Teman, Carolin J.; Wilson, Andrew R.; Perkins, Sherrie L.; Hickman, Kimberly; Prchal, Josef T.; Salama, Mohamed E.
2010-01-01
Evaluation of bone marrow fibrosis and osteosclerosis in myeloproliferative neoplasms (MPN) is subject to interobserver inconsistency. Performance data for currently utilized fibrosis grading systems are lacking, and classification scales for osteosclerosis do not exist. Digital imaging can serve as a quantification method for fibrosis and osteosclerosis. We used digital imaging techniques for trabecular area assessment and reticulin-fiber quantification. Patients with all Philadelphia negative MPN subtypes had higher trabecular volume than controls (p ≤0.0015). Results suggest that the degree of osteosclerosis helps differentiate primary myelofibrosis from other MPN. Numerical quantification of fibrosis highly correlated with subjective scores, and interobserver correlation was satisfactory. Digital imaging provides accurate quantification for osteosclerosis and fibrosis. PMID:20122729
Generalized osteosclerosis in a cat.
Hanel, Rita M; Graham, John P; Levy, Julie K; Buergelt, Claus D; Creamer, Jeff
2004-01-01
A 12-year-old, neutered male, domestic long-hair cat was evaluated for a 6-month history of inspiratory stertor and epiphora. In computed tomography of the skull and pelvis, and radiographs of the thorax, right femur and stifle there was generalized osteosclerosis, with obliteration of the nasal turbinates and nasolacrimal duct obstruction. The cat also had a large fibrosarcoma involving the right pelvic limb. Osteosclerosis is a rare disorder that is poorly understood but has been described in several species. Various manifestations, potential causes, and radiologic findings of osteosclerosis are discussed.
Regensburger, Adrian; Rech, Jürgen; Englbrecht, Matthias; Finzel, Stephanie; Kraus, Sebastian; Hecht, Karolin; Kleyer, Arnd; Haschka, Judith; Hueber, Axel J; Cavallaro, Alexander; Schett, Georg; Faustini, Francesca
2015-09-01
To investigate whether MRI allows the detection of osteosclerosis as a sign of repair of bone erosions compared with high-resolution peripheral quantitative computed tomography (HR-pQCT) as a reference and whether the presence of osteosclerosis on HR-pQCT is linked to synovitis and osteitis on MRI. A total of 103 RA patients underwent HR-pQCT and MRI of the dominant hand. The presence and size of erosions and the presence and extent (grades 0-2) of osteosclerosis were assessed by both imaging modalities, focusing on MCP 2 and 3 and wrist joints. By MRI, the presence and grading of osteitis and synovitis were assessed according to the Rheumatoid Arthritis MRI Score (RAMRIS). Parallel evaluation was feasible by both modalities on 126 bone erosions. Signs of osteosclerosis were found on 87 erosions by HR-pQCT and on 22 by MRI. False-positive results (MRI(+)CT(-)) accounted for 3%, while false-negative results (MRI(-)CT(+)) accounted for 76%. MRI sensitivity for the detection of osteosclerosis was 24% and specificity was 97%. The semi-quantitative scoring of osteosclerosis was reliable between MRI and HR-pQCT [intraclass correlation coefficient 0.917 (95% CI 0.884, 0.941), P < 0.001]. The presence of osteosclerosis on HR-pQCT showed a trend towards an inverse relationship to the occurrence and extent of osteitis on MRI [χ(2)(1) = 3.285; ϕ coefficient = -0.124; P = 0.070] but not to synovitis [χ(2)(1) = 0.039; ϕ coefficient = -0.14; P = 0.844]. MRI can only rarely detect osteosclerosis associated with bone erosions in RA. Indeed, the sensitivity compared with HR-pQCT is limited, while the specificity is high. The presence of osteitis makes osteosclerosis more unlikely, whereas the presence of synovitis is not related to osteosclerosis. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Osteosclerosis, hyperostosis, and related disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frame, B.; Honasoge, M.; Kottamasu, S.R.
1987-01-01
This book will assist physicians in the evaluation of patients where osteosclerosis and hyperostosis are the predominant radiographic features. This volume also covers disorders with lesser degrees of osteosclerosis and hyperostosis, and those which exhibit ligamentous calcifications and/or ossifications such as: fluorosis, hypervitaminosis, hypoparathyroidism, and hypophosphatemic rickets. Discussed and reviewed are the salient clinical and radiographic features as well as the pathophysiology of these conditions. In addition, many chapters contain experimental data that facilitates understanding of the pathogenesis of the disease.
Osteosclerosis (punctate form) in multiple myeloma.
Shin, M S; Mowry, R W; Bodie, F L
1979-02-01
Generalized punctate and nodular osteosclerosis associated with multiple myeloma is reported with review of the literature and differential diagnoses. This patient differs from some others reported earlier in the absence of any recognized osteolytic lesions either during life or at autopsy.
Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru
Amson, Eli; de Muizon, Christian; Laurin, Michel; Argot, Christine; de Buffrénil, Vivian
2014-01-01
Non-pathological densification (osteosclerosis) and swelling (pachyostosis) of bones are the main modifications affecting the skeleton of land vertebrates (tetrapods) that returned to water. However, a precise temporal calibration of the acquisition of such adaptations is still wanting. Here, we assess the timing of such acquisition using the aquatic sloth Thalassocnus, from the Neogene of the Pisco Formation, Peru. This genus is represented by five species occurring in successive vertebrate-bearing horizons of distinct ages. It yields the most detailed data about the gradual acquisition of aquatic adaptations among tetrapods, in displaying increasing osteosclerosis and pachyostosis through time. Such modifications, reflecting a shift in the habitat from terrestrial to aquatic, occurred over a short geological time span (ca 4 Myr). Otherwise, the bones of terrestrial pilosans (sloths and anteaters) are much more compact than the mean mammalian condition, which suggests that the osteosclerosis of Thalassocnus may represent an exaptation. PMID:24621950
Melella, A; Basilico, L; Lupini, A; Renda, F
1978-10-31
Primary and secondary hyperparathyroidism are both marked by widespread skeletal demineralisation, subperiosteal erosion of the cortex, brown tumours, osteosclerosis, and extraosseous calcification. Differential diagnosis is guided by the different association of these findings. Brown tumours and more extensive erosion are marks of the primary form, whereas osteosclerosis and extra-osseous calcification are a prominent feature of secondary hyperparathyroidism. Radiologists, therefore, should direct their attention to features suggesting the presence of secondary forms in addition to looking for bone alterations associated with hyperparathyroidism.
Idiopathic Acquired Osteosclerosis In A Middle-aged Woman With Systemic Lupus Erythematosus
Guañabens, Núria; Mumm, Steven; Gifre, Laia; Gaspà, Silvia Ruiz; Demertzis, Jennifer L.; Stolina, Marina; Novack, Deborah V.; Whyte, Michael P
2016-01-01
Widely distributed osteosclerosis is an unusual radiographic finding with multiple causes. A 42-year-old pre-menopausal Spanish woman gradually acquired dense bone diffusely affecting her axial skeleton and focally affecting her proximal long bones. Systemic lupus erythematosus diagnosed in adolescence had been well controlled. She had not fractured or received antiresorptive therapy, and was hepatitis C virus antibody negative. Family members had low bone mass. Lumbar spine BMD measured by dual-photon absorptiometry at age 17 years, while receiving glucocorticoids, was 79% the average value of age-matched controls. From ages 30 to 37 years, DXA BMD z-scores steadily increased in her lumbar spine from +3.8 to +7.9, and femoral neck from −1.4 to −0.7. Serum calcium and phosphorus levels were consistently normal, 25OHD <20 ng/mL, and PTH sometimes slightly increased. Her reduced eGFR was 38–55 mls/min. Hypocalciuria likely reflected positive mineral balance. During increasing BMD, turnover markers (serum bone-ALP, PINP, osteocalcin, and CTX, and urinary NTX) were 1.6- to 2.8-fold above the reference limits. Those of bone formation seemed increased more than those of resorption. FGF-23 was slightly elevated, perhaps from kidney disease. Serum OPG and TGFβ1 levels were normal, but sclerostin (SOST) and RANKL were elevated. Serum multiplex biomarker profiling confirmed a high level of SOST and RANKL, whereas DKK-1 seemed low. Matrix metalloproteinases-3 and −7 were elevated. Iliac crest biopsy revealed tetracycline labels, no distinction between thick trabeculae and cortical bone, absence of peritrabecular fibrosis, few osteoclasts, and no mastocytosis. Then, for the past three years, BMD z-scores steadily decreased. Skeletal fluorosis, mastocytosis, myelofibrosis, hepatitis C-associated osteosclerosis, multiple myeloma, and aberrant phosphate homeostasis did not explain her osteosclerosis. Mutation analysis of the LRP5, LRP4, SOST, and osteopetrosis genes was negative. Microarray showed no notable copy number variation. Perhaps her osteosclerosis reflected an interval of autoimmune-mediated resistance to SOST and/or RANKL. PMID:27005479
Rapid-Onset Diffuse Skeletal Fluorosis from Inhalant Abuse: A Case Report.
Cohen, Eric; Hsu, Raymond Y; Evangelista, Peter; Aaron, Roy; Rubin, Lee E
A thirty-year-old man presented with severely debilitating left hip pain and stiffness. Radiographs demonstrated diffuse osteosclerosis and heterotopic bone formation with near ankylosis of the left hip. The patient underwent successful joint-preserving surgery to restore hip range of motion. After disclosing a history of inhalant abuse, which was confirmed by elevated serum fluoride levels, he was diagnosed with diffuse skeletal fluorosis. To the best of our knowledge, we present the first reported case of diffuse skeletal fluorosis caused by inhalant abuse of 1,1-difluoroethane. Skeletal fluorosis is uncommon in the United States but is important to consider in the differential diagnosis when a patient presents with otherwise unexplained joint pain and osteosclerosis.
Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology
Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van ‘t Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R
2016-01-01
Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. PMID:26698846
Gultekin, G. Inal; Raj, K.; Foureman, P.; Lehman, S.; Manhart, K.; Abdulmalik, O.; Giger, U.
2013-01-01
Background Erythrocytic pyruvate kinase (PK) deficiency, first documented in Basenjis, is the most common inherited erythroenzymopathy in dogs. Objectives To report 3 new breed-specific PK-LR gene mutations and a retrospective survey of PK mutations in a small and selected group of Beagles and West Highland White Terriers (WHWT). Animals Labrador Retrievers (2 siblings, 5 unrelated), Pugs (2 siblings, 1 unrelated), Beagles (39 anemic, 29 other), WHWTs (22 anemic, 226 nonanemic), Cairn Terrier (n = 1). Methods Exons of the PK-LR gene were sequenced from genomic DNA of young dogs (<2 years) with persistent highly regenerative hemolytic anemia. Results A nonsense mutation (c.799C>T) resulting in a premature stop codon was identified in anemic Labrador Retriever siblings that had osteosclerosis, high serum ferritin concentrations, and severe hepatic secondary hemochromatosis. Anemic Pug and Beagle revealed 2 different missense mutations (c.848T>C, c.994G>A, respectively) resulting in intolerable amino acid changes to protein structure and enzyme function. Breed-specific mutation tests were developed. Among the biased group of 248 WHWTs, 9% and 35% were homozygous (affected) and heterozygous, respectively, for the previously described mutation (mutant allele frequency 0.26). A PK-deficient Cairn Terrier had the same insertion mutation as the affected WHWTs. Of the selected group of 68 Beagles, 35% were PK-deficient and 3% were carriers (0.37). Conclusions and Clinical Importance Erythrocytic PK deficiency is caused by different mutations in different dog breeds and causes chronic severe hemolytic anemia, hemosiderosis, and secondary hemochromatosis because of chronic hemolysis and, an as yet unexplained osteosclerosis. The newly developed breed-specific mutation assays simplify the diagnosis of PK deficiency. PMID:22805166
Hexachlorobenzene (HCB) exposure has been shown to induce hyperparathyroidism and osteosclerosis in rats. xperiments were undertaken to investigate the effects of HCB on femur morphometry as well as breaking strength. ischer 344 rats were dosed 5 days/wk for 15 wks with 0, 0.1, 1...
Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology.
Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van 't Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R
2016-11-01
Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. OA was induced in wild-type (WT) and PAR2-deficient (PAR2 -/- ) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2 -/- mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2 -/- mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2 -/- mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2 -/- mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The prevalence of idiopathic osteosclerosis and condensing osteitis in Zagreb population.
Verzak, Zeljko; Celap, Branka; Modrić, Vesna Erika; Sorić, Pjetra; Karlović, Zoran
2012-12-01
The aim of this study was to determine the prevalence of idiopathic osteosclerosis (IO) and condensing osteitis (CO) in Zagreb patient population sample according to age and sex, localization in the jaw, as well as dental relationship between IO and CO lesions. A retrospective study was performed using orthopantomograms of 1200 patients who underwent dental treatment. Descriptive characteristics of radiopacities, including the size and information concerning the tooth involved, were recorded and processed using chi2-test. A total of 114 radiopacities were identified, 34 IO in 29 subjects (16 female and 13 male, mean age 35), and 80 CO in 69 subjects (38 female and 31 male, mean age 37). There were no significant sex differences. Both CO and IO showed greater predilection for occurrence in the premolar to molar region of the mandible. Our results indicated a low prevalence of IO and CO in the population of Zagreb. Our findings support the theory that IO lesions should be considered developmental variants of normal bone architecture unrelated to local stimuli, whereas CO lesions could be considered reactive formations related to teeth with deep caries, large restoration, or pulpitis.
Hand-Schüller-Christian Disease and Erdheim-Chester Disease: Coexistence and Discrepancy
Yin, Jun; Zhang, Feng; Zhang, Huizhen; Shen, Li; Li, Qing; Hu, Shundong; Tian, Qinghua; Bao, Yuqian
2013-01-01
Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) share similar clinical features and mechanisms. In very rare circumstances, the two diseases coexist in the same patient. Here we report such a patient, who was first diagnosed with Hand-Schüller-Christian disease (HSC), a type of LCH. Several years later, the patient presented with severe exophthalmos and osteosclerosis on radiograph. New biopsy revealed ECD. We also analyze 54 cases of LCH and 6 cases of ECD diagnosed in our hospital, as well as their progression during a follow-up period of 8 years. In five cases of HSC (9.3% of LCH), a triad of central diabetes insipidus, hyperprolactinemia, and pituitary stalk thickening on magnetic resonance imaging (MRI) preceded the typical bone lesions by 4–9 years. In addition, LCH was featured as elevated plasma alkaline phosphatase (ALP), which was normal in ECD. Combined with a literature review, several features are summarized to differentiate ECD from HSC. In patients with diabetes insipidus, concomitant hyperprolactinemia and pituitary stalk thickening on MRI indicate a possible HSC. Additionally, if osteosclerosis is observed in a patient with LCH, the coexistence of ECD should be considered. PMID:23299772
[Sarcoidosis of the skeleton. Review of the literature and case report. (author's transl)].
Uehlinger, E; Wurm, K
1976-08-01
The frequency of sarcoidosis in the skeleton varies between 3 and 36%. Skeletal sarcoidosis is rare in early stages (Löfgren-syndrom), relatively frequent in late stages. The initial phase is characterized by the formation of miliary non-caseating epitheloid-cell granulomas in the bone marrow. The invasion of the bone marrow may either be tolerated by the bone tissue or it initiates a perifocal osteosclerosis or a osteolysis. Correspondingly the X-ray of the skeleton shows normal structure or focal osteosclerosis or osteolysis. Therefore in the first case the sarcoidosis cannot be identified by X-ray. Most frequent locations are the phalanges of the fingers and toes, less common the stem skelton (skull, vertebrae, pelvis) and very rare the long tubular bones. In most cases the skeletal sarcoidosis is well tolerated. Report of a case of osteosclerotic sarcoidosis of the pelvis of a 39-years old woman with generalized sarcoidosis which was diagnozed four years earlier. The X-rays of the phalanges were normal. The biopsy of the iliac crest shows miliary sarcoid granuloma of the bone marrow and accretion of lamellar bone on the surface of the bone trabeculi with a distinct mosaic pattern. Treatment with steroids during the following five years was ineffective.
Whyte, Michael P; Lim, Emilina; McAlister, William H; Gottesman, Gary S; Trinh, Lien; Veis, Deborah J; Bijanki, Vinieth N; Boden, Matthew G; Nenninger, Angela; Mumm, Steven; Buchbinder, David
2018-06-22
Pediatric granulomatous arthritis (PGA) refers to two formerly separate entities; autosomal dominant Blau syndrome (BS) and its sporadic phenocopy early-onset sarcoidosis (EOS). In 2001 BS and in 2005 EOS became explained by heterozygous mutations within the gene that encodes nucleotide-binding oligomerization domain-containing protein 2 (NOD2), also called caspase recruitment domain-containing protein 15 (CARD15). NOD2 is a microbe sensor in leukocyte cytosol that activates and regulates inflammation. PGA is characterized by a triad of auto-inflammatory problems (dermatitis, uveitis, and arthritis) in early childhood, which suggests the causal NOD2/CARD15 mutations are activating defects. Additional complications of PGA were recognized especially when NOD2 mutation analysis became generally available. However, in PGA hypercalcemia is only briefly mentioned, and generalized osteosclerosis is not reported although NOD2 regulates NF-κB signaling essential for osteoclastogenesis and osteoclast function. Herein, we report a 4-year-old girl with PGA uniquely complicated by severe 1,25(OH) 2 D-mediated hypercalcemia, nephrocalcinosis, and compromised renal function together with radiological and histopathological features of osteopetrosis (OPT). The classic triad of PGA complications was absent although joint pain and an antalgic gait accompanied wrist, knee, and ankle swelling and soft non-tender masses over her hands, knees, and feet. MRI revealed tenosynovitis in her hands and suprapatellar effusions. Synovial biopsy demonstrated reactive synovitis without granulomas. Spontaneous resolution of metaphyseal osteosclerosis occurred while biochemical markers indicated active bone turnover. Anti-inflammatory medications suppressed circulating 1,25(OH) 2 D, corrected the hypercalcemia, and improved her renal function, joint pain and swelling, and gait. Mutation analysis excluded idiopathic infantile hypercalcemia, type 1, and known forms of OPT, and identified a heterozygous germline missense mutation in NOD2 common in PGA (c.1001G > A, p.Arg334Gln). Thus, radiological and histological findings of OPT and severe hypercalcemia from apparent extrarenal production of 1,25(OH) 2 D can complicate NOD2-associated PGA. Although the skeletal findings seem inconsequential, treatment of the hypercalcemia is crucial to protect the kidneys. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Song, Won Seok; Jeon, Dae-Geun; Cho, Wan Hyeong; Kong, Chang-Bae; Cho, Sang Hyun; Lee, Jung Wook; Lee, Soo-Yong
2014-06-01
We assessed the plain radiographic characteristics of 10 cases of osteosarcomas during the initial painful period that had been overlooked by a primary physician. In addition, we evaluated chronologic changes in radiographic findings from initial symptomatic period to the time of accurate diagnosis. The clinical records were reviewed for clinical parameters including age, sex, location, presenting symptoms, initial diagnosis, duration from initial symptoms to definite diagnosis, and initial and follow-up plain radiographic findings of the lesion. Initial clinical diagnoses included a sprain in 6, growing pain in 2, stress fracture in 1, and infection in 1 patient. Initial plain radiographic findings were trabecular destruction (100%), cortical disruption (60%), periosteal reaction (60%), and soft tissue mass (10%). Intramedullary matrix changes were osteosclerosis in 6 and osteolysis in 4 patients. On progression, 4 cases with minimal sclerosis changed to osteoblastic lesion in 3 patients and osteolytic lesion in 1. Four cases with faint osteolytic foci transformed into osteolytic lesion in 3 and mixed pattern in 1. Notable plain radiologic findings of incipient-stage osteosarcoma include trabecular disruption along with faint osteosclerosis or osteolysis. In symptomatic patients with trabecular destruction, additional imaging study including magnetic resonance imaging should be performed to exclude osteosarcoma in the incipient phase, even without radiologic findings suggesting malignant tumor, such as cortical destruction or periosteal reaction.
