Sample records for ostwald ripening theory

  1. Ostwald ripening theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.

    1986-01-01

    The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.

  2. Large-scale fluctuations in the diffusive decomposition of solid solutions

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  3. Extension of Ostwald Ripening Theory

    NASA Technical Reports Server (NTRS)

    Baird, J.; Naumann, R.

    1985-01-01

    The objective is to develop models based on the mean field approximation of Ostwald ripening to describe the growth of second phase droplets or crystallites. The models will include time variations in nucleation rate, control of saturation through addition of solute, precipitating agents, changes in temperature, and various surface kinetic effects. Numerical integration schemes have been developed and tested against the asymptotic solution of Liftshitz, Slyozov and Wagner (LSW). A second attractor (in addition to the LSW distribution) has been found and, contrary to the LSW theory, the final distribution is dependent on the initial distribution. A series of microgravity experiments is being planned to test this and other results from this work.

  4. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  5. Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions

    PubMed Central

    2018-01-01

    The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell–Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell–Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2. PMID:29651228

  6. Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.

    PubMed

    van Westen, Thijs; Groot, Robert D

    2018-04-04

    The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell-Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell-Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2.

  7. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  8. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  9. TED of boron in the presence of EOR defects: the use of the theory of Ostwald ripening to calculate Si-interstitial supersaturation in the vicinity of extrinsic defects

    NASA Astrophysics Data System (ADS)

    Bonafos, C.; Alquier, D.; Martinez, A.; Mathiot, D.; Claverie, A.

    1996-05-01

    When end-of-range defects are located close to or within doping profiles they render diffusion "anomalous" by both enhancing the dopant diffusivity and trapping it, both phenomena decreasing with time. Upon annealing, these defects grow in size and their density is reduced through the emission and capture of Si-interstitial atoms by a coarsening process called Ostwald ripening. In this paper, we report on how, by coupling the Ostwald ripening theory with TEM observations of the time evolution of the dislocation loops upon annealing, quantitative information allowing the enhanced diffusivity to be understood can be extracted. Indeed, during the coarsening process, a supersaturation, {C}/{C e}, of Si self-interstitial atoms is maintained between the loops and decreases with time. The enhanced diffusivity is assumed to be linked to the evolution of this interstitial supersaturation during annealing through the interstitial component of boron diffusion. We show that C drastically decreases during the first second of the anneal to asymptotically reach a value just above the equilibrium concentration Ce. This rapid decay is precisely at the origin of the transient enhanced diffusivity of dopants in the vicinity of the loops.

  10. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  11. Anisotropy in Ostwald ripening and step-terraced surface formation on GaAs(0 0 1): Experiment and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kazantsev, D. M.; Akhundov, I. O.; Shwartz, N. L.; Alperovich, V. L.; Latyshev, A. V.

    2015-12-01

    Ostwald ripening and step-terraced morphology formation on the GaAs(0 0 1) surface during annealing in equilibrium conditions are investigated experimentally and by Monte Carlo simulation. Fourier and autocorrelation analyses are used to reveal surface relief anisotropy and provide information about islands and pits shape and their size distribution. Two origins of surface anisotropy are revealed. At the initial stage of surface smoothing, crystallographic anisotropy is observed, which is caused presumably by the anisotropy of surface diffusion at GaAs(0 0 1). A difference of diffusion activation energies along [1 1 0] and [1 1 bar 0] axes of the (0 0 1) face is estimated as ΔEd ≈ 0.1 eV from the comparison of experimental results and simulation. At later stages of surface smoothing the anisotropy of the surface relief is determined by the vicinal steps direction. At the initial stage of step-terraced morphology formation the kinetics of monatomic islands and pits growth agrees with the Ostwald ripening theory. At the final stage the size of islands and pits decreases due to their incorporation into the forming vicinal steps.

  12. Kinetic synergistic transitions in the Ostwald ripening processes

    NASA Astrophysics Data System (ADS)

    Sachkov, I. N.; Turygina, V. F.; Dolganov, A. N.

    2018-01-01

    There is proposed approach to mathematical description of the kinetic transitions in Ostwald ripening processes of volatile substance in nonuniformly heated porous materials. It is based upon the finite element method. There are implemented computer software. The main feature of the software is to calculate evaporation and condensation fluxes on the walls of a nonuniformly heated cylindrical capillary. Kinetic transitions are detected for three modes of volatile substances migration which are different by condensation zones location. There are controlling dimensionless parameters of the kinetic transition which are revealed during research. There is phase diagram of the Ostwald ripening process modes realization.

  13. Theory of Ostwald ripening in a two-component system

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Lee, L. K.; Frazier, D. O.; Naumann, R. J.

    1986-01-01

    When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method.

  14. Pinning Stabilizes Neighboring Surface Nanobubbles against Ostwald Ripening.

    PubMed

    Dollet, Benjamin; Lohse, Detlef

    2016-11-01

    Pinning of the contact line and gas oversaturation explain the stability of single surface nanobubbles. In this article, we theoretically show that the pinning also suppresses the Ostwald ripening process between neighboring surface nanobubbles, thus explaining why in a population of neighboring surface nanobubbles different radii of curvature of the nanobubbles can be observed.

  15. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms.

    PubMed

    Koroleva, M; Nagovitsina, T; Yurtov, E

    2018-04-18

    The prevailing opinion in the literature is that the main mechanism of O/W nanoemulsion degradation is Ostwald ripening. Nevertheless, the experimental rates of Ostwald ripening are usually several orders of magnitude higher than the theoretical values. This suggests that other mechanisms, such as coalescence, flocculation and subsequent creaming, significantly influence nanoemulsion breakdown. We investigated O/W nanoemulsions stabilized by Brij 30 or by a mixture of Tween 80 and Span 80 and with liquid paraffin as a dispersed phase. The results indicate that Ostwald ripening is the main process leading to nanoemulsion coarsening only in nanoemulsions with low oil phase fractions of up to 0.05. For quasi-steady state conditions the rates of Ostwald ripening are equal to (1.5 ± 0.3) × 10-29 and (1.1 ± 0.3) × 10-29 m3 s-1 in nanoemulsions with Brij 30 and Tween 80 & Span 80, respectively. In nanoemulsions with oil phase fractions of 0.15-0.45, different mechanisms are identified. Flocculation prevails over other processes during the first days in nanoemulsions stabilized by Brij 30. Coalescence is the main mechanism of nanoemulsion degradation for long times. An increase in droplet size 5-10 days after nanoemulsion preparation due to Ostwald ripening takes place in the case of nanoemulsion stabilization by Tween 80 and Span 80. The stability behavior of these nanoemulsions at later stages is distinctly affected by coalescence and flocculation.

  16. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  17. Computer simulation of formation and decomposition of Au13 nanoparticles

    NASA Astrophysics Data System (ADS)

    Stishenko, P.; Svalova, A.

    2017-08-01

    To study the Ostwald ripening process of Au13 nanoparticles a two-scale model is constructed: analytical approximation of average nanoparticle energy as function of nanoparticle size and structural motive, and the Monte Carlo model of 1000 particles ensemble. Simulation results show different behavior of particles of different structural motives. The change of the distributions of atom coordination numbers during the Ostwald ripening process was observed. The nanoparticles of the equal size and shape with the face-centered cubic structure of the largest sizes appeared to be the most stable.

  18. Flash Nanoprecipitation: Prediction and Enhancement of Particle Stability via Drug Structure

    PubMed Central

    2015-01-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., < 20 wt %). This paper studies the effects of drug molecules on nanoparticle stability made via FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼12, nanoparticles have good stability; with ∼2 < ACDLogP < ∼9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen. PMID:24484077

  19. Reduced Capillary Length Scale in the Application of Ostwald Ripening Theory to the Coarsening of Charged Colloidal Crystals in Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Rowe, Jeffrey D.; Baird, James K.

    2007-06-01

    A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.

  20. Direct imaging of nanobubble Ostwald ripening using graphene liquid cell TEM

    NASA Astrophysics Data System (ADS)

    Xu, Cong; Chen, Qian; Granick, Steve

    We directly image the growth, morphology evolution and interaction dynamics of gas nanobubbles in a thin liquid, which are relevant to many materials and electrochemical processes. Using the recently emergent liquid phase transmission electron microscopy (TEM), we resolve the dynamics of nanobubbles in situ at nm resolution in real time. We find that nanobubbles grow through an Ostwald ripening-like process, where adjacent bubbles stochastically fluctuate to disappear or enlarge. Capability of feature tracking enables us to characterize the motions and shape fluctuations of nanobubbles, providing insights into the gas-liquid interfacial fluctuations explored at the nanoscale.

  1. Ripening of Semiconductor Nanoplatelets.

    PubMed

    Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J

    2017-11-08

    Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

  2. Direct observation of small cluster mobility and ripening

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1976-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single-crystalline thin graphite substrates have been studied by in situ transmission electron microscopy (TEM) under controlled environmental conditions in the temperature range from 25 to 450 C. It was possible to monitor all stages of the experiments by TEM observation of the same specimen area. Slow Ostwald ripening was found to occur over the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility. This was concluded from in situ observations of individual particles during annealing and from measurements of cluster size distributions, cluster number densities, area coverages, and mean cluster diameters.

  3. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    PubMed Central

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin

    2016-01-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. PMID:27477212

  4. An algorithm for emulsion stability simulations: account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening.

    PubMed

    Urbina-Villalba, German

    2009-03-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1(st) Ed., Tojo J., Arce, A., Eds.; Solucion's: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.

  5. Facile fabrication of large-grain CH 3NH 3PbI 3-xBr x films for high-efficiency solar cells via CH 3NH 3Br-selective Ostwald ripening

    DOE PAGES

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; ...

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH 3NH 3PbI 3-xBr x (MAPbI 3-xBr x) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI 3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI 3-xBr x thin films following an Ostwald ripening process,more » which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. Lastly, this MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.« less

  6. Molecular Dynamics Investigation of Each Bubble Behavior in Coarsening of Cavitation Bubbles in a Finite Space

    NASA Astrophysics Data System (ADS)

    Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi

    2017-11-01

    Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.

  7. Crystal-growth kinetics of magnetite (Fe3O4) nanoparticles with Ostwald Ripening Model approach

    NASA Astrophysics Data System (ADS)

    Utami, S. P.; Fadli, A.; Sari, E. O.; Addabsi, A. S.

    2018-04-01

    Magnetite (Fe3O4) nanoparticles is a magnetic nanomaterial that have potential properties to be applied as drug delivery The purpose of this study was to determine the influence of time and temperature synthesis of magnetie characteristics and determine its crystal growth kinetics model with Ostwald ripening model approach. Magnetite nanoparticles synthesized from FeCl3, citrate, urea and polyethylene glycol with hydrothermal method at 180, 200 and 220 °C for 1,3,5,7,9 and 12 hours. Characterization by X-ray Diffraction (XRD) indicated that magnetite formed at temperatures of 200 and 220 °C. Magnetite crystallite diameter obtained was 10-29 nm. Characterization by Transmission Electron Mycroscope (TEM) shows that magnetite nanoparticles have uniform size and non-agglomerated. Core-shell shaped particles formed at 200 °C and 220 °C for 3 hours. Irregular shape obtained at 220 °C for 12 hour synthesis with particle diameter about 120 nm. Characterization using Vibrating Sample Magnetometer (VSM) shown that magnetite has super paramagnetism behaviour with the highest saturation magnetization (Ms) was 70.27 emu/g. magnetite crystal growth data at temperature of 220 °C can be fitted by Ostwald ripening growth model with growth controlled by the dissolution of surface reaction (n≈4) with the percent error of 2.53%.

  8. Spontaneous and Selective Nanowelding of Silver Nanowires by Electrochemical Ostwald Ripening and High Electrostatic Potential at the Junctions for High-Performance Stretchable Transparent Electrodes.

    PubMed

    Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju

    2018-04-25

    Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

  9. Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase

    NASA Astrophysics Data System (ADS)

    Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.

    2015-09-01

    We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.

  10. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  12. Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.

    PubMed

    Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José

    2014-11-01

    Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ostwald ripening of faceted Si particles in an Al-Si-Cu melt

    DOE PAGES

    Shahani, A. J.; Xiao, X.; Skinner, K.; ...

    2016-07-04

    The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, wemore » find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.« less

  14. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-11-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.

  15. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    PubMed Central

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-01-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe. PMID:26538365

  16. Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-dependent Localized Ostwald Ripening.

    PubMed

    Wenchao, Duan; Zhang, Peina; Xiahou, Yujiao; Song, Yahui; Bi, Cuixia; Zhan, Jie; Du, Wei; Huang, Lihui; Möhwald, Helmuth; Xia, Haibing

    2018-06-21

    It is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au m-n aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle-number ratios, where m and n represent the size of Au NPs, respectively. In addition, 3D Au m-n @Pd aerogels were further synthesized on the basis of Au m-n aerogels and also bear controlled surface facets due to the formation of ultrathin Pd layers on Au m-n aerogels. Taking the electrooxidation of small organic molecules (such as methanol and ethanol) by the resulting Au m-n and Au m-n @Pd aerogels as examples, it is found that surface facets of metallic aerogels with excellent performance can be regulated to realize preferential surface facets for methanol oxidation and ethanol oxidation, respectively. Moreover, they also indeed simultaneously bear high activity and excellent stability. Furthermore, their activities and stability are also highly dependent on the area ratio of active facets and inactive facets on their surfaces, respectively, and these ratios are varied via the mismatch of sizes of adjacent nanoparticles. Thus, this work not only demonstrates the realization of the regulation of the surface facets of metallic aerogels by size-dependent localized Ostwald ripening, but also will open up a new way to improve electrocatalytic performance of three-dimensional metallic aerogels by surface regulation.

  17. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  18. Deducing growth mechanisms for minerals from the shapes of crystal size distributions

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Srodon, J.

    1998-01-01

    Crystal size distributions (CSDs) of natural and synthetic samples are observed to have several distinct and different shapes. We have simulated these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a mass balance equation, and equations for Ostwald ripening. The following crystal growth mechanisms are simulated using these equations and their modifications: (1) continuous nucleation and growth in an open system, during which crystals nucleate at either a constant, decaying, or accelerating nucleation rate, and then grow according to the LPE; (2) surface-controlled growth in an open system, during which crystals grow with an essentially unlimited supply of nutrients according to the LPE; (3) supply-controlled growth in an open system, during which crystals grow with a specified, limited supply of nutrients according to the LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during which the relative rate of crystal dissolution and growth is controlled by differences in specific surface area and by diffusion rate; and (5) supply-controlled random ripening in a closed system, during which the rate of crystal dissolution and growth is random with respect to specific surface area. Each of these mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a constant nucleation rate yields asymptotically-shaped CSDs for which the variance of the natural logarithms of the crystal sizes (??2) increases exponentially with the mean of the natural logarithms of the sizes (??). Mechanism (2) yields lognormally-shaped CSDs, for which ??2 increases linearly with ??, whereas mechanisms (3) and (5) do not change the shapes of CSDs, with ??2 remaining constant with increasing ??. During supply-controlled Ostwald ripening (4), initial lognormally-shaped CSDs become more symmetric, with ??2 decreasing with increasing ??. Thus, crystal growth mechanisms often can be deduced by noting trends in ?? versus ??2 of CSDs for a series of related samples.

  19. A discrete model of Ostwald ripening based on multiple pairwise interactions

    NASA Astrophysics Data System (ADS)

    Di Nunzio, Paolo Emilio

    2018-06-01

    A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.

  20. Aging of Nanocrystalline Mackinawite (FeS): Mineralogical and Physicochemical Properties

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Lee, H.

    2011-12-01

    Due to the extraordinary physical properties and high surface areas, nanocrystalline minerals have been widely investigated for their potential uses in treating contaminated groundwaters and surface waters. Most previous studies in this field have focused on either preparation of nanocrystalline minerals or measurement of their reactivity with environmental contaminants. Nanocrystalline minerals, due to the inherent thermodynamic instability, tend to change the physicochemical and mineralogical properties over time, usually resulting in the decreased reactivity. Thus, to better assess the long-term effectiveness of nanocrystalline minerals in field applications, such "aging" effects should be clearly delineated. In the present work, we have investigated the aging impact on nanocrystalline mackinawite (FeS), the ubiquitous Fe-bearing mineral in anoxic sulfidic sediments. Mackinawite (FeS) is known to be an effective scavenger for metal pollutants and a strong reducing reagent for chromate and chlorinated organic compounds. Our preliminary results indicate that nanocrystalline FeS ages via Ostwald ripening, particle aggregation, or mineralogical transformation. By X-ray diffraction (XRD) analysis, aging of nanocrystalline FeS via Ostwald ripening is found to be dominant at acidic pH. Cryogenic transmission electron microscopy (TEM) shows that particle aggregation is most evident at neutral pH. Transformation of nanosized FeS into a more thermodynamically stable greigite (Fe3S4) is observed in the presence of folic acid at acidic pH. The pH-dependent aging process may be linked with changes in the apparent solubility and surface charge of FeS with pH. The Ostwald ripening or particle aggregation of nanocrystalline FeS leads to the decrease surface area, thus causing the decreased reactivity. Given the less reactivity of greigite, the transformation of nanocrystalline FeS to greigite is also expected to result in the decreased reactivity.

  1. User's Guide to Galoper: A Program for Simulating the Shapes of Crystal Size Distributions from Growth Mechanisms - and Associated Programs

    USGS Publications Warehouse

    Eberl, Dennis D.; Drits, V.A.; Srodon, J.

    2000-01-01

    GALOPER is a computer program that simulates the shapes of crystal size distributions (CSDs) from crystal growth mechanisms. This manual describes how to use the program. The theory for the program's operation has been described previously (Eberl, Drits, and Srodon, 1998). CSDs that can be simulated using GALOPER include those that result from growth mechanisms operating in the open system, such as constant-rate nucleation and growth, nucleation with a decaying nucleation rate and growth, surface-controlled growth, supply-controlled growth, and constant-rate and random growth; and those that result from mechanisms operating in the closed system such as Ostwald ripening, random ripening, and crystal coalescence. In addition, CSDs for two types weathering reactions can be simulated. The operation of associated programs also is described, including two statistical programs used for comparing calculated with measured CSDs, a program used for calculating lognormal CSDs, and a program for arranging measured crystal sizes into size groupings (bins).

  2. Cluster growth mechanisms in Lennard-Jones fluids: A comparison between molecular dynamics and Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Lee, Jumin; Kim, Jun Soo

    2015-03-01

    We present a simulation study on the mechanisms of a phase separation in dilute fluids of Lennard-Jones (LJ) particles as a model of self-interacting molecules. Molecular dynamics (MD) and Brownian dynamics (BD) simulations of the LJ fluids are employed to model the condensation of a liquid droplet in the vapor phase and the mesoscopic aggregation in the solution phase, respectively. With emphasis on the cluster growth at late times well beyond the nucleation stage, we find that the growth mechanisms can be qualitatively different: cluster diffusion and coalescence in the MD simulations and Ostwald ripening in the BD simulations. We also show that the rates of the cluster growth have distinct scaling behaviors during cluster growth. This work suggests that in the solution phase the random Brownian nature of the solute dynamics may lead to the Ostwald ripening that is qualitatively different from the cluster coalescence in the vapor phase.

  3. Numerical simulations of crystal growth in a transdermal drug delivery system

    NASA Astrophysics Data System (ADS)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  4. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    PubMed

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  5. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  6. Dissolution and coarsening of polydisperse, polymorph drug particles liberated from a disintegrating finished dosage form: Theoretical considerations.

    PubMed

    Horkovics-Kovats, Stefan

    2016-08-25

    In order to improve the bioavailability of substances with limited water-solubility, they are often formulated as nanoparticles. Nanoparticles show enhanced dissolution properties when compared to large particles. In this paper a dissolution theory is presented that comprehensively describes the dissolution properties of both large- and nanoparticles. It comprises non-sink conditions and arbitrary shaped isometrically dissolving particles, considering particle-size-independent dissolution layer thickness and several polymorphic drug forms. The known root-laws of dissolution kinetics happen to be special cases that depend on particle-size in relation to the diffusion layer thickness i.e. whether the particles are much larger, comparable, or much smaller than the diffusion layer thickness. The presented theory explains the improved dissolution properties of nanoparticles, such as their increased solubility, almost immediate dissolution, and the dissolution kinetics which is independent from hydrodynamic conditions. For polydisperse, polymorphic particles of arbitrary shapes that are liberated from a disintegrating finished dosage form, the Ostwald ripening (coarsening of particles and transition of metastable polymorphic forms into a more stable crystalline form) is described as water mediated mass transport. The presented theory points to certain limitations of the Ostwald-Freundlich equation for nanoparticles and provides their better characterization. This way it may contribute to a more specifically targeted development of finished dosage forms and may help to reduce the bias of toxicological and environmental assessments especially for drugs that are formed as nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  8. Describing Myxococcus xanthus Aggregation Using Ostwald Ripening Equations for Thin Liquid Films

    PubMed Central

    Bahar, Fatmagül; Pratt-Szeliga, Philip C.; Angus, Stuart; Guo, Jiaye; Welch, Roy D.

    2014-01-01

    When starved, a swarm of millions of Myxococcus xanthus cells coordinate their movement from outward swarming to inward coalescence. The cells then execute a synchronous program of multicellular development, arranging themselves into dome shaped aggregates. Over the course of development, about half of the initial aggregates disappear, while others persist and mature into fruiting bodies. This work seeks to develop a quantitative model for aggregation that accurately simulates which will disappear and which will persist. We analyzed time-lapse movies of M. xanthus development, modeled aggregation using the equations that describe Ostwald ripening of droplets in thin liquid films, and predicted the disappearance and persistence of aggregates with an average accuracy of 85%. We then experimentally validated a prediction that is fundamental to this model by tracking individual fluorescent cells as they moved between aggregates and demonstrating that cell movement towards and away from aggregates correlates with aggregate disappearance. Describing development through this model may limit the number and type of molecular genetic signals needed to complete M. xanthus development, and it provides numerous additional testable predictions. PMID:25231319

  9. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    PubMed

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2017-11-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  11. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2018-07-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  12. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE PAGES

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...

    2017-03-22

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  13. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  14. Demixing of aqueous polymer two-phase systems in low gravity

    NASA Technical Reports Server (NTRS)

    Bamberger, S.; Harris, J. M.; Baird, J. K.; Boyce, J.; Vanalstine, J. M.; Snyder, R. S.; Brooks, D. E.

    1986-01-01

    When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered.

  15. A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1).

    PubMed

    Zhang, Suoying; Liu, Hong; Liu, Pengfei; Yang, Zhuhong; Feng, Xin; Huo, Fengwei; Lu, Xiaohua

    2015-06-07

    Uniform CuO hollow microspheres were successfully achieved from a non-uniform metal organic framework by using a template-free method. The process mechanism has been revealed to be spherical aggregation and Ostwald ripening. When tested in CO oxidation and heat treatment, these assembled microspheres exhibited an excellent catalytic performance and show a much better stability than the inherited hollow structure from MOFs.

  16. Lattice-Boltzmann simulation of coalescence-driven island coarsening

    USGS Publications Warehouse

    Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.

    2004-01-01

    The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.

  17. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics.

    PubMed

    Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang

    2016-08-01

    The growth process of InAs quantum dots grown on GaAs (511)A substrates has been studied by atomic force microscopy. According to the atomic force microscopy studies for quantum dots grown with varying InAs coverage, a noncoherent nucleation of quantum dots is observed. Moreover, due to the long migration length of In atoms, the Ostwald ripening process is aggravated, resulting in the bad uniformity of InAs quantum dots on GaAs (511)A. In order to improve the uniformity of nucleation, the growth rate is increased. By studying the effects of increased growth rates on the growth of InAs quantum dots, it is found that the uniformity of InAs quantum dots is greatly improved as the growth rates increase to 0.14 ML s(-1) . However, as the growth rates increase further, the uniformity of InAs quantum dots becomes dual-mode, which can be attributed to the competition between Ostwald ripening and strain relaxation processes. The results in this work provide insights regarding the competition between thermal dynamical barriers and the growth kinetics in the growth of InAs quantum dots, and give guidance to improve the size uniformity of InAs quantum dots on (N11)A substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystal settling and crystal growth caused by Ostwald Ripening in a terrestrial magma ocean under rotation

    NASA Astrophysics Data System (ADS)

    Maas, C.; Moeller, A.; Hansen, U.

    2013-12-01

    About 4.5 billion years ago the earth was covered by a heavily convecting and rotating global magma ocean which was caused by an impact of a mars-sized impactor in a later stage of the earth's accretion. After the separation of metal and silicate (see A. Möller, U. Hansen (2013)) and the formation of the earth's core it began to crystallize. Small silicate crystals emerge and grow by Ostwald Ripening when the fluid is supersaturated. This process results in shrinking of small crystals and growing of large crystals on behalf of the smaller ones. This leads to an altering of the crystal settling time. One question which is still under great debate is whether fractional or equilibrium crystallization occurred in the magma ocean. Fractional crystallization means that different mineral fractions settle one after the other which would lead to a strongly differentiated mantle after solidification of the magma ocean. In contrast to that equilibrium crystallization would result in a well mixed mantle. Whether fractional or equilibrium crystallization occurred is for example important for the starting model of plate tectonics or the understanding of the mantle development until today. To study the change of crystal radius in a convecting and rotating magma ocean we employed a 3D numerical model. Due to the low viscosity and strong rotation the influence of rotation on the early magma Ocean cannot be neglected. In the model the crystals are able to influence each other and the fluid flow. They are able to grow, shrink, vanish and form and gravitational, Coriolis and drag forces due to the fluid act on them. In our present work we study the crystal settling depending on different rotation rates and rotation axes with two configurations. For the polar setting the rotation axis is parallel, at the equator it is perpendicular to gravity. Low rotation at the pole leads to a large fraction of suspended crystals. With increasing rotation the crystals settle and form a thick layer at the bottom of the magma ocean. At the equator we find three regimes (see A. Möller, U. Hansen (2013)) depending on the rotation strength. At low rotation a high fraction of silicate crystals settle at the bottom. At higher rotation the crystals form a thick layer in the bottom 1/3 of box. At high rotation all crystals are suspended and we observe a ribbon structure in the middle of the box. With a second model we investigate growing and shrinking of crystals by Ostwald Ripening and include formation and melting. In general we observe the same behaviour and regimes as described above, however due to Ostwald Ripening the evolution of crystal radius with time depends on the strength of rotation and on the orientation of the rotation axis. Very first results show that at the pole the growth of the silicate crystals is limited. The resulting small radius leads to a slow crystal settling. At the equator the crystals are able to grow larger than at the pole and therefore settle faster. This could lead to an asymmetrical crystallization of the magma ocean. In an extreme case due to the different settling times this could lead to a well mixed mantle at the pole whereas at the equator the mantle could be strongly differentiated after the solidification of the magma ocean.

  19. Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory.

    PubMed

    Budke, C; Heggemann, C; Koch, M; Sewald, N; Koop, T

    2009-03-05

    The Ostwald ripening of polycrystalline ice in aqueous sucrose solutions was investigated experimentally. The kinetics of this ice recrystallization process was studied at temperatures between -6 and -10 degrees C and varying ice volume fractions. Using the theory of Lifshitz, Slyozov, and Wagner (LSW), the diffusion-limited rate constant for ice recrystallization was determined. Also, the effects of synthetic analogues of natural antifreeze glycoproteins (AFGP) were studied. These analogues synAFGPmi (i = 3-5) contained monosaccharide side groups instead of disaccharide side groups that occur in natural AFGP. In order to account for the inhibition effect of the synAFGPmi, we have modified classical LSW theory, allowing for the derivation of inhibition rate constants. It was found that the investigated synAFGPmi inhibit ice recrystallization at concentrations down to approximately 3 microg mL(-1) or, equivalently, approximately 1 micromol L(-1) for the largest synAFGPmi investigated: synAFGPm5. Hence, our new method is capable of quantitatively assessing the efficiency of very similar AFGP with a sensitivity that is at least 2 orders of magnitude larger than that typical for quantitative thermal hysteresis measurements.

  20. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  1. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.

    PubMed

    Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J

    2009-01-01

    A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.

  2. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Low-gravity fluid dynamics and transport phenomena. Progress in Astronautics and Aeronautics. Vol. 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koster, J.N.; Sani, R.L.

    1990-01-01

    Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less

  4. Synthesis and self-assembly of zinc oxide nanoparticles with septahedral morphology

    DOE PAGES

    Bell, Nelson S.; Tallant, David R.; Raymond, Rebecca; ...

    2008-02-01

    The formation of 10-nm ZnO nanopyramids using a simple synthetic route has been isolated from the reaction of Zn(OAc) 2·2H 2O in 1,4-butanediol followed by ripening at 90 °C. This was accomplished by establishing control over the Ostwald ripening process through the use of a carboxylic acid specific adsorbate. In this work, using a variety of analytical methods, it is proposed that the carboxylate groups in the acetate precursor stabilize the {101} habit planes, creating septahedral shapes or nanopyramids. Particle assembly into crystallographically oriented dimers was observed with high specificity, and the association mechanism is suggested to relate to themore » crystal polarity and the variation in specific adsorption of the carboxylic acid to the surface facets. Lastly, these materials are a candidate for biological labeling applications in living cells.« less

  5. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  6. Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant.

    PubMed

    Powell, Kristin Conrad; Damitz, Robert; Chauhan, Anuj

    2017-04-15

    We explore mechanisms of emulsion stability for several systems using Pluronic F68 and a range of oils commonly used in pharmaceutics and cosmetics. We report measurements of dynamic emulsion drop size, zeta potential, and creaming time, as well as dynamic interfacial tension and interfacial viscoelasticity. Experiments show that with 1wt% Pluronic F68, soybean oil emulsions were the most stable with no creaming over six months, followed by isopropyl myristate, octanoic acid, and then ethyl butyrate. The eventual destabilization occurred due to the rising of large drops which formed through Ostwald ripening and coalescence. While Ostwald ripening is important, it is not the dominant destabilization mechanism for the time scale of interest in pharmaceutical emulsions. The more significant destabilization mechanism, coalescence, is reduced through surfactant adsorption, which decreases surface tension, increases surface elasticity, and adds a stearic hindrance to collisions. Though the measured values of elasticity obtained using a standard oscillatory pendant drop method did not correlate to emulsion stability, this is because the frequencies for the measurements were orders of magnitude below those relevant to coalescence in emulsions. However, we show that the high frequency elasticity obtained by fitting the surface tension data to a Langmuir isotherm has very good correlation with the emulsion stability, indicating that the elasticity of the interface plays a key role in stabilizing these pharmaceutical formulations. Further, this study highlights how these important high frequency elasticity values can be easily estimated from surface isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    PubMed

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-06

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  8. Evolution of Local Microstructures (ELMS): Spatial Instabilities of Coarsening

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton; Facemire, Barbara R.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that / 2 1/ 3 predicted by TLS is proportional to V(sub v)(exp 1/2), whereas others suggest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.

  9. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.

    An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

  10. Preventing kinetic roughening in physical vapor-phase-deposited films.

    PubMed

    Vasco, E; Polop, C; Sacedón, J L

    2008-01-11

    The growth kinetics of the mostly used physical vapor-phase deposition techniques -molecular beam epitaxy, sputtering, flash evaporation, and pulsed laser deposition-is investigated by rate equations with the aim of testing their suitability for the preparation of ultraflat ultrathin films. The techniques are studied in regard to the roughness and morphology during early stages of growth. We demonstrate that pulsed laser deposition is the best technique for preparing the flattest films due to two key features [use of (i) a supersaturated pulsed flux of (ii) hyperthermal species] that promote a kinetically limited Ostwald ripening mechanism.

  11. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings.

    PubMed

    Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan

    2004-09-20

    A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society

  12. Space-Weathering on Mercury: Inferences Based on Comparison of MESSENGER Spectral Data and Experimental Space Weathering Data

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, J. J.; Blewett, D. T.; Lawrence, D. J.; Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Domingue, D. L.

    2009-12-01

    Production and accumulation of submicroscopic metallic iron (SMFe) is a principal mechanism by which surfaces of airless silicate bodies in the Solar System, exposed to the space weathering environment, experience spectral modification. Micrometeorite impact vaporization and solar-wind sputtering produce coatings of vapor-deposited SMFe. Both processes can be more intense on Mercury and, as a result, more efficient at creating melt and vapor. In addition, Ostwald ripening may cause SMFe particles to grow larger due to the high surface temperatures on Mercury (as great as 450°C). Spectral effects on the ultraviolet-visible-near-infrared continuum change with the amount and size of SMFe present. Thus, the physical properties and abundance of iron in Mercury’s regolith can be understood by comparing spectral data from controlled space-weathering experiments with spectra from MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Knowledge of SMFe size and abundance may provide information on the space weathering conditions under which it was produced or subsequently modified. Reflectance spectra of laboratory-produced samples with varying SMFe grain sizes (average grain sizes of 8, 15, 35, and 40 nm) and iron compositions (from 0.005 to 3.8 wt% Fe as SMFe) are compared with MASCS disk-integrated reflectance from the first flyby of Mercury and will be compared with observations of spectral end members targeted for the third flyby. We compare spectra from 300 nm to 1400 nm wavelength, scaled to 1 at 700 nm, from the laboratory and MASCS. This comparison between laboratory and remote-sensing spectra reveals an excellent match with observations of Mercury for samples with an average iron metal grain size of 8 nm and 1.65 wt% FeO and 15 nm and 0.13 wt% Fe. These average grain sizes of the SMFe component are larger than the average grain size determined for lunar soil samples using transmission electron microscopy (3 nm in rims and 10-15 nm in agglutinates) but are smaller than values obtained from lunar spectra with the methods used here (15-25 nm). We can also infer that silicates in Mercury's high reflectance plains are potentially iron poor, precluding thick vapor deposits coating - both spectral data sets lack a 1-μm absorption and the experimental iron particles are suspended in an iron-free silica gel. Thus, our conclusion on the basis of spectral comparison is that SMFe on Mercury is potentially smaller than on the Moon and that Ostwald ripening is not a major influence on the surface of Mercury. The absence of pronounced darkening of the equatorial regions of Mercury in images from Mariner 10 and MESSENGER's Mercury Dual Imaging System supports also suggest an apparent lack of Ostwald ripening.

  13. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  14. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE PAGES

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.; ...

    2015-09-02

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  15. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong

    2010-10-01

    Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g

  16. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    NASA Astrophysics Data System (ADS)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  17. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  18. Correlation between MWCNT aspect ratio and the mechanical properties of composites of PMMA and MWCNTs

    NASA Astrophysics Data System (ADS)

    Mu, Mulan; Teblum, Eti; Figiel, Łukasz; Nessim, Gilbert Daniel; McNally, Tony

    2018-04-01

    The correlation between MWCNT aspect ratio and the quasi-static and dynamic mechanical properties of composites of MWCNTs and PMMA was studied for relatively long MWCNT lengths, in the range 0.3 mm to 5 mm (aspect ratios up to 5 × 105) and at low loading (0.15 wt%). The height of the MWCNTs prepared were modulated by controlling the amount of water vapour introduced in the reactor limiting Ostwald ripening of the catalyst, the formation of amorphous carbon and any increase in CNT diameter. The Tg of PMMA increased by up to 4 °C on addition of the longest tubes as they have the ability to form physical junctions with the polymer chains which lead to enhanced PMMA-MWCNTs interactions and increased mechanical properties, Young’s modulus by 20% on addition of 5 mm long MWCNTs. Predictions of the Young’s modulus of the composites of PMMA and MWCNT with the Mori-Tanaka theory show that future micromechanical models should account for MWCNT agglomeration and polymer-nanotube interactions as a function of CNT length.

  19. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  20. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  1. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  2. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  3. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  4. The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.

    PubMed

    Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin

    2017-04-01

    In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.

  5. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents

    NASA Astrophysics Data System (ADS)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Zhang, Shuo; Ju, Jiantao

    2017-04-01

    To investigate the effect of Mg addition on the refinement and homogenized distribution of inclusions, deoxidized experiments with different amounts of aluminum and magnesium addition were carried out at 1873 K (1600 °C) under the condition of no fluid flow. The size distribution of three-dimensional inclusions obtained by applying the modified Schwartz-Saltykov transformation from the observed planar size distribution, and degree of homogeneity in inclusion dispersion quantified by measuring the inter-surface distance of inclusions, were studied as a function of the amount of Mg addition and holding time. The nucleation and growth of inclusions based on homogeneous nucleation theory and Ostwald ripening were discussed with the consideration of supersaturation degree and interfacial energy between molten steel and inclusions. The average attractive force acted on inclusions in experimental steels was estimated according to Paunov's theory. The results showed that in addition to increasing the Mg addition, increasing the oxygen activity at an early stage of deoxidation and lowering the dissolved oxygen content are conductive to the increase of nucleation rate as well as to the refinement of inclusions Moreover, it was found that the degree of homogeneity in inclusion dispersion decreases with an increase of the attractive force acted on inclusions, which is largely dependent on the inclusion composition and volume fraction of inclusions.

  6. Systematic Control of Self-Assembled Au Nanoparticles and Nanostructures Through the Variation of Deposition Amount, Annealing Duration, and Temperature on Si (111).

    PubMed

    Li, Ming-Yu; Sui, Mao; Pandey, Puran; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-12-01

    The size, density, and configurations of Au nanoparticles (NPs) can play important roles in controlling the electron mobility, light absorption, and localized surface plasmon resonance, and further in the Au NP-assisted nanostructure fabrications. In this study, we present a systematical investigation on the evolution of Au NPs and nanostructures on Si (111) by controlling the deposition amount (DA), annealing temperature (AT), and dwelling time (DT). Under an identical growth condition, the morphologies of Au NPs and nanostructures drastically evolve when the DA is only slightly varied, based on the Volmer-Weber and coalescence models: i.e. I: mini NPs, II: mid-sized round dome-shaped Au NPs, III: large Au NPs, and IV: coalesced nanostructures. With the AT control, three distinctive ranges are observed: i.e., NP nucleation, Au NPs maturation and melting. The gradual dimensional expansion of Au NPs is always compensated with the density reduction, which is explained with the thermodynamic theory. The DT effect is relatively minor on Au NPs, a sharp contrast to other metallic NPs, which is discussed based on the Ostwald-ripening.

  7. Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor

    PubMed Central

    Fang, Ci; Zhang, Tao; Jiang, Rongfeng; Ohtake, Hisao

    2016-01-01

    Since phosphorus, a non-renewable and non-substitutable resource, has become the principal contributor and limiting factor to water eutrophication, achieving phosphorus removal and recovery from wastewater is pretty essential. Even though struvite crystallization process has been widely used for phosphate (P) recovery in wastewater treatment, its application is hampered by difficulties controlling small particle size and crystal growth. This study was conducted to control the settleability of struvite by calculating and predicting the struvite-settling percentage (Ps), which is always affected by the initial concentration of P (CP), solution pH (pH), reaction time (t), reaction temperature (T), agitation rate (Ar), and inlet flow velocity (vf) of the fluidized bed reactor. The results showed that the settleability of struvite could be enhanced by increasing T and decreasing pH, Ar, or vf, and would perform worse with overlong t or excessive CP. The dynamic variation process of the solution supersaturated index (SI) combined with the phase equilibrium theory and Ostwald ripening mechanism explained the above results sufficiently. The logistic model was chosen to predict the Ps under multi-factors, but the accuracy needs to be improved. PMID:27573918

  8. Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Fang, Ci; Zhang, Tao; Jiang, Rongfeng; Ohtake, Hisao

    2016-08-01

    Since phosphorus, a non-renewable and non-substitutable resource, has become the principal contributor and limiting factor to water eutrophication, achieving phosphorus removal and recovery from wastewater is pretty essential. Even though struvite crystallization process has been widely used for phosphate (P) recovery in wastewater treatment, its application is hampered by difficulties controlling small particle size and crystal growth. This study was conducted to control the settleability of struvite by calculating and predicting the struvite-settling percentage (Ps), which is always affected by the initial concentration of P (CP), solution pH (pH), reaction time (t), reaction temperature (T), agitation rate (Ar), and inlet flow velocity (vf) of the fluidized bed reactor. The results showed that the settleability of struvite could be enhanced by increasing T and decreasing pH, Ar, or vf, and would perform worse with overlong t or excessive CP. The dynamic variation process of the solution supersaturated index (SI) combined with the phase equilibrium theory and Ostwald ripening mechanism explained the above results sufficiently. The logistic model was chosen to predict the Ps under multi-factors, but the accuracy needs to be improved.

  9. Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a 0 range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to v(sub v)(exp 1/2), whereas others suggcest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team. Our studies of ripening behavior using large-scale numerical simulations suggest that although there are different circumstances which can lead to either scaling law, the most important length scale at low volume fractions is the diffusional analog of the Debye screening length. The numerical simulations we employed exploit the use of a recently developed "snapshot" technique, and identifies the nature of the coarsening dynamics at various volume fractions. Preliminary results of numerical and experimental investigations, focused on the growth of finite particle clusters, provide important insight into the nature of the transition between the two scaling regimes. The companion microgravity experiment centers on the growth within finite particle clusters, and follows the temporal dynamics driving microstructural evolution, using holography.

  10. A low energy electron microscopy study of the initial growth, structure, and thermal stability of 4,4'-biphenyldicarboxylic acid domains on Cu(001)

    NASA Astrophysics Data System (ADS)

    Khokhar, Fawad S.; van Gastel, Raoul; Schwarz, Daniel; Zandvliet, Harold J. W.; Poelsema, Bene

    2011-09-01

    The growth of 4,4'-biphenyldicarboxylic acid (BDA) on Cu(001) has been studied using low energy electron microscopy and selective area low energy electron diffraction. The emergence of large islands and hydrogen bonding to perpendicularly oriented, adjacent molecules is confirmed. The two benzene rings of adsorbed BDA are twisted along the molecular axis. Unconventional growth of the domains, followed by a second nucleation stage, is observed at room temperature. This unanticipated feature is attributed to the accumulation of stress in the islands. Ostwald ripening in the films and the decay of BDA domains at 448 K exhibits features that are consistent with diffusion limited behavior.

  11. Preparation of ZnS@In2S3 Core@shell Composite for Enhanced Photocatalytic Degradation of Gaseous o-Dichlorobenzene under Visible Light.

    PubMed

    Liu, Baojun; Hu, Xia; Li, Xinyong; Li, Ying; Chen, Chang; Lam, Kwok-Ho

    2017-11-27

    In this study, novel ZnS@In 2 S 3 core@shell hollow nanospheres were fabricated by a facile refluxing method for the first time, and the formation mechanism of hollow structure with interior architecture was discussed based on ion-exchange Ostwald ripening. As the photocatalytic material for degradation of gaseous o-Dichlorobenzene (o-DCB), the as-synthesized core@shell hollow nanospheres were found to show significantly enhanced catalytic performance for effective separation of photo-generated charges. Moreover, the mechanisms of enhanced activity were elucidated by band alignment and unique configuration. Such photocatalyst would meet the demands for the control of persistent organic pollutant (POPs) in the atmospheric environment.

  12. Formation and coarsening of near-surface Ga nanoparticles on SiN{sub x}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canniff, J. C.; Jeon, S.; Huang, S.

    2015-06-15

    We have investigated the formation and coarsening of near-surface Ga nanoparticles (NPs) in SiN{sub x} using Ga{sup +} focused-ion-beam-irradiation of SiN{sub x}, followed by rapid thermal annealing. For surfaces with minimal curvature, diffusive growth is apparent, leading to nearly close packed arrays with NP diameters as small as 3 nm and densities as high as ∼4 × 10{sup 12} cm{sup −2}. The diffusive flux increases with annealing temperature, leading to NP coarsening by Ostwald ripening. For surfaces with increased curvature, diffusion towards the valleys also increases during annealing, leading to Ga NP coalescence and a bi-modal distribution of NP sizes.

  13. Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization.

    PubMed

    Hedges, Lester O; Whitelam, Stephen

    2011-10-28

    We have only rules of thumb with which to predict how a material will crystallize, chief among which is Ostwald's rule of stages. It states that the first phase to appear upon transformation of a parent phase is the one closest to it in free energy. Although sometimes upheld, the rule is without theoretical foundation and is not universally obeyed, highlighting the need for microscopic understanding of crystallization controls. Here we study in detail the crystallization pathways of a prototypical model of patchy particles. The range of crystallization pathways it exhibits is richer than can be predicted by Ostwald's rule, but a combination of simulation and analytic theory reveals clearly how these pathways are selected by microscopic parameters. Our results suggest strategies for controlling self-assembly pathways in simulation and experiment.

  14. A universal approach to the synthesis of nanodendrites of noble metals.

    PubMed

    Feng, Yan; Ma, Xiaohong; Han, Lin; Peng, Zhijian; Yang, Jun

    2014-06-07

    Nanomaterials usually exhibit structure-dependent catalytic activity, selectivity, and stability. Herein, we report a universal approach for the synthesis of noble metal nanoparticles with a dendritic structure, which is based on the reduction of metal acetylacetonate precursors in oleylamine at a temperature of 160 °C. In this strategy, the metal acetylacetonate precursors are reduced into metal atoms by oleylamine and grow into metal nanoparticles, while oleylamine is simultaneously converted into oleylamide to protect the nanoparticles. The competition between particle aggregation and oleylamide passivation is essential to the formation of a large number of particle aggregates, which eventually grow into nanodendrites via Ostwald ripening process. In particular, in comparison with commercial PtRu/C catalysts, the alloy PtRuOs nanodendrites exhibited superior catalytic activity toward methanol oxidation.

  15. Indium sulfide microflowers: Fabrication and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Hui; Wang Xiaolei; Yang Wen

    2009-10-15

    With the assistance of urea, uniform 2D nanoflakes assembled 3D In{sub 2}S{sub 3} microflowers were synthesized via a facile hydrothermal method at relative low temperature. The properties of the as-obtained In{sub 2}S{sub 3} flowers were characterized by various techniques. In this work, the utilization of urea and L-cysteine, as well as the amount of them played important roles in the formation of In{sub 2}S{sub 3} with different nanostructures. Inferred from their morphology evolution, a urea induced precursor-decomposition associated with the Ostwald-ripening mechanism was proposed to interpret these hierarchical structure formation. Furthermore, the optical properties of these In{sub 2}S{sub 3} microflowersmore » were investigated via UV-vis absorption and photoluminescence (PL) spectroscopies in detail.« less

  16. Mechanisms and rates of strength recovery in laboratory fault zones

    NASA Astrophysics Data System (ADS)

    Muhuri, Sankar Kumar

    2001-07-01

    The life cycle of a typical fault zone consists of repeated catastrophic seismic events during which much of the slip is accommodated interspersed with creep during the inter-seismic cycle. Fault strength is regenerated during this period as a result of several time-dependent, fluid assisted deformation mechanisms that are favored by high stresses along active fault zones. The strengthening is thought to be a function of the sum total of the rates of recovery due to these multiple creep processes as well as the rate of tectonic loading. Mechanisms and rates of strength recovery in laboratory fault zones were investigated in this research with the aid of several experimental designs. It was observed that wet faults recover strength in a time-dependent manner after slip due to operative creep processes. Subsequent loading results in unstable failure of a cohesive gouge zone with large associated stress drops. The failure process is similar to that observed for intact rocks. Dry laboratory faults in contrast do not recover strength and slip along them is always stable with no observable drop in stress. Strengthening in laboratory faults proceeds in a manner that is a logarithmic function of time. The recovery is attributable to fluid mediated mechanisms such as pressure solution, crack sealing and Ostwald ripening that collectively cause a reduction in porosity and enhance lithification of an unconsolidated gouge. Rates for the individual deformation mechanisms investigated in separate experimental setups were also observed to be a non-linear function of time. Pressure solution and Ostwald ripening are especially enhanced due to the significant volume fraction of fine particles within the gouge created due to cataclasis during slip. The results of this investigation may be applied to explain observations of rapid strengthening along large, active crustal fault zones such as parts of the San Andreas Fault system in California and the Nojima fault in Japan. Presence of fault seals in clean hydrocarbon reservoirs with minor clay content as in several North Sea fields may also be a manifestation of similar deformation processes.

  17. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Zhang, Peng; Cao, Tieping; Liu, Yichun

    2011-07-01

    The hierarchical tetranitro copper phthalocyanine (TNCuPc) hollow spheres were fabricated by a simple solvothermal method. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involved the initial formation of nanoparticles followed by their self-aggregation to microspheres and transformation into hierarchical hollow spheres by Ostwald ripening. Furthermore, the hierarchical TNCuPc hollow spheres exhibited high adsorption capacity and excellent simultaneously visible-light-driven photocatalytic performance for Rhodamine B (RB) under visible light. A possible mechanism for the "aqueous-solid phase transfer and in situ photocatalysis" was suggested. Repetitive tests showed that the hierarchical TNCuPc hollow spheres maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.

  18. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    PubMed

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  19. Growth of MPS-capped ZnS quantum dots in self-assembled thin films: Influence of heat treatment

    NASA Astrophysics Data System (ADS)

    Koç, Kenan; Tepehan, Fatma Zehra; Tepehan, Galip Gültekin

    2015-12-01

    The colloidal ZnS quantum dots (QDs) were prepared using 3-mercaptopropyltrimethoxysilane (MPS) molecules. Sol-gel spin coating method was used to deposit the colloidal nanoparticles on a glass substrate. Several features of the MPS were made use to produce self assembled thin films of ZnS quantum dots in a SiO2 network. Produced films were heat treated in between 225 °C and 325 °C to investigate their growth kinetics. The result showed that their size changed approximately from 3 nm to 4 nm and the first excitation peak position changed from 4.6 eV to 4.1 eV in this temperature interval. The activation energy of the nanoparticles for the Ostwald ripening process was found to be 59 kJ/mol.

  20. Hydrothermal synthesis of novel Mn(3)O(4) nano-octahedrons with enhanced supercapacitors performances.

    PubMed

    Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong

    2010-10-01

    Uniform and single-crystalline Mn(3)O(4) nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ∼160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a "dissolution-recrystallization" which is followed by an "Ostwald ripening" mechanism. The Mn(3)O(4) nano-octahedrons exhibited an enhanced specific capacitance of 322 F g(-1) compared with the truncated octahedrons with specific capacitances of 244 F g(-1), making them a promising electrode material for supercapacitors.

  1. Morphology Dependent Photocatalytic Activity of α-MoO3 Nanostructures Towards Mutagenic Acridine Orange Dye.

    PubMed

    2015-06-01

    The morphological evolutions of orthorhombic molybdenum oxide nanostructures with high crystalline nature have been successfully synthesized by combining low-temperature sol-gel and annealing processes. Strong influence of gelation temperature is a factor facilitated to control the material morphology. Morphological transformations like nanospheres, nanoplatelets, mixtures of hexagonal platelets, and one-dimensional nanobars were obtained. The possible morphological formation mechanism has been proposed as a self-assemble process of nucleation and a mechanism for particle growth by Ostwald ripening. The as-prepared nanostructures were recognized as photocatalysts for the degradation of Acridine Orange under Ultra Violet light. The obtained mixed morphology (hexagonal nanoplatelets and nanobars) showed a high photocatalytic property to degrade mutagenic Acridine Orange dye. Moreover, they could be easily recycled without changing the photocatalytic activity due to their 1-Dimensional and 2-Dimensional nanostructure property.

  2. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  3. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.

    PubMed

    Jamali, Tayeb; Naji, Ali

    2018-06-13

    We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.

  4. Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record

    NASA Astrophysics Data System (ADS)

    Holness, Marian B.

    2018-06-01

    One of the outstanding problems in understanding the behavior of intermediate-to-silicic magmatic systems is the mechanism(s) by which large volumes of crystal-poor rhyolite can be extracted from crystal-rich mushy storage zones in the mid-deep crust. The mechanisms commonly invoked are hindered settling, micro-settling, and compaction. The concept of micro-settling involves extraction of grains from a crystal framework during Ostwald ripening and has been shown to be non-viable in the metallic systems for which it was originally proposed. Micro-settling is also likely to be insignificant in silicic mushes, because ripening rates are slow for quartz and plagioclase, contact areas between grains in a crystal mush are likely to be large, and abundant low-angle grain boundaries promote grain coalescence rather than ripening. Published calculations of melt segregation rates by hindered settling (Stokes settling in a crystal-rich system) neglect all but fluid dynamical interactions between particles. Because tabular silicate minerals are likely to form open, mechanically coherent, frameworks at porosities as high as 75%, settling of single crystals is only likely in very melt-rich systems. Gravitationally-driven viscous compaction requires deformation of crystals by either dissolution-reprecipitation or dislocation creep. There is, as yet, no reported microstructural evidence of extensive, syn-magmatic, internally-generated, viscous deformation in fully solidified silicic plutonic rocks. If subsequent directed searches do not reveal clear evidence for internally-generated buoyancy-driven melt segregation processes, it is likely that other factors, such as rejuvenation by magma replenishment, gas filter-pressing, or externally-imposed stress during regional deformation, are required to segregate large volumes of crystal-poor rhyolitic liquids from crustal mushy zones.

  5. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  6. QM/MD studies on graphene growth from small islands on the Ni(111) surface

    NASA Astrophysics Data System (ADS)

    Jiao, Menggai; Song, Wei; Qian, Hu-Jun; Wang, Ying; Wu, Zhijian; Irle, Stephan; Morokuma, Keiji

    2016-01-01

    Quantum chemical molecular dynamics simulations of graphene growth from small island precursors in different carbon nucleation densities on the Ni(111) surface at high temperatures have been conducted. The results indicate that small islands are not static, i.e. lateral diffusion and vertical fluctuation are frequently observed. In the case of low carbon nucleation density, carbon atoms or small carbon patches diffuse and attach to the edge of the nuclei to expand the size of the growing carbon network. The growth of graphene precursors is accompanied by the corresponding changes in the bonding of nickel atoms with the precipitation of subsurface carbon atoms. This is because the carbon-carbon interaction is stronger than the nickel-carbon interaction. In the case of high carbon nucleation densities, the dominant ripening mechanism depends on different growth stages. In the initial stage, the coalescence of carbon islands takes place via the Smoluchowski ripening mechanism. In the later stage the Smoluchowski ripening process is damped owing to the higher diffusion barrier of larger clusters and the restriction of movement by self-assembled nickel step edges. The cross-linking mechanism eventually takes over by the coalescence of extended polyyne chains between graphene islands. In either case, the Ostwald ripening process is not found in our molecular dynamics simulations due to the stability of carbon-carbon bonds within the islands. These investigations should be instructive to the control of graphene growth in experiments.Quantum chemical molecular dynamics simulations of graphene growth from small island precursors in different carbon nucleation densities on the Ni(111) surface at high temperatures have been conducted. The results indicate that small islands are not static, i.e. lateral diffusion and vertical fluctuation are frequently observed. In the case of low carbon nucleation density, carbon atoms or small carbon patches diffuse and attach to the edge of the nuclei to expand the size of the growing carbon network. The growth of graphene precursors is accompanied by the corresponding changes in the bonding of nickel atoms with the precipitation of subsurface carbon atoms. This is because the carbon-carbon interaction is stronger than the nickel-carbon interaction. In the case of high carbon nucleation densities, the dominant ripening mechanism depends on different growth stages. In the initial stage, the coalescence of carbon islands takes place via the Smoluchowski ripening mechanism. In the later stage the Smoluchowski ripening process is damped owing to the higher diffusion barrier of larger clusters and the restriction of movement by self-assembled nickel step edges. The cross-linking mechanism eventually takes over by the coalescence of extended polyyne chains between graphene islands. In either case, the Ostwald ripening process is not found in our molecular dynamics simulations due to the stability of carbon-carbon bonds within the islands. These investigations should be instructive to the control of graphene growth in experiments. Electronic supplementary information (ESI) available: There are two movies showing the simulation process and they are provided in separate files. Movie S1 is the evolution of QM/MD simulations of the growth of graphene from one C13 on the Ni(111) surface for trajectory D@C13. Movie S2 is the evolution of QM/MD simulations of the growth of graphene from two C13 species on the Ni(111) surface for trajectory C@2C13. Fig. S1 shows the optimized geometries of C13-G and C13-H on the Ni(111) surface. Fig. S2 is the final structures of trajectories A-J@C13 following 400 ps QM/MD simulation for the Ni(111) + C13 system. Fig. S3 is the final structures of trajectories A-J@2C13 following 350 ps QM/MD simulation for the Ni(111) + 2C13 system. Fig. S4 shows average polygonal carbon ring populations formed during graphene growth from the Ni(111) + C13 and Ni(111) + 2C13 systems. Fig. S5 shows the averaged δ value of the C13 clusters and the nickel catalyst in the Ni(111) + C13 and Ni(111) + 2C13 systems. Fig. S6 depicts the total Mermin free energy as a function of simulation time in the Ni(111) + 2C13 system. See DOI: 10.1039/c5nr07680c

  7. A new route to gold nanoflowers

    NASA Astrophysics Data System (ADS)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  8. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  9. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  10. A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions

    NASA Astrophysics Data System (ADS)

    Wharry, Janelle P.; Swenson, Matthew J.; Yano, Kayla H.

    2017-04-01

    Thus far, a number of studies have investigated the irradiation evolution of oxide nanoparticles in b.c.c. Fe-Cr based oxide dispersion strengthened (ODS) alloys. But given the inconsistent experimental conditions, results have been widely variable and inconclusive. Crystal structure and chemistry changes differ from experiment to experiment, and the total nanoparticle volume fraction has been observed to both increase and decrease. Furthermore, there has not yet been a comprehensive review of the archival literature. In this paper, we summarize the existing studies on nanoparticle irradiation evolution. We note significant observations with respect to oxide nanoparticle crystallinity, composition, size, and number density. We discuss four possible contributing mechanisms for nanoparticle evolution: ballistic dissolution, Ostwald ripening, irradiation-enhanced diffusion, and homogeneous nucleation. Finally, we propose future directions to achieve a more comprehensive understanding of irradiation effects on oxide nanoparticles in ODS alloys.

  11. Nanoemulsions: a new vehicle for skincare products.

    PubMed

    Sonneville-Aubrun, O; Simonnet, J-T; L'Alloret, F

    2004-05-20

    Nanoemulsions consist in very fine oil-in-water dispersions, having droplet diameter smaller than 100 nm. Compared to microemulsions, they are in a metastable state, and their structure depends on the history of the system. In the present work, nanoemulsions were prepared with a high shear device, which is less constraining than spontaneous emulsification procedures. Nanoemulsions are very fragile systems by nature. As they are transparent, the slightest sign of destabilisation appears visually. Two major sources of unstability were identified and extensively studied: Ostwald ripening and depletion induced floculation following the addition of thickening polymers. The control of these two mechanisms allowed the industrial production of a large variety of cosmetic products, from water-like fluids, to ringing gels obtained by increasing the oil phase content or by adding polymers. The nanoemulsions are easily valued in skin care due to their good sensorial properties (rapid penetration, merging textures) and their biophysical properties (especially their hydrating power).

  12. Annealing induced reorientation of crystallites in Sn doped ZnO films

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Vasanthi, M.; Thirumurugan, K.; Sakthivel, B.; Karthika, K.

    2014-11-01

    Tin doped ZnO thin films were prepared by employing a simplified spray pyrolysis technique using a perfume atomizer and subsequently annealed under different temperatures from 350 °C to 500 °C in steps of 50 °C. The structural, optical, electrical, photoluminescence and surface morphological properties of the as-deposited films were studied and compared with that of the annealed films. The X-ray diffraction studies showed that as-deposited film exhibits preferential orientation along the (0 0 2) plane and it changes in favour of (1 0 0) plane after annealing. The increase in crystallite size due to annealing is explained on the basis of Ostwald ripening effect. It is found that the optical transmittance and band gap increases with increase in annealing temperature. A slight decrease in resistivity caused by annealing is discussed in correlation with annealing induced defect modifications and surface morphology.

  13. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-03-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.

  14. Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere

    2016-07-25

    Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in themore » presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.« less

  15. Acid treatment and formation of MnWO4 belts for NH3-SCR performance of MnWOx/TiO2 catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Zekai; Lu, Weizhe; Zhang, Xinying; Liu, Huayan; Lu, Hanfeng

    2018-06-01

    NH3-SCR is an important technology to remove NOx, and non-V based catalysts development is still a hot topic in the field. To improve N2 selectivity, acid treatment was carried out to modify the properties of a MnWOx/TiO2 catalyst. Influences of acid concentration, time and temperature on the catalyst were investigated. The TEM results showed that the acid treatment removed more MnO2 species than Mn2O3 and MnWO4 and disclosed more crystal faces of the active species. The active species even formed hollow structures by Ostwald ripening mechanism, which was then corroded by acid to form the nanobelts on the surface. The working temperature window of the MnWOx/TiO2 catalyst was thereby moved to the high temperature attitude and the N2 selectivity is clearly improved.

  16. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  17. The Development of the Theory of Electrolytic Dissociation: A Case Study of a Scientific Controversy and the Changing Nature of Chemistry.

    ERIC Educational Resources Information Center

    De Berg, Kevin C.

    2003-01-01

    Examines the evidence proffered by Arrhenius, van't Hoff, and Ostwald in favor of the theory of electrolytic dissociation and outlines objections raised by Armstrong, Fitzgerald, and Pickering. Discusses the implication of the controversy revolving around the nature of chemistry in relation to the teaching and learning of chemistry. (KHR)

  18. Temporal Evolution of Nanostructures in a Model Nickel-Base Superalloy: Experiments and Simulations

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Mao, Zugang; Noebe, Ronald D.; Isheim, Dieter; Seidman, David N.

    2003-01-01

    The temporal evolution of the nanostructure of a model Ni-base superalloy (Ni-5.2 at.% Al-14.2 at.% Cr) is studied experimentally employing three-dimensional atom-probe (3DAP) microscopy in conjunction with kinetic Monte Carlo (KMC) simulations at 600 C. It is demonstrated that not only can the mean compositions of individual gamma' (Ni3Al with the Li2 structure) precipitates be measured but the Ni, Al, and Cr concentration profiles within the precipitates can also be determined for precipitates with a mean radius () as small as 0.85 nm. The three asymptotic tinie dependencies of the Lifshitz-Slyzov-Wagner (LSW) theory of coarsening (Ostwald ripening) are measured and found to deviate from its theoretical predictions: possible explanations for these discrepancies are discussed. At 0.25 hr. there is 3DAP microscope evidence for the presence of precipitates of another nickel-rich phase. ="Ni3Cr" (Ni3Cr(1-x)Al(x)), which exhibits short-range order (SRO) and that is metastable with respect to Ni3Al. This metastable phase is also found by KMC simulations and has the composition Ni3Cr(1-x)Al(x), which is Ni-2.91 at.% Al-21.98 at.% Cr at 16 hours. Our results demonstrate that the decomposition of gamma the primary gamma (FCC) phase results in the concurrent formation of an ordered phase and a disordered phase by 0.25 hours.

  19. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.

    PubMed

    Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady

    2008-02-01

    We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald ripening (only one hole survives at the end), and we report a particular regime where the "hole ripening" statistics exhibits a simple dynamic scaling behavior.

  20. The Development of the Theory of Electrolytic Dissociation

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin C.

    The theory of electrolytic dissociation proved to be one of the most controversial in the history of chemistry. This paper examines the evidence proffered by Arrhenius, van't Hoff, and Ostwald in favour of the theory and outlines the objections raised by Armstrong, Fitzgerald, and Pickering. The controversy revolved partly around the nature of the emerging new chemistry and has important implications for the study of the nature of science. Some important observations are made in relation to the teaching and learning of chemistry.

  1. Growth and Stability of Titanium Dioxide Nanoclusters on Graphene/Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Ryan T.; Novotny, Zbynek; Netzer, Falko P.

    Titanium dioxide/graphene composites have recently been demonstrated to improve the photocatalytic activity of TiO2 in visible light. To better understand the interactions of TiO2 with graphene we have investigated the growth of TiO2 nanoclusters on single-layer graphene/Ru(0001) using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Deposition of Ti in the O2 background at 300 K resulted in the formation of nanoclusters nucleating on intrinsic defects in the graphene (Gr) layer. The saturation nanocluster density decreased as the substrate temperature was increased from 300 to 650 K, while deposition at 700 K resulted in the significant etching of themore » Gr layer. We have also prepared nanoclusters with Ti2O3 stoichiometry using lower O2 pressures at 650 K. Thermal stability of the TiO2 nanoclusters prepared at 300 K was evaluated with AES and STM. No change in oxidation state for the TiO2 nanoclusters or etching of the Gr layer was observed up to ~900 K. Annealing studies characterized using STM revealed that cluster ripening proceeds via a Smoluchowski mechanism below 800 K and that Ostwald ripening dominates above 800 K. At even higher temperatures, the nanoclusters undergo reduction to TiOx (x ≈ 1 - 1.5) which is accompanied by oxidation and etching of the Gr. Our studies demonstrate that highly thermally stable TiOx nanoclusters of controlled composition and morphology can be prepared on Gr supports.« less

  2. Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion.

    PubMed

    Zhou, Liang; Zhuang, Zechao; Zhao, Huihui; Lin, Mengting; Zhao, Dongyuan; Mai, Liqiang

    2017-05-01

    Intricate hollow structures garner tremendous interest due to their aesthetic beauty, unique structural features, fascinating physicochemical properties, and widespread applications. Here, the recent advances in the controlled synthesis are discussed, as well as applications of intricate hollow structures with regard to energy storage and conversion. The synthetic strategies toward complex multishelled hollow structures are classified into six categories, including well-established hard- and soft-templating methods, as well as newly emerging approaches based on selective etching of "soft@hard" particles, Ostwald ripening, ion exchange, and thermally induced mass relocation. Strategies for constructing structures beyond multishelled hollow structures, such as bubble-within-bubble, tube-in-tube, and wire-in-tube structures, are also covered. Niche applications of intricate hollow structures in lithium-ion batteries, Li-S batteries, supercapacitors, Li-O 2 batteries, dye-sensitized solar cells, photocatalysis, and fuel cells are discussed in detail. Some perspectives on the future research and development of intricate hollow structures are also provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances.

    PubMed

    Zhong, Yiren; Su, Liwei; Yang, Mei; Wei, Jinping; Zhou, Zhen

    2013-11-13

    Rambutan-like FeCO3 hollow microspheres were prepared via a facile and economic one-step hydrothermal method. The structure and morphology evolution mechanism was disclosed through time-dependent experiments. After undergoing the symmetric inside-out Ostwald ripening, the resultants formed microporous/nanoporous constructions composed of numerous one-dimensional (1D) nanofiber building blocks. Tested as anode materials of Li-ion batteries, FeCO3 hollow microspheres presented attractive electrochemical performances. The capacities were over 1000 mAh g(-1) for initial charge, ~880 mAh g(-1) after 100 cycles at 50 mA g(-1), and ~710 mAh g(-1) after 200 cycles at 200 mA g(-1). The 1D nanofiber assembly and hollow interior endow this material efficient contact with electrolyte, short Li(+) diffusion paths, and sufficient void spaces to accommodate large volume variation. The cost-efficient FeCO3 with rationally designed nanostructures is a promising anode candidate for Li-ion batteries.

  4. Phase-field model for isothermal phase transitions in binary alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B.

    1992-01-01

    A new phase field model is described which models isothermal phase transitions between ideal binary alloy solution phases. Equations are developed for the temporal and spatial variation of the phase field, which describes the identity of the phase, and of the composition. An asymptotic analysis, as the gradient energy coefficient of the phase field becomes small, was conducted. From the analysis, it is shown that the model recovers classical sharp interface models of this situation when the interfacial layers are thin, and they show how to relate the parameters appearing in the phase field model to material and growth parameters in real systems. Further, three stages of temporal evolution are identified: the first corresponding to interfacial genesis which occurs very rapidly; the second to interfacial motion controlled by the local energy difference across the interface and diffusion; the last taking place on a long time scale in which curvature effects are important and which correspond to Ostwald ripening. The results of the numerical calculations are presented.

  5. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  6. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE PAGES

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie; ...

    2017-03-22

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  7. Blending lecithin and gelatin improves the formation of thymol nanodispersions.

    PubMed

    Xue, Jia; Zhong, Qixin

    2014-04-02

    Delivery systems of lipophilic antimicrobials such as thymol prepared with generally recognized-as-safe ingredients are needed to enhance the microbiological safety of low-acid (pH > 4.6) foods. Nanodispersions with particle diameters below 100 nm are particularly demanded because of the low turbidity and physical stability. In this study, thymol dispersions were prepared by gelatin and soy lecithin on an individual basis or in combination. Dispersions prepared with the lecithin-gelatin blend were translucent and stable at pH 5.0-8.0, contrasting with turbid and unstable dispersions when the emulsifiers were used individually. The synergistic surface activity of gelatin and lecithin was due to complex formation that effectively prevented particle size change due to coalescence and Ostwald ripening. Electrostatic interactions were observed to be the colloidal force responsible for preventing particle aggregation. The studied generally recognized-as-safe nanodispersions have great potential to deliver lipophilic antimicrobials such as thymol in low-acid foods to enhance food safety.

  8. Influence of non-ionic emulsifier type on the stability of cinnamaldehyde nanoemulsions: A comparison of polysorbate 80 and hydrophobically modified inulin.

    PubMed

    Sedaghat Doost, Ali; Dewettinck, Koen; Devlieghere, Frank; Van der Meeren, Paul

    2018-08-30

    Cinnamaldehyde nanoemulsions were formulated to enable its application in an aqueous environment. The pure cinnamaldehyde nanoemulsions, stabilized by polysorbate 80 (at concentrations >0.5%), had both a higher stability and smaller droplet size, whereas the emulsions containing hydrophobically modified inulin (HMI) formed a colloidal dispersion with larger particle size. Incorporation of sunflower oil (SO) allowed postponement of Ostwald ripening for a sufficiently long period of time (at least 60 days). Cryo-SEM and droplet size analyses of the nanoemulsions emulsified by HMI revealed no significant changes during storage. Under these conditions, HMI as an emulsifier exhibited a powerful resistance to high salt contents (up to 2 M) and high thermal processing temperatures (90 °C). The surfactant type and SO content had no marked influence on the antimicrobial activity of the nanoemulsions. This study provides precious information for a commercial formulation of nanoemulsions with durable physical stability under severe stress conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    PubMed

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthesis of humidity sensitive zinc stannate nanomaterials and modelling of Freundlich adsorption isotherm model

    NASA Astrophysics Data System (ADS)

    Sharma, Alfa; Kumar, Yogendra; Shirage, Parasharam M.

    2018-04-01

    The chemi-resistive humidity sensing behaviour of as prepared and annealed ZnSnO3 nanoparticles synthesized using a wet chemical synthesis method was investigated. The effect of stirring temperature over the evolution of varied nanomorphology of zinc stannate is in accordance to Ostwald's ripening law. At room temperature, an excellent humidity sensitivity of ˜800% and response/recovery time of 70s./102s. is observed for ZnSnO3 sample within 08-97% relative humidity range. The experimental data observed over the entire range of RH values well fitted with the Freundlich adsorption isotherm model, and revealing two distinct water adsorption regimes. The excellent humidity sensitivity observed in the nanostructures is attributed to Grotthuss mechanism considering the availability and distribution of available adsorption sites. This present result proposes utilization of low cost synthesis technique of ZnSnO3 holds the promising capabilities as potential candidate for the fabrication of next generation humidity sensors.

  11. Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions

    NASA Astrophysics Data System (ADS)

    Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas

    2016-03-01

    Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio.

  12. Synthesis and microstructural control of flower-like cadmium germanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Yang, Y.; Pei, Y.Q.

    Flower-like Cd{sub 2}Ge{sub 2}O{sub 6} have been synthesized using a facile hydrothermal process with ethylenediamine. The roles of hydrothermal conditions on the size and morphology of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} were investigated. The research results show that the obtained Cd{sub 2}Ge{sub 2}O{sub 6} presents a flower-like microstructures composed by radial nanorods with diameter of 50-100 nm and length of 0.5-2 {mu}m, respectively. The formation mechanism of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} is explained according to the ethylenediamine-assisted nucleation-'Ostwald ripening' process. - Highlights: {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures were synthesized using ethylenediamine. {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-likemore » microstructures can be controlled by growth conditions. {yields}Ethylenediamine induces the growth of the Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures.« less

  13. Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection

    PubMed Central

    2017-01-01

    We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779

  14. A general patterning approach by manipulating the evolution of two-dimensional liquid foams

    NASA Astrophysics Data System (ADS)

    Huang, Zhandong; Su, Meng; Yang, Qiang; Li, Zheng; Chen, Shuoran; Li, Yifan; Zhou, Xue; Li, Fengyu; Song, Yanlin

    2017-01-01

    The evolution of gas-liquid foams has been an attractive topic for more than half a century. However, it remains a challenge to manipulate the evolution of foams, which restricts the development of porous materials with excellent mechanical, thermal, catalytic, electrical or acoustic properties. Here we report a strategy to manipulate the evolution of two-dimensional (2D) liquid foams with a micropatterned surface. We demonstrate that 2D liquid foams can evolve beyond Ostwald ripening (large bubbles always consuming smaller ones). By varying the arrangement of pillars on the surface, we have prepared various patterns of foams in which the size, shape and position of the bubbles can be precisely controlled. Furthermore, these patterned bubbles can serve as a template for the assembly of functional materials, such as nanoparticles and conductive polymers, into desired 2D networks with nanoscale resolution. This methodology provides new insights in controlling curvature-driven evolution and opens a general route for the assembly of functional materials.

  15. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  16. Nanoengineering of bioactive glasses: hollow and dense nanospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2013-02-01

    The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO2:CaO (mol%) = 70:30) and ternary (SiO2:CaO:P2O5 (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

  17. Transient enhanced diffusion in preamorphized silicon: the role of the surface

    NASA Astrophysics Data System (ADS)

    Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.

    1999-01-01

    Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.

  18. Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties.

    PubMed

    Pan, Kang; Chen, Huaiqiong; Davidson, P Michael; Zhong, Qixin

    2014-02-19

    In this work, thymol was encapsulated in sodium caseinate using high shear homogenization. The transparent dispersion at neutral pH was stable for 30 days at room temperature as determined by dynamic light scattering and atomic force microscopy, which agreed with high ζ potential of nanoparticles. The slightly decreased particle dimension during storage indicates the absence of Ostwald ripening. When molecular binding was studied by fluorescence spectroscopy, thymol was observed to bind with tyrosine and possibly other amino acid residues away from tryptophan of caseins. At pH 4.6 (isoelectric point of caseins), the stabilization of thymol nanoparticles against aggregation was enabled by soluble soybean polysaccharide, resulting from the combined electrostatic and steric repulsions. The encapsulated thymol showed the significantly improved antilisterial activity in milk with different fat levels when compared to thymol crystals, resulting from the quicker mixing and increased solubility in the milk serum. The transparent thymol nanodispersions have promising applications to improve microbiological safety and quality of foods.

  19. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    PubMed

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  20. Unusual island formations of Ir on Ge (111) studied by STM

    NASA Astrophysics Data System (ADS)

    van Zijll, M.; Huffman, E.; Lovinger, D. J.; Chiang, S.

    2017-12-01

    Island formation on the Ir/Ge(111) surface is studied using ultrahigh vacuum scanning tunneling microscopy. Ir was deposited at room temperature onto a Ge (111) substrate with coverages between 0.5 and 2.0 monolayers (ML). The samples were annealed to temperatures between 550 and 800 K, and then cooled prior to imaging. With 1.0 ML Ir coverage, at annealing temperatures 650-750 K, round islands form at locations where domain boundaries of the substrate reconstruction intersect. Both the substrate and the islands display a (√{ 3} x√{ 3}) R30∘ reconstruction. Additionally, a novel surface formation is observed where the Ir gathers along the antiphase domain boundaries between competing surface domains of the Ge surface reconstruction. This gives the appearance of the Ir in the domain boundaries forming pathways between different islands. The islands formed at higher annealing temperatures resulted in larger island sizes, which is evidence of Ostwald ripening. We present a model for the islands and the pathways which is consistent with our observations.

  1. Evolving faceted surfaces: From continuum modeling, to geometric simulation, to mean-field theory

    NASA Astrophysics Data System (ADS)

    Norris, Scott A.

    We first consider the directional solidification, in two dimensions, of a dilute binary alloy having a large anisotropy of surface energy, where the sample is pulled in a high-energy direction such that the planar state is thermodynamically prohibited. Analyses including reduction of dynamics, matched asymptotic analysis, and energy minimization are used to show that the interface assumes a faceted profile with small wavelength. Questions on stability and other dynamic behavior lead to the derivation of a facet-velocity law. This shows the that faceted steady solutions are stable in the absence of constitutional supercooling, while in its presence, coarsening replaces cell formation as the mechanism of instability. We next proceed to introduce a computational-geometry tool which, given a facet-velocity law, performs large-scale simulations of fully-faceted coarsening surfaces, first in the special case with only three allowed facet orientations (threefold symmetry), and then for arbitrary surfaces. Topological events including coarsening are comprehensively considered, and are treated explicitly by our method using both a priori knowledge of event outcomes and a novel graph-rewriting algorithm. While careful attention must be paid to both non-unique topological events and the imposition of a discrete time-stepping scheme, the resulting method allows rapid simulation of large surfaces and easy extraction of statistical data. Example statistics are provided for the threefold case based on simulations totaling one million facets. Finally, a mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the LSW theory of Ostwald ripening in two-phase systems, but the mechanism of coarsening in faceted surfaces requires the derivation of additional terms to model the coalescence of facets. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a generic framework for the investigation of faceted surfaces evolving under arbitrary dynamics.

  2. Pt-Zn Clusters on Stoichiometric MgO(100) and TiO2(110): Dramatically Different Sintering Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadras, Mostafa J.; Shen, Lu; Alexandrova, Anastassia N.

    2015-03-02

    Zn was suggested to be a promising additive to Pt in the catalysis of dehydrogenation reactions. In this work, mixed Pt-Zn clusters deposited on two simple oxides, MgO(100) and TiO2(110), were investigated. The stability of these systems against cluster sintering, one of the major mechanisms of catalyst deactivation, is simulated using a Metropolis Monte Carlo scheme under the assumption of the Ostwald ripening mechanism. Particle migration, association to and dissociation from clusters, and evaporation and redeposition of monomers were all included in the simulations. Simulations are done at several high temperatures relevant to reactions of catalytic dehydrogenation. The effect ofmore » temperature is included via both the Metropolis algorithm and the Boltzmann-weighted populations of the global and thermally accessible local minima on the density functional theory potential energy surfaces of clusters of all sizes and compositions up to tetramers. On both surfaces, clusters are shown to sinter quite rapidly. However, the resultant compositions of the clusters most resistant to sintering are quite different on the two supports. On TiO2(110), Pt and Zn appear to phase separate, preferentially forming clusters rich in just one or the other metal. On MgO(100), Pt and Zn remain well-mixed and form a range of bimetallic clusters of various compositions that appear relatively stable. However, Zn is more easily lost from MgO through evaporation. These phenomena were rationalized by several means of chemical bonding analysis.« less

  3. Theoretical Studies of the Kinetics of First-Order Phase Transitions.

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang

    This thesis involves theoretical studies of the kinetics of orderings in three classes of systems. The first class involves problems of phase separation in which the order parameter is conserved, such as occurs in the binary alloy Al-Zn. A theory is developed for the late stages of phase separation in the droplet regime for two -dimensional systems, namely, Ostwald ripening in two dimensions. The theory considers droplet correlations, which was neglected before, by a proper treatment of the screening effect of the correlations. This correlation effect is found that it does not alert the scaling features of phase separation, but significantly changes the shape of droplet-size distribution function. Further experiments and computer simulations are needed before this long-time subject may be closed. A second class of problem involves a study of the finite-size effects on domain growth described by the Allen-Cahn dynamics. Based on a theoretical approach of Ohta, Jasnow, and Kawasaki the explicit scaling functions for the scattering intensity for hypercubes and films are obtained. These results are for the cases in which the order-parameter is not conserved, such as in an order-disorder transition in alloys. These studies will be relevant to the experimental and computer simulation research projects currently being carried out in the United States and Europe. The last class of problems involves orderings in strong correlated systems, namely, the growth of Breath Figures. A special feature of this class of problems is that the coalescence effect. A theoretical model is proposed which can handle the two growth mechanisms, the individual droplet growth and coalescence simultaneously. Under certain approximations, the droplet-size distribution function is obtained analytically, and is in qualitative agreement with computer simulations. Our model also suggests that there may be an interesting relationship between the growth of Breath Figures and a geometric structure (ultrametricity) of general complex systems.

  4. Modelling Iron-Bentonite Interactions

    NASA Astrophysics Data System (ADS)

    Watson, C.; Savage, D.; Benbow, S.; Wilson, J.

    2009-04-01

    The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite alteration products. This, together with inclusion of processes of iron corrosion and diffusion, has enabled investigation of a representative model of the alteration of bentonite in a typical EBS environment. Simulations with fixed mineral surface areas show that berthierine dominates the solid product assemblage, with siderite replacing it at simulation times greater than 10 000 years. Simulations with time-dependent mineral surface areas show a sequence of solid alteration products, described by: magnetite -> cronstedtite -> berthierine -> chlorite. Using plausible estimates of mineral-fluid interfacial free energies, chlorite growth is not achieved until 5 000 years of simulation time. The results of this modelling work suggest that greater emphasis should be placed upon methods to up-scale the results of laboratory experiments to timescales of relevance to performance assessment.

  5. Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms.

    PubMed

    Evans, Christopher M; Love, Alyssa M; Weiss, Emily A

    2012-10-17

    This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time.

  6. A test-tube model for rainfall

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael

    2014-05-01

    If the temperature of a cell containing two partially miscible liquids is changed very slowly, so that the miscibility is decreased, microscopic droplets nucleate, grow and migrate to the interface due to their buoyancy. The system may show an approximately periodic variation of the turbidity of the mixture, as the mean droplet size fluctuates. These precipitation events are analogous to rainfall. This paper considers a theoretical model for these experiments. After nucleation the initial growth is by Ostwald ripening, followed by a finite-time runaway growth of droplet sizes due to larger droplets sweeping up smaller ones. The model predicts that the period \\Delta t and the temperature sweep rate ξ are related by \\Delta t\\sim C \\xi^{-3/7} , and is in good agreement with experiments. The coefficient C has a power-law divergence approaching the critical point of the miscibility transition: C\\sim (T-T_{\\text{c}})^{-\\eta} , and the critical exponent η is determined. It is argued that while the mechanism does not provide a quantitative description of terrestrial rainfall, it may be a faithful model for precipitation on other planets.

  7. Boiling of an emulsion in a yield stress fluid.

    PubMed

    Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  8. Giant-Magnetoresistance(GMR) Siegel KEY FIRST Experimental Discovery Decade-Earlier PRE-``Fert"-``Gruenberg" in Nuc"el"ar ``Super"alloys: Science?;``SEANCE!!!; Ethics?; SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    Hoffman, R.; Siegel, E.

    2010-03-01

    (So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)<<<1988/1989] decade-earlier GMR: (1978)<<< (1988); 1988-1978 =10 years = one full decadeprecedence!!!] first experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!

  9. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer

    NASA Astrophysics Data System (ADS)

    Qi, Jiabin; Xiong, Hao; Wang, Gang; Xie, Huaqing; Jia, Wei; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2018-02-01

    Crystallization and interface engineering of perovskite are the most important factors in achieving high-performance perovskite solar cells (PSCs). Herein, we construct an ultrathin CdSe quantum dots (QDs) underlayer via a solution-processable method, which acts as a seed-mediated layer for perfect perovskite film, with both uniform morphology and better absorption capacity. In addition, CdSe QDs and perovskites form a fully crystalline heterojunction, which is beneficial to minimizing the defect and trap densities. Then, an Ostwald ripening process is adopted to fabricate large-grain, pinhole-free perovskite thin film, by a simple methylammonium bromide treatment. Besides, the first principle is applied in calculating organic/inorganic hybrid perovskite, confirming that electrons can move even quicker and more effectively, as a result of our work. Due to these treatments, representing a very simple method to simultaneously control perovskite crystallization and optimize the interfaces in PSCs, a maximum power conversion efficiency of 15.68% is achieved, 35% higher than the PSC both without CdSe and MABr treatment (11.57%), indicating better performance.

  10. Direct Observations of the Formation and Redox-Mediator-Assisted Decomposition of Li2 O2 in a Liquid-Cell Li-O2 Microbattery by Scanning Transmission Electron Microscopy.

    PubMed

    Yang, Chuchu; Han, Jiuhui; Liu, Pan; Hou, Chen; Huang, Gang; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei

    2017-11-01

    Operando scanning transmission electron microscopy observations of cathodic reactions in a liquid-cell Li-O 2 microbattery in the presence of the redox mediator tetrathiafulvalene (TTF) in 1.0 m LiClO 4 dissolved dimethyl sulfoxide electrolyte are reported. It is found that the TTF addition does not obviously affect the discharge reaction for the formation of a solid Li 2 O 2 phase. The coarsening of Li 2 O 2 nanoparticles occurs via both conventional Ostwald ripening and nonclassical crystallization by particle attachment. During charging, the oxidation reaction at significantly reduced charge potentials mainly takes place at Li 2 O 2 /electrolyte interfaces and has obvious correspondence with the oxidized TTF + distributions in the electric fields of the charged electrode. This study provides direct evidence that TTF truly plays a role in promoting the decomposition of Li 2 O 2 as a soluble charge-transfer agent between the electrode and the Li 2 O 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?

    PubMed

    Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia

    2017-05-01

    In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction

    NASA Astrophysics Data System (ADS)

    Li, Kezhi; Zhou, Xuan; Zhao, Zhigang; Chen, Chunyu; Wang, Changcong; Ren, Biyun; Zhang, Leilei

    2018-02-01

    Zirconium carbide (ZrC) whiskers were successfully synthesized by a combination of microwave hydrothermal (MH) and carbothermal reduction. The precursors of ZrC whiskers were produced by MH, subsequently carbothermally reduced to ZrC whiskers at 1100-1600 °C in an Ar atmosphere. Effects of the reduction temperature and precursors with various carbon/zirconium (C/Zr) molar ratios on the synthesis of ZrC whiskers were investigated. The results showed that the carbothermal reduction occurred at 1100 °C, and terminated at a relatively low temperature (1400 °C). When the reduction temperature was 1500 °C and the C/Zr molar ratio was 5:1, the ZrC whiskers with the largest aspect ratio and the most uniform distribution were produced. The whiskers exhibited the diameters of 0.1-2 μm and the lengths of 5-30 μm. The synthesized ZrC whiskers with a single crystalline phase displayed cylindrical and pagoda-like morphologies. The growth of ZrC whiskers was considered to be governed by the Ostwald ripening and S-L-S mechanism.

  13. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T < 100 °C. In a depth profile manner, the implantation impact according to defined peak profile was investigated using variable energy slow positrons, with the primary focus on the 2-13 dpa region. The obtained data were compared to published data on Optifer IX steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  14. Self-organized iron-oxide cementation geometry as an indicator of paleo-flows

    DOE PAGES

    Wang, Yifeng; Chan, Marjorie A.; Merino, Enrique

    2015-06-30

    Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. Hematite nodules have been reported also from the Meridiani Planum site on Mars and interpreted as evidence for the ancient presence of water on the red planet. Here we show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments. A linear instability analysis of the reaction-transport equations suggests that a pattern transition from nodules to bands may result from a symmetry breaking of mineral dissolutionmore » and precipitation triggered by groundwater advection. Round nodules tend to develop under nearly stagnant hydrologic conditions, while repetitive bands form in the presence of persistent water flows. Since water circulation is a prerequisite for a sustainable subsurface life, a Martian site with iron oxide precipitation bands, if one were found, may offer a better chance for detecting extraterrestrial biosignatures on Mars than would sites with nodules.« less

  15. Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

    PubMed Central

    Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149

  16. Combining mechanical foaming and thermally induced phase separation to generate chitosan scaffolds for soft tissue engineering.

    PubMed

    Biswas, D P; Tran, P A; Tallon, C; O'Connor, A J

    2017-02-01

    In this paper, a novel foaming methodology consisting of turbulent mixing and thermally induced phase separation (TIPS) was used to generate scaffolds for tissue engineering. Air bubbles were mechanically introduced into a chitosan solution which forms the continuous polymer/liquid phase in the foam created. The air bubbles entrained in the foam act as a template for the macroporous architecture of the final scaffolds. Wet foams were crosslinked via glutaraldehyde and frozen at -20 °C to induce TIPS in order to limit film drainage, bubble coalescence and Ostwald ripening. The effects of production parameters, including mixing speed, surfactant concentration and chitosan concentration, on foaming are explored. Using this method, hydrogel scaffolds were successfully produced with up to 80% porosity, average pore sizes of 120 μm and readily tuneable compressive modulus in the range of 2.6 to 25 kPa relevant to soft tissue engineering applications. These scaffolds supported 3T3 fibroblast cell proliferation and penetration and therefore show significant potential for application in soft tissue engineering.

  17. Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, N.; Yang, L.; Gao, F.

    2017-02-27

    A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less

  18. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils.

    PubMed

    Meroni, Erika; Raikos, Vassilios

    2018-04-01

    The influence of carrier oil type on the chemical stability, antioxidant properties and bioaccessibility of lycopene in orange oil-in-water beverage emulsions was investigated. The emulsions were formulated with orange oil (A), which was partially (50%) replaced with tributyrin (B) or corn oil (C) because of their distinctively different fatty acid composition. The addition of corn oil enhanced the physical stability of the beverage during chilled storage by inhibiting Ostwald ripening. The formation of oxidation products was insignificant after storage for 28 days at 4 °C, regardless the type of added oil. Lycopene was more susceptible to chemical degradation in the presence of unsaturated, long chain triglycerides and the retention followed the order: A (87.94%), B (64.41%) and C (57.39%). Interestingly, bioaccessibility of lycopene was significantly lower for emulsions formulated with 50% corn oil as opposed to 100% orange oil as indicated by the simulated in vitro gastric digestion model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. One-pot synthesis and photoluminescence properties of core/porous-shell olive-like BaWO4 microstructure by a template-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhang, Suyue; Wang, Yunlong; Wang, Cuiping; Zhang, Hui; Shen, Yuhua; Xie, Anjian

    2016-02-01

    Core/porous-shell olive-like crystalline BaWO4 is synthesized by a combined simple hydrothermal method and soft template approach. The prepared product shows an olive-like shape with diameter of ˜2 μm, length of ˜4 μm, and the thickness of the shell of about 65 nm, which are orderly assembled by many nanoparticles. A possible formation mechanism of olive-like BaWO4 microstructure involving interfacial recognization of ions, nucleation, aggregation, in situ growth and Ostwald ripening process is proposed. Polyacrylic acid sodium (PAAS) as a template plays an important role in inducing the nucleation and growth of olive-like BaWO4 microcrystalline. Other shapes of BaWO4 microcrystalline are also fabricated by varying the concentration of PAAS and Ba2+. The olive-like product with a core-shell structure which exists a large number of pores on crystal surface shows excellent photoluminescence property, which have potentially applied prospects in fields such as light display systems etc.

  20. Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2000-06-01

    The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.

  1. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.

  2. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    NASA Astrophysics Data System (ADS)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  3. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  4. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation

    NASA Astrophysics Data System (ADS)

    Haqshenas, S. R.; Ford, I. J.; Saffari, N.

    2018-01-01

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  5. FRAUD/SABOTAGE Killing Nuclear-Reactors!!! ``Super"alloys GENERIC ENDEMIC Wigner's-Disease IN-stability!!!

    NASA Astrophysics Data System (ADS)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Siegel [[J.Mag.Mag.Mtls.7,312(78); PSS(a)11,45(72); Semis.& Insuls.5(79)] (at: ORNL, ANS, Westin``KL"ouse, PSEG, IAEA, ABB) warning of old/new nuclear-reactors/spent-fuel-casks/refineries/ jet/missile/rocket-engines austenitic/FCC Ni/Fe-based (so MIS- called)``super"alloys(182/82;Hastelloy-X; 600;304/304L-SSs; 690 !!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's- diseas(WD)[J.Appl.Phys.17,857(46)]; Ostwald-ripening; spinodal- decomposition; overageing-embrittlement; thermomechanical- INstability: Mayo[Google: ``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: [Siegel<<<``Fert"(88) 2007-Nobel/Wolf/Japan-prizes]necessitating NRC inspections on 40+25=65 Westin``KL"ouse PWRs(12/06)]; Lai[Met.Trans.AIME,9A,827 (78)]-Sabol-Stickler[PSS(70)]; Ashpahani[Intl.Conf. H in Metals (77)]; Russell[Prog. Mtls.Sci.(83)]; Pollard[last UCS rept. (9/95)]; Lofaro[BNL/DOE/NRC Repts.]; Pringle[Nuclear-Power:From Physics to Politics(79)]; Hoffman[animatedsoftware.com],...what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrit- tlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n``u''tional-la``v''atories sabotage!!!

  6. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: "Super"alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]<<<``Fert"-"Gruenberg"(1988/89)2007-physics Nobel/Wolf/ Japan-prizes]necessitating NRC-inspections of 40+25 = 65 Westin- ``KLouse PWRs(12/2006)]-Lai[Met.Trans.AIME,9A,827(1978)]-Sabol- Stickler[Phys.Stat.Sol.(1970)]-Ashpahani[Intl.Conf. H in Metals, Paris(1977]-Russell[Prog.Mtls.Sci.(1983)]-Pollard[last UCS rept. (9/1995)]-Lofaro[BNL/DOE/NRC Repts.]-Pringle[Nuclear-Power:From Physics to Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!

  7. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: ``Super'' alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    O'Grady, Joseph; Bument, Arlden; Siegel, Edward

    2011-03-01

    Carbides solid-state chemistry domination of old/new nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines is austenitic/FCC Ni/Fe-based (so miscalled)"super"alloys(182/82;Hastelloy-X,600,304/304L-SSs,...690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-disease(WD) [J.Appl.Phys.17,857 (46)]/Ostwald-ripening/spinodal-decomposition/overageing-embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google: fLeaksCouldKill > ; - Siegel [ J . Mag . Mag . Mtls . 7 , 312 (78) = atflickr . comsearchonGiant - Magnotoresistance [Fert" [PRL(1988)]-"Gruenberg"[PRL(1989)] 2007-Nobel]necessitating NRC inspections on 40+25=65 Westin"KL"ouse PWRs(12/2006)]-Lai [Met.Trans.AIME, 9A,827(78)]-Sabol-Stickler[Phys.Stat.Sol.(70)]-Ashpahani[ Intl.Conf. Hydrogen in Metals, Paris(1977]-Russell [Prog.Mtls.Sci.(1983)]-Pollard [last UCS rept.(9/1995)]-Lofaro [BNL/DOE/NRC Repts.]-Pringle [ Nuclear-Power:From Physics to Politics(1979)]-Hoffman [animatedsoftware.com], what DOE/NRC MISlabels as "butt-welds" "stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrittlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n"u"tional-la"v"atories sabotage!!!

  8. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Li, Meng; Chai, Yao; Luo, Min; Li, Li

    2017-09-01

    In this study, we report for the first time a cost-effective and general approach for the high-yield synthesis of a hierarchical core-shell and hollow structure of ternary CoNi2S4 in a triethanolamine (TEOA)-assisted hydrothermal system. It is found that a continuous increase in TEOA usages facilitates the formation and transformation of hierarchical CoNi2S4 hollow nanospheres, and the formation mechanism of the unique structure is revealed to be assembly-then-inside-out evacuation and Ostwald ripening mechanism during the sulfidation process. More importantly, when used as faradaic electrode for supercapacitors, the hierarchical hollow CoNi2S4 nanospheres display not only exceptional pseudocapacitve performance with high specific capacitance (2035 Fg-1 at 1 Ag-1) and excellent rate capability (1215 Fg-1 at 20 Ag-1), but also superior cycling stability, with only about 8.7% loss over 3000 cycles at 10 Ag-1. This work can provide some guidance for us in the structural and compositional tuning of mixed binary-metal sulfides toward many desired applications.

  9. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  10. A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu

    2017-04-01

    A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.

  11. Arresting dissolution by interfacial rheology design

    PubMed Central

    Beltramo, Peter J.; Gupta, Manish; Alicke, Alexandra; Liascukiene, Irma; Gunes, Deniz Z.; Baroud, Charles N.

    2017-01-01

    A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air–water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ∼ 100 μm bubbles coated with ∼ 1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications. PMID:28893993

  12. Formation of porous crystals via viscoelastic phase separation

    NASA Astrophysics Data System (ADS)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  13. Surfactant-assisted synthesis and electrochemical performances of Cu{sub 3}P dendrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuling, E-mail: liusl8888@yahoo.com.cn; Li, Shu; Wang, Jingping

    2012-11-15

    Highlights: ► Dendrite-like Cu{sub 3}P microstructures have been synthesized by a low-temperature method. ► The surfactant SDS was used as template. ► The as-obtained Cu{sub 3}P dendrites exhibit a high first discharge capacity. -- Abstract: Well-defined Cu{sub 3}P hierarchical dendrites were successfully synthesized by a facile and effective surfactant-assisted hydrothermal approach. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) indicated that the as-obtained Cu{sub 3}P had a well-crystallized hexagonal phase and consisted of a wealth of Cu{sub 3}P dendritic microstructures. A surfactant-assisted growth accompanied by the Ostwald ripening process was proposed for the formation. As anode materials for lithiummore » ion batteries, the electrochemical property of the Cu{sub 3}P dendrites was also examined. The results showed that the initial discharge capacity of the Cu{sub 3}P dendrites exceeded 1300 mA h/g and it still kept at 291 mA h/g after 20 cycles, which might be related to the size of Cu{sub 3}P particles and their assembly structure.« less

  14. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qayyum, Hamza; Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw; Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan

    2016-05-15

    The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×10{sup 10} cm{sup −2} could be formed over an area larger than 4 mm{sup 2}. The average size ofmore » the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.« less

  15. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  16. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3

    DOE PAGES

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; ...

    2016-11-11

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  17. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  18. Formation of nickel-doped magnetite hollow nanospheres with high specific surface area and superior removal capability for organic molecules

    NASA Astrophysics Data System (ADS)

    Li, Zhenhu; Ma, Yurong; Qi, Limin

    2016-12-01

    A strategy for the formation of magnetic Ni x Fe3-x O4 hollow nanospheres with very high specific surface areas was designed through a facile solvothermal method in mixed solvents of ethylene glycol and water in this work. The Ni/Fe ratios and the crystal phases of the Ni x Fe3-x O4 hollow nanocrystals can be readily tuned by changing the molar ratios of Ni to Fe in the precursors. An inside-out Ostwald ripening mechanism was proposed for the formation of uniform Ni x Fe3-x O4 hollow nanospheres. Moreover, the obtained Ni x Fe3-x O4 hollow nanospheres exhibited excellent adsorption capacity towards organic molecules such as Congo red in water. The maximum adsorption capacities of Ni x Fe3-x O4 hollow nanospheres for Congo red increase dramatically from 263 to 500 mg g-1 with the increase of the Ni contents (x) in Ni x Fe3-x O4 hollow nanospheres from 0.2 to 0.85. The synthesized Ni x Fe3-x O4 nanoparticles can be potentially applied for waste water treatment.

  19. A preliminary investigation of high dose ion irradiation response of a lanthana-bearing nanostructured ferritic steel processed via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Guria, Ankan; Wu, Yaqiao; Burns, Jatuporn; Butt, Darryl P.; Cole, James I.; Shao, Lin

    2017-11-01

    A nanostructured ferritic steel with nominal composition of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) was irradiated with Fe+2 ions at 475 °C for 100, 200, 300 and 400 dpa. Grain coarsening was observed for the samples irradiated for 200-400 dpa resulting in an increase of the average grain size from 152 nm to 620 nm. Growth of submicron grains at higher radiation doses is due to decreased pinning effect imparted by Cr-O rich nanoparticles (NPs) that underwent coarsening via Ostwald ripening. Dislocation density consistently increased with increasing irradiation dose at 300 and 400 dpa. The mean radius of lanthanum-containing nanoclusters (NCs) decreased and their number density increased above 200 dpa, which is likely due to solutes ejection caused by ballistic dissolution and irradiation-enhanced diffusion. Chromium, titanium, oxygen and lanthanum content of nanoclusters irradiated at 200 dpa and higher got reduced by almost half the initial value. The reduction in size of the nanoclusters accompanied with their higher number density and higher dislocation density led to significant radiation hardening with increasing irradiation dose.

  20. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation.

    PubMed

    Haqshenas, S R; Ford, I J; Saffari, N

    2018-01-14

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  1. Siegel[JMMM 7,312(`78)] FIRST EXPERIMENTAL DISCOVERY of Giant-Magnetoresistance Decade Pre ``Fert'' and ``Gruenberg'' ['88 - `78] = 10-Years = One-Decade Sounds, for Nuclear-Power Naïve ``Panacea'' for Global-Warming/Climate-Chan

    NASA Astrophysics Data System (ADS)

    Hoffmann, Masterace; Siegel, Edward

    Siegel[JMMM 7,312(`78); Monju (12/'95) LMFBR PREDICTION!!!] following: Wigner[JAP 17,857(`46)]-(Alvin)Weinberg(ANL/ORNL/ANS)-(Sidney)Siegel(ANL/ORNL/ANS)-Seitz-Overhauser-Rollnick-Pollard-Lofaro-Markey-Pringle[Nuclear-PowerFrom Physics to Politics(`79)] FIRST EXPERIMENTAL DISCOVERY [Siegel<<<''Fert''-''Gruenberg'':2007-Physics-Nobel/2006:-Wolf/Japan-prizes:[`88 -`78] =10-years =1-decade precedence!!!] of granular giant-magnetoresistance(GMR) [Google: ``EDWARD SIEGEL GIANT-MAGNETORESISTANCE ICMAO 1977 FLICKER''] [Google: ``Ana Mayo If LEAKS`Could' KILL''] in austenitic/FCC Ni/Fe-based (so MIScalled)''super''alloy-182/82 transition-welds GENERIC ENDEMIC EXTANT detrimental (SYNONYMS): Wigner's-disease/Ostwald-ripening/spinodal-decompositio/OVERageing-EMBRITTLEMENT/THERMAL-leading-to-mechanical (TLTM)-INstability/``sensitization'' in: nuclear-reactors/spent-fuel dry-casks/refineries/jet/missile/rocket-engines/...SOUNDS A DIRE WARNING FOR NAIVE Hansen-Sommerville-Holdren-DOE-NRC-OSTP-WNA-NEI-AIP-APS-...calls/media-hype/P.R./spin-doctoring for carbon-``free'' nuclear-power as a SUPPOSED ``panacea'' for climate-change/global-warming: ``TRUST BUT VERIFY!!!'' ; a VERY LOUD CAVEAT EMPTOR!!!

  2. Millisecond-Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Droplet-Based Microfluidics.

    PubMed

    Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J

    2015-08-26

    The early-time kinetics (<1 s) of lead sulfide (PbS) quantum dot formation are probed using a novel droplet-based microfluidic platform, which allows for high-throughput and real-time optical analysis of the reactive process with millisecond time resolution. The reaction platform enables the concurrent investigation of the emission characteristics of PbS quantum dots and a real-time estimation of their size and concentration during nucleation and growth. These investigations reveal a two-stage mechanism for PbS nanoparticle formation. The first stage corresponds to the fast conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microstructural Evolution of Nanocrystalline ZrO2 in a Fe Matrix During High-Temperature Exposure

    NASA Astrophysics Data System (ADS)

    Raghavendra, K. G.; Dasgupta, Arup; Athreya, C. N.; Jayasankar, K.; Saroja, S.; Subramanya Sarma, V.

    2018-06-01

    The current study examines the evolution of nanocrystallites of ZrO2 with time and temperature in a Fe-ZrO2 composite. The crystallite sizes were determined through X-ray peak broadening analysis by the Williamson-Hall method together with dark field transmission electron microscopy. The ZrO2 crystallites were found to be stable and retained their sizes at 973 K and 1073 K for hold durations up to 600 minutes. On the other hand, the crystallites were seen to grow at 1173 K and reached up to 200 nm for a hold time of 600 minutes. The Ostwald ripening model was adopted to understand crystallite growth while a dislocation-driven pipe diffusion was adopted for understanding the kinetics of grain growth. The activation energy of grain growth was calculated as 379 kJ mol-1. The modeled and experimentally calculated size evolutions with time and temperature were shown to be in good agreement with each other. A detailed discussion on the kinetics and activation energy of grain growth of ZrO2 crystallites in a Fe matrix is presented in this manuscript.

  4. Growth and evolution of nickel germanide nanostructures on Ge(001).

    PubMed

    Grzela, T; Capellini, G; Koczorowski, W; Schubert, M A; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J; Schroeder, T

    2015-09-25

    Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).

  5. New insights into the formation of silver-based nanoparticles under natural and semi-natural conditions.

    PubMed

    Wimmer, Andreas; Kalinnik, Anna; Schuster, Michael

    2018-05-10

    For the first time, the natural formation of silver-based nanoparticles (Ag-b-NPs) was studied in field investigations of two pre-alpine lakes in Germany that contain geogenic silver traces in the sub-ng L -1 range. Light-sensitive microorganisms most likely accumulate and transport these silver traces from deeper water layers to the surface. At the surface of the eutrophic lake, approximately 40% of total silver (5.7 ng L -1 ) consisted of Ag-b-NPs, whereas in the oligotrophic lake with similar enrichment of silver species, no Ag-b-NPs were detected. Additional lab experiments with nature-related Ag(I) concentrations in the lower-ng L -1 range and natural organic matter with total organic carbon values of ≤5 mg L -1 revealed that, contrary to common interpretation in the literature, Ag-b-NPs are also or even preferably formed in the dark. Particle size increases gradually with increasing reaction time, showing that Ostwald ripening occurs even at such low particle concentrations. When sulfide ions are present, smaller Ag-b-NPs with a narrower size distribution are formed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method.

    PubMed

    Shi, Xixi; Pan, Lingling; Chen, Shuoping; Xiao, Yong; Liu, Qiaoyun; Yuan, Liangjie; Sun, Jutang; Cai, Lintao

    2009-05-19

    Hexagonal ZnO micronuts (HZMNs) have been successfully synthesized with the assistance of poly(ethylene glycol) (PEG) 300 via a hydrothermal method. The structure and morphology of the HZMNs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). An individual ZnO micronut is revealed as twinned crystals. Time-dependent investigation shows that the growth of HZMNs involves a dissolution-recrystallization process followed by Ostwald ripening, in which is the first formed solid ZnO particles dissolve and transform to HZMNs with hollow structure. PEG 300 has been found to play a crucial role in the growth of this unique hollow structure. TEM observations show that the PEG chains aggregate to globules in water, which then have interaction with the dissolved zinc species to form the globules in a coiled state under hydrothermal conditions. These Zn(II)-PEG 300 globules act as soft template for the growth of HZMNs, and the possible growth mechanism is proposed. The room-temperature photoluminescence (PL) spectrum shows red emission around 612 nm with a full width at half-maximum (fwhm) only about 13 nm.

  7. Influence of phase inversion on the formation and stability of one-step multiple emulsions.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2009-07-21

    A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.

  8. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less

  9. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE PAGES

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; ...

    2017-12-06

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less

  10. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; Vogelmann, Andrew M.

    2018-05-01

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in situ measurements and 3-D dynamic models.

  11. Sintering of Pt nanoparticles via volatile PtO 2: Simulation and comparison with experiments

    DOE PAGES

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-09-23

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO 2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO 2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the availablemore » data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO 2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO 2(g) as an alternative to surface-mediated ripening.« less

  12. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.

    PubMed

    Zhuang, Zanyong; Xu, Xinjiang; Wang, Yongjing; Wang, Yandi; Huang, Feng; Lin, Zhang

    2012-04-15

    The treatment of industrial sludge containing amorphous/nanophase metal oxides or hydroxides is one of the vital issues in hazardous waste disposal. In this work, we developed a strategy to recycle nano-SnO(2) from tinplate electroplating sludge. It revealed that the major components of this sludge were acid soluble Sn and Fe amorphous phases. By introducing NaOH as a mineralizer, a fast growth of amorphous Sn compound into acid-insoluble SnO(2) nanowires was achieved selectively. Thus, the as-formed nano-SnO(2) could be recycled via dissolving other solid compositions in the sludge by using acid. The role of NaOH on accelerating both the Oriented Attachment (OA) and Ostwald Ripening (OR) growth of SnO(2) was discussed, which was regarded as a critical factor for treating the sludge. A pilot-scale experiment was conducted to treat 2.3 kg original sludge and the recycling of about 90 g nano-SnO(2) was achieved. We anticipate this work can provide a good example for the recycling of valuable metals from industrial sludge containing fine metal oxides or hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat.

    PubMed

    Witayaudom, Pimchanok; Klinkesorn, Utai

    2017-11-01

    Nanostructured lipid carrier (NLC) was fabricated from rambutan (Nephelium lappaceum L.) kernel fat stabilized with Tween 80 in this present work. The influence of the Tween 80 concentration (0.025, 0.05, 0.1, 0.2, 0.5 and 1.0wt%) and solidification temperature (5 and 25°C) on the characteristics and stability of the NLC were investigated. The results showed that an increase in the Tween 80 concentration caused decreased zeta-potential (ζ-potential) and particle size (Z-average) with no significant effect on the polydispersity index (PDI). Lipid particles in the NLC at all Tween 80 concentrations had a tendency to grow and the PDI tended to increase due to Ostwald ripening upon storage over 28days. At least 0.2wt% Tween 80 concentrations could be used to stabilize 1wt% rambutan NLC. The solidification temperature affected the microstructure, melting behavior and stability of rambutan NLC. Pre-solidification at 5°C could create stable NLC with monodispersed-spherical lipid particles. Consequently, these stable NLC particles produced from rambutan kernel fat may serve as useful carriers for the delivery of bioactive lipophilic nutraceuticals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    PubMed

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi

    Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less

  16. In situ study of in-beam cobalt suicide growth in silicon

    NASA Astrophysics Data System (ADS)

    Ruault, M.-O.; Fortuna, F.; Bernas, H.; Kaitasov, O.

    1994-02-01

    The control of buried suicide layer interfaces requires a systematic study of their formation conditions (implantation temperature, sample orientation, post-annealing conditions). At stoichiometric concentration, the layer roughness stems from the formation and overlap of B-type precipitates during implanted sample annealing. However, at such high concentrations several parameters interfere during suicide layer formation, particularly diffusion-limited precipitate growth and precipitate coalescence and Ostwald ripening. In order to analyze these factors separately, we have performed an in situ TEM study of the initial stages of CoSi 2 precipitate formation and growth in Si during 50 keV Co implantation to fluences between 10 15 and 1.5 × 10 16 Cocm -2, at temperatures between 350 and 650°C. At 350°C, the threshold fluence for suicide precipitate observation was 2 × 10 15 Cocm -2, and the size of the precipitates remained constant (about 4 nm) up to a fluence of 1.5 × 10 16 Cocm -2. At higher implantation temperatures, the average growth rate at 650°C is four times higher than at 500°C until the average size of the precipitates reaches ~ 8 nm. Then the growth rate is surprisingly independent of the implantation temperature. The results are discussed in the light of a recently developed precipitation kinetic analysis.

  17. Flash Nanoprecipitation: Particle Structure and Stability

    PubMed Central

    Pustulka, Kevin M.; Wohl, Adam R.; Lee, Han Seung; Michel, Andrew R.; Han, Jing; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2013-01-01

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nano-sized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and 1H-NMR experiments support a three-layer core-shell-corona nanoparticle structure. PMID:24053447

  18. Surface area loss mechanisms of Pt3Co nanocatalysts in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Rasouli, S.; Ortiz Godoy, R. A.; Yang, Z.; Gummalla, M.; Ball, S. C.; Myers, D.; Ferreira, P. J.

    2017-03-01

    Pt3Co catalyst nanoparticles of 4.9 nm size present on the cathode side of a PEMFC membrane-electrode assembly (MEA) were analyzed by transmission electron microscopy after 10 K voltage cycles under different operating conditions. The operating conditions include baseline (0.4-0.95 V, 80° C, 100% Relative Humidity (RH)), high potential (0.4-1.05 V, 80° C, 100% RH), high temperature (0.4-0.95 V, 90° C, 100% RH), and low humidity (0.4-0.95 V, 80° C, 30% RH). Particle growth and particle loss to the membrane is more severe in the high potential sample than in the high temperature and baseline MEAs, while no significant particle growth and particle precipitation in the membrane can be observed in the low humidity sample. Particles with different morphologies were seen in the cathode including: 1-Spherical individual particles resulting from modified electro-chemical Ostwald ripening and 2-aggregated and coalesced particles resulting from either necking of two or more particles or preferential deposition of Pt between particles with consequent bridging. The difference in the composition of these morphologies results in composition variations through the cathode from cathode/diffusion media (DM) to the cathode/membrane interface.

  19. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  20. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  1. C-oriented and {010} facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties.

    PubMed

    Zhou, Min; Zhang, Shudong; Sun, Yongfu; Wu, Changzheng; Wang, Mingtai; Xie, Yi

    2010-12-03

    Vertically aligned BiVO(4) nanowall films on indium tin oxide (ITO) glass have been fabricated through a template-free hydrothermal method for the first time. Based on the structural understanding of both BiVO(4) and ITO, the lattice matches ({020}(BiVO4) and {040}(ITO), {200}(BiVO4) and {004}(ITO), respectively) and the similarity of metal atomic arrangement parallel to {001} planes turn out to be crucial for the fabrication of the nanowalls. Consequently, the growth of a BiVO(4) film begins from heteroepitaxy and undergoes an Ostwald ripening process to form an extended network, resulting in a c-orientation and exposing {010} facets. Through this process, it is much easier to obtain a range of nanowall films with different packing densities, as the surface state of ITO glass is alterable by adjusting the concentration of acid. The films can be directly used as an electrode, which exhibits an excellent response to visible light, especially light with low intensity, allowing for the electrical interconnection, highly active surface, appropriate orientation, and a good contact with the substrate. There are great benefits in improving the technique for detecting the weak light source signals.

  2. Growth of metal oxide nanowires from supercooled liquid nanodroplets.

    PubMed

    Kim, Myung Hwa; Lee, Byeongdu; Lee, Sungsik; Larson, Christopher; Baik, Jeong Min; Yavuz, Cafer T; Seifert, Sönke; Vajda, Stefan; Winans, Randall E; Moskovits, Martin; Stucky, Galen D; Wodtke, Alec M

    2009-12-01

    Nanometer-sized liquid droplets formed at temperatures below the bulk melting point become supercooled as they grow through Ostwald ripening or coalescence and can be exploited to grow nanowires without any catalyst. We used this simple approach to synthesize a number of highly crystalline metal oxide nanowires in a chemical or physical vapor deposition apparatus. Examples of nanowires made in this way include VO(2), V(2)O(5), RuO(2), MoO(2), MoO(3), and Fe(3)O(4), some of which have not been previously reported. Direct evidence of this new mechanism of nanowire growth is found from in situ 2-dimensional GISAXS (grazing incidence small angle X-ray scattering) measurements of VO(2) nanowire growth, which provides quantitative information on the shapes and sizes of growing nanowires as well as direct evidence of the presence of supercooled liquid droplets. We observe dramatic changes in nanowire growth by varying the choice of substrate, reflecting the influence of wetting forces on the supercooled nanodroplet shape and mobility as well as substrate-nanowire lattice matching on the definition of nanowire orientation. Surfaces with defects can also be used to pattern the growth of the nanowires. The simplicity of this synthesis concept suggests it may be rather general in its application.

  3. The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica.

    PubMed

    Cosentino, Salvatore; Mirabella, Salvatore; Miritello, Maria; Nicotra, Giuseppe; Lo Savio, Roberto; Simone, Francesca; Spinella, Corrado; Terrasi, Antonio

    2011-02-11

    The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.PACS: 81.07.Ta; 78.67.Hc; 68.65.-k.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Long; Department of Chemistry, Huangshan University, Huangshan 245041; Post-Doctoral Scientific Research Workstation, HuangShan NOVEL Co. Ltd, Huangshan 245061

    In this paper, biomimetic synthesis of aragonite superstructures using a low molecular weight organic-hexamethylenetetramine (HMT) as an additive in the presence of CO{sub 2} supplied by an ammonium carbonate ((NH{sub 4}){sub 2}CO{sub 3}) diffusion method at room temperature was studied. The products were characterized by scanning or transmission electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffractometry, and selected area electron diffraction. The results showed the aragonite superstructures especially dumbbell-flower-like ones were obtained. The formation process of calcium carbonate (CaCO{sub 3}) in HMT aqueous solution was investigated, suggesting that the products transformed from calcite to vaterite primarily, and thenmore » changed into a mixture of aragonite and calcite with an increase of reaction time. The formation mechanism of CaCO{sub 3} in HMT solution was also discussed, revealing that aragonite might be controlled by HMT molecules and NH{sub 4}{sup +} ions together. - Graphical abstract: The well-defined aragonite hierarchical superstructures are formed using hexamethylenetetramine in aqueous solution. Highlights: > Aragonite superstructures are formed with hexamethylenetetramine at about 25 deg. C. > Dumbbell-flower-like aragonite produces when hexamethylenetetramine/Ca{sup 2+}=10:1. > CaCO{sub 3} formation in hexamethylenetetramine solution violates the Ostwald ripening. > Hexamethylenetetramine and NH{sub 4}{sup +} might control the growth of aragonite together.« less

  5. Initial Steps of Rubicene Film Growth on Silicon Dioxide.

    PubMed

    Scherwitzl, Boris; Lukesch, Walter; Hirzer, Andreas; Albering, Jörg; Leising, Günther; Resel, Roland; Winkler, Adolf

    2013-02-28

    The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV.

  6. Initial Steps of Rubicene Film Growth on Silicon Dioxide

    PubMed Central

    2013-01-01

    The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV. PMID:23476720

  7. X-ray analysis of temperature induced defect structures in boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  8. Morphology Controls on Calcite Recrystallization.

    PubMed

    Heberling, Frank; Paulig, Leonie; Nie, Zhe; Schild, Dieter; Finck, Nicolas

    2016-11-01

    Environmental scientists and geoscientists working in different fields regard the reactivity of calcite and corresponding changes in its trace elemental- or isotopic composition from diametrically opposed points of view. As one extreme, calcite based environmental remediation strategies rely on the fast recrystallization of calcite and the concurrent uptake and immobilization of pollutants. Paleo-ecological investigations denote the other extreme, and rely on the invariability of calcite composition over geological periods of time. We use long-term radiotracer experiments to quantify recrystallization rates of seven types of calcite powder with diverse morphology and particle size distribution. On the one hand our results demonstrate the long-term metastability of calcite with equilibrated crystal surfaces even at isotopic dis-equilibrium. On the other hand, we document the extremely high reactivity and interfacial free energy of freshly ground, rough calcite. Our results indicate that bulk calcite recrystallization is an interfacial free energy driven Ostwald-ripening process, in which particle roughness effects dominate over the effect of crystal habitus and particle size. We confirm that the dynamic equilibrium exchange of crystal constituents between kink sites involves an activation barrier of about 25 kJ/mol. At room temperature the equilibrium exchange is limited to a near surface region and proceeds at a rate of (3.6 ± 1.4)·10 -13 mol/(m 2 ·s).

  9. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?

    PubMed

    Hansen, Thomas W; Delariva, Andrew T; Challa, Sivakumar R; Datye, Abhaya K

    2013-08-20

    Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.

  10. Fatigue-propagation du melange polymere polystyrene/polyethylene

    NASA Astrophysics Data System (ADS)

    Bureau, Martin N.

    The interrelations between the morphology of PS/HDPE and PS/SEBS/HDPE immiscible polymer blends and their mechanical behavior, namely in monotonic loading and in cyclic loading, were studied. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of an SEBS triblock copolymer employed as a compatibilizer was found to be negligible. In subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were responsible for the morphological evolution of the blends. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. The fatigue crack propagation behavior of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) blends was then studied. The fatigue fracture surface features of specimens of pure PS as well as of PS/HDPE and PS/SEBS/HDPE blends were analyzed in detail in order to interpret their fatigue crack propagation behavior. In pure PS specimens, discontinuous growth bands, associated with the fracture of crazes in the plastic zone, formed at low fatigue crack growth rates, large dimple-like features at intermediate fatigue crack growth rates and fatigue striations at high fatigue crack growth rates. The fracture toughness of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5) PS/(SEBS/HDPE), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) was finally studied. The results showed that the addition of HDPE to PS led to a reduction of the fracture toughness KQ following ASTM E-399 when compared to that of pure PS. This effect was attributed to the very fine minor phase morphology of the blends obtained after extrusion blending and injection molding. (Abstract shortened by UMI.)

  11. On Application of the Ostwald-de Waele Model to Description of Non-Newtonian Fluid Flow in the Nip of Counter-Rotating Rolls

    NASA Astrophysics Data System (ADS)

    Shapovalov, V. M.

    2018-05-01

    The accuracy of the Ostwald-de Waele model in solving the problem of roll flow has been assessed by comparing with the "reference" solution for an Ellis fluid. As a result of the analysis, it has been shown that the model based on a power-law equation leads to substantial distortions of the flow pattern.

  12. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    NASA Astrophysics Data System (ADS)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  13. Time Dependent Structural Evolution of Porous Organic Cage CC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, Jolie; Elsaidi, Sameh; Anderson, Ryther

    Porous organic cage compounds are emerged with remarkable structural diversity and functionality that have applications in gas separation, catalysis and energy storage. Fundamental understanding of nucleation and growth of such materials have significant implications for understanding molecularly directed self-assembly phenomena. Herein we followed the structural evolution of a prototypical type of porous organic cage, CC3 as a function of synthesis time. Three distinctive crystal formation stages were identified: at short synthesis times, a rapid crystal growth stage in which amorphous agglomerates transformed into larger irregular particles was observed. At intermediate synthesis times, a decrease in crystal size over time wasmore » observed presumably due to crystal fragmentation, redissolution and/or homogeneous nucleation led. Finally, at longer synthesis times, a regrowth process was observed in which particles coalesced through Ostwald ripening leading to a continuous increase in crystal size. Molecular simulation studies, based on the construction of in silico CC3 models and simulation of XRD patterns and nitrogen isotherms, confirm the samples at different synthesis times to be a mixture of CC3α and CC3 amorphous phases. The CC3α phase is found to contract at different synthesis times, and the amorphous phase is found to essentially disappear at the longest synthesis time. Nitrogen and carbon dioxide adsorption properties of these CC3 phases were evaluated, and were highly dependent on synthesis time.« less

  14. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  15. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.

    PubMed

    Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert

    2018-09-15

    The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Phase transformation in thiamine hydrochloride tablets: Influence on tablet microstructure, physical properties, and performance.

    PubMed

    Chakravarty, Paroma; Suryanarayanan, Raj; Govindarajan, Ramprakash

    2012-04-01

    The objective of this article was to monitor phase transformation in thiamine hydrochloride, from a nonstoichiometric hydrate (NSH) to a hemihydrate (HH), in stored tablets, prepared both by direct compression and wet granulation, and to relate the storage-induced phase transformation with changes in tablet microstructure, physical properties, and performance. Raman spectroscopy revealed complete NSH → HH transformation in tablets, within 30 h of storage at 40°C/75% relative humidity. When the tablets were prepared by wet granulation of NSH alone, there was a marked increase in both tablet volume and hardness on storage. However, when microcrystalline cellulose (MCC) was included in granulation, the resulting stored tablets also exhibited a pronounced increase in disintegration time. In contrast, tablets prepared by dry processing via compression of a NSH-MCC physical mixture did not exhibit any changes in properties, despite the in situ solid form conversion. Scanning electron microscopy revealed growth of needle-like HH crystals in all stored tablets and mercury porosimetry revealed considerable changes in the pore size distribution during storage. Longer storage led to crystal growth (Ostwald ripening), causing further gradual but less dramatic changes in properties. The phase transformation and the complex interparticulate associations in the tablet influenced the changes in tablet microstructure, compact physical properties, and product behavior. Copyright © 2011 Wiley Periodicals, Inc.

  17. Interfacial Surgery Determination of Succinonitrile and Succinonitrile-Acetone Alloy Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; Frate, David T.; deGroh, Henry C., III

    2001-01-01

    The objectives of this ground based research is to measure the liquid/vapor interfacial surface energies of succinonitrile (SCN) and alloys of succinonitrile and acetone using Surface Light Scattering Spectrometer. Liquid/vapor interfacial energy measurements will be made near and above the melting point and are the primary goal of this proposal. A measurement of viscosity also results from the Surface Light Scattering technique employed. Interfacial free energies between the phases enters into many analysis of phase transformation and flow, including nucleation, dendritic growth, interface stability, Ostwald ripening, and Marangoni flow. Succirionitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Succinonitrile has been and is being used extensively in NASAs Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE) due to Glicksman and coworkers and subsequently in several theoretical and numerical studies of dendritic growth. Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. We believe the data sought through this proposal have significant basic physical property data value and thus the work proposed will provide needed data in support of NASAs Microgravity program research.

  18. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  19. Preparation of Hollow Fe2O3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and Their Electrochemical Properties for Use in Lithium-Ion Batteries.

    PubMed

    Cho, Jung Sang; Park, Jin-Sung; Kang, Yun Chan

    2016-12-13

    A novel process for the preparation of aggregate-free metal oxide nanopowders with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced. Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald ripening occurs during the selenization process, resulting in the formation of a FeSe-C composite nanofiber exhibiting a hierarchical structure. These nanofibers transform into aggregate-free hollow Fe 2 O 3 powders via the complete oxidation of FeSe and combustion of carbon. Indeed, the zero- (0D) and one-dimensional (1D) FeSe nanocrystals transform into the hollow-structured Fe 2 O 3 nanopowders via a nanoscale Kirkendall diffusion process, thus conserving their overall morphology. The discharge capacities for the 1000 th cycle of the hollow-structured Fe 2 O 3 nanopowders obtained from the FeSe-C composite nanofibers prepared at selenization temperatures of 500, 800, and 1000 °C at a current density of 1 A g -1 are 932, 767, and 544 mA h g -1 , respectively; and their capacity retentions from the second cycle are 88, 92, and 78%, respectively. The high structural stabilities of these hollow Fe 2 O 3 nanopowders during repeated lithium insertion/desertion processes result in superior lithium-ion storage performances.

  20. Pore-Scale Determination of Gas Relative Permeability in Hydrate-Bearing Sediments Using X-Ray Computed Micro-Tomography and Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiongyu; Verma, Rahul; Espinoza, D. Nicolas; Prodanović, Maša.

    2018-01-01

    This work uses X-ray computed micro-tomography (μCT) to monitor xenon hydrate growth in a sandpack under the excess gas condition. The μCT images give pore-scale hydrate distribution and pore habit in space and time. We use the lattice Boltzmann method to calculate gas relative permeability (krg) as a function of hydrate saturation (Shyd) in the pore structure of the experimental hydrate-bearing sand retrieved from μCT data. The results suggest the krg - Shyd data fit well a new model krg = (1-Shyd)·exp(-4.95·Shyd) rather than the simple Corey model. In addition, we calculate krg-Shyd curves using digital models of hydrate-bearing sand based on idealized grain-attaching, coarse pore-filling, and dispersed pore-filling hydrate habits. Our pore-scale measurements and modeling show that the krg-Shyd curves are similar regardless of whether hydrate crystals develop grain-attaching or coarse pore-filling habits. The dispersed pore filling habit exhibits much lower gas relative permeability than the other two, but it is not observed in the experiment and not compatible with Ostwald ripening mechanisms. We find that a single grain-shape factor can be used in the Carman-Kozeny equation to calculate krg-Shyd data with known porosity and average grain diameter, suggesting it is a useful model for hydrate-bearing sand.

  1. Tunability and stability of gold nanoparticles obtained from chloroauric acid and sodium thiosulfate reaction

    PubMed Central

    2012-01-01

    In the quest for producing an effective, clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near-infrared (NIR) absorption are synthesized by a single-step reaction of HAuCl4 and Na2S2O3 without assistance of additional templates, capping reagents, or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption, making it therapeutically relevant. The synthesized products consist of GNPs with different shapes and sizes, including small spherical colloid gold particles and non-spherical gold crystals. The NIR absorption wavelengths and particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. Non-spherical gold particles can be further purified and separated by centrifugation to improve the NIR-absorbing fraction of particles. In-depth studies reveal that GNPs with good structural and optical stability only form in a certain range of the HAuCl4/Na2S2O3 molar ratio, whereas higher molar ratios result in unstable GNPs, which lose their NIR absorption peak due to decomposition and reassembly via Ostwald ripening. Tuning the optical absorption of the gold nanoparticles in the NIR regime via a robust and repeatable method will improve many applications requiring large quantities of desired NIR-absorbing nanoparticles. PMID:22726762

  2. Template-free fabrication of graphene-wrapped mesoporous ZnMn2O4 nanorings as anode materials for lithium-ion batteries.

    PubMed

    Zhou, Weiwei; Wang, Dong; Zhao, Limin; Ding, Chunyan; Jia, Xingtao; Du, Yu; Wen, Guangwu; Wang, Huatao

    2017-06-16

    We rationally designed a facile two-step approach to synthesize ZnMn 2 O 4 @G composite anode material for lithium-ion batteries (LIBs), involving a template-free fabrication of ZnMn 2 O 4 nanorings and subsequent coating of graphene sheets. Notably, it is the first time that ring-like ZnMn 2 O 4 nanostructure is reported. Moreover, our system has been demonstrated to be quite powerful in producing ZnMn 2 O 4 nanorings regardless of the types of Zn and Mn-containing metal salts reactants. The well-known inside-out Ostwald ripening process is tentatively proposed to clarify the formation mechanism of the hollow nanorings. When evaluated as anode material for LIBs, the resulting ZnMn 2 O 4 @G hybrid displays significantly improved lithium-storage performance with high specific capacity, good rate capability, and excellent cyclability. After 500 cycles, the ZnMn 2 O 4 @G hybrid can still deliver a reversible capacity of 958 mAh g -1 at a current density of 200 mA g -1 , much higher than the theoretical capacity of 784 mAh g -1 for pure ZnMn 2 O 4 . The outstanding electrochemical performance should be reasonably ascribed to the synergistic interaction between hollow and porous ZnMn 2 O 4 nanorings and the three-dimensional interconnected graphene sheets.

  3. Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol

    DOE PAGES

    Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi; ...

    2017-01-06

    Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less

  4. Electronic excitation induced modifications of structural, electrical and optical properties of Cu-C60 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Ojha, S.; Chand, S.; Sharma, G. D.

    2017-09-01

    High energy ion irradiation significantly affects the size and shape of nanoparticles in composites. Low concentration metal fraction embedded in fullerene matrix in form of nanocomposites was synthesized by thermal co-evaporation method. Swift heavy ion irradiation was performed with 120 MeV Au ion beam on Cu-C60 nanocomposites at different fluences 1 × 1012, 3 × 1012, 6 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Absorption spectra demonstrated that absorption intensity of nanocomposite thin film was increased whereas absorption modes of fullerene C60 were diminished with fluence. Rutherford backscattering spectroscopy was also performed to estimate the thickness of the film and atomic metal fraction in matrix and found to be 45 nm and 3%, respectively. Transmission electron microscopy was performed for structural and particle size evaluation of Cu nanoparticles (NPs) in fullerene C60 matrix. A growth of Cu nanoparticles is observed at a fluence of 3 × 1013 ions/cm2 with a bi-modal distribution in fullerene C60. Structural evolution of fullerene C60 matrix with increasing fluence of 120 MeV Au ion beam is studied by Raman spectroscopy which shows the amorphization of matrix (fullerene C60) at lower fluence. The growth of Cu nanoparticles is explained using the phenomena of Ostwald ripening.

  5. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  6. Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance

    NASA Astrophysics Data System (ADS)

    Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming

    2017-09-01

    Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.

  7. Understanding Poly(vinyl alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement and pH Effects.

    PubMed

    Burkey, Aaron A; Riley, Christopher L; Wang, Lyndsey K; Hatridge, Taylor A; Lynd, Nathaniel A

    2018-01-08

    The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.

  8. Vascular cemeteries formed by biological nanoparticles

    NASA Astrophysics Data System (ADS)

    Sommer, Andrei P.; Tsurumoto, Toshiyuki

    2013-04-01

    We report the discovery of dense colonies of globular structures ranging from 100 nm to 5 μm in the tunica media of the femoral artery of an 89-year-old female cadaver. Systematic analysis using scanning electron microscopy, energy dispersive X-ray spectroscopy and light microscopy reveals that the globular structures are surrounded by vascular smooth muscle cells (VSMCs) and consist predominantly of calcium phosphate. Inspection of the images suggests the action of two complementary growth processes. The structures may grow both in size and in number locally by Ostwald ripening and a replicative route, respectively. Morphology in conjunction with the quality of their native growth niche suggests that they are different from nanocrystals released from apoptotic bodies. Their tendency to fill VSMC pockets leads to the speculation that they could represent an effort of the VSMC system to wall off cytotoxic nanocrystals liberated from apoptotic bodies. Alternatively, the structures may be equivalent with nanobacteria (NB)—a nomenclature which caused confusion. This is reflected by the multitude of names used by different authors for the nanoentities (living nanovesicles, nanobionta, calcifying nanoparticles, and nanons). Indeed, there is no clear definition in the literature as to what NB are. Considering that the calcium phosphate nanoparticles have been identified in the human body, we used in our study the descriptive name biological nanoparticles—the world's first nanoparticles.

  9. ETHY. A theory of fruit climacteric ethylene emission.

    PubMed

    Génard, Michel; Gouble, Barbara

    2005-09-01

    A theory of fruit climacteric ethylene emission was developed and used as the basis of a simulation model called ETHY. According to the theory, the biosynthetic pathway of ethylene is supplied by ATP and is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. The conjugation of ACC with malonate to form MACC was taken into account as a way to decrease the availability of ACC. Because of the seasonal increase of fruit volume, the dilution of biochemical compounds used in ETHY was taken into account. Finally, the ethylene diffusion across the skin was considered. The theory took into account the effect of temperature and O(2) and CO(2) internal concentrations on ethylene. The model was applied to peach (Prunus persica) fruit over 3 years, several leaf:fruit ratios, and irrigation conditions. An adequate ethylene increase was predicted without considering any increase in respiration during the ripening period, which suggests that the respiratory climacteric may not be required for ripening. Another important result of this study is the high sensitivity of ETHY to the parameters involved in the calculation of ACC oxidase and ACC synthase activities, ATP production, and skin surface and permeability. ETHY was also highly sensitive to changes in fruit growth and temperature.

  10. ETHY. A Theory of Fruit Climacteric Ethylene Emission1

    PubMed Central

    Génard, Michel; Gouble, Barbara

    2005-01-01

    A theory of fruit climacteric ethylene emission was developed and used as the basis of a simulation model called ETHY. According to the theory, the biosynthetic pathway of ethylene is supplied by ATP and is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. The conjugation of ACC with malonate to form MACC was taken into account as a way to decrease the availability of ACC. Because of the seasonal increase of fruit volume, the dilution of biochemical compounds used in ETHY was taken into account. Finally, the ethylene diffusion across the skin was considered. The theory took into account the effect of temperature and O2 and CO2 internal concentrations on ethylene. The model was applied to peach (Prunus persica) fruit over 3 years, several leaf:fruit ratios, and irrigation conditions. An adequate ethylene increase was predicted without considering any increase in respiration during the ripening period, which suggests that the respiratory climacteric may not be required for ripening. Another important result of this study is the high sensitivity of ETHY to the parameters involved in the calculation of ACC oxidase and ACC synthase activities, ATP production, and skin surface and permeability. ETHY was also highly sensitive to changes in fruit growth and temperature. PMID:16143642

  11. Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si(100): Size and roughness evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffino, F.; Canino, A.; Grimaldi, M. G.

    Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less

  12. Toward a Probabilistic Phenological Model for Wheat Growing Degree Days (GDD)

    NASA Astrophysics Data System (ADS)

    Rahmani, E.; Hense, A.

    2017-12-01

    Are there deterministic relations between phenological and climate parameters? The answer is surely `No'. This answer motivated us to solve the problem through probabilistic theories. Thus, we developed a probabilistic phenological model which has the advantage of giving additional information in terms of uncertainty. To that aim, we turned to a statistical analysis named survival analysis. Survival analysis deals with death in biological organisms and failure in mechanical systems. In survival analysis literature, death or failure is considered as an event. By event, in this research we mean ripening date of wheat. We will assume only one event in this special case. By time, we mean the growing duration from sowing to ripening as lifetime for wheat which is a function of GDD. To be more precise we will try to perform the probabilistic forecast for wheat ripening. The probability value will change between 0 and 1. Here, the survivor function gives the probability that the not ripened wheat survives longer than a specific time or will survive to the end of its lifetime as a ripened crop. The survival function at each station is determined by fitting a normal distribution to the GDD as the function of growth duration. Verification of the models obtained is done using CRPS skill score (CRPSS). The positive values of CRPSS indicate the large superiority of the probabilistic phonologic survival model to the deterministic models. These results demonstrate that considering uncertainties in modeling are beneficial, meaningful and necessary. We believe that probabilistic phenological models have the potential to help reduce the vulnerability of agricultural production systems to climate change thereby increasing food security.

  13. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    PubMed

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  14. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    PubMed

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  15. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Zhu; Li, Bing-Sheng; Zhang, Li

    2017-05-01

    Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The < 0001> -oriented 6H-SiC wafers are implanted with 15 keV helium ions at a dose of 1× 1017 cm-2 at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473 K for 30 min. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273 K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealing abides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120-135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236 eV. Supported by the National Natural Science Foundation of China under Grant No 11475229.

  16. Benchmark problems for numerical implementations of phase field models

    DOE PAGES

    Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; ...

    2016-10-01

    Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verifymore » new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.« less

  17. Physical, chemical and sensory characteristics of red guava (Psidium guajava) velva at different fruit ripening time

    NASA Astrophysics Data System (ADS)

    Ishartani, D.; Rahman, F. L. F.; Hartanto, R.; Utami, R.; Khasanah, L. U.

    2018-01-01

    This study purposed to determine the effect of red guava fruit ripening time on the physical (overrun and melting rate), chemical (vitamin C, pH, total dissolved solid) and sensory (color, taste, aroma, texture, and overall compare to control (without ripening) velva) characteristic of red guava velva. Red guava fruits were harvested at 90 days after flowering, ripened and then processed into velva. This research used Completely Randomized Design with fruit ripening time (without ripening, 4 days, and 6 days) as single factor. The research was conducted in triplicate. Chemical and physical characteristic data was analysed using One Way Analysis of Varian whether sensory characteristic data was analyzed using Independent Sample T-test. The result showed that fruit ripening time significantly affected the physical, chemical and sensory characteristic of the velva. Vitamin C, pH, and total solid of the velva were increased as the ripening time prolonged. In other hand, increasing of fruit ripening time decreased the overrun and melting rate of the velva. Red guava velva made from 6 days ripening had better sensory characteristics compared to velva made from red guava fruit without ripening or 4 day ripening. This research conclude that 6 days ripening time gives better chemical, physical and sensory characteristics of the velva compare to 4 days ripening time. Red guava fruits ripened for 6 days were recommended as raw material in velva making.

  18. Fruit ripening mutants reveal cell metabolism and redox state during ripening.

    PubMed

    Kumar, Vinay; Irfan, Mohammad; Ghosh, Sumit; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-03-01

    Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality.

  19. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries

    PubMed Central

    Gouthu, Satyanarayana; O’Neil, Shawn T.; Di, Yanming; Ansarolia, Mitra; Megraw, Molly; Deluc, Laurent G.

    2014-01-01

    Transcriptional studies in relation to fruit ripening generally aim to identify the transcriptional states associated with physiological ripening stages and the transcriptional changes between stages within the ripening programme. In non-climacteric fruits such as grape, all ripening-related genes involved in this programme have not been identified, mainly due to the lack of mutants for comparative transcriptomic studies. A feature in grape cluster ripening (Vitis vinifera cv. Pinot noir), where all berries do not initiate the ripening at the same time, was exploited to study their shifted ripening programmes in parallel. Berries that showed marked ripening state differences in a véraison-stage cluster (ripening onset) ultimately reached similar ripeness states toward maturity, indicating the flexibility of the ripening programme. The expression variance between these véraison-stage berry classes, where 11% of the genes were found to be differentially expressed, was reduced significantly toward maturity, resulting in the synchronization of their transcriptional states. Defined quantitative expression changes (transcriptional distances) not only existed between the véraison transitional stages, but also between the véraison to maturity stages, regardless of the berry class. It was observed that lagging berries complete their transcriptional programme in a shorter time through altered gene expressions and ripening-related hormone dynamics, and enhance the rate of physiological ripening progression. Finally, the reduction in expression variance of genes can identify new genes directly associated with ripening and also assess the relevance of gene activity to the phase of the ripening programme. PMID:25135520

  20. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato1[OPEN

    PubMed Central

    Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher

    2016-01-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  1. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  2. Ripening Behavior of Wild Tomato Species 1

    PubMed Central

    Grumet, Rebecca; