Thus, acute reductions in physical activity impaired GC and insulin sensitivity; however blood flow responses to an OGTT were not affected. Further, a 1 day return to activity was not sufficient to normalize GC following 5 days of reduced daily physical activity. PMID:25207931

  8. Osteoporosis (image)

    MedlinePlus

    Osteoporosis is a condition characterized by progressive loss of bone density, thinning of bone tissue and increased vulnerability to fractures. Osteoporosis may result from disease, dietary or hormonal deficiency ...

  9. The impact of years since menopause on the development of impaired glucose tolerance.

    PubMed

    Wu, S I; Chou, P; Tsai, S T

    2001-02-01

    This is a community-based population survey carried out by the Yang-Ming Crusade to investigate the impact of years since menopause on the development of glucose intolerance in post-menopausal women. A total of 5412 women were screened with fasting plasma glucose. Those with fasting plasma glucose levels between 5.5 and 7.8 mM were given an oral glucose tolerance test. Among the 5412 women screened, 2039 (37.7%) were post-menopausal with a median age at menopause of 49 years. Pre-menopausal women showed impaired glucose tolerance (IGT) and diabetes mellitus (DM) prevalences of 3.7% and 3.1% respectively, whereas the corresponding figures for post-menopausal women were 8.4% and 17.6%, respectively. Comparing DM versus normal glucose tolerance (NGT) and IGT versus NGT as dependent variables in logistic regression analysis, menopause status was significantly associated with DM and IGT. In post-menopausal women, after maintaining body mass index, waist-hip ratio, systolic blood pressure, diastolic blood pressure, family history of DM, age at menopause, cholesterol, high density lipoprotein cholesterol and triglycerides as controls, years since menopause was the only significant factor associated with IGT (OR = 1.05, 95%CI 1.01-1.08) and years since menopause was not associated with DM. Further analysis indicated years since menopause (OR = 1.06, 95%CI, 1.01-1.11) was the only factor significantly associated with IGT for women whose age at menopause was greater than 49 years. Our study indicates that in subjects who have not undergone hormone replacement therapy and whose age at menopause is greater than 49 years, an increase in years since menopause confers a negative influence on glucose tolerance and increases the risk of IGT by 6% for each year after menopause.

  10. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells.

    PubMed

    Wang, Shuanglian; Luo, Yan; Feng, Allen; Li, Tao; Yang, Xupeng; Nofech-Mozes, Roy; Yu, Meng; Wang, Changhui; Li, Ziwei; Yi, Fan; Liu, Chuanyong; Lu, Wei-Yang

    2014-12-01

    Alcohol overindulgence is a risk factor of type 2 diabetes mellitus. However, the mechanisms by which alcohol overindulgence damages glucose metabolism remain unclear. Pancreatic islet β-cells are endowed with type-A γ-aminobutyric acid receptor (GABAAR) mediated autocrine signaling mechanism, which regulates insulin secretion and fine-tunes glucose metabolism. In neurons GABAAR is one of the major targets for alcohol. This study investigated whether ethanol alters glucose metabolism by affecting GABAAR signaling in pancreatic β-cells. Blood glucose level of test mice was measured using a blood glucose meter. Insulin secretion by the pancreatic β-cell line INS-1 cells was examined using a specific insulin ELISA kit. Whole-cell patch-clamp recording was used to evaluate GABA-elicited current in INS-1 cells. Western blot and immunostaining were used to measure the expression of GABAAR subunits in mouse pancreatic tissues or in INS-1 cells. Intraperitoneal (i.p.) administration of ethanol (3.0g/kg body weight) to mice altered glucose metabolism, which was associated with decreased expression of GABAAR α1- and δ- subunits on the surface of pancreatic β-cells. Acute treatment of cultured INS-1cells with ethanol (60mM) decreased the GABA-induced current and reduced insulin secretion. In contrast, treating INS-1 cells with GABA (100μM) largely prevented the ethanol-induced reduction of insulin release. Importantly, pre-treating mice with GABA (i.p., 1.5mg/kg body weight) partially reversed ethanol-induced impairment of glucose homeostasis in mice. Our data suggest a novel role of pancreatic GABA signaling in protecting pancreatic islet β-cells from ethanol-induced dysfunction.

  11. A preliminary investigation of EZSCAN™ screening for impaired glucose tolerance and diabetes in a patient population

    PubMed Central

    CHEN, XIAOLU; CHEN, LIZHU; DING, RONGJING; SHI, QIUTING; ZHANG, YUANYUAN; HU, DAYI

    2015-01-01

    EZSCAN™ is a non-invasive technology that evaluates sweat gland dysfunction using electrochemical skin conductance measurements, providing an opportunity to determine the risk of impaired glucose tolerance (IGT) and diabetes mellitus (DM). This study was conducted with the aims of detecting IGT and DM and investigating the efficacy and cut-off points of the EZSCAN test in a patient population. The traditional serum and plasma glucose tests were used as comparators. In this cross-sectional study, 270 previously undiagnosed patients (180 women and 90 men) with a high risk of glucose metabolism disorders (≥45 years old) were enrolled. All patients underwent an oral glucose tolerance test (OGTT) and hemoglobin A1c (HbA1c), fasting plasma glucose (FPG) and EZSCAN tests. Forty (14.8%) patients had newly diagnosed DM (NDM), 79 (29.3%) had IGT and 151 (55.9%) had normal glucose tolerance. The EZSCAN values of these groups were 48±11, 47±11 and 34±13%, respectively. For all patients, the correlation coefficient of EZSCAN was 0.462 with the OGTT (P<0.001), 0.182 with the FPG test (P<0.001) and 0.379 with the HbA1c test (P<0.001). The EZSCAN cut-off point for the detection of IGT was 37% [sensitivity, 82%; specificity, 62%; area under the curve (AUC), 0.778], and the cut-off point for NDM was 50% (sensitivity, 53%; specificity, 59%; AUC, 0.528). This study demonstrated that the non-invasive EZSCAN system is an effective screening tool for the detection of glucose dysfunction in the population tested, and that its performance in detecting previously undiagnosed IGT is superior to its performance in detecting DM. PMID:26136878

  12. Poor sleep quality is associated with impaired glucose tolerance in women after gestational diabetes.

    PubMed

    Ferrari, U; Künzel, H; Tröndle, K; Rottenkolber, M; Kohn, D; Fugmann, M; Banning, F; Weise, M; Sacco, V; Hasbargen, U; Hutter, S; Parhofer, K G; Kloiber, S; Ising, M; Seissler, J; Lechner, A

    2015-06-01

    We analyzed the association of sleep quality and glucose metabolism in women after gestational diabetes (pGDM) and in women after normoglycemic pregnancy (controls). Data during pregnancy and a visit within the first 15 months after delivery were collected from 61 pGDM and 30 controls in a prospective cohort study. This included a medical history, physical examination, questionnaires (Pittsburgh Sleep Quality Index (PSQI), and Perceived Stress Scale (PSS)), and 5-point oral glucose tolerance test with insulin measurements to determine indices of insulin sensitivity and insulin secretion. We used Spearman correlation coefficients and multivariate regression models for analysis.9.3 ± 3.2 months after delivery, pGDM had significantly higher fasting and 2 h glucose levels and lower insulin sensitivity than controls. There was no significant difference in age, BMI and sleep quality as assessed with the PSQI between the two groups. The PSQI score correlated with the ogtt-2 h plasma glucose in pGDM (δ = 0.41; p = 0.0012), but not in controls. This association was confirmed with a multivariate linear regression model with adjustment for age, BMI and months post-delivery. Perceived stress was an independent risk factor (OR 1.12; 95% CI 1.02-1.23) for impaired sleep. Our findings suggest that post-delivery sleep quality significantly influences glucose tolerance in women after GDM and that impaired sleep is associated with increased stress perception. Measures to improve of sleep quality and reduce perceived stress should therefore be tested as additional strategies to prevent progression to type 2 diabetes after GDM. PMID:25930074

  13. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene

    PubMed Central

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain. PMID:26107521

  14. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    PubMed

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  15. High Frequency of Diabetes and Impaired Fasting Glucose in Patients with Glucose-6-Phosphate Dehydrogenase Deficiency in the Western Brazilian Amazon

    PubMed Central

    Santana, Marli S.; Monteiro, Wuelton M.; Costa, Mônica R. F.; Sampaio, Vanderson S.; Brito, Marcelo A. M.; Lacerda, Marcus V. G.; Alecrim, Maria G. C.

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, and it has a significant prevalence in the male population (X chromosome linked). The purpose of this study was to estimate the frequency of impaired fasting glucose and diabetes among G6PD-deficient persons in Manaus, Brazil, an area in the Western Brazilian Amazon to which malaria is endemic. Glucose-6-phosphate dehydrogenase–deficient males had more impaired fasting glucose and diabetes. This feature could be used as a screening tool for G6PD-deficient persons who are unable to use primaquine for the radical cure of Plasmodium vivax malaria. PMID:24865682

  16. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM

    PubMed Central

    Ma, Dan; Shield, Julian P.H.; Dean, Wendy; Leclerc, Isabelle; Knauf, Claude; Burcelin, Rémy; Rutter, Guy A.; Kelsey, Gavin

    2004-01-01

    Transient neonatal diabetes mellitus (TNDM) is a rare inherited diabetic syndrome apparent in the first weeks of life and again during early adulthood. The relative contributions of reduced islet β cell number and impaired β cell function to the observed hypoinsulinemia are unclear. The inheritance pattern of this imprinted disorder implicates overexpression of one or both genes within the TNDM locus: ZAC, which encodes a proapoptotic zinc finger protein, and HYMAI, which encodes an untranslated mRNA. To investigate the consequences for pancreatic function, we have developed a high-copy transgenic mouse line, TNDM29, carrying the human TNDM locus. TNDM29 neonates display hyperglycemia, and older adults, impaired glucose tolerance. Neonatal hyperglycemia occurs only on paternal transmission, analogous to paternal dependence of TNDM in humans. Embryonic pancreata of TNDM29 mice showed reductions in expression of endocrine differentiation factors and numbers of insulin-staining structures. By contrast, β cell mass was normal or elevated at all postnatal stages, whereas pancreatic insulin content in neonates and peak serum insulin levels after glucose infusion in adults were reduced. Expression of human ZAC and HYMAI in these transgenic mice thus recapitulates key features of TNDM and implicates impaired development of the endocrine pancreas and β cell function in disease pathogenesis. PMID:15286800

  17. Peripheral Inflammation Acutely Impairs Human Spatial Memory via Actions on Medial Temporal Lobe Glucose Metabolism

    PubMed Central

    Harrison, Neil A.; Doeller, Christian F.; Voon, Valerie; Burgess, Neil; Critchley, Hugo D.

    2014-01-01

    Background Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Methods Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Results Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. Conclusions These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer’s disease. PMID:24534013

  18. Association between Advanced Glycation End Products and Impaired Fasting Glucose: Results from the SALIA Study

    PubMed Central

    Teichert, Tom; Hellwig, Anne; Peßler, Annette; Hellwig, Michael; Vossoughi, Mohammad; Sugiri, Dorothea; Vierkötter, Andrea; Schulte, Thomas; Freund, Juliane; Roden, Michael; Hoffmann, Barbara; Schikowski, Tamara; Luckhaus, Christian; Krämer, Ursula; Henle, Thomas; Herder, Christian

    2015-01-01

    Advanced glycation end products (AGEs) may contribute to the development of type 2 diabetes and related complications, whereas their role in the early deterioration of glycaemia is unknown. While previous studies used antibody-based methods to quantify AGEs, data from tandem mass spectrometry coupled liquid chromatography (LC-MS/MS)-based measurements are limited to patients with known diabetes. Here, we used the LC-MS/MS method to test the hypothesis that plasma AGE levels are higher in individuals with impaired fasting glucose (IFG) than in those with normal fasting glucose (NFG). Secondary aims were to assess correlations of plasma AGEs with quantitative markers of glucose metabolism and biomarkers of subclinical inflammation. This study included on 60 women with NFG or IFG (n = 30 each, mean age 74 years) from the German SALIA cohort. Plasma levels of free metabolites (3-deoxyfructose, 3-deoxypentosone, 3-deoxypentulose), two hydroimidazolones, oxidised adducts (carboxymethyllysine, carboxyethyllysine, methionine sulfoxide) and Nε-fructosyllysine were measured using LC-MS/MS. Plasma concentrations of all tested AGEs did not differ between the NFG and IFG groups (all p>0.05). Associations between plasma levels of AGEs and fasting glucose, insulin and HOMA-IR as a measure of insulin resistance were weak (r between -0.2 and 0.2, all p>0.05). The association between 3-deoxyglucosone-derived hydroimidazolone with several proinflammatory biomarkers disappeared upon adjustment for multiple testing. In conclusion, plasma AGEs assessed by LC-MS/MS were neither increased in IFG nor associated with parameters of glucose metabolism and subclinical inflammation in our study. Thus, these data argue against strong effects of AGEs in the early stages of deterioration of glucose metabolism. PMID:26018950

  19. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle.

    PubMed

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD.

  20. Impaired Fasting Glucose in Nondiabetic Range: Is It a Marker of Cardiovascular Risk Factor Clustering?

    PubMed Central

    Valentino, Giovanna; Kramer, Verónica; Orellana, Lorena; Bustamante, María José; Casasbellas, Cinthia; Adasme, Marcela; Salazar, Alejandra; Navarrete, Carlos; Acevedo, Mónica

    2015-01-01

    Background. Impaired fasting glucose (IFG) through the nondiabetic range (100–125 mg/dL) is not considered in the cardiovascular (CV) risk profile. Aim. To compare the clustering of CV risk factors (RFs) in nondiabetic subjects with normal fasting glucose (NFG) and IFG. Material and Methods. Cross-sectional study in 3739 nondiabetic subjects. Demographics, medical history, and CV risk factors were collected and lipid profile, fasting glucose levels (FBG), C-reactive protein (hsCRP), blood pressure (BP), anthropometric measurements, and aerobic capacity were determined. Results. 559 (15%) subjects had IFG: they had a higher mean age, BMI, waist circumference, non-HDL cholesterol, BP, and hsCRP (p < 0.0001) and lower HDL (p < 0.001) and aerobic capacity (p < 0.001). They also had a higher prevalence of hypertension (34% versus 25%; p < 0.001), dyslipidemia (79% versus 74%; p < 0.001), and obesity (29% versus 16%; p < 0.001) and a higher Framingham risk score (8% versus 6%; p < 0.001). The probability of presenting 3 or more CV RFs adjusted by age and gender was significantly higher in the top quintile of fasting glucose (≥98 mg/dL; OR = 2.02; 1.62–2.51). Conclusions. IFG in the nondiabetic range is associated with increased cardiovascular RF clustering. PMID:26504260

  1. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle.

    PubMed

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD. PMID:26510393

  2. Elevation of D-glucose impairs coronary artery autoregulation after slight reduction of coronary flow.

    PubMed

    Wascher, T C; Bachernegg, M; Kickenweiz, E; Stark, G; Stark, U; Toplak, H; Graier, W F; Krejs, G J

    1995-08-01

    Diabetes mellitus is thought to increase the susceptibility of tissue to hypoxic injury through D-glucose-induced alterations of intracellular metabolism. Therefore the effects of hyperglycaemia on coronary artery autoregulation under slight reduction of coronary flow were investigated in isolated perfused guinea-pig hearts. Under normal (10 mM) D-glucose concentrations coronary autoregulation was intact in response to a slight reduction of coronary flow (from 6 to 4.5 mL min-1) when L-arginine as a precursor of the endothelium-derived relaxing factor (EDRF/NO) was available and formation of prostaglandines was intact. Under high (44 mM) D-glucose concentrations on the other hand, a sustained vasodilatation dependent on the availability of L-arginine was observed, when formation of prostaglandins was blocked. This effect was partially reduced in the presence of prostaglandin synthesis. Furthermore, the effect of L-arginine under both conditions could be antagonized by the L-arginine-analogue NG-nitro-L-arginine-methyl-ester (100 microM). Our results suggest that hyperglycaemia impairs coronary artery autoregulation by reducing the threshold for hypoxic vasodilatation in an EDRF/NO-dependent manner. Concomitantly a shift from the formation of vasodilatatory to vasoconstrictive prostaglandines was observed. These results might be of particular interest in patients with diabetes mellitus and ischaemic heart disease.

  3. Dosakaya Juice Assuages Development of Sucrose Induced Impaired Glucose Tolerance and Imbalance in Antioxidant Defense

    PubMed Central

    Kumar, Dommati Anand; Sweeya, Pisupati S. R.; Shukla, Srishti; Anusha, Sanga Venkata; Akshara, Dasari; Madhusudana, Kuncha; Tiwari, Ashok Kumar

    2015-01-01

    Objective: The objective was to explore the effect of Dosakaya (DK) (Cucumis melo var. chito) juice on sucrose induced dysglycemia and disturbances in antioxidant defense in rats. Materials and Methods: Rats were preconditioned with DK juice before administration of sucrose beverage continuously for 1-month. Blood glucose tolerance test and glutathione (GSH) homeostasis pathways in kidney were analyzed in different group of animals at the end of the study. Results: DK juice diffused (P < 0.001) hypertriglyceridemia inducing effect of sucrose and arrested sucrose induced weight gain. It improved glucose tolerance ability by significantly reducing (P < 0.05) first-hour glycemic excursion and decreasing 2 h glycemic load (P < 0.05) following oral glucose tolerance test in sucrose fed animals. Furthermore, disturbances in antioxidant defense mechanisms in terms of GSH homeostasis in kidney were restored due to juice feeding. DK juice administration checked reduction in GSH-S-transferase and glyoxalase-I activity, thus, significantly mitigated lipid peroxidation (P < 0.05), and formation of advanced glycation end-products (P < 0.001) in kidney and serum (P < 0.01). Quantitative analysis of juice found it a rich source of protein and polyphenols. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the presence of multiple protein bands in whole fruit juice. Therefore, SDS-PAGE protein fingerprint of DK juice may serve as a quality control tool for standardization of juice. Conclusion: The whole fruit juice of DK may become cost-effective, affordable health beverage in extenuating ill-health effects of sugar consumption. This is the first report identifying DK juice in preventing development dysglycemia, dyslipidemia, and oxidative stress induced due to chronic sucrose feeding in rats. SUMMARY Chronic sucrose consumption induced development of dysglycemia and also impaired antioxidant defense mechanism in rats. The oral administration of

  4. Allele Summation of Diabetes Risk Genes Predicts Impaired Glucose Tolerance in Female and Obese Individuals

    PubMed Central

    Hatziagelaki, Erifili; Ketterer, Caroline; Heni, Martin; Machicao, Fausto; Stefan, Norbert; Staiger, Harald; Häring, Hans-Ulrich; Fritsche, Andreas

    2012-01-01

    Introduction Single nucleotide polymorphisms (SNPs) in approximately 40 genes have been associated with an increased risk for type 2 diabetes (T2D) in genome-wide association studies. It is not known whether a similar genetic impact on the risk of prediabetes (impaired glucose tolerance [IGT] or impaired fasting glycemia [IFG]) exists. Methods In our cohort of 1442 non-diabetic subjects of European origin (normal glucose tolerance [NGT] n = 1046, isolated IFG n = 142, isolated IGT n = 140, IFG+IGT n = 114), an impact on glucose homeostasis has been shown for 9 SNPs in previous studies in this specific cohort. We analyzed these SNPs (within or in the vicinity of the genes TCF7L2, KCNJ11, HHEX, SLC30A8, WFS1, KCNQ1, MTNR1B, FTO, PPARG) for association with prediabetes. Results The genetic risk load was significantly associated with the risk for IGT (p = 0.0006) in a model including gender, age, BMI and insulin sensitivity. To further evaluate potential confounding effects, we stratified the population on gender, BMI and insulin sensitivity. The association of the risk score with IGT was present in female participants (p = 0.008), but not in male participants. The risk score was significantly associated with IGT (p = 0.008) in subjects with a body mass index higher than 30 kg/m2 but not in non-obese individuals. Furthermore, only in insulin resistant subjects a significant association between the genetic load and the risk for IGT (p = 0.01) was found. Discussion We found that T2D genetic risk alleles cause an increased risk for IGT. This effect was not present in male, lean and insulin sensitive subjects, suggesting a protective role of beneficial environmental factors on the genetic risk. PMID:22768041

  5. Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance.

    PubMed

    Dadi, Prasanna K; Vierra, Nicholas C; Ustione, Alessandro; Piston, David W; Colbran, Roger J; Jacobson, David A

    2014-05-01

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca(2+) entry via voltage-dependent Ca(2+) channels. CaMKII is a key mediator and feedback regulator of Ca(2+) signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here, we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet. The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca(2+) entry via voltage-dependent Ca(2+) channels is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca(2+) and of endoplasmic reticulum Ca(2+) stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca(2+) sensor with a key role as a feed-forward stimulator of β-cell Ca(2+) signals that enhance GSIS under physiological and pathological conditions.

  6. Kwashiorkor and marasmus are both associated with impaired glucose clearance related to pancreatic β-cell dysfunction.

    PubMed

    Spoelstra, Martijn N; Mari, Andrea; Mendel, Marijke; Senga, Edward; van Rheenen, Patrick; van Dijk, Theo H; Reijngoud, Dirk-Jan; Zegers, Remco G T; Heikens, Geert Tom; Bandsma, Robert H J

    2012-09-01

    Severe malnutrition is a major health problem in developing countries and can present as kwashiorkor or marasmus. Kwashiorkor is associated with septicaemia, profound metabolic changes including hepatic steatosis, altered protein metabolism and increased oxidative stress. Limited data suggest that children with kwashiorkor have an impaired glucose tolerance and insulin secretion. Our objective was to determine glucose tolerance in children with kwashiorkor compared to marasmus and its relation to insulin secretion and sensitivity. Six children with kwashiorkor and 8 children with marasmus were studied. We were also able to include 3 healthy children for comparison. They received a primed (13 mg/kg), constant infusion (0.15 mg/kg/min) of [6,6-(2)H(2)]glucose for 4 h with serial blood sampling. In addition, an oral glucose tolerance test (OGTT) was performed with labeled 10 mg/g [U-(13)C]glucose. Glucose clearance was determined using mathematical modeling. Glucose clearance rates during the OGTT were -392 (range 309) mL/kg in children with kwashiorkor, -156 (426) mL/kg in marasmus and 279 (345) mL/kg in the control group. Glucose clearance rates correlated with plasma albumin concentrations (r=0.67, P=.001). Insulin responses were strongly impaired in both kwashiorkor and marasmus. There was no indication of peripheral or hepatic insulin resistance in the malnourished groups. We show that glucose clearance rates are affected in both children with marasmus as well as kwashiorkor, which correlate with plasma albumin concentrations. The disturbed glucose clearance in malnutrition is related to an impairment in insulin availability.

  7. Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments.

    PubMed

    Morris, Ken A; Gold, Paul E

    2013-02-01

    Epinephrine enhances memory in young adult rats, in part, by increasing blood glucose levels needed to modulate memory. In old rats, epinephrine is deficient at raising blood glucose levels and thus is only moderately effective at enhancing memory. In contrast, systemic glucose injections improve memory in old rats, with resulting memory performance equal to that of young rats. The diminished response of glucose to training in old rats may blunt downstream neurochemical and molecular mechanisms needed to upregulate memory processes. In the first experiment, young adult and old rats were trained on an inhibitory avoidance task with immediate post-training injections of aCSF or glucose into the dorsal hippocampus. Old rats had significant memory impairments compared to young rats 7 days after training. Intrahippocampal injections of glucose reversed age-related deficits, improving memory scores in old rats to values seen in young rats. A second experiment examined age-related changes in activation of the transcription factor CREB, which is widely implicated in memory formation and may act downstream of hormonal and metabolic signals. Activation was assessed in response to training with systemic injections of epinephrine and glucose at doses known to enhance memory. Young adult and old rats were trained on inhibitory avoidance with immediate post-training systemic injections of saline, epinephrine, or glucose. After training, old rats had significant impairments in CREB phosphorylation in area CA1 and the dentate gyrus region of the hippocampus, and in the basolateral and lateral amygdala. Epinephrine and glucose attenuated age-related deficits in CREB phosphorylation, but were more effective in the amygdala and hippocampus, respectively. Together, these results support the view that age-related changes in blood glucose responses to epinephrine contribute to memory impairments, which may be related to alterations in regional patterns of CREB phosphorylation.

  8. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  9. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats.

    PubMed

    Swithers, Susan E; Laboy, Alycia F; Clark, Kiely; Cooper, Stephanie; Davidson, T L

    2012-07-15

    Previous work from our lab has demonstrated that experience with high-intensity sweeteners in rats leads to increased food intake, body weight gain and adiposity, along with diminished caloric compensation and decreased thermic effect of food. These changes may occur as a result of interfering with learned relations between the sweet taste of food and the caloric or nutritive consequences of consuming those foods. The present experiments determined whether experience with the high-intensity sweetener saccharin versus the caloric sweetener glucose affected blood glucose homeostasis. The results demonstrated that during oral glucose tolerance tests, blood glucose levels were more elevated in animals that had previously consumed the saccharin-sweetened supplements. In contrast, during glucose tolerance tests when a glucose solution was delivered directly into the stomach, no differences in blood glucose levels between the groups were observed. Differences in oral glucose tolerance responses were not accompanied by differences in insulin release; insulin release was similar in animals previously exposed to saccharin and those previously exposed to glucose. However, release of GLP-1 in response to an oral glucose tolerance test, but not to glucose tolerance tests delivered by gavage, was significantly lower in saccharin-exposed animals compared to glucose-exposed animals. Differences in both blood glucose and GLP-1 release in saccharin animals were rapid and transient, and suggest that one mechanism by which exposure to high-intensity sweeteners that interfere with a predictive relation between sweet tastes and calories may impair energy balance is by suppressing GLP-1 release, which could alter glucose homeostasis and reduce satiety.

  10. Treating osteoporosis.

    PubMed

    Gupta, Akhil; March, Lyn

    2016-04-01

    Osteoporotic fractures are common resulting in increased morbidity and mortality. Exercise can help prevent osteoporosis. It can also benefit patients with osteoporosis, but the exercises must be tailored to the patient. Most Australians should be able to obtain adequate calcium in their diet and vitamin D from the sun. Supplements may be needed in some patients and they are recommended for use with other drugs for osteoporosis. Bisphosphonates, and in some patients denosumab, are first-line drugs for osteoporosis. Raloxifene and strontium ranelate can be considered in patients who cannot take bisphosphonates or denosumab. Teriparatide is reserved for patients with severe osteoporosis and the use of strontium ranelate is declining because of cardiovascular safety concerns. PMID:27340321

  11. Secondary osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-06-01

    Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is -2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis.

  12. Secondary osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    SUMMARY Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is –2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  13. Treating osteoporosis

    PubMed Central

    Gupta, Akhil; March, Lyn

    2016-01-01

    summary Osteoporotic fractures are common resulting in increased morbidity and mortality. Exercise can help prevent osteoporosis. It can also benefit patients with osteoporosis, but the exercises must be tailored to the patient. Most Australians should be able to obtain adequate calcium in their diet and vitamin D from the sun. Supplements may be needed in some patients and they are recommended for use with other drugs for osteoporosis. Bisphosphonates, and in some patients denosumab, are first-line drugs for osteoporosis. Raloxifene and strontium ranelate can be considered in patients who cannot take bisphosphonates or denosumab. Teriparatide is reserved for patients with severe osteoporosis and the use of strontium ranelate is declining because of cardiovascular safety concerns. PMID:27340321

  14. Secondary osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-06-01

    Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is -2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  15. Evaluation of Nerve Conduction Studies in Obese Children With Insulin Resistance or Impaired Glucose Tolerance.

    PubMed

    Ince, Hülya; Taşdemir, Haydar Ali; Aydin, Murat; Ozyürek, Hamit; Tilki, Hacer Erdem

    2015-07-01

    The aim of the study was to investigate nerve conduction studies in terms of neuropathic characteristics in obese patients who were in prediabetes stage and also to determine the abnormal findings. The study included 69 obese adolescent patients between April 2009 and December 2010. All patients and control group underwent motor (median, ulnar, tibial, and peroneal) and sensory (median, ulnar, sural, and medial plantar) nerve conduction studies and sympathetic skin response test. Sensory response amplitude of the medial plantar nerve was significantly lower in the patients with impaired glucose tolerance and insulin resistance. To our knowledge, the present study is the first study demonstrating the development of sensory and autonomic neuropathy due to metabolic complications of obesity in adolescent children even in the period without development of diabetes mellitus. We recommend that routine electrophysiological examinations be performed, using medial plantar nerve conduction studies and sympathetic skin response test. PMID:25342307

  16. Evaluation of Nerve Conduction Studies in Obese Children With Insulin Resistance or Impaired Glucose Tolerance.

    PubMed

    Ince, Hülya; Taşdemir, Haydar Ali; Aydin, Murat; Ozyürek, Hamit; Tilki, Hacer Erdem

    2015-07-01

    The aim of the study was to investigate nerve conduction studies in terms of neuropathic characteristics in obese patients who were in prediabetes stage and also to determine the abnormal findings. The study included 69 obese adolescent patients between April 2009 and December 2010. All patients and control group underwent motor (median, ulnar, tibial, and peroneal) and sensory (median, ulnar, sural, and medial plantar) nerve conduction studies and sympathetic skin response test. Sensory response amplitude of the medial plantar nerve was significantly lower in the patients with impaired glucose tolerance and insulin resistance. To our knowledge, the present study is the first study demonstrating the development of sensory and autonomic neuropathy due to metabolic complications of obesity in adolescent children even in the period without development of diabetes mellitus. We recommend that routine electrophysiological examinations be performed, using medial plantar nerve conduction studies and sympathetic skin response test.

  17. Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet

    PubMed Central

    Koike, Eiko; Win-Shwe, Tin-Tin; Yamamoto, Megumi; Takano, Hirohisa

    2014-01-01

    Background: Hexabromocyclododecane (HBCD) is an additive flame retardant used in the textile industry and in polystyrene foam manufacturing. Because of its lipophilicity and persistency, HBCD accumulates in adipose tissue and thus has the potential of causing metabolic disorders through disruption of lipid and glucose homeostasis. However, the association between HBCD and obesity remains unclear. Objectives: We investigated whether exposure to HBCD contributes to initiation and progression of obesity and related metabolic dysfunction in mice fed a normal diet (ND) or a high-fat diet (HFD). Methods: Male C57BL/6J mice were fed a HFD (62.2 kcal% fat) or a ND and treated orally with HBCD (0, 1.75, 35, or 700 μg/kg body weight) weekly from 6 to 20 weeks of age. We examined body weight, liver weight, blood biochemistry, histopathological changes, and gene expression profiles in the liver and adipose tissue. Results: In HFD-fed mice, body and liver weight were markedly increased in mice treated with the high (700 μg/kg) and medium (35 μg/kg) doses of HBCD compared with vehicle. This effect was more prominent in the high-dose group. These increases were paralleled by increases in random blood glucose and insulin levels and enhancement of microvesicular steatosis and macrophage accumulation in adipose tissue. HBCD-treated HFD-fed mice also had increased mRNA levels of Pparg (peroxisome proliferator-activated receptor-γ) in the liver and decreased mRNA levels of Glut4 (glucose transporter 4) in adipose tissue compared with vehicle-treated HFD-fed mice. Conclusions: Our findings suggest that HBCD may contribute to enhancement of diet-induced body weight gain and metabolic dysfunction through disruption of lipid and glucose homeostasis, resulting in accelerated progression of obesity. Citation: Yanagisawa R, Koike E, Win-Shwe TT, Yamamoto M, Takano H. 2014. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health

  18. Prevalence of and Factors Influencing Impaired Glucose Tolerance Among Hepatitis B Carriers

    PubMed Central

    Park, Boyoung; Jung, Kyu-Won; Oh, Chang-Mo; Choi, Kui Son; Suh, Mina; Jun, Jae Kwan

    2014-01-01

    Abstract Diabetes is associated with a poor prognosis for liver disease, particularly in chronic hepatitis carriers. We investigated the prevalence of factors associated with impaired glucose tolerance (IGT) including diabetes and impaired fasting glucose (IFG) among individuals with hepatitis B virus (HBV) infection. We used data from the Korean National Health and Nutrition Examination Survey, a nationwide cross-sectional survey conducted between 2007 and 2011. Sociodemographic information was collected using a structured questionnaire. The HBV surface antigen, liver enzymes, and lipid profile were measured from blood samples. IFG was found in 18.1% of HBV carriers and 19.3% of noncarriers (P = 0.25). Diabetes was observed in 10.0% of HBV carriers and 12.2% of noncarriers (P = 0.08). Lower level of educational attainment was associated with a higher prevalence of IGT: high school education (odds ratio [OR] = 1.94 [95% confidence interval (CI) 1.14–3.29] and less than a high school education (OR = 3.20 [95% CI, 1.66–6.15] vs more than or equal to a college education. Elevated alanine transaminase and triglyceride by 10 were associated with increased risk of IGT (OR = 1.10 [95% CI, 1.01–1.20] and OR = 1.04 [95% CI, 1.01–1.07], respectively). Being a man and older in age were associated with a higher prevalence of IGT, and individuals with a low body mass index were at lower risk for IGT. Given the synergistic effect of diabetes and HBV infection on liver disease prognosis, we recommend targeted IGT screening and follow-up for HBV carriers. These efforts should include health policies and intervention programs aimed at reducing educational disparities and encouraging early control of elevated liver enzymes or lipid profiles. PMID:25365406

  19. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study

    PubMed Central

    Annema, Wijtske; Dikkers, Arne; de Boer, Jan Freark; van Greevenbroek, Marleen M. J.; van der Kallen, Carla J. H.; Schalkwijk, Casper G.; Stehouwer, Coen D. A.; Dullaart, Robin P. F.; Tietge, Uwe J. F.

    2016-01-01

    Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) increase atherosclerotic cardiovascular disease risk. Cholesterol efflux capacity (CEC) is a key metric of the anti-atherosclerotic functionality of high-density lipoproteins (HDL). The present study aimed to delineate if T2DM and MetS cross-sectionally associate with altered CEC in a large high cardiometabolic risk population. CEC was determined from THP-1 macrophage foam cells towards apolipoprotein B-depleted plasma from 552 subjects of the CODAM cohort (288 controls, 126 impaired glucose metabolism [IGM], 138 T2DM). MetS was present in 297 participants. CEC was not different between different glucose tolerance categories but was lower in MetS (P < 0.001), at least partly attributable to lower HDL cholesterol (HDL-C) and apoA-I levels (P < 0.001 for each). Low grade inflammation was increased in IGM, T2DM and MetS as determined by a score comprising 8 different biomarkers (P < 0.05-< 0.001; n = 547). CEC inversely associated with low-grade inflammation taking account of HDL-C or apoA-I in MetS (P < 0.02), but not in subjects without MetS (interaction: P = 0.015). This study demonstrates that IGM and T2DM do not impact the HDL CEC function, while efflux is lower in MetS, partly dependent on plasma HDL-C levels. Enhanced low-grade inflammation in MetS may conceivably impair CEC even independent of HDL-C and apoA-I. PMID:27270665

  20. Impaired beta-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose.

    PubMed

    Marshak, S; Leibowitz, G; Bertuzzi, F; Socci, C; Kaiser, N; Gross, D J; Cerasi, E; Melloul, D

    1999-06-01

    In type 2 diabetes, chronic hyperglycemia has been suggested to be detrimental to beta-cell function, causing reduced glucose-stimulated insulin secretion and disproportionately elevated proinsulin. In the present study, we investigated the effect on several beta-cell functions of prolonged in vitro exposure of human pancreatic islet cultures to high glucose concentrations. Islets exposed to high glucose levels (33 mmol/l) for 4 and 9 days showed dramatic decreases in glucose-induced insulin release and in islet insulin content, with increased proportion of proinsulin-like peptides relative to insulin. The depletion in insulin stores correlated with the reduction in insulin mRNA levels and human insulin promoter transcriptional activity. We also demonstrated that high glucose dramatically lowered the binding activity of pancreatic duodenal homeobox 1 (the glucose-sensitive transcription factor), whereas the transcription factor rat insulin promoter element 3b1 activator was less influenced and insulin enhancer factor 1 remained unaffected. Most of these beta-cell impairments were partially reversible when islets first incubated for 6 days in high glucose were transferred to normal glucose (5.5 mmol/l) concentrations for 3 days. We conclude that cultured human islets are sensitive to the deleterious effect of high glucose concentrations at multiple functional levels, and that such mechanisms may play an important role in the decreased insulin production and secretion of type 2 diabetic patients. PMID:10342809

  1. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    PubMed

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants.

  2. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    PubMed

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants. PMID:24329902

  3. Corneal Confocal Microscopy Detects Neuropathy in Subjects With Impaired Glucose Tolerance

    PubMed Central

    Asghar, Omar; Petropoulos, Ioannis N.; Alam, Uazman; Jones, Wendy; Jeziorska, Maria; Marshall, Andrew; Ponirakis, Georgios; Fadavi, Hassan; Boulton, Andrew J.M.; Tavakoli, Mitra

    2014-01-01

    OBJECTIVE Impaired glucose tolerance (IGT) represents one of the earliest stages of glucose dysregulation and is associated with macrovascular disease, retinopathy, and microalbuminuria, but whether IGT causes neuropathy is unclear. RESEARCH DESIGN AND METHODS Thirty-seven subjects with IGT and 20 age-matched control subjects underwent a comprehensive evaluation of neuropathy by assessing symptoms, neurological deficits, nerve conduction studies, quantitative sensory testing, heart rate variability deep breathing (HRVdb), skin biopsy, and corneal confocal microscopy (CCM). RESULTS Subjects with IGT had a significantly increased neuropathy symptom profile (P < 0.001), McGill pain index (P < 0.001), neuropathy disability score (P = 0.001), vibration perception threshold (P = 0.002), warm threshold (P = 0.006), and cool threshold (P = 0.03), with a reduction in intraepidermal nerve fiber density (P = 0.03), corneal nerve fiber density (P < 0.001), corneal nerve branch density (P = 0.002), and corneal nerve fiber length (P = 0.05). No significant difference was found in sensory and motor nerve amplitude and conduction velocity or HRVdb. CONCLUSIONS Subjects with IGT have evidence of neuropathy, particularly small-fiber damage, which can be detected using skin biopsy and CCM. PMID:24969581

  4. High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach

    PubMed Central

    Katsoulieris, Elias N.; Drossopoulou, Garyfalia I.; Kotsopoulou, Eleni S.; Vlahakos, Dimitrios V.; Lianos, Elias A.; Tsilibary, Effie C.

    2016-01-01

    Objective Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats. Methods and Findings HGEC and isolated glomeruli were cultured for various time intervals under HG concentrations in the presence or absence of insulin. Our findings indicated that exposure of HGEC to HG led to downregulation of all insulin signaling markers tested (IR, p-IR, IRS-1, p-Akt, p-Fox01,03), as well as to increased sensitivity to apoptosis (as seen by increased PARP cleavage, Casp3 activation and DNA fragmentation). Short insulin pulse caused upregulation of insulin signaling markers (IR, p-IR, p-Akt, p-Fox01,03) in a greater extent in normoglycaemic cells compared to hyperglycaemic cells and for the case of p-Akt, in a PI3K-dependent manner. IRS-1 phosphorylation of HG-treated podocytes was negatively regulated, favoring serine versus tyrosine residues. Prolonged insulin treatment caused a significant decrease of IR levels, while alterations in glucose concentrations for various time intervals demonstrated changes of IR, p-IR and p-Akt levels, suggesting that the IR signaling pathway is regulated by glucose levels. Finally, HG exerted similar effects in isolated glomeruli. Conclusions These results suggest that HG compromises the insulin signaling pathway in the glomerulus, promoting a proapoptotic environment, with a possible critical step for this malfunction lying at the level of IRS-1 phosphorylation; thus we herein demonstrate glomerular insulin signaling as another target for investigation for the prevention and/ or treatment of diabetic nephropathy. PMID:27434075

  5. Type 2 diabetes mellitus and impaired glucose regulation in overweight and obese children and adolescents living in Serbia.

    PubMed

    Vukovic, R; Mitrovic, K; Milenkovic, T; Todorovic, S; Zdravkovic, D

    2012-11-01

    An increase in the prevalence of pediatric type 2 diabetes mellitus (T2DM) has been reported by numerous studies in the United States during the past two decades. Available data from Europe are scarce, but also suggest the rising prevalence of this disease in overweight children. The aim of this study was to determine the prevalence of previously undiagnosed T2DM, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) in a clinic cohort of otherwise healthy overweight and obese Caucasian children and adolescents living in Serbia. The study group consisted of 301 subjects (176 girls, 125 boys) aged 5.2-18.9 years, with body mass index >90th percentile. Oral glucose tolerance test was performed in all subjects. Previously undiagnosed T2DM was discovered in 0.3% (n=1) and impaired glucose regulation in 15.9% (n=48) of the subjects. Isolated IFG was detected in 4.3% (n=13), isolated IGT in 8.3% (n=25) and combined IFG and IGT in 3.3% (n=10) of the subjects. Disturbances of glucose metabolism were present in a substantial number of the subjects, which emphasizes the need for prevention and treatment of childhood obesity.

  6. Osteoporosis (image)

    MedlinePlus

    ... of bone tissue and increased vulnerability to fractures. Osteoporosis may result from disease, dietary or hormonal deficiency or advanced age. Regular exercise and vitamin and mineral supplements can reduce and ...

  7. MALE OSTEOPOROSIS

    PubMed Central

    Oliveira, Lindomar Guimarães; Guimarães, Mara Lucia Rassi

    2015-01-01

    ABSTRACT Population aging is a reality that is being faced worldwide, and Brazil is no different. Osteoporosis was considered to be a postmenopausal women's disease for many years. Men have many development and hormonal factors that differentiate their skeletal maturation, which affects the incidence of osteoporosis and fractures. An up-to-date review of the specific literature within the Medline system is presented. PMID:27022584

  8. Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley

    PubMed Central

    Liu, Liyan; Wang, Xinyang; Li, Ying; Sun, Changhao

    2015-01-01

    The aim of this study was to measure the postprandial changes in amino acid and biogenic amine profiles in individuals with impaired fasting glucose (IFG) and to investigate the changes of postprandial amino acid and biogenic amine profiles after a meal of highland barley (HB). Firstly, 50 IFG and 50 healthy individuals were recruited for the measurement of 2 h postprandial changes of amino acid and biogenic amine profiles after a glucose load. Secondly, IFG individuals received three different loads: Glucose (GL), white rice (WR) and HB. Amino acid and biogenic amine profiles, glucose and insulin were assayed at time zero and 30, 60, 90 and 120 min after the test load. The results showed fasting and postprandial amino acid and biogenic amine profiles were different between the IFG group and the controls. The level of most amino acids and their metabolites decreased after an oral glucose tolerance test, while the postprandial level of γ-aminobutyric acid (GABA) increased significantly in IFG individuals. After three different test loads, the area under the curve for glucose, insulin, lysine and GABA after a HB load decreased significantly compared to GL and WR loads. Furthermore, the postprandial changes in the level of GABA between time zero and 120 min during a HB load were associated positively with 2 h glucose and fasting insulin secretion in the IFG individuals. Thus, the HB load produced low postprandial glucose and insulin responses, which induced changes in amino acid and biogenic amine profiles and improved insulin sensitivity. PMID:26184292

  9. Postprandial Differences in the Amino Acid and Biogenic Amines Profiles of Impaired Fasting Glucose Individuals after Intake of Highland Barley.

    PubMed

    Liu, Liyan; Wang, Xinyang; Li, Ying; Sun, Changhao

    2015-07-01

    The aim of this study was to measure the postprandial changes in amino acid and biogenic amine profiles in individuals with impaired fasting glucose (IFG) and to investigate the changes of postprandial amino acid and biogenic amine profiles after a meal of highland barley (HB). Firstly, 50 IFG and 50 healthy individuals were recruited for the measurement of 2 h postprandial changes of amino acid and biogenic amine profiles after a glucose load. Secondly, IFG individuals received three different loads: Glucose (GL), white rice (WR) and HB. Amino acid and biogenic amine profiles, glucose and insulin were assayed at time zero and 30, 60, 90 and 120 min after the test load. The results showed fasting and postprandial amino acid and biogenic amine profiles were different between the IFG group and the controls. The level of most amino acids and their metabolites decreased after an oral glucose tolerance test, while the postprandial level of γ-aminobutyric acid (GABA) increased significantly in IFG individuals. After three different test loads, the area under the curve for glucose, insulin, lysine and GABA after a HB load decreased significantly compared to GL and WR loads. Furthermore, the postprandial changes in the level of GABA between time zero and 120 min during a HB load were associated positively with 2 h glucose and fasting insulin secretion in the IFG individuals. Thus, the HB load produced low postprandial glucose and insulin responses, which induced changes in amino acid and biogenic amine profiles and improved insulin sensitivity.

  10. [HbA1c is not enough in screening for impaired glucose metabolism. Glucose tolerance tests are also needed, as shown in Swedish prospective epidemiological study].

    PubMed

    Hellgren, Margareta; Daka, Bledar; Larsson, Charlotte

    2015-09-29

    An HbA1c threshold of ≥ 42 mmol/mol has been proposed to diagnose prediabetes. The sensitivity, specificity and positive predictive value of the proposed threshold for detection of individuals with prediabetes was examined in a study of 573 randomly selected individuals from Vara and Skövde. In addition, the utility of the FINDRISC questionnaire and of a fasting glucose test in combination with three short questions concerning BMI, heredity for type 2 diabetes and known hypertension was examined. Results from an oral glucose tolerance test were used as reference. The sensitivity of HbA1c and FINDRISC to detect individuals with IGT was 16 and 26 per cent respectively. Questions regarding BMI, heredity and hypertension together with a fasting glucose test yielded a sensitivity of 50%, but a lower specificity and positive predictive value. We conclude that HbA1c inefficiently detected individuals with impaired glucose tolerance and that oral glucose tolerance tests can still preferably be recommended.

  11. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers.

    PubMed

    Suwazono, Yasushi; Dochi, Mirei; Oishi, Mitsuhiro; Tanaka, Kumihiko; Kobayashi, Etsuko; Sakata, Kouichi

    2009-07-01

    The aim of this study was to assess the effect of shiftwork on hemoglobin A1c (HbA1c) level, as an index of glucose metabolism. A 14 yr prospective cohort study was conducted on day (n = 4219) and alternating shiftworkers (n = 2885) who received annual health checkups between 1991 and 2005 at a Japanese steel company. The endpoints were either a 10%, 15%, 20%, 25%, or 30% increase in HbA1c during the period of observation, compared to HbA1c at entry to the study. The association between the type of job schedule and increase in HbA1c was investigated after adjusting for age, body mass index, mean arterial pressure, total serum cholesterol, creatinine, alanine aminotransferase, gamma-glutamyl transpeptidase, uric acid, drinking habit, smoking habit, and habitual exercise using multivariate pooled logistic regression analyses. Shiftwork was significantly associated with the various HbA1c endpoints (> or =10% HbA1c increase, odds ratio 1.35 [95% confidence interval 1.26-1.44]; > or =15% HbA1c increase, odds ratio 1.29 [95% confidence interval, 1.19-1.40]; > or =20% HbA1c increase, odds ratio 1.23 [95% confidence interval 1.11-1.37]; and > or =25% HbA1c increase, odds ratio 1.19 [95% confidence interval 1.03-1.36]). Age, body mass index, alanine aminotransferase, and gamma-glutamyl transpeptidase were associated positively with all five HbA1c endpoints. Uric acid was associated negatively with all five HbA1c endpoints. Our study on male Japanese workers revealed alternating shiftwork (in addition to other established factors, such as age and body mass index) was a consistent risk factor for impaired glucose metabolism. PMID:19637051

  12. Direct costs in impaired glucose regulation: results from the population-based Heinz Nixdorf Recall study

    PubMed Central

    Bächle, C; Claessen, H; Andrich, S; Brüne, M; Dintsios, C M; Slomiany, U; Roggenbuck, U; Jöckel, K H; Moebus, S; Icks, A

    2016-01-01

    Objective For the first time, this population-based study sought to analyze healthcare utilization and associated costs in people with normal fasting glycemia (NFG), impaired fasting glycemia (IFG), as well as previously undetected diabetes and previously diagnosed diabetes linking data from the prospective German Heinz Nixdorf Recall (HNR) study with individual claims data from German statutory health insurances. Research design and methods A total of 1709 participants of the HNR 5-year follow-up (mean age (SD) 64.9 (7.5) years, 44.5% men) were included in the study. Age-standardized and sex-standardized healthcare utilization and associated costs (reported as € for the year 2008, perspective of the statutory health insurance) were stratified by diabetes stage defined by the participants' self-report and fasting plasma glucose values. Cost ratios (CRs) were estimated using two-part regression models, adjusting for age, sex, sociodemographic variables and comorbidity. Results The mean total direct healthcare costs for previously diagnosed diabetes, previously undetected diabetes, IFG, and NFG were €2761 (95% CI 2378 to 3268), €2210 (1483 to 4279), €2035 (1732 to 2486) and €1810 (1634 to 2035), respectively. Corresponding age-adjusted and sex-adjusted CRs were 1.53 (1.30 to 1.80), 1.16 (0.91 to 1.47), and 1.09 (0.95 to 1.25) (reference: NFG). Inpatient, outpatient and medication costs varied in order between people with IFG and those with previously undetected diabetes. Conclusions The study provides claims-based detailed cost data in well-defined glucose metabolism subgroups. CRs of individuals with IFG and previously undetected diabetes were surprisingly low. Data are important for the model-based evaluation of screening programs and interventions that are aimed either to prevent diabetes onset or to improve diabetes therapy as well. PMID:27252871

  13. The Association between Impaired Glucose Regulation and Prognosis of Chinese Patients with Intracerebral Hemorrhage

    PubMed Central

    Sun, Shichao; Pan, Yuesong; Zhao, Xingquan; Liu, Liping; Li, Hao; He, Yan; Guo, Li; Wang, Yilong; Wang, Yongjun

    2016-01-01

    This study aimed at observing the influence of impaired glucose regulation (IGR) on 1-year outcomes in patients with intracerebral hemorrhage (ICH). Patients hospitalized for ICH from 2008 to 2009 were recruited consecutively at 35 centres across China. A standard oral glucose tolerance test at day 14 ± 3 after stroke onset or before discharge was performed to identify IGR. The outcomes were death (modified Rankin scale [mRS] score of 6), dependency (mRS score of 2 to 5) and poor outcome (mRS score of 2 to 6) at 1 year. Cox proportion hazard model for death and logistic regression model for dependency and poor outcome were performed to investigate the influence of IGR on 1-year outcomes. A total of 288 non-diabetic ICH patients were included in this analysis, among which 150 (52.1%) were IGR. IGR was associated with 1-year dependency (adjusted odds ratio [OR] 2.18, 95% confidence interval [CI], 1.19–3.99; P = 0.01) and poor outcome (adjusted OR 2.17; 95% CI, 1.24–3.80; P = 0.007) of patients with ICH. However, IGR showed no significant association with 1-year death (adjusted hazard ratio 1.49, 95% CI, 0.60–3.67; P = 0.39). IGR was independently associated with 1-year poor outcome of ICH in Chinese patients, with more important influence on dependency than death. PMID:27796374

  14. Effects of plant extracts on the reversal of glucose-induced impairment of stress-resistance in Caenorhabditis elegans.

    PubMed

    Fitzenberger, Elena; Deusing, Dorothé Jenni; Wittkop, Anette; Kler, Adolf; Kriesl, Erwin; Bonnländer, Bernd; Wenzel, Uwe

    2014-03-01

    Enhanced blood glucose levels are a hallmark of diabetes and are associated with diabetic complications and a reduction of lifespan. In order to search for plant extracts that display preventive activities in such a scenario, we tested 16 extracts used in human nutrition for their survival enhancing activities in the nematode Caenorhabditis elegans. Nematodes were exposed for 48 h to 10 mM glucose in the absence or presence of 0.1% extract. Thereafter, survival was measured at 37 °C. Extracts made from coffee, kola, rooibos and cinnamon, did not influence the glucose-induced reduction of survival. Those made from ginseng, camomile, lime blossom, paraguay tea, balm, rhodiola, black tea, or knotgrass all extended the lifespan of the glucose-treated nematodes significantly but did not rescue survival completely. Extracts from the leaves of blackberries, from hibiscus, elderberries, or jiaogulan completely countered the glucose-induced survival reduction. A potent activation of the proteasome was shown for the most preventive extracts suggesting a more efficient degradation of proteins impaired by glucose. In conclusion, we present a simple animal model to screen for plant extracts with potency to reverse glucose toxicity. Extracts from blackberry leaves, hibiscus, elderberries, and jiaogulan were identified as very potent in this regard whose exact mechanisms of action appear worthwile to investigate at the molecular level. PMID:24390728

  15. Hepatic fat and abdominal adiposity in early pregnancy together predict impaired glucose homeostasis in mid-pregnancy.

    PubMed

    De Souza, L R; Berger, H; Retnakaran, R; Vlachou, P A; Maguire, J L; Nathens, A B; Connelly, P W; Ray, J G

    2016-01-01

    Hepatic fat and abdominal adiposity individually reflect insulin resistance, but their combined effect on glucose homeostasis in mid-pregnancy is unknown. A cohort of 476 pregnant women prospectively underwent sonographic assessment of hepatic fat and visceral (VAT) and total (TAT) adipose tissue at 11-14 weeks' gestation. Logistic regression was used to assess the relation between the presence of maternal hepatic fat and/or the upper quartile (Q) of either VAT or TAT and the odds of developing the composite outcome of impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or gestational diabetes mellitus at 24-28 weeks' gestation, based on a 75 g OGTT. Upon adjusting for maternal age, ethnicity, family history of DM and body mass index (BMI), the co-presence of hepatic fat and quartile 4 (Q4) of VAT (adjusted odds ratio (aOR) 6.5, 95% CI: 2.3-18.5) or hepatic fat and Q4 of TAT (aOR 7.8 95% CI 2.8-21.7) were each associated with the composite outcome, relative to women with neither sonographic feature. First-trimester sonographic evidence of maternal hepatic fat and abdominal adiposity may independently predict the development of impaired glucose homeostasis and GDM in mid-pregnancy. PMID:27643724

  16. Hepatic fat and abdominal adiposity in early pregnancy together predict impaired glucose homeostasis in mid-pregnancy

    PubMed Central

    De Souza, L R; Berger, H; Retnakaran, R; Vlachou, P A; Maguire, J L; Nathens, A B; Connelly, P W; Ray, J G

    2016-01-01

    Hepatic fat and abdominal adiposity individually reflect insulin resistance, but their combined effect on glucose homeostasis in mid-pregnancy is unknown. A cohort of 476 pregnant women prospectively underwent sonographic assessment of hepatic fat and visceral (VAT) and total (TAT) adipose tissue at 11–14 weeks' gestation. Logistic regression was used to assess the relation between the presence of maternal hepatic fat and/or the upper quartile (Q) of either VAT or TAT and the odds of developing the composite outcome of impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or gestational diabetes mellitus at 24–28 weeks' gestation, based on a 75 g OGTT. Upon adjusting for maternal age, ethnicity, family history of DM and body mass index (BMI), the co-presence of hepatic fat and quartile 4 (Q4) of VAT (adjusted odds ratio (aOR) 6.5, 95% CI: 2.3–18.5) or hepatic fat and Q4 of TAT (aOR 7.8 95% CI 2.8–21.7) were each associated with the composite outcome, relative to women with neither sonographic feature. First-trimester sonographic evidence of maternal hepatic fat and abdominal adiposity may independently predict the development of impaired glucose homeostasis and GDM in mid-pregnancy. PMID:27643724

  17. Comparison of lymphomononuclear cell energy metabolism between healthy, impaired glucose intolerance and type 2 diabetes mellitus patients.

    PubMed

    Ozsari, L; Karadurmus, N; Sahin, M; Uckaya, G; Ural, A U; Kutlu, M

    2010-02-01

    Diabetes mellitus (DM) is a complex disease that affects many systems. The most important cells of the immune system are lymphomononuclear (LMN) cells. Here, we aimed to evaluate the energy metabolism of LMN cells in patients with diabetes and impaired glucose tolerance. We measured LMN cell energy metabolism in patients with type 2 diabetes mellitus, impaired glucose tolerance (IGT) and healthy subjects. Cells were freshly isolated from peripheral blood and the subgroups were determined by flow cytometric method. Lactate production and glycogen utilization were significantly increased in the LMN cells of patients with type 2 DM and IGT when compared with healthy volunteers. No statistical difference was observed between the patients with type 2 DM and IGT. There was a significant correlation between fasting plasma glucose and lactate production in LMN cells. LMN cells changed their energy pathway in a diabetic state and preferred anaerobic glycolysis. Prediabetic range also affected energy metabolism in LMN cells. This abnormal energy production might cause dysfunction in LMN cells and the immune system in diabetic and prediabetic patients. In conclusion, we concluded that impaired glucose metabolism could change energy metabolism.

  18. Osteoporosis Associated with Chronic Obstructive Pulmonary Disease.

    PubMed

    Okazaki, Ryo; Watanabe, Reiko; Inoue, Daisuke

    2016-08-01

    Recent epidemiological studies have revealed that osteoporosis is closely associated with common chronic diseases including diabetes, hypertension, chronic kidney disorders, and chronic obstructive pulmonary disease (COPD). COPD is a chronic inflammatory airway disease but now well known to be associated with various systemic comorbidities including osteoporosis. Osteoporosis and osteoporotic fractures are extremely common in COPD patients, which have significant impacts on their quality of life (QOL), activities of daily life (ADL), respiratory function, and possibly their prognosis. COPD-associated osteoporosis is however extremely under-recognized, hence undertreated. Recent studies have suggested that both decreased bone mineral density (BMD) and impaired bone quality compromise bone strength causing fractures in COPD. In COPD patients, various general clinical risk factors for osteoporosis are present including smoking, older age, low body weight, and physical inactivity. In addition, disease-related risk factors such as decreased pulmonary function, inflammation, glucocorticoid use and vitamin D deficiency/insufficiency have been linked to the development of osteoporosis in COPD. Increased awareness of osteoporosis in COPD, especially that of high prevalence of vertebral fractures is called upon among general physicians as well as pulmonologists. Routine screening for osteoporosis and risk assessment of fractures will enable physicians to diagnose COPD patients with comorbid osteoporosis at an early stage. Timely prevention of developing osteoporosis together with appropriate treatment of established osteoporosis may improve QOL and ADL of the COPD patients, preserve their lung function and eventually result in better prognosis in these patients. PMID:27622174

  19. Osteoporosis Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Watanabe, Reiko; Inoue, Daisuke

    2016-01-01

    Recent epidemiological studies have revealed that osteoporosis is closely associated with common chronic diseases including diabetes, hypertension, chronic kidney disorders, and chronic obstructive pulmonary disease (COPD). COPD is a chronic inflammatory airway disease but now well known to be associated with various systemic comorbidities including osteoporosis. Osteoporosis and osteoporotic fractures are extremely common in COPD patients, which have significant impacts on their quality of life (QOL), activities of daily life (ADL), respiratory function, and possibly their prognosis. COPD-associated osteoporosis is however extremely under-recognized, hence undertreated. Recent studies have suggested that both decreased bone mineral density (BMD) and impaired bone quality compromise bone strength causing fractures in COPD. In COPD patients, various general clinical risk factors for osteoporosis are present including smoking, older age, low body weight, and physical inactivity. In addition, disease-related risk factors such as decreased pulmonary function, inflammation, glucocorticoid use and vitamin D deficiency/insufficiency have been linked to the development of osteoporosis in COPD. Increased awareness of osteoporosis in COPD, especially that of high prevalence of vertebral fractures is called upon among general physicians as well as pulmonologists. Routine screening for osteoporosis and risk assessment of fractures will enable physicians to diagnose COPD patients with comorbid osteoporosis at an early stage. Timely prevention of developing osteoporosis together with appropriate treatment of established osteoporosis may improve QOL and ADL of the COPD patients, preserve their lung function and eventually result in better prognosis in these patients.

  20. Osteoporosis Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Watanabe, Reiko; Inoue, Daisuke

    2016-01-01

    Recent epidemiological studies have revealed that osteoporosis is closely associated with common chronic diseases including diabetes, hypertension, chronic kidney disorders, and chronic obstructive pulmonary disease (COPD). COPD is a chronic inflammatory airway disease but now well known to be associated with various systemic comorbidities including osteoporosis. Osteoporosis and osteoporotic fractures are extremely common in COPD patients, which have significant impacts on their quality of life (QOL), activities of daily life (ADL), respiratory function, and possibly their prognosis. COPD-associated osteoporosis is however extremely under-recognized, hence undertreated. Recent studies have suggested that both decreased bone mineral density (BMD) and impaired bone quality compromise bone strength causing fractures in COPD. In COPD patients, various general clinical risk factors for osteoporosis are present including smoking, older age, low body weight, and physical inactivity. In addition, disease-related risk factors such as decreased pulmonary function, inflammation, glucocorticoid use and vitamin D deficiency/insufficiency have been linked to the development of osteoporosis in COPD. Increased awareness of osteoporosis in COPD, especially that of high prevalence of vertebral fractures is called upon among general physicians as well as pulmonologists. Routine screening for osteoporosis and risk assessment of fractures will enable physicians to diagnose COPD patients with comorbid osteoporosis at an early stage. Timely prevention of developing osteoporosis together with appropriate treatment of established osteoporosis may improve QOL and ADL of the COPD patients, preserve their lung function and eventually result in better prognosis in these patients. PMID:27622174

  1. Low-level subchronic arsenic exposure from prenatal developmental stages to adult life results in an impaired glucose homeostasis.

    PubMed

    Dávila-Esqueda, M E; Morales, J M V; Jiménez-Capdeville, M E; De la Cruz, E; Falcón-Escobedo, R; Chi-Ahumada, E; Martin-Pérez, S

    2011-11-01

    We evaluated how low-level (3 ppm) subchronic inorganic arsenic (iAs) exposure from prenatal developmental stages until adult life affects glucose homeostasis. Biochemical parameters of glucose and lipid metabolism, pancreatic insulin and glycosylated haemoglobin were determined in 4-month-old female offspring of adult Wistar rats. Pancreatic histology was also performed. Statistical comparisons between control and iAs-treated groups were performed by unpaired two-tailed Student's t-test. Statistical significance was set at p<0.05. We found that iAs treatment resulted in an impaired glucose tolerance test, suggestive of impaired glucose metabolism. This group was found to have hyperglycaemia and high levels of HOMA-IR, glycosylated haemoglobin, cholesterol and pancreatic insulin compared to control rats. However, plasma insulin, triglycerides and high-density lipoprotein cholesterol were not different from control rats. Moreover, β-cell damage found in iAs-treated rats consisted of cells with a nucleus with dense chromatin and predominance of eosinophilic cytoplasm, as well as changes in the pancreatic vasculature. The current study provided evidence that subchronic iAs exposure at 3 ppm from prenatal developmental stages to adult life resulted in damage to pancreatic β cells, affected insulin secretion and demonstrated altered glucose homeostasis, thus supporting a causal association between iAs exposure and diabetes.

  2. Impaired cerebral development in fetuses with congenital cardiovascular malformations: Is it the result of inadequate glucose supply?

    PubMed

    Rudolph, Abraham M

    2016-08-01

    Cerebral development may be impaired in fetuses with congenital cardiovascular malformations, particularly hypoplastic left heart syndrome (HLHS) and aortopulmonary transposition (APT). The decreased cerebral arterial pusatility index observed in some of these fetuses led to the belief that cerebral vascular resistance was reduced as a result of arterial hypoxemia and cerebral hypoxia is thought to be responsible for impaired cerebral growth. However, other hemodynamic factors could affect pulsatility index. I propose that cerebral blood flow is reduced in fetuses with HLHS and that reduced glucose, rather than oxygen, delivery interferes with cerebral development. This is based on the fact that most of these fetuses do not have lactate accumulation in the brain.In fetuses with APT, umbilical venous blood, containing oxygen and glucose derived across the placenta, is distributed to the lungs and lower body; venous blood, with low oxygen and glucose content, is delivered to the ascending aorta and brain. Oxygen and glucose delivery may further be reduced by decreased cerebral blood flow resulting from run-off of aortic blood through the ductus arteriosus to the pulmonary circulation during diastole. In APT fetuses, lack of lactate in the brain also supports my proposal that glucose deficiency interferes with cerebral development. PMID:27055190

  3. [Osteoporosis and fracture in rheumatoid arthritis].

    PubMed

    Norimatsu, H

    2001-05-01

    Patients with rheumatoid arthritis often have periarticular and generalized osteoporosis. Bone resorption develops through increased productions of cytokines and prostaglandines by synovium and bone. Important risk factors of osteoporosis are functional impairment, postmenopausal state, and corticosteroids usage. Osteoporotic fracture occurs at the spinal body, femoral neck, distal radius, and periprosthetic bone.

  4. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress.

    PubMed

    Voigt, Annet; Jelinek, Herbert F

    2016-05-01

    Mitochondrial RNR-2 (mt-RNR2, humanin) has been shown to play a role in protecting several types of cells and tissues from the effects of oxidative stress. Humanin (HN) functions through extracellular and intracellular pathways adjusting mitochondrial oxidative phosphorylation and ATP production. Addition of HN improved insulin sensitivity in animal models of diabetes mellitus but no clinical studies have been carried out to measure HN levels in humans associated with hyperglycemia. The plasma levels of HN in participants attending a diabetes complications screening clinic were measured. Clinical history and anthropometric data were obtained from all participants. Plasma levels of HN were measured by a commercial ELISA kit. All data were analyzed applying nonparametric statistics and general linear modeling to correct for age and gender. A significant decrease (P = 0.0001) in HN was observed in the impaired fasting glucose (IFG) group (n = 23; 204.84 ± 92.87 pg mL(-1)) compared to control (n = 58; 124.3 ± 83.91 pg mL(-1)) consistent with an adaptive cellular response by HN to a slight increase in BGL.

  5. Associations between Dietary Patterns and Impaired Fasting Glucose in Chinese Men: A Cross-Sectional Study

    PubMed Central

    Zhang, Meilin; Zhu, Yufeng; Li, Ping; Chang, Hong; Wang, Xuan; Liu, Weiqiao; Zhang, Yuwen; Huang, Guowei

    2015-01-01

    Few studies have examined the association between Asian dietary pattern and prediabetes, in particular, the Chinese diet. We conducted a cross-sectional study to identify dietary patterns associated with impaired fasting glucose (IFG) which considered a state of prediabetes in Chinese men. The study included 1495 Chinese men aged 20 to 75 years. Information about diet was obtained using an 81-item food frequency questionnaire (FFQ), and 21 predefined food groups were considered in a factor analysis. Three dietary patterns were generated by factor analysis: (1) a vegetables-fruits pattern; (2) an animal offal-dessert pattern; and (3) a white rice-red meat pattern. The multivariate-adjusted odds ratio (OR) of IFG for the highest tertile of the animal offal-dessert pattern in comparison with the lowest tertile was 3.15 (95% confidence intervals (CI): 1.87–5.30). The vegetables-fruits dietary pattern was negatively associated with the risk of IFG, but a significant association was observed only in the third tertile. There was no significant association between IFG and the white rice-red meat pattern. Our findings indicated that the vegetables-fruits dietary pattern was inversely associated with IFG, whereas the animal offal-dessert pattern was associated with an increased risk of IFG in Chinese men. Further prospective studies are needed to elucidate the diet-prediabetes relationships. PMID:26402695

  6. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance.

    PubMed

    Liu, Shing-Hwa; Cai, Fang-Ying; Chiang, Meng-Tsan

    2015-12-10

    This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF) diet (63.1%). Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1) normal group (normal); (2) HF group; (3) chitosan + HF group (HF + C). The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 10⁵ Dalton and degree of deacetylation was about 89.8%) significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF)-α, Interleukin (IL)-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC) and triglyceride (TG) contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), the TC/high-density lipoprotein cholesterol (HDL-C) ratio, and increased the HDL-C/(LDL-C + VLDL-C) ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment of

  7. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion

    PubMed Central

    Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter

    2009-01-01

    Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692

  8. Acute hyperglycemia alters von Willebrand factor but not the fibrinolytic system in elderly subjects with normal or impaired glucose tolerance.

    PubMed

    Coppola, Ludovico; Coppola, Antonino; Grassia, Antonio; Mastrolorenzo, Luigia; Lettieri, Biagio; De Lucia, Domenico; De Nanzio, Annarita; Gombos, Giorgio

    2004-10-01

    To assess whether acute hyperglycemia affects fibrinolytic balance in elderly subjects with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT), 40 non-obese elderly subjects (20 NGT, age 68 +/- 8 years; and 20 IGT, age 69 +/- 11 years) were studied. On two experimental days, randomly allocated and spaced 1 week apart, plasma concentrations of glucose, insulin, fibrinogen, tissue plasminogen activator, plasminogen activator inhibitor type 1 and von Willebrand factor (vWF) were measured in each subject at baseline (0) and 30, 60, 90, 120 min after the ingestion of 75 g glucose or a similarly sweet dose of aspartame (250 mg) (control test). In both NGT and IGT elderly subjects, tissue plasminogen activator, plasminogen activator inhibitor type 1 and fibrinogen plasma levels did not significantly change after both oral aspartame and glucose load. In IGT subjects, vWF plasmatic levels decreased after glucose (not aspartame) oral load, reaching the minimum level at 90 min after load (82.7 +/- 7.8 versus 93.7 +/- 10.2, P <0.01). These results demonstrate that acute hyperglycemia does not modify plasma fibrinolysis in elderly subjects. The decrease of plasma concentration of vWF in IGT elderly subjects requires cautious interpretation and further extensive investigations.

  9. Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozocin diabetic rats.

    PubMed Central

    Napoli, R; Davalli, A M; Hirshman, M F; Weitgasser, R; Weir, G C; Horton, E S

    1996-01-01

    Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats. PMID:8617870

  10. Failure of Hyperglycemia and Hyperinsulinemia to Compensate for Impaired Metabolic Response to an Oral Glucose Load

    PubMed Central

    Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ

    2014-01-01

    Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878

  11. Prevalence and risk factors of diabetes and impaired fasting glucose in Nauru

    PubMed Central

    2011-01-01

    Background No comprehensive assessment of diabetes prevalence in Nauru has been conducted since an extreme prevalence was documented more than two decades ago. This study aims to determine the prevalence and risk factors of diabetes and impaired fasting glucose. Methods A nationwide survey in 2004 of people aged 15- 64 years (n = 1592). Fasting plasma glucose levels were used to defined diabetes (≥7.0 mmol/l or 126 mg/dl) and prediabetes (6.1-6.9 mmol/l or 110-125 mg/dl). Results The sex-standardized prevalence of diabetes was 13.0% (95% CI: 10.6, 15.4) in men, 14.4% (11.9, 16.9) in women, and 13.7% (12.0, 15.4) combined. The sex-standardized prevalence of prediabetes was 6.4% (4.6, 8.2) for men, 5.5% (3.9, 7.2) for women, and 6.0% (4.8, 7.3) combined. The prevalence of diabetes for individuals 15-24, 25-34, 35-44, 45-54 and 55-64 years was 4.5%, 7.6%, 24.1%, 32.9%, and 42.7%, respectively. The prevalence of prediabetes for the same age categories was 4.2%, 8.8%, 5.9%, 6.6%, 7.1%, respectively. Multivariable, multinomial logit modeling found risk factors for prediabetes were high cholesterol levels (OR: 2.02, 95% CI: 1.66, 2.47) and elevated waist circumference (OR: 1.04, 95% CI: 1.00, 1.08), and for diabetes were age in years (OR: 1.06; 95% CI: 1.04, 1.07), cholesterol levels (OR: 1.84, 95% CI: 1.58, 2.14) and waist circumference (OR: 1.04, 95% CI: 1.02, 1.07). Conclusions Diabetes remains a major public health problem in Nauru, affecting one out of every ten people. While the prevalence of diabetes has declined, its burden has persisted among the old but also extended towards the younger age groups. PMID:21943388

  12. PICK1 Deficiency Impairs Secretory Vesicle Biogenesis and Leads to Growth Retardation and Decreased Glucose Tolerance

    PubMed Central

    Jansen, Anna M.; Jin, Chunyu; Rickhag, Mattias; Lund, Viktor K.; Jensen, Morten; Bhatia, Vikram; Sørensen, Gunnar; Madsen, Andreas N.; Xue, Zhichao; Møller, Siri K.; Woldbye, David; Qvortrup, Klaus; Huganir, Richard; Stamou, Dimitrios; Kjærulff, Ole; Gether, Ulrik

    2013-01-01

    Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine

  13. Th1/Th17 Plasticity Is a Marker of Advanced β Cell Autoimmunity and Impaired Glucose Tolerance in Humans

    PubMed Central

    Reinert-Hartwall, Linnea; Honkanen, Jarno; Salo, Harri M.; Nieminen, Janne K.; Luopajärvi, Kristiina; Härkönen, Taina; Veijola, Riitta; Simell, Olli; Ilonen, Jorma; Peet, Aleksandr; Tillmann, Vallo; Knip, Mikael; Knip, Mikael; Koski, Katriina; Koski, Matti; Härkönen, Taina; Ryhänen, Samppa; Hämäläinen, Anu-Maaria; Ormisson, Anne; Peet, Aleksandr; Tillmann, Vallo; Ulich, Valentina; Kuzmicheva, Elena; Mokurov, Sergei; Markova, Svetlana; Pylova, Svetlana; Isakova, Marina; Shakurova, Elena; Petrov, Vladimir; Dorshakova, Natalya V.; Karapetyan, Tatyana; Varlamova, Tatyana; Ilonen, Jorma; Kiviniemi, Minna; Alnek, Kristi; Janson, Helis; Uibo, Raivo; Salum, Tiit; von Mutius, Erika; Weber, Juliane; Ahlfors, Helena; Kallionpää, Henna; Laajala, Essi; Lahesmaa, Riitta; Lähdesmäki, Harri; Moulder, Robert; Nieminen, Janne; Ruohtula, Terhi; Vaarala, Outi; Honkanen, Hanna; Hyöty, Heikki; Kondrashova, Anita; Oikarinen, Sami; Harmsen, Hermie J. M.; De Goffau, Marcus C.; Welling, Gjalt; Alahuhta, Kirsi; Virtanen, Suvi M.

    2015-01-01

    Upregulation of IL-17 immunity and detrimental effects of IL-17 on human islets have been implicated in human type 1 diabetes. In animal models, the plasticity of Th1/Th17 cells contributes to the development of autoimmune diabetes. In this study, we demonstrate that the upregulation of the IL-17 pathway and Th1/Th17 plasticity in peripheral blood are markers of advanced β cell autoimmunity and impaired β cell function in human type 1 diabetes. Activated Th17 immunity was observed in the late stage of preclinical diabetes in children with β cell autoimmunity and impaired glucose tolerance, but not in children with early β cell autoimmunity. We found an increased ratio of IFN-γ/IL-17 expression in Th17 cells in children with advanced β cell autoimmunity, which correlated with HbA1c and plasma glucose concentrations in an oral glucose tolerance test, and thus impaired β cell function. Low expression of Helios was seen in Th17 cells, suggesting that Th1/Th17 cells are not converted thymus-derived regulatory T cells. Our results suggest that the development of Th1/Th17 plasticity may serve as a biomarker of disease progression from β cell autoantibody positivity to type 1 diabetes. These data in human type 1 diabetes emphasize the role of Th1/Th17 plasticity as a potential contributor to tissue destruction in autoimmune conditions. PMID:25480564

  14. Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control.

    PubMed

    Iozzo, Patricia; Hallsten, Kirsti; Oikonen, Vesa; Virtanen, Kirsi A; Kemppainen, Jukka; Solin, Olof; Ferrannini, Ele; Knuuti, Juhani; Nuutila, Pirjo

    2003-05-01

    Impaired hepatic glucose uptake (HGU) has been implicated in the development of hyperglycemia in type 2 diabetes; the relative impact of plasma glucose and insulin levels on this process remains controversial. We compared the effects of euglycemic hyperinsulinemia on HGU, skeletal muscle glucose uptake, and hepatic influx rate-constant (H-Ki) in 38 diet-treated diabetic patients and 22 nondiabetic controls, using positron emission tomography with (18)F-fluorodeoxyglucose and the insulin clamp technique. Control subjects were divided into two subgroups: one including older, heavier, insulin-resistant controls (whole-body glucose uptake, M = 21.4 +/- 5.4 micromol x min(-1) x kg(-1)) to match characteristics of diabetic patients (M = 20.4 +/- 9.9); the other including younger, leaner, insulin-sensitive controls (M = 48.2 +/- 9.9, P < 0.01). Skeletal muscle glucose uptake showed a similar group distribution as the M value. Insulin clearance rates were lower, whereas glycosylated hemoglobin and clamp plasma insulin levels were higher in diabetic patients than in controls. HGU and H-Ki were similar in the two nondiabetic subgroups and lower in diabetic patients than in controls (1.9 +/- 0.5 vs. 2.3 +/- 0.7 micromol x min(-1) x 100 ml(-1), and 0.37 +/- 0.09 vs. 0.44 +/- 0.14 ml x min(-1) x 100 ml(-1), P < or = 0.01). In the whole dataset, H-Ki was inversely related to fasting plasma glucose (correlation coefficient = -0.40, P = 0.0018). In diabetic subjects, H-Ki was reciprocally related to glycosylated hemoglobin (correlation coefficient = -0.36, P = 0.029). We conclude that insulin-mediated HGU is impaired, in type 2 diabetes, in some proportion to the degree of glycemic control.

  15. Impaired Fasting Glucose in Omani Adults with no Family History of Type 2 Diabetes

    PubMed Central

    Al-Sinani, Sawsan; Al-Shafaee, Mohammed; Al-Mamari, Ali; Woodhouse, Nicolas; El-Shafie, Omayma; Hassan, Mohammed O.; Al-Yahyaee, Said; Albarwani, Sulayma; Jaju, Deepali; Al-Hashmi, Khamis; Al-Abri, Mohammed; Rizvi, Syed; Bayoumi, Riad

    2014-01-01

    Objectives: The aim of this study was to estimate the prevalence of impaired fasting glucose (IFG) among Omani adults with no family history (FH) of diabetes and to investigate the factors behind the risk of developing type 2 diabetes (T2D), while excluding a FH of diabetes. Methods: A total of 1,182 Omani adults, aged ≥40 years, visited the Family Medicine & Community Health Clinic at Sultan Qaboos University Hospital, Oman, on days other than the Diabetes Clinic days, from July 2010 to July 2011. The subjects were interviewed and asked if they had T2D or a FH of T2D. Results: Only 191 (16%) reported no personal history of T2D or FH of the disease. Of these, anthropometric and biochemical data was complete in 159 subjects. Of these a total of 42 (26%) had IFG according to the American Diabetes Association criteria. Body mass index, fasting insulin, haemoglobin A1C and blood pressure (BP), were significantly higher among individuals with IFG (P <0.01, P <0.05, P <0.01 and P <0.01, respectively). In addition, fasting insulin, BP and serum lipid profile were correlated with obesity indices (P <0.05). Obesity indices were strongly associated with the risk of IFG among Omanis, with waist circumference being the strongest predictor. Conclusion: Despite claiming no FH of diabetes, a large number of Omani adults in this study had a high risk of developing diabetes. This is possibly due to environmental factors and endogamy. The high prevalence of obesity combined with genetically susceptible individuals is a warning that diabetes could be a future epidemic in Oman. PMID:24790740

  16. Determinants of developing diabetes mellitus and vascular complications in patients with impaired fasting glucose

    PubMed Central

    Sharifi, Faranak; Jaberi, Yahya; Mirzamohammadi, Fatemeh; Mirzamohammadi, Hamid; Mousavinasab, Nouraddin

    2013-01-01

    Aims: To detect the risk factors of diabetes mellitus (DM) and cardiovascular complications in subjects with impaired fasting glucose (IFG). Materials and Methods: One hundred and twenty three subjects with proved IFG in Zanjan Healthy Heart Study (2002-2003) were recalled and participated in this study (2009-2010). Demographic and laboratoryinformation of the participants were collected.Ischemic heart disease (IHD) was assessed by the exercise tolerance test (ETT). All the subjects with abnormal ETT or documented past history of IHD confirmed by angiographic evaluation. Ophthalmic complications including cataract, glaucoma, and diabetic retinopathy were estimated by an ophthalmologist. Results: Incidence of DM was 19.5%. All the diabetic and pre-diabetic patients had at least one of the other components of metabolic syndrome. Obesity (P: 0.04, OR: 1.8, 95%CI: 1.2-9) and low physical activity (P < 0.001, OR: 9.6, 95%CI: 3.4-32) were the only independent prognostic risk factors for progression to DM in patients with IFG. Total incidence of IHD was 14.6% and had a strong correlation with sex (P: 0.01, OR: 1.8, 95%CI: 1.2-1.5), age (P < 0.001, OR: 23, 95%CI: 2.1-67) and cigarette smoking (P < 0.001, OR: 36.5, 95%CI: 3.9-337). Non-proliferative diabetic retinopathy was shown in 2 (1.6%) subjects who were all women. Conclusion: Obesity and low physical activity are the main factors of developing DM and its macrovascular complications in subjects with IFG. PMID:24083174

  17. Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients.

    PubMed

    Alexopoulou, Orsalia; Bex, Marie; Kamenicky, Peter; Mvoula, Augustine Bessomo; Chanson, Philippe; Maiter, Dominique

    2014-02-01

    Acromegaly is frequently associated with alterations of glucose metabolism but factors predisposing these patients to exhibit impaired glucose tolerance or overt diabetes at diagnosis are poorly understood. This study included 148 patients with newly diagnosed acromegaly (80 men; mean age: 45 ± 20 year). All patients underwent an oral glucose tolerance test (OGTT), unless already treated for diabetes. Insulin sensitivity (S) and β-cell function (B) were also evaluated by homeostasis model assessment (HOMA). Normal glucose tolerance (NGT) was observed in 67 patients (46 %), impaired fasting glycaemia (IFG) or glucose tolerance (IGT) were found in 39 (26 %), and diabetes mellitus (DM) in 42 (28 %). NGT patients were 10 years younger than patients with abnormal glucose metabolism (p < 0.001) and diabetic patients had a higher BMI (p < 0.05). While HOMA-S was similar, HOMA-B was reduced in the IFG/IGT group (p < 0.05) and further in the DM group (p < 0.001). IGF-I z-score was higher in IFG/IGT (5.2 ± 1.4) and DM patients (5.4 ± 1.3) than in NGT patients (4.4 ± 1.3; p < 0.05), but fasting and post-OGTT GH levels were not different between groups. In multivariate analyses, family history of diabetes and IGF-I were associated with hyperglycaemia, BMI and IGF-I predicted insulin resistance, and age was inversely correlated with β-cell function. Impaired glucose metabolism is present in more than 50 % of patients at diagnosis of acromegaly, and is associated with an older age, a higher BMI, a family history of diabetes and a higher IGF-I z-score, but not with fasting or post-OGTT GH levels.

  18. Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knock-out mice.

    PubMed

    Irimia, Jose M; Meyer, Catalina M; Peper, Caron L; Zhai, Lanmin; Bock, Cheryl B; Previs, Stephen F; McGuinness, Owen P; DePaoli-Roach, Anna; Roach, Peter J

    2010-04-23

    Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0. We have generated mice with a liver-specific disruption of the Gys2 gene (liver glycogen synthase knock-out (LGSKO) mice), using Lox-P/Cre technology. Conditional mice carrying floxed Gys2 were crossed with mice expressing Cre recombinase under the albumin promoter. The resulting LGSKO mice are viable, develop liver glycogen synthase deficiency, and have a 95% reduction in fed liver glycogen content. They have mild hypoglycemia but dispose glucose less well in a glucose tolerance test. Fed, LGSKO mice also have a reduced capacity for exhaustive exercise compared with mice carrying floxed alleles, but the difference disappears after an overnight fast. Upon fasting, LGSKO mice reach within 4 h decreased blood glucose levels attained by control floxed mice only after 24 h of food deprivation. The LGSKO mice maintain this low blood glucose for at least 24 h. Basal gluconeogenesis is increased in LGSKO mice, and insulin suppression of endogenous glucose production is impaired as assessed by euglycemic-hyperinsulinemic clamp. This observation correlates with an increase in the liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase expression and activity. This mouse model mimics the pathophysiology of glycogen storage disease 0 patients and highlights the importance of liver glycogen stores in whole body glucose homeostasis.

  19. Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host.

    PubMed

    Krautz-Peterson, Greice; Simoes, Mariana; Faghiri, Zahra; Ndegwa, David; Oliveira, Guilherme; Shoemaker, Charles B; Skelly, Patrick J

    2010-01-01

    Adult schistosomes live in the host's bloodstream where they import nutrients such as glucose across their body surface (the tegument). The parasite tegument is an unusual structure since it is enclosed not by the typical one but by two closely apposed lipid bilayers. Within the tegument two glucose importing proteins have been identified; these are schistosome glucose transporter (SGTP) 1 and 4. SGTP4 is present in the host interactive, apical tegumental membranes, while SGTP1 is found in the tegumental basal membrane (as well as in internal tissues). The SGTPs act by facilitated diffusion. To examine the importance of these proteins for the parasites, RNAi was employed to knock down expression of both SGTP genes in the schistosomula and adult worm life stages. Both qRT-PCR and western blotting analysis confirmed successful gene suppression. It was found that SGTP1 or SGTP4-suppressed parasites exhibit an impaired ability to import glucose compared to control worms. In addition, parasites with both SGTP1 and SGTP4 simultaneously suppressed showed a further reduction in capacity to import glucose compared to parasites with a single suppressed SGTP gene. Despite this debility, all suppressed parasites exhibited no phenotypic distinction compared to controls when cultured in rich medium. Following prolonged incubation in glucose-depleted medium however, significantly fewer SGTP-suppressed parasites survived. Finally, SGTP-suppressed parasites showed decreased viability in vivo following infection of experimental animals. These findings provide direct evidence for the importance of SGTP1 and SGTP4 for schistosomes in importing exogenous glucose and show that these proteins are important for normal parasite development in the mammalian host.

  20. Diabetes, impaired glucose tolerance, and metabolic biomarkers in individuals with normal glucose tolerance are inversely associated with lung function: the Jackson Heart Study.

    PubMed

    Hickson, DeMarc A; Burchfiel, Cecil M; Liu, Jiankang; Petrini, Marcy F; Harrison, Kimystian; White, Wendy B; Sarpong, Daniel F

    2011-08-01

    The objectives of this study were to test the hypothesis that diabetes and impaired glucose tolerance (IGT), diabetes control and diabetes duration, and metabolic biomarkers in adults with normal glucose tolerance (NGT) are inversely associated with spirometry-measured lung function. We conducted a cross-sectional observational cohort study that included nonsmoking African American adults (n = 2,945; mean age = 52.5 ± 12.6 years; 69.2% female), who were free of cardiovascular disease, from the Jackson Heart Study. The interventions were diabetes, metabolic biomarkers and lung function. We measured the associations of glycemia with forced expiratory volume (FEV) in 1 s, FEV in 6 s, and vital capacity. Multivariable adjusted mean lung function values were lower among adults with diabetes and IGT (in women only, but not after adjustment for waist circumference) than adults with NGT. Among adults with diabetes, no associations were observed between lung function and diabetes control or duration. In women with NGT, lower lung function was consistently associated with higher glucose levels and less consistently with higher insulin levels and insulin resistance. Lower lung function was consistently associated with higher insulin levels and insulin resistance and less consistently associated with insulin and hemoglobin A1c in men with NGT. Overall, our findings generally support the hypothesis that diabetes, IGT, and increased levels of metabolic biomarkers in individuals with NGT are inversely associated with lung function in African Americans, independent of adiposity.

  1. Impaired Glucose Tolerance or Newly Diagnosed Diabetes Mellitus Diagnosed during Admission Adversely Affects Prognosis after Myocardial Infarction: An Observational Study

    PubMed Central

    George, Anish; Bhatia, Raghav T.; Buchanan, Gill L.; Whiteside, Anne; Moisey, Robert S.; Beer, Stephen F.; Chattopadhyay, Sudipta; Sathyapalan, Thozhukat; John, Joseph

    2015-01-01

    Objective To investigate the prognostic effect of newly diagnosed diabetes mellitus (NDM) and impaired glucose tolerance (IGT) post myocardial infarction (MI). Research Design and Methods Retrospective cohort study of 768 patients without preexisting diabetes mellitus post-MI at one centre in Yorkshire between November 2005 and October 2008. Patients were categorised as normal glucose tolerance (NGT n = 337), IGT (n = 279) and NDM (n = 152) on pre- discharge oral glucose tolerance test (OGTT). Primary end-point was the first occurrence of major adverse cardiovascular events (MACE) including cardiovascular death, non-fatal MI, severe heart failure (HF) or non-haemorrhagic stroke. Secondary end-points were all cause mortality and individual components of MACE. Results Prevalence of NGT, impaired fasting glucose (IFG), IGT and NDM changed from 90%, 6%, 0% and 4% on fasting plasma glucose (FPG) to 43%, 1%, 36% and 20% respectively after OGTT. 102 deaths from all causes (79 as first events of which 46 were cardiovascular), 95 non fatal MI, 18 HF and 9 non haemorrhagic strokes occurred during 47.2 ± 9.4 months follow up. Event free survival was lower in IGT and NDM groups. IGT (HR 1.54, 95% CI: 1.06–2.24, p = 0.024) and NDM (HR 2.15, 95% CI: 1.42–3.24, p = 0.003) independently predicted MACE free survival. IGT and NDM also independently predicted incidence of MACE. NDM but not IGT increased the risk of secondary end-points. Conclusion Presence of IGT and NDM in patients presenting post-MI, identified using OGTT, is associated with increased incidence of MACE and is associated with adverse outcomes despite adequate secondary prevention. PMID:26571120

  2. Identification of Risk Factors Affecting Impaired Fasting Glucose and Diabetes in Adult Patients from Northeast China

    PubMed Central

    Yin, Yutian; Han, Weiqing; Wang, Yuhan; Zhang, Yue; Wu, Shili; Zhang, Huiping; Jiang, Lingling; Wang, Rui; Zhang, Peng; Yu, Yaqin; Li, Bo

    2015-01-01

    Background: Besides genetic factors, the occurrence of diabetes is influenced by lifestyles and environmental factors as well as trace elements in diet materials. Subjects with impaired fasting glucose (IFG) have an increased risk of developing diabetes mellitus (DM). This study aimed to explore risk factors affecting IFG and diabetes in patients from Northeast China. Methods: A population-based, cross-sectional survey of chronic diseases and related risk factors was conducted in Jilin Province of Northeast China. All adult residents, aged 18–79, were invited to participate in this survey using the method of multistage stratified random cluster sampling. One hundred thirty-four patients with IFG or DM and 391 healthy control subjects were recruited. We compared demographic factors, body size measurements, healthy-related behaviors, and hair metallic element contents between IFG/diabetes patients and healthy individuals. Results: IFG/diabetes patients had a greater weight, waist, hip, and body mass index (BMI) than control subjects. Significant differences in the content of zinc (Zn), potassium (K), copper (Ca), and sodium (Na) as well as Cu/Zn ratios between IFG or DM patients and control subjects (p < 0.05) were also observed. Hair Cu, selenium (Se), and Na contents were positively correlated with blood glucose levels (Cu: rs = 0.135, p = 0.002; Se: rs = 0.110, p = 0.012; Na: rs = 0.091, p = 0.038). Polytomous logistic regression adjusting for age, sex, family history of diabetes and BMI, showed that subjects with high BMI were more likely to develop IFG and DM (IFG: OR = 1.15, OR 95% CI = 1.02–1.29; DM: OR = 1.15, OR 95% CI = 1.01–1.33). Moreover, rarely or never eating fruits was a risk factor for DM (OR = 5.46, OR 95% CI = 1.87–15.98) but not for IFG (OR = 1.70, OR 95% CI = 0.72–4.02). Subjects with abdominal obesity or DM history were more susceptible to DM (abdominal obesity: OR = 2.99, OR 95% CI = 1.07–8.37; DM history: OR = 2.69, OR 95% CI = 1

  3. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice.

    PubMed

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice.

  4. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  5. Medicines for osteoporosis

    MedlinePlus

    ... Teriparatide (Forteo); Denosumab (Prolia); Low bone density - medicines; Osteoporosis - medicines ... when: A bone density test shows you have osteoporosis, even if you have not had a fracture ...

  6. Impaired glucose utilization in man during acute exposure to environmental heat.

    PubMed

    Tatár, P; Vigas, M; Jurcovicová, J; Jezová, D; Strec, V; Palát, M

    1985-12-01

    In 6 healthy males the oral glucose tolerance test (OGTT) was performed after the administration of 100 g glucose during the hyperthermic Finnish sauna bath (85 degrees C) of 30 min duration. The lowered insulin response (P less than 0.001) to glucose challenge during heating and the subsequent prolonged hyperglycemia (P less than 0.001) after heating were observed, when compared to OGTT under thermoneutral conditions (23 degrees C). It is suggested that the heat-induced decrease in visceral blood flow and stimulation of sympathoadrenomedullary and pituitary activity may be responsible for this effect. PMID:3910408

  7. Extension of Life Span by Impaired Glucose Metabolism in Caenorhabditis elegans Is Accompanied by Structural Rearrangements of the Transcriptomic Network

    PubMed Central

    Priebe, Steffen; Menzel, Uwe; Zarse, Kim; Groth, Marco; Platzer, Matthias; Ristow, Michael; Guthke, Reinhard

    2013-01-01

    Glucose restriction mimicked by feeding the roundworm Caenorhabditis elegans with 2-deoxy-D-glucose (DOG) - a glucose molecule that lacks the ability to undergo glycolysis - has been found to increase the life span of the nematodes considerably. To facilitate understanding of the molecular mechanisms behind this life extension, we analyzed transcriptomes of DOG-treated and untreated roundworms obtained by RNA-seq at different ages. We found that, depending on age, DOG changes the magnitude of the expression values of about 2 to 24 percent of the genes significantly, although our results reveal that the gross changes introduced by DOG are small compared to the age-induced changes. We found that 27 genes are constantly either up- or down-regulated by DOG over the whole life span, among them several members of the cytochrome P450 family. The monotonic change with age of the temporal expression patterns of the genes was investigated, leading to the result that 21 genes reverse their monotonic behaviour under impaired glycolysis. Put simply, the DOG-treatment reduces the gross transcriptional activity but increases the interconnectedness of gene expression. However, a detailed analysis of network parameters discloses that the introduced changes differ remarkably between individual signalling pathways. We found a reorganization of the hubs of the mTOR pathway when standard diet is replaced by DOG feeding. By constructing correlation based difference networks, we identified those signalling pathways that are most vigorously changed by impaired glycolysis. Taken together, we have found a number of genes and pathways that are potentially involved in the DOG-driven extension of life span of C. elegans. Furthermore, our results demonstrate how the network structure of ageing-relevant signalling pathways is reorganised under impaired glycolysis. PMID:24204961

  8. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.

    PubMed

    Galbo, Thomas; Olsen, Grith Skytte; Quistorff, Bjørn; Nishimura, Erica

    2011-01-01

    In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity. PMID:22087313

  9. Pancreatic islet transplantation in cynomolgus monkeys. Initial studies and evidence that cyclosporine impairs glucose tolerance in normal monkeys.

    PubMed

    Stegall, M D; Chabot, J; Weber, C; Reemtsma, K; Hardy, M A

    1989-12-01

    Using a model of streptozotocin-induced, ketosis-prone, insulin-dependent diabetes mellitus (IDDM) in the cynomolgus monkey, we performed 11 intraportal transplants of collagenase-digested, Ficoll-purified pancreatic islets (9 ABO-compatible allografts and 2 concordant baboon xenografts). Islets were pretreated with ultraviolet-B irradiation and recipients received cyclosporine A immunosuppression. Two grafts never functioned, five grafts showed evidence of partial function, and four grafts (three allografts and one xenograft) showed evidence of good function, with the animals independent of exogenous insulin with morning fasting blood glucose levels less than 200 mg/dl. Because two grafts functioned only after CsA was either tapered or discontinued, we performed a related study that showed that therapeutic doses of CsA (morning trough serum level 150-250 ng/ml) impaired intravenous glucose tolerance tests (IVGTT) of normal monkeys and may contributed to graft dysfunction in our islet transplantation model. The results show that there is a decrease in release of serum insulin during an IVGTT leading to impairment of glucose utilization, while serum glucagon remains unaffected. After cessation of CsA, the IVGTT did not return to normal for 28 days. Oral glucose tolerance tests were unaffected in CsA-treated monkeys. These initial studies show that the streptozotocin-diabetic monkey is a valuable model to study IDDM and islet transplantation in nonhuman primates. We also confirm studies in rodents, dogs, and sheep by showing that CsA partially inhibits beta cell function in normal monkeys.

  10. Restraint Stress Impairs Glucose Homeostasis Through Altered Insulin Signalling in Sprague-Dawley Rat.

    PubMed

    Morakinyo, Ayodele O; Ajiboye, Kolawole I; Oludare, Gabriel O; Samuel, Titilola A

    2016-01-01

    The study investigated the potential alteration in the level of insulin and adiponectin, as well as the expression of insulin receptors (INSR) and glucose transporter 4 GLUT-4 in chronic restraint stress rats. Sprague-Dawley rats were randomly divided into two groups: the control group and stress group in which the rats were exposed to one of the four different restraint stressors; 1 h, twice daily for a period of 7 days (S7D), 14 days (S14D) and 28 days (S28D). Glucose tolerance and insulin sensitivity were evaluated following the final stress exposure. ELISA were performed to assess the level of insulin and adiponectin as well as expression of INSR and GLUT4 protein in skeletal muscle. Plasma corticosterone level was also determined as a marker of stress exposure. Restraint stress for 7 days caused transient glucose intolerance, while S14D rats demonstrated increased glucose intolerance and insulin insensitivity. However, restraint stress for 28 days had no effect on glucose tolerance, but did cause an increase in glucose response to insulin challenge. The serum level of adiponectin was significantly (p< 0.05) lower compared with the control value while insulin remained unchanged except at in S28D rats that had a significant (p<0.05) increase. The expression of INSR and GLUT4 receptors were significantly (p< 0.05) decreased in the skeletal muscle of restraint stress exposed rats. There was a significant (p< 0.05) increase in the plasma corticosterone level of the stress rats compared with their control counterparts. Restraint stress caused glucose intolerance and insulin insensitivity in male Sprague-Dawley rats, which becomes accommodated with prolonged exposure and was likely related to the blunted insulin signalling in skeletal muscle. PMID:27574760

  11. Green tea polysaccharide-conjugates protect human umbilical vein endothelial cells against impairments triggered by high glucose.

    PubMed

    Chen, Xiaoqiang; Wang, Yuefei; Wu, Yalin; Han, Baoyu; Zhu, Yuejin; Tang, Xiaolin; Sun, Qinglei

    2011-07-01

    Hot-water extracts of low-grade green tea were precipitated with ethanol, deproteinized with trichloroacetic acid, neutralized with NaOH and fractionated by DEAE-cellulose DE-52 column chromatography to yield three (3) of unexplored polysaccharide-conjugate fractions termed gTPC1, gTPC2 and gTPC3. Monosaccharide and amino acid composition, contents of total neutral sugars, proteins and moistures, HPGPC distribution and Zeta potentials of gTPC1-3 were investigated. Exposure of human umbilical vein endothelial (HUVE) cells to high glucose (33 mM) for 12h significantly decreased cell viability relative to normal glucose control (p<0.001). As compared with cell injury group, gTPC1-3 at all of three dose levels (50, 150 and 300 μg/mL) were found to possess remarkably protective effects on HUVE cells against impairments induced by high glucose in a dose-dependent manner (p<0.05, p<0.001). To contribute toward our understanding of the cell-based protection mechanism of gTPC1-3, the latter were subjected to self-oxidation of 1,2,3-phentriol assay, and their scavenging effects were observed as 55.1%, 47.6% and 47.9% at the concentration of 300 μg/mL, respectively. On the basis of the fact that high glucose-induced endothelial dysfunction involves in the overproduction of reactive oxygen species (ROS) and contributes to the vascular complications in patients with diabetes, inhibitory effects of gTPC1-3 on high glucose-mediated HUVE cell loss are, at least in part, correlated with their potential scavenging potency of ROS. Taken together, gTPC1-3 could be developed as non-cytotoxic candidates of therapeutic agent for diabetic vascular complications. PMID:21439996

  12. Green tea polysaccharide-conjugates protect human umbilical vein endothelial cells against impairments triggered by high glucose.

    PubMed

    Chen, Xiaoqiang; Wang, Yuefei; Wu, Yalin; Han, Baoyu; Zhu, Yuejin; Tang, Xiaolin; Sun, Qinglei

    2011-07-01

    Hot-water extracts of low-grade green tea were precipitated with ethanol, deproteinized with trichloroacetic acid, neutralized with NaOH and fractionated by DEAE-cellulose DE-52 column chromatography to yield three (3) of unexplored polysaccharide-conjugate fractions termed gTPC1, gTPC2 and gTPC3. Monosaccharide and amino acid composition, contents of total neutral sugars, proteins and moistures, HPGPC distribution and Zeta potentials of gTPC1-3 were investigated. Exposure of human umbilical vein endothelial (HUVE) cells to high glucose (33 mM) for 12h significantly decreased cell viability relative to normal glucose control (p<0.001). As compared with cell injury group, gTPC1-3 at all of three dose levels (50, 150 and 300 μg/mL) were found to possess remarkably protective effects on HUVE cells against impairments induced by high glucose in a dose-dependent manner (p<0.05, p<0.001). To contribute toward our understanding of the cell-based protection mechanism of gTPC1-3, the latter were subjected to self-oxidation of 1,2,3-phentriol assay, and their scavenging effects were observed as 55.1%, 47.6% and 47.9% at the concentration of 300 μg/mL, respectively. On the basis of the fact that high glucose-induced endothelial dysfunction involves in the overproduction of reactive oxygen species (ROS) and contributes to the vascular complications in patients with diabetes, inhibitory effects of gTPC1-3 on high glucose-mediated HUVE cell loss are, at least in part, correlated with their potential scavenging potency of ROS. Taken together, gTPC1-3 could be developed as non-cytotoxic candidates of therapeutic agent for diabetic vascular complications.

  13. MCH receptor deletion does not impair glucose-conditioned flavor preferences in mice.

    PubMed

    Sclafani, Anthony; Adamantidis, Antoine; Ackroff, Karen

    2016-09-01

    The post-oral actions of glucose stimulate intake and condition flavor preferences in rodents. Hypothalamic melanin-concentrating hormone (MCH) neurons are implicated in sugar reward, and this study investigated their involvement in glucose preference conditioning in mice. In Exp. 1 MCH receptor 1 knockout (KO) and C57BL/6 wildtype (WT) mice learned to prefer 8% glucose over an initially more-preferred non-nutritive 0.1% sucralose+saccharin (S+S) solution. In contrast, the KO and WT mice preferred S+S to 8% fructose, which is consistent with this sugar's weak post-oral reinforcing action. In Exp. 2 KO and WT mice were trained to drink a flavored solution (CS+) paired with intragastric (IG) infusion of 16% glucose and a different flavored solution (CS-) paired with IG water. Both groups drank more CS+ than CS- in training and preferred the CS+ to CS- in a 2-bottle test. These results indicate that MCH receptor signaling is not required for flavor preferences conditioned by the post-oral actions of glucose. This contrasts with other findings implicating MCH signaling in other types of sugar reward processing. PMID:27195455

  14. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity

    PubMed Central

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  15. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis

    PubMed Central

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M.; Cohen, Jonathan C.; Hobbs, Helen H.

    2013-01-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8−/−) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8−/− mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8−/− mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis. PMID:24043787

  16. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity.

    PubMed

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-10-21

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.

  17. Impairment of erythrocytes incubated in glucose medium: a wavelet-information theory analysis.

    PubMed

    Korol, A M; Rosso, O A; Martín, M T; D'Arrigo, M; Riquelme, B D

    2011-07-01

    This study investigates the effects produced by an increased concentration of glucose in a suspending medium on the erythrocytes Information Theory quantifiers. Erythrocytes, which were obtained from eight healthy volunteers, were washed and incubated in vitro with glucose solutions at different concentrations. The measured Wavelet-based Information Theory quantifiers include the Relative Wavelet Energy (RWE), the Normalized Total Wavelet Shannon Entropy (NTWS), MPR-Statistical Complexity Measure (SCM) and entropy-complexity plane. The results show that the increase in glucose concentration does not produce significant changes on the RWE, while significant ones on the NTSE, which combined with SCM values allow to identify different behaviour for all the different populations in the entropy-complexity plane. Modification in the hemorheological properties of cells could be clearly detected with these Wavelet-based Information Theory quantifiers. PMID:21301991

  18. Age-dependent impairment of glucose tolerance in the 3xTg-AD mouse model of Alzheimer's disease.

    PubMed

    Vandal, Milene; White, Phillip J; Chevrier, Geneviève; Tremblay, Cyntia; St-Amour, Isabelle; Planel, Emmanuel; Marette, Andre; Calon, Frederic

    2015-10-01

    Alzheimer's disease (AD) has been associated with type II diabetes (T2D) and obesity in several epidemiologic studies. To determine whether AD neuropathology can cause peripheral metabolic impairments, we investigated metabolic parameters in the triple-transgenic (3xTg)-AD mouse model of AD, compared with those in nontransgenic (non-Tg) controls, at 6, 8, and 14 mo of age. We found a more pronounced cortical Aβ accumulation (2- and 3.5-fold increase in Aβ42 in the soluble and insoluble protein fractions, respectively) in female 3xTg-AD mice than in the males. Furthermore, female 3xTg-AD mice displayed a significant deterioration in glucose tolerance (AUC, +118% vs. non-Tg mice at 14 mo). Fasting plasma insulin levels rose 2.5-fold from 6 to 14 mo of age in female 3xTg-AD mice. Glucose intolerance and cortical amyloid pathology worsened with age, and both were more pronounced in the females. Pancreatic amyloidopathy was revealed and could underlie the observed deficit in glycemic response in 3xTg-AD mice. The present results suggest that AD-like neuropathology extends to the pancreas in the 3xTg-AD mouse, leading to glucose intolerance and contributing to a pathologic self-amplifying loop between AD and T2D. PMID:26108977

  19. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review.

    PubMed

    Wang, Yi; Simar, David; Fiatarone Singh, Maria A

    2009-01-01

    The aim of this investigation was to review morphological and metabolic adaptations within skeletal muscle to exercise training in adults with type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT). A comprehensive, systematic database search for manuscripts was performed from 1966 to March 2008 using computerized databases, including Medline, Premedline, CINAHL, AMED, EMBASE and SportDiscus. Three reviewers independently assessed studies for potential inclusion (exposure to exercise training, T2DM or IGT, muscle biopsy performed). A total of 18 exercise training studies were reviewed. All morphological and metabolic outcomes from muscle biopsies were collected. The metabolic outcomes were divided into six domains: glycogen, glucose facilitated transporter 4 (GLUT4) and insulin signalling, enzymes, markers of inflammation, lipids metabolism and so on. Beneficial adaptations to exercise were seen primarily in muscle fiber area and capillary density, glycogen, glycogen synthase and GLUT4 protein expressions. Few randomized controlled trials including muscle biopsy data existed, with a small number of subjects involved. More trials, especially robustly designed exercise training studies, are needed in this field. Future research should focus on the insulin signalling pathway to better understand the mechanism of the improvements in insulin sensitivity and glucose homeostasis in response to various modalities and doses of exercise in this cohort.

  20. GLP-2 receptor deficiency in the mouse brain impairs glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to food intake, glucagon-like peptide-2 (GLP-2) with GLP-1 is co-secreted from enteroendocrine L cells in the gut. GLP-2 receptor (GLP-2R) is expressed in the hypothalamus, a key tissue to integrate energy signals to regulate energy balance and glucose homeostasis. However, the physiolog...

  1. Amyloid beta-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells.

    PubMed

    Blanc, E M; Toborek, M; Mark, R J; Hennig, B; Mattson, M P

    1997-05-01

    Amyloid beta-peptide (A beta) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that A beta25-35 can impair regulatory functions of endothelial cells (ECs) from porcine pulmonary artery and induce their death. Subtoxic exposures to A beta25-35 induced albumin transfer across EC monolayers and impaired glucose transport into ECs. Cell death induced by A beta25-35 was of an apoptotic form, characterized by DNA condensation and fragmentation, and prevented by inhibitors of macromolecular synthesis and endonucleases. The effects of A beta25-35 were specific because A beta1-40 also induced apoptosis in ECs with the apoptotic cells localized to the microenvironment of A beta1-40 aggregates and because astrocytes did not undergo similar changes after exposure to A beta25-35. Damage and death of ECs induced by A beta25-35 were attenuated by antioxidants, a calcium channel blocker, and a chelator of intracellular calcium, indicating the involvement of free radicals and dysregulation of calcium homeostasis. The data show that A beta induces increased permeability of EC monolayers to macromolecules, impairs glucose transport, and induces apoptosis. If similar mechanisms are operative in vivo, then A beta and other amyloidogenic peptides may be directly involved in vascular EC damage documented in AD and other disorders that involve vascular amyloid accumulation. PMID:9109512

  2. High prevalence of NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Mauritius Noncommunicable Disease Study Group.

    PubMed

    Dowse, G K; Gareeboo, H; Zimmet, P Z; Alberti, K G; Tuomilehto, J; Fareed, D; Brissonnette, L G; Finch, C F

    1990-03-01

    Mauritius, a multiethnic island nation in the southwestern Indian Ocean, has one of the world's highest diabetes mortality rates. The prevalence of both impaired glucose tolerance (IGT) and non-insulin-dependent diabetes mellitus (NIDDM) was investigated in 5080 Muslim and Hindu Indian, Creole (mixed African, European, and Indian origin), and Chinese Mauritian adults aged 25-74 yr who were selected by random cluster sampling. Based on a 75-g oral glucose tolerance test and World Health Organization criteria, the age-standardized prevalence of IGT was significantly greater in women (19.7%, 95% confidence interval [CI] 18.1-21.2) than in men (11.7%, CI 10.5-12.8). By contrast, the prevalence of NIDDM was similar in men (12.1%, CI 10.9-13.4) and women (11.7%, CI 10.5-12.8) for all ethnic groups combined. The sex difference in IGT prevalence was seen in all ethnic groups, but for NIDDM, the sex difference was not consistent across ethnic groups. However, age- and sex-standardized prevalence of IGT and NIDDM was remarkably similar across ethnic groups (16.2 and 12.4% in Hindu Indians, 15.3 and 13.3% in Muslim Indians, 17.5 and 10.4% in Creoles, and 16.6 and 11.9% in Chinese, respectively). Three new cases of diabetes were diagnosed for every two known cases. The high prevalence of abnormal glucose tolerance in Indian subjects is consistent with studies of other migrant Indian communities, but the findings in Creole and, in particular, Chinese subjects are unexpected. Potent environmental factors shared between ethnic groups in Mauritius may be responsible for the epidemic of glucose intolerance.

  3. Metabolic syndrome and the early detection of impaired glucose tolerance among professionals living in Beijing, China: a cross sectional study

    PubMed Central

    2013-01-01

    Background The purpose of this study is to investigate the association of metabolic syndrome (MS) and its components with the risk of impaired glucose tolerance (IGT) in high risk urban professionals. The goal is to improve the selection of candidates who would most benefit from an oral glucose tolerance test (OGTT). Methods This is a cross sectional study in which MS was identified by both the definitions proposed by the National Cholesterol Education Program (NCEP) and the International Diabetes Federation (IDF). Results There were 928 eligible subjects in the study, and 23.9% of them failed in OGTT. The odds ratio of IGT was increased 3.16-fold for MS defined by the NCEP criteria and 2.79-fold for the hyperglycemia factor alone. Both MS and hyperglycemia were shown to be acceptable measures to discriminate subjects with IGT from those with normal glucose tolerance (NGT). The clustering of any 1, 2, or ≥3 metabolic components resulted in increased odds ratios for IGT: i.e., 1.71, 2.38 and 5.92, respectively. Even without hyperglycemia in the cluster, an increased odds ratio was still observed. The risk of IGT increased dramatically when the fasting plasma glucose and waist circumference were both at their highest defined level. Conclusions MS and its components are associated with the increased risk of IGT. People with MS, one of its components, especially hyperglycemia and central obesity, or a cluster of its components are strong candidates for an OGTT in order to achieve early cost-effective detection of IGT. PMID:24499585

  4. Corneal Confocal Microscopy Identifies Small-Fiber Neuropathy in Subjects With Impaired Glucose Tolerance Who Develop Type 2 Diabetes

    PubMed Central

    Azmi, Shazli; Ferdousi, Maryam; Petropoulos, Ioannis N.; Ponirakis, Georgios; Alam, Uazman; Fadavi, Hassan; Asghar, Omar; Marshall, Andrew; Atkinson, Andrew J.; Jones, Wendy; Boulton, Andrew J.M.; Tavakoli, Mitra; Jeziorska, Maria

    2015-01-01

    OBJECTIVE Impaired glucose tolerance (IGT) through to type 2 diabetes is thought to confer a continuum of risk for neuropathy. Identification of subjects at high risk of developing type 2 diabetes and, hence, worsening neuropathy would allow identification and risk stratification for more aggressive management. RESEARCH DESIGN AND METHODS Thirty subjects with IGT and 17 age-matched control subjects underwent an oral glucose tolerance test, assessment of neuropathic symptoms and deficits, quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy (CCM) to quantify corneal nerve fiber density (CNFD), branch density (CNBD), and fiber length (CNFL) at baseline and annually for 3 years. RESULTS Ten subjects who developed type 2 diabetes had a significantly lower CNFD (P = 0.003), CNBD (P = 0.04), and CNFL (P = 0.04) compared with control subjects at baseline and a further reduction in CNFL (P = 0.006), intraepidermal nerve fiber density (IENFD) (P = 0.02), and mean dendritic length (MDL) (P = 0.02) over 3 years. Fifteen subjects who remained IGT and 5 subjects who returned to normal glucose tolerance had no significant baseline abnormality on CCM or IENFD but had a lower MDL (P < 0.0001) compared with control subjects. The IGT subjects showed a significant decrease in IENFD (P = 0.02) but no change in MDL or CCM over 3 years. Those who returned to NGT showed an increase in CNFD (P = 0.05), CNBD (P = 0.04), and CNFL (P = 0.05), but a decrease in IENFD (P = 0.02), over 3 years. CONCLUSIONS CCM and skin biopsy detect a small-fiber neuropathy in subjects with IGT who develop type 2 diabetes and also show a dynamic worsening or improvement in corneal and intraepidermal nerve morphology in relation to change in glucose tolerance status. PMID:25877814

  5. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment. PMID:26415593

  6. Impaired fasting glucose is associated with increased severity of subclinical coronary artery disease compared to patients with diabetes and normal fasting glucose: evaluation by coronary computed tomographic angiography

    PubMed Central

    Gurudevan, Swaminatha; Garg, Pankaj; Malik, Shaista; Khattar, Ramni; Saremi, Farhood; Hecht, Harvey; DeMaria, Anthony; Narula, Jagat

    2016-01-01

    Objective This study was designed to evaluate the severity of subclinical atherosclerosis in patients with asymptomatic impaired fasting glucose (IFG) compared to those with diabetes mellitus (DM) and normal fasting glucose (NFG), as measured by coronary computed tomographic angiography (CCTA). Design Subjects were divided into three groups: NFG (<100 mg/dL), IFG (100–125 mg/dL) and DM. Coronary artery calcium on non-contrast CT and plaque analysis on CCTA were performed. Setting University hospital, single centre. Participants 216 asymptomatic participants prospectively underwent CCTA for the evaluation of coronary artery disease (CAD). Primary and secondary outcome measures Atherosclerotic plaque burden in IFG compared to NFG patients. Results 2664 segments were analysed in 120 NFG, 44 IFG and 52 DM participants. The mean calcium scores were 178±395, 259±510 and 414±836 for NFG, IFG and DM, respectively (p=0·037). The mean plaque burdens in the NFG, IFG and DM groups were 0.31±0.45, 0.50±0.69 and 0.68±0.69, respectively (p=0·0007). A greater proportion of patients with DM (19/52, 36.5%) and IFG (13/44, 29.5%) had obstructive CAD compared to those with NFG (16/120, 13.3%) (p=0.0015). The number of segments with severe disease was significantly higher in the DM (60/637, 9.4%) and IFG (42/539, 7.8%) groups compared to that in the NFG group (34/1488, 2.3%) (p=0.0001). Conclusions (1) IFG and DM have significantly higher, but comparable, calcium scores, plaque burden and obstructive CAD compared to NFG in asymptomatic individuals. (2) Pending corroboration by other reports, more intensive efforts may be devoted to the evaluation and treatment of patients with IFG. PMID:27531720

  7. Impaired glucose homeostasis after a transient intermittent hypoxic exposure in neonatal rats.

    PubMed

    Pae, Eung-Kwon; Ahuja, Bhoomika; Kim, Marieyerie; Kim, Gyuyoup

    2013-11-22

    This initial report presents a neonatal rat model with exposure to a transient intermittent hypoxia (IH), which results in a persisting diabetes-like condition in the young rats. Twenty-five male pups were treated at postnatal day 1 with IH exposure by alternating the level of oxygen between 10.3% and 20.8% for 5h. The treated animals were then maintained in normal ambient oxygen condition for 3 week and compared to age-matched controls. The IH treated animals exhibited a significantly higher fasting glucose level than the control animals (237.00 ± 19.66 mg/dL vs. 167.25 ± 2.95 mg/dL; P=0.003); and a significantly lower insulin level than the control (807.0 ± 72.5 pg/mL vs. 1839.8 ± 377.6 pg/mL; P=0.023). There was no difference in the mass or the number of insulin producing beta cells as well as no indicative of inflammatory changes; however, glucose tolerance tests showed a significantly disturbed glucose homeostasis. In addition, the amount of C-peptide secreted from the islets harvested from the IH animals were decreased significantly (from 914 pM in control to 809 pM in IH; P=0.0006) as well. These observations demonstrate that the neonatal exposure to the IH regimen initiates the development of deregulation in glucose homeostasis without infiltration of inflammatory cells. PMID:24183722

  8. Prevention and treatment of osteoporosis.

    PubMed

    Chapuy, M C; Meunier, P J

    1995-08-01

    Because the lifetime risk of fragility fracture for a 50-year-old Caucasian woman is about 40 per cent, a whole-life strategy of osteoporosis prevention is necessary. In childhood, primary prevention of osteoporosis is based on exercise and adequate dietary calcium. In women undergoing menopause, hormone replacement therapy administered for at least ten years remains the preventive treatment of choice, and is associated with a substantial reduction in vertebral and non-vertebral fractures. Intranasal salmon calcitonin and bisphosphonates are effective alternatives, but their effects on fracture rate and their long-term safety require further evaluation. Regarding the prevention of the late bone loss leading to senile osteoporosis, there is now evidence that the reduction of the secondary hyperparathyroidism induced by calcium and vitamin D insufficiencies through the administration of calcium and vitamin D supplements significantly decreases the hip fracture incidence. There is no general consensus about the efficacy of treatment for established osteoporosis with fractures. Fluoride salts have proven their direct stimulating effects on bone formation; dosage must be moderate, and the duration of treatment should be limited to 2-3 years in order not to impair the quality of the new bone. Cyclical therapy with etidronate induces beneficial effects on bone mass in the spine, but its effect on the vertebral fracture rate is not yet established. The new bisphosphonates seem to be promising for the management of osteoporosis. Several other agents such as growth factors, silicon derivatives and strontium salts are in various stages of testing. The new definition of osteoporosis proposed by a WHO study group, no longer based on the fracture but on a low bone mass, is of major interest, because it should make possible to have a more effective therapeutic approach, before the occurrence of an irreversible degree of bone loss.

  9. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics' Impaired Healing

    PubMed Central

    Berlanga-Acosta, Jorge; Schultz, Gregory S.; López-Mola, Ernesto; Guillen-Nieto, Gerardo; García-Siverio, Marianela; Herrera-Martínez, Luis

    2013-01-01

    Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease's complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds' anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures. PMID:23484099

  10. Acute ozone (O3) -induced impairment of glucose regulation: Age-related and temporal changes

    EPA Science Inventory

    O3 is associated with adverse cardiopulmonary health effects in humans and is thought to produce metabolic effects, such as insulin resistance. Recently, we showed that episodic O3 exposure increased insulin levels in aged rats. We hypothesized that O3 exposure could impair gluc...

  11. Glucose toxic effects on granulation tissue productive cells: the diabetics' impaired healing.

    PubMed

    Berlanga-Acosta, Jorge; Schultz, Gregory S; López-Mola, Ernesto; Guillen-Nieto, Gerardo; García-Siverio, Marianela; Herrera-Martínez, Luis

    2013-01-01

    Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease's complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds' anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures.

  12. Impairment of glucose-induced insulin secretion in human pancreatic islets transplanted to diabetic nude mice.

    PubMed

    Jansson, L; Eizirik, D L; Pipeleers, D G; Borg, L A; Hellerström, C; Andersson, A

    1995-08-01

    Hyperglycemia-induced beta-cell dysfunction may be an important component in the pathogenesis of non-insulin-dependent diabetes mellitus. However, most available data in this field were obtained from rodent islets. To investigate the relevance of this hypothesis for human beta-cells in vivo, human pancreatic islets were transplanted under the renal capsule of nude mice. Experimental groups were chosen so that grafted islets were exposed to either hyper- or normoglycemia or combinations of these for 4 or 6 wk. Grafts of normoglycemic recipients responded with an increased insulin release to a glucose stimulus during perfusion, whereas grafts of hyperglycemic recipients failed to respond to glucose. The insulin content of the grafts in the latter groups was only 10% of those observed in controls. Recipients initially hyperglycemic (4 wk), followed by 2 wk of normoglycemia regained a normal graft insulin content, but a decreased insulin response to glucose remained. No ultrastructural signs of beta-cell damage were observed, with the exception of increased glycogen deposits in animals hyperglycemic at the time of killing. It is concluded that prolonged exposure to a diabetic environment induces a long-term secretory defect in human beta-cells, which is not dependent on the size of the islet insulin stores.

  13. Antidepressant Medication as a Risk Factor for Type 2 Diabetes and Impaired Glucose Regulation

    PubMed Central

    Barnard, Katharine; Peveler, Robert C.; Holt, Richard I.G.

    2013-01-01

    OBJECTIVE Antidepressant use has risen sharply over recent years. Recent concerns that antidepressants may adversely affect glucose metabolism require investigation. Our aim was to assess the risk of type 2 diabetes associated with antidepressants through a systematic review. RESEARCH DESIGN AND METHODS Data sources were MEDLINE, Embase, PsycINFO, The Cochrane Library, Web of Science, meeting abstracts of the European Association for the Study of Diabetes, American Diabetes Association, and Diabetes UK, Current Controlled Trials, ClinicalTrials.gov, U.K. Clinical Research Network, scrutiny of bibliographies of retrieved articles, and contact with relevant experts. Relevant studies of antidepressant effects were included. Key outcomes were diabetes incidence and change in blood glucose (fasting and random). RESULTS Three systemic reviews and 22 studies met the inclusion criteria. Research designs included 1 case series and 21 observational studies comprising 4 cross-sectional, 5 case-control, and 12 cohort studies. There was evidence that antidepressant use is associated with type 2 diabetes. Causality is not established, but rather, the picture is confused, with some antidepressants linked to worsening glucose control, particularly with higher doses and longer duration, others linked with improved control, and yet more with mixed results. The more recent, larger studies, however, suggest a modest effect. Study quality was variable. CONCLUSIONS Although evidence exists that antidepressant use may be an independent risk factor for type 2 diabetes, long-term prospective studies of the effects of individual antidepressants rather than class effects are required. Heightened alertness to potential risks is necessary until these are complete. PMID:24065841

  14. Noninvasive fat quantification of the liver and pancreas may provide potential biomarkers of impaired glucose tolerance and type 2 diabetes

    PubMed Central

    Dong, Zhi; Luo, Yanji; Cai, Huasong; Zhang, Zhongwei; Peng, Zhenpeng; Jiang, Mengjie; Li, Yanbing; Li, Chang; Li, Zi-Ping; Feng, Shi-Ting

    2016-01-01

    Abstract The aim of the study is to investigate if the fat content of the liver and pancreas may indicate impaired glucose tolerance (IGT) or type 2 diabetes mellitus (T2DM). A total of 83 subjects (34 men; aged 46.5 ± 13.5 years) were characterized as T2DM, IGT, or normal glucose tolerant (NGT). NGT individuals were stratified as <40 or ≥40 years. Standard laboratory tests were conducted for insulin resistance and β-cell dysfunction. The magnetic resonance imaging Dixon technique was used to determine fat distribution in the liver and pancreas. Correlations among liver and pancreatic fat volume fractions (LFVFs and PFVFs, respectively) and laboratory parameters were analyzed. Among the groups, fat distribution was consistent throughout sections of the liver and pancreas, and LFVFs closely correlated with PFVFs. LFVFs correlated more closely than PFVFs with insulin resistance and β-cell function. Both the LFVFs and PFVFs were the highest in the T2DM patients, less in the IGT, and least in the NGT; all differences were significant. The PFVFs of the NGT subjects ≥40 years were significantly higher than that of those <40 years. The fat content of the liver and pancreas, particularly the liver, may be a biomarker for IGT and T2DM. PMID:27281097

  15. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  16. Influence of physical activity and gender on arterial function in type 2 diabetes, normal and impaired glucose tolerance

    PubMed Central

    Eriksson, Maria J.; Fritz, Tomas; Nyberg, Gunnar; Östenson, Claes Göran; Krook, Anna; Zierath, Juleen R.; Caidahl, Kenneth

    2015-01-01

    To determine whether Nordic walking improves cardiovascular function in middle-aged women and men, we included 121 with normal glucose tolerance, 33 with impaired glucose tolerance and 47 with Type 2 diabetes mellitus in a randomized controlled study. The intervention group added Nordic walking 5 h/week for 4 months to their ordinary activities. Aortic pulse wave velocity, aortic augmentation index, stiffness index, reflection index, intima–media thickness in the radial and carotid arteries, echogenicity of the carotid intima–media and systemic vascular resistance were measured. While baseline blood pressure did not differ by gender or diagnosis, aortic augmentation index was found to be higher in women in all groups. Vascular function was unchanged with intervention, without differences by gender or diagnosis. In conclusion, 4 months of Nordic walking is an insufficient stimulus to improve vascular function. Future studies should consider hard endpoints in addition to measures of vascular health, as well as larger population groups, long-term follow-up and documented compliance to exercise training. PMID:26092821

  17. Triglycerides to High-Density Lipoprotein Cholesterol Ratio Can Predict Impaired Glucose Tolerance in Young Women with Polycystic Ovary Syndrome

    PubMed Central

    Song, Do Kyeong; Lee, Hyejin; Sung, Yeon-Ah

    2016-01-01

    Purpose The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS. Materials and Methods We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs). Results The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p<0.05). Conclusion The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in young Korean women with PCOS, and women with NFG and a high TG/HDL-C ratio had a higher prevalence of IGT. Therefore, Korean women with PCOS with a TG/HDL-C ratio >2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG. PMID:27593868

  18. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    PubMed Central

    Ferroni, Patrizia; Riondino, Silvia; Buonomo, Oreste; Palmirotta, Raffaele; Guadagni, Fiorella; Roselli, Mario

    2015-01-01

    Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk), which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols. PMID:26171112

  19. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia.

    PubMed

    Mosconi, Lisa; Andrews, Randolph D; Matthews, Dawn C

    2013-01-01

    This study compares the degree of brain amyloid-β (Aβ) deposition, glucose metabolism, and grey matter volume (GMV) reductions in mild cognitive impairment (MCI) patients overall and as a function of their parental history of dementia. Ten MCI with maternal history (MH), 8 with paternal history (PH), and 24 with negative family history (NH) received 11C-PiB and 18F-FDG PET and T1-MRI as part of the Alzheimer's Disease Neuroimaging Initiative. Statistical parametric mapping, voxel based morphometry, and Z-score mapping were used to compare biomarkers across MCI groups, and relative to 12 normal controls. MCI had higher PiB retention, hypometabolism, and GMV reductions in Alzheimer-vulnerable regions compared to controls. Biomarker abnormalities were more pronounced in MCI with MH than those with PH and NH. After partial volume correction of PET, Aβ load exceeded hypometabolism and atrophy with regard to the number of regions affected and magnitude of impairment in those regions. Hypometabolism exceeded atrophy in all MCI groups and exceeded Aβ load in medial temporal and posterior cingulate regions of MCI MH. While all three biomarkers were abnormal in MCI compared to controls, Aβ deposition was the most prominent abnormality, with MCI MH having the greatest degree of co-occurring hypometabolism.

  20. Blood glucose concentration for predicting poor outcomes in patients with and without impaired glucose metabolism undergoing off-pump coronary artery bypass surgery – long-term observational study

    PubMed Central

    Majstrak, Franciszek; Opolski, Grzegorz; Filipiak, Krzysztof J.

    2016-01-01

    Introduction Strict glucose control is an everyday practice in the perioperative period. Elevated glucose level has a deleterious impact on clinical results, but a therapeutic target has not been stated yet. Aim To determine a glucose concentration range affecting long-term outcomes after coronary artery bypass surgery (CABG). Material and methods This study is a retrospective evaluation of consecutive patients treated in a university hospital in Poland from 2004 to 2008. Patients were divided into 2 groups: an impaired glucose metabolism group (IGM) if they had 1) known DM or 2) perioperative hyperglycaemia defined as ≥ 200 mg/dl; and a non-IGM group. The end point (EP) was all-cause mortality. Results One thousand two hundred and eleven patients were covered by the analysis. The observation time was from 01.01.2004 until 01.08.2012. Patients who had maximal glucose concentrations < 242 mg/dl had the lowest mortality risk (EP in 21.1%); a higher risk was noted in the group with glucose concentrations 242–324 mg/dl (EP in 30.8%); and a very high risk was found for the group where glucose concentration was > 324 mg/dl (EP in 44.2%) (p = 0.041). Patients with IGM had a shorter survival at the end of the study (p < 0.001). The longest survival was observed in patients whose maximal glucose level was ≤ 242 mg/dl (p < 0.001) and the minimal glucose concentration was in the range 61–110 mg/dl (p < 0.001). Conclusions Tight glucose concentration control should be performed irrespective of a diabetes diagnosis and proper treatment introduced when necessary. Maximal glucose concentration should be kept < 242 mg/dl, while the minimum should be in the range 60–110 mg/dl. PMID:27625687

  1. Blood glucose concentration for predicting poor outcomes in patients with and without impaired glucose metabolism undergoing off-pump coronary artery bypass surgery – long-term observational study

    PubMed Central

    Majstrak, Franciszek; Opolski, Grzegorz; Filipiak, Krzysztof J.

    2016-01-01

    Introduction Strict glucose control is an everyday practice in the perioperative period. Elevated glucose level has a deleterious impact on clinical results, but a therapeutic target has not been stated yet. Aim To determine a glucose concentration range affecting long-term outcomes after coronary artery bypass surgery (CABG). Material and methods This study is a retrospective evaluation of consecutive patients treated in a university hospital in Poland from 2004 to 2008. Patients were divided into 2 groups: an impaired glucose metabolism group (IGM) if they had 1) known DM or 2) perioperative hyperglycaemia defined as ≥ 200 mg/dl; and a non-IGM group. The end point (EP) was all-cause mortality. Results One thousand two hundred and eleven patients were covered by the analysis. The observation time was from 01.01.2004 until 01.08.2012. Patients who had maximal glucose concentrations < 242 mg/dl had the lowest mortality risk (EP in 21.1%); a higher risk was noted in the group with glucose concentrations 242–324 mg/dl (EP in 30.8%); and a very high risk was found for the group where glucose concentration was > 324 mg/dl (EP in 44.2%) (p = 0.041). Patients with IGM had a shorter survival at the end of the study (p < 0.001). The longest survival was observed in patients whose maximal glucose level was ≤ 242 mg/dl (p < 0.001) and the minimal glucose concentration was in the range 61–110 mg/dl (p < 0.001). Conclusions Tight glucose concentration control should be performed irrespective of a diabetes diagnosis and proper treatment introduced when necessary. Maximal glucose concentration should be kept < 242 mg/dl, while the minimum should be in the range 60–110 mg/dl.

  2. Osteoporosis and Hispanic Women

    MedlinePlus

    ... for the elderly, visit: NIH Osteoporosis and Related Bone Diseases ~ National Resource Center Website: http://www.bones.nih. ... Pub. No. 15-7924 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  3. FastStats: Osteoporosis

    MedlinePlus

    ... this? Submit What's this? Submit Button NCHS Home Osteoporosis Recommend on Facebook Tweet Share Compartir Data are ... men 50 years of age and over with osteoporosis of the femur neck or lumbar spine: 4% ...

  4. Osteoporosis: An Overview.

    ERIC Educational Resources Information Center

    Johnston, C. Conrad; Slemenda, Charles

    1987-01-01

    An overview of osteoporosis, its types, causes, diagnosis, and treatment is presented. Risk factors and bone mass measurement are also discussed. This article serves as an introduction to a symposium on osteoporosis containing five other articles in this issue. (MT)

  5. Osteoporosis and Your Spine

    MedlinePlus

    ... Movement › Osteoporosis and Your Spine Osteoporosis and Your Spine Your spine is made up of small bones ... called kyphosis. Kyphosis and Bone Breaks in the Spine The bones in the spine are called vertebrae. ...

  6. Exogenous citrate impairs glucose tolerance and promotes visceral adipose tissue inflammation in mice.

    PubMed

    Leandro, João G B; Espindola-Netto, Jair M; Vianna, Maria Carolina F; Gomez, Lilian S; DeMaria, Thaina M; Marinho-Carvalho, Monica M; Zancan, Patricia; Paula Neto, Heitor A; Sola-Penna, Mauro

    2016-03-28

    Overweight and obesity have become epidemic worldwide and are linked to sedentary lifestyle and the consumption of processed foods and drinks. Citrate is a metabolite that plays central roles in carbohydrate and lipid metabolism. In addition, citrate is the additive most commonly used by the food industry, and therefore is highly consumed. Extracellular citrate can freely enter the cells via the constitutively expressed plasma membrane citrate transporter. Within the cytosol, citrate is readily metabolised by ATP-citrate lyase into acetyl-CoA - the metabolic precursor of endogenously produced lipids and cholesterol. We therefore hypothesised that the citrate ingested from processed foods and drinks could contribute to increased postprandial fat production and weight gain. To test our hypothesis, we administered citrate to mice through their drinking water with or without sucrose and monitored their weight gain and other metabolic parameters. Our results showed that mice receiving citrate or citrate+sucrose did not show increased weight gain or an increase in the weight of the liver, skeletal muscles or adipose tissues (AT). Moreover, the plasma lipid profiles (TAG, total cholesterol, LDL and HDL) were similar across all groups. However, the group receiving citrate+sucrose showed augmented fasting glycaemia, glucose intolerance and the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-10) in their AT. Therefore, our results suggest that citrate consumption contributes to increased AT inflammation and altered glucose metabolism, which is indicative of initial insulin resistance. Thus, citrate consumption could be a previously unknown causative agent for the complications associated with obesity. PMID:26863933

  7. Endothelin-1 as a predictor of impaired glucose tolerance and type 2 diabetes--A longitudinal study in the Vara-Skövde Cohort.

    PubMed

    Olausson, Josefin; Daka, Bledar; Hellgren, Margareta I; Larsson, Charlotte A; Petzold, Max; Lindblad, Ulf; Jansson, Per-Anders

    2016-03-01

    We addressed whether endothelin-1, a marker of endothelial dysfunction, predicts impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in a population study in south-western Sweden. Follow-up after 9.7 years showed an association between circulating endothelin-1 levels at baseline and development of IGT/T2DM in women but not in men.

  8. Prevalence of non-insulin-dependent diabetes mellitus and impaired glucose tolerance in two Algonquin communities in Quebec.

    PubMed Central

    Delisle, H F; Ekoé, J M

    1993-01-01

    OBJECTIVE: To assess and compare the prevalence of non-insulin-dependent diabetes mellitus (NIDDM) and impaired glucose tolerance (IGT) in two native Indian communities. DESIGN: Population-based study. SETTING: Two Algonquin communities in Quebec: River Desert and Lac Simon. PARTICIPANTS: All native Indian residents aged at least 15 years were eligible; 621 (59%) of them volunteered to enroll in the study. The participation rate was 49% in River Desert and 76% in Lac Simon. MAIN OUTCOME MEASURES: Fasting blood glucose level and serum glucose level 2 hours after 75-g oral glucose tolerance test, as described by the World Health Organization, in all subjects except those with confirmed diabetes. Other measures included body mass index (BMI), fat distribution and blood pressure. MAIN RESULTS: The age-sex standardized prevalence rate of NIDDM was 19% in Lac Simon (95% confidence interval [CI] 16% to 21%); this was more than twice the rate of 9% in River Desert (95% CI 7% to 11%). The IGT rates were comparable in the two communities (River Desert 5%, Lac Simon 6%). NIDDM and IGT were uncommon under the age of 35 years. Only in Lac Simon was the NIDDM prevalence rate significantly higher among the women than among the men (23% v. 14%); almost half of the women aged 35 years or more had diabetes. In Lac Simon the rate of marked obesity (BMI greater than 30) was significantly higher among the women than among the men (37% v. 19%; p < 0.001); this sex-related difference was not found in River Desert (rates 31% and 23% respectively). Previously undiagnosed NIDDM accounted for 25% of all the cases. NIDDM and IGT were significantly associated with high BMI, sum of skinfold thicknesses and waist:hip circumference ratio (p < 0.001). The subscapular:triceps skinfold ratio, however, did not display such an association, nor did the age-adjusted systolic blood pressure. CONCLUSIONS: The prevalence of NIDDM is high in Algonquin communities and may vary markedly between communities

  9. Plasma levels of sex hormone-binding globulin, corticosteroid-binding globulin and cortisol in overweight subjects who develop impaired fasting glucose: a 3-year prospective study.

    PubMed

    Lewis, J G; Shand, B I; Frampton, C M; Elder, P A; Scott, R S

    2009-03-01

    Circulating sex hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG), and total and calculated free cortisol were measured in 206 overweight subjects to investigate whether or not they were markers of insulin resistance. Measurements were carried out on two occasions 36 months apart and subjects were grouped according to fasting plasma glucose. Fifty-one subjects, with a normal basal fasting glucose (<5.6 mmol/l) developed impaired fasting glucose 3 years later (> or = 5.6 mmol/l). Analysis either in toto or based on gender showed a highly significant increase in fasting insulin and insulin resistance, a modest increase in body mass index (BMI), but importantly no change in plasma SHBG, CBG, or cortisol concentrations. Subjects (n=101) with a normal fasting glucose both at baseline (<5.6 mmol/l) and at 36 months showed no significant change in fasting insulin, insulin resistance, SHBG, CBG, cortisol, or BMI. Cross-sectional analysis of the study population showed that plasma SHBG correlated negatively with insulin resistance both in men and women. Overall SHBG at baseline was not predictive of changes in fasting glucose. In females, plasma CBG correlated negatively with BMI. The major finding is that overweight subjects who developed impaired fasting glucose showed no significant change in plasma SHBG, CBG or cortisol, and therefore these indices are probably not early markers of insulin resistance in overweight subjects.

  10. Screening for Impaired Fasting Glucose and Diabetes Using Available Health Plan Data

    PubMed Central

    McEwen, Laura N.; Adams, Sara R.; Schmittdiel, Julie A.; Ferrara, Assiamira; Selby, Joseph V.; Herman, William H.

    2013-01-01

    Aims To develop and validate prediction equations to identify individuals at high-risk for type 2 diabetes using existing health plan data. Methods Health plan data from 2005–2009 from 18,527 members of a Midwestern HMO without diabetes, 6% who had fasting plasma glucose (FPG) ≥ 110 mg/dL, and health plan data from 2005–2006 from 368,025 members of a West Coast integrated delivery system without diabetes, 13% who had FPG ≥ 110 mg/dL were analyzed. Within each health plan, we used multiple logistic regression to develop equations to predict FPG ≥ 110 mg/dL for half of the population and validated the equations using the other half. We then externally validated the equations in the other health plan. Results Areas under the curve for the most parsimonious equations were 0.665 to 0.729 when validated internally. Positive predictive values were 14% to 32% when validated internally and 14% to 29% when validated externally. Conclusion Multivariate logistic regression equations can be applied to existing health plan data to efficiently identify persons at higher risk for dysglycemia who might benefit from definitive diagnostic testing and interventions to prevent or treat diabetes. PMID:23587840

  11. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    SciTech Connect

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-04-15

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and alpha-smooth muscle actin (alpha-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  12. Role of diuretics, β blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: reanalysis of data from the NAVIGATOR study

    PubMed Central

    Shen, Lan; Shah, Bimal R; Reyes, Eric M; Thomas, Laine; Wojdyla, Daniel; Diem, Peter; Leiter, Lawrence A; Charbonnel, Bernard; Mareev, Viacheslav; Horton, Edward S; Haffner, Steven M; Soska, Vladimir; Holman, Rury; Bethel, M Angelyn; Schaper, Frank; Sun, Jie-Lena; McMurray, John JV; Califf, Robert M

    2013-01-01

    Objective To examine the degree to which use of β blockers, statins, and diuretics in patients with impaired glucose tolerance and other cardiovascular risk factors is associated with new onset diabetes. Design Reanalysis of data from the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial. Setting NAVIGATOR trial. Participants Patients who at baseline (enrolment) were treatment naïve to β blockers (n=5640), diuretics (n=6346), statins (n=6146), and calcium channel blockers (n=6294). Use of calcium channel blocker was used as a metabolically neutral control. Main outcome measures Development of new onset diabetes diagnosed by standard plasma glucose level in all participants and confirmed with glucose tolerance testing within 12 weeks after the increased glucose value was recorded. The relation between each treatment and new onset diabetes was evaluated using marginal structural models for causal inference, to account for time dependent confounding in treatment assignment. Results During the median five years of follow-up, β blockers were started in 915 (16.2%) patients, diuretics in 1316 (20.7%), statins in 1353 (22.0%), and calcium channel blockers in 1171 (18.6%). After adjusting for baseline characteristics and time varying confounders, diuretics and statins were both associated with an increased risk of new onset diabetes (hazard ratio 1.23, 95% confidence interval 1.06 to 1.44, and 1.32, 1.14 to 1.48, respectively), whereas β blockers and calcium channel blockers were not associated with new onset diabetes (1.10, 0.92 to 1.31, and 0.95, 0.79 to 1.13, respectively). Conclusions Among people with impaired glucose tolerance and other cardiovascular risk factors and with serial glucose measurements, diuretics and statins were associated with an increased risk of new onset diabetes, whereas the effect of β blockers was non-significant. Trial registration ClinicalTrials.gov NCT00097786. PMID:24322398

  13. Accessibility attributes of blood glucose meter and home blood pressure monitor displays for visually impaired persons.

    PubMed

    Blubaugh, Morgan V; Uslan, Mark M

    2012-03-01

    The vast majority of diabetes-related self-management technology utilizes small visual displays (SVDs) that often produce a low level of contrast and suffer from high levels of reflection (glare). This is a major accessibility issue for the 3.5 million Americans with diabetes who have reduced vision. The purpose of this article is to gather comparative data on the key display attributes of the SVDs used in blood glucose meters (BGMs) and home blood pressure monitors (HBPMs) on the market today and determine which displays offer the best prospect for being accessible to people with reduced vision. Nine BGMs and eight HBPMs were identified for this study on the basis of amount of devices sold, fullfunctionality speech output, and advanced display technologies. An optical instrumentation system obtained contrast, reflection (glare), and font height measurements for all 17 displays. The contrast, reflection, and font-height values for the BGMs and HBPMs varied greatly between models. The Michelson contrast values for the BGMs ranged from 11% to 98% and font heights ranged 0.39-1.00 in. for the measurement results. The HBPMs had Michelson contrast values ranging 55-96% and font height ranging 0.28-0.94 in. for the measurement results. Due largely to the lack of display design standards for the technical requirements of SVDs, there is tremendous variability in the quality and readability of BGM and HBPM displays. There were two BGMs and one HBPM that exhibited high-contrast values and large font heights, but most of the devices exhibited either poor contrast or exceptionally high reflection.

  14. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function.

    PubMed

    Yiu, Kai-Hang; Tse, Hung-Fat

    2014-06-01

    The disease burden of diabetes mellitus (DM) and its associated cardiovascular complications represent a growing and major global health problem. Recent studies suggest that circulating exogenous endothelial progenitor cells (EPCs) play an important role in endothelial repair and neovascularization at sites of injury or ischemia. Both experimental and clinical studies have demonstrated that hyperglycemia related to DM can induce alterations to EPCs. The reduction and dysfunction of EPCs related to DM correlate with the occurrence and severity of microvascular and macrovascular complications, suggesting a close mechanistic link between EPC dysfunction and impaired vascular function/repair in DM. These alterations to EPCs, likely mediated by multiple pathophysiological mechanisms, including inflammation, oxidative stress, and alterations in Akt and the nitric oxide pathway, affect EPCs at multiple stages: differentiation and mobilization in the bone marrow, trafficking and survival in the circulation, and homing and neovascularization. Several different therapeutic approaches have consequently been proposed to reverse the reduction and dysfunction of EPCs in DM and may represent a novel therapeutic approach to prevent and treat DM-related cardiovascular complications.

  15. DEXA MEASURED VISCERAL ADIPOSE TISSUE PREDICTS IMPAIRED GLUCOSE TOLERANCE AND METABOLIC SYNDROME IN OBESE CAUCASIAN AND AFRICAN AMERICAN WOMEN

    PubMed Central

    Bi, X; Seabolt, L; Shibao, C; Buchowski, M; Kang, H; Keil, CD; Tyree, R; Silver, HJ

    2016-01-01

    Background and Aims New methods to measure visceral adipose tissue (VAT) by DEXA may help discern sex, race and phenotype differences in the role of VAT in cardiometabolic risk. This study was designed to: a) compare relationships between cardiometabolic risk factors and DEXA-VAT, anthropometric and body composition measures; b) determine thresholds for DEXA-VAT by race; and c) determine the most robust predictors of impaired glucose tolerance (IGT) and metabolic syndrome (MetSx) in obese women. Methods VAT area (cm2) was measured using Lunar iDXA scanner in 229 obese (BMI 30-49.9) women age 21–69 years of European American (EA = 123) and African American (AA = 106) descent. Linear regression modeling and areas under the curve (AUC) compared relationships with cardiometabolic risk. Bootstrapping with LASSO regression modeling determined thresholds and predictors of IGT and MetSx. Results DEXA-VAT explained more of the variance in triglycerides, blood pressure, glucose and HOMA-IR compared to anthropometric and body composition variables. DEXA-VAT had the highest AUC for IGT (0.767) and MetSx (0.749). Including race and interactionXrace terms in modeling did not significantly change results. Thresholds at which probability was ≥ 50% for IGT or MetSx were lower in AA women (IGT: 2120cm2 AA vs 2550cm2 EA; MetSx: 1320cm2 AA vs 1713cm2 EA). The odds for IGT or MetSx was 3-fold greater with each standard deviation increase in DEXA-VAT. Conclusion DEXA-VAT provides robust clinical information regarding cardiometabolic risk in AA and EA women and has great potential in risk reduction efforts. PMID:25335442

  16. Prevalence of diabetes and impaired fasting glucose in Peru: report from PERUDIAB, a national urban population-based longitudinal study

    PubMed Central

    Seclen, Segundo N; Rosas, Moises E; Arias, Arturo J; Huayta, Ernesto; Medina, Cecilia A

    2015-01-01

    Objectives We aimed to estimate the prevalences of diabetes and impaired fasting glucose (IFG) in a national sample in Peru and assess the relationships with selected sociodemographic variables. Methods We estimated prevalence in PERUDIAB study participants, a nationwide, stratified urban and suburban population selected by random cluster sampling. Between 2010 and 2012, questionnaires were completed and blood tests obtained from 1677 adults ≥25 years of age. Known diabetes was defined as participants having been told so by a doctor or nurse and/or receiving insulin or oral antidiabetic agents. Newly diagnosed diabetes was defined as fasting plasma glucose ≥126 mg/dL determined during the study and without a previous diabetes diagnosis. IFG was defined as fasting plasma glucose of 100–125 mg/dL. Results The estimated national prevalence of diabetes was 7.0% (95% CI 5.3% to 8.7%) and it was 8.4% (95% CI 5.6% to 11.3%) in metropolitan Lima. No gender differences were detected. Known and newly diagnosed diabetes prevalences were estimated as 4.2% and 2.8%, respectively. A logistic regression response surface model showed a complex trend for an increased prevalence of diabetes in middle-aged individuals and in those with no formal education. Diabetes prevalence was higher in coastal (8.2%) than in highlands (4.5%; p=0.03), and jungle (3.5%; p<0.02) regions. The estimated national prevalence of IFG was 22.4%, higher in males than in females (28.3% vs 19.1%; p<0.001), and higher in coastal (26.4%) than in highlands (17.4%; p=0.03), but not jungle regions (14.9%; p=0.07). Conclusions This study confirms diabetes as an important public health problem, especially for middle-aged individuals and those with no formal education. 40% of the affected individuals were undiagnosed. The elevated prevalence of IFG shows that nearly a quarter of the adult population of Peru has an increased risk of diabetes. PMID:26512325

  17. Selection of reference genes for expression analyses in liver of rats with impaired glucose metabolism.

    PubMed

    Hernández, Alfonso H; Curi, Rui; Salazar, Luis A

    2015-01-01

    Hepatic gene expression studies are vital for identification of molecular factors involved in insulin resistance. However, the need of normalized gene expression data has led to the search of stable genes which are useful as a reference in specific experimental conditions. The aim of this study was to evaluate expression stability of potential reference genes for real-time PCR gene expression studies, in rats with insulin resistance, early programmed in intrauterine environment of maternal insulin resistance and triggered by exposure to a high sucrose and fat diet in adult life. Male rats coming from insulin resistant (F1IR) mothers or normal (F1N) mothers were fed a standard rodent diet from postnatal day 21 to day 56, and then divided in two groups each. One of each subgroups were fed a high sucrose and fat diet (groups F1IR + HSFD and F1N + HSFD respectively), the rest were fed a control diet (groups F1IR + CD and F1N + CD) for 14 days. Glucose metabolism related tests were later performed. After liver extraction, RNA was isolated and gene expression analyzes of seven potential reference genes (Actb, Gapdh, Gusb, Hprt1, Ldha, Rpl13a and Rplp1) were carried out. LinRegPCR software was used to analyze raw data and determinate baseline corrections, threshold lines, efficiency of PCR reactions and corrected Cq values. Evaluations of gene expression stabilities as well as the number of necessary genes for normalization were assessed with geNorm tool. All samples from all groups showed acceptable PCR amplification efficiencies. The most stable genes were Rplp1, Ldha, Hprt1 and Rpl13a and the less stable was Gapdh. For all groups, just 2 to 3 of the most stable genes were necessary for optimal gene expression data normalization in rat liver. Genes encoding ribosomal proteins are the most appropriated for normalization of expression data in the presented animal model. By contrast, Gapdh, one of the most used genes in normalization, is not recommendable due to its high

  18. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: a pilot study.

    PubMed

    Krysiak, Robert; Okrzesik, Joanna; Okopien, Boguslaw

    2015-05-01

    Metformin was found to affect plasma levels of some pituitary hormones. This study was aimed at investigating whether metformin treatment has an impact on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance. The study included 27 patients with hyperprolactinaemia, who had been treated for at least 6 months with bromocriptine. Based on prolactin levels, bromocriptine-treated patients were divided into two groups: patients with elevated (group A, n = 12) and patients with normal (group B, n = 15) prolactin levels. The control group included 16 age-, sex- and weight-matched hyperprolactinaemia-free individuals with impaired glucose tolerance (group C).The lipid profile, fasting plasma glucose levels, the homeostatic model assessment of insulin resistance ratio (HOMA-IR), glycated haemoglobin, as well as plasma levels of prolactin, thyrotropin and insulin-like growth factor-1 (IGF-1) were assessed at baseline and after 4 months of metformin treatment (2.55-3 g daily). In all treatment groups, metformin reduced HOMA-IR, plasma triglycerides and 2-h postchallenge plasma glucose. In patients with hyperprolactinaemia, but not in the other groups of patients, metformin slightly reduced plasma levels of prolactin, and this effect correlated weakly with the metabolic effects of this drug. Our study shows that metformin decreases plasma prolactin levels only in patients with elevated levels of this hormone. The obtained results suggest that metformin treatment may bring some benefits to hyperprolactinaemic patients with coexisting glucose metabolism disturbances already receiving dopamine agonist therapy.

  19. Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study.

    PubMed

    D'Cruz, Shereen Cynthia; Jubendradass, Rajamanickam; Jayakanthan, Mannu; Rani, Sivaraj Judith Amala; Mathur, Premendu Prakash

    2012-03-01

    Bisphenol A (BPA) is a potential endocrine disruptor and testicular toxicant. Recently, we have reported that exposure to BPA increases plasma insulin and glucose levels and decreases the levels of glycolytic enzymes, glucose transporter-8 (GLUT-8) and insulin receptor substrate-2 (IRS-2) in rat testis. In the present study we sought to investigate the effects of low doses of BPA on insulin signaling molecules, glucose transporter-2 (GLUT-2) and steroidogenesis in rat testis. BPA was administered to rats by oral gavage at doses of 0.005, 0.5, 50 and 500 μg/kg body weight/day for 45 days. A positive control was maintained by administering 17-β-estradiol (50 μg/kg body weight/day). Decreased levels of insulin, insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI-3 kinase) and GLUT-2 were observed in rat testis following BPA administration. Dose-dependent decrease in the activities of antioxidant enzymes, 3-β-hydroxysteroid dehydrogenase (3β-HSD), 17-β-hydroxysteroid dehydrogenase (17β-HSD), Steroidogenic Acute Regulatory Protein (StAR) and testosterone were also observed. Molecular docking of BPA, 17-β-estradiol, cytochalasin B and glucose with GLUT-2 and GLUT-8 revealed the higher binding affinity of BPA with GLUT-2 and GLUT-8. Thus, BPA impairs insulin signaling and glucose transport in rat testis which could consequently lead to impairment of testicular functions.

  20. Prevalence of Diabetes and Impaired Fasting Glucose in Hypertensive Adults in Rural China: Far from Leveling-Off.

    PubMed

    Yu, Shasha; Sun, Zhaoqing; Zheng, Liqiang; Guo, Xiaofan; Yang, Hongmei; Sun, Yingxian

    2015-11-01

    In recent years data from many investigations has shown a leveling-off trend in diabetes incidence. In order to explain the diabetes epidemic in rural China during the past ten years, we conducted a survey from July 2012 to August 2013. Data from comprehensive questionnaires, physical examinations, and blood tests were obtained from 5919 residents with hypertension, aged ≥ 35 years. Diabetes and impaired fasting glucose (IFG) were defined according to the American Diabetes Association (ADA) criteria. The overall prevalence of diabetes and IFG were 15.3% (13.6% in men, 16.8% in women) and 40.7% (44.1% in men, 34.7% in women) in the hypertensive rural Chinese population. The prevalence of previously diagnosed diabetes was 6.5% (4.6% in men, 8.4% in women). The prevalence of undiagnosed diabetes was 8.7% (9.0% in men, 8.5% in women). Multivariate logistic regression revealed that increasing age, drinking, overweight or obesity, systolic blood pressure, low HDL-C, high total cholesterol and triglycerides increased the risk of diabetes (p < 0.05). Diabetes is thus still prevalent in rural areas of China and is manifesting an accelerating trend. It remains an important public health problem in China, especially in rural areas and routine assessment for the early detection and treatment of diabetes should be emphasized. PMID:26610531

  1. Clinical mutants of human glucose 6-phosphate dehydrogenase: impairment of NADP(+) binding affects both folding and stability.

    PubMed

    Wang, Xiao-Tao; Engel, Paul C

    2009-08-01

    Human glucose 6-phosphate dehydrogenase (G6PD) has both the "catalytic" NADP(+) site and a "structural" NADP(+) site where a number of severe G6PD deficiency mutations are located. Two pairs of G6PD clinical mutants, G6PD(Wisconsin) (R393G) and G6PD(Nashville) (R393H), and G6PD(Fukaya) (G488S) and G6PD(Campinas) (G488V), in which the mutations are in the vicinity of the "structural" NADP(+) site, showed elevated K(d) values of the "structural" NADP(+), ranging from 53 nM to 500 nM compared with 37 nM for the wild-type enzyme. These recombinant enzymes were denatured by Gdn-HCl and refolded by rapid dilution in the presence of l-Arg, NADP(+) and DTT at 25 degrees C. The refolding yields of the mutants exhibited strong NADP(+)-dependence and ranged from 1.5% to 59.4% with 1000 microM NADP(+), in all cases lower than the figure of 72% for the wild-type enzyme. These mutant enzymes also displayed decreased thermostability and high susceptibility to chymotrypsin digestion, in good agreement with their corresponding melting temperatures in CD experiments. Taken together, the results support the view that impaired binding of "structural" NADP(+) can hinder folding as well as cause instability of these clinical mutant enzymes in the fully folded state.

  2. The prevalences of impaired fasting glucose and diabetes mellitus in working age men of North China: Anshan Worker Health Survey.

    PubMed

    Liu, Lei; Zhou, Chuang; Du, Hang; Zhang, Kai; Huang, Desheng; Wu, Jingyang

    2014-01-01

    To investigate the prevalence of impaired fasting glucose (IFG) and total diabetes mellitus (DM) including known diabetes and newly diagnosed diabetes in working age men of North China. A cross-section study was conducted at health medical center of Ansteel Group Hospital in Anshan city of China. 37,345 males between 20-60 years of age were recruited in this study. Age-standardized prevalence of IFG and total DM in these working age men were 25.3% and 8.4%, respectively. The prevalence of IFG and total DM increased, as the age progressed. After multinomial logit analysis, age, systolic blood pressure, drinking, smoking, overweight and obesity, total cholesterol, triglycerides, serum creatinine and blood urea nitrogen were independent risk factors for both IFG and DM. The prevalence rate of IFG in Anshan male workers was higher compared with mainland China overall. Diabetes-related education and popularization of DM prevention programs should be actively carried out with age increasing. PMID:24824525

  3. Cost-Effectiveness of a Short Message Service Intervention to Prevent Type 2 Diabetes from Impaired Glucose Tolerance

    PubMed Central

    Wong, Carlos K. H.; Jiao, Fang-Fang; Siu, Shing-Chung; Fung, Colman S. C.; Fong, Daniel Y. T.; Wong, Ka-Wai; Yu, Esther Y. T.; Lo, Yvonne Y. C.; Lam, Cindy L. K.

    2016-01-01

    Aims. To investigate the costs and cost-effectiveness of a short message service (SMS) intervention to prevent the onset of type 2 diabetes mellitus (T2DM) in subjects with impaired glucose tolerance (IGT). Methods. A Markov model was developed to simulate the cost and effectiveness outcomes of the SMS intervention and usual clinical practice from the health provider's perspective. The direct programme costs and the two-year SMS intervention costs were evaluated in subjects with IGT. All costs were expressed in 2011 US dollars. The incremental cost-effectiveness ratio was calculated as cost per T2DM onset prevented, cost per life year gained, and cost per quality adjusted life year (QALY) gained. Results. Within the two-year trial period, the net intervention cost of the SMS group was $42.03 per subject. The SMS intervention managed to reduce 5.05% onset of diabetes, resulting in saving $118.39 per subject over two years. In the lifetime model, the SMS intervention dominated the control by gaining an additional 0.071 QALY and saving $1020.35 per person. The SMS intervention remained dominant in all sensitivity analyses. Conclusions. The SMS intervention for IGT subjects had the superiority of lower monetary cost and a considerable improvement in preventing or delaying the T2DM onset. This trial is registered with ClinicalTrials.gov NCT01556880. PMID:26798647

  4. Oxidative Stress in Mouse Sperm Impairs Embryo Development, Fetal Growth and Alters Adiposity and Glucose Regulation in Female Offspring

    PubMed Central

    Lane, Michelle; McPherson, Nicole O.; Fullston, Tod; Spillane, Marni; Sandeman, Lauren; Kang, Wan Xian; Zander-Fox, Deirdre L.

    2014-01-01

    Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity. PMID:25006800

  5. Development of a lifestyle intervention using the MRC framework for diabetes prevention in people with impaired glucose regulation

    PubMed Central

    Troughton, Jacqui; Chatterjee, Sudesna; Hill, Siân E.; Daly, Heather; Martin Stacey, Lorraine; Stone, Margaret A.; Patel, Naina; Khunti, Kamlesh; Yates, Thomas; Gray, Laura J.; Davies, Melanie J.

    2016-01-01

    Background We report development of a group-based lifestyle intervention, Let's Prevent, using the UK Medical Research Council (MRC) framework, and delivered by structured education to prevent type 2 diabetes mellitus (T2DM) in people with impaired glucose regulation (IGR) in a UK multi-ethnic population. Methods Diabetes Education and Self-Management for Ongoing and Newly Diagnosed (DESMOND) is the first national T2DM programme that meets National Institute for Health and Care Excellence criteria and formed the basis for Let's Prevent. An iterative cycle of initial development, piloting, collecting and collating qualitative and quantitative data, and reflection and modification, was used to inform and refine lifestyle intervention until it was fit for evaluation in a definitive randomized controlled trial (RCT). The programme encouraged IGR self-management using simple, non-technical language and visual aids. Results Qualitative and quantitative data suggested that intervention resulted in beneficial short-term behaviour change such as healthier eating patterns, improved health beliefs and greater participant motivation and empowerment. We also demonstrated that recruitment strategy and data collection methods were feasible for RCT implementation. Conclusions Let's Prevent was developed following successful application of MRC framework criteria and the subsequent RCT will determine whether it is feasible, reliable and transferable from research into a real-world NHS primary healthcare setting. Trial Registration ISRCTN80605705. PMID:26311822

  6. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes.

    PubMed

    Seref-Ferlengez, Zeynep; Maung, Stephanie; Schaffler, Mitchell B; Spray, David C; Suadicani, Sylvia O; Thi, Mia M

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health. PMID:27159053

  7. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes

    PubMed Central

    Maung, Stephanie; Schaffler, Mitchell B.; Spray, David C.; Suadicani, Sylvia O.; Thi, Mia M.

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health. PMID:27159053

  8. Comparing Osteoporosis Drugs: The Bisphosphonates

    MedlinePlus

    Drugs to Treat Low Bone Density Comparing Osteoporosis Drugs: The Bisphosphonates What is osteoporosis (low bone density)? Osteoporosis is a condition in which the body does not build enough new bone. ...

  9. Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.

    PubMed

    Siska, Peter J; van der Windt, Gerritje J W; Kishton, Rigel J; Cohen, Sivan; Eisner, William; MacIver, Nancie J; Kater, Arnon P; Weinberg, J Brice; Rathmell, Jeffrey C

    2016-09-15

    Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction. PMID:27511728

  10. Factors affecting bone strength other than osteoporosis.

    PubMed

    Ratti, Chiara; Vulcano, Ettore; Canton, Gianluca; Marano, Marco; Murena, Luigi; Cherubino, Paolo

    2013-10-01

    Osteoporosis is the most common cause of bone fragility, especially in post-menopausal women. Bone strength may be compromised by several other medical conditions and medications, which must be ruled out in the clinical management of patients affected by fragility fractures. Indeed, 20-30% of women and up to 50% of men affected by bone fragility are diagnosed with other conditions affecting bone strength other than osteoporosis. These conditions include disorders of bone homeostasis, impaired bone remodeling, collagen disorders, and medications qualitatively and quantitatively affecting bone strength. Proper diagnosis allows correct treatment to prevent the occurrence of fragility fractures. PMID:24046057

  11. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  12. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat.

    PubMed

    Lin, Yi; Wei, Jie; Li, Yuanyuan; Chen, Jun; Zhou, Zhao; Song, Liqiong; Wei, Zhengzheng; Lv, Ziquan; Chen, Xi; Xia, Wei; Xu, Shunqing

    2011-09-01

    -Di(2-ethylhexyl) phthalate (DEHP), a typical endocrine-disrupting chemical (EDC), is widely used as plasticizer. DEHP exposure in humans is virtually ubiquitous, and those undergoing certain medical procedures can be especially high. In this study, we investigated whether developmental DEHP exposure disrupted glucose homeostasis in the rat and whether this was associated with the early impairment in endocrine pancreas. Pregnant Wistar rats were administered DEHP (1.25 and 6.25 mg·kg(-1)·day(-1)) or corn oil throughout gestation and lactation by oral gavage. Body weight, glucose and insulin tolerance, and β-cell morphometry and function were examined in offspring during the growth. In this study, developmental DEHP exposure led to abnormal β-cell ultrastructure, reduced β-cell mass, and pancreatic insulin content as well as alterations in the expression of genes involved in pancreas development and β-cell function in offspring at weaning. At adulthood, female DEHP-exposed offspring exhibited elevated blood glucose, reduced serum insulin, impaired glucose tolerance, and insulin secretion. Male DEHP-exposed offspring had increased serum insulin, although there were no significant differences in blood glucose at fasting and during glucose tolerance test. In addition, both male and female DEHP-exposed offspring had significantly lower birth weight and maintained relatively lower body weight up to 27 wk of age. These results suggest that developmental exposure to DEHP gives rise to β-cell dysfunction and the whole body glucometabolic abnormalities in the rat. DEHP exposure in critical periods of development can be a potential risk factor, at least in part, for developing diabetes.

  13. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats.

    PubMed

    Kim, Yonwook J; Bi, Sheng

    2016-01-15

    Neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) plays an important role in the regulation of energy balance. While DMH NPY overexpression causes hyperphagia and obesity in rats, knockdown of NPY in the DMH via adeno-associated virus (AAV)-mediated RNAi (AAVshNPY) ameliorates these alterations. Whether this knockdown has a therapeutic effect on obesity and glycemic disorder has yet to be determined. The present study sought to test this potential using a rat model of high-fat diet (HFD)-induced obesity and insulin resistance, mimicking human obesity with impaired glucose homeostasis. Rats had ad libitum access to rodent regular chow (RC) or HFD. Six weeks later, an oral glucose tolerance test (OGTT) was performed for verifying HFD-induced glucose intolerance. After verification, obese rats received bilateral DMH injections of AAVshNPY or the control vector AAVshCTL, and OGTT and insulin tolerance test (ITT) were performed at 16 and 18 wk after viral injection (23 and 25 wk on HFD), respectively. Rats were killed at 26 wk on HFD. We found that AAVshCTL rats on HFD remained hyperphagic, obese, glucose intolerant, and insulin resistant relative to lean control RC-fed rats receiving DMH injection of AAVshCTL, whereas these alterations were reversed in NPY knockdown rats fed a HFD. NPY knockdown rats exhibited normal food intake, body weight, glucose tolerance, and insulin sensitivity, as seen in lean control rats. Together, these results demonstrate a therapeutic action of DMH NPY knockdown against obesity and impaired glucose homeostasis in rats, providing a potential target for the treatment of obesity and diabetes.

  14. Exercise, Eating, Estrogen, and Osteoporosis.

    ERIC Educational Resources Information Center

    Brown, Jim

    1986-01-01

    Osteoporosis affects millions of people, especially women. Three methods for preventing or managing osteoporosis are recommended: (1) exercise; (2) increased calcium intake; and (3) estrogen replacement therapy. (CB)

  15. Osteoporosis in Gastrointestinal Diseases.

    PubMed

    Krela-Kaźmierczak, Iwona; Szymczak, Aleksandra; Łykowska-Szuber, Liliana; Eder, Piotr; Linke, Krzysztof

    2016-01-01

    Secondary osteoporosis occurs as an isolated pathology or co-exists with types I and II osteoporosis. The gastroenterologist may come across osteoporosis or osteopenia in a patient with a gastrointestinal disease. This is often a young patient in whom investigations should be carried out and appropriate treatment initiated, aimed at preventing bone fractures and the formation of the best peak bone mass. Osteoporosis occurs in patients with the following conditions: Crohn's disease, ulcerative colitis, celiac disease, post gastrectomy patients, patients with short bowel syndrome, chronic hepatitis and cirrhosis, treated with steroids (steroid-induced osteoporosis) and patients using proton pump inhibitors chronically (state of achlorhydria). It is therefore necessary to approve a list of risk factors of secondary osteoporosis, the presence of which would be an indication for screening for osteoporosis, including a DXA study and the development of a separate algorithm for the therapeutic management of secondary osteoporosis accompanying gastrointestinal diseases, especially in premenopausal young women and young men, because there are currently no registered drugs with proven antifracture activity for this group of patients. PMID:26935513

  16. Pituitary Disorders and Osteoporosis

    PubMed Central

    Jawiarczyk-Przybyłowska, Aleksandra

    2015-01-01

    Various hormonal disorders can influence bone metabolism and cause secondary osteoporosis. The consequence of this is a significant increase of fracture risk. Among pituitary disorders such effects are observed in patients with Cushing's disease, hyperprolactinemia, acromegaly, and hypopituitarism. Severe osteoporosis is the result of the coexistence of some of these disorders and hypogonadism at the same time, which is quite often. PMID:25873948

  17. [Osteoporosis: a clinical perspective].

    PubMed

    Matikainen, Niina

    2016-01-01

    Osteoporosis is defined by decreased bone density and microarchitectural deterioration that predispose to fragility fractures. The WHO diagnostic criteria of osteoporosis require bone densitometry but treatment is possible on the basis of high clinical fracture risk and can be assessed by the FRAX risk algorithm. All those subject to fracture risk should be advised about proper basic treatment of osteoporosis, including exercise, prevention of falls, smoking cessation, avoidance of alcohol intake, and dietary or supplemental abundance of calcium and vitamin D. Underlying diseases must be studied after diagnosis of osteoporosis even if treatment is initiated without densitometry. When indicated, specific osteoporosis therapy includes bisphosphonates, denosumab, teriparatide, strontium ranelate or SERMs. In hypogonadism, gonadal steroids may be indicated alone or in addition to a specific treatment. Treatment effect and continuation are assessed after 2 to 5 years. PMID:27400591

  18. VEGF secretion by adipose tissue-derived regenerative cells is impaired under hyperglycemic conditions via glucose transporter activation and ROS increase.

    PubMed

    Matsugami, Hiromi; Harada, Yusuke; Kurata, Yasutaka; Yamamoto, Yasutaka; Otsuki, Yuki; Yaura, Hisako; Inoue, Yumiko; Morikawa, Kumi; Yoshida, Akio; Shirayoshi, Yasuaki; Suyama, Yoshiko; Nakayama, Bin; Iwaguro, Hideki; Yamamoto, Kazuhiro; Hisatome, Ichiro

    2014-01-01

    Transplantation of cultured adipose-derived regenerative cells (ADRCs) into ischemic tissues promotes neovascularization and blood perfusion recovery. These effects are attenuated in diabetes patients. We examined the effects of hyperglycemia on the angiogenic capacity of ADRCs derived from Wistar rats both in vivo and in vitro. Cultured ADRCs were predominantly composed of CD90 positive cells; prevalence of CD90 positive cells was not affected by hyperglycemia. mRNA and protein levels of vascular endothelial growth factor (VEGF) were significantly decreased in ADRCs under hyperglycemic conditions independent of osmolarity, whereas mRNA levels of hepatocyte growth factor and fibroblast growth factor were unaffected. Since ADRCs express glucose transporter proteins GLUT1, 3 and 4, we examined the effects of the glucose transporter inhibitor phloretin on reactive oxygen species (ROS) and angiogenic factors. Phloretin decreased the glucose uptake rate, reduced ROS, and increased VEGF mRNA in ADRCs exposed to a hyperglycemic condition. In vivo transplantation of ADRCs cultured under hyperglycemic conditions into mouse ischemic limbs resulted in significantly decreased blood perfusion and capillary density in ischemic regions compared with transplantation of ADRCs cultured under normoglycemic conditions. These results suggest that hyperglycemia impaired VEGF production in ADRCs via an increase of ROS, impairing the angiogenic capacity of ADRCs transplanted into ischemic limbs.

  19. OSTEOPOROSIS DIAGNOSIS AND TREATMENT

    PubMed Central

    de Souza, Márcio Passini Gonçalves

    2015-01-01

    Articles that update the state of knowledge regarding osteoporosis run the risk of quickly becoming obsolete because research and studies on osteoporosis today are arousing great interest among researchers, the pharmaceutical and medical equipment industries, governments and even WHO. All orthopedists know about osteoporosis because of its most deleterious effect: osteoporotic fracture. Osteoporosis without fractures does not arouse suspicion because this is a pathological condition with a nonspecific clinical profile. Osteoporotic fractures have an economic cost (from treatment), a social cost (from its sequelae) and a medical cost (from deaths). Many fractures could be avoided through diagnosing osteoporosis prior to the first fracture and thus many temporary and permanent disabilities could be avoided and many lives saved. Awareness of the risk factors for osteoporosis raises suspicions and bone densitometry aids in diagnosis. Treatment should be based on the physiopathology of the disease. Hence, for prevention or treatment of osteoporosis, the activity of osteoclasts should be diminished or the activity of osteoblasts should be increased, or both. Treatment that reduces the incidence of fractures by improving the bone geometry and microarchitecture would be ideal. Newly formed bone tissue needs to have good cell and matrix quality, normal mineralization, a good ratio between mineralized (mechanically resistant) and non-mineralized (flexible) bone, and no accumulated damage. The ideal treatment should have a positive remodeling rate and fast and long-lasting therapeutic effects. Such effects need to be easily detectable. They need to be safe. PMID:27022545

  20. Rare causes of osteoporosis

    PubMed Central

    Marcucci, Gemma; Brandi, Maria Luisa

    2015-01-01

    Summary Osteoporosis is a metabolic bone disease characterized by loss of bone mass and strength, resulting in increased risk of fractures. It is classically divided into primary (post-menopausal or senile), secondary and idiopathic forms. There are many rare diseases, that cause directly or indirectly osteoporosis. The identification and classification of most of these rare causes of osteoporosis is crucial for the specialists in endocrinology and not, in order to prevent this bone complication and to provide for an early therapy. Several pathogenic mechanisms are involved, including various aspects of bone metabolism such as: decreased bone formation, increased bone resorption, altered calcium, phosphorus and/or vitamin D homeostasis, and abnormal collagen synthesis. In this review, less common forms of primary and secondary osteoporosis are described, specifying, if applicable: genetic causes, epidemiology, clinical features, and pathogenic mechanisms causing osteoporosis. A greater awareness of all rare causes of osteoporosis could reduce the number of cases classified as idiopathic osteoporosis and allow the introduction of appropriate and timely treatments. PMID:26604941

  1. [Endocrine disorders and osteoporosis].

    PubMed

    Kinoshita, Yuka

    2015-10-01

    Secondary osteoporosis is a bone disease characterized by decreased bone mass that predisposes fractures due to underlying disorders or medication. Disorders of the endocrine system, such as primary hyperparathyroidism, hyperthyroidism, hypogonadism, growth hormone deficiency, Cushing's syndrome, and anorexia nervosa frequently cause secondary osteoporosis. In those diseases, hormone excess or deficiency affects functions of osteoblasts, osteocyte, and osteoclasts, leading to aberrant bone remodeling. Bisphosphonates are the first-choice pharmacological agents for fracture prevention in most patients with secondary osteoporosis along with treatment of the underlying disease. PMID:26529938

  2. [Osteoporosis in adult men].

    PubMed

    Coelho, P C; Reis, P; Leandro, M J; Romeu, J C; de Queiroz, M V

    1995-05-01

    Osteoporosis in men, despite being a less important public health problem than osteoporosis in women, should not be neglected as it has many deleterious effects as well as social and economic costs. Finding the cause of osteoporosis is more complex in men than in women, and prevention should be based on an early evaluation of the various possible risk factors and on taking up measures that tend to maximise the peak bone mass. Further studies need to be carried out in order to establish the differences and similarities that characterise this phenomenon when considering different sexes.

  3. Nanotechnology Treatment Options for Osteoporosis and Its Corresponding Consequences.

    PubMed

    Wei, Donglei; Jung, Jinsuh; Yang, Huilin; Stout, David A; Yang, Lei

    2016-10-01

    Unfortunately, osteoporosis, as a worldwide disease, is challenging human health with treatment only available for the symptoms of osteoporosis without managing the disease itself. Osteoporosis can be linked as the common cause of fractures and increased mortality among post-menopausal women, men, and the elderly. Regrettably, due to osteoporosis, incidents of fractures are more frequent among the presented populations and can be afflictive for carrying out everyday life activities. Current treatments of osteoporosis encompass changing lifestyles, taking orthopedic drugs, and invasive surgeries. However, these treatment options are not long lasting and can lead to complications after post-surgical life. Therefore, to solve this impairment, researchers have turned to nanotechnologies and nanomaterials to create innovative and alternative treatments associated with the consequences of osteoporosis. This review article provides an introduction to osteoporotic compression vertebral fractures (OVCFs) and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. The methods of applying bioactive agents (bone morphogenetic protein-2 (BMP-2), parathyroid hormone 1-34 (PTH 1-34)), as well as 3D printing will be presented from an osteoporosis treatment perspective. Additionally, the application of nanoparticles and nanotube arrays onto the current surgical treatments and orthopedic drug administration methods addressed will show that these systems reinforce a better mechanical performance and provide precise and slow-releasing drug delivery for better osseointegration, bone regeneration, and bone strength. In summary, nanomaterials can be seen as an alternative and more effective treatment for individuals with osteoporosis.

  4. Effects of the New Dual PPARα/δ Agonist GFT505 on Lipid and Glucose Homeostasis in Abdominally Obese Patients With Combined Dyslipidemia or Impaired Glucose Metabolism

    PubMed Central

    Cariou, Bertrand; Zaïr, Yassine; Staels, Bart; Bruckert, Eric

    2011-01-01

    OBJECTIVE We evaluated the metabolic effects and tolerability of GFT505, a novel dual peroxisome proliferator–activated receptor α/δ agonist, in abdominally obese patients with either combined dyslipidemia or prediabetes. RESEARCH DESIGN AND METHODS The S1 study was conducted in 94 patients with combined dyslipidemia while the S2 study was conducted in 47 patients with prediabetes. Participants were randomly assigned in a double-blind manner to GFT505 at 80 mg/day or placebo for 28 (S1) or 35 (S2) days. Primary efficacy end points were changes from baseline at week 4 in both fasting plasma triglycerides and HDL cholesterol in the S1 group and 2-h glucose upon oral glucose tolerance test in the S2 group. RESULTS In comparison with placebo, GFT505 significantly reduced fasting plasma triglycerides (S1: least squares means −16.7% [95% one-sided CI −∞ to −5.3], P = 0.005; S2: −24.8% [−∞ to −10.5], P = 0.0003) and increased HDL cholesterol (S1: 7.8% [3.0 to ∞], P = 0.004; S2: 9.3% [1.7 to ∞], P = 0.009) in both studies, whereas LDL cholesterol only decreased in S2 (−11.0% [ −∞ to −3.5], P = 0.002). In S2, GFT505 did not reduce 2-h glucose (−0.52 mmol/L [−∞ to 0.61], P = 0.18) but led to a significant decrease of homeostasis model assessment of insulin resistance (−31.4% [−∞ to 12.5], P = 0.001), fasting plasma glucose (−0.37 mmol/L [−∞ to −0.10], P = 0.01) and fructosamine (−3.6% [−∞ to −0.20], P = 0.02). GFT505 also reduced γ glutamyl transferase levels in both studies (S1: −19.9% [−∞ to −12.8], P < 0.0001; S2: −15.1% [−∞ to −1.1], P = 0.004). No specific adverse safety signals were reported during the studies. CONCLUSIONS GFT505 may be considered a new drug candidate for the treatment of lipid and glucose disorders associated with the metabolic syndrome. PMID:21816979

  5. Osteoporosis in Men

    MedlinePlus

    ... formation. Because it requires daily injections and is expensive, doctors usually prescribe it only for men with ... wine, or a single measure of spirits) • Quit smoking. If you already have osteoporosis, you should take ...

  6. What Is Osteoporosis?

    MedlinePlus Videos and Cool Tools

    ... easily. LAWRENCE RAISZ, M.D.: Osteoporosis and bone health have become enormous problems in the United States ... attention to. People ignore the issue of bone health-- they don't concern themselves about it until ...

  7. Diagnosis of Osteoporosis.

    ERIC Educational Resources Information Center

    Wahner, H. W.

    1987-01-01

    Early recognition of osteoporosis is difficult because symptoms are lacking and there are no distinct, readily accessible diagnostic features. This article reviews the standard approach, radiographic and laboratory diagnosis, bone mass measurement techniques, and interpretation of bone mineral data. (MT)

  8. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  9. Periodontitis and osteoporosis.

    PubMed

    Straka, Michal; Straka-Trapezanlidis, Michaela; Deglovic, Juraj; Varga, Ivan

    2015-01-01

    Today's knowledge and studies show a firm correlation between osteoporosis and periodontitis, particularly in postmenopausal women. This review study deals with epidemiological and etiopathogenetic association between chronic periodontitis and an osteoporosis. A special emphasis is put on explanation of possible relations between a premature tooth loss and decrease of length and density of jaw bones, particularly their alveolar prolongations. The second part of the paper deals with principles of treatment in patients suffering of osteoporosis. Osteoporosis reduces density of jaw bones and decreases a number of teeth in jaws, but it does not affect other clinical signs and markers of periodontitis such as inflammation, bleeding and the depth of periodontal pockets and microbial plaque.

  10. Osteoporosis in Men

    MedlinePlus

    ... talk to their doctor about having a bone mineral density (BMD) test. Men should also be tested ... tests. The doctor may also order a bone mineral density test. This test can identify osteoporosis, determine ...

  11. Fitness for reducing osteoporosis.

    PubMed

    Christmas, C

    2000-10-01

    The incidence and prevalence of osteoporosis and fractures increase substantially with age in both women and men ((1)), such that one in five women older than age 50 has osteoporosis ((2)). This translates to nearly 1.5 million fractures of all types attributable to osteoporosis each year in the United States, a total that exacts an astounding toll on healthcare costs. Postfracture outcomes are also disappointing. Less than one third of those who fracture their hip recover sufficiently to do basic and instrumental activities of life ((3)). Many become dependent on others for their care. Finally, the mortality rate of those with hip fractures from osteoporosis is higher than that of their unaffected peers ((4)).

  12. Wnt signaling and osteoporosis.

    PubMed

    Manolagas, Stavros C

    2014-07-01

    Major advances in understanding basic bone biology and the cellular and molecular mechanisms responsible for the development of osteoporosis, over the last 20 years, have dramatically altered the management of this disease. The purpose of this mini-review is to highlight the seminal role of Wnt signaling in bone homeostasis and disease and the emergence of novel osteoporosis therapies by targeting Wnt signaling with drugs.

  13. Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase–β

    PubMed Central

    Cheung, Yuk Yin; Kim, So Youn; Yiu, Wai Han; Pan, Chi-Jiunn; Jun, Hyun-Sik; Ruef, Robert A.; Lee, Eric J.; Westphal, Heiner; Mansfield, Brian C.; Chou, Janice Y.

    2007-01-01

    Neutropenia and neutrophil dysfunction are common in many diseases, although their etiology is often unclear. Previous views held that there was a single ER enzyme, glucose-6-phosphatase–α (G6Pase-α), whose activity — limited to the liver, kidney, and intestine — was solely responsible for the final stages of gluconeogenesis and glycogenolysis, in which glucose-6-phosphate (G6P) is hydrolyzed to glucose for release to the blood. Recently, we characterized a second G6Pase activity, that of G6Pase-β (also known as G6PC), which is also capable of hydrolyzing G6P to glucose but is ubiquitously expressed and not implicated in interprandial blood glucose homeostasis. We now report that the absence of G6Pase-β led to neutropenia; defects in neutrophil respiratory burst, chemotaxis, and calcium flux; and increased susceptibility to bacterial infection. Consistent with this, G6Pase-β–deficient (G6pc3–/–) mice with experimental peritonitis exhibited increased expression of the glucose-regulated proteins upregulated during ER stress in their neutrophils and bone marrow, and the G6pc3–/– neutrophils exhibited an enhanced rate of apoptosis. Our results define a molecular pathway to neutropenia and neutrophil dysfunction of previously unknown etiology, providing a potential model for the treatment of these conditions. PMID:17318259

  14. Effects of lifestyle intervention and meal replacement on glycaemic and body-weight control in Chinese subjects with impaired glucose regulation: a 1-year randomised controlled trial.

    PubMed

    Xu, Dan-Feng; Sun, Jian-Qin; Chen, Min; Chen, Yan-Qiu; Xie, Hua; Sun, Wei-Jia; Lin, Yi-Fan; Jiang, Jing-Jing; Sun, Wei; Chen, Ai-Fang; Tang, Qian-Ru

    2013-02-14

    The purpose of the present study was to evaluate the impact of a lifestyle intervention programme, combined with a daily low-glycaemic index meal replacement, on body-weight and glycaemic control in subjects with impaired glucose regulation (IGR). Subjects with IGR were randomly assigned to an intervention group (n 46) and a control group (n 42). Both groups received health counselling at baseline. The intervention group also received a daily meal replacement and intensive lifestyle intervention to promote healthy eating habits during the first 3 months of the study, and follow-up visits performed monthly until the end of the 1-year study. Outcome measurements included changes in plasma glucose, glycated Hb (HbA1c), plasma lipids, body weight, blood pressure and body composition (such as body fat mass and visceral fat area). The results showed that body-weight loss after 1 year was significant in the intervention group compared with the control group (-1·8 (SEM 0·35) v. -0·6 (SEM 0·40) 2·5 kg, P<0·05). The 2 h plasma glucose concentration decreased 1·24 mmol/l in the intervention group and increased 0·85 mmol/l in the control group (P<0·05) compared with their baseline, respectively. A 5 kg body-weight loss at 1 year was associated with a decrease of 1·49 mmol/l in 2 h plasma glucose (P<0·01). The incidence of normal glucose regulation (NGR) in the two groups was significantly different (P=0·001). In conclusion, the combination of regular contact, lifestyle advice and meal replacement is beneficial in promoting IGR to NGR.

  15. Previously Associated Type 2 Diabetes Variants May Interact With Physical Activity to Modify the Risk of Impaired Glucose Regulation and Type 2 Diabetes

    PubMed Central

    Brito, Ema C.; Lyssenko, Valeriya; Renström, Frida; Berglund, Göran; Nilsson, Peter M.; Groop, Leif; Franks, Paul W.

    2009-01-01

    OBJECTIVE Recent advances in type 2 diabetes genetics have culminated in the discovery and confirmation of multiple risk variants. Two important and largely unanswered questions are whether this information can be used to identify individuals most susceptible to the adverse consequences of sedentary behavior and to predict their response to lifestyle intervention; such evidence would be mechanistically informative and provide a rationale for targeting genetically susceptible subgroups of the population. RESEARCH DESIGN AND METHODS Gene × physical activity interactions were assessed for 17 polymorphisms in a prospective population-based cohort of initially nondiabetic middle-aged adults. Outcomes were 1) impaired glucose regulation (IGR) versus normal glucose regulation determined with either fasting or 2-h plasma glucose concentrations (n = 16,003), 2) glucose intolerance (in mmol/l, n = 8,860), or 3) incident type 2 diabetes (n = 2,063 events). RESULTS Tests of gene × physical activity interactions on IGR risk for 3 of the 17 polymorphisms were nominally statistically significant:CDKN2A/B rs10811661 (Pinteraction = 0.015), HNF1B rs4430796 (Pinteraction = 0.026), and PPARG rs1801282 (Pinteraction = 0.04). Consistent interactions were observed for the CDKN2A/B (Pinteraction = 0.013) and HNF1B (Pinteraction = 0.0009) variants on 2-h glucose concentrations. Where type 2 diabetes was the outcome, only one statistically significant interaction effect was observed, and this was for the HNF1B rs4430796 variant (Pinteraction = 0.0004). The interaction effects for HNF1B on IGR risk and incident diabetes remained significant after correction for multiple testing (Pinteraction = 0.015 and 0.0068, respectively). CONCLUSIONS Our observations suggest that the genetic predisposition to hyperglycemia is partially dependent on a person's lifestyle. PMID:19324937

  16. Bisphosphonates for Osteoporosis: Benefits and Risks

    MedlinePlus

    ... o es sis : Benefits and Risks What is osteoporosis? Osteoporosis is a condition in which your bones become ... through menopause are especially at risk of developing osteoporosis. Osteoporosis is more common in women than in ...

  17. High prevalence of diabetes mellitus and impaired glucose tolerance in liver cancer patients: A hospital based study of 4610 patients with benign tumors or specific cancers

    PubMed Central

    Roujun, Chen; Yanhua, Yi; Bixun, Li

    2016-01-01

    Objective: The prevalence of diabetes mellitus (DM), impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) were hypothesised to be different among different tumor patients. This study aimed to study the association between the prevalence of DM, IGT and IFG and liver cancer, colorectal cancer, breast cancer, cervical cancer, nasopharyngeal cancer and benign tumor. Methods:  A hospital based retrospective study was conducted on 4610 patients admitted to the Internal Medical Department of the Affiliated Tumor Hospital of Guangxi Medical University, China. Logistic regression was used to examine the association between gender, age group, ethnicity , cancer types or benign tumors and prevalence of DM, IFG, IGT. Results: Among 4610 patients, there were 1000 liver cancer patients, 373 breast cancer patients, 415 nasopharyngeal cancer patients, 230 cervical cancer patients, 405 colorectal cancer patients, and 2187 benign tumor patients. The prevalence of DM and IGT in liver cancer patients was 14.7% and 22.1%, respectively. The prevalence of DM and IGT was 13.8% and 20%, respectively, in colorectal cancer patients, significantly higher than that of benign cancers. After adjusting for gender, age group, and ethnicity, the prevalence of DM and IGT in liver cancers patients was 1.29 times (CI :1.12-1.66) and 1.49 times (CI :1.20-1.86) higher than that of benign tumors, respectively. Conclusion: There was a high prevalence of DM and IGT in liver cancer patients.

  18. High prevalence of diabetes mellitus and impaired glucose tolerance in liver cancer patients: A hospital based study of 4610 patients with benign tumors or specific cancers

    PubMed Central

    Roujun, Chen; Yanhua, Yi; Bixun, Li

    2016-01-01

    Objective: The prevalence of diabetes mellitus (DM), impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) were hypothesised to be different among different tumor patients. This study aimed to study the association between the prevalence of DM, IGT and IFG and liver cancer, colorectal cancer, breast cancer, cervical cancer, nasopharyngeal cancer and benign tumor. Methods:  A hospital based retrospective study was conducted on 4610 patients admitted to the Internal Medical Department of the Affiliated Tumor Hospital of Guangxi Medical University, China. Logistic regression was used to examine the association between gender, age group, ethnicity , cancer types or benign tumors and prevalence of DM, IFG, IGT. Results: Among 4610 patients, there were 1000 liver cancer patients, 373 breast cancer patients, 415 nasopharyngeal cancer patients, 230 cervical cancer patients, 405 colorectal cancer patients, and 2187 benign tumor patients. The prevalence of DM and IGT in liver cancer patients was 14.7% and 22.1%, respectively. The prevalence of DM and IGT was 13.8% and 20%, respectively, in colorectal cancer patients, significantly higher than that of benign cancers. After adjusting for gender, age group, and ethnicity, the prevalence of DM and IGT in liver cancers patients was 1.29 times (CI :1.12-1.66) and 1.49 times (CI :1.20-1.86) higher than that of benign tumors, respectively. Conclusion: There was a high prevalence of DM and IGT in liver cancer patients. PMID:27610222

  19. Glucocorticoid-induced osteoporosis: 2013 update.

    PubMed

    Mazzantini, M; Di Munno, O

    2014-01-01

    Glucocorticoids are the most common cause of secondary osteoporosis leading to the so-called glucocorticoid-induced osteoporosis (GIO). A treatment with 10 mg/d of prednisone or equivalent for more than 3 months leads to a 7-fold increase in hip fractures and a 17-fold increase in vertebral fractures. The difference between bone quantity and quality in GIO makes bone mineral density measurements inadequate to detect patients at risk of fracture. The adverse effects of glucocorticoids on the skeleton derive from a direct impact on bone cells with a severe impairment of mechanical competence. Crucial to prevention of GIO is early timing of intervention. The World Health Organization has adopted a fracture prevention algorithm (FRAX) intended to estimate fracture risk in GIO. The American College of Rhematology modified its prevention and treatment guidelines taking into account the individual risk of fracture calculated in GIO on the basis of the FRAX algorithm. Recently, also a joint Guideline Working Group of the International Osteoporosis Foundation (IOF) and the European Calcified Tissue Society (ECTS) published a framework for the development of national guidelines for the management of GIO. Bisphosphonates are the first-line drugs to treat GIO; teriparatide counteracts several fundamental pathophysiologic aspects of GIO; denosumab is useful in patients with renal failure and in potentially pregnant young women. Vertebroplasty and kyphoplasty may be less beneficial in GIO than in primary involutional osteoporosis.

  20. The Effect of Metformin and Metformin-Testosterone Combination on Cardiometabolic Risk Factors in Men with Late-onset Hypogonadism and Impaired Glucose Tolerance.

    PubMed

    Krysiak, R; Gilowski, W; Okopien, B

    2015-11-01

    No previous study has investigated the effect of metformin, administered alone or together with testosterone, on cardiometabolic risk factors in men with hypogonadism. The study included 30 men with late-onset hypogonadism (LOH) and impaired glucose tolerance (IGT) who had been complying with lifestyle intervention. After 12 weeks of metformin treatment (1.7 g daily), the participants were allocated to one of 2 groups treated for the following 12 weeks with oral testosterone undecanoate (120 mg daily, n=15) or not receiving androgen therapy (n=15). Plasma lipids, glucose homeostasis markers, as well as plasma levels of androgens, uric acid, high-sensitivity C-reactive protein (hsCRP), homocysteine and fibrinogen were determined before and after 12 and 24 weeks of therapy with the final dose of metformin. Patients with LOH and IGT had higher levels of hsCRP, homocysteine and fibrinogen than subjects with only LOH (n=12) or only IGT (n=15). Metformin administered alone improved insulin sensitivity, as well as reduced 2-h postchallenge plasma glucose and triglycerides. Testosterone-metformin combination therapy decreased also total and LDL cholesterol, uric acid, hsCRP, homocysteine and fibrinogen, as well as increased plasma testosterone. The effect of this combination therapy on testosterone, insulin sensitivity, hsCRP, homocysteine and fibrinogen was stronger than that of metformin alone. The obtained results indicate that IGT men with LOH receiving metformin may gain extra benefits if they are concomitantly treated with oral testosterone. PMID:26600057

  1. Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial.

    PubMed

    Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A

    2016-06-01

    The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP. PMID:27160199

  2. Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial.

    PubMed

    Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A

    2016-06-01

    The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP.

  3. Dental implants in patients with osteoporosis: a clinical reality?

    PubMed

    Gaetti-Jardim, Ellen Cristina; Santiago-Junior, Joel Ferreira; Goiato, Marcelo Coelho; Pellizer, Eduardo Piza; Magro-Filho, Osvaldo; Jardim Junior, Elerson Gaetti

    2011-05-01

    Osteoporosis is a systemic disorder characterized by generalized decrease in bone mineral density. Dental implantology is a specialty with high predictability when both quantity and quality of the bone are respected. Therefore, the diagnosis and the implant treatment in patients with osteoporosis are important. In the current study, a literature review about osteoporosis and dental implant therapy was conducted. PubMed, Cochrane, ISI, Dentistry Oral Science, SciELO, and Bireme databases were consulted over the last 20 years. English- and Portuguese-language articles were included in this revision. Some authors stated that the osteoporotic bone is similar to the proposed model of bone type IV. Randomized clinical studies reported implant failure in patients with osteoporosis after menopause. Studies that contraindicate the use of implants in patients with osteoporosis infer that the impaired bone metabolism led to reduction of bone healing around the implants. Nevertheless, other authors believe that the presence of osteoporosis is not a definitive condition to contraindicate the therapy with dental implants. In these cases, the dentist should perform a proper treatment planning, modifying the implant geometry, and use larger implant diameter and with surface treatment. Thus, osteoporosis is not a contraindication for implant surgery because an accurate analysis of bone quality by means tomography is performed.

  4. Osteoporosis and Asian American Women

    MedlinePlus

    ... ligand (RANKL) inhibitor. Resources NIH Osteoporosis and Related Bone Diseases ~ National Resource Center Website: http://www.bones.nih. ... No. 15-7925-E NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  5. Mice Abundant in Muricholic Bile Acids Show Resistance to Dietary Induced Steatosis, Weight Gain, and to Impaired Glucose Metabolism

    PubMed Central

    Bonde, Ylva; Eggertsen, Gösta; Rudling, Mats

    2016-01-01

    High endogenous production of, or treatment with muricholic bile acids, strongly reduces the absorption of cholesterol. Mice abundant in muricholic bile acids may therefore display an increased resistance against dietary induced weight gain, steatosis, and glucose intolerance due to an anticipated general reduction in lipid absorption. To test this hypothesis, mice deficient in steroid 12-alpha hydroxylase (Cyp8b1-/-) and therefore abundant in muricholic acids were monitored for 11 weeks while fed a high fat diet. Food intake and body and liver weights were determined, and lipids in liver, serum and feces were measured. Further, responses during oral glucose and intraperitoneal insulin tolerance tests were evaluated. On the high fat diet, Cyp8b1-/- mice displayed less weight gain compared to wildtype littermates (Cyp8b1+/+). In addition, liver enlargement with steatosis and increases in serum LDL-cholesterol were strongly attenuated in Cyp8b1-/- mice on high fat diet. Fecal excretion of cholesterol was increased and there was a strong trend for doubled fecal excretion of free fatty acids, while excretion of triglycerides was unaltered, indicating dampened lipid absorption. On high fat diet, Cyp8b1-/- mice also presented lower serum glucose levels in response to oral glucose gavage or to intraperitoneal insulin injection compared to Cyp8b1+/+. In conclusion, following exposure to a high fat diet, Cyp8b1-/- mice are more resistant against weight gain, steatosis, and to glucose intolerance than Cyp8b1+/+ mice. Reduced lipid absorption may in part explain these findings. Overall, the results suggest that muricholic bile acids may be beneficial against the metabolic syndrome. PMID:26824238

  6. Genetics of osteoporosis.

    PubMed

    Urano, Tomohiko; Inoue, Satoshi

    2014-09-19

    Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50-90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets. PMID:25139232

  7. What is osteoporosis?

    PubMed Central

    Christodoulou, C; Cooper, C

    2003-01-01

    Osteoporosis is a very common disorder, which results in an increase in fracture risk. The annual cost attributable to hip, vertebral, and wrist fractures in England and Wales is £1.7 billion. Significant mortality and morbidity are associated with osteoporotic fractures. The method that is most widely used for the diagnosis of osteoporosis is dual energy x-ray absorptiometry. The aim of prevention and treatment of osteoporosis is to prevent the occurrence of future fractures. Lifestyle changes should be encouraged in high risk patients. Pharmacological treatments include the bisphosphonates, hormone replacement therapy, selective oestrogen receptor modulators, calcitonin, the 1–34 fragment of parathyroid hormone, calcium and vitamin D supplements, and calcitriol. PMID:12697910

  8. Pathophysiology of immobilization osteoporosis

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; DiCarlo, E. F.

    1995-01-01

    The reduction of gravity-related forces on the skeleton creates a type of osteoporosis that is unique because its severity is dependent on the mechanical stress bearing function of the skeleton as well as the length of time that the forces are absent or reduced. Bones that bear weight under normal conditions are more affected than bones that normally do not bear weight. The cytokine environment and the cells in the affected bones are altered in time so that stem cells produce fewer new cells and the differentiated cells tend to be less active. These alterations in the local environment of the affected parts appear to resemble those of age- and disease-associated systemic forms of osteoporosis. The osteoporosis produced as a result of the loss of normal activity however, appears to be at least partially reversible through remobilization, strenuous exercise, and--possibly in the future--cytokine therapy.

  9. Male osteoporosis: A review

    PubMed Central

    Herrera, Antonio; Lobo-Escolar, Antonio; Mateo, Jesús; Gil, Jorge; Ibarz, Elena; Gracia, Luis

    2012-01-01

    Osteoporosis in men is a heterogeneous disease that has received little attention. However, one third of worldwide hip fractures occur in the male population. This problem is more prevalent in people over 70 years of age. The etiology can be idiopathic or secondary to hypogonadism, vitamin D deficiency and inadequate calcium intake, hormonal treatments for prostate cancer, use of toxic and every disease or drug use that alters bone metabolism. Risk factors such as a previous history of fragility fracture should be assessed for the diagnosis. However, risk factors in men are very heterogeneous. There are significant differences in the pharmacological treatment of osteoporosis between men and women fundamentally due to the level of evidence in published trials supporting each treatment. New treatments will offer new therapeutic prospects. The goal of this work is a revision of the present status knowledge about male osteoporosis. PMID:23362466

  10. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    PubMed

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  11. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    PubMed

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  12. Bone Health and Osteoporosis.

    PubMed

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  13. Let’s prevent diabetes: study protocol for a cluster randomised controlled trial of an educational intervention in a multi-ethnic UK population with screen detected impaired glucose regulation

    PubMed Central

    2012-01-01

    Background The prevention of type 2 diabetes is a globally recognised health care priority, but there is a lack of rigorous research investigating optimal methods of translating diabetes prevention programmes, based on the promotion of a healthy lifestyle, into routine primary care. The aim of the study is to establish whether a pragmatic structured education programme targeting lifestyle and behaviour change in conjunction with motivational maintenance via the telephone can reduce the incidence of type 2 diabetes in people with impaired glucose regulation (a composite of impaired glucose tolerance and/or impaired fasting glucose) identified through a validated risk score screening programme in primary care. Design Cluster randomised controlled trial undertaken at the level of primary care practices. Follow-up will be conducted at 12, 24 and 36 months. The primary outcome is the incidence of type 2 diabetes. Secondary outcomes include changes in HbA1c, blood glucose levels, cardiovascular risk, the presence of the Metabolic Syndrome and the cost-effectiveness of the intervention. Methods The study consists of screening and intervention phases within 44 general practices coordinated from a single academic research centre. Those at high risk of impaired glucose regulation or type 2 diabetes are identified using a risk score and invited for screening using a 75 g-oral glucose tolerance test. Those with screen detected impaired glucose regulation will be invited to take part in the trial. Practices will be randomised to standard care or the intensive arm. Participants from intensive arm practices will receive a structured education programme with motivational maintenance via the telephone and annual refresher sessions. The study will run from 2009–2014. Discussion This study will provide new evidence surrounding the long-term effectiveness of a diabetes prevention programme conducted within routine primary care in the United Kingdom. Trial registration Clinicaltrials

  14. Calcium and osteoporosis.

    PubMed

    Nordin, B E

    1997-01-01

    Calcium is an essential nutrient that is involved in most metabolic processes and the phosphate salts of which provide mechanical rigidity to the bones and teeth, where 99% of the body's calcium resides. The calcium in the skeleton has the additional role of acting as a reserve supply of calcium to meet the body's metabolic needs in states of calcium deficiency. Calcium deficiency is easily induced because of the obligatory losses of calcium via the bowel, kidneys, and skin. In growing animals, it may impair growth, delay consolidation of the skeleton, and in certain circumstances give rise to rickets but the latter is more often due to deficiency of vitamin D. In adult animals, calcium deficiency causes mobilization of bone and leads sooner or later to osteoporosis, i.e., a reduction in the "amount of bone in the bone" or apparent bone density. The effects of calcium deficiency and oophorectomy (ovariectomy) are additive. In humans, osteoporosis is a common feature of aging. Loss of bone starts in women at the time of the menopause and in men at about age 55 and leads to an increase in fracture rates in both sexes. Individual fracture risk is inversely related to bone density, which in turn is determined by the density achieved at maturity (peak bone density) and the subsequent rate of bone loss. At issue is whether either or both of these variables is related to calcium intake. The calcium requirement of adults may be defined as the mean calcium intake needed to preserve calcium balance, i.e., to meet the significant obligatory losses of calcium through the gastrointestinal tract, kidneys, and skin. The calcium allowance is the higher intake recommended for a population to allow for individual variation in the requirement. The mean requirement defined in this way, calculated from balance studies, is about 20 mmol (800 mg) a day on Western diets, implying an allowance of 25 mmol (1000 mg) or more. Corresponding requirements and allowances have been calculated for

  15. Does the new American Diabetes Association definition for impaired fasting glucose improve its ability to predict type 2 diabetes mellitus in Spanish persons? The Asturias Study.

    PubMed

    Valdés, Sergio; Botas, Patricia; Delgado, Elías; Alvarez, Francisco; Cadórniga, Francisco Diaz

    2008-03-01

    In 2003, the American Diabetes Association reduced the lower limit defining impaired fasting glucose (IFG) to 100 mg/dL. The aim of this study was to analyze the impact of this change in the definition of IFG in a low-risk white population from northern Spain. The Asturias Study is a prospective, population-based survey of diabetes and cardiovascular risk factors. The baseline examination was carried out between 1998 and 1999 when 1034 individuals (age range, 30-75 years) were randomly selected to determine the prevalence of type 2 diabetes mellitus and prediabetes in the Principality of Asturias (northern Spain). In 2004 to 2005, these same subjects were invited for a follow-up examination. All participants without known diabetes underwent an oral glucose tolerance test both at baseline and follow-up. Application of the new American Diabetes Association definition resulted in 3 times more persons having IFG. The incidence rates of diabetes were 3.8, 19.5, and 58.0 per 1000 person-years in subjects with initial FPG values <100, 100 to 109, and 110 to 125 mg/dL, respectively. Inclusion of persons with an intermediate risk in the 100- to 109-mg/dL zone to the definition of IFG changed its positive predictive value, specificity, and sensitivity to predict diabetes from 36.5%, 94.5%, and 43.2% to 19.9%, 77.3%, and 75%, respectively. Receiver operating characteristics curve analysis including all the baseline fasting plasma glucose levels from 64 to 125 mg/dL depending on their ability to predict diabetes showed that the point closest to the ideal of 100% sensitivity and 100% specificity was 100 mg/dL. In conclusion, this study indicated that lowering the cutoff point for IFG optimizes its ability to predict diabetes in this Spanish population. The addition of other risk factors such as impaired glucose tolerance, hypertriglyceridemia, and overweight to IFG can stratify diabetes risk better.

  16. SECONDARY OSTEOPOROSIS: PATHOPHYSIOLOGY AND MANAGEMENT

    PubMed Central

    Mirza, Faryal; Canalis, Ernesto

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by decreased bone mineral density and compromised bone strength predisposing to an increased risk of fractures. Although idiopathic osteoporosis is the most common form of osteoporosis, secondary factors may contribute to the bone loss and increased fracture risk in patients presenting with fragility fractures or osteoporosis. Several medical conditions and medications significantly increase the risk for bone loss and skeletal fragility. This review focuses on some of the common causes of osteoporosis, addressing the underlying mechanisms, diagnostic approach and treatment of low bone mass in the presence of these conditions. PMID:25971649

  17. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  18. Osteoporosis and Women's Health

    MedlinePlus

    ... down by the body (a process called bone turnover). Your highest bone mass (size and thickness) is reached between ages 20 and 25, and it declines after that. After menopause, however, women begin to lose bone at an even faster rate. Osteoporosis develops when your body cannot replace bone ...

  19. The "osteoporosis disease".

    PubMed

    Guido, Giulio; Scaglione, Michelangelo; Fabbri, Luca; Ceglia, Michele James

    2009-05-01

    The authors analyze the reason that make osteoporosis a complex, widespread and poorly controlled "disease". In their work the authors take into account etiopathogenesis, epidemiology, risk factors, diagnosis and therapy. Author's attention is focused on management both of patient whit osteoporotic fractures and preventive therapy, which are aspects of the osteoporotic desease that should not be exclusive problems for the orthopaedic's sourgeon. PMID:22461158

  20. Genetics of osteoporosis

    SciTech Connect

    Urano, Tomohiko; Inoue, Satoshi

    2014-09-19

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.

  1. Clinical Practice. Postmenopausal Osteoporosis.

    PubMed

    Black, Dennis M; Rosen, Clifford J

    2016-01-21

    Key Clinical Points Postmenopausal Osteoporosis Fractures and osteoporosis are common, particularly among older women, and hip fractures can be devastating. Treatment is generally recommended in postmenopausal women who have a bone mineral density T score of -2.5 or less, a history of spine or hip fracture, or a Fracture Risk Assessment Tool (FRAX) score indicating increased fracture risk. Bisphosphonates (generic) and denosumab reduce the risk of hip, nonvertebral, and vertebral fractures; bisphosphonates are commonly used as first-line treatment in women who do not have contraindications. Teriparatide reduces the risk of nonvertebral and vertebral fractures. Osteonecrosis of the jaw and atypical femur fractures have been reported with treatment but are rare. The benefit-to-risk ratio for osteoporosis treatment is strongly positive for most women with osteoporosis. Because benefits are retained after discontinuation of alendronate or zoledronic acid, drug holidays after 5 years of alendronate therapy or 3 years of zoledronic acid therapy may be considered for patients at lower risk for fracture.

  2. Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) and impacts the process of placentation.

    PubMed

    Correia-Branco, Ana; Azevedo, Cláudia F; Araújo, João R; Guimarães, João T; Faria, Ana; Keating, Elisa; Martel, Fátima

    2015-10-01

    In this study, we aimed to investigate modulation of glucose uptake by the HTR-8/SVneo human first-trimester extravillous trophoblast cell line by a series of compounds and to study its consequences upon cell proliferation, viability and migration. We observed that uptake of (3)H-deoxy-d-glucose ((3)H-DG; 10 nM) was time-dependent, saturable, inhibited by cytochalasin B (50 and 100 µM), phloretin (0.5 mM) and phloridzin (1 mM), insulin-insensitive and sodium-independent. In the short term (30 min), neither 5-HT (100-1000 µM), melatonin (10 nM) nor the drugs of abuse ethanol (100 mM), nicotine (100 µM), cocaine (25 µM), amphetamine (10-25 µM) and 3,4-methylenedioxy-N-methamphetamine (10 µM) affected (3)H-DG uptake, while dexamethasone (100-1000 µM), fluoxetine (100-300 µM), quercetin, epigallocatechin-3-gallate (30-1000 µM), xanthohumol (XH) and resveratrol (1-500 µM) decreased it. XH was the most potent inhibitor [IC50 = 3.55 (1.37-9.20) µM] of (3)H-DG uptake, behaving as a non-competitive inhibitor of (3)H-DG uptake, both after short- and long-term (24 h) treatment. The effect of XH (5 µM; 24 h) upon (3)H-DG uptake involved mammalian target of rapamycin, tyrosine kinases and c-Jun N-terminal kinases intracellular pathways. Moreover, XH appeared to decrease cellular uptake of lactate due to inhibition of the monocarboxylate transporter 1. Additionally, XH (24 h; 5 µM) decreased cell viability, proliferation, culture growth and migration. The effects of XH upon cell viability and culture growth, but not the antimigratory effect, were mimicked by low extracellular glucose conditions and reversed by high extracellular glucose conditions. We thus suggest that XH, by inhibiting glucose cellular uptake and impairing HTR-8/SVneo cell viability and proliferation, may have a deleterious impact in the process of placentation. PMID:26194608

  3. Effect of different degrees of impaired glucose metabolism on the expression of inflammatory markers in monocytes of patients with atherosclerosis.

    PubMed

    Bernal-Lopez, M R; Llorente-Cortes, V; Calleja, F; Lopez-Carmona, D; Mayas, M D; Gomez-Huelgas, R; Badimon, L; Tinahones, F J

    2013-08-01

    Inflammatory markers are elevated in type 2 diabetic patients (DP) and may predict the development of type 2 diabetes. Our aims were to analyze differences in the expression of inflammatory and immunological molecules between DP and healthy subjects and to investigate whether glycemic control might prevent the overexpression of inflammatory markers in DP. Twenty-two DP with advanced atherosclerosis and eight healthy blood donors were included. DP were classified as well (HbA1c ≤ 6.5) or poorly controlled (HbA1c > 6.5). In "in vitro" studies, monocytes were exposed to low (5.5 mM) or high glucose (26 mM) concentrations in the absence or presence of insulin. Expression profiling of 14 inflammatory genes was analyzed using TLDA analysis. "In vivo" results show that monocytes from DP had increased levels of monocyte chemoattractant protein (MCP-1) and interleukin 6 (IL6) and lower levels of Toll-like receptor 2 (TLR2) mRNA than healthy subjects. Well-controlled DP had lower levels of IL-6 than poorly controlled DP, suggesting that glycemic control may prevent IL6 mRNA alterations associated with diabetes. "In vitro" results demonstrate that glucose directly and significantly induced MCP-1 and IL6 and reduced TLR2 mRNA expression. Insulin at high dose (100 IU/ml) dramatically enhanced the upregulatory effects of glucose on MCP-1 and IL-6 and reduced per se TLR2 mRNA expression. MCP-1, IL-6 and TLR2 are key inflammatory players altered in monocytes from type 2 DP. Both hyperinsulinemia and hyperglycemia contribute to alter the expression of these genes. The glycemic control only significantly prevented IL6 overexpression in this group of patients.

  4. Rodent models of osteoporosis

    PubMed Central

    Sophocleous, Antonia; Idris, Aymen I

    2014-01-01

    The aim of this protocol is to provide a detailed description of male and female rodent models of osteoporosis. In addition to indications on the methods of performing the surgical procedures, the choice of reliable and safe anaesthetics is also described. Post-operative care, including analgesia administration for pain management, is also discussed. Ovariectomy in rodents is a procedure where ovaries are surgically excised. Hormonal changes resulting from ovary removal lead to an oestrogen-deprived state, which enhances bone remodelling, causes bone loss and increases bone fracture risk. Therefore, ovariectomy has been considered as the most common preclinical model for understanding the pathophysiology of menopause-associated events and for developing new treatment strategies for tackling post-menopausal osteoporosis. This protocol also provides a detailed description of orchidectomy, a model for androgen-deficient osteoporosis in rodents. Endocrine changes following testes removal lead to hypogonadism, which results in accelerated bone loss, increasing osteoporosis risk. Orchidectomised rodent models have been proposed to mimic male osteoporosis and therefore remain a valuable tool for understanding androgen deficiency in aged men. Although it would have been particularly difficult to assemble an internationally acceptable description of surgical procedures, here we have attempted to provide a comprehensive guide for best practice in performing ovariectomy and orchidectomy in laboratory rodents. Research scientists are reminded that they should follow their own institution's interpretation of such guidelines. Ultimately, however, all animal procedures must be overseen by the local Animal Welfare and Ethical Review Body and conducted under licences approved by a regulatory ethics committee. PMID:25852854

  5. Increase in gastric secretion induced by 2-deoxy-D-glucose is impaired in capsaicin pretreated rats.

    PubMed Central

    Evangelista, S.; Santicioli, P.; Maggi, C. A.; Meli, A.

    1989-01-01

    Gastric acid secretion was determined following intravenous administration of 2-deoxy-D-glucose (2-DG; 60 mg kg-1) or electrical stimulation of the vagus nerve in urethane-anaesthetized rats pretreated when newborn with either capsaicin or the vehicle. The secretory response to 2-DG was substantially reduced in the capsaicin pretreated rats, while that induced by electrical vagal stimulation (1 mA, 1 ms. 3 Hz) was unaffected. These results suggest that capsaicin-sensitive fibres are involved in the afferent branch of the reflex response activated by 2-DG to stimulate gastric acid secretion. PMID:2804552

  6. Prevalence of and factors influencing impaired glucose tolerance among hepatitis B carriers: a nationwide cross-sectional study in the Republic of Korea.

    PubMed

    Park, Boyoung; Jung, Kyu-Won; Oh, Chang-Mo; Choi, Kui Son; Suh, Mina; Jun, Jae Kwan

    2014-10-01

    Diabetes is associated with a poor prognosis for liver disease, particularly in chronic hepatitis carriers. We investigated the prevalence of factors associated with impaired glucose tolerance (IGT) including diabetes and impaired fasting glucose (IFG) among individuals with hepatitis B virus (HBV) infection.We used data from the Korean National Health and Nutrition Examination Survey, a nationwide cross-sectional survey conducted between 2007 and 2011. Sociodemographic information was collected using a structured questionnaire. The HBV surface antigen, liver enzymes, and lipid profile were measured from blood samples.IFG was found in 18.1% of HBV carriers and 19.3% of noncarriers (P = 0.25). Diabetes was observed in 10.0% of HBV carriers and 12.2% of noncarriers (P = 0.08). Lower level of educational attainment was associated with a higher prevalence of IGT: high school education (odds ratio [OR] = 1.94 [95% confidence interval (CI) 1.14-3.29] and less than a high school education (OR = 3.20 [95% CI, 1.66-6.15] vs more than or equal to a college education. Elevated alanine transaminase and triglyceride by 10 were associated with increased risk of IGT (OR = 1.10 [95% CI, 1.01-1.20] and OR = 1.04 [95% CI, 1.01-1.07], respectively). Being a man and older in age were associated with a higher prevalence of IGT, and individuals with a low body mass index were at lower risk for IGT.Given the synergistic effect of diabetes and HBV infection on liver disease prognosis, we recommend targeted IGT screening and follow-up for HBV carriers. These efforts should include health policies and intervention programs aimed at reducing educational disparities and encouraging early control of elevated liver enzymes or lipid profiles.

  7. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model.

  8. Polydatin Restores Endothelium-Dependent Relaxation in Rat Aorta Rings Impaired by High Glucose: A Novel Insight into the PPARβ-NO Signaling Pathway.

    PubMed

    Wu, Yang; Xue, Lai; Du, Weimin; Huang, Bo; Tang, Cuiping; Liu, Changqing; Qiu, Hongmei; Jiang, Qingsong

    2015-01-01

    Polydatin, a natural component from Polygonum Cuspidatum, has important therapeutic effects on metabolic syndrome. A novel therapeutic strategy using polydatin to improve vascular function has recently been proposed to treat diabetes-related cardiovascular complications. However, the biological role and molecular basis of polydatin's action on vascular endothelial cells (VECs)-mediated vasodilatation under diabetes-related hyperglycemia condition remain elusive. The present study aimed to assess the contribution of polydatin in restoring endothelium-dependent relaxation and to determine the details of its underlying mechanism. By measuring endothelium-dependent relaxation, we found that acetylcholine-induced vasodilation was impaired by elevated glucose (55 mmol/L); however, polydatin (1, 3, 10 μmol/L) could restore the relaxation in a dose-dependent manner. Polydatin could also improve the histological damage to endothelial cells in the thoracic aorta. Polydatin's effects were mediated via promoting the expression of endothelial NO synthase (eNOS), enhancing eNOS activity and decreasing the inducible NOS (iNOS) level, finally resulting in a beneficial increase in NO release, which probably, at least in part, through activation of the PPARβ signaling pathway. The results provided a novel insight into polydatin action, via PPARβ-NO signaling pathways, in restoring endothelial function in high glucose conditions. The results also indicated the potential utility of polydatin to treat diabetes related cardiovascular diseases. PMID:25941823

  9. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. PMID:27354540

  10. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    PubMed

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity. PMID:24198307

  11. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    PubMed

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  12. Decreased thioredoxin-1 and increased HSP90 expression in skeletal muscle in subjects with type 2 diabetes or impaired glucose tolerance.

    PubMed

    Venojärvi, M; Korkmaz, A; Aunola, S; Hällsten, K; Virtanen, K; Marniemi, J; Halonen, J-P; Hänninen, O; Nuutila, P; Atalay, M

    2014-01-01

    In diabetes, the endogenous defence systems are overwhelmed, causing various types of stress in tissues. In this study, newly diagnosed or diet-treated type 2 diabetics (T2D) (n = 10) were compared with subjects with impaired glucose tolerance (IGT) (n = 8). In both groups, at resting conditions, blood samples were drawn for assessing metabolic indices and skeletal muscle samples (m. vastus lateralis) were taken for the measurements of cellular defence markers: thioredoxin-1 (TRX-1) and stress proteins HSP72, HSP90. The protein level of TRX-1 was 36.1% lower (P = 0.031) and HSP90 was 380% higher (P < 0.001) in the T2D than in the IGT subjects, with no significant changes in HSP72. However, after the adjustment of both analyses with HOMA-IR only HSP90 difference remained significant. In conclusion, level of TRX-1 in skeletal muscle tissue was lower while that of HSP90 was higher in T2D than in IGT subjects. This may impair antioxidant defence and lead to disruptions of protein homoeostasis and redox regulation of cellular defences. Because HSP90 may be involved in sustaining functional insulin signalling pathway in type 2 diabetic muscles and higher HSP90 levels can be a consequence of type 2 diabetes, our results are potentially important for the diabetes research. PMID:24689038

  13. Transsexualism and osteoporosis.

    PubMed

    Schlatterer, K; Auer, D P; Yassouridis, A; von Werder, K; Stalla, G K

    1998-01-01

    The aim of this study was to investigate whether and to what extent our regime of cross-gender hormone replacement therapy might influence osteoporosis development in transsexual patients. We found that after long-term therapy the bone densities of our cross-gender hormone-treated transsexual groups (10 male-to-female and 10 female-to-male) did not show significant differences compared to those of the corresponding biological sex. Moreover, the bone-density during therapy pointed out very little variability and that independent of the gender-alteration (transsexuality-direction) and the age of the transsexuals. Our results indicate that for transsexual patients treated with cross-gender hormone replacement therapy the risk of developing osteoporosis is low.

  14. Management of postmenopausal osteoporosis.

    PubMed

    Andreopoulou, Panagiota; Bockman, Richard S

    2015-01-01

    A hallmark of menopause, which follows the decline in the ovarian production of estrogen, is the aggressive and persistent loss of bone mineral and structural elements leading to loss of bone strength and increased fracture risk. This review focuses on newer methods of diagnosing osteoporosis and assessing fracture risk, as well as on novel management strategies for prevention and treatment. Fracture-risk prediction has been significantly enhanced by the development of methods such as the trabecular bone score, which helps assess bone microarchitecture and adds value to standard bone densitometry, and the Fracture Risk Assessment Tool (FRAX) algorithm techniques. The treatment of osteoporosis, which has the goals of fracture prevention and risk reduction, is moving beyond traditional monotherapies with antiresorptives and anabolic agents into new combination regimens.

  15. Osteoporosis in anorexia nervosa.

    PubMed

    Mehler, Philip S; Cleary, Barbara S; Gaudiani, Jennifer L

    2011-01-01

    Osteoporosis is common in anorexia nervosa. It places these patients at increased lifetime risk for fractures. Bone loss may never recover completely even once weight is restored. The strongest predictors of osteoporosis include low body weight and amenorrhea. Loss of bone density can occur rapidly and very early in the course of anorexia nervosa. The etiology of bone loss in the patient with anorexia nervosa is multifactorial. In addition to reduced estrogen and progesterone, excess cortisol levels and low levels of insulin growth factor (IGF-1), a correlate for bone formation, are observed. Dual energy x-ray absorptiometry screening is important to assess bone density. However, successful treatments to reverse bone loss, in those with anorexia nervosa, are lacking. Early diagnosis and treatment of anorexia nervosa are paramount to prevent initial weight loss and subsequent loss of bone.

  16. Nanotechnology Treatment Options for Osteoporosis and Its Corresponding Consequences.

    PubMed

    Wei, Donglei; Jung, Jinsuh; Yang, Huilin; Stout, David A; Yang, Lei

    2016-10-01

    Unfortunately, osteoporosis, as a worldwide disease, is challenging human health with treatment only available for the symptoms of osteoporosis without managing the disease itself. Osteoporosis can be linked as the common cause of fractures and increased mortality among post-menopausal women, men, and the elderly. Regrettably, due to osteoporosis, incidents of fractures are more frequent among the presented populations and can be afflictive for carrying out everyday life activities. Current treatments of osteoporosis encompass changing lifestyles, taking orthopedic drugs, and invasive surgeries. However, these treatment options are not long lasting and can lead to complications after post-surgical life. Therefore, to solve this impairment, researchers have turned to nanotechnologies and nanomaterials to create innovative and alternative treatments associated with the consequences of osteoporosis. This review article provides an introduction to osteoporotic compression vertebral fractures (OVCFs) and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. The methods of applying bioactive agents (bone morphogenetic protein-2 (BMP-2), parathyroid hormone 1-34 (PTH 1-34)), as well as 3D printing will be presented from an osteoporosis treatment perspective. Additionally, the application of nanoparticles and nanotube arrays onto the current surgical treatments and orthopedic drug administration methods addressed will show that these systems reinforce a better mechanical performance and provide precise and slow-releasing drug delivery for better osseointegration, bone regeneration, and bone strength. In summary, nanomaterials can be seen as an alternative and more effective treatment for individuals with osteoporosis. PMID:27542011

  17. Putting osteoporosis in perspective.

    PubMed

    Wardlaw, G M

    1993-09-01

    Osteoporosis is characterized by a reduction in bone mineral density (BMD). Dietary patterns that encourage adequate calcium intake are essential to maximal development and later maintenance of bone mass. The majority of white women are at risk for osteoporosis-related fractures, especially in the wrist, spine, and hip. The degree of fracture risk at a specific bone site is best assessed by measuring BMD with single- or x-ray-photon absorptiometry. BMD in adults of any age is quite variable. Numerous diet and lifestyle factors influence BMD and, in turn, fracture risk. Sufficient evidence exists for a relationship between BMD and diet, particularly calcium and vitamin D; amenorrhea; body weight; alcoholism; smoking; and physical inactivity. Less convincing evidence exists for a relationship with dietary protein, dietary phosphorus, and caffeine intake. To minimize fracture risk, young women should have regular menses, consume a nutritionally adequate diet (according to the principles of the Food Guide Pyramid), perform regular physical activity, only consume a moderate intake of alcohol (if any), and not smoke. Postmenopausal women should follow those same guidelines and should seriously consider estrogen replacement therapy. Elderly persons especially should ensure adequate calcium and vitamin D nutriture. Currently, osteoporosis is the rule, rather than the exception, in old age for many white women. Dietitians can help reduce the prevalence of this disorder. PMID:8360403

  18. [Osteoporosis in diabetes].

    PubMed

    Kumeda, Yasuro

    2008-05-01

    The diabetes is at great risk of the osteoporosis, and the bone fragility unrelated to bone density forms the pathological conditions peculiar to diabetes. The factor participating in diabetic osteoporosis has a state of insulin action deficiency, a hyperglycemic state, diabetic complications, and so on. An osteoblastic cell function is deteriorated and the number of that is decreased by the absolute and relative insulin deficiency, and sustained hyperglycemia also decreases an osteoblastic cell function still more. Furthermore, the osteoclast-related bone resorption is also promoted through sorbitol accumulation in the cell by the hyperglycemia state. The expression of transcription factors regulating osteoblastic cell differentiation is restrained, and the apoptosis of those cells is promoted. As a result, osteoplasty is obstructed. In the bone, AGEs (advanced glycation endproducts) is produced in excess, and bone fragility is promoted by the ratio of the AGEs bridging with the collagen rising. The complications of diabetes, such as visual disorder and the neuropathy, raise the risk of the fall in the diabetic osteoporosis patient, therefore, they will have more chance of fractures. PMID:18445876

  19. Osteoporosis and trace elements--an overview.

    PubMed

    Aaseth, Jan; Boivin, Georges; Andersen, Ole

    2012-06-01

    More than 200 million people are affected by osteoporosis worldwide, as estimated by 2 million annual hip fractures and other debilitating bone fractures (vertebrae compression and Colles' fractures). Osteoporosis is a multi-factorial disease with potential contributions from genetic, endocrine functional, exercise related and nutritional factors. Of particular considerations are calcium (Ca) status, vitamin D, fluoride, magnesium and other trace elements. Several trace elements such as zinc and copper are essential for normal development of the skeleton in humans and animals. Fluoride accumulates in new bone and results in a net gain in bone mass, but may be associated with a tissue of poor quality. Aluminum induces impairment of bone formation. Gallium and cadmium suppresses bone turnover. However, exact involvements of the trace elements in osteoporosis have not yet been fully clarified. Numerous investigators have evaluated the role of medications and supplementations with minerals and trace substances to reverse the progression of this disease. Although bisphosphonates are still the drugs of choice, low-dosed fluoride and strontium salts have shown promise for the future. PMID:22575536

  20. The societal burden of osteoporosis.

    PubMed

    Becker, David J; Kilgore, Meredith L; Morrisey, Michael A

    2010-06-01

    Osteoporosis currently affects 10 million Americans and is responsible for more than 1.5 million fractures annually. The financial burden of osteoporosis is substantial, with annual direct medical costs estimated at 17 to 20 billion dollars. Most of these costs are related to the acute and rehabilitative care following osteoporotic fractures, particularly hip fractures. The societal burden of osteoporosis includes these direct medical costs and the monetary (eg, caregiver time) and nonmonetary costs of poor health. The aging of the US population is expected to increase the prevalence of osteoporosis and the number of osteoporotic fractures. Growth of the older adult population will pose significant challenges to Medicare and Medicaid, which bear most of the cost of osteoporosis. Efforts to address the looming financial burden must focus on reducing the prevalence of osteoporosis and the incidence of costly fragility fractures. PMID:20425518

  1. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility

    PubMed Central

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W.; Jeon, Jong-Seong

    2016-01-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4. Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice. PMID:27588462

  2. The Preventive Effect of Zuogui Wan on Offspring Rats' Impaired Glucose Tolerance Whose Mothers Had Gestational Diabetes Mellitus

    PubMed Central

    Feng, Qianjin; Niu, Xin; Xu, Kaixia; Wang, Yingli; Wang, Jinlong; Mao, Yingqiu; Gao, Shuangrong

    2016-01-01

    In this experiment, we used streptozotocin (STZ) to establish a model of gestational diabetes mellitus (GDM) rats, where Zuogui Wan was given to GDM rats. After pregnancy, offspring rats were divided into 4 groups: control group, high fat and sugar as the control group, GDM group, and Zuogui Wan GDM group. Rats in high fat and sugar as the control group, GDM group, and Zuogui Wan GDM group were fed with high fat and sugar diet. Rats in control group were fed the basic diet. The means of 2hPG were higher than 7.8 mmol·L−1 and lower than 11.1 mmol·L−1 on the rats of GDM group on week 15, and IGT models were successful. Body weight, abdominal fat weight, the ratio of abdominal fat weight and body weight, fasting plasma glucose, 2hPG, insulin, leptin, total cholesterol, and low density lipoprotein (LDL) of Zuogui Wan GDM group were significantly lower than GDM group. The level of adiponectin in Zuogui Wan GDM group was significantly higher than GDM group. And we concluded that giving Zuogui Wan to GDM rats can have a preventive effect on the offsprings' IGT induced by high fat and sugar diet. PMID:27034700

  3. Hyperproinsulinemia in a three-generation Caucasian family due to mutant proinsulin (Arg{sup 65}{yields}His) not associated with impaired glucose tolerance: The contribution of mutant proinsulin to insulin bioactivity

    SciTech Connect

    Roder, M.E.; Vissing, H.; Nauck, M.A.

    1996-04-01

    Familial hyperproinsulinemia is a genetic abnormality characterized by an increased proportion of proinsulin immunoreactivity in the circulation due to mutations affecting the posttranslational processing of proinsulin. In affected Japanese families, this has been associated with noninsulin-dependent diabetes mellitus or impaired glucose tolerance. A three-generation Caucasian family with hyperproinsulinemia was identified through unexplained hyperinsulinemia in a normal volunteer participating in a metabolic study. High pressure liquid chromatography analysis of fasting plasma revealed a major peak eluting close to the position of proinsulin. Direct sequencing of the proinsulin gene exon 3 showed a heterozygous point mutation (CGT{yields}CAT) resulting in the substitution of Arg{yields}His in position 65 (corresponding to the AC cleavage site) in the index case, his mother, and his maternal grandmother. All affected subjects had normal oral glucose tolerance. In the basal state and after oral glucose administration, their proinsulin responses were slightly reduced. However, when calculating insulin bioactivity by assuming 9% activity for mutant Arg{sup 65}{yields}His proinsulin, responses in affected subjects were comparable to those in normal subjects. In conclusion, our data demonstrate hyperproinsulinemia in a three-generation Caucasian family due to heterozygous mutant Arg{sup 65}{yields}His proinsulin. This was not associated with impaired glucose tolerance. These results suggest that this mutation in the heterozygous state per se does not affect glucose tolerance and that the biological activity of mutant proinsulin contributes to glucose homeostasis in this family. The association of the same mutation with impaired glucose tolerance or diabetes in previous studies may be the result of selection bias or associated conditions (e.g. the genetic background of the kindreds examined). 29 refs., 5 figs., 3 tabs.

  4. Osteoporosis: Symptoms, Diagnosis, Treatment and Prevention

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Osteoporosis Osteoporosis: Symptoms, Diagnosis, Treatment and Prevention Past Issues / Winter 2011 Table of Contents Osteoporosis can strike at any age, although the risk ...

  5. Effect of osteoporosis medications on fracture healing.

    PubMed

    Hegde, V; Jo, J E; Andreopoulou, P; Lane, J M

    2016-03-01

    Antiosteoporotic medications are often used to concurrently treat a patient's fragility fractures and underlying osteoporosis. This review evaluates the existing literature from animal and clinical models to determine these drugs' effects on fracture healing. The data suggest that these medications may enhance bone healing, yet more thorough prospective studies are warranted. Pharmacologic agents that influence bone remodeling are an essential component of osteoporosis management. Because many patients are first diagnosed with osteoporosis when presenting with a fragility fracture, it is critical to understand how osteoporotic medications influence fracture healing. Vitamin D and its analogs are essential for the mineralization of the callus and may also play a role in callus formation and remodeling that enhances biomechanical strength. In animal models, antiresorptive medications, including bisphosphonates, denosumab, calcitonin, estrogen, and raloxifene, do not impede endochondral fracture healing but may delay repair due to impaired remodeling. Although bisphosphonates and denosumab delay callus remodeling, they increase callus volume and result in unaltered biomechanical properties. Calcitonin increases cartilage formation and callus maturation, resulting in improved biomechanical properties. Parathyroid hormone, an anabolic agent, has demonstrated promise in animal models, resulting in accelerated healing with increased callus volume and density, more rapid remodeling to mature bone, and improved biomechanical properties. Clinical data with parathyroid hormone have demonstrated enhanced healing in distal radius and pelvic fractures as well as postoperatively following spine surgery. Strontium ranelate, which may have both antiresorptive and anabolic properties, affects fracture healing differently in normal and osteoporotic bone. While there is no effect in normal bone, in osteoporotic bone, strontium ranelate increases callus bone formation, maturity, and

  6. Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

    PubMed

    Rato, Luís; Alves, Marco G; Duarte, Ana I; Santos, Maria S; Moreira, Paula I; Cavaco, José E; Oliveira, Pedro F

    2015-09-01

    The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus.

  7. Effects of sugar-sweetened beverage intake on the development of type 2 diabetes mellitus in subjects with impaired glucose tolerance: the Mihama diabetes prevention study.

    PubMed

    Teshima, Nobuko; Shimo, Miho; Miyazawa, Kae; Konegawa, Sachi; Matsumoto, Aki; Onishi, Yuki; Sasaki, Ryoma; Suzuki, Toshinari; Yano, Yutaka; Matsumoto, Kazutaka; Yamada, Tomomi; Gabazza, Esteban Cesar; Takei, Yoshiyuki; Sumida, Yasuhiro

    2015-01-01

    In Japan, the incidence of type 2 diabetes mellitus (T2DM) is increasing for several reasons, including increased consumption of sugar-sweetened beverages (SSBs). However, whether SSBs cause T2DM by excess of energy production resulting in obesity remains unclear. Therefore, the present study was designed to evaluate the effects of SSB intake on the development of T2DM in subjects with impaired glucose tolerance (IGT). Ninety-three subjects (30 males and 63 females) with IGT aged 40-69 y and residing in the Mihama district (southern Mie Prefecture, Japan) were included in the study. The mean observational period was 3.6 y. All subjects underwent the 75-g oral glucose tolerance test (OGTT) and completed a lifestyle questionnaire survey related to SSB intake. OGTT results and SSB intake were evaluated before and after the observational period. In addition, the correlation between SSB intake and development of T2DM was investigated. Of the 93 subjects, 20 (21.5%) developed T2DM (T2DM group) and demonstrated a significantly high SSB intake compared with the group that did not develop the disease (non-T2DM group). The odds ratio for the incidence of T2DM based on SSB intake was 3.26 (95% confidence interval, 1.17-9.06). The body mass index (BMI; kg/m(2)) and the homeostasis model assessment for insulin resistance (HOMA-R) values was significantly higher in the T2DM group than in the non-T2DM group, while the insulinogenic indices were significantly lower in the former than in the latter group. The sum of insulin secretion levels during OGTT was not significantly different between groups. SSB intake correlated with the predisposition for developing T2DM, possibly by influencing body weight, insulin resistance, and the ability of the pancreatic beta cells to effectively compensate for the insulin resistance. PMID:25994135

  8. Metabolic Syndrome Components and Their Response to Lifestyle and Metformin Interventions are Associated with Differences in Diabetes Risk in Persons with Impaired Glucose Tolerance

    PubMed Central

    Florez, Hermes; Temprosa, Marinella G; Orchard, Trevor J; Mather, Kieren J; Marcovina, Santica M; Barrett-Connor, Elizabeth; Horton, Edward; Saudek, Christopher; Pi-Sunyer, Xavier F; Ratner, Robert E; Goldberg, Ronald B

    2013-01-01

    Aims To determine the association of metabolic syndrome (MetS) and its components with diabetes risk in participants with impaired glucose tolerance (IGT), and whether intervention-related changes in MetS lead to differences in diabetes incidence. Methods We used the NCEP/ATP III revised MetS definition at baseline and intervention-related changes of its components to predict incident diabetes using Cox models in 3234 Diabetes Prevention Program (DPP) participants with IGT over an average follow-up of 3.2 years. Results In an intention-to-treat analysis, the demographic-adjusted hazard ratios (95%CI) for diabetes in those with MetS (versus no MetS) at baseline were 1.7(1.3-2.3), 1.7(1.2-2.3), and 2.0(1.3-3.0) for placebo, metformin, and lifestyle groups, respectively. Higher levels of fasting plasma glucose and triglycerides at baseline were independently associated with increased risk of diabetes. Greater waist circumference (WC) was associated with higher risk in placebo and lifestyle groups, but not in the metformin group. In a multivariate model, favorable changes in WC (placebo and lifestyle) and HDLc (placebo and metformin) contributed to reduced diabetes risk. Conclusions MetS and some of its components are associated with increased diabetes incidence in persons with IGT in a manner that differed according to DPP intervention. After hyperglycemia, the most predictive factors for diabetes were baseline hypertriglyceridemia and both baseline and lifestyle-associated changes in waist circumference. Targeting these cardio-metabolic risk factors may help to assess the benefits of interventions that reduce diabetes incidence. PMID:24118860

  9. Glucose, memory, and aging.

    PubMed

    Korol, D L; Gold, P E

    1998-04-01

    Circulating glucose concentrations regulate many brain functions, including learning and memory. Much of the evidence for this view comes from experiments assessing stress-related release of epinephrine with subsequent increases in blood glucose concentrations. One application of this work has been to investigate whether age-related memory impairments result from dysfunctions in the neuroendocrine regulation of the brain processes responsible for memory. Like humans, aged rodents exhibit some memory impairments that can be reversed by administration of epinephrine or glucose. In elderly humans, ingestion of glucose enhances some cognitive functions, with effects best documented thus far on tests of verbal contextual and noncontextual information. Glucose also effectively enhances cognition in persons with Alzheimer disease or Down syndrome. Although earlier evidence suggested that glucose does not enhance cognitive function in healthy young adults, more recent findings suggest that glucose is effective in this population, provided the tests are sufficiently difficult. In college students, glucose consumption significantly enhanced memory of material in a paragraph. Glucose also appeared to enhance attentional processes in these students. Neither face and word recognition nor working memory was influenced by treatment with glucose. The neurobiological mechanisms by which glucose acts are under current investigation. Initial evidence suggests that glucose or a metabolite may activate release of the neurotransmitter acetylcholine in rats when they are engaged in learning. Consequently, the issue of nutrition and cognition becomes increasingly important in light of evidence that circulating glucose concentrations have substantial effects on brain and cognitive functions.

  10. Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal

    PubMed Central

    Treesukosol, Yada

    2012-01-01

    Evidence in the literature supports the hypothesis that the T1R2+3 heterodimer binds to compounds that humans describe as sweet. Here, we assessed the necessity of the T1R2 and T1R3 subunits in the maintenance of normal taste sensitivity to carbohydrate stimuli. We trained and tested water-restricted T1R2 knockout (KO), T1R3 KO and their wild-type (WT) same-sex littermate controls in a two-response operant procedure to sample a fluid and differentially respond on the basis of whether the stimulus was water or a tastant. Correct responses were reinforced with water and incorrect responses were punished with a time-out. Testing was conducted with a modified descending method of limits procedure across daily 25-min sessions. Both KO groups displayed severely impaired performance and markedly decreased sensitivity when required to discriminate water from sucrose, glucose, or maltose. In contrast, when Polycose was tested, KO mice had normal EC50 values for their psychometric functions, with some slight, but significant, impairment in performance. Sensitivity to NaCl did not differ between these mice and their WT controls. Our findings support the view that the T1R2+3 heterodimer is the principal receptor that mediates taste detection of natural sweeteners, but not of all carbohydrate stimuli. The combined presence of T1R2 and T1R3 appears unnecessary for the maintenance of relatively normal sensitivity to Polycose, at least in this task. Some detectability of sugars at high concentrations might be mediated by the putative polysaccharide taste receptor, the remaining T1R subunit forming either a homodimer or heteromer with another protein(s), or nontaste orosensory cues. PMID:22621968

  11. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    , whereas during the second part it was suppressed in AD-G as much as Non-AD. In conclusion, central acylated ghrelin in rats prevented the deterioration of memory function, and energy and glucose metabolisms were partially improved, possibly due to less β-amyloid accumulation. This research suggests that interventions such as intermittent fasting to facilitate sustained elevations of acyl-ghrelin should be investigated for cognitive and metabolic benefits, especially in person with early symptoms of memory impairment.

  12. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    , whereas during the second part it was suppressed in AD-G as much as Non-AD. In conclusion, central acylated ghrelin in rats prevented the deterioration of memory function, and energy and glucose metabolisms were partially improved, possibly due to less β-amyloid accumulation. This research suggests that interventions such as intermittent fasting to facilitate sustained elevations of acyl-ghrelin should be investigated for cognitive and metabolic benefits, especially in person with early symptoms of memory impairment. PMID:26188171

  13. [OSTEOPOROSIS IN PREMENOPAUSAL WOMEN].

    PubMed

    Belovol, A N; Knyazkova, I I; Kuzmonova, N V

    2015-01-01

    Osteoporosis (OP) is a major public health concern that affects millions of women around the world. For many years, OP are among the most common diseases occurring inthe elderly. However, certain parts in the age structure of the disease are persons younger. The rising prevalence of OP is huge damage to human health due to an increase in morbidity and mortality associated with fractures. In this article are discussed OP risk factors, the most frequently detected in young women, knowledge of which will enable patients and training activities on preventing the development of OP. PMID:27089708

  14. [Osteoporosis and beverage preference].

    PubMed

    Tsukahara, Noriko; Ezawa, Ikuko

    2005-02-01

    Opinions regarding beverage preference ingestion and osteoporosis differ with cultural background as well as by eating habits, food customs and other lifestyle factors in addition to climate, differences in each country and area. Furthermore, it is conceivable that it differs with or depends on life stages of the individual. Currently, beverage preferences are enjoyed as part of the eating habits in, daily life considered an indispensable food to be enjoyed thoroughly. Therefore, it may be important to drink a beverage preferences in moderate but not to indulge in excessive ingestion in order to build a healthy lifestyle contributing to both a sound mind and a sound body at each individual life stage.

  15. [Pathophysiology and epidemiology of osteoporosis].

    PubMed

    Abendroth, K; Abendroth, B

    1995-02-01

    The international consensus definition characterizes the osteoporosis by low bone mass and microarchitectural deterioration. New genetic aspects of the pathogenesis of osteoporosis underline these characteristics. In the younger age, a reduced bone mineral density and a reduction of the bone structure are predictors of a genetically caused osteoporosis. The short-term maximal mechanical load of the bone structure by Frost (4) was pointed out to be an important pathophysiological element for the balance of the bone metabolism. Sex hormones and other calcium regulating hormones determine the effect of this biomechanical signal. The deficiency of the osteoblast's activity in the older age is caused by a reduced proliferating cell pool of bone tissue. The epidemiologic data of the osteoporosis were derived from incidence of the hip fractures. A densitometrical osteoporosis screening test analyzes only the bone density but not the organisation of the bone structure. There is too little informations about the disease of osteoporosis. It is to hope that, in the future, the European-Vertebral-Osteoporosis-Study will give additional knowledge about osteoporosis. PMID:7709645

  16. Comparison of regional gray matter atrophy, white matter alteration, and glucose metabolism as a predictor of the conversion to Alzheimer's disease in mild cognitive impairment.

    PubMed

    Sohn, Bo Kyung; Yi, Dahyun; Seo, Eun Hyun; Choe, Young Min; Kim, Jee Wook; Kim, Shin Gyeom; Choi, Hyo Jung; Byun, Min Soo; Jhoo, Jin Hyeong; Woo, Jong Inn; Lee, Dong Young

    2015-06-01

    We compared the predictive ability of the various neuroimaging tools and determined the most cost-effective, non-invasive Alzheimer's disease (AD) prediction model in mild cognitive impairment (MCI) individuals. Thirty-two MCI subjects were evaluated at baseline with [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET), MRI, diffusion tensor imaging (DTI), and neuropsychological tests, and then followed up for 2 yr. After a follow up period, 12 MCI subjects converted to AD (MCIc) and 20 did not (MCInc). Of the voxel-based statistical comparisons of baseline neuroimaging data, the MCIc showed reduced cerebral glucose metabolism (CMgl) in the temporo-parietal, posterior cingulate, precuneus, and frontal regions, and gray matter (GM) density in multiple cortical areas including the frontal, temporal and parietal regions compared to the MCInc, whereas regional fractional anisotropy derived from DTI were not significantly different between the two groups. The MCIc also had lower Mini-Mental State Examination (MMSE) score than the MCInc. Through a series of model selection steps, the MMSE combined with CMgl model was selected as a final model (classification accuracy 93.8%). In conclusion, the combination of MMSE with regional CMgl measurement based on FDG-PET is probably the most efficient, non-invasive method to predict AD in MCI individuals after a two-year follow-up period.

  17. mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts.

    PubMed

    Caruso, Vanni; Sreedharan, Smitha; Carlini, Valeria P; Jacobsson, Josefin A; Haitina, Tatjana; Hammer, Joanna; Stephansson, Olga; Crona, Filip; Sommer, Wolfgang H; Risérus, Ulf; Lannfelt, Lars; Marcus, Claude; Heilig, Markus; de Barioglio, Susana R; Fredriksson, Robert; Schiöth, Helgi B

    2016-05-01

    G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating intercellular interactions of fundamental physiological importance for survival including regulation of food intake, blood pressure, and hormonal sensing signaling, among other roles. Homeostatic alterations in the physiological status of GPCRs are often associated with underlying causes of disease, and to date, several orphan GPCRs are still uncharacterized. Findings from our previous study demonstrate that the Rhodopsin family protein GPR162 is widely expressed in GABAergic as well as other neurons within the mouse hippocampus, whereas extensive expression is observed in hypothalamus, amygdala, and ventral tegmental area, regions strictly interconnected and involved in the regulation of energy homeostasis and hedonic feeding. In this study, we provide a further anatomical characterization of GPR162 in mouse brain via in situ hybridization as well as detailed mRNA expression in a panel of rat tissues complementing a specie-specific mapping of the receptor. We also provide an attempt to demonstrate a functional implication of GPR162 in food intake-related behavior via antisense knockdown studies. Furthermore, we performed human genetic studies in which for the first time, variants of the GPR162 gene were associated with impairments in glucose homeostasis. PMID:26827797

  18. Novel therapies for osteoporosis.

    PubMed

    Makras, Polyzois; Delaroudis, Sideris; Anastasilakis, Athanasios D

    2015-10-01

    Since the identification of osteoporosis as a major health issue in aging populations and the subsequent development of the first treatment modalities for its management, considerable progress has been made in our understanding of the mechanisms controlling bone turnover and disease pathophysiology, thus enabling the pinpointing of new targets for intervention. This progress, along with advances in biotechnology, has rendered possible the development of ever more sophisticated treatments employing novel mechanisms of action. Denosumab, a monoclonal antibody against RANKL, approved for the treatment of postmenopausal and male osteoporosis, significantly and continuously increases bone mineral density (BMD) and maintains a low risk of vertebral, non-vertebral, and hip fractures for up to 8 years. Currently available combinations of estrogens with selective estrogen receptor modulators moderately increase BMD without causing the extra-skeletal adverse effects of each compound alone. The cathepsin K inhibitor odanacatib has recently been shown to decrease vertebral, non-vertebral, and hip fracture rates and is nearing approval. Romosozumab, an anti-sclerosin antibody, and abaloparatide, a PTH-related peptide analog, are at present in advanced stages of clinical evaluation, so far demonstrating efficaciousness together with a favorable safety profile. Several other agents are currently in earlier clinical and preclinical phases of development, including dickkopf-1 antagonists, activin A antagonists, β-arrestin analogs, calcilytics, and Src tyrosine kinase inhibitors.

  19. [Drugs prescription for osteoporosis].

    PubMed

    Erviti, J

    2003-01-01

    The aim of this study is to analyse the evolution of the global and relative use of medicines recommended for osteoporosis during the period between 1998 and 2002 in Navarra, and their adaptation to present evidence, making reference to the differences in the prescription profile in primary and specialised care. To this end, information is used from all the prescriptions made within the National Health System where one of these medicines is recommended, issued in pharmacies of Navarra, and billed to the Navarra Health Service-Osasunbidea. The profile of the use of medicines in osteoporosis differs significantly depending on the type of specialist who prescribes them. It would be useful to homogenise the approach to the prevention of bone fractures. In the period under study the use of medicines in Navarra rose by some 85.6% in number of dose/1,000 inhabitants/day. The relative use of hormone replacement therapy fell constantly, the employment of calcitonins remained steady, undergoing a cyclical profile of peaks in winter and valleys in summer, while the relative use of biphosphonates and raloxifen tended to increase. There is a need to evaluate the results on health of the use of these medicines in clinical practice given the discreet efficacy results obtained in clinical trials. Use of calcium should be encouraged because of its potential in the prevention of hip fractures against the rest of the medicinal alternatives. The relative use of raloxifen and calcitonins seems excessive.

  20. Novel therapies for osteoporosis.

    PubMed

    Biskobing, Diane M

    2003-04-01

    Osteoporosis remains a significant clinical problem despite effective therapies. Many patients cannot or will not take currently available therapies. For this reason research continues in search of more effective and more tolerable agents. Anabolic agents offer a unique mechanism of action. The anabolic agents parathyroid hormone and strontium will be discussed. The investigational bisphosphonates ibandronate, minodronate and zoledronic acid may offer the advantage of less frequent dosing. Arzoxifene, bazedoxifene, lasofoxifene, MDL-103,323 and ospemifene are investigational selective oestrogen receptor modulators shown to be effective in animal studies and are now in clinical studies. Tibolone is a tissue-specific steroid that is currently used in Europe for prevention and treatment of osteoporosis. Multiple studies have shown efficacy in improving bone mineral density, but no fracture studies have been conducted to date. While studies of the effect of isoflavones on bone mineral density have been encouraging, a large, multi-centre study in Europe showed no effect of isoflavones on fractures. The newly described agent osteoprotegerin has been shown in early studies to inhibit bone turnover. Other agents with unique mechanisms of action in early development include cathepsin K inhibitors, integrin receptor inhibitors, nitrosylated non-steroidal anti-inflammatory agents and Src inhibitors. The efficacy of statins in bone continues to be debated with no prospective, randomised studies yet to confirm the suggestion of benefit seen in epidemiological studies. PMID:12665416

  1. Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation.

    PubMed

    Melton, L J; Thamer, M; Ray, N F; Chan, J K; Chesnut, C H; Einhorn, T A; Johnston, C C; Raisz, L G; Silverman, S L; Siris, E S

    1997-01-01

    To assess the cost-effectiveness of interventions to prevent osteoporosis, it is necessary to estimate total health care expenditures for the treatment of osteoporotic fractures. Resources utilized for the treatment of many diseases can be estimated from secondary databases using relevant diagnosis codes, but such codes do not indicate which fractures are osteoporotic in nature. Therefore, a panel of experts was convened to make judgments about the probabilities that fractures of different types might be related to osteoporosis according to patient age, gender, and race. A three-round Delphi process was applied to estimate the proportion of fractures related to osteoporosis (i.e., the osteoporosis attribution probabilities) in 72 categories comprised of four specific fracture types (hip, spine, forearm, all other sites combined) stratified by three age groups (45-64 years, 65-84 years, 85 years and older), three racial groups (white, black, all others), and both genders (female, male). It was estimated that at least 90% of all hip and spine fractures among elderly white women should be attributed to osteoporosis. Much smaller proportions of the other fractures were attributed to osteoporosis. Regardless of fracture type, attribution probabilities were less for men than women and generally less for non-whites than whites. These probabilities will be used to estimate the total direct medical costs associated with osteoporosis-related fractures in the United States.

  2. Smoking is associated with impaired glucose regulation and a decrease in insulin sensitivity and the disposition index in first-degree relatives of type 2 diabetes subjects independently of the presence of metabolic syndrome.

    PubMed

    Piatti, PierMarco; Setola, Emanuela; Galluccio, Elena; Costa, Sabrina; Fontana, Barbara; Stuccillo, Michela; Crippa, Valentina; Cappelletti, Alberto; Margonato, Alberto; Bosi, Emanuele; Monti, Lucilla D

    2014-10-01

    The aim of this study was to investigate glucose tolerance, insulin secretion and insulin resistance according to smoking habits in first-degree relatives of type 2 diabetes patients, a population at high risk for developing diabetes. One thousand three hundred (646 females and 654 males) subjects underwent an oral glucose tolerance test (OGTT) to investigate their glucose metabolism and answered questionnaires about their lifestyle habits. Smoker subjects showed significant impairment compared with non-smoker subjects in 2-h post-oral glucose tolerance test (2hOGTT, 129.3 ± 40.2 vs. 117.7 ± 37.6 mg/dl, p < 0.001), the OGTT insulin sensitivity (386.3 ± 54.9 vs. 400.5 ± 53.4 ml min(-1) m(2), p < 0.01) method and the insulin sensitivity and secretion index-2 (ISSI-2, 1.7 ± 0.8 vs. 2.0 ± 1.0, p < 0.005). Metabolic syndrome (MS) was higher in the smoker than in the non-smoker group (46.5 vs. 29.7 %, p < 0001), and smokers were more sedentary than non-smokers (3.94 ± 3.77 vs. 4.86 ± 4.41 h/week, p < 0.001). Smokers showed an increased risk of impaired glucose regulation (IGR: impaired glucose tolerance or diabetes mellitus) with a hazard ratio (HR) adjusted by gender, metabolic syndrome and physical activity of 1.78, 95 % CI 1.27-2.47 (p < 0.001). The association between smoking and MS conferred a risk of IGR that was five times higher (HR 5.495, 95 % CI 4.07-7.41, p < 0.001). Smoking habit was a significant explanatory variable in a multiple forward stepwise regression analysis performed using 2hOGTT and ISSI-2 as dependent variables (p < 0.0001, R = 0.313 and p < 0.0001, R = 0.347, respectively). In conclusions, our results show that tobacco smoking is tightly associated with impairments in glucose metabolism and insulin sensitivity and insulin secretion.

  3. TNFα Altered Inflammatory Responses, Impaired Health and Productivity, but Did Not Affect Glucose or Lipid Metabolism in Early-Lactation Dairy Cows

    PubMed Central

    Mamedova, Laman K.; Sordillo, Lorraine M.; Bradford, Barry J.

    2013-01-01

    Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows. PMID:24260367

  4. Osteoporosis: Prevention and Management Strategies

    PubMed Central

    Evers, Susan; Myers, Anita

    1987-01-01

    Osteoporosis is a major cause of morbidity in post-menopausal women. Strategies to prevent or delay bone loss in normal post-menopausal women and to reduce the risk of fractures in women with osteoporosis are within the scope of family practice. Certain factors, such as inadequate calcium intake, estrogen deficiency, cigarette smoking and lack of physical activity can be modified in peri- and post-menopausal women. For patients with osteoporosis, there is potential for lowering the risk of fractures by means of calcium supplements or other therapies, physical training and rehabilitation, and modification of factors associated with risk of falling. PMID:21267348

  5. Osteoporosis in postmenopausal women: considerations in prevention and treatment: (women's health series).

    PubMed

    Sanders, Suzanne; Geraci, Stephen A

    2013-12-01

    Osteoporosis, the most common human bone disease, affects 8 million American women and has significant morbidity and mortality. Screening is important in older women and younger postmenopausal women with additional risk factors for osteoporosis/fracture. Preventive measures include avoiding smoking, excessive alcohol/caffeine intake, and falls in addition to maintaining adequate calcium/vitamin D intake and exercise. Estrogen/hormone therapy may be considered in some patients. Various medications have proven efficacy in treating postmenopausal osteoporosis; however, potential adverse effects such as hypocalcemia, worsening of renal impairment, and osteonecrosis of the jaw must be considered. The optimal duration of therapy requires further investigation.

  6. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes.

    PubMed Central

    Hajduch, E; Aledo, J C; Watts, C; Hundal, H S

    1997-01-01

    Acute insulin stimulation of glucose transport in fat and skeletal muscle occurs principally as a result of the hormonal induced translocation of the GLUT4 glucose transporter from intracellular vesicular stores to the plasma membrane. The precise mechanisms governing the fusion of GLUT4 vesicles with the plasma membrane are very poorly understood at present but may share some similarities with synaptic vesicle fusion, as vesicle-associated membrane protein (VAMP) and cellubrevin, two proteins implicated in the process of membrane fusion, are resident in GLUT4-containing vesicles isolated from rat and murine 3T3-L1 adipocytes respectively. In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation. The hormone was found to stimulate glucose uptake by approx. 16-fold in freshly isolated rat adipocytes. After a single electroporating pulse, the ability of insulin to activate glucose uptake was lowered, but the observed stimulation was nevertheless nearly 5-fold higher than the basal rate of glucose uptake. Electroporation of adipocytes with 600 nM tetanus toxin resulted in a complete loss of both cellubrevin and VAMP expression within 60 min. However, toxin-mediated proteolysis of both these proteins had no effect on the ability of insulin to stimulate glucose transport which was elevated approx. 5-fold, an activation of comparable magnitude to that observed in cells electroporated without tetanus toxin. The lack of any significant change in insulin-stimulated glucose transport was consistent with the finding that toxin-mediated proteolysis of both cellubrevin and VAMP had no detectable effect on insulin-induced translocation of GLUT4 in adipocytes. Our findings indicate that, although cellubrevin and VAMP are resident proteins in adipocyte GLUT4-containing vesicles, they are not required for the acute insulin

  7. Managing osteoporosis in ulcerative colitis: Something new?

    PubMed Central

    Piodi, Luca Petruccio; Poloni, Alessandro; Ulivieri, Fabio Massimo

    2014-01-01

    The authors revise the latest evidence in the literature regarding managing of osteoporosis in ulcerative colitis (UC), paying particular attention to the latest tendency of the research concerning the management of bone damage in the patient affected by UC. It is wise to assess vitamin D status in ulcerative colitis patients to recognize who is predisposed to low levels of vitamin D, whose deficiency has to be treated with oral or parenteral vitamin D supplementation. An adequate dietary calcium intake or supplementation and physical activity, if possible, should be guaranteed. Osteoporotic risk factors, such as smoking and excessive alcohol intake, must be avoided. Steroid has to be prescribed at the lowest possible dosage and for the shortest possible time. Moreover, conditions favoring falling have to been minimized, like carpets, low illumination, sedatives assumption, vitamin D deficiency. It is advisable to assess the fracture risk in all UC patient by the fracture assessment risk tool (FRAX® tool), that calculates the ten years risk of fracture for the population aged from 40 to 90 years in many countries of the world. A high risk value could indicate the necessity of treatment, whereas a low risk value suggests a follow-up only. An intermediate risk supports the decision to prescribe bone mineral density (BMD) assessment and a subsequent patient revaluation for treatment. Dual energy X-ray absorptiometry bone densitometry can be used not only for BMD measurement, but also to collect data about bone quality by the means of trabecular bone score and hip structural analysis assessment. These two indices could represent a method of interesting perspectives in evaluating bone status in patients affected by diseases like UC, which may present an impairment of bone quality as well as of bone quantity. In literature there is no strong evidence for instituting pharmacological therapy of bone impairment in UC patients for clinical indications other than those that

  8. Welfare implications of avian osteoporosis.

    PubMed

    Webster, A B

    2004-02-01

    Cage layer fatigue was first noticed after laying hens began to be housed in cages in the mid-20th century. Hens producing eggs at a high rate were most susceptible to the disease. Early research revealed that cage layer fatigue was associated with osteoporosis and bone brittleness. Severe osteoporosis leads to spontaneous bone fractures commonly in the costochondral junctions of the ribs, the keel, and the thoracic vertebrae. Vertebral fracture may damage the spinal cord and cause paralysis. Osteoporosis appears to be inevitable in highly productive caged laying hens. The condition can be made worse by metabolic deficiency of calcium, phosphorus, or vitamin D. Hens in housing systems that promote physical activity tend to have less osteoporosis and rarely manifest cage layer fatigue. Genetic selection may produce laying hens that are less prone to bone weakness. The welfare implications of osteoporosis stem from pain, debility, and mortality associated with bone fracture. The chicken has well-developed neural and psychological systems specialized to respond to pain associated with trauma and inflammation. Although studies on the chicken have not focused on pain due to bone fracture, physiological and behavioral similarities to other species allow inference that a hen experiences both acute and chronic pain from bone fracture. There is little information on osteoporosis in commercial caged layer flocks, however, evidence suggests that it may be widespread and severe. If true, most caged laying hens suffer osteoporosis-related bone fracture during the first laying cycle. Osteoporosis also makes bone breakage a serious problem during catching and transport of hens prior to slaughter. Estimates of mortality due to osteoporosis in commercial caged layer flocks are few, but range up to a third of total mortality. Many of these deaths would be lingering and attended by emaciation and possibly pain. Osteoporosis-related bone breakage during processing has reduced the

  9. Hyponatremia Is Associated With Increased Osteoporosis and Bone Fractures in a Large US Health System Population

    PubMed Central

    Usala, Rachel L.; Fernandez, Stephen J.; Mete, Mihriye; Cowen, Laura; Shara, Nawar M.; Barsony, Julianna

    2015-01-01

    Context: The significance of studies suggesting an increased risk of bone fragility fractures with hyponatremia through mechanisms of induced bone loss and increased falls has not been demonstrated in large patient populations with different types of hyponatremia. Objective: This matched case-control study evaluated the effect of hyponatremia on osteoporosis and fragility fractures in a patient population of more than 2.9 million. Design, Setting, and Participants: Osteoporosis (n = 30 517) and fragility fracture (n = 46 256) cases from the MedStar Health database were matched on age, sex, race, and patient record length with controls without osteoporosis (n = 30 517) and without fragility fractures (n = 46 256), respectively. Cases without matched controls or serum sodium (Na+) data or with Na+ with a same-day blood glucose greater than 200 mg/dL were excluded. Main Outcome Measures: Incidence of diagnosis of osteoporosis and fragility fractures of the upper or lower extremity, pelvis, and vertebrae were the outcome measures. Results: Multivariate conditional logistic regression models demonstrated that hyponatremia was associated with osteoporosis and/or fragility fractures, including chronic [osteoporosis: odds ratio (OR) 3.97, 95% confidence interval (CI) 3.59–4.39; fracture: OR 4.61, 95% CI 4.15–5.11], recent (osteoporosis: OR 3.06, 95% CI 2.81–3.33; fracture: OR 3.05, 95% CI 2.83–3.29), and combined chronic and recent hyponatremia (osteoporosis: OR 12.09, 95% CI 9.34–15.66; fracture: OR 11.21, 95% CI 8.81–14.26). Odds of osteoporosis or fragility fracture increased incrementally with categorical decrease in median serum Na+. Conclusions: These analyses support the hypothesis that hyponatremia is a risk factor for osteoporosis and fracture. Additional studies are required to evaluate whether correction of hyponatremia will improve patient outcomes. PMID:26083821

  10. Osteoporosis treatment: a missed opportunity.

    PubMed

    Milat, Frances; Ebeling, Peter R

    2016-08-15

    Osteoporosis affects 1.2 million Australians and, in 2012, fractures due to osteoporosis and osteopenia in Australians aged over 50 years cost $2.75 billion. Even minor minimal trauma fractures are associated with increased morbidity and mortality. Despite increasing therapeutic options for managing osteoporosis, fewer than 20% of patients with a minimal trauma fracture are treated or investigated for osteoporosis, so under-treatment is extremely common. Fracture risk assessment is important for selecting patients who require specific anti-osteoporosis therapy. Post-menopausal osteoporosis is frequently due to an imbalance in bone remodelling, with bone resorption exceeding bone formation. Antiresorptive drugs reduce the number, activity and lifespan of osteoclasts, and include bisphosphonates, oestrogen, selective oestrogen receptor-modulating drugs, strontium ranelate, and the human monoclonal antibody denosumab. Teriparatide is the only anabolic agent currently available that stimulates osteoblast recruitment and activity; its antifracture efficacy for non-vertebral fractures increases with the duration of therapy for up to 2 years when it is associated with persisting increases in bone formation rate at the tissue level. Newer anabolic agents are imminent and include an analogue of parathyroid hormone-related protein, abaloparatide, and a humanised monoclonal antibody to an inhibitor of bone formation, romosozumab. Selection of anti-osteoporosis therapy should be individualised to patients, and the duration of bisphosphonate therapy has been covered in recent guidelines. The benefits of treatment far outweigh any risks associated with long term treatment. General practitioners need to take up the challenge imposed by osteoporosis and become champions of change to close the evidence-treatment gap. PMID:27510350

  11. The Role of Calcium in Osteoporosis

    NASA Technical Reports Server (NTRS)

    Arnaud, C. D.; Sanchez, S. D.

    1991-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  12. The Fruiting Bodies, Submerged Culture Biomass, and Acidic Polysaccharide Glucuronoxylomannan of Yellow Brain Mushroom Tremella mesenterica Modulate the Immunity of Peripheral Blood Leukocytes and Splenocytes in Rats with Impaired Glucose Tolerance

    PubMed Central

    Hsu, Tai-Hao; Lee, Chien-Hsing; Lin, Fang-Yi; Wasser, Solomon P.; Lo, Hui-Chen

    2014-01-01

    The prevalence of diabetes mellitus (DM), a chronic disease with hyperglycemia and impaired immune function, is increasing worldwide. Progression from impaired glucose tolerance (IGT) to type 2 DM has recently become a target for early intervention. The fruiting bodies (FB) and submerged culture mycelium (CM) of Tremella mesenterica, an edible and medicinal mushroom, have been demonstrated to have antihyperglycemic and immunomodulatory activities in type 1 DM rats. Herein, we investigated the effects of acidic polysaccharide glucuronoxylomannan (GX) extracted from CM on the immunocyte responses. Male Wistar rats were injected with streptozotocin (65 mg/kg) plus nicotinamide (200 mg/kg) for the induction of IGT, and gavaged daily with vehicle, FB, CM, or GX (1 g/kg/day). Rats injected with saline and gavaged vehicle were used as controls. Two weeks later, peripheral blood leukocytes (PBLs) and splenocytes were collected. Ingestion of FB, CM, and GX significantly decreased blood glucose levels in the postprandial period and in oral glucose tolerance test, and partially reversed T-splenocytic proliferation in IGT rats. CM significantly decreased T-helper lymphocytes in the PBLs and B-splenocytes. In addition, FB, CM, and GX significantly reversed the IGT-induced decreases in tumor necrosis factor-α production; GX significantly increased interleukin-6 production in T-lymphocytes in the PBLs and splenocytes; and CM and GX significantly reversed IGT-induced decrease in interferon-γ production in T-lymphocytes in the spleen. In conclusion, FB, CM, and acidic polysaccharide GX of T. mesenterica may increase T-cell immunity via the elevation of proinflammatory and T-helper cytokine production in rats with impaired glucose tolerance. PMID:24872934

  13. The contribution of cardiorespiratory fitness and visceral fat to risk factors in Japanese patients with impaired glucose tolerance and type 2 diabetes mellitus.

    PubMed

    Nagano, M; Kai, Y; Zou, B; Hatayama, T; Suwa, M; Sasaki, H; Kumagai, S

    2004-05-01

    It is still unclear as to how cardiorespiratory fitness and visceral fat accumulation contribute to coronary heart disease (CHD) risk factors in patients with diabetes mellitus. The purpose of the present study was to investigate whether cardiorespiratory fitness contributes to such risk factors independently of visceral fat accumulation. Two hundred Japanese patients (137 men and 63 women, aged 22 to 81 years) with impaired glucose tolerance (IGT) and type 2 diabetes mellitus (type 2 DM) without any intervention and pharmacological therapy participated in a cross-sectional study. The levels of fasting insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and resting blood pressure were assessed. Maximal oxygen uptake (V.o(2max)), an index of cardiorespiratory fitness, was predicted by a graded exercise test using a cycle ergometer. Visceral fat area (VFA) was measured by computed tomography scan. The criteria for abnormalities of the risk factors were determined according to the standard values for Japanese. All subjects were divided equally into the following 3 groups according to their fitness level: low-fit (V.o(2max) < 32 mL/kg/min in men, V.o(2max) < 26 mL/kg/min in women), mid-fit (32 < or = V.o(2max) < 36 in men, 26 < or = V.o(2max) < 30 in women), and high-fit (V.o(2max) > or = 36 in men, V.o(2max) > or = 30 in women). The association between fitness level and the prevalence of abnormal values for these parameters was analyzed by a multiple logistic regression model adjusted for age and VFA. The odds ratio (OR) and 95% confidence interval (CI) for the prevalence of hyperinsulinemia were significantly lower in the mid-fit (OR = 0.35, 95% CI, 0.16 to 0.78) and in the high-fit groups (OR = 0.40, 95% CI, 0.16 to 0.98) compared with the low-fit group. In addition, ORs for the prevalence of low HDL-C in the mid-fit and high-fit groups were significantly lower (OR = 0.35, 95% CI, 0.14 to 0.86; and OR = 0.19; 95% CI, 0

  14. Elevated glucose levels impair the WNT/β-catenin pathway via the activation of the hexosamine biosynthesis pathway in endometrial cancer.

    PubMed

    Zhou, Fuxing; Huo, Junwei; Liu, Yu; Liu, Haixia; Liu, Gaowei; Chen, Ying; Chen, Biliang

    2016-05-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in the world. Associations between fasting glucose levels (greater than 5.6mmol/L) and the risk of cancer fatality have been reported. However, the underlying link between glucose metabolic disease and EC remains unclear. In the present study, we explored the influence of elevated glucose levels on the WNT/β-catenin pathway in EC. Previous studies have suggested that elevated concentrations of glucose can drive the hexosamine biosynthesis pathway (HBP) flux, thereby enhancing the O-GlcNAc modification of proteins. Here, we cultured EC cell lines, AN3CA and HEC-1-B, with various concentrations of glucose. Results showed that when treated with high levels of glucose, both lines showed increased expression of β-catenin and O-GlcNAcylation levels; however, these effects could be abolished by the HBP inhibitors, Azaserine and 6-Diazo-5-oxo-l-norleucine, and be restored by glucosamine. Moreover the AN3CA and HEC-1-B cells that were cultured with or without PUGNAc, an inhibitor of the O-GlcNAcase, showed that PUGNAc increased β-catenin levels. The results suggest that elevated glucose levels increase β-catenin expression via the activation of the HBP in EC cells. Subcellular fractionation experiments showed that AN3CA cells had a higher expression of intranuclear β-catenin in high glucose medium. Furthermore, TOP/FOP-Flash and RT-PCR results showed that glucose-induced increased expression of β-catenin triggered the transcription of target genes. In conclusion, elevated glucose levels, via HBP, increase the O-GlcNAcylation level, thereby inducing the over expression of β-catenin and subsequent transcription of the target genes in EC cells.

  15. The safety of osteoporosis medication.

    PubMed

    Hough, F S; Brown, S L; Cassim, B; Davey, M R; de Lange, W; de Villiers, T J; Ellis, G C; Lipschitz, S; Lukhele, M; Pettifor, J M

    2014-04-01

    Osteoporosis is a common, costly and serious disease, which is still too often regarded as an inevitable part of the normal ageing process and therefore sub-optimally treated, especially in the elderly--in fact, only two out of every 10 patients who sustain a hip fracture receive any form of assessment or prophylactic therapy for osteoporosis. One out of five patients die within 1 year after a hip fracture, and < 50% are capable of leading an independent life. Yet very effective anti-fracture therapy, capable of reducing fracture risk by 35 - 60%, is available. A number of publications have recently questioned the safety of drugs routinely used to treat patients with osteoporosis. This paper attempts to put the situation into perspective and expresses the National Osteoporosis Foundation of South Africa's view on the safety of these drugs. Their efficacy in preventing skeletal fractures and their cost-effectiveness are not addressed in any detail. The paper emphasises the fact that all osteoporosis medications have side-effects, some of which are potentially life-threatening. PMID:25118550

  16. Managing Osteoporosis: A Survey of Knowledge, Attitudes and Practices among Primary Care Physicians in Israel

    PubMed Central

    Segal, Elena; Ish-Shalom, Sofia

    2016-01-01

    Background Osteoporosis is a systemic skeletal disorder characterized by impaired bone quality and microstructural deterioration leading to an increased propensity to fractures. This is a major health problem for older adults, which comprise an increasingly greater proportion of the general population. Due to a large number of patients and the insufficient availability of specialists in Israel and worldwide, osteoporosis is treated in large part by primary care physicians. We assessed the knowledge of primary care physicians on the diagnosis and treatment of osteoporosis. Methods Physician's knowledge, sources of knowledge acquisition and self-evaluation of knowledge were assessed using a multiple choice questionnaire. Professional and demographic characteristics were assessed as well. Results Of 490 physicians attending a conference, 363 filled the questionnaires (74% response rate). The physicians demonstrated better expertise in diagnosis than in medications (mechanism of action, side effects or contra-indications) but less than for other treatment related decisions. Overall, 50% demonstrated adequate knowledge of calcium and vitamin D supplementation, 51% were aware of the main therapeutic purpose of osteoporosis pharmacotherapy and 3% were aware that bisphosphonates should be avoided in patients with impaired renal function. Respondents stated frontal lectures at meetings as their main source of information on the subject. Conclusion The study indicates the need to intensify efforts to improve the knowledge of primary care physicians regarding osteoporosis, in general; and osteoporosis pharmacotherapy, in particular. PMID:27494284

  17. Nuclear Factor Erythroid 2-Related Factor 2 Deletion Impairs Glucose Tolerance and Exacerbates Hyperglycemia in Type 1 Diabetic MiceS⃞

    PubMed Central

    Aleksunes, Lauren M.; Reisman, Scott A.; Yeager, Ronnie L.; Goedken, Michael J.

    2010-01-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic β-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum β-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels. PMID:20086057

  18. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  19. Osteoporosis in liver disease: pathogenesis and management

    PubMed Central

    Handzlik-Orlik, Gabriela; Holecki, Michał; Wilczyński, Krzysztof; Duława, Jan

    2016-01-01

    Osteoporosis affects a substantial proportion of patients with chronic liver disease. Pathologic fracture in osteoporosis significantly affects quality of life and life expectancy. By some estimates, 40% of patients with chronic liver disease may experience osteoporotic fracture. In this study we review the pathogenesis, diagnosis and treatment of specific liver disease entities and their relation to osteoporosis. PMID:27293541

  20. Older Men's Explanatory Model for Osteoporosis

    ERIC Educational Resources Information Center

    Solimeo, Samantha L.; Weber, Thomas J.; Gold, Deborah T.

    2011-01-01

    Purpose: To explore the nature of men's experiences of osteoporosis by developing an understanding of men's explanatory models. Design and Methods: This descriptive study invited community-residing male osteoporosis patients aged 50+ to participate in interviews about osteoporosis. Participants were recruited from a hospital-affiliated bone…

  1. The Relationships between Metabolic Disorders (Hypertension, Dyslipidemia, and Impaired Glucose Tolerance) and Computed Tomography-Based Indices of Hepatic Steatosis or Visceral Fat Accumulation in Middle-Aged Japanese Men

    PubMed Central

    Yokokawa, Hirohide; Naito, Toshio; Sasabe, Noriko; Okumura, Mitsue; Iijima, Kimiko; Shibuya, Katsuhiko; Hisaoka, Teruhiko; Fukuda, Hiroshi

    2016-01-01

    Background Most studies on the relationships between metabolic disorders (hypertension, dyslipidemia, and impaired glucose tolerance) and hepatic steatosis (HS) or visceral fat accumulation (VFA) have been cross-sectional, and thus, these relationships remain unclear. We conducted a retrospective cohort study to clarify the relationships between components of metabolic disorders and HS/VFA. Methods The participants were 615 middle-aged men who were free from serious liver disorders, diabetes, and HS/VFA and underwent multiple general health check-ups at our institution between 2009 and 2013. The data from the initial and final check-ups were used. HS and VFA were assessed by computed tomography. HS was defined as a liver to spleen attenuation ratio of ≤1.0. VFA was defined as a visceral fat cross-sectional area of ≥100 cm2 at the level of the navel. Metabolic disorders were defined using Japan’s metabolic syndrome diagnostic criteria. The participants were divided into four groups based on the presence (+) or absence (-) of HS/VFA. The onset rates of each metabolic disorder were compared among the four groups. Results Among the participants, 521, 55, 24, and 15 were classified as HS(-)/VFA(-), HS(-)/VFA(+), HS(+)/VFA(-), and HS(+)/VFA(+), respectively, at the end of the study. Impaired glucose tolerance was more common among the participants that exhibited HS or VFA (p = 0.05). On the other hand, dyslipidemia was more common among the participants that displayed VFA (p = 0.01). Conclusions It is likely that VFA is associated with impaired glucose tolerance and dyslipidemia, while HS might be associated with impaired glucose tolerance. Unfortunately, our study failed to detect associations between HS/VFA and metabolic disorders due to the low number of subjects that exhibited fat accumulation. Although our observational study had major limitations, we consider that it obtained some interesting results. HS and VFA might affect different metabolic disorders

  2. [Multifactorial pathogenesis of osteoporosis and its classification].

    PubMed

    Nakatsuka, Kiyoshi; Nisizawa, Yoshiki

    2002-07-01

    Since international definition and diagnosis of osteoporosis have been established, it is much easier to manage this bone disease than it was. However, its pathophysiology of individual patients is multifactorial and differs in gender and calcium regulating hormones, rate of bone loss, and bone turnover etc. in the process of developing osteoporosis. It is not always easy to definitely stratify individuals with primary osteoporosis into types of pathophysiology proposed by Riggs and his colleagues. It is, therefore, of importance to recognize pathophysiology of osteoporosis by assessing bone and calcium metabolism, rate of bone loss and so on for management and beneficial intervention of individual patients with osteoporosis. PMID:15775378

  3. Research Advances: Onions Battle Osteoporosis

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers at the University of Bern in Switzerland have identified a compound in the popular vegetable that appears to decrease bone loss in laboratory studies using rat bone cells. It is suggested that eating onions might help prevent bone loss and osteoporosis, a disease, which predominantly affects older women.

  4. [Osteoporosis secondary to various disorders].

    PubMed

    Yamaguchi, Toru

    2012-06-01

    Secondary osteoporosis is caused by various disorders, metabolic derangements, and drug administration. Among causative disorders, primary hyperparathyroidism, rheumatoid arthritis, type 2 diabetes mellitus, and chronic kidney disease are prevalent ones. Fractures in type 2 diabetes and chronic kidney disease tend to result from the reduction in bone quality rather than that in bone mass. PMID:22653018

  5. Osteoporosis risk in premenopausal women.

    PubMed

    Vondracek, Sheryl F; Hansen, Laura B; McDermott, Michael T

    2009-03-01

    Although clinically significant bone loss and fractures in healthy premenopausal women are rare, more women are seeking evaluation for osteoporosis from their health care providers. As pharmacists are in an ideal position to influence the management of premenopausal women with osteoporosis, it is important that pharmacists understand the available data on bone loss, fractures, and risk factors and secondary causes for osteoporosis, as well as when to recommend testing and treatment in premenopausal women. Limited data are available; therefore, we conducted a MEDLINE search of the literature from January 1993-August 2008. Studies evaluating bone loss, fractures, and fracture risk in healthy premenopausal women were targeted and summarized; most recommendations are based on expert opinion. A small but statistically significant loss in bone mineral density of 0.25-1%/year by dual-energy x-ray absorptiometry is seen healthy premenopausal women; the clinical significance of this is unknown. Whereas absolute fracture risk is low, premenopausal fractures appear to increase postmenopausal fracture risk by 1.5-3-fold. Risk factors for low bone density appear to be similar between pre- and postmenopausal women. Bone density screening in healthy premenopausal women is not recommended, but bone mineral density testing is advisable for those who have conditions or who receive drug therapy that may cause secondary bone loss. Lifestyle modification emphasizing bone-healthy habits such as adequate calcium and vitamin D nutrition, regular exercise, limitation of caffeine and alcohol consumption, and avoidance of tobacco are essential to the management of osteoporosis risk. The efficacy and safety of osteoporosis drugs have not been adequately demonstrated in premenopausal women. Therefore, pharmacologic interventions cannot be recommended in young women with low bone mass but may be considered in those having a more significant fracture risk, such as those with a previous low

  6. Cell death and impairment of glucose-stimulated insulin secretion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the {beta}-cell line INS-1E

    SciTech Connect

    Piaggi, Simona; Novelli, Michela; Martino, Luisa; Masini, Matilde; Raggi, Chiara; Orciuolo, Enrico; Masiello, Pellegrino; Casini, Alessandro; De Tata, Vincenzo . E-mail: v.detata@ipg.med.unipi.it

    2007-05-01

    The aim of this research was to characterize 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the insulin-secreting {beta}-cell line INS-1E. A sharp decline of cell survival (below 20%) was observed after 1 h exposure to TCDD concentrations between 12.5 and 25 nM. Ultrastructurally, {beta}-cell death was characterized by extensive degranulation, appearance of autophagic vacuoles, and peripheral nuclear condensation. Cytotoxic concentrations of TCDD rapidly induced a dose-dependent increase in intracellular calcium concentration. Blocking calcium entry by EGTA significantly decreased TCDD cytotoxicity. TCDD was also able to rapidly induce mitochondrial depolarization. Interestingly, 1 h exposition of INS-1E cells to very low TCDD concentrations (0.05-1 nM) dramatically impaired glucose-stimulated but not KCl-stimulated insulin secretion. In conclusion, our results clearly show that TCDD exerts a direct {beta}-cell cytotoxic effect at concentrations of 15-25 nM, but also markedly impairs glucose-stimulated insulin secretion at concentrations 20 times lower than these. On the basis of this latter observation we suggest that pancreatic {beta}-cells could be considered a specific and sensitive target for dioxin toxicity.

  7. Protein deficiency during pregnancy and lactation impairs glucose-induced insulin secretion but increases the sensitivity to insulin in weaned rats.

    PubMed

    Latorraca, M Q; Carneiro, E M; Boschero, A C; Mello, M A

    1998-09-01

    We studied glucose homeostasis in rat pups from dams fed on a normal-protein (170 g/kg) (NP) diet or a diet containing 60 g protein/kg (LP) during fetal life and the suckling period. At birth, total serum protein, serum albumin and serum insulin levels were similar in both groups. However, body weight and serum glucose levels in LP rats were lower than those in NP rats. At the end of the suckling period (28 d of age), total serum protein, serum albumin and serum insulin were significantly lower and the liver glycogen and serum free fatty acid levels were significantly higher in LP rats compared with NP rats. Although the fasting serum glucose level was similar in both groups, the area under the blood glucose concentration curve after a glucose load was higher for NP rats (859 (SEM 58) mmol/l per 120 min for NP rats v. 607 (SEM 52) mmol/l per 120 min for LP rats; P < 0.005). The mean post-glucose increase in insulin was higher for NP rats (30 (SEM 4.7) nmol/l per 120 min for NP rats v. 17 (SEM 3.9) nmol/l per 120 min for LP rats; P < 0.05). The glucose disappearance rate for NP rats (0.7 (SEM 0.1) %/min) was lower than that for LP rats (1.6 (SEM 0.2) %/min; P < 0.001). Insulin secretion from isolated islets (1 h incubation) in response to 16.7 mmol glucose/l was augmented 14-fold in NP rats but only 2.6-fold in LP rats compared with the respective basal secretion (2.8 mmol/l; P < 0.001). These results indicate that in vivo as well as in vitro insulin secretion in pups from dams maintained on a LP diet is reduced. This defect may be counteracted by an increase in the sensitivity of target tissues to insulin. PMID:9875069

  8. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to compare the effectiveness of three 15-min bouts of postmeal walking with 45 min of sustained walking on 24-h glycemic control in older persons at risk for glucose intolerance. Inactive older (=60 years of age) participants (N = 10) were recruited from the community a...

  9. Pharmacogenomics in osteoporosis: Steps toward personalized medicine

    PubMed Central

    Greene, Robert; Mousa, Shaymaa S; Ardawi, Mohamed; Qari, Mohamed; Mousa, Shaker A

    2009-01-01

    Osteoporosis is a complicated and preventable disease with major morbidity complications that affects millions of people. In the last 15 years, there have been numerous studies and research in the new fields of pharmacogenetics and pharmacogenomics related to osteoporosis. Numerous “candidate genes” have been identified and have been found to be associated with osteoporosis as well as the treatment of osteoporosis. Many studies have found conflicting results on different polymorphisms and whether or not they are related to bone mineral density and osteoporosis. There is a need for larger and better designed pharmacogenomic studies related to osteoporosis incorporating a greater variety of candidate genes. The evaluation of osteoporosis and fracture risk is moving from a risk stratification approach to a more individualized approach, in which an individual’s absolute risk of fracture is evaluable as a constellation of the individual’s environmental exposure and genetic makeup. Therefore, the identification of gene variants associated with osteoporosis phenotypes or response to therapy might help individualize the prognosis, treatment, and prevention of fracture. This review focuses on major candidate genes and what needs to be done to take the genetics of osteoporosis and incorporate them into the pharmacogenomics of the management of osteoporosis. PMID:23226036

  10. Hyperinsulinemia and metabolic syndrome at mean age of 10 years in black and white schoolgirls and development of impaired fasting glucose and type 2 diabetes mellitus by mean age of 24 years.

    PubMed

    Morrison, John A; Glueck, Charles J; Umar, Muhammad; Daniels, Stephen; Dolan, Lawrence M; Wang, Ping

    2011-01-01

    The objective of the study was to evaluate preteen insulin and metabolic syndrome (MS) as independent predictors of impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM) in black and white females by mean age of 24 years. This was a prospective cohort study. There were 8 measures of fasting glucose and insulin from mean age of 10 years through mean age of 24 years, and insulin also at mean age of 25 years. Childhood MS was defined by at least 3 abnormal values among waist circumference, triglyceride, high-density lipoprotein cholesterol, blood pressure, and glucose. Hyperinsulinemia was defined by insulin greater than or equal to race-specific 75th percentile. Patients with type 1 diabetes mellitus were excluded. The study was held in schools and in an outpatient clinical center. Participants were schoolgirls (260 white, 296 black). There was no intervention. The outcome measures were IFG (fasting glucose of at least 100 to 125 mg/dL) and T2DM (fasting glucose of at least 126 mg/dL). By the age of 24 years, there were 11 cases of T2DM (2%) and 108 cases of IFG (19%). By the age of 24 years, IFG + T2DM was present in 18% of women (73/412) who had normal insulin-no MS at the age of 10 years vs 28% (34/122) of those with high insulin-no MS at the age of 10 years (P = .014) and 67% (10/15) of those with high insulin + MS at the age of 10 years (P < .0001). By stepwise logistic regression, significant, independent, positive predictors of IFG + T2DM were first insulin measure in childhood, age at last sampling, childhood MS, change in body mass index over 15 years, and, separately, initial glucose of at least 100 mg/dL and average of all insulin quartile ranks over 15 years. The correlation between childhood insulin z score and insulin z score 15 years later was r = .30, P < .0001. Insulin and MS at a mean age of 10 years plus change in body mass index over 15 years, and 15-year average insulin rank independently predict IFG + T2DM by mean age of 24 years

  11. Intravenous bisphosphonates for postmenopausal osteoporosis

    PubMed Central

    Mottaghi, Peyman

    2010-01-01

    Numerous clinical studies have shown bisphoshonates (BPs) to be useful and cost-effective options for the fractures prevention and postmenopausal bone loss. The use of oral bisphoshonates is an established option for managment of osteoporosis in postmenopausal women, but many of them complaint from gastrointestinal side effect or frequently dosed oral regimens. To improve upon the suboptimal therapeutic compliance in postmenopausal women, newer, longer-acting intravenous formulations of BPs has been approved for intermittent administration in postmenopausal women. These preparations would become an option for patients who can not tolerate oral BPs or it was ineffective in increasing their bone density. This article proposed to review effectiveness and tolerability of intravenous BPs in postmenopausal women with osteoporosis. PMID:21526078

  12. Environmental risk factors for osteoporosis

    SciTech Connect

    Goyer, R.A.; Korach, K.S. ); Epstein, S. ); Bhattacharyya, M. ); Pounds, J. )

    1994-04-01

    Environmental risk factors for osteoporosis were reviewed at a conference held at the National Institute for Environmental Health Sciences 8-9 November 1993. The conference was co-sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Disease and the NIH Office of Research in Women's Health. The objective of the conference was to review what is known about risk factors for osteoporosis and to identify gaps in the present state of knowledge that might be addressed by future research. The conference was divided into two broad themes. The first session focused on current knowledge regarding etiology, risk factors, and approaches to clinical and laboratory diagnosis. This was followed by three sessions in which various environmental pollutants were discussed. Topics selected for review included environmental agents that interfere with bone and calcium metabolism, such as the toxic metals lead, cadmium, aluminum, and fluoride, natural and antiestrogens, calcium, and vitamin D.

  13. [Epidemiology of Osteoporosis in Men].

    PubMed

    Fujiwara, Saeko

    2016-07-01

    Estimated number of those with osteoporosis was about 12,800,000, and about 23%, 3,000,000 were male osteoporosis in Japan. Incidence of hip, vertebral, distal radius, and proximal humeral fracture in men was half of that in women. Lifetime risk of hip fracture was 5.6% in men. Risk factors for osteoporotic fracture in men were low bone mineral density(BMD), previous fracture, low body mass index, smoking, family history of fracture, glucocorticoid use and others. For osteoporotic fractures, the fracture risk in smokers was significantly higher in men than in women. There was no differences in fracture risks by BMD, previous fracture, glucocorticoid use, and family fracture history between men and women. PMID:27346311

  14. The natural approach to osteoporosis.

    PubMed

    Bartolozzi, Emanuela

    2015-01-01

    Osteoporosis is normally the result of a wrong life-style (diet, physical inactivity, smoke, dental hygiene, intestinal dysbiosis,…) and environmental toxicity which stimulate the chronic expression of inflammatory genes and alter the immuno-endocrine balance. A natural approch should face all the factors involved, leading the patients to become aware of their own responsability, and helping them with natural therapies, healthy food and life-style which support their body in the process of self-healing. PMID:26604935

  15. Osteoimmunology and osteoporosis

    PubMed Central

    2011-01-01

    The concept of osteoimmunology is based on growing insight into the links between the immune system and bone at the anatomical, vascular, cellular, and molecular levels. In both rheumatoid arthritis (RA) and ankylosing spondylitis (AS), bone is a target of inflammation. Activated immune cells at sites of inflammation produce a wide spectrum of cytokines in favor of increased bone resorption in RA and AS, resulting in bone erosions, osteitis, and peri-inflammatory and systemic bone loss. Peri-inflammatory bone formation is impaired in RA, resulting in non-healing of erosions, and this allows a local vicious circle of inflammation between synovitis, osteitis, and local bone loss. In contrast, peri-inflammatory bone formation is increased in AS, resulting in healing of erosions, ossifying enthesitis, and potential ankylosis of sacroiliac joints and intervertebral connections, and this changes the biomechanical competence of the spine. These changes in bone remodeling and structure contribute to the increased risk of vertebral fractures (in RA and AS) and non-vertebral fractures (in RA), and this risk is related to severity of disease and is independent of and superimposed on background fracture risk. Identifying patients who have RA and AS and are at high fracture risk and considering fracture prevention are, therefore, advocated in guidelines. Local peri-inflammatory bone loss and osteitis occur early and precede and predict erosive bone destruction in RA and AS and syndesmophytes in AS, which can occur despite clinically detectable inflammation (the so-called 'disconnection'). With the availability of new techniques to evaluate peri-inflammatory bone loss, osteitis, and erosions, peri-inflammatory bone changes are an exciting field for further research in the context of osteoimmunology. PMID:21996023

  16. [Nutritional factors in preventing osteoporosis].

    PubMed

    Martín Jiménez, Juan Antonio; Consuegra Moya, Belkis; Martín Jiménez, María Teresa

    2015-07-18

    Osteoporosis, main risk factor for suffering fragility fractures, is an important public health problem which has undoubted social, health and economic impact; but mainly causes pain, functional limitation and severe alterations in the patient's quality of life. Its current prevalence is very high and a further increase is expected due to a higher life expectancy and the progressive ageing of the population. In the prevention of osteoporosis, the main goal is to prevent fragility fractures; for this reason, it is necessary to: 1) promote bone formation in youth, to get sufficient bone mass peak, 2) reduce bone loss in adulthood, especially after menopause, 3) maintain bone health throughout life, and 4) prevent falls. There is enough evidence that multifactorial strategies (assessment of risk factors, healthy lifestyle habits, smoking cessation, moderation in alcohol consumption, physical exercise, outdoor activity with prudent exposure to sunlight, and a varied and balanced diet), are effective in the population at risk. Regarding factors for the prevention of osteoporosis, current recommendations are: increased consumption of calcium, phosphorus, magnesium and fluoride; provide adequate vitamin D (even with fortified food if necessary); consumption of foods rich in omega-3 acids; reduction of salt and prepared ready meals; sufficient but moderate intake of protein and, in the absence of intolerance, promote the consumption of milk and dairy products, especially yogurt and fermented milk products.

  17. Safety of drugs used in the treatment of osteoporosis.

    PubMed

    McGreevy, Cora; Williams, David

    2011-08-01

    A number of drug classes are licensed for the treatment of osteoporosis including bisphosphonates, recombinant human parathyroid hormone (PTH), strontium, hormone replacement therapy (HRT), selective oestrogen receptor modulators (SERMS) and denosumab. This review discusses the safety of osteoporosis treatments and their efficacies. Recent concerns about the safety of calcium and high-dose vitamin D are discussed. Bisphosphonates have substantial postmarketing experience and a clearer picture of safety issues is emerging. Along with the well recognized effects on the gastrointestinal tract and kidney function, recently described adverse effects such as osteonecrosis of the jaw, oesophageal cancer, atrial fibrillation, subtrochanteric femur fractures and ocular complications of bisphosphonate therapy are discussed. Therapy with PTH is limited to two years' duration because of the development of osteogenic sarcomas in animal studies, which appeared related to dose, duration and timing of therapy. Strontium should be used with caution in patients with renal impairment and its use has been associated with venous thromboembolism. The role of HRT and SERMs in the treatment of postmenopausal osteoporosis is restricted as a result of an increased risk of stroke, venous thromboembolism and breast cancer. Postmarketing experience with denusomab is limited but a number of potential safety concerns including osteonecrosis of the jaw are emerging. All of these drugs have been proven to reduce fractures. The decision to use a drug to reduce fracture risk should be based on risk-benefit analysis of the drug and its suitability for individual patients. PMID:25083210

  18. An overview on the treatment of postmenopausal osteoporosis.

    PubMed

    Maeda, Sergio Setsuo; Lazaretti-Castro, Marise

    2014-03-01

    Osteoporosis is a worldwide health problem related to the aging of the population, and it is often underdiagnosed and undertreated. It is related to substantial morbidity, mortality and impairment of the quality of life. Estrogen deficiency is the major contributing factor to bone loss after menopause. The lifetime fracture risk at 50 years of age is about 50% in women. The aim of the treatment of osteoporosis is to prevent fractures. Non-pharmacological treatment involves a healthy diet, prevention of falls, and physical exercise programs. Pharmacological treatment includes calcium, vitamin D, and active medication for bone tissue such, as anti-resorptives (i.e., SERMs, hormonal replacement therapy, bisphosphonates, denosumab), bone formers (teriparatide), and mixed agents (strontium ranelate). Bisphosphonates (alendronate, risedronate, ibandronate, and zoledronate) are the most used anti-resorptive agents for the treatment of osteoporosis. Poor compliance, drug intolerance, and adverse effects can limit the benefits of the treatment. Based on the knowledge on bone cells signaling, novel drugs were developed and are being assessed in clinical trials.

  19. Production of a mouse strain with impaired glucose tolerance by systemic heterozygous knockout of the glucokinase gene and its feasibility as a prediabetes model.

    PubMed

    Saito, Mikako; Kaneda, Asako; Sugiyama, Tae; Iida, Ryousuke; Otokuni, Keiko; Kaburagi, Misako; Matsuoka, Hideaki

    2015-01-01

    Exon II of glucokinase (Gk) was deleted to produce a systemic heterozygous Gk knockout (Gk(+/-)) mouse. The relative expression levels of Gk in the heart, lung, liver, stomach, and pancreas in Gk(+/-) mice ranged from 0.41-0.68 versus that in wild (Gk(+/+)) mice. On the other hand, its expression levels in the brain, adipose tissue, and muscle ranged from 0.95-1.03, and its expression levels in the spleen and kidney were nearly zero. Gk knockout caused no remarkable off-target effect on the expression of 7 diabetes causing genes (Shp, Hnf1a, Hnf1b, Irs1, Irs2, Kir6.2, and Pdx1) in 10 organs. The glucose tolerance test was conducted to determine the blood glucose concentrations just after fasting for 24 h (FBG) and at 2 h after high-glucose application (GTT2h). The FBG-GTT2h plots obtained with the wild strain fed the control diet (CD), Gk(+/-) strain fed the CD, and Gk(+/-) strain fed the HFD were distributed in separate areas in the FBG-GTT2h diagram. The respective areas could be defined as the normal state, prediabetes state, and diabetes state, respectively. Based on the results, the criteria for prediabetes could be defined for the Gk(+/-) strain developed in this study. PMID:25765873

  20. Production of a mouse strain with impaired glucose tolerance by systemic heterozygous knockout of the glucokinase gene and its feasibility as a prediabetes model

    PubMed Central

    SAITO, Mikako; KANEDA, Asako; SUGIYAMA, Tae; IIDA, Ryousuke; OTOKUNI, Keiko; KABURAGI, Misako; MATSUOKA, Hideaki

    2015-01-01

    Exon II of glucokinase (Gk) was deleted to produce a systemic heterozygous Gk knockout (Gk+/−) mouse. The relative expression levels of Gk in the heart, lung, liver, stomach, and pancreas in Gk+/− mice ranged from 0.41–0.68 versus that in wild (Gk+/+) mice. On the other hand, its expression levels in the brain, adipose tissue, and muscle ranged from 0.95–1.03, and its expression levels in the spleen and kidney were nearly zero. Gk knockout caused no remarkable off-target effect on the expression of 7 diabetes causing genes (Shp, Hnf1a, Hnf1b, Irs1, Irs2, Kir6.2, and Pdx1) in 10 organs. The glucose tolerance test was conducted to determine the blood glucose concentrations just after fasting for 24 h (FBG) and at 2 h after high-glucose application (GTT2h). The FBG-GTT2h plots obtained with the wild strain fed the control diet (CD), Gk+/− strain fed the CD, and Gk+/− strain fed the HFD were distributed in separate areas in the FBG-GTT2h diagram. The respective areas could be defined as the normal state, prediabetes state, and diabetes state, respectively. Based on the results, the criteria for prediabetes could be defined for the Gk+/− strain developed in this study. PMID:25765873

  1. The management of osteoporosis in children.

    PubMed

    Ward, L M; Konji, V N; Ma, J

    2016-07-01

    This article reviews the manifestations and risk factors associated with osteoporosis in childhood, the definition of osteoporosis and recommendations for monitoring and prevention. As well, this article discusses when a child should be considered a candidate for osteoporosis therapy, which agents should be prescribed, duration of therapy and side effects. There has been significant progress in our understanding of risk factors and the natural history of osteoporosis in children over the past number of years. This knowledge has fostered the development of logical approaches to the diagnosis, monitoring, and optimal timing of osteoporosis intervention in this setting. Current management strategies are predicated upon monitoring at-risk children to identify and then treat earlier rather than later signs of osteoporosis in those with limited potential for spontaneous recovery. On the other hand, trials addressing the prevention of the first-ever fracture are still needed for children who have both a high likelihood of developing fractures and less potential for recovery. This review focuses on the evidence that shapes the current approach to diagnosis, monitoring, and treatment of osteoporosis in childhood, with emphasis on the key pediatric-specific biological principles that are pivotal to the overall approach and on the main questions with which clinicians struggle on a daily basis. The scope of this article is to review the manifestations of and risk factors for primary and secondary osteoporosis in children, to discuss the definition of pediatric osteoporosis, and to summarize recommendations for monitoring and prevention of bone fragility. As well, this article reviews when a child is a candidate for osteoporosis therapy, which agents and doses should be prescribed, the duration of therapy, how the response to therapy is adjudicated, and the short- and long-term side effects. With this information, the bone health clinician will be poised to diagnose

  2. Randomized, double-blind, placebo-controlled, clinical study on the effect of Diabetinol® on glycemic control of subjects with impaired fasting glucose

    PubMed Central

    Evans, Malkanthi; Judy, William V; Wilson, Dale; Rumberger, John A; Guthrie, Najla

    2015-01-01

    Background This study investigated the efficacy of Diabetinol® in people with diabetes on medication but not meeting the American Association of Clinical Endocrinologists and American Diabetes Association glycemic, blood pressure, and lipid targets. Subjects and methods Fifty subjects, aged 18–75 years, with fasting blood glucose ≤15.4 mmol/L, hemoglobin A1c levels ≤12%, and a body mass index between 25 and 40 kg/m2, were enrolled in a 24-week, randomized, double-blind, placebo-controlled, parallel study. Diabetinol® or placebo was administered as 2×525 mg capsules/day. Results In the Diabetinol® group, 14.3% versus 0% in the placebo group, 33.3% versus 15.4% in placebo, 20.0% versus 12.5% in placebo, and 83.3% versus 60% in placebo achieved the American Association of Clinical Endocrinologists and American Diabetes Association targets for hemoglobin A1c, low-density lipoprotein, total cholesterol, and systolic blood pressure, respectively. There was no difference in the maximum concentration (Cmax) of serum glucose or area under the curve (AUC)0–240 minutes. The time to Cmax was longer for participants on Diabetinol® than placebo group at week 12 (P=0.01). Fasting blood glucose increased from baseline to week 24 in both groups; however, this increase was 14.3 mg/dL lower in the Diabetinol® group versus placebo. The Diabetinol® group showed an increase of 5.53 mg/dL in fasting insulin at week 12 (P=0.09) and 3.2 mg/dL at week 24 (P=0.41) over and above the placebo group. A decrease of 1.5% in total cholesterol, 5.8% in low-density lipoprotein, and a 1.6% increase in high-density lipoprotein concentrations were seen in the Diabetinol® group. Diabetinol® improved 6-month oral glucose tolerance test and 2-hour postprandial glucose profiles in participants between 40 and 60 years of age. Conclusion The current study suggests a role for Diabetinol® as an adjunctive therapy for glycemic maintenance and for decreasing the risk of diabetes

  3. Health Beliefs about Osteoporosis and Osteoporosis Screening in Older Women and Men

    ERIC Educational Resources Information Center

    Nayak, Smita; Roberts, Mark S.; Chang, Chung-Chou H.; Greenspan, Susan L.

    2010-01-01

    Objective: To examine older adults' beliefs about osteoporosis and osteoporosis screening to identify barriers to screening. Design: Cross-sectional mailed survey. Setting: Western Pennsylvania. Methods: Surveys were mailed to 1,830 women and men aged 60 years and older. The survey assessed socio-demographic characteristics, osteoporosis and…

  4. [Changes in calcium regulating hormone in osteoporosis].

    PubMed

    Okamoto, Y; Ota, K

    1994-09-01

    We summarized the changes of humoral factors, vitamin D, parathyroid hormone, and calcitonin in blood concentration, which are cooperatively regulating calcium homeostasis in aging and osteoporosis. Although these factors may play a important role on pathogenesis of osteoporosis in aged and postmenopausal osteoporotic patients, the influence of these factors on the mechanism of age-related or postmenopausal bone loss is unclear. There is no characteristic change of these factors in blood because of heterogeneity of osteoporosis and it is controversial. Further studies are required to evaluate the state of osteoporosis. PMID:7967071

  5. What Prostate Cancer Survivors Need to Know about Osteoporosis

    MedlinePlus

    ... information on osteoporosis, visit: NIH Osteoporosis and Related Bone Diseases ~ National Resource Center Website: http://www.bones.nih. ... Pub. No. 16-7905 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  6. What People with Lupus Need to Know about Osteoporosis

    MedlinePlus

    ... information on osteoporosis, contact: NIH Osteoporosis and Related Bone Diseases ~ National Resource Center Website: http://www.bones.nih. ... No. 16-7902-E NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  7. What Breast Cancer Survivors Need to Know about Osteoporosis

    MedlinePlus

    ... browser. Home Osteoporosis Osteoporosis and Other Conditions What Breast Cancer Survivors Need to Know About Osteoporosis Publication available ... Print-Friendly Page April 2016 The Impact of Breast Cancer Other than skin cancer, breast cancer is the ...

  8. What People with Anorexia Nervosa Need to Know about Osteoporosis

    MedlinePlus

    ... Osteoporosis Osteoporosis and Other Conditions What People With Anorexia Nervosa Need to Know About Osteoporosis Publication available ... focus(); */ } //--> Print-Friendly Page April 2016 What Is Anorexia Nervosa? Anorexia nervosa is an eating disorder characterized ...

  9. What People with Rheumatoid Arthritis Need to Know about Osteoporosis

    MedlinePlus

    ... increased risk for osteoporosis, are two to three times more likely than men to have rheumatoid arthritis as well. Osteoporosis Management Strategies Strategies for preventing and treating osteoporosis in ...

  10. What People with Diabetes Need to Know about Osteoporosis

    MedlinePlus

    ... Osteoporosis Osteoporosis and Other Conditions What People With Diabetes Need to Know About Osteoporosis Publication available in: ... focus(); */ } //--> Print-Friendly Page April 2016 What Is Diabetes? Diabetes is a disorder of metabolism, a term ...

  11. What People with Asthma Need to Know about Osteoporosis

    MedlinePlus

    ... Osteoporosis Osteoporosis and Other Conditions What People With Asthma Need to Know About Osteoporosis Publication available in: ... focus(); */ } //--> Print-Friendly Page April 2016 What Is Asthma? According to the National Heart, Lung, and Blood ...

  12. Osteoporosis in menopause.

    PubMed

    Khan, Aliya; Fortier, Michel; Fortier, Michel; Reid, Robert; Abramson, Beth L; Blake, Jennifer; Desindes, Sophie; Dodin, Sylvie; Graves, Lisa; Guthrie, Bing; Johnston, Shawna; Khan, Aliya; Rowe, Timothy; Sodhi, Namrita; Wilks, Penny; Wolfman, Wendy

    2014-09-01

    Objectif : Offrir aux fournisseurs de soins de santé des lignes directrices quant à la prévention, au diagnostic et à la prise en charge clinique de l’ostéoporose postménopausique. Issues : Stratégies visant à identifier et à évaluer les femmes exposées à des risques élevés; utilisation de la densité minérale osseuse et des marqueurs du renouvellement des cellules osseuses pour l’évaluation du diagnostic et de la réaction à la prise en charge; et recommandations quant à la nutrition, à l’activité physique et au choix du traitement pharmacologique en vue de prévenir l’ostéoporose et d’en assurer la prise en charge. Résultats : La littérature publiée a été récupérée par l’intermédiaire de recherches menées dans MEDLINE et The Cochrane Library le 30 août et le 18 septembre 2012, respectivement, au moyen d’un vocabulaire contrôlé (p. ex. « osteoporosis », « bone density », « menopause ») et de mots clés (p. ex. « bone health », « bone loss », « BMD ») appropriés. Les résultats ont été restreints aux analyses systématiques, aux essais comparatifs randomisés / essais cliniques comparatifs et aux études observationnelles publiés en anglais ou en français. Les résultats ont été restreints aux documents publiés à partir de 2009. Les recherches ont été mises à jour de façon régulière et intégrées à la directive clinique jusqu’en mars 2013. La littérature grise (non publiée) a été identifiée par l’intermédiaire de recherches menées dans les sites Web d’organismes s’intéressant à l’évaluation des technologies dans le domaine de la santé et d’organismes connexes, dans des collections de directives cliniques, dans des registres d’essais cliniques, auprès de sociétés de spécialité médicale nationales et internationales, et dans des collections de directives cliniques Valeurs : La qualité des résultats est évaluée au moyen des critères d

  13. Physical activity does not influence the effect of antioxidant supplementation at nutritional doses on the incidence of impaired fasting glucose: a 7.5 year post-hoc analysis from the SU.VI.MAX study.

    PubMed

    Fezeu, L; Henegar, A; Kesse-Guyot, E; Julia, C; Galan, P; Hercberg, S; Ristow, M; Czernichow, S

    2010-10-01

    Supplementation with high doses of antioxidant vitamins prevents the insulin-sensitizing effects of physical exercise. However, little is known whether antioxidant supplementation affects the incidence of impaired fasting glucose (IFG). Data from 8938 subjects included in a randomized controlled trial on supplementation with antioxidants vitamins and trace elements at nutritional doses (SU.VI.MAX) were used to examine the effects of antioxidants on incident IFG after 7.5 years of follow-up, with and without stratification for daily physical exercise. The odds-ratio (95% CI) for developing an IFG among study participants receiving antioxidant supplementation was 1.34 (0.90-1.97) (p=0.33), in comparison to placebo. This risk did not vary significantly according to physical activity level (p for homogeneity=0.10). Supplementation with trace elements and antioxidants at nutritional doses apparently does not affect the incidence of IFG irrespective of self-reported physical exercise habits.

  14. Renal safety in patients treated with bisphosphonates for osteoporosis: a review.

    PubMed

    Miller, Paul D; Jamal, Sophie A; Evenepoel, Pieter; Eastell, Richard; Boonen, Steven

    2013-10-01

    Bisphosphonates are widely used for the treatment of osteoporosis and are generally well tolerated. However, the United States Food and Drug Administration safety reports have highlighted the issue of renal safety in bisphosphonate-treated patients. All bisphosphonates carry labeled "warnings" or a contraindication for use in patients with severe renal impairment (creatinine clearance <30 or <35 mL/min). Data from pivotal trials and their extension studies of bisphosphonates approved for the management of osteoporosis were obtained via PubMed, and were reviewed with support from published articles available on PubMed. Renal safety analyses of pivotal trials of oral alendronate, risedronate, and ibandronate for postmenopausal osteoporosis showed no short-term or long-term effects on renal function. Transient postinfusion increases in serum creatinine have been reported in patients receiving intravenous ibandronate and zoledronic acid; however, studies showed that treatment with these agents did not result in long-term renal function deterioration in clinical trial patients with osteoporosis. All bisphosphonate therapies have "warnings" for use in patients with severe renal impairment. Clinical trial results have shown that even in elderly, frail, osteoporotic patients with renal impairment, intravenous bisphosphonate therapy administration in accordance with the prescribing information did not result in long-term renal function decline. Physicians should follow guidelines for bisphosphonate therapies administration at all times.

  15. Fish oil supplemented for 9 months does not improve glycaemic control or insulin sensitivity in subjects with impaired glucose regulation: a parallel randomised controlled trial.

    PubMed

    Clark, Louise F; Thivierge, M C; Kidd, Claire A; McGeoch, Susan C; Abraham, Prakash; Pearson, Donald W M; Horgan, Graham W; Holtrop, Grietje; Thies, Frank; Lobley, Gerald E

    2016-01-14

    The effects of fish oil (FO) supplementation on glycaemic control are unclear, and positive effects may occur only when the phospholipid content of tissue membranes exceeds 14% as n-3 PUFA. Subjects (n 36, thirty-three completed) were paired based on metabolic parameters and allocated into a parallel double-blind randomised trial with one of each pair offered daily either 6 g of FO (3·9 g n-3 PUFA) or 6 g of maize oil (MO) for 9 months. Hyperinsulinaemic-euglycaemic-euaminoacidaemic (HIEGEAA) clamps (with [6,6 2H2 glucose]) were performed at the start and end of the intervention. Endogenous glucose production (EGP) and whole-body protein turnover (WBPT) were each measured after an overnight fast. The primary outcome involved the effect of oil type on insulin sensitivity related to glycaemic control. The secondary outcome involved the effect of oil type on WBPT. Subjects on FO (n 16) had increased erythrocyte n-3 PUFA concentrations >14%, whereas subjects on MO (n 17) had unaltered n-3 PUFA concentrations at 9%. Type of oil had no effect on fasting EGP, insulin sensitivity or total glucose disposal during the HIEGEAA clamp. In contrast, under insulin-stimulated conditions, total protein disposal (P=0·007) and endogenous WBPT (P=0·001) were both increased with FO. In an associated pilot study (n 4, three completed), although n-3 PUFA in erythrocyte membranes increased to >14% with the FO supplement, the enrichment in muscle membranes remained lower (8%; P<0·001). In conclusion, long-term supplementation with FO, at amounts near the safety limits set by regulatory authorities in Europe and the USA, did not alter glycaemic control but did have an impact on WBPT.

  16. Leucine supplementation does not affect protein turnover and impairs the beneficial effects of endurance training on glucose homeostasis in healthy mice.

    PubMed

    Costa Júnior, José M; Rosa, Morgana R; Protzek, André O; de Paula, Flávia M; Ferreira, Sandra M; Rezende, Luiz F; Vanzela, Emerielle C; Zoppi, Cláudio C; Silveira, Leonardo R; Kettelhut, Isis C; Boschero, Antonio C; de Oliveira, Camila A M; Carneiro, Everardo M

    2015-04-01

    Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.

  17. Safety issues with bisphosphonate therapy for osteoporosis.

    PubMed

    Suresh, Ernest; Pazianas, Michael; Abrahamsen, Bo

    2014-01-01

    Randomized controlled trials have demonstrated the efficacy of bisphosphonates (BP) in improving BMD and reducing fracture risk. Various safety issues that were not noted in clinical trials have, however, now emerged with post-marketing surveillance and increasing clinical experience. The risk of atypical femoral fracture could increase with long-term use of BP, although absolute risk is very small, particularly when balanced against benefits. A drug holiday should be considered after 5 years of treatment for patients at low risk of fracture, although there is no official recommendation regarding this to guide clinicians. Osteonecrosis of the jaw from low-dose BP used for osteoporosis is very rare, and mainly a complication with high-dose i.v. BP used in oncology. The risk of atrial fibrillation too is negligible, and a definite link cannot be established between BP and oesophageal cancer. BP should be avoided in patients with severe renal impairment and during pregnancy and lactation because of limited safety data. Further epidemiological and clinical data are required to establish safety of BP in long-term users (>5 years) and provide evidence-based management. PMID:23838024

  18. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  19. Impaired CD4+ and T-helper 17 cell memory response to Streptococcus pneumoniae is associated with elevated glucose and percent glycated hemoglobin A1c in Mexican Americans with type 2 diabetes mellitus.

    PubMed

    Martinez, Perla J; Mathews, Christine; Actor, Jeffrey K; Hwang, Shen-An; Brown, Eric L; De Santiago, Heather K; Fisher Hoch, Susan P; McCormick, Joseph B; Mirza, Shaper

    2014-01-01

    Individuals with type 2 diabetes are significantly more susceptible to pneumococcal infections than healthy individuals of the same age. Increased susceptibility is the result of impairments in both innate and adaptive immune systems. Given the central role of T-helper 17 (Th17) and T-regulatory (Treg) cells in pneumococcal infection and their altered phenotype in diabetes, this study was designed to analyze the Th17 and Treg cell responses to a whole heat-killed capsular type 2 strain of Streptococcus pneumoniae. Patients with diabetes demonstrated a lower frequency of total CD+T-cells, which showed a significant inverse association with elevated fasting blood glucose. Measurement of specific subsets indicated that those with diabetes had, low intracellular levels of interleukin (IL)-17, and lower pathogen-specific memory CD4+ and IL-17+ cell numbers. No significant difference was observed in the frequency of CD4+ and Th17 cells between those with and without diabetes. However, stratification of data by obesity indicated a significant increase in frequency of CD4+ and Th17 cells in obese individuals with diabetes compared with nonobese individual with diabetes. The memory CD+T-cell response was associated inversely with both fasting blood glucose and percent glycated hemoglobin A1c. This study demonstrated that those with type 2 diabetes have a diminished pathogen-specific memory CD4+ and Th17 response, and low percentages of CD+T-cells in response to S. pneumoniae stimulation.

  20. Medical treatment of vertebral osteoporosis.

    PubMed

    Lippuner, K

    2003-10-01

    Although osteoporosis is a systemic disease, vertebral fractures due to spinal bone loss are a frequent, sometimes early and often neglected complication of the disease, generally associated with considerable disability and pain. As osteoporotic vertebral fractures are an important predictor of future fracture risk, including at the hip, medical management is targeted at reducing fracture risk. A literature search for randomized, double-blind, prospective, controlled clinical studies addressing medical treatment possibilities of vertebral fractures in postmenopausal Caucasian women was performed on the leading medical databases. For each publication, the number of patients with at least one new vertebral fracture and the number of randomized patients by treatment arm was retrieved. The relative risk (RR) and the number needed to treat (NNT, i.e. the number of patients to be treated to avoid one radiological vertebral fracture over the duration of the study), together with the respective 95% confidence intervals (95%CI) were calculated for each study. Treatment of steroid-induced osteoporosis and treatment of osteoporosis in men were reviewed separately, based on the low number of publications available. Forty-five publications matched with the search criteria, allowing for analysis of 15 different substances tested regarding their anti-fracture efficacy at the vertebral level. Bisphosphonates, mainly alendronate and risedronate, were reported to have consistently reduced the risk of a vertebral fracture over up to 50 months of treatment in four (alendronate) and two (risedronate) publications. Raloxifene reduced vertebral fracture risk in one study over 36 months, which was confirmed by 48 months' follow-up data. Parathormone (PTH) showed a drastic reduction in vertebral fracture risk in early studies, while calcitonin may also be a treatment option to reduce fracture risk. For other substances published data are conflicting (calcitriol, fluoride) or insufficient

  1. The natural approach to osteoporosis

    PubMed Central

    Bartolozzi, Emanuela

    2015-01-01

    Summary Osteoporosis is normally the result of a wrong life-style (diet, physical inactivity, smoke, dental hygiene, intestinal dysbiosis,…) and environmental toxicity which stimulate the chronic expression of inflammatory genes and alter the immuno-endocrine balance. A natural approch should face all the factors involved, leading the patients to become aware of their own responsability, and helping them with natural therapies, healthy food and life-style which support their body in the process of self-healing. PMID:26604935

  2. How porphyrinogenic drugs modeling acute porphyria impair the hormonal status that regulates glucose metabolism. Their relevance in the onset of this disease.

    PubMed

    Matkovic, Laura B; D'Andrea, Florencia; Fornes, Daiana; San Martín de Viale, Leonor C; Mazzetti, Marta B

    2011-11-28

    This work deals with the study of how porphyrinogenic drugs modeling acute porphyrias interfere with the status of carbohydrate-regulating hormones in relation to key glucose enzymes and to porphyria, considering that glucose modulates the development of the disease. Female Wistar rats were treated with 2-allyl-2-isopropylacetamide (AIA) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) using different doses of AIA (100, 250 and 500mg/kg body weight) and a single dose of DDC (50mg DDC/kg body weight). Rats were sacrificed 16h after AIA/DDC administration. In the group treated with the highest dose of AIA (group H), hepatic 5-aminolevulinic acid synthase (ALA-S) increased more than 300%, phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) activities were 43% and 46% lower than the controls, respectively, plasmatic insulin levels exceeded normal values by 617%, and plasmatic glucocorticoids (GC) decreased 20%. GC results are related to a decrease in corticosterone (CORT) adrenal production (33%) and a significant reduction in its metabolization by UDP-glucuronosyltransferase (UGT) (62%). Adrenocorticotropic hormone (ACTH) stimulated adrenal production 3-fold and drugs did not alter this process. Thus, porphyria-inducing drugs AIA and DDC dramatically altered the status of hormones that regulate carbohydrate metabolism increasing insulin levels and reducing GC production, metabolization and plasmatic levels. In this acute porphyria model, gluconeogenic and glycogenolytic blockages caused by PEPCK and GP depressed activities, respectively, would be mainly a consequence of the negative regulatory action of insulin on these enzymes. GC could also contribute to PEPCK blockage both because they were depressed by the treatment and because they are positive effectors on PEPCK. These disturbances in carbohydrates and their regulation, through ALA-S de-repression, would enhance the porphyria state promoted by the drugs on heme synthesis and destruction

  3. Balance control in elderly people with osteoporosis.

    PubMed

    Hsu, Wei-Li; Chen, Chao-Yin; Tsauo, Jau-Yih; Yang, Rong-Sen

    2014-06-01

    Osteoporosis is a prevalent health concern among older adults and is associated with an increased risk of falls that incur fracture, injury, or mortality. Identifying the risk factors of falls within this population is essential for the development of effective regimes for fall prevention. Studies have shown that muscle quality and good posture alignments are critical for balance control in elderly individuals. People with osteoporosis often have muscle weakness and increased spine kyphosis leading to vertebral fractures and poor balance control, or even falls. Therefore, improving muscle quality, strengthening weak muscles, and correcting postural alignment are essential elements for the prevention of falls and fractures in older adults with osteoporosis. This review reports the necessary information regarding the critical factors of balance control in older adults with osteoporosis, as well as testing the clinical innovations of exercise training to improve the long-term prognosis of osteoporosis in this vulnerable population.

  4. Treatment of osteoporosis in renal insufficiency.

    PubMed

    Schipper, Lydia G; Fleuren, Hanneke W H A; van den Bergh, Joop P W; Meinardi, Johan R; Veldman, Bart A J; Kramers, Cornelis

    2015-08-01

    Patients with osteoporosis often have chronic kidney disease (CKD). CKD is associated with bone and mineral disturbances, renal osteodystrophy, which like osteoporosis leads to a higher risk of fractures. Bisphosphonates are first-line therapy for osteoporosis; however, these are contra-indicated in patients with a GFR <30 ml/min. In this article, we have reviewed the diagnosis and treatment of osteoporosis in moderate to severe renal failure from data of clinical trials. Results have shown that osteoporosis patients and severe CKD with no signs of renal osteodystrophy, oral bisphosphonates (risedronate) seem to be a safe choice. Renal function and PTH should subsequently be monitored strictly. Denosumab, with regularly monitoring of calcium and adequate vitamin D levels or raloxifene are a possible second choice. In any case, one should be certain that there is no adynamic bone before treatment can be started. If there is any doubt, bone biopsies should be taken. PMID:25630310

  5. Current and future treatments of secondary osteoporosis.

    PubMed

    Soriano, Raquel; Herrera, Sabina; Nogués, Xavier; Diez-Perez, Adolfo

    2014-12-01

    Osteoporosis is commonly associated with menopause and ageing. It can, however, also be caused by diseases, lifestyle, genetic diseases, drug therapies and other therapeutic interventions. In cases of secondary osteoporosis, a common rule is the management of the underlying condition. Healthy habits and calcium and vitamin D supplementation are also generally advised. In cases of high risk of fracture, specific antiosteoporosis medications should be prescribed. For most conditions, the available evidence is limited. Special attention should be paid to possible contraindications of drugs used for the treatment of postmenopausal or senile osteoporosis. Bisphosphonates are the most widely used drugs in secondary osteoporosis, and denosumab or teriparatide have been also assessed in some cases. Important research is needed to develop more tailored strategies, specific to the peculiarities of the different types of secondary osteoporosis.

  6. The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil

    PubMed Central

    Baccaro, Luiz Francisco; Conde, Délio Marques; Costa-Paiva, Lúcia; Pinto-Neto, Aarão Mendes

    2015-01-01

    Brazil has an aging population, with an associated increase in the prevalence of chronic diseases. Postmenopausal osteoporosis is of particular concern because it leads to an increased risk of fractures, with subsequent negative impacts on health in older women. In recent years, efforts have been made to better understand the epidemiology of osteoporosis in Brazil, and to manage both direct and indirect costs to the Brazilian health care system. The reported prevalence of osteoporosis among postmenopausal women in Brazil varies from 15% to 33%, depending on the study methodology and the use of bone densitometry data or self-reporting by participants. A diagnosis of osteoporosis can be made on the basis of fractures occurring without significant trauma or on the basis of low bone mineral density measured by dual energy X-ray absorptiometry. To reduce the risk of osteoporosis, all postmenopausal women should be encouraged to maintain a healthy lifestyle, which includes physical activity and a balanced diet. Smoking and alcohol use should also be addressed. Special attention should be given to interventions to reduce the risk of falls, especially among older women. Calcium intake should be encouraged, preferably through diet. The decision to recommend calcium supplementation should be made individually because there is concern about a possible increased risk of cardiovascular disease associated with this treatment. Brazilian women obtain a minimal amount of vitamin D from their diet, and supplementation is warranted in women with little exposure to solar ultraviolet-B radiation. For women diagnosed with osteoporosis, some form of pharmacologic therapy should be initiated. Compliance with treatment should be monitored, and the treatment period should be individualized for each patient. The Brazilian government provides medication for osteoporosis through the public health system free of charge, but without proper epidemiological knowledge, the implementation of public

  7. The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil.

    PubMed

    Baccaro, Luiz Francisco; Conde, Délio Marques; Costa-Paiva, Lúcia; Pinto-Neto, Aarão Mendes

    2015-01-01

    Brazil has an aging population, with an associated increase in the prevalence of chronic diseases. Postmenopausal osteoporosis is of particular concern because it leads to an increased risk of fractures, with subsequent negative impacts on health in older women. In recent years, efforts have been made to better understand the epidemiology of osteoporosis in Brazil, and to manage both direct and indirect costs to the Brazilian health care system. The reported prevalence of osteoporosis among postmenopausal women in Brazil varies from 15% to 33%, depending on the study methodology and the use of bone densitometry data or self-reporting by participants. A diagnosis of osteoporosis can be made on the basis of fractures occurring without significant trauma or on the basis of low bone mineral density measured by dual energy X-ray absorptiometry. To reduce the risk of osteoporosis, all postmenopausal women should be encouraged to maintain a healthy lifestyle, which includes physical activity and a balanced diet. Smoking and alcohol use should also be addressed. Special attention should be given to interventions to reduce the risk of falls, especially among older women. Calcium intake should be encouraged, preferably through diet. The decision to recommend calcium supplementation should be made individually because there is concern about a possible increased risk of cardiovascular disease associated with this treatment. Brazilian women obtain a minimal amount of vitamin D from their diet, and supplementation is warranted in women with little exposure to solar ultraviolet-B radiation. For women diagnosed with osteoporosis, some form of pharmacologic therapy should be initiated. Compliance with treatment should be monitored, and the treatment period should be individualized for each patient. The Brazilian government provides medication for osteoporosis through the public health system free of charge, but without proper epidemiological knowledge, the implementation of public

  8. Older Men's Explanatory Model for Osteoporosis

    PubMed Central

    Solimeo, Samantha L.; Weber, Thomas J.; Gold, Deborah T.

    2011-01-01

    Purpose: To explore the nature of men’s experiences of osteoporosis by developing an understanding of men’s explanatory models. Design and Methods: This descriptive study invited community-residing male osteoporosis patients aged 50+ to participate in interviews about osteoporosis. Participants were recruited from a hospital-affiliated bone clinic. Men completed a questionnaire on demographic, medication, and fracture-related information, and descriptive statistics were calculated using Statistical Package for the Social Sciences. Interviews elicited the 5 domains of men’s explanatory model (Kleinman, 1987) and open-ended information regarding men’s experiences living with this disorder. Narrative data were analyzed both for content and inductively. Results: Men’s narratives demonstrate that an osteoporosis diagnosis is accompanied by negative psychosocial sequelae in this population. Men defined it as a disease of the bone that may increase the likelihood of fracture and that may cause pain. Participants reported that osteoporosis is diagnosed by bone mineral density (BMD) score and that disease progression is measured by a decrease in BMD and an increase in pain or new fractures. Men described a reluctance to take medications, dissatisfaction with side effects, and a perception that osteoporosis treatment in men had little basis in long-term medication efficacy or safety data. They viewed osteoporosis as a degenerative chronic disease with an overall stable course. Implications: Participants’ explanatory models for osteoporosis are substantively different than clinical models. These differences provide a foundation for exploring the importance of gender to osteoporosis outcomes, a context for making sense of men’s bone health behavior, and a clear case for an increase in advocacy and educational efforts for men who have or are at risk for osteoporosis. PMID:21310768

  9. Bisphosphonates for treatment of osteoporosis

    PubMed Central

    Brown, Jacques P.; Morin, Suzanne; Leslie, William; Papaioannou, Alexandra; Cheung, Angela M.; Davison, Kenneth S.; Goltzman, David; Hanley, David Arthur; Hodsman, Anthony; Josse, Robert; Jovaisas, Algis; Juby, Angela; Kaiser, Stephanie; Karaplis, Andrew; Kendler, David; Khan, Aliya; Ngui, Daniel; Olszynski, Wojciech; Ste-Marie, Louis-Georges; Adachi, Jonathan

    2014-01-01

    Abstract Objective To outline the efficacy and risks of bisphosphonate therapy for the management of osteoporosis and describe which patients might be eligible for bisphosphonate “drug holiday.” Quality of evidence MEDLINE (PubMed, through December 31, 2012) was used to identify relevant publications for inclusion. Most of the evidence cited is level II evidence (non-randomized, cohort, and other comparisons trials). Main message The antifracture efficacy of approved first-line bisphosphonates has been proven in randomized controlled clinical trials. However, with more extensive and prolonged clinical use of bisphosphonates, associations have been reported between their administration and the occurrence of rare, but serious, adverse events. Osteonecrosis of the jaw and atypical subtrochanteric and diaphyseal femur fractures might be related to the use of bisphosphonates in osteoporosis, but they are exceedingly rare and they often occur with other comorbidities or concomitant medication use. Drug holidays should only be considered in low-risk patients and in select patients at moderate risk of fracture after 3 to 5 years of therapy. Conclusion When bisphosphonates are prescribed to patients at high risk of fracture, their antifracture benefits considerably outweigh their potential for harm. For patients taking bisphosphonates for 3 to 5 years, reassess the need for ongoing therapy. PMID:24733321

  10. Nanohydroxyapatite application to osteoporosis management.

    PubMed

    Noor, Zairin

    2013-01-01

    Hydroxyapatite is chemically related to the inorganic component of bone matrix as a complex structure with the formula of Ca10(OH)2(PO4)6. Previous studies have reported the application of microsized hydroxyapatite to bone regeneration, but the result is not satisfied. The limitation comes from the size of hydroxyapatite. In addition, the duration of treatment is very long. The advantages of hydroxyapatite nanocrystal are the osteoconduction, bioresorption, and contact in close distance. Crystal in osteoporotic bone is calcium phosphate hydroxide with the chemical formula of Ca10(OH)2(PO4)6. Crystal of normal bone is sodium calcium hydrogen carbonate phosphate hydrate with the chemical formula of Ca8H2(PO4)6 ·H2O-NaHCO3-H2O. The recent development is applying nanobiology approach to hydroxyapatite. This is based on the concept that the mineral atoms arranged in a crystal structure of hydroxyapatite can be substituted or incorporated by the other mineral atoms. In conclusion, the basic elements of hydroxyapatite crystals, composed of atomic minerals in a certain geometric pattern, and their relationship to the bone cell biological activity have opened opportunities for hydroxyapatite crystals supplement application on osteoporosis. Understanding of the characteristics of bone hydroxyapatite crystals as well as the behavior of mineral atom in the substitution will have a better impact on the management of osteoporosis. PMID:24288653

  11. New anabolic therapies in osteoporosis.

    PubMed

    Rubin, Mishaela R; Bilezikian, John P

    2003-03-01

    Anabolic agents represent an important new advance in the therapy of osteoporosis. Their potential might be substantially greater than the anti-resorptives. Because the anti-resorptives and anabolic agents work by completely distinct mechanisms of action, it is possible that the combination of agents could be significantly more potent than either agent alone. Recent evidence suggests that a plateau in BMD might occur after prolonged exposure to PTH. Anti-resorptive therapy during or after anabolic therapy might prevent this skeletal adaptation. Protocols to consider anabolic agents as intermittent recycling therapy would be of interest. Of all the anabolics, PTH is the most promising. However, there are unanswered questions about PTH. More studies are needed to document an anabolic effect on cortical bone. More large-scale studies are needed to further determine the reduction in nonvertebral fractures with PTH, especially at the hip. In the future, PTH is likely to be modified for easier and more targeted delivery. Oral or transdermal delivery systems may become available. Recently, Gowen et al have described an oral calcilytic molecule that antagonizes the parathyroid cell calcium receptor, thus stimulating the endogenous release of PTH. This approach could represent a novel endogenous delivery system for intermittent PTH administration. Rising expectations that anabolic therapies for osteoporosis will soon play a major role in treating this disease are likely to fuel further studies and the development of even more novel approaches to therapy. PMID:12699304

  12. Osteoporosis

    MedlinePlus

    ... with weak bones in their spine gradually lose height and their posture becomes hunched over. Over time a bent spine can make it hard to walk or even sit up. Broken hips are a very serious problem as we age. ...

  13. Osteoporosis

    MedlinePlus

    ... or she may suggest you have a bone density scan. A common test that measures bone density is called a dual energy X-ray absorptiometry (DEXA). This test measures the density of the bones in your hips, spine and ...

  14. Osteoporosis

    MedlinePlus

    ... foods and regular exercise, such as walking or running, to strengthen bones. A doctor may also recommend ... In other words, play a lot! Playing sports, running, jumping, dancing — whatever you like to do. Don' ...

  15. [Osteoporosis].

    PubMed

    Reza-Albarrán, Alfredo Adolfo

    2016-09-01

    Calcium intake has a role on the development of peak bone mass, and has a mild impact on the maintenance of bone mass during adulthood and the reduction of bone loss rate in postmenopausal women and the elderly in both genders. Calcium dietary intake should be privileged over supplementation. Dairy products are the main calcium dietary sources. Prospective studies have not clearly demonstrated an effect on the prevention of fractures, because of the practical difficulties of a long follow-up in order to get to solid conclusions; however the physiological rationale is that an adequate calcium intake and 25(OH) vitamin D levels exceeding 20 ng/ml is beneficial for bone health and may decrease to certain extent the risk of fractures.

  16. [Osteoporosis].

    PubMed

    Reza-Albarrán, Alfredo Adolfo

    2016-09-01

    Calcium intake has a role on the development of peak bone mass, and has a mild impact on the maintenance of bone mass during adulthood and the reduction of bone loss rate in postmenopausal women and the elderly in both genders. Calcium dietary intake should be privileged over supplementation. Dairy products are the main calcium dietary sources. Prospective studies have not clearly demonstrated an effect on the prevention of fractures, because of the practical difficulties of a long follow-up in order to get to solid conclusions; however the physiological rationale is that an adequate calcium intake and 25(OH) vitamin D levels exceeding 20 ng/ml is beneficial for bone health and may decrease to certain extent the risk of fractures. PMID:27603893

  17. Bone regeneration associated with nontherapeutic and therapeutic surface coatings for dental implants in osteoporosis.

    PubMed

    Alghamdi, Hamdan S; Jansen, John A

    2013-06-01

    Oral implantology is considered as the treatment of choice for replacing missing teeth in elderly people. However, implant complications may occur in patients with osteoporosis. The pathogenesis underlying osteoporosis is due to an alteration in bone cell response to hormonal, nutritional, and aging factors. For such challenging situations, improved bone regeneration has been shown around dental implants for certain surface modifications. These modifications include coatings of titanium implants with calcium phosphate (CaP) ceramics. Surface coating developments also allow for the addition of organic biomolecules, like growth factors, into the inorganic coatings that increase the bone formation process at the bone-implant interface. The application of therapeutic-based coatings is becoming a rapidly growing research field of interest. CaP-coated implants have the ability to incorporate anti-osteoporotic drugs, which then can be locally released over time from an implant surface in a controlled manner. Thus, it can be anticipated that nontherapeutic and/or therapeutic coated implants can significantly increase low bone density as well as improve impaired bone regeneration in osteoporosis. This review aims to provide a thorough understanding of the underlying mechanisms for impaired bone regeneration around dental implants in osteoporosis. Secondly, the review will focus on biological interactions and beneficial role of the surface-coated (i.e., nontherapeutics and therapeutics) bone implants in osteoporotic bone tissue.

  18. Which Fractures Are Most Attributable to Osteoporosis?

    PubMed Central

    Warriner, Amy H.; Patkar, Nivedita M.; Curtis, Jeffrey R.; Delzell, Elizabeth; Gary, Lisa; Kilgore, Meredith; Saag, Kenneth G.

    2014-01-01

    Background Determining anatomic sites and circumstances under which a fracture may be a consequence of osteoporosis is a topic of ongoing debate and controversy that is important to both clinicians and researchers. Methods We conducted a systematic literature review and generated an evidence report on fracture risk based on specific anatomic bone sites as well as fracture diagnosis codes. Using the RAND/UCLA appropriateness process, we convened a multi-disciplinary panel of 11 experts who rated fractures according to their likelihood of being due to osteoporosis based on the evidence report. Fracture sites (as determined by ICD-CM codes) were stratified by four clinical risk factor categories based on age, sex, race/ethnicity (African- American and Caucasian) and presence or absence of trauma. Results Consistent with current clinical experience, the fractures rated most likely due to osteoporosis were the femoral neck, pathologic fractures of the vertebrae, and lumbar and thoracic vertebral fractures. The fractures rated least likely due to osteoporosis were open proximal humerus fractures, skull, and facial bones. The expert panel rated open fractures of the arm (except proximal humerus) and fractures of the tibia/fibula, patella, ribs, and sacrum as being highly likely due to osteoporosis in older Caucasian women but a lower likelihood in younger African American men. Conclusion Osteoporosis attribution scores for all fracture sites were determined by a multidisciplinary expert panel to provide an evidence-based continuum of the likelihood of a fracture being associated with osteoporosis. PMID:21130353

  19. Osteoporosis: screening and treatment in women.

    PubMed

    Pollycove, Ricki; Simon, James A

    2012-09-01

    Osteoporosis is frequently called the silent disease because it lacks symptoms or signs until a fracture has occurred. Osteoporosis is common in aging women because of progressive postmenopausal bone loss. Fractures related to bone loss can result in reduced quality of life, lengthy hospital stays, long-term institutionalization, and death. Early diagnosis and treatment of low bone mass to reduce fracture risk is a cost-effective element of routine health care for women. With appropriate patient screening, ObGyn care providers can implement effective interventions before fractures occur, thereby improving patients' quality of life and reducing society's osteoporosis-related costs.

  20. Secondary osteoporosis: differential diagnosis and workup.

    PubMed

    Diab, Dima L; Watts, Nelson B

    2013-12-01

    There are numerous causes of secondary osteoporosis including endocrine disorders, nutritional deficiencies, and other miscellaneous conditions and medications. It is essential to identify and address these factors to appropriately manage patients with osteoporosis. Failure to do so may result in further bone loss despite pharmacologic intervention for osteoporosis. The following diagnostic studies should be considered initially: complete blood count, complete metabolic panel, 25-hydroxyvitamin D level, testosterone level in men, and 24-hour urinary calcium, sodium, and creatinine. Further testing may be performed in selected patients depending on the clinical picture and results of the initial workup. PMID:24100597

  1. Uteroplacental insufficiency leads to hypertension, but not glucose intolerance or impaired skeletal muscle mitochondrial biogenesis, in 12-month-old rats

    PubMed Central

    Tran, Melanie; Young, Margaret E; Jefferies, Andrew J; Hryciw, Deanne H; Ward, Michelle M; Fletcher, Erica L; Wlodek, Mary E; Wadley, Glenn D

    2015-01-01

    Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with “second hits.” The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction. PMID:26416974

  2. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome.

    PubMed

    Jiang, Linlin; Huang, Jia; Chen, Yaxiao; Yang, Yabo; Li, Ruiqi; Li, Yu; Chen, Xiaoli; Yang, Dongzi

    2016-07-01

    This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P < 0.0001) of homeostasis model assessment-insulin resistance after adjustment for age. Investigation of diagnostic values confirmed the optimal combination of BMI and miR-193b to explore the possibility of IGM in PCOS women with area under the curve of 0.752 (95 % CI 0.667-0.837, P < 0.001). Bioinformatics analysis indicated that the predicted target functions of these miRNAs mainly involved glycometabolism and ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.

  3. Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation.

    PubMed

    Park, Sunmin; Kang, Suna; Jeong, Do-Youn; Jeong, Seong-Yeop; Park, Jae Jung; Yun, Ho Sik

    2015-03-01

    Black carrots (Daucus carota L.) are rich in anthocyanins which contribute many health benefits, but are limited by bioavailability and instability when exposed to oxygen, heat and light. Fermenting black carrots may improve the stability, absorption and bioactivity of its anthocyanins. Here, we examined whether and by what mechanisms the long-term consumption of unfermented black carrot extract (BC) and its extracts fermented with Lactobacillus plantarum (BCLP) or Aspergillus oryzae (BCAO) might prevent menopausal symptoms including impaired energy, glucose and lipid metabolism in estrogen-deficient animals with diet-induced obesity. Ovariectomized (OVX) rats were fed four different high-fat diets containing 2 % dextrin (OVX-control), 2 % BC, 2 % BCLP, or 2 % BCAO for 12 weeks. Sham rats were fed high-fat diets containing 2 % dextrin. The contents of total anthocyanins increased in BCAO compared to BC and BCLP, whereas the contents of cyanidin-3-rutinosides, malvidin-3,5-diglycosides and delphine-3-glucoside were lower and cyanidin and malvidin were much higher in BCLP and BCAO than BC. Fat mass and weight gain were lower in descending order of OVX-control > BC and BCLP > BCAO due to increased energy expenditure and fat oxidation. However, BC, BCLP and especially BCAO all normalized HOMA-IR, an indicator of insulin resistance and glucose intolerance, in OVX rats. OVX increased serum total and LDL cholesterol and triglycerides, but BC, BCLP and BCAO significantly prevented the increases. BCAO markedly decreased hepatic triglyceride levels by increasing gene expressions of CPT-1 and PPAR-α, which are involved in fatty acid oxidation, and decreasing mRNA expressions of FAS and SREBP-1c, which are associated with fatty acid synthesis. This was related to increased pAMPK → pACC signaling and improved hepatic insulin signaling (pAkt → pFOXO-1). Cyanidin and malvidin markedly decreased fat accumulation in 3T3-L1 adipocytes by increasing CPT-1 and

  4. Validation of the male osteoporosis knowledge quiz.

    PubMed

    Gaines, Jean M; Marx, Katherine A; Narrett, Matthew; Caudill, JoAnn; Landsman, Jeffrey; Parrish, John M

    2011-01-01

    The purpose of this study was to validate the six-item Men's Osteoporosis Knowledge Quiz (MOKQ). The MOKQ asks questions about risk factors that are pertinent to men, such as the risk for developing low bone mass related to hormone treatment for prostate cancer and the importance of testosterone for bone mass. A survey was sent to 242 men with a mean age of 83.2 years. The mean number of questions answered correctly in response to the six-item MOKQ was 2.37. Convergent validity was examined by correlating the score achieved on the MOKQ with the score achieved on the total Facts on Osteoporosis Quiz. The Pearson correlation coefficient for the MOKQ and the Facts on Osteoporosis Quiz was r = .76. Reliability was demonstrated by computing a Cronbach's alpha for the MOKQ (r = .72). The MOKQ was found to have adequate reliability and validity in assessing older men's knowledge about osteoporosis.

  5. Osteoporosis Associated with Antipsychotic Treatment in Schizophrenia

    PubMed Central

    Wu, Haishan; Deng, Lu; Zhao, Lipin; Zhao, Jingping; Li, Lehua; Chen, Jindong

    2013-01-01

    Schizophrenia is one of the most common global mental diseases, with prevalence of 1%. Patients with schizophrenia are predisposed to diabetes, coronary heart disease, hypertension, and osteoporosis, than the normal. In comparison with the metabolic syndrome, for instance, there are little reports about osteoporosis which occurs secondary to antipsychotic-induced hyperprolactinaemia. There are extensive recent works of literature indicating that osteoporosis is associated with schizophrenia particularly in patients under psychotropic medication therapy. As osteoporotic fractures cause significantly increased morbidity and mortality, it is quite necessary to raise the awareness and understanding of the impact of antipsychotic-induced hyperprolactinaemia on physical health in schizophrenia. In this paper, we will review the relationship between schizophrenia, antipsychotic medication, hyperprolactinaemia, and osteoporosis. PMID:23690768

  6. Vitamin D and osteoporosis-related fracture.

    PubMed

    Binkley, Neil

    2012-07-01

    The age-related decline in mass and quality of bone (osteoporosis) and muscle (sarcopenia) leads to an exponential increased risk for osteoporosis-related fracture with advancing age in older adults. As vitamin D inadequacy plausibly causally contributes to these declines, optimization of vitamin D status might reduce the deterioration of bone and muscle function with age. Putative mechanisms by which vitamin D inadequacy may increase fracture risk include both direct and indirect effects on bone and muscle. However, controversy currently clouds the role(s) of vitamin D in osteoporosis-related fracture, the amount of vitamin D required and the optimal 25-hydroxyvitamin D level. This review provides an overview of current knowledge and suggests a clinical approach to vitamin D status in older adults with, or at risk for, osteoporosis-related fracture. These recommendations are likely to evolve as additional data becomes available.

  7. Obesity: Friend or foe for osteoporosis.

    PubMed

    Sharma, Sudhaa; Tandon, Vishal R; Mahajan, Shagun; Mahajan, Vivek; Mahajan, Annil

    2014-01-01

    Osteoporosis and obesity are worldwide health problems. Interestingly, both are associated with significant morbidity and mortality. Both the diseases have common linkage as bone marrow mesenchymal stromal cells are the common precursors for both osteoblasts and adipocytes. Aging may shift composition of bone marrow by increasing adipocytes, osteoclast activity, and decreasing osteoblast activity, resulting into osteoporosis. Adipocytes secret leptin, adiponectin, adipsin, as well as proinflammatory cytokines, that contributes in pathogenesis of osteoporosis. This new concept supports the hypothesis, that the positive correlation of weight and body mass index (BMI) with bone mineral density (BMD) is not confirmed by large population-based studies. Thus, the previous concept, that obesity is protective for osteoporosis may not stand same as bone marrow fat deposition (adipogenesis) seen in obesity, is detrimental for bone health. PMID:24672199

  8. The burden of osteoporosis in Brazil.

    PubMed

    Marinho, Bruna Coelho Galvão; Guerra, Luiza Paulino; Drummond, Juliana Beaudette; Silva, Barbara C; Soares, Maria Marta Sarquis

    2014-07-01

    Osteoporotic fractures impose severe physical, psychosocial, and financial burden both to the patient and the society. Studies on the prevalence of osteoporosis and fragility fractures in Brazil show a wide variation, due to differences in sample size, the population studied, and methodologies. Few studies have been conducted in Brazil about the cost-effectiveness analyses of different intervention options aimed at the diagnosis and treatment of osteoporosis. Investigation and treatment strategies based on cost-effectiveness and scientific evidence are essential in the preparation of public health policies with the ultimate goal of reducing the incidence of fractures and, consequently, the direct and indirect costs associated with them. This article reviews the Brazilian burden of osteoporosis in terms of the prevalence and fractures attributable to the disease, the costs related to the investigation and management, as well as the impact of osteoporosis on the population as a whole and on affected individuals.

  9. Treatment of primary osteoporosis in men.

    PubMed

    Giusti, Andrea; Bianchi, Gerolamo

    2015-01-01

    With the aging of the population worldwide, osteoporosis and osteoporotic fractures are becoming a serious health care issue in the Western world. Although less frequent than in women, osteoporosis in men is a relatively common problem. Hip and vertebral fractures are particularly relevant, being associated with significant mortality and disability. Since bone loss and fragility fractures in men have been recognized as serious medical conditions, several randomized controlled trials (RCTs) have been undertaken in males with osteoporosis to investigate the anti-fracture efficacy of the pharmacological agents commonly used to treat postmenopausal osteoporosis. Overall, treatments for osteoporosis in men are less defined than in women, mainly due to the fact that there are fewer RCTs performed in male populations, to the relatively smaller sample sizes, and to the lack of long-term extension studies. However, the key question is whether men are expected to respond differently to osteoporosis therapies than women. The pharmacological properties of bisphosphonates, teriparatide, denosumab, and strontium ranelate make such differentiation unlikely, and available clinical data support their efficacy in men with primary osteoporosis as well as in women. In a series of well-designed RCTs, alendronate, risedronate, zoledronic acid, and teriparatide were demonstrated to reduce the risk of new vertebral fractures in men presenting with primary osteoporosis (including osteoporosis associated with low testosterone levels) and to improve the bone mineral density (BMD). In preliminary studies, ibandronate, denosumab, and strontium ranelate also showed their beneficial effects on surrogate outcomes (BMD and markers of bone turnover) in men with osteoporosis. Although direct evidence about their non-vertebral anti-fracture efficacy are lacking, the effects of bisphosphonates, denosumab, teriparatide, and strontium ranelate on surrogate outcomes (BMD and markers of bone turnover

  10. Treatment of primary osteoporosis in men.

    PubMed

    Giusti, Andrea; Bianchi, Gerolamo

    2015-01-01

    With the aging of the population worldwide, osteoporosis and osteoporotic fractures are becoming a serious health care issue in the Western world. Although less frequent than in women, osteoporosis in men is a relatively common problem. Hip and vertebral fractures are particularly relevant, being associated with significant mortality and disability. Since bone loss and fragility fractures in men have been recognized as serious medical conditions, several randomized controlled trials (RCTs) have been undertaken in males with osteoporosis to investigate the anti-fracture efficacy of the pharmacological agents commonly used to treat postmenopausal osteoporosis. Overall, treatments for osteoporosis in men are less defined than in women, mainly due to the fact that there are fewer RCTs performed in male populations, to the relatively smaller sample sizes, and to the lack of long-term extension studies. However, the key question is whether men are expected to respond differently to osteoporosis therapies than women. The pharmacological properties of bisphosphonates, teriparatide, denosumab, and strontium ranelate make such differentiation unlikely, and available clinical data support their efficacy in men with primary osteoporosis as well as in women. In a series of well-designed RCTs, alendronate, risedronate, zoledronic acid, and teriparatide were demonstrated to reduce the risk of new vertebral fractures in men presenting with primary osteoporosis (including osteoporosis associated with low testosterone levels) and to improve the bone mineral density (BMD). In preliminary studies, ibandronate, denosumab, and strontium ranelate also showed their beneficial effects on surrogate outcomes (BMD and markers of bone turnover) in men with osteoporosis. Although direct evidence about their non-vertebral anti-fracture efficacy are lacking, the effects of bisphosphonates, denosumab, teriparatide, and strontium ranelate on surrogate outcomes (BMD and markers of bone turnover

  11. Iron loading: a risk factor for osteoporosis.

    PubMed

    Weinberg, E D

    2006-12-01

    Iron loaded persons are at increased risk for infection, neoplasia, arthropathy, cardiomyopathy and an array of endocrine and neurodegenerative diseases. This report summarizes evidence of increased risk of iron loading for osteoporosis. Iron suppresses bone remodeling apparently by decreasing osteoblast formation and new bone synthesis. Low molecular mass iron chelators as well as a natural protein iron chelator, lactoferrin, may be useful in prevention of osteoporosis.

  12. Advanced Glycation End Products Impair Glucose-Stimulated Insulin Secretion of a Pancreatic β-Cell Line INS-1-3 by Disturbance of Microtubule Cytoskeleton via p38/MAPK Activation.

    PubMed

    You, Jia; Wang, Zai; Xu, Shiqing; Zhang, Wenjian; Fang, Qing; Liu, Honglin; Peng, Liang; Deng, Tingting; Lou, Jinning

    2016-01-01

    Advanced glycation end products (AGEs) are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation. Exposed to large dose of AGEs, even though more insulin was synthesized, its secretion was significantly reduced from INS-1-3 cells. Further, AGEs treatment led to a time-dependent increase of depolymerized microtubules, which was accompanied by an increase of activated p38/MAPK in INS-1-3 cells. Pharmacological inhibition of p38/MAPK by SB202190 reversed microtubule depolymerization to a stabilized polymerization status but could not rescue the reduction of insulin release caused by AGEs. Taken together, these results suggest a novel role of AGEs-induced impairment of insulin secretion, which is partially due to a disturbance of microtubule dynamics that resulted from an activation of the p38/MAPK pathway. PMID:27635403

  13. Advanced Glycation End Products Impair Glucose-Stimulated Insulin Secretion of a Pancreatic β-Cell Line INS-1-3 by Disturbance of Microtubule Cytoskeleton via p38/MAPK Activation

    PubMed Central

    You, Jia; Xu, Shiqing; Zhang, Wenjian; Fang, Qing; Liu, Honglin; Peng, Liang; Deng, Tingting

    2016-01-01

    Advanced glycation end products (AGEs) are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation. Exposed to large dose of AGEs, even though more insulin was synthesized, its secretion was significantly reduced from INS-1-3 cells. Further, AGEs treatment led to a time-dependent increase of depolymerized microtubules, which was accompanied by an increase of activated p38/MAPK in INS-1-3 cells. Pharmacological inhibition of p38/MAPK by SB202190 reversed microtubule depolymerization to a stabilized polymerization status but could not rescue the reduction of insulin release caused by AGEs. Taken together, these results suggest a novel role of AGEs-induced impairment of insulin secretion, which is partially due to a disturbance of microtubule dynamics that resulted from an activation of the p38/MAPK pathway.

  14. Advanced Glycation End Products Impair Glucose-Stimulated Insulin Secretion of a Pancreatic β-Cell Line INS-1-3 by Disturbance of Microtubule Cytoskeleton via p38/MAPK Activation

    PubMed Central

    You, Jia; Xu, Shiqing; Zhang, Wenjian; Fang, Qing; Liu, Honglin; Peng, Liang; Deng, Tingting

    2016-01-01

    Advanced glycation end products (AGEs) are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation. Exposed to large dose of AGEs, even though more insulin was synthesized, its secretion was significantly reduced from INS-1-3 cells. Further, AGEs treatment led to a time-dependent increase of depolymerized microtubules, which was accompanied by an increase of activated p38/MAPK in INS-1-3 cells. Pharmacological inhibition of p38/MAPK by SB202190 reversed microtubule depolymerization to a stabilized polymerization status but could not rescue the reduction of insulin release caused by AGEs. Taken together, these results suggest a novel role of AGEs-induced impairment of insulin secretion, which is partially due to a disturbance of microtubule dynamics that resulted from an activation of the p38/MAPK pathway. PMID:27635403

  15. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    PubMed Central

    Færch, Kristine; Pacini, Giovanni; Nolan, John J.; Hansen, Torben; Tura, Andrea; Vistisen, Dorte

    2013-01-01

    OBJECTIVE We studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin sensitivity and β-cell function measured by gold-standard tests were reflected in the corresponding OGTT-derived estimates. RESEARCH DESIGN AND METHODS With validated methods, various aspects of glucose absorption were estimated from 12-point, 3-h, 75-g OGTTs in 66 individuals with normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), or isolated impaired glucose tolerance (i-IGT). Insulin sensitivity and β-cell function were measured with the euglycemic-hyperinsulinemic clamp and intravenous glucose tolerance tests, respectively. Surrogate markers of both conditions were calculated from OGTTs. RESULTS More rapid glucose absorption (P ≤ 0.036) and reduced late glucose absorption (P ≤ 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body size were taken into account (P > 0.28). Faster glucose absorption was related to higher fasting (P = 0.001) and lower 2-h (P = 0.001) glucose levels and to greater height and fat-free mass (P < 0.001). All OGTT-derived measures of insulin sensitivity, but only one of three measures of β-cell function, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests. CONCLUSIONS Glucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when estimating β-cell function from OGTTs in epidemiological studies. PMID:24062321

  16. Mechanisms of osteocyte stimulation in osteoporosis.

    PubMed

    Verbruggen, Stefaan W; Vaughan, Ted J; McNamara, Laoise M

    2016-09-01

    Experimental studies have shown that primary osteoporosis caused by oestrogen-deficiency results in localised alterations in bone tissue properties and mineral composition. Additionally, changes to the lacunar-canalicular architecture surrounding the mechanosensitive osteocyte have been observed in animal models of the disease. Recently, it has also been demonstrated that the mechanical stimulation sensed by osteocytes changes significantly during osteoporosis. Specifically, it was shown that osteoporotic bone cells experience higher maximum strains than healthy bone cells after short durations of oestrogen deficiency. However, in long-term oestrogen deficiency there was no significant difference between bone cells in healthy and normal bone. The mechanisms by which these changes arise are unknown. In this study, we test the hypothesis that complex changes in tissue composition and lacunar-canalicular architecture during osteoporosis alter the mechanical stimulation of the osteocyte. The objective of this research is to employ computational methods to investigate the relationship between changes in bone tissue composition and microstructure and the mechanical stimulation of osteocytes during osteoporosis. By simulating physiological loading, it was observed that an initial decrease in tissue stiffness (of 0.425GPa) and mineral content (of 0.66wt% Ca) relative to controls could explain the mechanical stimulation observed at the early stages of oestrogen deficiency (5 weeks post-OVX) during in situ bone cell loading in an oestrogen-deficient rat model of post-menopausal osteoporosis (Verbruggen et al., 2015). Moreover, it was found that a later increase in stiffness (of 1.175GPa) and mineral content (of 1.64wt% Ca) during long-term osteoporosis (34 weeks post-OVX), could explain the mechanical stimuli previously observed at a later time point due to the progression of osteoporosis. Furthermore, changes in canalicular tortuosity arising during osteoporosis were shown

  17. Osteoporosis in unstable adult scoliosis

    SciTech Connect

    Velis, K.P.; Healey, J.H.; Schneider, R.

    1988-12-01

    New noninvasive techniques as well as conventional methods were used to evaluate skeletal mass in the following three populations of adult white women as follows: (1) 79 subjects with preexisting idiopathic scoliosis designated as unstable (US) because of the associated presence in the lumbar spine of lateral spondylolisthesis with segmental instability; (2) 67 subjects with preexisting idiopathic scoliosis without lateral spondylolisthesis designated as stable (SS); and (3) 248 age-matched nonscoliotic controls. Ages in all three groups were categorized into premenopausal (25-44 years), perimenopausal (45-54 years), and postmenopausal (55-84 years). The results showed higher scoliosis morbidity in the US compared to the SS populations. The prevalence and severity of osteoporosis were markedly increased in US versus SS populations. Femoral neck density determined by dual-photon absorptiometry techniques averaged 26% to 48% lower in all age categories of US patients compared to controls. These changes were found in the youngest age groups, indicating reductions in bone mineral content earlier in the adult life of white women with a specific type of high-morbidity US characterized by the marker of lateral spondylolisthesis.

  18. Osteoporosis in survivors of early life starvation.

    PubMed

    Weisz, George M; Albury, William R

    2013-01-01

    The objective of this study was to provide evidence for the association of early life nutritional deprivation and adult osteoporosis, in order to suggest that a history of such deprivation may be an indicator of increased risk of osteoporosis in later life. The 'fetal programming' of a range of metabolic and cardiovascular disorders in adults was first proposed in the 1990s and more recently extended to disorders of bone metabolism. Localised famines during World War II left populations in whom the long-term effects of maternal, fetal and infantile nutritional deprivation were studied. These studies supported the original concept of 'fetal programming' but did not consider bone metabolism. The present paper offers clinical data from another cohort of World War II famine survivors - those from the Holocaust. The data presented here, specifically addressing the issue of osteoporosis, report on 11 Holocaust survivors in Australia (five females, six males) who were exposed to starvation in early life. The cases show, in addition to other metabolic disorders associated with early life starvation, various levels of osteoporosis, often with premature onset. The cohort studied is too small to support firm conclusions, but the evidence suggests that the risk of adult osteoporosis in both males and females is increased by severe starvation early in life - not just in the period from gestation to infancy but also in childhood and young adulthood. It is recommended that epidemiological research on this issue be undertaken, to assist planning for the future health needs of immigrants to Australia coming from famine affected backgrounds. Pending such research, it would be prudent for primary care health workers to be alert to the prima facie association between early life starvation and adult osteoporosis, and to take this factor into account along with other indicators when assessing a patient's risk of osteoporosis in later life.

  19. [Osteoporosis--prevention, diagnosis and treatment. A systematic literature review. SBU conclusions and summary].

    PubMed

    2003-11-01

    A report by the Swedish Council on Technology Assessment in Health Care (SBU) has reviewed, classified, and graded the scientific literature on prevention, diagnosis and treatment of osteoporosis. This article summarizes the overall conclusions. There is no scientific evidence to support the use of bone density measurement as a screening method in healthy, middle-aged individuals. Patients with osteoporosis-related fractures are an undertreated group as regards pharmacotherapy and other interventions to prevent new fractures. There are some evidence that physical exercise to reduce falls among elderly and hip protectors can prevent fractures. The combination therapy of calcium and vitamin D is shown to reduce the risk for hip fractures and other fractures except vertebral fractures in elderly women. Bisphosphonates are shown to reduce the number of fractures, mainly vertebral fractures. SERM is shown to reduce the risk for vertebral fractures in postmenopausal women with osteoporosis. Important risk factors for osteoporosis-related fractures that can be treated are physical inactivity, low weight, tobacco smoking, high alcohol consumption, tendency to fall, impaired vision, low exposure to sunlight, and use of corticosteroids. No particular diagnostic method or measurement site is optimal for determining the risk for fracture in all parts of the skeleton. The various measurement methods--dual energy x-ray absorbtiometry (DXA), ultrasound (QUS), and computed tomography (QCT)--are not directly comparable.

  20. Monitoring breath during oral glucose tolerance tests.

    PubMed

    Ghimenti, S; Tabucchi, S; Lomonaco, T; Di Francesco, F; Fuoco, R; Onor, M; Lenzi, S; Trivella, M G

    2013-03-01

    The evolution of breath composition during oral glucose tolerance tests (OGTTs) was analysed by thermal desorption/gas chromatography/mass spectrometry in 16 subjects and correlated to blood glucose levels. The glucose tolerance tests classified five of the subjects as diabetics, eight as affected by impaired glucose tolerance and three as normoglycaemic. Acetone levels were generally higher in diabetics (average concentration values: diabetics, 300 ± 40 ppbv; impaired glucose tolerance, 350 ± 30 ppbv; normoglycaemic, 230 ± 20 ppbv) but the large inter-individual variability did not allow us to identify the three groups by this parameter alone. The exhalation of 3-hydroxy-butan-2-one and butane-2,3-dione, likely due to the metabolization of glucose by bacteria in the mouth, was also observed. Future work will involve the extension of the analyses to other volatile compounds by attempting to improve the level of discrimination between the various classes of subjects. PMID:23446273

  1. Osteoporosis in paediatric patients with spina bifida

    PubMed Central

    Marreiros, Humberto Filipe; Loff, Clara; Calado, Eulalia

    2012-01-01

    The prevalence and morbidity associated with osteoporosis and fractures in patients with spina bifida (SB) highlight the importance of osteoporosis prevention and treatment in early childhood; however, the issue has received little attention. The method for the selection of appropriate patients for drug treatment has not been clarified. Objective To review the literature concerning fracture risks and low bone density in paediatric patients with SB. We looked for studies describing state-of-the-art treatments and for prevention of secondary osteoporosis. Methods Articles were identified through a search in the electronic database (PUBMED) supplemented with reviews of the reference lists of selected papers. The main outcome measures were incidence of fractures and risk factors for fracture, an association between bone mineral density (BMD) and occurrence of fracture, risk factors of low BMD, and effects of pharmacological and non-pharmacological treatments on BMD and on the incidence of fractures. We considered as a secondary outcome the occurrence of fractures in relation to the mechanism of injury. Results Results indicated that patients with SB are at increased risk for fractures and low BMD. Risk factors that may predispose patients to fractures include higher levels of neurological involvement, non-ambulatory status, physical inactivity, hypercalciuria, higher body fat levels, contractures, and a previous spontaneous fracture. Limitations were observed in the number and quality of studies concerning osteoporosis prevention and treatment in paediatric patients with SB. The safety and efficiency of drugs to treat osteoporosis in adults have not been evaluated satisfactorily in children with SB. PMID:22330186

  2. Development of osteoporosis animal model using micropigs.

    PubMed

    Kim, Sang-Woo; Kim, Kyoung-Shim; Solis, Chester D; Lee, Myeong-Seop; Hyun, Byung-Hwa

    2013-09-01

    Osteoporosis is a known major health problem and a serious disease of the bone, there has been a great need to develop more and newer animal models for this disease. Among animal models used for testing drug efficacy, the minipig model has become useful and effective due to its close similarity with humans (validity), particularly with the pharmacokinetics of compounds via subcutaneous administration, the structure and function of the organs, the morphology of bone and the overall metabolic nature. Based on these advantages, we sought to develop a new animal model of osteoporosis using micropig, which differs from other miniature pigs in the genetic background. Female micropigs were used for the induction of a moderate osteoporosis model by bilateral ovariectomy (OVX) and compared with shamoperated animals. For osteoporosis evaluation, clinical biomarkers such as blood osteocalcin (OSC) and parathyroid hormone (PTH) levels were measured, as well as bone mineral density (BMD) using micro-computed tomography (micro-CT). Compared to sham, OVX animals have decreased blood OSC level, while the blood PTH level increased in blood sera. In addition, we observed the significantly decreased BMDs of tibia region in OVX animals. Based on these results, we report that the micropig model developed in this study can be used to develop a new and effective medical method for diagnosis and treatment of osteoporosis.

  3. Modern Rehabilitation in Osteoporosis, Falls, and Fractures

    PubMed Central

    Dionyssiotis, Yannis; Skarantavos, Grigorios; Papagelopoulos, Panayiotis

    2014-01-01

    In prevention and management of osteoporosis, modern rehabilitation should focus on how to increase muscular and bone strength. Resistance exercises are beneficial for muscle and bone strength, and weight-bearing exercises help maintain fitness and bone mass. In subjects at higher risk for osteoporotic fractures, particular attention should be paid to improving balance – the most important element in falls prevention. Given the close interaction between osteoporosis and falls, prevention of fractures should be based on factors related to bone strength and risk factors for falls. Fractures are the most serious complication of osteoporosis and may be prevented. The use of modern spinal orthosis helps to reduce pain and improve posture. Vibration platforms are used in rehabilitation of osteoporosis, based on the concept that noninvasive, short-duration, mechanical stimulation could have an impact on osteoporosis risk. Pharmacologic therapy should be added for those at high risk of fracture, and vitamin D/calcium supplementation is essential in all prevention strategies. Success of rehabilitation in osteoporotic and fractured subjects through an individualized educational approach optimizes function to the highest level of independence while improving the overall quality of life. PMID:24963273

  4. Vitamin K₂ therapy for postmenopausal osteoporosis.

    PubMed

    Iwamoto, Jun

    2014-05-16

    Vitamin K may play an important role in the prevention of fractures in postmenopausal women with osteoporosis. Menatetrenone is the brand name of a synthetic vitamin K2 that is chemically identical to menaquinone-4. The present review study aimed to clarify the effect of menatetrenone on the skeleton in postmenopausal women with osteoporosis, by reviewing the results of randomized controlled trials (RCTs) in the literature. RCTs that investigated the effect of menatetrenone on bone mineral density (BMD), measured by dual-energy X-ray absorptiometry and fracture incidence in postmenopausal women with osteoporosis, were identified by a PubMed search for literature published in English. Eight studies met the criteria for RCTs. Small RCTs showed that menatetrenone monotherapy decreased serum undercarboxylated osteocalcin (ucOC) concentrations, modestly increased lumbar spine BMD, and reduced the incidence of fractures (mainly vertebral fracture), and that combined alendronate and menatetrenone therapy enhanced the decrease in serum ucOC concentrations and further increased femoral neck BMD. This review of the literature revealed positive evidence for the effects of menatetrenone monotherapy on fracture incidence in postmenopausal women with osteoporosis. Further studies are required to clarify the efficacy of menatetrenone in combination with bisphosphonates against fractures in postmenopausal women with osteoporosis.

  5. Management of osteoporosis in spine surgery.

    PubMed

    Lehman, Ronald A; Kang, Daniel Gene; Wagner, Scott Cameron

    2015-04-01

    Osteoporosis is a burgeoning clinical problem that is characterized by decreased bone strength and density. It predisposes patients to fragility fractures and debilitating spine deformities. Several complications are associated with spine surgery in patients with osteoporosis, and there is currently no treatment algorithm to guide the spine surgeon. A multidisciplinary approach to treatment of patients with osteoporosis and spine deformity or fracture is encouraged, and preoperative planning is crucial for successful surgical outcomes. Several surgical techniques have been developed to treat osteoporosis-related deformities, including posterior instrumentation with fusion. However, achieving fixation and fusion in these patients can be difficult secondary to poor bone stock. Augmentation methods to improve pedicle screw fixation have evolved, including instrumentation at multiple levels, bioactive cement augmentation, and fenestrated or expandable pedicle screws, but their impact on clinical outcomes remains unknown. Management of osteoporosis in patients undergoing spine surgery is challenging, but with appropriate patient selection, medical optimization, and surgical techniques, these patients can experience pain relief, deformity correction, and improved function. PMID:25808687

  6. What Are Osteoporosis and Arthritis and How Are They Different?

    MedlinePlus

    ... and Other Related Conditions: NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ... www.niams.nih.gov NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  7. For People with Osteoporosis: How to Find a Doctor

    MedlinePlus

    ... No. 15-7888-E NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ... another language, contact the NIH Osteoporosis and Related Bone Diseases ~ National Resource Center at NIHBoneInfo@mail.nih.gov . ...

  8. What People with Celiac Disease Need to Know about Osteoporosis

    MedlinePlus

    ... ligand (RANKL) inhibitor. Resources NIH Osteoporosis and Related Bone Diseases ~ National Resource Center Website: http://www.bones.nih. ... Pub. No. 16-7897 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  9. Injected Drug May Help Fight Osteoporosis in Women

    MedlinePlus

    ... fullstory_160452.html Injected Drug May Help Fight Osteoporosis in Women Abaloparatide appears to reduce fractures better ... risk of bone fractures in postmenopausal women with osteoporosis better than a placebo and the currently available ...

  10. Anti-osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model.

    PubMed

    Wei, Min; Yang, Zhonglin; Li, Ping; Zhang, Yabo; Sse, Wing Cho

    2007-01-01

    Isoflavonoids isolated from plants have been confirmed to fight osteoporosis and promote bone health. However, few studies have been conducted to describe the anti-osteoporosis activity of botanical flavonone. Based on the experimental outcomes, we demonstrated the ability of naringin to fight osteoporosis in vitro. We developed a retinoic acid-induced osteoporosis model of rats to assess whether naringin has similar bioactivity against osteoporosis in vitro. After a 14-day supplement of retinoic acid to induce osteoporosis, SD rats were administered naringin. A blood test showed that naringin-treated rats experienced significantly lower activity of serum alkaline phosphatase and had higher femur bone mineral density, compared to untreated rats. All three dosages of naringin improved the decrease in bone weight coefficient, the length and the diameter of the bone, the content of bone ash, calcium, and phosphorus content induced by retinoic acid. The data of histomorphological metrology of naringin groups showed no difference as compared to normal control rats. These outcomes suggest that naringin offer a potential in the management of osteoporosis in vitro. PMID:17708632

  11. [Advances in the treatment of secondary osteoporosis].

    PubMed

    Galindo Zavala, R; Núñez Cuadros, E; Díaz Cordovés-Rego, G; Urda Cardona, A L

    2014-12-01

    Osteoporosis is being increasingly recognised in paediatric practice as a consequence of the increasing life expectancy of children who suffer from chronic diseases and other factors. There are many non-pharmacological measures that can improve children' bone health, for example, avoiding inflammatory activity and osteotoxic treatments; increasing sun exposure and weight-bearing exercise, and maintaining an adequate nutritional status. Vitamin D and calcium supplements have been proposed as a measure to increase bone mass, but their effect and therapeutic indications are not completely clear. On the other hand, bisphosphonates are currently the only pharmacological alternative for the patients with infantile secondary osteoporosis. However, more studies are required on the therapeutic indications, posology, and long term secondary effects of biphosphonates. The aim of this article is to analyze the scientific evidence of the effectiveness of the therapeutic alternatives for childhood secondary osteoporosis and their safety in children. PMID:25441207

  12. [Advances in the treatment of secondary osteoporosis].

    PubMed

    Galindo Zavala, R; Núñez Cuadros, E; Díaz Cordovés-Rego, G; Urda Cardona, A L

    2014-12-01

    Osteoporosis is being increasingly recognised in paediatric practice as a consequence of the increasing life expectancy of children who suffer from chronic diseases and other factors. There are many non-pharmacological measures that can improve children' bone health, for example, avoiding inflammatory activity and osteotoxic treatments; increasing sun exposure and weight-bearing exercise, and maintaining an adequate nutritional status. Vitamin D and calcium supplements have been proposed as a measure to increase bone mass, but their effect and therapeutic indications are not completely clear. On the other hand, bisphosphonates are currently the only pharmacological alternative for the patients with infantile secondary osteoporosis. However, more studies are required on the therapeutic indications, posology, and long term secondary effects of biphosphonates. The aim of this article is to analyze the scientific evidence of the effectiveness of the therapeutic alternatives for childhood secondary osteoporosis and their safety in children.

  13. Osteoporosis and Arthritis: Two Common but Different Conditions

    MedlinePlus

    ... situation. Most people with arthritis will use pain management strategies at some time. This is not always true for people with osteoporosis. Usually, people with osteoporosis need pain relief when they ... pain management strategies are similar for people with osteoporosis, OA, ...

  14. Osteoporosis Health Beliefs among Younger and Older Men and Women

    ERIC Educational Resources Information Center

    Johnson, C. Shanthi; McLeod, William; Kennedy, Laura; McLeod, Katherine

    2008-01-01

    The purpose of this study was to compare osteoporosis health beliefs among different age and gender groups. This study used a cross-sectional design, involved 300 participants that represent both genders and three age groups (18 to 25, 30 to 50, and 50-plus), and assessed osteoporosis health beliefs using the Osteoporosis Health Belief Scale…

  15. Pathophysiology of osteoporosis: new mechanistic insights.

    PubMed

    Armas, Laura A G; Recker, Robert R

    2012-09-01

    Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis.

  16. DEPRESSION AS A RISK FACTOR FOR OSTEOPOROSIS

    PubMed Central

    Cizza, Giovanni; Primma, Svetlana; Csako, Gyorgy

    2009-01-01

    Osteoporosis is a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here we review the endocrine and immune alterations secondary to depression that might affect bone mass. We also discuss the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression and the potential effect of antidepressants on bone loss. We propose that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits and use of specific antidepressants also potential contributory factors. PMID:19747841

  17. Too Fit To Fracture: a consensus on future research priorities in osteoporosis and exercise

    PubMed Central

    MacIntyre, N. J.; Heinonen, A.; Cheung, A. M.; Wark, J. D.; Shipp, K.; McGill, S.; Ashe, M. C.; Laprade, J.; Jain, R.; Keller, H.; Papaioannou, A.

    2016-01-01

    Summary An international consensus process identified the following research priorities in osteoporosis and exercise: study of exercise in high-risk cohorts, evaluation of multimodal interventions, research examining translation into practice and a goal to examine fracture outcomes. Introduction To identify future research priorities related to exercise for people with osteoporosis with and without osteoporotic spine fracture via international consensus. Methods An international expert panel and representatives from Osteoporosis Canada led the process and identified opinion leaders or stakeholders to contribute. A focus group of four patient advocates identified quality of life, mobility, activities of daily living, falls, bone mineral density, and harms as outcomes important for decision-making. Seventy-five individuals were invited to participate in an online survey asking respondents to define future research priorities in the area of osteoporosis and exercise; the response rate was 57 %. Fifty-five individuals from seven countries were invited to a half-day consensus meeting; 60 % of invitees attended. The results of the online survey, knowledge synthesis activities, and results of the focus group were presented. Nominal group technique was used to come to consensus on research priorities. Results Research priorities included the study of exercise in high-risk cohorts (e.g., ≥ 65 years, low BMD, moderate/high risk of fracture, history of osteoporotic vertebral fractures, hyperkyphotic posture, functional impairments, or sedentary), the evaluation of multimodal interventions, research examining translation into practice, and a goal to examine fracture outcomes. The standardization of outcomes or protocols that could be evolved into large multicentre trials was discussed. Conclusions The research priorities identified as part of the Too Fit To Fracture initiative can be used to inform the development of multicentre collaborations to evaluate and implement

  18. Cognitive impairment and diabetes.

    PubMed

    Dash, Sandip K

    2013-05-01

    The aim of this manuscript is to provide a brief review of the link between diabetes mellitus with cognitive impairment, the possible pathophysiology linking the two, and some possible therapeutic interventions for the treatment of this condition. The prevalence of diabetes increases with age, so also dementia increases in later life. As the population ages, type 2 diabetes and AD are increasing. Both diseases are chronic and are the leading causes of morbidity and mortality. Recent studies showed that older people with type 2 diabetes have a higher risk of cognitive decline. The precise mechanism linking the two remains to be found out. Several hypothetical mechanisms have been postulated. Type 2 diabetes is a risk factor for AD and vascular dementia. The association between diabetes and AD is particularly strong among carriers of the APOE ε4. Several studies have linked dementia to diabetes. Impaired fasting glucose and impaired glucose tolerance and insulin resistance have also been associated with poor cognitive performance and at risk of developing cognitive impairment. Studies have suggested that metabolic syndrome may be linked to vascular dementia, while contrasting findings showed the role of metabolic syndrome to AD. In this review, how diabetes and cognitive impairment and Alzheimer's disease are mutually linked, possible mechanism linking the two and some possible therapeutic interventions with some patents that seem to be good therapeutic targets in future are discussed.

  19. Dietary approaches for bone health: lessons from the Framingham Osteoporosis Study

    PubMed Central

    Sahni, Shivani; Mangano, Kelsey M; McLean, Robert R; Hannan, Marian T; Kiel, Douglas P

    2016-01-01

    Osteoporosis is characterized by systemic impairment of bone mass, strength, and microarchitecture, resulting in increased risk for fragility fracture, disability, loss of independence and even death. Adequate nutrition is important in achieving and maintaining optimal bone mass, as well as preventing this debilitating disease. It is widely accepted that adequate calcium and vitamin D intake are necessary for good bone health; however, nutritional benefits to bone go beyond these two nutrients. This review article will provide updated information on all nutrients and foods now understood to alter bone health. Specifically, this paper will focus on related research from the Framingham Osteoporosis Study, an ancillary study of the Framingham Heart Study, with data on more than five thousand adult men and women. PMID:26045228

  20. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  1. Management of endocrine disease: Secondary osteoporosis: pathophysiology and management.

    PubMed

    Mirza, Faryal; Canalis, Ernesto

    2015-09-01

    Osteoporosis is a skeletal disorder characterized by decreased mass and compromised bone strength predisposing to an increased risk of fractures. Although idiopathic osteoporosis is the most common form of osteoporosis, secondary factors may contribute to the bone loss and increased fracture risk in patients presenting with fragility fractures or osteoporosis. Several medical conditions and medications significantly increase the risk for bone loss and skeletal fragility. This review focuses on some of the common causes of osteoporosis, addressing the underlying mechanisms, diagnostic approach and treatment of low bone mass in the presence of these conditions. PMID:25971649

  2. Correlation between osteoporosis and cardiovascular disease

    PubMed Central

    Sprini, Delia; Rini, Giovam Battista; Di Stefano, Laura; Cianferotti, Luisella; Napoli, Nicola

    2014-01-01

    Summary Several evidences have shown in the last years a possible correlation between cardiovascular diseases and osteoporosis. Patients affected with osteoporosis, for example, have a higher risk of cardiovascular diseases than subjects with normal bone mass. However, the heterogeneous approaches and the different populations that have been studied so far have limited the strength of the findings. Studies conducted in animal models show that vascular calcification is a very complex mechanism that involves similar pathways described in the normal bone calcification. Proteins like BMP, osteopontin, osteoprotegerin play an important role at the bone level but are also highly expressed in the calcified vascular tissue. In particular, it seems that the OPG protect from vascular calcification and elevated levels have been found in patients with CVD. Other factors like oxidative stress, inflammation, free radicals, lipids metabolism are involved in this complex scenario. It is not a case that medications used for treating osteoporosis also inhibit the atherosclerotic process, acting on blood pressure and ventricular hypertrophy. Given the limited amount of available data, further studies are needed to elucidate the underlying mechanisms between osteoporosis and cardiovascular disease which may be important in the future also for preventive and therapeutic approaches of both conditions. PMID:25285139

  3. [Medical treatment of osteoporosis in men].

    PubMed

    Eiken, Pia A; Vestergaard, Peter

    2015-08-31

    One in five men over the age of 50 years will suffer an osteoporotic fracture during their lifetime, and men who sustain fractures have an increased mortality risk compared to women. Three bisphosphonates (alendronate, risedronate and zolendronic acid), denosumab, strontium ranelate and teriparatide are currently approved in Denmark for the treatment of osteoporosis in men. This review summarizes the available therapeutic options. PMID:26324291

  4. The role of nutrition in osteoporosis.

    PubMed

    Bunker, V W

    1994-09-01

    Osteoporosis-related bone fractures are a significant cause of mortality and morbidity, with women being particularly affected. Osteoporosis is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass; adult bone mass depends upon the peak attained and the rate of subsequent loss; each depends on the interaction of genetic, hormonal, environmental and nutritional factors. An adequate supply of calcium is essential to attain maximum bone mass, and adult intakes below about 500 mg/day may predispose to low bone mass. Supplementation with calcium may conserve bone at some skeletal sites, but whether this translates into reduced fracture rates is not clear. Chronically low intakes of vitamin D--and possibly magnesium, boron, fluoride and vitamins K, B12, B6 and folic acid (particularly if co-existing)--may pre-dispose to osteoporosis. Similarly, chronically high intakes of protein, sodium chloride, alcohol and caffeine may also adversely affect bone health. The typical Western diet (high in protein, salt and refined, processed foods) combined with an increasing sedentary lifestyle may contribute to the increasing incidence of osteoporosis in the elderly.

  5. Osteoporosis: Its Prosthodontic Considerations - A Review

    PubMed Central

    Munagapati, Bharathi; Karnati, Rajeev K Reddy; Venkata, Giridhar Reddy Sirupa; Nidudhur, Simhachalam Reddy

    2015-01-01

    Osteoporosis is a disease of bone which is common in middle aged post-menopausal women. The osteoporotic bones will become weak and are prone to fractures. Osteoporosis means “porous bone” is a “silent disease”. Healthy bone microscopically appears like a honeycomb but, in osteoporotic patients the spaces are much bigger. The osteoporotic bone will have less density or mass and the structure of bone tissue is abnormal. As the bone becomes less dense, they become weaker and more likely to fracture. Women are four times more likely to develop osteoporosis than men. Oral health maintenance for adults with osteoporosis is important. Bone weakness and loss may also affect the ridges that hold dentures resulting in poor fitting dentures. The patients require new dentures more often than those who have strong, healthy bones. Best way to handle problems is avoid delaying or postponing the dental treatment. Regular dental visits and healthy lifestyle is necessary in strengthening and maintenance of good bone health. Well balanced diet with high amounts of vitamin-D & calcium with regular physical activity is recommended. PMID:26816999

  6. Bone mechanical properties and changes with osteoporosis.

    PubMed

    Osterhoff, Georg; Morgan, Elise F; Shefelbine, Sandra J; Karim, Lamya; McNamara, Laoise M; Augat, Peter

    2016-06-01

    This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility. PMID:27338221

  7. Management of beta-thalassemia-associated osteoporosis.

    PubMed

    Giusti, Andrea; Pinto, Valeria; Forni, Gian Luca; Pilotto, Alberto

    2016-03-01

    Beta-Thalassemia-associated osteoporosis is a multifactorial and complex condition. Different acquired and genetic factors are involved in its pathogenesis. These factors produce an imbalance in bone remodeling by inhibiting osteoblast activity and increasing osteoclast function, leading to bone loss and increased fracture risk. The management of patients presenting with thalassemia-associated osteoporosis should consist of the implementation of general measures and the prescription of a specific pharmacological agent, with the aim of reducing fracture risk and preventing disability and deterioration of quality of life. General measures include control of anemia, adequate chelation therapy, healthy nutrition and lifestyle, regular exercise, adequate management of comorbid conditions, hormone replacement therapy in patients with hypogonadism, and vitamin D supplementation/therapy. Among the pharmacological agents currently available for the management of osteoporosis in postmenopausal women and men, bisphosphonates have been shown to improve bone mineral density, to reduce bone turnover, and to decrease bone/back pain in patients with thalassemia-associated osteoporosis, with a good profile of safety and tolerability. On the other hand, there are limited experiences with other pharmacological agents (e.g., denosumab or teriparatide). The complexity of this condition presents diagnostic and therapeutic challenges and underscores the importance of a comprehensive and multidisciplinary approach.

  8. [Drug therapy for primary osteoporosis in men].

    PubMed

    Soen, Satoshi

    2016-07-01

    Overall, drug therapies for osteoporosis in men are less defined than in women, mainly due to the fact that there are fewer RCTs performed in male populations, to the relatively smaller sample sizes, and to the lack of long-term extension studies. In a series of well-designed RCTs, alendronate, risedronate, zoledronic acid, and teriparatide were demonstrated to reduce the risk of new vertebral fractures in men presenting with primary osteoporosis(including osteoporosis associated with low testosterone levels)and to improve the bone mineral density(BMD). In preliminary studies, ibandronate and denosumab also showed their beneficial effects on surrogate outcomes(BMD and markers of bone turnover)in men with osteoporosis. Although direct evidence about their non-vertebral anti-fracture efficacy are lacking, the effects of bisphosphonates, denosumab and teriparatide on surrogate outcomes were similar to those reported in pivotal RCTs undertaken in postmenopausal women, in which vertebral and non-vertebral anti-fracture efficacy have been clearly demonstrated. PMID:27346317

  9. The Effect of Fluoride in Osteoporosis.

    ERIC Educational Resources Information Center

    Hedlund, L. R.; Gallagher, J. C.

    1987-01-01

    This article discusses the effect of fluoride on bone tissue and the possible role of fluoride in the treatment of osteoporosis. At present, fluoride treatment should be restricted to clinical trials until its risks and benefits have been further evaluated. (Author/MT)

  10. Osteoporosis Risk Factors in Eighth Grade Students.

    ERIC Educational Resources Information Center

    Lysen, Victoria C.; Walker, Robert

    1997-01-01

    Presents findings from food frequency questionnaires and surveys of 138 Midwestern eighth-grade student-parent pairs. The study examined the incidence of modifiable and nonmodifiable osteoporosis risk factors and compared gender differences. Data analysis indicated that many adolescents possessed several modifiable and nonmodifiable risk factors…

  11. Osteoporosis: What is the Role of Exercise?

    ERIC Educational Resources Information Center

    Munnings, Frances

    1992-01-01

    Research has not yet identified the best combination of estrogen replacement, calcium, and exercise for fighting osteoporosis, but clinical experience indicates all are needed to prevent the rapid bone loss that occurs in postmenopausal women. Physicians must encourage women to reduce their risk using all available options. (SM)

  12. Bone mineral density: testing for osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-04-01

    Primary osteoporosis is related to bone loss from ageing. Secondary osteoporosis results from specific conditions that may be reversible. A thoracolumbar X-ray is useful in identifying vertebral fractures, and dual energy X-ray absorptiometry is the preferred method of calculating bone mineral density. The density of the total hip is the best predictor for a hip fracture, while the lumbar spine is the best site for monitoring the effect of treatment. The T-score is a comparison of the patient's bone density with healthy, young individuals of the same sex. A negative T-score of -2.5 or less at the femoral neck defines osteoporosis. The Z-score is a comparison with the bone density of people of the same age and sex as the patient. A negative Z-score of -2.5 or less should raise suspicion of a secondary cause of osteoporosis. Clinical risk calculators can be used to predict the 10-year probability of a hip or major osteoporotic fracture. A probability of more than 5% for the hip or more than 20% for any fracture is abnormal and treatment may be warranted. PMID:27340320

  13. Better Bones Buddies: An Osteoporosis Prevention Program

    ERIC Educational Resources Information Center

    Schrader, Susan L.; Blue, Rebecca; Horner, Arlene

    2005-01-01

    Although osteoporosis typically surfaces in later life, peak bone mass attained before age 20 is a key factor in its prevention. However, most American children's diets lack sufficient calcium during the critical growth periods of preadolescence and adolescence to achieve peak bone mass. "Better Bones (BB) Buddies" is an educational program…

  14. Bisphosphonates adherence for treatment of osteoporosis

    PubMed Central

    2013-01-01

    Background Osteoporosis is a disease of bone metabolism in which bisphosphonates (BPS) are the most common medications used in its treatment, whose main objective is to reduce the risk of fractures. The aim of this study was to conduct a systematic review on BPs adherence for treatment of osteoporosis. Methods Systematic review of articles on BPs adherence for treatment of osteoporosis, indexed on MEDLINE (via PubMed) databases, from inception of databases until January 2013. Search terms were “Adherence, Medication” (MeSH term), “Bisphosphonates” (MeSH term), and “Osteoporosis” (MeSH term). Results Of the 78 identified studies, 27 met the eligibility criteria. Identified studies covered a wide range of aspects regarding adherence and associated factors, adherence and fracture, adherence and BPs dosage. The studies are mostly observational, conducted with women over 45 years old, showing low rates of adherence to treatment. Several factors may influence adherence: socio-economic and cultural, participation of physicians when guidance is given to the patient, the use of bone turnover markers, and use of generic drugs. The monthly dosage is associated with greater adherence compared to weekly dosage. Conclusions Considering the methodological differences between the studies, the results converge to show that adherence to treatment of osteoporosis with BPs is still inadequate. Further experimental studies are needed to evaluate the adherence and suggest new treatment options. PMID:23705998

  15. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss

    PubMed Central

    Doyard, Mathilde; Chappard, Daniel; Leroyer, Patricia; Roth, Marie-Paule; Loréal, Olivier; Guggenbuhl, Pascal

    2016-01-01

    Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe−/− male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe−/− animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe−/− mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski’s fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis. PMID:26829642

  16. Osteoporosis: incidence, prevention, and treatment of the silent killer.

    PubMed

    Parsons, Lynn C

    2005-03-01

    Osteoporosis is a nationwide health care concern affecting millions of Americans. Health care dollars to prevent and treat osteoporosis are needed. Osteoporosis-related injuries and resulting disabilities, and consequent admissions to hospitals, nursing homes, and long-term care facilities is costing billions of dollars for care and treatment. Healthy lifestyle choices including vitamin and mineral therapy; safe home environments; a diet replete with calcium, vitamin D, and protein; weight-bearing and resistance exercises; and fall prevention programs for home-bound and hospitalized elders are needed to prevent osteoporosis-related fractures and injuries. Nurses must educate the public on osteoporosis and osteoporosis-prevention activities. Research in nursing, pharmacy, and allied health fields such as physical therapy and nutrition must expand to improve understanding of the risks associated with osteoporosis and to evaluate health-promotion and disease- prevention activities. Interdisciplinary partnerships should be established to study the issues, prevention, and treatment modalities of this "silent killer."

  17. The future of osteoporosis treatment - a research update.

    PubMed

    Lippuner, Kurt

    2012-01-01

    Osteoporosis is characterised by a progressive loss of bone mass and microarchitecture which leads to increased fracture risk. Some of the drugs available to date have shown reductions in vertebral and non-vertebral fracture risk. However, in the ageing population of industrialised countries, still more fractures happen today than are avoided, which highlights the large medical need for new treatment options, models, and strategies. Recent insights into bone biology, have led to a better understanding of bone cell functions and crosstalk between osteoblasts, osteoclasts, and osteocytes at the molecular level. In the future, the armamentarium against osteoporotic fractures will likely be enriched by (1.) new bone anabolic substances such as antibodies directed against the endogenous inhibitors of bone formation sclerostin and dickkopf-1, PTH and PTHrp analogues, and possibly calcilytics; (2.) new inhibitors of bone resorption such as cathepsin K inhibitors which may suppress osteoclast function without impairing osteoclast viability and thus maintain bone formation by preserving the osteoclast-osteoblast crosstalk, and denosumab, an already widely available antibody against RANKL which inhibits osteoclast formation, function, and survival; and (3.) new therapeutic strategies based on an extended understanding of the pathophysiology of osteoporosis which may include sequential therapies with two or more bone active substances aimed at optimising the management of bone capital acquired during adolescence and maintained during adulthood in terms of both quantity and quality. Finally, one of the future challenges will be to identify those patients and patient populations expected to benefit the most from a given drug therapy or regimen. The WHO fracture risk assessment tool FRAX® and improved access to bone mineral density measurements by DXA will play a key role in this regard.

  18. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  19. Glucose and insulin metabolism in cirrhosis.

    PubMed

    Petrides, A S; DeFronzo, R A

    1989-01-01

    Glucose intolerance, overt diabetes mellitus, and insulin resistance are characteristic features of patients with cirrhosis. Insulin secretion, although increased in absolute terms, is insufficient to offset the presence of insulin resistance. The defect in insulin-mediated glucose disposal involves peripheral tissues, primarily muscle, and most likely reflects a disturbance in glycogen synthesis. Hepatic glucose production is normally sensitive to insulin; at present, it is unknown whether hepatic glucose uptake is impaired in cirrhosis. One of the more likely candidates responsible for the insulin-resistant state is insulin itself. The hyperinsulinemia results from three abnormalities: diminished hepatic extraction, portosystemic/intrahepatic shunting, and enhanced insulin secretion. PMID:2646365

  20. Clinical Assessment of Functional Movement in Adults with Visual Impairments

    ERIC Educational Resources Information Center

    Ray, Christopher T.; Horvat, Michael; Williams, Michael; Blasch, Bruce B.

    2007-01-01

    Adults with visual impairments have significantly more health risks than do sighted adults because of a number of factors, including the lower mineral density of their femoral neck bones, which is indicative of reduced weight-bearing exercise; their lesser maximal strength; and their higher rates of stroke, osteoporosis, depression, hypertension,…

  1. Prevention of Bone Loss in a Model of Postmenopausal Osteoporosis through Adrenomedullin Inhibition

    PubMed Central

    Martínez-Herrero, Sonia; Larrayoz, Ignacio M.; Ochoa-Callejero, Laura; Fernández, Luis J.; Allueva, Alexis; Ochoa, Ignacio; Martínez, Alfredo

    2016-01-01

    Despite recent advances in the understanding and treatment options for osteoporosis, this condition remains a serious public health issue. Adrenomedullin (AM) is a regulatory peptide with reported activity on bone remodeling. To better understand this relationship we built an inducible knockout for AM. An outstanding feature of knockout mice is their heavier weight due, in part, to the presence of denser bones. The femur of knockout animals was denser, had more trabeculae, and a thicker growth plate than wild type littermates. The endocrine influence of AM on bone seems to be elicited through an indirect mechanism involving, at least, the regulation of insulin, glucose, ghrelin, and calcitonin gene-related peptide (CGRP). To confirm the data we performed a pharmacological approach using the AM inhibitor 16311 in a mouse model of osteoporosis. Ovariectomized females showed significant bone mass loss, whereas ovariectomized females treated with 16311 had similar bone density to sham operated females. In conclusion, we propose the use of AM inhibitors for the treatment of osteoporosis and other conditions leading to the loss of bone mass. PMID:27445864

  2. Prevalence of osteoporosis in patients awaiting total hip arthroplasty

    PubMed Central

    Domingues, Vitor Rodrigues; de Campos, Gustavo Constantino; Plapler, Pérola Grimberg; de Rezende, Márcia Uchôa

    2015-01-01

    Objective: To evaluate the prevalence of osteoporosis in patients awaiting total hip arthroplasty. Method: Twenty-nine patients diagnosed with hip osteoarthritis awaiting primary total arthroplasty of the hip answered WOMAC questionnaire, VAS and questions about habits, osteoporosis and related diseases. Bone mineral densitometry of the lumbar spine and hips and laboratory tests (complete blood count and examination of calcium metabolism) were performed. Weight and height were measured to calculate body mass index (BMI). The evaluated quantitative characteristics were compared between patients with and without osteoporosis using the Mann-Whitney tests. Results: Thirteen men and 16 women with a mean age of 61.5 years old, WOMAC 51.4; EVA 6.4 and BMI 27.6 were evaluated. The prevalence of osteoporosis was 20.7%, and 37.9% had osteopenia. Patients with osteoporosis were older than patients without osteoporosis (p=0.006). The mean bone mineral density of the femoral neck without hip osteoarthritis was lower than the affected side (p=0.007). Thirty-five percent of patients did not know what osteoporosis is. Of these, 30% had osteopenia or osteoporosis. Conclusion: osteoarthritis and osteoporosis may coexist and the population waiting for total hip arthroplasty should be considered at risk for the presence of osteoporosis. Level of Evidence III, Observational Study. PMID:26327793

  3. Osteoporosis diagnostics in patients with rheumatoid arthritis.

    PubMed

    Węgierska, Małgorzata; Dura, Marta; Blumfield, Einat; Żuchowski, Paweł; Waszczak, Marzena; Jeka, Sławomir

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic systemic connective tissue disease. The development of comorbidities often occurs in the course of RA. One of them is osteoporosis, which has serious social and economic effects and may contribute to the increase in the degree of disability and premature death of the patient. Due to the young age in which RA disease occurs, densitometry (DXA) of the lumbar spine is the basic examination in osteoporosis diagnostics. In the course of RA, much more frequently than in healthy persons of the same age, osteoporotic fractures of vertebral bodies occur, which hinder a correct assessment in the DXA test. Rheumatoid arthritis patients often undergo computed tomography (CT) examination of the abdominal cavity for other medical indications than suspected spinal injury. Then, CT examination may also serve for the assessment of bone density, especially in patients with osteoporotic fractures. PMID:27407274

  4. Spaceflight osteoporosis: current state and future perspective.

    PubMed

    Cappellesso, R; Nicole, L; Guido, A; Pizzol, D

    2015-10-01

    Osteoporosis is one of the established major consequences of long-duration spaceflights in astronauts seriously undermining their health after their returning on Earth. Indeed, astronauts typically lose more bone mass during one month than postmenopausal women on Earth lose in one year. To date, countermeasures mainly consist in exercise and supplementation while pharmacological treatment as those used in postmenopausal women are not routine. However, it is evident that exercise and supplementation alone are not enough to maintain bone homeostasis. In this paper we describe the current countermeasures for bone loss during long-term spaceflight, review the modern treatment which are successfully employed to prevent osteoporosis on Earth and that could be quickly used also for astronauts and finally focus on the recent cellular and molecular understanding of bone homeostasis which might provide the basis for the development of future targeted therapies.

  5. Identification, diagnosis, and prevention of osteoporosis.

    PubMed

    Levine, Jeffrey P

    2011-05-01

    Prevention of osteoporotic fractures is of major importance from a public health perspective. Despite the large burden the disease exacts on individuals and society, not all patients with osteoporosis receive optimal treatment. Since only 1 in 3 patients with osteoporosis is diagnosed, clinicians need to improve their ability to identify patients who are candidates for bone mineral density (BMD) screening. Although limited data exist about the direct correlation between effective screening and fracture morbidity and mortality, it has been proved that increases in fractures are associated with increases in morbidity and mortality. Therefore, identifying patients at risk, making a timely diagnosis, implementing prevention measures (ie, calcium, vitamin D, exercise, fall precautions, etc), and initiating pharmacologic therapy for appropriate patients can all help to minimize fracture risk.

  6. Spaceflight osteoporosis: current state and future perspective.

    PubMed

    Cappellesso, R; Nicole, L; Guido, A; Pizzol, D

    2015-10-01

    Osteoporosis is one of the established major consequences of long-duration spaceflights in astronauts seriously undermining their health after their returning on Earth. Indeed, astronauts typically lose more bone mass during one month than postmenopausal women on Earth lose in one year. To date, countermeasures mainly consist in exercise and supplementation while pharmacological treatment as those used in postmenopausal women are not routine. However, it is evident that exercise and supplementation alone are not enough to maintain bone homeostasis. In this paper we describe the current countermeasures for bone loss during long-term spaceflight, review the modern treatment which are successfully employed to prevent osteoporosis on Earth and that could be quickly used also for astronauts and finally focus on the recent cellular and molecular understanding of bone homeostasis which might provide the basis for the development of future targeted therapies. PMID:26494042

  7. Patient Perceptions of Osteoporosis Treatment Thresholds

    PubMed Central

    Neuner, Joan; Schapira, Marilyn

    2014-01-01

    Objective Many older patients express concerns about medication risks, and have higher risk thresholds than physicians for cardiovascular preventive medications. We hypothesized that patients have relatively high risk thresholds for fracture preventive medications. Methods Women ≥60 years old were recruited from three primary care internal medicine clinics in Wisconsin. Participants were provided information regarding fracture risks and treatment risks and benefits, followed by a series of vignettes depicting a 70 year old woman at baseline fracture risks between 5–50%. Fracture risks were shown graphically and treatment side effects were provided for each vignette, and participants were asked to respond regarding whether they would accept treatment. The association of vignette treatment acceptance with participant beliefs regarding medication risks was examined in analyses adjusted for perceived risk of medications, patient numeracy and prior respondent experience with osteoporosis. Results The mean age of women in the cohort was 69.4 (S.D. 7.29). 91% were non-Hispanic whites, 34% reported a personal history of fracture, and 20.3% a history of osteoporosis. Subjects varied substantially in their responses to vignettes, but only 51% reported they would accept prescription osteoporosis treatment at the threshold currently recommended by national physician treatment guidelines, and fewer would accept treatment at lower risks. Belief that medications are generally not worth their risks was associated with lower acceptance of treatment at all levels of fracture risk. Conclusions There is substantial variability in preferences for postmenopausal osteoporosis treatment. Presentation of individualized fracture risks as recommended by current guidelines has potential to allow better targeting to higher-risk patients, but further work is needed regarding how to present this information and counsel patients. PMID:24488417

  8. Clodronate news of efficacy in osteoporosis

    PubMed Central

    Nardi, Alfredo; Ventura, Lorenzo; Cozzi, Luisella; Tonini, Greta

    2016-01-01

    Summary Clodronate belongs to Bisphosphonates family and it has been studied especially for osteoporosis treatment, Paget’s disease, osteolytic metastases, hypercalcemia malignancy and some childhood skeletal diseases. Besides the osteoporosis treatment, it has been successfully used for treating tumoral osteolysis and for bone localization of multiple myeloma, hypercalcemia malignancy, primary hyperparathyroidism, Paget’s disease and algodystrophy. Filipponi study showed a statistically significant reduction of the incidence of vertebral fractures after 4 years of treatment with clodronate, intravenously administered at a dose of 200 mg every three weeks. Frediani study, published in 2003 on BONE, proved the clodronate efficacy in the prevention of fractures caused by glucocorticoid-induced osteoporosis (GIO). Clodronate doses of 800 mg/day per os and 100 mg i.m./week are substantially equivalent, because the oral absorption is about 1,9%. A higher efficacy on BMD was documented in various works, especially in cohorts of patients with a greater fracture risk, using higher doses (1600 mg per os). This has led to the hypothesis of using clodronate 200 mg i.m. formulation. Clodronate is an osteoporosis drug that can be assumed in different doses (100 mg i.m./week, clodronate 200 mg i.m. every 2 weeks) considering the risk band, identified by algorithms (FRAX o DeFRA), by BMD and by the presence of at least one risk factor. That means that it is possible to envisage a differentiated use of clodronate adapting the doses to the fracture risk and to the severity of pain symptoms, thus promoting a greater adherence to the therapy. To conclude clodronate is helpful in reducing fracture risk, is safe, well tolerated, and has a good rate cost/effectiveness in patients with fracture risk over 7% established with FRAX. PMID:27252741

  9. Bone targeting for the treatment of osteoporosis.

    PubMed

    Luhmann, Tessa; Germershaus, Oliver; Groll, Jürgen; Meinel, Lorenz

    2012-07-20

    Osteoporosis represents a major public health burden especially considering the aging populations worldwide. Drug targeting will be important to better meet these challenges and direct the full therapeutic potential of therapeutics to their intended site of action. This review has been organized in modules, such that scientists working in the field can easily gain specific insight in the field of bone targeting for the drug class they are interested in. We review currently approved and emerging treatment options for osteoporosis and discuss these in light of the benefit these would gain from advanced targeting. In addition, established targeting strategies are reviewed and novel opportunities as well as promising areas are presented along with pharmaceutical strategies how to render novel composites consisting of a drug and a targeting moiety responsive to bone-specific or disease-specific environmental stimuli. Successful implementation of these principles into drug development programs for osteoporosis will substantially contribute to the clinical success of anti-catabolic and anabolic drugs of the future.

  10. To prevent the osteoporosis playing in advance

    PubMed Central

    Colì, Giuseppe

    2013-01-01

    Summary There are several possibilities for the prevention of primary, secondary and tertiary osteoporosis but till now they have not been promoted enough and bone fragility is thought about only after the onset of a fracture (tertiary prevention). By recent studies and discoveries it is becoming increasingly clear that there is a relationship between growth and development in early childhood and bone health in old age. Suboptimal bone development leads to a reduction in peak bone mass, and a higher risk of osteoporotic fracture later in life. Preventative strategies against osteoporosis can be aimed at either optimizing the peak bone mass obtained, or reducing the rate of bone loss. Optimization of peak bone mass may be more amenable to public health strategies. Technological advances and our knowledge of osteoporosis have increased in the last decade and so tertiary prevention should be considered a failure in the field of public health. If we want to make advances in the osteoporotic field, we must start in childhood, before the bone mass peak is reached and the gold-standard is starting with prevention as soon as possible, also during fetal development. PMID:24133522

  11. Bone turnover markers: use in osteoporosis.

    PubMed

    Naylor, Kim; Eastell, Richard

    2012-07-01

    Biochemical markers of bone turnover (bone turnover markers, BTMs) can be used to study changes in bone remodelling in osteoporosis. Investigators and clinicians should be aware of the appropriate sample collection and storage conditions for optimum measurements of these markers. Improvements in the variability of BTM measurements have resulted from the development of assays for automated analysers, and from international consensus regarding their use. Appropriate reference intervals should be used for the optimum interpretation of results. BTMs can provide information that is useful for the management of patients with osteoporosis, for both the initial clinical assessment and for guiding and monitoring of treatment. BTMs are clinically useful to determine possible causes of secondary osteoporosis by identifying patients with high bone turnover and rapid bone loss. In the follow-up of treatment response, BTM levels respond rapidly to both anabolic and antiresorptive treatments. BTM changes can also be used for understanding the mechanism of action of drugs in development and identifying the correct dose; they are also potentially useful as surrogate biomarkers for fracture.

  12. Clinical challenges in the management of osteoporosis

    PubMed Central

    Vondracek, Sheryl F; Minne, Paul; McDermott, Michael T

    2008-01-01

    While knowledge regarding the diagnosis and treatment of osteoporosis has expanded dramatically over the last few years, gaps in knowledge still exist with guidance lacking on the appropriate management of several common clinical scenarios. This article uses fictional clinical scenarios to help answer three challenging questions commonly encountered in clinical practice. The first clinical challenge is when to initiate drug therapy in a patient with low bone density. It is estimated that 34 million America have low bone density and are at a higher risk for low trauma fractures. Limitations of using bone mineral density alone for drug therapy decisions, absolute risk assessment and evidence for the cost-effectiveness of therapy in this population are presented. The second clinical challenge is the prevention and treatment of vitamin D deficiency. Appropriate definitions for vitamin D insufficiency and deficiency, the populations at risk for low vitamin, potential consequences of low vitamin D, and how to manage a patient with low vitamin D are reviewed. The third clinical challenge is how to manage a patient receiving drug therapy for osteoporosis who has been deemed a potential treatment failure. How to define treatment failure, common causes of treatment failure, and the approach to the management of a patient who is not responding to appropriate osteoporosis therapy are discussed. PMID:18686753

  13. Osteoporosis and Parkinson’s disease

    PubMed Central

    Raglione, Laura Maria; Sorbi, Sandro; Nacmias, Benedetta

    2011-01-01

    Summary Parkinson’s disease (PD) and osteoporosis are two conditions with a quite high prevalence in older people. From the literature we learn that in parkinsonian people there a is e major reduction of Bone Mass Density (BMD) compared to age-matched controls. A low BMD is one of the factors related to fracture’s frequency in PD patients besides an increased risk of falls. From the standpoint pathophysiology, various factors are involved in osteoporosis: immobilization, endocrine factors like hypovitaminosis D, nutritional and iatrogenic factors. Considering morbidity and mortality related to fractures in old people and in particular in PD patients it is reasonable that these patients would undergo to vitamin and BMD measuring, to fall risk assessment and that all preventive measure are implemented to reduce the risk of fractures. Possible interventions are essentially based on fall prevention and treatment of osteoporosis. Randomized clinical studies in the literature, in which it was studied the effect of anti-osteoporotic drugs in patients with MP showed a significant reduction in the number of fractures and increase BMD. PMID:22461823

  14. [Osteoporosis. Knowledge and attitudes of the Norwegian population].

    PubMed

    Joakimsen, R M; Søgaard, A J; Tollan, A; Magnus, J H

    1996-06-30

    In March 1994, a random sample of 1,514 Norwegians aged 16-79 years were interviewed about their knowledge of osteoporosis and their attitudes towards prevention of this disease. About 85% answered correctly that osteoporosis can be prevented, but only 57% knew that it cannot be cured. Women had better knowledge of osteoporosis than men had. Two thirds of the women were positive to the use of long-term hormone replacement therapy to prevent osteoporosis. The majority of women aged 60 years or more preferred walking to other physical activities to prevent the disease. Although the data demonstrated fairly good general knowledge of osteoporosis in the population, the oldest women, those at the highest risk of developing the disease, knew less about osteoporosis than the younger women did.

  15. [Teriparatide--new value in osteoporosis treatment: treatment guidelines].

    PubMed

    Korsić, Mirko; Kastelan, Darko

    2006-01-01

    Osteoporosis has become global health issue due to the longer life-cycle and increased percentage of older people in population. The great improvement was done in the treatment of postmenopausal osteoporosis. By the mechanism of action, drugs for osteoporosis treatment are antiresorptives and osteoanabolics. Teriparatide is an osteoanabolic drug that stimulates bone turnover and building of a new bone, indicated for treatment of women in postmenopause with multiple osteoporotic fractures. PMID:17580560

  16. Nigella Sativa reverses osteoporosis in ovariectomized rats

    PubMed Central

    2014-01-01

    Background Osteoporosis poses a significant public health issue. It is a skeletal disorder characterized by compromised bone strength that predisposes to increased risk of fracture. There is a direct relationship between the lack of estrogen after menopause and the development of osteoporosis. About 33% of women over 50 will experience bone fractures as a result of osteoporosis. Nigella Sativa (NS) has been shown to have beneficial effects on bone and joint diseases. The present study was conducted to elucidate the protective effect of Nigella Sativa on osteoporosis produced by ovariectomy in rats. Methods Female Wistar rats aged 12–14 months were divided into three groups: sham-operated control (SHAM), ovariectomized (OVX), and ovariectomized supplemented with nigella sativa (OVX-NS) orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after. After 12 weeks, plasma levels of calcium (Ca+2), phosphorous (Pi), alkaline phosphatase (ALP), amino terminal collagen type 1 telopeptide, malondialdehyde (MDA), nitrates, nitric oxide surrogate, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured. Histological examination of the liver and the tibia was conducted. Histomorphometric analysis of the tibia was also performed. Results OVX rats showed significant decrease in plasma Ca+2, accompanied by a significant increase in plasma ALP, amino terminal collagen type 1 telopeptide, MDA, nitrates, TNF-α and IL-6. These changes were reversed by NS supplementation in OVX-NS group to be near SHAM levels. Histological examination of the tibias revealed discontinuous eroded bone trabeculae with widened bone marrow spaces in OVX rats accompanied by a significant decrease in both cortical and trabecular bone thickness compared to Sham rats. These parameters were markedly reversed in OVX-NS rats. Histological examination of the liver showed mononuclear cellular infiltration and congestion of blood vessels at the portal area in OVX rats which were not found

  17. The position of strontium ranelate in today's management of osteoporosis.

    PubMed

    Reginster, J-Y; Brandi, M-L; Cannata-Andía, J; Cooper, C; Cortet, B; Feron, J-M; Genant, H; Palacios, S; Ringe, J D; Rizzoli, R

    2015-06-01

    Osteoporosis accounts for about 3 % of total European health-care spending. The low proportion of costs for the pharmacological prevention of osteoporotic fracture means that it is highly cost saving, especially in patient with severe osteoporosis or patients who cannot take certain osteoporosis medications due to issues of contraindications or tolerability. Following recent regulatory changes, strontium ranelate is now indicated in patients with severe osteoporosis for whom treatment with other osteoporosis treatments is not possible, and without contraindications including uncontrolled hypertension, established, current or past history of ischaemic heart disease, peripheral arterial disease, and/or cerebrovascular disease. We review here today's evidence for the safety and efficacy of strontium ranelate. The efficacy of strontium ranelate in patients complying with the new prescribing information (i.e. severe osteoporosis without contraindications) has been explored in a multivariate analysis of clinical trial data, which concluded that the antifracture efficacy of strontium ranelate is maintained in patients with severe osteoporosis without contraindications and also demonstrated how the new target population mitigates risk. Strontium ranelate is therefore an important alternative in today's management of osteoporosis, with a positive benefit-risk balance, provided that the revised indication and contraindications are followed and cardiovascular risk is monitored. The bone community should be reassured that there remain viable alternatives in patients in whom treatment with other agents is not possible and protection against the debilitating effects of fracture is still feasible in patients with severe osteoporosis. PMID:25868510

  18. What People with Inflammatory Bowel Disease Need to Know about Osteoporosis

    MedlinePlus

    ... information on osteoporosis, contact: NIH Osteoporosis and Related Bone Diseases ~ National Resource Center Website: http://www.bones.nih. ... Pub. No. 16-7900 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, MD ...

  19. Is caffeine consumption a risk factor for osteoporosis?

    PubMed

    Cooper, C; Atkinson, E J; Wahner, H W; O'Fallon, W M; Riggs, B L; Judd, H L; Melton, L J

    1992-04-01

    High caffeine consumption has been proposed as a risk factor for osteoporotic fracture, but the evidence associating high caffeine intake with low bone density is inconsistent. We therefore examined the influence of caffeine consumption on bone mineral at six skeletal sites in an age-stratified random sample of white women residing in Rochester, Minnesota. After age adjustment, there was no association between overall caffeine consumption and bone mineral at five of the six sites. In the femoral shaft, however, there was a statistically significant interaction between age and caffeine consumption so that high caffeine intake was associated with slight reductions in bone mineral among elderly subjects but with modestly increased bone mineral at younger ages. When caffeine intake was categorized by source, no consistent influence of coffee, tea, or other caffeinated beverage consumption could be detected on bone mineral. Caffeine intake was, however, positively associated with cigarette smoking and alcohol consumption. After adjusting for age, caffeine consumption was not correlated with biochemical indices of bone turnover, circulating concentrations of estradiol and estrone, or other dietary and musculoskeletal variables. These data suggest that caffeine intake in the range consumed by a representative sample of white women is not an important risk factor for osteoporosis. Among elderly women, however, in whom calcium balance performance is impaired, high caffeine intake may predispose to cortical bone loss from the proximal femur.

  20. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  1. Treatment of osteoporosis after alendronate or risedronate.

    PubMed

    Eiken, P; Vestergaard, P

    2016-01-01

    Alendronate (ALN) and risedronate (RIS) are ideal as first-choice therapy options in the treatment of postmenopausal osteoporosis. What to do for patients who do not respond adequately to bisphosphonates has not been conclusively determined, but transitioning to other therapies should be considered. The aim of this article is to describe potential alternatives for patients switching from ALN or RIS to other therapies for osteoporosis. A systematic search of PubMed was conducted to find papers that evaluate the effects of switching therapies on fractures, bone mineral density (BMD), or bone turnover markers. Results from 11 studies that prospectively assessed treatment after ALN or RIS in women with postmenopausal osteoporosis were reviewed. All studies are of short duration (all 24 months or less) and assess the topic of transitioning therapy from ALN or RIS. None of the studies had the statistical power to assess fracture-reduction efficacy. Transitioning from ALN to zoledronic acid maintains therapeutic effects for 12 months. Switching to strontium ranelate, denosumab, or teriparatide causes further increases in BMD. Specifically, transitioning to teriparatide could be used for a limited time for select patients but needs to be followed up with anti-resorptive treatment to prevent a loss of the bone gained. There are only few studies-of short duration-that assess the topic of transitioning therapy from ALN or RIS, although this is a very frequent occurrence in clinical practice. This is especially true if the patient has not reached his/her therapy goal. Further long-term studies are needed. PMID:26438307

  2. Osteoporosis genetics: year 2011 in review.

    PubMed

    Karasik, David; Cohen-Zinder, Miri

    2012-01-01

    Increased rates of osteoporotic fractures represent a worldwide phenomenon, which result from a progressing aging in the population around the world and creating socioeconomic problems. This review will focus mostly on human genetic studies identifying genomic regions, genes and mutations associated with osteoporosis (bone mineral density (BMD) and bone loss) and related fractures, which were published during 2011. Although multiple genome-wide association studies (GWAS) were performed to date, the genetic cause of osteoporosis and fractures has not yet been found, and only a small fraction of high heritability of bone mass was successfully explained. GWAS is a successful tool to initially define and prioritize specific chromosomal regions showing associations with the desired traits or diseases. Following the initial discovery and replication, targeted sequencing is needed in order to detect those rare variants which GWAS does not reveal by design. Recent GWAS findings for BMD included WNT16 and MEF2C. The role of bone morphogenetic proteins in fracture healing has been explored by several groups, and new single-nucleotide polymorphisms present in genes such as NOGGIN and SMAD6 were found to be associated with a greater risk of fracture non-union. Finding new candidate genes, and mutations associated with BMD and fractures, also provided new biological connections. Thus, candidates for molecular link between bone metabolism and lactation (for example, RAP1A gene), as well as possible pleiotropic effects for bone and muscle (ACTN3 gene) were suggested. The focus of contemporary studies seems to move toward whole-genome sequencing, epigenetic and functional genomics strategies to find causal variants for osteoporosis.

  3. Role of estrogen in avian osteoporosis.

    PubMed

    Beck, M M; Hansen, K K

    2004-02-01

    One of the difficulties associated with commercial layer production is the development of osteoporosis in hens late in the production cycle. In light of this fact and because of hens' unique requirements for Ca, many studies have focused on the regulation of Ca and the role of estrogen in this process. The time course of estrogen synthesis over the productive life of hens has been well documented; increased circulating estrogen accompanies the onset of sexual maturity while decreases signal a decline in egg production prior to a molt. Numbers of estrogen receptors decrease with age in numerous tissues. The parallel changes in calcium-regulating proteins, primarily Calbindin D28K, and in the ability of duodenal cells to transport Ca, are thought to occur as a result of the changes in estrogen, and are also reversible by the molt process. In addition to the traditional model of estrogen action, evidence now exists for a possible nongenomic action of estrogen via membrane-bound receptors, demonstrated by extremely rapid surges of ionized Ca in chicken granulosa cells in response to 17beta-estradiol. Estrogen receptors have also been discovered in duodenal tissue, and tamoxifen, which binds to the estrogen receptor, has been shown to cause a rapid increase in Ca transport in the duodenum. In addition, recent evidence also suggests that mineralization of bone per se may not explain entirely the etiology of osteoporosis in the hen but that changes in the collagen matrix may contribute through decreases in bone elasticity. Taken together, these studies suggest that changes in estrogen synthesis and estrogen receptor populations may underlie the age-related changes in avian bone. As with postmenopausal women, dietary Ca and vitamin D are of limited benefit as remedies for osteoporosis in the hen. PMID:14979570

  4. Osteoporosis and sarcopenia: two diseases or one?

    PubMed Central

    Reginster, Jean-Yves; Beaudart, Charlotte; Buckinx, Fanny; Bruyère, Olivier

    2016-01-01

    Purpose of review This article reviews recently published evidence for common pathways explaining bone and muscle wasting in normal ageing and pathological conditions. Recent findings Numerous studies support the concept of a bone–muscle unit, where constant cross-talking between the two tissues takes place, involving molecules released by the skeletal muscle secretome, which affects bone, and osteokines secreted by the osteoblasts and osteocytes, which, in turn, impact muscle cells. Summary New chemical entities aiming at concomitantly treating osteoporosis and sarcopenia could be developed by targeting pathways that centrally regulate bone and muscle or emerging pathways that facilitate the communication between the two tissues. PMID:26418824

  5. Exercise and osteoporosis: Methodological and practical considerations

    NASA Technical Reports Server (NTRS)

    Block, Jon E.; Friedlander, Anne L.; Steiger, Peter; Genant, Harry K.

    1994-01-01

    Physical activity may have important implications for enhancing bone density prior to the initiation of space flight, for preserving bone density during zero gravity, and for rehabilitating the skeleton upon return to Earth. Nevertheless, the beneficial effects of exercise upon the skeleton have not been proven by controlled trials and no consensus exists regarding the type, duration, and intensity of exercise necessary to make significant alterations to the skeleton. The following sections review our current understanding of exercise and osteoporosis, examine some of the methodological shortcomings of these investigations, and make research recommendations for future clinical trials.

  6. Idiopathic Juvenile Osteoporosis: A Case Report

    PubMed Central

    Tosun, Gül; Şen, Yaşar

    2015-01-01

    Idiopathic Juvenile Osteoporosis (IJO) is a very rare disease, self restrictive and shows marked, spontaneous improvement during adolescence. The major clinical features were pain with difficulty walking, growth retardation, oral and dental abnormalities with radiographically porous bone structure. A 13-year-old male referred to paediatric dentistry clinic for toothache. The observations made with extra-intraoral clinic examination that one revealed short and skinny stature, diffuse caries in deciduous teeth, abraded lower incisor, deep bite and dysmorphic appearance in permanent incisor. This report emphasizes the recognized features of IJO as well as describes facio-dental findings that could aid in the diagnosis and management of these patients. PMID:26436063

  7. A Practical Approach to Osteoporosis Management in the Geriatric Population

    PubMed Central

    Liberman, Dan; Cheung, Angela

    2015-01-01

    Osteoporosis is a medical condition that is seen commonly in elderly patients, and it is associated with a large burden of morbidity and mortality. This article provides a practical approach to the workup and management of osteoporosis in patients 65 years or older. PMID:25825609

  8. What do Norwegian women and men know about osteoporosis?

    PubMed

    Magnus, J H; Joakimsen, R M; Berntsen, G K; Tollan, A; Søogaard, A J

    1996-01-01

    A survey of a random sample of 1514 Norwegian women and men aged 16-79 years was undertaken to investigate knowledge of osteoporosis and attitudes towards methods for preventing this disease. The interviews were carried out by Central Bureau of Statistics of Norway as part of their monthly national poll using a structured questionnaire. Women knew more about osteoporosis than did men (p < 0.001). In both men and women increased knowledge of osteoporosis was correlated to a high level of education. Furthermore it was clearly demonstrated that knowing someone with osteoporosis or suffering from it oneself increased the knowledge of osteoporosis significantly in both women and men. Multiple regression analysis confirmed the univariate analyses, and education was the strongest predictive factor for knowledge. To a hypothetical question as many as two-thirds of the women answered that they would use long-term hormone replacement therapy (HRT) to prevent osteoporosis on the recommendation of their general practitioner. Their attitudes towards the use of estrogen therapy did not show any significant relation to age, but their reluctance towards HRT increased with education (p < 0.001). When asked a question about their preferences regarding the use of physical activity as a means to prevent osteoporosis, older women preferred walking (p < 0.001), whereas younger women wanted more organized athletic activity (p < 0.001). The data demonstrated that there was a high degree of general knowledge of osteoporosis and its consequences in the general population.

  9. A Multidisciplinary Osteoporosis Service-Based Action Research Study

    ERIC Educational Resources Information Center

    Whitehead, Dean; Keast, John; Montgomery, Val; Hayman, Sue

    2004-01-01

    Objective: To investigate an existing Trust-based osteoporosis service's preventative activity, determine any issues and problems and use this data to reorganise the service, as part of a National Health Service Executive/Regional Office-commissioned and funded study. Setting: A UK Hospital Trust's Osteoporosis Service. Design & Method: A…

  10. Rural Women and Osteoporosis: Awareness and Educational Needs

    ERIC Educational Resources Information Center

    Matthews, Hollie L.; Laya, Mary; DeWitt, Dawn E.

    2006-01-01

    Context: Little is known about rural women's knowledge about osteoporosis. Purpose: To explore what women from high-prevalence rural communities know about osteoporosis and to assess their learning preferences. Methods: We surveyed 437 women in rural Washington and Oregon. Findings: The response rate was 93% (N = 406). The mean age of respondents…

  11. Risk Factors for Osteoporosis Among Middle-Aged Women

    ERIC Educational Resources Information Center

    Turner, Lori W.; Wallace, Lorraine Silver; Perry, Blake Allen; Bleeker, Jeanne

    2004-01-01

    Objective: To investigate the risk factors for osteoporosis among a sample of middle-aged women. Methods: Adipose tissue and bone mineral density levels at the left femur, lumbar spine, and total body were assessed using dual-energy x-ray absorptiometry (DXA). Subjects (n=342) were surveyed regarding a variety of osteoporosis-related risk factors.…

  12. Deletion of glycerol channel aquaporin-9 (Aqp9) impairs long-term blood glucose control in C57BL/6 leptin receptor–deficient (db/db) obese mice

    PubMed Central

    Spegel, Peter; Chawade, Aakash; Nielsen, Søren; Kjellbom, Per; Rützler, Michael

    2015-01-01

    Deletion of the glycerol channel aquaporin-9 (Aqp9) reduces postprandial blood glucose levels in leptin receptor–deficient (db/db) obese mice on a C57BL/6 × C57BLKS mixed genetic background. Furthermore, shRNA-mediated reduction of Aqp9 expression reduces liver triacylglycerol (TAG) accumulation in a diet-induced rat model of obesity. The aim of this study was to investigate metabolic effects of Aqp9 deletion in coisogenic db/db mice of the C57BL/6 background. Aqp9wt db/db and Aqp9−/− db/db mice did not differ in body weight and liver TAG contents. On the C57BL/6 genetic background, we observed elevated plasma glucose in Aqp9−/− db/db mice (+1.1 mmol/L, life-time average), while plasma insulin concentration was reduced at the time of death. Glucose levels changed similarly in pentobarbital anesthetized, glucagon challenged Aqp9wt db/db and Aqp9−/− db/db mice. Liver transcriptional profiling did not detect differential gene expression between genotypes. Metabolite profiling revealed a sex independent increase in plasma glycerol (+55%) and glucose (+24%), and reduction in threonate (all at q < 0.1) in Aqp9−/− db/db mice compared to controls. Metabolite profiling thus confirms a role of AQP9 in glycerol metabolism of obese C57BL/6 db/db mice. In this animal model of obesity Aqp9 gene deletion elevates plasma glucose and does not alleviate hepatosteatosis. PMID:26416971

  13. Advances in osteoporosis therapy. 2003 update of practical guidelines.

    PubMed Central

    Khan, Aliya

    2003-01-01

    OBJECTIVE: To review evidence for current therapies for postmenopausal osteoporosis and to establish practical guidelines for management of osteoporosis by family physicians. QUALITY OF EVIDENCE: MEDLINE was searched from January 1990 to January 2003. Articles retrieved were graded by level of evidence (I to III). Recommendations for diagnosis and therapy were based on evidence from randomized controlled trials and meta-analyses. MAIN MESSAGE: Osteoporosis is treatable. Early diagnosis and intervention is recommended. After excluding secondary causes of osteoporosis, physicians should advise patients to take appropriate calcium and vitamin D supplementation. Those with osteopenia at risk of fractures and those with established osteoporosis need additional therapy. CONCLUSION: Approved pharmacologic therapies include alendronate, risedronate, raloxifene, calcitonin, cyclical etidronate, and hormone replacement therapy. Family physicians can help with early diagnosis and intervention and should discuss lifestyle modification with patients. PMID:12729240

  14. [Osteoporosis- more than a bone disease (author's transl)].

    PubMed

    Krokowski, E; Fricke, M

    1975-05-01

    Neither the bone-matrix theory of osteoporosis established by Albright in the 1940's nor the lack-of-calcium theory of the 1960's especially represented by Nordin, due to experimental tests and clinical results could be maintained. Here a new theory of osteoporosis is introduced, explaining osteoporosis not to be primarily a disfunction of calcium- or bone metabolism, but as a part-symptom of disfunction of the whole sustentaculum -bones, marrow, nucleus pulposus and musculation. Osteoporosis is predisposed by amyothenia respectively in activity and is initiated by reduced blood circulation of the sustentaculum. Certain relevant conclusions for prophylaxis and therapy of osteoporosis can be deduced without neglecting already the presently only effective therapy using sodium fluoride. PMID:1143172

  15. The functional mechanism of simvastatin in experimental osteoporosis.

    PubMed

    Dai, Lifen; Xu, Ming; Wu, Haiying; Xue, Lanjie; Yuan, Dekai; Wang, Yuan; Shen, Zhiqiang; Zhao, Hongbin; Hu, Min

    2016-01-01

    Osteoporosis is a systemic and metabolic bone disease. New drugs with good curative effect, fewer side effects, and high safety need to be developed urgently. Recently, simvastatin has been used to treat osteoporosis more frequently; however, its clinical effect and treatment mechanism are still unknown. With the use of animal models, the treatment effectiveness of simvastatin on experimental osteoporosis was investigated and the functional mechanism was preliminarily explored. The results show that simvastatin significantly increased the mechanical parameters such as maximum load, stiffness, and energy-absorbing capacity, and improved the microarchitecture. They indicated that the antiosteoporosis activity of simvastatin may be due to the promotion of proliferation and differentiation of osteoblasts. Simvastatin was effective in treating experimental osteoporosis. This study provides necessary experimental evidence for the clinical application of simvastatin in osteoporosis treatment.

  16. Herpes zoster as a risk factor for osteoporosis

    PubMed Central

    Wu, Chieh-Hsin; Chai, Chee-Yin; Tung, Yi-Ching; Lu, Ying-Yi; Su, Yu-Feng; Tsai, Tai-Hsin; Tzou, Rong-Dar; Lin, Chih-Lung

    2016-01-01

    Abstract The objective of this study was to investigate the risk of osteoporosis in patients with herpes zoster (HZ) infection using a nationwide population-based dataset. The Taiwan National Health Insurance Research Database was used to compare data between 11,088 patients aged 20 to 49 years diagnosed with HZ during 1996 to 2010 and a control group of 11,088 patients without HZ. Both cohorts were followed up until the end of 2010 to measure the incidence of osteoporosis. Cox proportional-hazards regression and Kaplan–Meier analyses were used to calculate hazard ratio and cumulative incidences of osteoporosis, respectively. The overall risk of osteoporosis was 4.55 times greater in the HZ group than in the control group (2.48 vs. 0.30 per 1000 person-years, respectively) after adjusting for age, gender, Charlson Comorbidity Index, and related comorbidities. Compared with controls, patients with HZ and subsequent postherpetic neuralgia had a 4.76-fold higher likelihood of developing osteoporosis (95% confidence interval: 2.44–9.29), which was a statistically significant difference (P <0.001). Osteoporosis risk factors included female gender, age, advanced Charlson Comorbidity Index, depression, and postherpetic neuralgia. This study identified HZ is associated with an increased osteoporosis risk. Further evaluation of the value of bone mineral density test in detecting osteoporosis after HZ may be suggested. HZ vaccination could also be evaluated to lower the incidence of HZ and possibly subsequent osteoporosis. Physicians should be alerted to this association to improve early identification of osteoporosis in patients with HZ. PMID:27336887

  17. Osteoporosis management in older patients who experienced a fracture

    PubMed Central

    Oertel, Mark J; Graves, Leland; Al-Hihi, Eyad; Leonardo, Vincent; Hopkins, Christina; DeSouza, Kristin; Bhattacharya, Rajib K

    2016-01-01

    Background Fractures in older patients are common, morbid, and associated with increased risk of subsequent fractures. Inpatient and outpatient management and treatment of fractures can be costly. With more emphasis placed on quality care for Medicare beneficiaries, we studied if patients were receiving proper screening for osteoporosis and treatment after diagnosis of fracture. This study aims to determine if adequate screening and treatment for osteoporosis occurs in the postfracture period. Methods A retrospective analysis of Medicare beneficiaries aged 67 years or older was gathered from a single institution in both inpatient and outpatient visits. Based on International Classification of Diseases ninth revision codes, primary diagnosis of fractures of neck and trunk, upper limb, and lower limb were obtained in addition to current procedural terminology codes for fracture procedures. We studied patients who had been screened for osteoporosis with a bone mineral study or received osteoporosis treatment after their fracture. Results Medicare beneficiaries totaling 1,375 patients were determined to have an inclusion fracture between June 1, 2013 and November 30, 2014. At the time of our analysis on December 1, 2014, 1,219 patients were living and included in the analysis. Of these patients, 256 (21.0%) either received osteoporosis testing with bone mineral density or received treatment for osteoporosis. On sex breakdown, 208/820 (25.4%) females received proper evaluation or treatment of osteoporosis in comparison to 48/399 (12.0%) males. This is in comparison to the Centers for Medicare and Medicaid Services’ national average of 19.1% for osteoporosis management in females. Conclusion A minority of studied patients received evaluation or treatment for osteoporosis after their fracture. Postfracture investigation and treatment for osteoporosis in Medicare beneficiaries is inadequate. If improved, Medicare costs could be reduced by prevention of future fractures

  18. PIXE studies of osteoporosis preventive treatments

    NASA Astrophysics Data System (ADS)

    Ynsa, M. D.; Pinheiro, T.; Ager, F. J.; Alves, L. C.; Millán, J. C.; Gómez-Zubelbia, M. A.; Respaldiza, M. A.

    2002-04-01

    Particle induced X-ray emission (PIXE) and nuclear microprobe (NMP) have been used in an exploratory work to study elemental alterations in tissues of experimental animals submitted to osteoporosis preventive treatments. Osteopathologies have been associated with several factors, such as hormonal disturbances, metabolic aberrations, low dietary Ca and vitamin D intake, excess of iron, among other possible factors. Hormonal treatments seem to be beneficial to the incorporation of Ca in bone but breast and endometrial cancers constitute significant side effects that cannot be ignored. Wistar female rats were used to test the effect of estrogen therapy in osteoporosis progression. The variations of elemental concentrations in uterus and the Ca content of femoral bones of ovariectomised rats under estrogen therapy were investigated. PIXE, Rutherford backscattering spectrometry and secondary electron microscopy techniques were applied for the characterisation of biological materials, with respect to morphology and trace element distribution determination. The increase of Ca and Fe concentrations in uterus and the variations for Ca distribution patterns in bone of rats submitted to estrogen therapy were the major features observed.

  19. Calcitonin metabolism in senile (type II) osteoporosis.

    PubMed

    Reginster, J Y; Deroisy, R; Bruwier, M; Franchimont, P

    1992-05-01

    The exact role of calcitonin (CT) in the pathogenesis of senile (Type II) osteoporosis remains unknown. Whole plasma calcitonin (iCT) and extracted monomeric calcitonin (eCT) basal levels, metabolic clearance rate (MCR) and production rate (PR) of iCT and eCT were measured in 41 postmenopausal women, including 14 hip fractures (OP II) and 27 healthy controls. No significant difference appeared for basal iCT levels between OP II (mean +/- SEM: 41.9 +/- 3.4 pg/ml) and controls (mean +/- SEM: 46.2 +/- 5 pg/ml). eCT basal levels were similar in OP II (mean +/- SEM: 5.42 +/- 0.5 pg/ml) and in controls (mean +/- SEM: 7.3 +/- 0.7 pg/ml). MCR were similar in the two groups. iCT PR were similar in OP II (mean +/- SEM: 17.2 +/- 1.5 micrograms/24 h) and controls (mean +/- SEM: 18.6 +/- 1.1 micrograms/24 h). No difference appeared between eCT PR in OP II (mean +/- SEM: 2.3 +/- 0.2 micrograms/24 h) and controls (mean +/- SEM: 3.2 +/- 0.3 pg/ml). From these data, no evidence appears that calcitonin might be one of the determinant factors in the pathogenesis of senile osteoporosis.

  20. Osteoporosis and sarcopenia in older age.

    PubMed

    Edwards, M H; Dennison, E M; Aihie Sayer, A; Fielding, R; Cooper, C

    2015-11-01

    Osteoporosis and sarcopenia are common in older age and associated with significant morbidity and mortality. Consequently, they are both attended by a considerable socioeconomic burden. Osteoporosis was defined by the World Health Organisation (WHO) in 1994 as a bone mineral density of less than 2.5 standard deviations below the sex-specific young adult mean and this characterisation has been adopted globally. Subsequently, a further step forward was taken when bone mineral density was incorporated into fracture risk prediction algorithms, such as the Fracture Risk Assessment Tool (FRAX®) also developed by the WHO. In contrast, for sarcopenia there have been several diagnostic criteria suggested, initially relating to low muscle mass alone and more recently low muscle mass and muscle function. However, none of these have been universally accepted. This has led to difficulties in accurately delineating the burden of disease, exploring geographic differences, and recruiting appropriate subjects to clinical trials. There is also uncertainty about how improvement in sarcopenia should be measured in pharmaceutical trials. Reasons for these difficulties include the number of facets of muscle health available, e.g. mass, strength, function, and performance, and the various clinical outcomes to which sarcopenia can be related such as falls, fracture, disability and premature mortality. It is imperative that a universal definition of sarcopenia is reached soon to facilitate greater progress in research into this debilitating condition. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  1. QUS devices for assessment of osteoporosis

    NASA Astrophysics Data System (ADS)

    Langton, Christian

    2002-05-01

    The acronym QUS (Quantitative Ultrasound) is now widely used to describe ultrasound assessment of osteoporosis, a disease primarily manifested by fragility fractures of the wrist and hip along with shortening of the spine. There is currently available a plethora of commercial QUS devices, measuring various anatomic sites including the heel, finger, and tibia. Largely through commercial rather than scientific drivers, the parameters reported often differ significantly from the two fundamental parameters of velocity and attenuation. Attenuation at the heel is generally reported as BUA (broadband ultrasound attenuation, the linearly regressed increase in attenuation between 200 and 600 kHz). Velocity derivatives include bone, heel, TOF, and AdV. Further, velocity and BUA parameters may be mathematically combined to provide proprietary parameters including ``stiffness'' and ``QUI.'' In terms of clinical utility, the situation is further complicated by ultrasound being inherently dependent upon ``bone quality'' (e.g., structure) in addition to ``bone quantity'' (generally expressed as BMD, bone mineral density). Hence the BMD derived WHO criteria for osteoporosis and osteopenia may not be directly applied to QUS. There is therefore an urgent need to understand the fundamental dependence of QUS parameters, to perform calibration and cross-correlation studies of QUS devices, and to define its clinical utility.

  2. Idiopathic osteoporosis: an evolutionary dys-adaptation?

    PubMed Central

    Alexander, C

    2001-01-01

    Osteoporosis is characterised by simultaneous net bone growth and net resorption on different surfaces, suggesting that systemic factors are not the sole explanation for the findings. The main clinical consequence is fracturing in the largely trabecular bones of the spine, hip, and radius, and the key problem in these areas is finding an explanation for the preferential loss of transverse trabeculae. In normal bone, local maintenance depends on a negative feedback response to intermittent compression strain, and it is concluded, from biomechanical analysis of the response required to achieve negative feedback, that a preferential loss of transverse trabeculae is indicative of a selective deficiency of radial compression loading. The only significant source of radial compression in humans is the induced strain produced by axial tension. This is a necessary component of the lifestyles of quadrupeds and arboreal primates, but in humans occurs only on the convex side when the bone is offset loaded. The resulting strain is a function of the range of movement. It is suggested that the asymmetrical pattern of bone loss in cortical and trabecular osteoporosis reflects chronic underuse of movement range, resulting from the adoption of a bipedal lifestyle. Exercise regimens based on using the whole of the available movement range should better prepare the skeleton to adjust to other factors hostile to bone maintenance.

 PMID:11350841

  3. Osteoporosis: Modern Paradigms for Last Century's Bones.

    PubMed

    Kruger, Marlena C; Wolber, Frances M

    2016-01-01

    The skeleton is a metabolically active organ undergoing continuously remodelling. With ageing and menopause the balance shifts to increased resorption, leading to a reduction in bone mineral density and disruption of bone microarchitecture. Bone mass accretion and bone metabolism are influenced by systemic hormones as well as genetic and lifestyle factors. The classic paradigm has described osteoporosis as being a "brittle bone" disease that occurs in post-menopausal, thin, Caucasian women with low calcium intakes and/or vitamin D insufficiency. However, a study of black women in Africa demonstrated that higher proportions of body fat did not protect bone health. Isoflavone interventions in Asian postmenopausal women have produced inconsistent bone health benefits, due in part to population heterogeneity in enteric bacterial metabolism of daidzein. A comparison of women and men in several Asian countries identified significant differences between countries in the rate of bone health decline, and a high incidence rate of osteoporosis in both sexes. These studies have revealed significant differences in genetic phenotypes, debunking long-held beliefs and leading to new paradigms in study design. Current studies are now being specifically designed to assess genotype differences between Caucasian, Asian, African, and other phenotypes, and exploring alternative methodology to measure bone architecture. PMID:27322315

  4. Herbal treatment for osteoporosis: a current review.

    PubMed

    Leung, Ping-Chung; Siu, Wing-Sum

    2013-04-01

    Osteoporosis is an aging problem. The declining bone mineral density (BMD) enhances the chances of fractures during minor falls. Effective pharmaceuticals are available for a rapid improvement of BMD. However, hormonal treatment gives serious complications, and bisphosphonates may lead to odd fractures of long bones, resulting from excessive rigidity of the cortical components. Many medicinal herbs used in Traditional Chinese Medicine, known as kidney tonics, have been tested for their effects on bone metabolism in the laboratory and clinically. Three of these, viz. Herba epimedii (, Yín Yáng Huò), Fructus ligustri lucidi (, Nǚ Zhēn Zi), and Fructus psoraleae (, Bǔ Gǔ Zhī) were chosen to form a herbal formula, ELP. ELP was tested on in vitro platforms and was shown to have both osteoblastic and anti- osteoclastic action. ELP tested on ovariectomized rats also showed BMD protection. ELP was then put on a placebo- controlled randomized clinical trial. BMD protection was obvious among those women with the onset of menopause beyond 10 years (P < 0.05). A general protective trend was observed among all women under trial (P > 0.05). Although a thorough literature review on the herbal treatment effects did not give convincing answers to the use of Chinese herbs in osteoporosis, our study supports more research and trials in this area, while we are looking for safe and effective agents to keep the bone metabolism in a balanced state. PMID:24716161

  5. Prevention and treatment of postmenopausal osteoporosis.

    PubMed

    Tella, Sri Harsha; Gallagher, J Christopher

    2014-07-01

    In the beginning, that is from the 1960's, when a link between menopause and osteoporosis was first identified; estrogen treatment was the standard for preventing bone loss, however there was no fracture data, even though it was thought to be effective. This continued until the Women's Health Initiative (WHI) study in 2001 that published data on 6 years of treatment with hormone therapy that showed an increase in heart attacks and breast cancer. Even though the risks were small, 1 per 1500 users annually, patients were worried and there was a large drop off in estrogen use. In later analyses the WHI study showed that estrogen reduced fractures and actually prevented heart attacks in the 50-60 year age group. Estrogen alone appeared to be safer to use than estrogen+the progestin medroxyprogesterone acetate and actually reduced breast cancer. At the same time other drugs were being developed for bone that belong to the bisphosphonate group and the first generation of compounds showed moderate potency on bone resorption. The second and third generation compounds were much more potent and in a series of large trials were shown to reduce fractures. For the last 15 years the treatment of osteoporosis belonged to the bisphosphonate compounds, most of which reduce fracture rates by 50 percent. With the exception of gastrointestinal irritation the drugs are well tolerated and highly effective. The sophistication of the delivery systems now allow treatment that can be given daily, weekly, monthly and annually either orally or intravenously. Bone remodeling is a dynamic process that repairs microfractures and replaces old bone with new bone. In the last 10 years there has been a remarkable understanding of bone biology so that new therapies can be specifically designed on a biological basis. The realization that RANKL was the final cytokine involved in the resorption process and that marrow cells produced a natural antagonist called Osteoprotegerin (OPG) quickly led to two

  6. Energy Excess, Glucose Utilization, and Skeletal Remodeling: New Insights.

    PubMed

    Lecka-Czernik, Beata; Rosen, Clifford J

    2015-08-01

    Skeletal complications have recently been recognized as another of the several comorbidities associated with diabetes. Clinical studies suggest that disordered glucose and lipid metabolism have a profound effect on bone. Diabetes-related changes in skeletal homeostasis result in a significant increased risk of fractures, although the pathophysiology may differ from postmenopausal osteoporosis. Efforts to understand the underlying mechanisms of diabetic bone disease have focused on the direct interaction of adipose tissue with skeletal remodeling and the potential influence of glucose utilization and energy uptake on these processes. One aspect that has emerged recently is the major role of the central nervous system in whole-body metabolism, bone turnover, adipose tissue remodeling, and beta cell secretion of insulin. Importantly, the skeleton contributes to the metabolic balance inherent in physiologic states. New animal models have provided the insights necessary to begin to dissect the effects of obesity and insulin resistance on the acquisition and maintenance of bone mass. In this Perspective, we focus on potential mechanisms that underlie the complex interactions between adipose tissue and skeletal turnover by focusing on the clinical evidence and on preclinical studies indicating that glucose intolerance may have a significant impact on the skeleton. In addition, we raise fundamental questions that need to be addressed in future studies to resolve the conundrum associated with glucose intolerance, obesity, and osteoporosis.

  7. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  8. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  9. How to reduce the risk factors of osteoporosis in Asia.

    PubMed

    Kao, P C; P'eng, F K

    1995-03-01

    Osteoporosis can be predicted to be a new burden to public health in Asia. Currently, the incidence of osteoporosis-related fractures is lower there than in most western communities. By the year 2050, however, 50% of the 6.3 million hip fractures which occur worldwide will be in Asians as a result of an aging population, a decrease in physical activity and westernization of lifestyles. The cost of treatment and cure of these patients will be enormous, a sufficient financial burden to consume current economic gain and cripple the future advancing development of Asian countries. Individual risk factors for osteoporosis have been identified by the extensive Mediterranean Osteoporosis Study (MEDOS). Fortunately, Asians, the rural population and farmers in particular, have the favorable lifestyle identified by the study, including high physical activity and exposure to sunlight. Strikingly, tea drinking, a daily habit in Asia, is also identified as a protective factor against osteoporosis. In addition, bioflavonoids and phytoestrogen-rich soybeans and vegetables are consumed in large quantities by Asians. A soy diet reduces mortality in breast and prostate cancer because it contains weak estrogens. The weakly estrogenic phytoestrogens require further study to demonstrate their pharmacological effect in reducing the rate of osteoporosis. Public health education, however, is needed to encourage the Asian population to maintain their traditionally good lifestyle and to reduce the risk factors for osteoporosis. In turn, these steps may reduce the public health burden by 2050.

  10. Increased risk of osteoporosis in patients with erectile dysfunction

    PubMed Central

    Wu, Chieh-Hsin; Lu, Ying-Yi; Chai, Chee-Yin; Su, Yu-Feng; Tsai, Tai-Hsin; Tsai, Feng-Ji; Lin, Chih-Lung

    2016-01-01

    Abstract In this study, we aimed to investigate the risk of osteoporosis in patients with erectile dysfunction (ED) by analyzing data from the Taiwan National Health Insurance Research Database (NHIRD). From the Taiwan NHIRD, we analyzed data on 4460 patients aged ≥40 years diagnosed with ED between 1996 and 2010. In total, 17,480 age-matched patients without ED in a 1:4 ratio were randomly selected as the non-ED group. The relationship between ED and the risk of osteoporosis was estimated using Cox proportional hazard regression models. During the follow-up period, 264 patients with ED (5.92%) and 651 patients without ED (3.65%) developed osteoporosis. The overall incidence of osteoporosis was 3.04-fold higher in the ED group than in the non-ED group (9.74 vs 2.47 per 1000 person-years) after controlling for covariates. Compared with patients without ED, patients with psychogenic and organic ED were 3.19- and 3.03-fold more likely to develop osteoporosis. Our results indicate that patients with a history of ED, particularly younger men, had a high risk of osteoporosis. Patients with ED should be examined for bone mineral density, and men with osteoporosis should be evaluated for ED. PMID:27368024

  11. Whole-body vibration exercise in postmenopausal osteoporosis.

    PubMed

    Weber-Rajek, Magdalena; Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-03-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the m