A possible association of idiopathic osteosclerosis with excessive occlusal forces.
Misirlioglu, Melda; Nalcaci, Rana; Baran, Ilgi; Adisen, Mehmet Zahit; Yilmaz, Selmi
2014-03-01
The aim of the study was to determine the relationship between idiopathic osteosclerotic lesions and occlusal forces using the T-Scan II computerized occlusal analysis device, and to test the sensitivity of the system in occlusal analysis. The study was conducted with 21 volunteers with idiopathic osteosclerosis (IO; 14 women, 7 men) aged between 17 and 62 years (mean 29.95). For every patient, seven or eight recordings were made with the T-Scan II occlusal analysis device in maximum intercuspation, and the last two (excluding any with technical problems) were chosen for evaluation. For each lesion-related area, the distribution of high occlusal forces from two different movies was analyzed. In 18 patients (85.71%), lesions were observed in an area of high occlusal force, and in 13 patients (61.9%), the lesions were located at the first area subjected to high occlusal forces. The percentage distribution of high forces at a lesion related area ranged from 0% to 88%. On average, the high forces at an osteosclerotic lesion area accounted for 20% of the maximum total force. No statistical differences were observed between the measurements of the two selected recordings (P > .05). The findings of this study suggest a possible relationship between IO and occlusal forces and primary contacts. T-Scan II was found to be a successful diagnostic device for detecting primary contacts and excessive occlusal forces.
Osteomesopyknosis: report of a new case with bone histology.
Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P
1994-01-01
A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.
Osteoporosis and Osteopathy Markers in Patients with Mastocytosis
Alpay Kanıtez, Nilüfer; Erer, Burak; Doğan, Öner; Büyükbabani, Nesimi; Baykal, Can; Sindel, Dilşad; Tanakol, Refik; Yavuz, Akif Selim
2015-01-01
Objective: Osteoporosis, osteosclerosis, and lytic bone lesions have been observed in patients with systemic mastocytosis (SM). We examined bone mineral density (BMD) biochemical turnover markers and serum tryptase levels in SM, which is considered a rare disease. Materials and Methods: Seventeen adult patients (5 females, 12 males; median age: 33 years, range: 20-64) with mastocytosis were included in this study. We investigated the value of quantitative ultrasound (QUS) of the calcaneus in the assessment of BMD in SM patients, as well as BMD of the lumbar spine (L1-L4), femoral neck, and distal radius using dual energy x-ray absorptiometry (DXA) and plasma tryptase levels, biochemical markers of bone turnover. Results: At lumbar spine L1-L4, the femoral neck, and the distal radius or as calcaneus stiffness, 12 of 17 patients had T-scores of less than -1 at least at 1 site, reflecting osteopenia. Three of 17 patients had T-scores showing osteoporosis (T-score <-2.5). There was no relationship between DXA and bone lesion severity. We also found a significant positive correlation between tryptase levels and disease severity, as well as between disease severity and pyridinoline (p<0.01 by Spearman’s test). Conclusion: DXA and calcaneal QUS may not be appropriate techniques to assess bone involvement in SM patients because of the effects of osteosclerosis. This study further shows that the osteoclastic marker pyridinoline is helpful in patients with severe disease activity and sclerotic bone lesions to show bone demineralization. PMID:25805674
Andrieux, Joris; Roche-Lestienne, Catherine; Geffroy, Sandrine; Desterke, Christophe; Grardel, Nathalie; Plantier, Isabelle; Selleslag, Dominik; Demory, Jean-Loup; Laï, Jean-Luc; Leleu, Xavier; Le Bousse-Kerdiles, Caroline; Vandenberghe, Peter
2007-10-01
In a case with secondary myelofibrosis occurring after essential thrombocythemia, cytogenetic analysis revealed an isolated translocation t(X;17)(q27;q22) in all cells. We found that a bacterial artificial chromosome (BAC) encompassing the breakpoint on chromosome 17 long arm contained only one gene, NOG. We therefore investigated the occurrence of this rare breakpoint in myeloproliferative disorders (MPDs). We identified three more patients with a 17q abnormality in MPDs: myelofibrosis with myeloid metaplasia (MMM); chronic myeloid leukemia positive for t(9;22)(q34;q11) with additional t(4;17)(p15;q22) at diagnosis; and myelofibrosis complicating polycythemia vera. All three cases exhibited a split of BACs containing NOG. The protein encoded by NOG, noggin, acts as an antagonist to bone morphogenetic secreted protein 2 and 4 (BMP2 and BMP4). A comparative analysis of gene expression on Agilent 22K oligonucleotide microarrays in purified CD34+ cells from the blood of MMM patients showed significant downregulation of BMPR2, BMPR1B, BMP2, and BMP8; upregulation of BMP3 and BMP10; and a trend to lower expression of NOG. Thus, given that expression and release of BMPs are important in the induction of osteosclerosis and angiogenic activity, the observed BMP deregulations could be triggered by potential NOG genetic alterations in the four cases here described, and may contribute to the myelofibrotic process characterized by bone marrow stromal reaction including collagen fibrosis, osteosclerosis, and angiogenesis.
2011-01-01
Background Chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer has recently been reported. However, its detailed imaging findings are not clarified. So this study aimed to fully characterize the findings on computed tomography (CT), appearance time and frequency of chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer Materials and methods A total of 177 patients who had undergone SRT were prospectively evaluated for periodical follow-up thin-section CT with special attention to chest wall injury. The time at which CT findings of chest wall injury appeared was assessed. Related clinical symptoms were also evaluated. Results Rib fracture was identified on follow-up CT in 41 patients (23.2%). Rib fractures appeared at a mean of 21.2 months after the completion of SRT (range, 4 -58 months). Chest wall edema, thinning of the cortex and osteosclerosis were findings frequently associated with, and tending to precede rib fractures. No patients with rib fracture showed tumors > 16 mm from the adjacent chest wall. Chest wall pain was seen in 18 of 177 patients (10.2%), of whom 14 patients developed rib fracture. No patients complained of Grade 3 or more symptoms. Conclusion Rib fracture is frequently seen after SRT for lung cancer on CT, and is often associated with chest wall edema, thinning of the cortex and osteosclerosis. However, related chest wall pain is less frequent and is generally mild if present. PMID:21995807
NASA Astrophysics Data System (ADS)
Klein, Nicole; Scheyer, Torsten M.
2017-02-01
The tuatara ( Sphenodon punctatus) from New Zealand is often—erroneously—identified as a `living fossil', although it is the lone survivor of a large, successful radiation of Rhynchocephalia, sister taxon to squamates (lizards and snakes), that thrived through the Mesozoic and Cenozoic and experienced an intricate evolution of life histories and feeding habits. Within Rhynchocephalia, only Pleurosauridae are thought to be marine and piscivorous. Here, we present bone histological data of the Jurassic pleurosaurid Palaeopleurosaurus, showing osteosclerosis (i.e. bone mass increase) in its gastralia, and some osteosclerosis in its rib but no increase in bone mass in the femur, supporting a gradual skeletal specialization for an aquatic way of life. Similar to Sphenodon, the bone tissue deposited in Palaeopleurosaurus is lamellar zonal bone. The femoral growth pattern in Palaeopleurosaurus differs from that of terrestrial Sphenodon in a more irregular spacing of growth marks and deposition of non-annual (i.e. non-continuous) rest lines, indicating strong dependency on exogenous factors. The annual growth mark count in adult but not yet fully grown Palaeopleurosaurus is much lower when compared to adult individuals of Sphenodon, which could indicate a lower lifespan for Palaeopleurosaurus. Whereas the gastral ribs of Palaeopleurosaurus and Sphenodon are similar in composition, the ribs of Sphenodon differ profoundly in being separated into a proximal tubular rib part with a thick cortex, and an elliptical, flared ventral part characterised by extremely thin cortical bone. The latter argues against a previously inferred protective function of the ventral rib parts for the vulnerable viscera in Sphenodon.
Boulet, Cedric; Madani, Hardi; Lenchik, Leon; Vanhoenacker, Filip; Amalnath, Deepak S; de Mey, Johan
2016-01-01
There is a wide variety of hereditary and non-hereditary bone dysplasias, many with unique radiographic findings. Hereditary bony dysplasias include osteopoikilosis, osteopathia striata, osteopetrosis, progressive diaphyseal dysplasia, hereditary multiple diaphyseal sclerosis and pyknodysostosis. Non-hereditary dysplasias include melorheostosis, intramedullary osteosclerosis and overlap syndromes. Although many of these dysplasias are uncommon, radiologists should be familiar with their genetic, clinical and imaging findings to allow for differentiation from acquired causes of bony sclerosis. We present an overview of hereditary and non-hereditary bony dysplasias with focus on the pathogenesis, clinical and radiographic findings of each disorder. PMID:26898950
Myelofibrosis associated with prominent periosteal bone apposition. Report of two cases.
Yu, J S; Greenway, G; Resnick, D
1994-01-01
Myelofibrosis is a myeloproliferative disorder that is characterized by splenomegaly and bone marrow replacement by fibrous tissue. The predominant radiographic feature is osteosclerosis; however, in rare instances, periosteal bone apposition or periostitis is apparent in the metaphysis of the distal femura and proximal tibiae. It has been suggested that periostitis, when associated with fever and bone pain, is indicative of more aggressive disease. We report this unusual radiographic finding and its similar appearance to hypertrophic osteoarthropathy in two patients with myelofibrosis. In our patients, the presence of periosteal bone apposition did not correlate with increased disease aggressiveness.
Cerebral, facial, and orbital involvement in Erdheim-Chester disease: CT and MR imaging findings.
Drier, Aurélie; Haroche, Julien; Savatovsky, Julien; Godenèche, Gaelle; Dormont, Didier; Chiras, Jacques; Amoura, Zahir; Bonneville, Fabrice
2010-05-01
To retrospectively review the brain magnetic resonance (MR) imaging and computed tomographic (CT) findings in patients with Erdheim-Chester disease (ECD). The ethics committee required neither institutional review board approval nor informed patient consent for retrospective analyses of the patients' medical records and imaging data. The patients' medical files were retrospectively reviewed in accordance with human subject research protocols. Three neuroradiologists in consensus analyzed the signal intensity, location, size, number, and gadolinium uptake of lesions detected on brain MR images obtained in 33 patients with biopsy-proved ECD. Thirty patients had intracranial, facial bone, and/or orbital involvement, and three had normal neurologic imaging findings. The hypothalamic-pituitary axis was involved in 16 (53%) of the 30 patients, with six (20%) cases of micronodular or nodular masses of the infundibular stalk. Meningeal lesions were observed in seven (23%) patients. Three (10%) patients had bilateral symmetric T2 high signal intensity in the dentate nucleus areas, and five (17%) had multiple intraaxial enhancing masses. Striking intracranial periarterial infiltration was observed in three (10%) patients. Another patient (3%) had a lesion in the lumen of the superior sagittal sinus. Nine (30%) patients had orbital involvement. Twenty-four (80%) patients had osteosclerosis of the facial and/or skull bones. At least two anatomic sites were involved in two-thirds (n = 20) of the patients. Osteosclerosis of the facial bones associated with orbital masses and either meningeal or infundibular stalk masses was seen in eight (27%) patients. Lesions of the brain, meninges, facial bones, and orbits are frequently observed and should be systematically sought on the brain MR and CT images obtained in patients with ECD, even if these patients are asymptomatic. Careful attention should be directed to the periarterial environment.
De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C
2016-07-01
Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Diagnosis of renal disease in rabbits.
Harcourt-Brown, Frances Margaret
2013-01-01
There are differences in renal anatomy and physiology between rabbits and other domestic species. Neurogenic renal ischemia occurs readily. Reversible prerenal azotemia may be seen in conjunction with gut stasis. Potentially fatal acute renal failure may be due to structural kidney damage or post-renal disease. Chronic renal failure is often associated with encephalitozoonosis. Affected rabbits cannot vomit and often eat well. Weight loss, lethargy, and cachexia are common clinical signs. Polydypsia/polyuria may be present. Derangements in calcium and phosphorus metabolism are features of renal disease. Radiography is always indicated. Urolithiasis, osteosclerosis, aortic and renal calcification are easily seen on radiographs. Copyright © 2013 Elsevier Inc. All rights reserved.
Whyte, Michael P; Griffith, Malachi; Trani, Lee; Mumm, Steven; Gottesman, Gary S; McAlister, William H; Krysiak, Kilannin; Lesurf, Robert; Skidmore, Zachary L; Campbell, Katie M; Rosman, Ilana S; Bayliss, Susan; Bijanki, Vinieth N; Nenninger, Angela; Van Tine, Brian A; Griffith, Obi L; Mardis, Elaine R
2017-08-01
Melorheostosis (MEL) is the rare sporadic dysostosis characterized by monostotic or polyostotic osteosclerosis and hyperostosis often distributed in a sclerotomal pattern. The prevailing hypothesis for MEL invokes postzygotic mosaicism. Sometimes scleroderma-like skin changes, considered a representation of the pathogenetic process of MEL, overlie the bony changes, and sometimes MEL becomes malignant. Osteopoikilosis (OPK) is the autosomal dominant skeletal dysplasia that features symmetrically distributed punctate osteosclerosis due to heterozygous loss-of-function mutation within LEMD3. Rarely, radiographic findings of MEL occur in OPK. However, germline mutation of LEMD3 does not explain sporadic MEL. To explore if mosaicism underlies MEL, we studied a boy with polyostotic MEL and characteristic overlying scleroderma-like skin, a few bony lesions consistent with OPK, and a large epidermal nevus known to usually harbor a HRAS, FGFR3, or PIK3CA gene mutation. Exome sequencing was performed to ~100× average read depth for his two dermatoses, two areas of normal skin, and peripheral blood leukocytes. As expected for non-malignant tissues, the patient's mutation burden in his normal skin and leukocytes was low. He, his mother, and his maternal grandfather carried a heterozygous, germline, in-frame, 24-base-pair deletion in LEMD3. Radiographs of the patient and his mother revealed bony foci consistent with OPK, but she showed no MEL. For the patient, somatic variant analysis, using four algorithms to compare all 20 possible pairwise combinations of his five DNA samples, identified only one high-confidence mutation, heterozygous KRAS Q61H (NM_033360.3:c.183A>C, NP_203524.1:p.Gln61His), in both his dermatoses but absent in his normal skin and blood. Thus, sparing our patient biopsy of his MEL bone, we identified a heterozygous somatic KRAS mutation in his scleroderma-like dermatosis considered a surrogate for MEL. This implicates postzygotic mosaicism of mutated KRAS, perhaps facilitated by germline LEMD3 haploinsufficiency, causing his MEL. Copyright © 2017 Elsevier Inc. All rights reserved.
Traumatic fracture in a healthy man: benign or pathologic?
Nora, Elizabeth H; Kennel, Kurt A; Christian, Rose C
2006-01-01
To describe the challenge of determining the correct diagnosis in a healthy adult male patient with a recent femoral fracture and a history of multiple bone fractures. We present clinical, radiologic, laboratory, and histopathologic details in a patient with a history of recurrent fractures associated with minimal trauma. Moreover, the various types of osteopetrosis are reviewed. A 34-year-old African American man was in his usual state of good health when he fell hard on concrete. Immediately after the fall, he was able to bear weight, although pain prompted him to seek medical care. Besides a personal history of multiple fractures, he had no other medical problems. He had never smoked, denied illicit drug use, and had no family history of bone disorders or recurrent fractures. Findings on physical examination were unremarkable. Radiography disclosed an incomplete femoral fracture and osteosclerosis. Bone survey revealed diffuse, symmetric osteosclerosis of both the axial and the appendicular skeleton. The long bones showed areas of almost complete obliteration of the medullary canal, along with prominent hyperostosis. Additionally, a "bone-within-bone" appearance to the thickened endosteum was noted. A bone scan demonstrated numerous areas of symmetric radiotracer uptake. Laboratory analyses were unremarkable, including a complete blood cell count, electrolytes, serum protein electrophoresis, thyrotropin, and parathyroid hormone. Total alkaline phosphatase was mildly elevated at 162 U/L (normal range, 35 to 130). Seven needles were broken during attempts to perform a bone biopsy. Histologic examination showed normal bone marrow with "woven" bone and areas of primary spongiosa within mature osteoid. Autosomal dominant osteopetrosis type 2 was diagnosed on the basis of his clinical presentation and the radiologic and pathologic findings. The preliminary diagnosis for this patient's condition was Paget's disease, and determining the correct diagnosis of osteopetosis prevented the administration of inappropriate therapy. In addition, this case report reminds the clinician that genetic disease may manifest in adulthood.
Hesse, E; Brand, J; Bastian, L; Krettek, C; Meller, R
2008-07-01
Melorheostosis is a rare, benign, and sporadically occurring osteosclerosis of unknown cause. The onset of the disease is usually in early adulthood. Melorheostosis affects both genders, develops progressively, and is usually limited to one side of the human body. The sclerosis originates predominantly from the cortices of the long bones of the lower limbs and rarely the upper limbs. Frequently, the sclerosis involves the soft tissue surrounding the affected bones which may cause limitations in the range of motion, contractures, deformities, and pain. Melorheostosis is usually diagnosed by radiograms. Pain relief and restoration of the full range of motion are the primary goals of the therapeutic approach. A good outcome cannot always be achieved and a recurrence of the disease happens very often.
Hodovana, O I
2015-01-01
Results of investigation of mineral density condition of skeletal osseous tissue in patients with inflammatory and dystrophic-inflammatory diseases of periodontal tissues with ultrasound densitometry method have been presented. Various changes of osseous tissue of skeletal bones have been detected: osteopenia, osteoporosis and osteosclerosis, which correlated with the severity of pathological process in periodontium. Analysis of the obtained results has been carried out depending on patients' sex as well as form and severity degree of the course of periodontal diseases. It has been established that the peak of detected impairments of mineral density in the skeleton is due to osteopenia, the degree of severity of which deteriorates with the severity of pathological process in periodontal tissues, especially in women.
Rafaelsen, Silje Hjorth; Raeder, Helge; Fagerheim, Anne Kristine; Knappskog, Per; Carpenter, Thomas O; Johansson, Stefan; Bjerknes, Robert
2013-06-01
Fibroblast growth factor 23 (FGF23) plays a crucial role in renal phosphate regulation, exemplified by the causal role of PHEX and DMP1 mutations in X-linked hypophosphatemic rickets and autosomal recessive rickets type 1, respectively. Using whole exome sequencing we identified compound heterozygous mutations in family with sequence similarity 20, member C (FAM20C) in two siblings referred for hypophosphatemia and severe dental demineralization disease. FAM20C mutations were not found in other undiagnosed probands of a national Norwegian population of familial hypophosphatemia. Our results demonstrate that mutations in FAM20C provide a putative new mechanism in human subjects leading to dysregulated FGF23 levels, hypophosphatemia, hyperphosphaturia, dental anomalies, intracerebral calcifications and osteosclerosis of the long bones in the absence of rickets. Copyright © 2013 American Society for Bone and Mineral Research.
Mari, E; Maraldi, C; Grandi, E; Gallerani, M
2011-05-01
We report the case of a 84-year-old man, with history of rheumatoid arthritis, admitted the Hospital for a fall and complaining of dysaesthesia and pain located to the cervical spine and arms. Within a few hours after admission, fever and acute, progressive, ascendant quadriplegia became evident. Magnetic resonance imaging (MRI) of cervical spine showed spinal canal stenosis between C4-C6 with spinal cord compression. Hemocultures resulted positive for Staphylococcus aureus. The clinical picture rapidly evolved to sepsis with a fatal multi-organ failure. An autopsy found a osteosclerosis narrowing the neurocanal at the level of C3-C6, and recent cervical medulla infarction. A histological exam revealed the presence of a suppurative pachymeningitis with local phenomenas of periradiculitis, vasculitis and thrombosis of the anterior medullar artery, associated with coagulative necrosis of the neural tissue.
Current research on pycnodysostosis.
Turan, Serap
2014-08-01
Pycnodysostosis is a rare autosomal recessive disorder caused by an inactivating mutation in cathepsin K (CTSK) and characterized by dysmorphic facial features, a short stature, acroosteolysis, osteosclerosis with increased bone fragility, and delayed closure of cranial sutures. Patients usually present with short stature or dysmorphic features the Pediatric Endocrinology or Genetics clinics, with atypical fractures to the orthopedics clinics or hematological abnormalities to the hematology clinics. However, under-diagnosis or misdiagnosis of this condition is a major issue. Pycnodysostosis is not a life threatening condition, but craniosynostosis, frequent fractures, respiratory-sleep problems, and dental problems may cause significant morbidity. Although no specific treatment for this disorder has been described, patients should be followed for complications and treated accordingly. A specific treatment for the disorder must be established in the future to prevent complications and improve quality of life for patients in the current era of advanced molecular research.
Tuberculous spondylodiscitis in a patient with a sickle-cell disease: CT findings.
Krupniewski, Leszek; Palczewski, Piotr; Gołębiowski, Marek; Kosińska-Kaczyńska, Katarzyna
2012-01-01
Although sickle-cell anemia (SCA) is common in black Americans, Sub-Saharan Africa and in the Mediterranean area, the disease is rare in the temperate climate zone. The manifestations of the disease are related mainly to the production of abnormal hemoglobin that leads to organ ischemia and increased susceptibility to infection caused by functional asplenia. The authors present CT findings in a 39-year-old black woman diagnosed due to abdominal pain, lymphadenopathy and fever. CT of the thorax and abdomen demonstrated changes in the liver, spleen, and skeletal system suggestive of SCA complicated with spondylodiscitis in the thoracic spine. Hepatomegaly and small calcified spleen are typical findings in older homozygotic patients with SCA. The lesions in the skeleton may be related either to intramedullary hematopoiesis or osteonecrosis and osteomyelitis. In the latter case, diffuse osteosclerosis and H-shaped vertebrae are most typical. Tuberculous spondylodiscitis is characterized by the location in the thoracic region, preferential involvement of anterior elements, relative sparing of intervertebral discs, and cold abscesses.
What drives osteoarthritis?-synovial versus subchondral bone pathology.
Hügle, Thomas; Geurts, Jeroen
2017-09-01
Subchondral bone and the synovium play an important role in the initiation and progression of OA. MRI often permits an early detection of synovial hypertrophy and bone marrow lesions, both of which can precede cartilage damage. Newer imaging modalities including CT osteoabsorptiometry and hybrid SPECT-CT have underlined the importance of bone in OA pathogenesis. The subchondral bone in OA undergoes an uncoupled remodelling process, which is notably characterized by macrophage infiltration and osteoclast formation. Concomitant increased osteoblast activity leads to spatial remineralization and osteosclerosis in end-stage disease. A plethora of metabolic and mechanical factors can lead to synovitis in OA. Synovial tissue is highly vascularized and thus exposed to systemic influences such as hypercholesterolaemia or low grade inflammation. This review aims to describe the current understanding of synovitis and subchondral bone pathology and their connection in OA. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Barron, Melissa L; Rybchyn, Mark S; Ramesh, Sutharshani; Mason, Rebecca S; Fiona Bonar, S; Stalley, Paul; Khosla, Sundeep; Hudson, Bernie; Arthur, Christopher; Kim, Edward; Clifton-Bligh, Roderick J; Clifton-Bligh, Phillip B
2017-01-01
Fibrogenesis imperfecta ossium is a rare disorder of bone usually characterized by marked osteopenia and associated with variable osteoporosis and osteosclerosis, changing over time. Histological examination shows that newly formed collagen is abnormal, lacking birefringence when examined by polarized light. The case presented demonstrates these features and, in addition, a previously undocumented finding of a persistent marked reduction of the serum C3 and C4. Osteoblasts established in culture from a bone biopsy showed abnormal morphology on electron microscopy and increased proliferation when cultured with benzoylbenzoyl-ATP and 1,25-dihydroxyvitamin D, contrasting with findings in normal osteoblasts in culture. A gene microarray study showed marked upregulation of the messenger RNA (mRNA) for G-protein-coupled receptor 128 (GPR 128), an orphan receptor of unknown function and also of osteoprotegerin in the patient’s osteoblasts in culture. When normal osteoblasts were cultured with the patient’s serum, there was marked upregulation of the mRNA for aquaporin 1. A single pathogenetic factor to account for the features of this disorder has not been defined, but the unique findings described here may facilitate more definitive investigation of the abnormal bone cell function. PMID:28326223
Giachini, M; Pierleoni, F
2004-04-01
Many years have passed since domestic water fluoridation was adopted to reduce the incidence of caries in developed countries; however, since there is an additional dose of fluorides ingested with foods and drinks prepared with such waters, the problem has emerged of possible adverse effects on health associated to them, so that in some countries fluorine integrator selling is allowed only with preventive medical prescription. Owing to the affinity for calcifited tissues, fluorine has a powerful effect on bone cellular order (mediated by growth factors' upregulation system IGF-2, TGF-beta, PDGF, bFGF, EGF, BMP-2 and PTH), on function and length, since it can provoke chronic joints-pain, ligaments-calcification, osteosclerosis. Moreover, sodium-fluoride may cause adverse effects on testicular activity (connected to oxidative-stress depending on increased activity of peroxidases and catalases) due to inhibition of 2 androgenesis-regulator enzymes DELTA(5)b-HSD and 17beta-HSD. Furthermore, insoluble gut formed calcium-fluoride may be responsible for hypocalcemia inducing a secondary hyperparathyroidism with bone matrix resorption, osteoporosis, osteomalacia and, perhaps, lowered level of phosphorus. At encephalic level, then, high doses of fluorine cause the onset of neurological symptoms and of a decreased spontaneous motor activity due to a reduction in the number of nicotinic acetylcholine receptors. Nevertheless, epidemiological studies about fluoride toxicity have established that such oligoelement may be safely used at odontoiatric dosages.
THAM, CHING S.; CHAKRAVARTHI, SRIKUMAR; HALEAGRAHARA, NAGARAJA; DE ALWIS, RANJIT
2013-01-01
Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis. PMID:23403524
Tham, Ching S; Chakravarthi, Srikumar; Haleagrahara, Nagaraja; DE Alwis, Ranjit
2013-02-01
Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis.
Parvari, Ruti; Hershkovitz, Eli; Grossman, Nili; Gorodischer, Rafael; Loeys, Bart; Zecic, Alexandra; Mortier, Geert; Gregory, Simon; Sharony, Reuven; Kambouris, Marios; Sakati, Nadia; Meyer, Brian F; Al Aqeel, Aida I; Al Humaidan, Abdul Karim; Al Zanhrani, Fatma; Al Swaid, Abdulrahman; Al Othman, Johara; Diaz, George A; Weiner, Rory; Khan, K Tahseen S; Gordon, Ronald; Gelb, Bruce D
2002-11-01
The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad-Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny-Caffey syndrome (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43-44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of alpha-tubulin subunits and the formation of alpha-beta-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.
Traumatic multiple cervical spine injuries in a patient with osteopetrosis and its management.
Rathod, Ashok Keshav; Dhake, Rakesh Padmakar; Borde, Mandar Deepak
2017-05-01
Single case report. To report multiple level fractures of cervical spine in a patient with osteopetrosis and its management. Osteopetrosis is a rare inherited condition characterized by defective remodeling resulting in hard and brittle bones with diffuse osteosclerosis. Fractures of spine are rare as compared to the common long bone fractures. We report a case of traumatic multiple level fractures of cervical spine in osteopetrosis and its management which has rarely been reported in the literature before, if any. 17-year-old boy presented with severe tenderness in neck and restricted range of motion following a trivial injury to the neck in swimming pool. The neurology was normal and he was diagnosed to have autosomal dominant osteopetrosis on evaluation. Imagining findings, clinical course and the method of treatment are discussed. Radiological evaluation revealed presence of multiple level fractures of cervical vertebrae with end plate sclerosis. Patient was managed with cervical skeletal traction in appropriate extension position for 6 weeks followed by hard cervical collar for another 6 weeks. Follow-up radiographs at 18 months and 2.5 years showed healed fractures with no residual instability or symptoms. The case report discusses rare occurrence of multiple level fractures of cervical spine following trivial injury to the neck in a patient with osteopetrosis and its treatment with conservative management.
Liu, Xiao-li; Song, Jing; Liu, Ke-jian; Wang, Wen-peng; Xu, Chang; Zhang, Yu-zeng; Liu, Yun
2015-10-01
Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
Mastocytosis presenting as a skeletal disorder.
Delsignore, J. L.; Dvoretsky, P. M.; Hicks, D. G.; O'Keefe, R. J.; Rosier, R. N.
1996-01-01
Mastocytosis is a rare disease of mast-cell proliferation with involvement of the reticuloendothelial systems including skin, bone, gastrointestinal tract, liver, lungs, spleen, and lymph nodes. Systemic mastocytosis is characterized by a combination of symptoms that relate to the mast cells' release of vasoactive substances, such as histamine. These symptoms include urticaria pigmentosa, flushing, syncope with hypotension, headaches, nausea, vomiting, diarrhea, and occasional bronchospasm. The diagnosis of mastocytosis is typically based on the presence of the characteristic extraosseus manifestations. A well recognized roentgenographic feature seen in 70-75% of patients with mastocytosis is diffuse osteolysis and osteosclerosis, affecting primarily the axial skeleton and the ends of the long bones. Rarely, the bony involvement consists of generalized osteoporosis, which may lead to pathologic fracture, or solitary lesions (mastocytomas) which may cause symptoms of localized pain. Four patients with previously diagnosed systemic mastocytosis had unusual skeletal lesions. Clinical and laboratory evaluation of these patients eventually led to the correct diagnosis of systemic mastocytosis. We report these four cases to emphasize the need for thorough evaluation of unusual musculoskeletal findings in association with extraosseus symptoms that are characteristic of mastocytosis. Knowledge of a wide differential diagnosis of unusual skeletal lesions should include systemic mastosytosis. Images Figure 1 Figure 2 Figure 3A Figure 3B Figure 4 Figure 5A Figure 5B-5C Figure 6 PMID:9129284
Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.
Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo
2016-05-01
Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.
How rare bone diseases have informed our knowledge of complex diseases.
Johnson, Mark L
2016-01-01
Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.
Dumont, Maïtena; de Buffrénil, Vivian; Miján, Ismael; Lambert, Olivier
2016-10-01
The rostrum of most ziphiids (beaked whales) displays bizarre swollen regions, accompanied with extreme hypermineralisation and an alteration of the collagenous mesh of the bone. The functional significance of this specialization remains obscure. With the voluminous and dense hemispheric excrescence protruding from the premaxillae, the recently described fossil ziphiid Globicetus hiberus is the most spectacular case. This study describes the histological structure and interprets the growth pattern of this unique feature. Histologically, the prominence in Globicetus is made up of an atypical fibro-lamellar complex displaying an irregular laminar organization and extreme compactness (osteosclerosis). Its development is suggested to have resulted from a protraction of periosteal accretion over the premaxillae, long after the end of somatic growth. Complex shifts in the geometry of this tissue are likely to have occurred during its accretion and no indication of Haversian remodeling could be found. X-ray diffraction and Raman spectroscopy indicate that the bone matrix in the premaxillary prominence of Globicetus closely resembles that of the rostrum of the extant beaked whale Mesoplodon densirostris: apatite crystals are of common size and strongly oriented, but the collagenous meshwork within bone matrix seems to be extremely sparse. These morphological and structural data are discussed in the light of functional interpretations proposed for the highly unusual and diverse ziphiid rostrum. J. Morphol. 277:1292-1308, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A Novel Role for Thrombopoietin in Regulating Osteoclast Development in Humans and Mice
Bethel, Monique; Barnes, Calvin L. T.; Taylor, Amanda F.; Cheng, Ying-Hua; Chitteti, Brahmananda R.; Horowitz, Mark C.; Bruzzaniti, Angela; Srour, Edward F.; Kacena, Melissa A.
2015-01-01
Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the MAPK, JAK/STAT, and NFκB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells (PBMCs), and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders. PMID:25656774
Bone Inner Structure Suggests Increasing Aquatic Adaptations in Desmostylia (Mammalia, Afrotheria)
Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Chiba, Kentaro; Ando, Tatsuro; Sawamura, Hiroshi; Inuzuka, Norihisa; Kaneko, Naotomo; Osaki, Tomohiro
2013-01-01
Background The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce. Methodology/Principal Findings We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern. Conclusions/Significance In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history. PMID:23565143
Sun, Xiaochuan; Li, Chen; Cao, Yihan; Shi, Ximin; Li, Li; Zhang, Weihong; Wu, Xia; Wu, Nan; Jing, Hongli; Zhang, Wen
2018-05-22
Whole-body bone scintigraphy (WBBS) and MRI are widely used in assessment of patients with synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. However, the value of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in SAPHO syndrome was unclear. The aim of this study was to characterize the manifestation of SAPHO syndrome on 18 F-FDG PET/CT and explore its relationship with clinical symptoms and WBBS. Twenty-six patients who suffered from SAPHO syndrome and had undergone whole-body 18 F-FDG PET/CT were recruited in Peking Union Medical College Hospital from 2004 to 2016. Clinical manifestations and laboratory findings were recorded for all patients. Imaging data on 18F-FDG PET/CT and WBBS were collected and analyzed retrospectively. All the 26 patients (20 females and 6 males) exhibited skeletal abnormalities on 18 F-FDG PET/CT. Multiple skeletal lesions affecting the anterior chest wall or spine with low to moderate 18 F-FDG uptake and coexistence of osteolysis and osteosclerosis presented as the typical features of SAPHO syndrome. Sixteen (61.5%) patients had abnormal 18 F-FDG uptake outside the osteoarticular system. PET scan had moderate to substantial agreement with CT and WBBS in revealing lesions in the anterior chest wall and axial skeleton. Nonetheless, the correlation between increased 18 F-FDG uptake and clinical symptoms was weak. SAPHO syndrome exhibits characteristic features on 18 F-FDG PET/CT. It showed comparable capacity in revealing skeletal lesions with bone scintigraphy.
Ward, L M; Rauch, F; Travers, R; Roy, M; Montes, J; Chabot, G; Glorieux, F H
2004-08-15
Osteopathia striata with cranial sclerosis (OS-CS) is a rare skeletal dysplasia characterized by linear striations of the long bones, osteosclerosis of the cranium, and extra-skeletal anomalies. We provide a comprehensive description of the skeletal phenotype in a French-Canadian girl with a moderate to severe form of sporadic OS-CS. Multiple medical problems, including anal stenosis and the Pierre-Robin sequence, were evident in the first few years of life. At 14 years, she was fully mobile, with normal intellect and stature. She suffered chronic lower extremity pain in the absence of fractures, as well as severe headaches, unilateral facial paralysis, and bilateral mixed hearing loss. Biochemical indices of bone and mineral metabolism were within normal limits. Bone densitometry showed increased areal bone mineral density in the skull, trunk, and pelvis, but not in the upper and lower extremities. An iliac bone biopsy specimen revealed an increased amount of trabecular bone. Trabeculae were abnormally thick, but there was no evidence of disturbed bone remodeling. In a cranial bone specimen, multiple layers of periosteal bone were found that covered a compact cortical compartment containing tightly packed haversian canals. Bone lamellation was normal in both the iliac and skull samples. Osteoclast differentiation studies showed that peripheral blood osteoclast precursors from this patient formed functional osteoclasts in vitro. Thus, studies of bone metabolism did not explain why bone mass is increased in most skeletal areas of this patient. Cranial histology points to exuberant periosteal bone formation as a potential cause of the cranial sclerosis.
de Andrade, Rafael César Lima Pedroso; Sayão, Juliana Manso
2014-01-01
Among the few vertebrates that survived the mass extinction event documented at the Cretaceous–Paleocene boundary are dyrosaurid crocodylomorphs. Surprisingly, there is little information regarding the bone histology of dyrosaurids, despite their relatively common occurrence in the fossil record, and the potential to gain insight about their biology and lifestyle. We provide the first description of the long bone histology of the dyrosaurids. Specimens were collected from the Maria Farinha Formation, in the Paraíba Basin of northeast Brazil. Thin sections of a right femur and left tibia were made. In the left tibia, the cortex consists of lamellar-zonal bone with five lines of arrested growth (LAGs), spaced ∼300 µm apart. The tibia contains a small to medium-sized organized vascular network of both simple vascular canals and primary osteons that decrease in density periostially. The femur exhibits a similar histological pattern overall but has double-LAGs, and an EFS layer (the latter is rare in living crocodylians). Secondary osteons occur in the deep cortex near and inside the spongiosa as a result of remodeling in both bones. This tissue pattern is fairly common among slow-growing animals. These specimens were a sub-adult and a senescent. Patterns in the distribution of bone consistent with osteosclerosis suggest that these animals probably hada fast-swimming ecology. Although these results are consistent with the histology in anatomically convergent taxa, it will be necessary to make additional sections from the mid-diaphysis in order to assign their ecology. PMID:25032965
The clinical spectrum of Erdheim-Chester disease: an observational cohort study
O’Brien, Kevin J.; Xi, Liqiang; Malayeri, Ashkan A.; Gardner, Pamela J.; Alvarado Enriquez, Jhonell R.; Shah, Nikeith; Gochuico, Bernadette R.; Raffeld, Mark; Gahl, William A.
2017-01-01
Erdheim-Chester disease (ECD) is a rare, potentially fatal multiorgan myeloid neoplasm occurring mainly in adults. The diagnosis is established by clinical, radiologic, and histologic findings; ECD tumors contain foamy macrophages that are CD68+, CD163+, CD1a−, and frequently S100−. The purpose of this report is to describe the clinical and molecular variability of ECD. Between 2011 and 2015, 60 consecutive ECD patients (45 males, 15 females) were prospectively evaluated at the National Institutes of Health Clinical Center. Comprehensive imaging and laboratory studies were performed, and tissues were examined for BRAF V600E and MAPK pathway mutations. Mean age at first manifestations of ECD was 46 years; a diagnosis was established, on average, 4.2 years after initial presentation. Bone was the most common tissue affected, with osteosclerosis in 95% of patients. Other manifestations observed in one-third to two-thirds of patients included cardiac mass and periaortic involvement, diabetes insipidus, retro-orbital infiltration, retroperitoneal, lung, central nervous system, skin, and xanthelasma, affecting patients in variable ways. Methods of detection included imaging studies of various modalities. Mutation in BRAF V600E was detected in 51% of 57 biopsy specimens. One patient had an ARAF D228V mutation, and 1 patient had an activating ALK fusion. Treatments included interferon α, imatinib, anakinra, cladribine, vemurafenib, and dabrafenib with trametinib; 11 patients received no therapy. The diagnosis of ECD is elusive because of the rarity and varied presentations of the disorder. Identification of BRAF and other MAPK pathway mutations in biopsy specimens improves ECD diagnosis, allows for development of targeted treatments, and demonstrates that ECD is a neoplastic disorder. This study was registered at www.clinicaltrials.gov as #NCT01417520. PMID:28553668
Osteology of Icadyptes salasi, a giant penguin from the Eocene of Peru
Ksepka, Daniel T; Clarke, Julia A; DeVries, Thomas J; Urbina, Mario
2008-01-01
We present the first detailed description of the giant Eocene penguin Icadyptes salasi. The species is characterized by a narrow skull with a hyper-elongate spear-like beak, a robust cervical column and a powerful flipper. The bony beak tip of Icadyptes is formed by fusion of several elements and is unique among penguins, differing markedly from previously described giant penguin beaks. Vascular canal patterning similar to that of boobies, frigatebirds and albatrosses suggests I. salasi may have had a thin, sheet-like rhamphotheca unlike the thick rugose rhamphotheca of modern penguins. Together, these features suggest a novel ecology for I. salasi, most likely involving the capture of larger prey items via spearing. As the first described giant penguin specimen to preserve a complete wing skeleton, the I. salasi holotype yields significant insight into the shape, proportions and orientation of the wing in giant penguins. In articulation, the forelimb of I. salasi is straighter, permitting less manus and antibrachium flexion, than previous depictions of giant penguin wings. Cross-sections of the humerus and ulna reveal a level of osteosclerosis equalling or surpassing that of extant penguins. Based on ontogenetic data from extant penguins and the morphology of the carpometacarpus of I. salasi, we infer the retention of a free alular phalanx in basal penguins. Previously, the status of this element in penguins was disputed. Differences in the proportions of the manual phalanges contribute to a more abruptly tapering wingtip in I. salasi compared with crown penguins. Fossils from Peru, including the I. salasi holotype specimen, document that penguins expanded to nearly the whole of their extant latitudinal range early in their evolutionary history and during one of the warmest intervals in the Cenozoic. PMID:18564073
[A case of pycnodysostosis--observation of the skull by CT scan].
Anegawa, S; Bekki, Y; Furukawa, Y; Yokota, S; Torigoe, R
1987-07-01
A 13-year-old boy was presented to the Department of Neurosurgery, Saiseikai Fukuoka General Hospital for further examinations concerning abnormal findings in the skull radiogram taken when he struck his head. His physical features showed some characteristics the same as those of pycnodysostosis as follows--proportionate dwarfism, prominent forehead, short spoon-shaped fingers, bilateral exophthalmos. A skull radiogram revealed widely open cranial sutures with no healing of the fracture and craniotomy which was performed for an acute epidural hematoma 6 years ago. Furthermore, the mandible was hypoplastic with a virtual loss of mandibular angle. CT of the soft tissues showed somewhat dilated cortical sulci and ventricles without any structural abnormalities in the brain. CT of bone algorithm revealed specific characteristics of this disease. The paranasal sinuses were quite hypoplastic. Especially in the maxillary sinuses, frontal sinuses and mastoid air cells, none of developments of sinuses were noted, even though the middle and internal ear seemed to be normal. Moreover, the ethmoid and sphenoid sinuses were noted, although their developments were poor. The appearance of skull base was normal, including the inlets and outlets of cranial nerves or vessels and synchondroses. However, the density of the skull base, especially in the diploe, was higher than normal in Hansfield number. Furthermore, detailed measurements of skull base demonstrated that the skull base itself was also dwarfism. Pycnodysostosis is a generalized skeletal disease whose cardinal features are moderate generalized osteosclerosis and dwarfism. However, the detailed observation on the cranium by CT has not been reported. In our study, the development of sinuses in bones with intramembranous ossification are worse than that with endochondral ossification.(ABSTRACT TRUNCATED AT 250 WORDS)
Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William
2016-03-10
Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. © 2016 by The American Society of Hematology.
Short stature Revealing a Pycnodysostosis: A Case Report
Aynaou, Hayat; Skiker, Imane; Latrech, Hanane
2016-01-01
Introduction: Pycnodysostosis is a rare genetic disease characterized by osteosclerosis and bone fragility. The clinical aspects are varied including short stature, acro-osteolysis of distal phalanges, and dysplasia of the clavicles. Oral and maxillofacial manifestations of this disease are very clear. The head is usually large, a beaked nose, obtuse mandibular angle, and both maxilla and mandible are hypoplastic. Dental abnormalities are common. We report a case with the typical clinical and radiological characteristics of the Pycnodysostosis associated with a conductive hearing loss, an association rarely reported. Case Presentation: A 12-year-female was admitted in our institute for short stature with a dysmorphic facies for evaluation. The patient reported a history of multiple fractures of the long bones after a trivial fall. On physical examination, she had the following features: short stature, limited mouth opening, short hands and feet with dysplastic nails; frontal and occipital bossing; and hypoplasia of the maxilla and mandible. Examination of the mouth: grooved palate, caries of the teeth, impacted and malposed teeth, persistent deciduous teeth and missing teeth. Laboratory investigations were normal. The radiographic examination showed a generalized increase in the bone density, slight condensation of the skull base and a very open mandibular angle. X-rays showed tapered phalanges with acro-osteolysis of the distal phalanges. A symptomatic treatment was proposed based on fracture prevention, oral hygiene, frequent dental visits and psychiatric support. Conclusion: The clinical and radiological features are the bases for the diagnosis of this disease. It is important to make the diagnosis as early as possible in order to plan the treatment and to provide a better life quality to the patients. PMID:27703936
Russell, Heidi V.; Groshen, Susan G.; Ara, Tasnim; DeClerck, Yves A.; Hawkins, Randy; Jackson, Hollie A.; Daldrup-Link, Heike E.; Marachelian, Araz; Skerjanec, Andrej; Park, Julie R.; Katzenstein, Howard; Matthay, Katherine K.; Blaney, Susan M.; Villablanca, Judith G.
2010-01-01
Background Zoledronic acid, a bisphosphonate, delays progression of bone metastases in adult malignancies. Bone is a common metastatic site of advanced neuroblastoma. We previously reported efficacy of zoledronic acid in a murine model of neuroblastoma bone invasion prompting this Phase I trial of zoledronic acid with cyclophosphamide in children with neuroblastoma and bone metastases. The primary objective was to determine recommended dosing of zoledronic acid for future trials. Procedure Escalating doses of intravenous zoledronic acid were given every 28 days with oral metronomic cyclophosphamide (25 mg/m2/day). Toxicity, response, zoledronic acid pharmacokinetics, bone turnover markers, serum IL-6, and sIL-6R were evaluated. Results Twenty-one patients, median age 7.5 (range 0.8 - 25.6) years were treated with 2 mg/m2 (n=4), 3 mg/m2 (n=3), or 4 mg/m2 (n=14) zoledronic acid. Fourteen patients were evaluable for dose escalation. A median of one (range 1-18) courses was given. Two dose limiting toxicities (Grade 3 hypophosphatemia) occurred at 4 mg/m2 zoledronic acid. Other Grade 3-4 toxicities included hypocalcemia (n=2), elevated transaminases (n=1), neutropenia (n=2), anemia (n=1), lymphopenia (n=1), and hypokalemia (n=1). Osteosclerosis contributed to fractures in one patient after 18 courses. Responses in evaluable patients included 1 partial response, 9 stable disease (median 4.5 courses, range 3-18), and 10 progressions. Zoledronic acid pharmacokinetics were similar to adults. Markers of osteoclast activity and serum IL-6 levels decreased with therapy. Conclusions Zoledronic acid with metronomic cyclophosphamide is well tolerated with clinical and biologic responses in recurrent/refractory neuroblastoma. The recommended dose of zoledronic acid is 4 mg/m2 every 28 days. PMID:21671363
Transition of Eocene whales from land to sea: evidence from bone microstructure.
Houssaye, Alexandra; Tafforeau, Paul; de Muizon, Christian; Gingerich, Philip D
2015-01-01
Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families--Remingtonocetidae, Protocetidae, and Basilosauridae--using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation.
Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure
Houssaye, Alexandra; Tafforeau, Paul; de Muizon, Christian; Gingerich, Philip D.
2015-01-01
Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation. PMID:25714394
NASA Technical Reports Server (NTRS)
Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep
2002-01-01
Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.
Whyte, Michael P; Wenkert, Deborah; McAlister, William H; Novack, Deborah V; Nenninger, Angie R; Zhang, Xiafang; Huskey, Margaret; Mumm, Steven
2010-01-01
Dysosteosclerosis (DSS), an extremely rare dense bone disease, features short stature and fractures and sometimes optic atrophy, cranial nerve palsy, developmental delay, and failure of tooth eruption in infancy or early childhood consistent with osteopetrosis (OPT). Bone histology during childhood shows unresorbed primary spongiosa from deficient osteoclast action. Additionally, there is remarkable progressive flattening of all vertebrae and, by adolescence, paradoxical metaphyseal osteopenia with thin cortical bone. Reports of consanguinity indicate autosomal recessive inheritance, yet more affected males than females suggest X-linked recessive inheritance. We investigated a nonconsanguineous girl with DSS. Osteosclerosis was discovered at age 7 months. Our studies, spanning ages 11 to 44 months, showed weight at approximately 50th percentile, and length diminishing from approximately 30th percentile to –2.3 SD. Head circumference was +4 SD. The patient had frontal bossing, blue sclera, normal teeth, genu valgum, and unremarkable joints. Radiographs showed orbital and facial sclerosis, basilar thickening, bone-in-bone appearance of the pelvis, sclerotic long bone ends, and fractures of ribs and extremities. Progressive metaphyseal widening occurred as vertebrae changed from ovoid to flattened and became beaked anteriorly. A hemogram was normal. Consistent with OPT, serum parathyroid hormone (PTH) concentrations reflected dietary calcium levels. Serum bone alkaline phosphatase, osteocalcin, and TRACP-5b were subnormal. The iliac crest contained excessive primary spongiosa and no osteoclasts. No mutations were identified in the splice sites or exons for the genes encoding chloride channel 7, T-cell immune regulator 1, OPT-associated transmembrane protein 1, and monocyte colony-stimulating factor (M-CSF) and its receptor C-FMS, ANKH, OPG, RANK, and RANKL. Genomic copy-number microarray was unrevealing. Hence, DSS is a distinctive OPT of unknown etiology featuring osteoclast deficiency during early childhood. How osteopenia follows is an enigma of human skeletal pathobiology. © 2010 American Society for Bone and Mineral Research. PMID:20499338
Osteopetroses, emphasizing potential approaches to treatment.
Teti, Anna; Econs, Michael J
2017-09-01
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments. Copyright © 2017 Elsevier Inc. All rights reserved.
High bone mineral density in sickle cell disease: Prevalence and characteristics.
De Luna, Gonzalo; Ranque, Brigitte; Courbebaisse, Marie; Ribeil, Jean-Antoine; Khimoud, Djamal; Dupeux, Sidonie; Silvera, Jonathan; Offredo, Lucile; Pouchot, Jacques; Arlet, Jean-Benoît
2018-05-01
Osteosclerosis (OSC) is a rarely studied complication of sickle cell disease (SCD). The objective of our study was to determine the prevalence and characteristics of high bone mineral density (BMD) and its radiological features in adult SCD patients. This prospective observational study was conducted from May 2007 to May 2016 in consecutive patients with steady-state SCD at two university hospitals. The BMD of the lumbar spine (L1-L4) and right femoral neck was determined by dual energy X-ray absorptiometry. Clinical, laboratory and radiographic data were recorded. High BMD was defined as a BMD Z-score of at least +2.5 standard deviations at the lumbar spine or hip. The characteristics of the patients with high BMD were compared to those of individuals with low or middle BMD, using multivariate ordinal logistic regression. 135 patients (86 women and 49 men) with a median age of 27 (IQR 23-33) years were included. High BMD was diagnosed in 20 (15%) patients with a median age of 33.5 (IQR 28-45) years. The SCD genotypes of these patients were SS in 11, SC in 5, S/beta+ in 3, and S/beta0 in 1. High BMD patients more frequently harbored the S/beta SCD genotype (21% vs 5% in non-high BMD patients; p=0.047) and were older (p=0.0007). Compared to patients with low or middle BMD, after adjustment for age and SCD genotype, high BMD patients had a higher prevalence of avascular necrosis history (p=0.009), higher BMI (p=0.007), and lower serum resorption marker CTX (p=0.04), bilirubin (p=0.02) and parathyroid hormone levels (p=0.02). There were no differences between groups regarding fracture history, H-shaped vertebrae or other biological variables. High-BMD values is a common manifestation in SCD patients, especially in those with the S/beta-thalassemia genotypes. The prevalence of high-BMD in SCD is associated with older age, suggesting that it will be more common in the future because the life span of patients with SCD is increasing thanks to significant progress in SCD treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Jin, Li-Kun; Zhang, Guo-Zhong; Tang, Ke; Liu, Yang
2010-12-01
To study the correlation between syndrome differ classification of knee osteoarthritis and X-ray image, so as to provide evidence for clinical diagnosis and treatment. From Jun. 2007 to Dec. 2007, 78 patients (108 knees) with knee osteoarthritis were reviewed, including 65 females (89 knees) and 13 males (19 knees), ranging in age from 41 to 77 years. According to the standards for the differentiation of syndrome in the treatment of knee osteoarthritis defined in Principle of Clinical Research for New Traditional Herbs, the patients were divided into three types: Type I, insufficiency of the liver and kidney, with stagnation of tendons and muscles, 43 knees; Type II, insufficiency of the spleen and kidney, with dampness infusion into bone and joints, 26 knees; Type I, deficiency of the liver and kidney, with inter-obstruction of phlegm and stasis 39 knees. Normotopia and lateral plain film of knee joint of weigh loading and in erect position, and patellofemoral Skyline plain flim was taken. Joint space narrow, osteophyte generation, subchondral osteosclerosis and subchondral cystic degeneration were evaluated. All data were analyzed by K independent samples nonparametric test in order to find out the correlation between syndrome differ classification of knee osteoarthritis and X-ray image. It was shown that after K independent samples nonparametric test about syndrome differ classification of knee osteoarthritis and X-ray image: there were significant differences among three types about lateral patella osteophyte, condyles of tibia osteophyte and Type II was the most serious, Type I was secondary, Type II was the lightest. Other index had no obvious difference among the three groups. There is certain correlation between syndrome differ classification of knee osteoarthritis and X-ray image. There are significant differences among three types about lateral patella osteophyte, condyles of tibia osteophyte, the Type II is the most serious,Type I is secondary, Type II is the lightest. Consequently, it can be deduced that worse osteophyte is one of accordances of Type II-insufficiency of the spleen and kidney, with dampness infusion into bone and joints. And, the Type II is more serious stage in radiologic manifestation.
Dmp1 Null Mice Develop a Unique Osteoarthritis-like Phenotype
Zhang, Qi; Lin, Shuxian; Liu, Ying; Yuan, Baozhi; Harris, Steph E; Feng, Jian Q.
2016-01-01
Patients with hypophosphatemia rickets (including DMP1 mutations) develop severe osteoarthritis (OA), although the mechanism is largely unknown. In this study, we first identified the expression of DMP1 in hypertrophic chondrocytes using immunohistochemistry (IHC) and X-gal analysis of Dmp1-knockout-lacZ-knockin heterozygous mice. Next, we characterized the OA-like phenotype in Dmp1 null mice from 7-week-old to one-year-old using multiple techniques, including X-ray, micro-CT, H&E staining, Goldner staining, scanning electronic microscopy, IHC assays, etc. We found a classical OA-like phenotype in Dmp1 null mice such as articular cartilage degradation, osteophyte formation, and subchondral osteosclerosis. These Dmp1 null mice also developed unique pathological changes, including a biphasic change in their articular cartilage from the initial expansion of hypertrophic chondrocytes at the age of 1-month to a quick diminished articular cartilage layer at the age of 3-months. Further, these null mice displayed severe enlarged knees and poorly formed bone with an expanded osteoid area. To address whether DMP1 plays a direct role in the articular cartilage, we deleted Dmp1 specifically in hypertrophic chondrocytes by crossing the Dmp1-loxP mice with Col X Cre mice. Interestingly, these conditional knockout mice didn't display notable defects in either the articular cartilage or the growth plate. Because of the hypophosphatemia remained in the entire life span of the Dmp1 null mice, we also investigated whether a high phosphate diet would improve the OA-like phenotype. A 8-week treatment of a high phosphate diet significantly rescued the OA-like defect in Dmp1 null mice, supporting the critical role of phosphate homeostasis in maintaining the healthy joint morphology and function. Taken together, this study demonstrates a unique OA-like phenotype in Dmp1 null mice, but a lack of the direct impact of DMP1 on chondrogenesis. Instead, the regulation of phosphate homeostasis by DMP1 via the axis of “FGF23-renal phosphorus reabsorption” is vital for maintaining a healthy joint. PMID:27766035
Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P
2016-01-01
Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human skeletal homeostasis and represent a new genetic cause of HBM. © 2015 American Society for Bone and Mineral Research.
Yang, Ying; Ao, Hai-yong; Yang, Sheng-bing; Wang, Yu-gang; Lin, Wen-tao; Yu, Zhi-feng; Tang, Ting-ting
2016-01-01
Titanium-based implants have been widely used in orthopedic surgery; however, failures still occur. Our in vitro study has demonstrated that gentamicin-loaded, 80 nm-diameter nanotubes possessed both antibacterial and osteogenic activities. Thus, the aim of this study was to further investigate the in vivo anti-infection effect of the titanium implants with gentamicin-loaded nanotubes. Thirty-six male Sprague Dawley rats were used to establish an implant-associated infection model. A volume of 50 μL Staphylococcus aureus suspension (1×105 CFU/mL) was injected into the medullary cavity of the left femur, and then the titanium rods without modification (Ti), titanium nanotubes without drug loading (NT), and gentamicin-loaded titanium nanotubes (NT-G) were inserted with phosphate-buffered saline-inoculated Ti rods as a blank control. X-ray images were obtained 1 day, 21 days, and 42 days after surgery; micro-computed tomography, microbiological, and histopathological analyses were used to evaluate the infections at the time of sacrifice. Radiographic signs of bone infection, including osteolysis, periosteal reaction, osteosclerosis, and damaged articular surfaces, were demonstrated in the infected Ti group and were slightly alleviated in the NT group but not observed in the NT-G group. Meanwhile, the radiographic and gross bone pathological scores of the NT-G group were significantly lower than those of the infected Ti group (P<0.01). Explant cultures revealed significantly less bacterial growth in the NT-G group than in the Ti and NT groups (P<0.01), and the NT group showed decreased live bacterial growth compared with the Ti group (P<0.01). Confocal laser scanning microscopy, scanning electron microscopy, and histopathological observations further confirmed decreased bacterial burden in the NT-G group compared with the Ti and NT groups. We concluded that the NT-G coatings can significantly prevent the development of implant-associated infections in a rat model; therefore, they may provide an effective drug-loading strategy to combat implant-associated infections in clinic. PMID:27274245
Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin
2016-07-01
Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense mutations V289L and A542V in the CLCN7 gene were responsible for ADO-II in the two Chinese families.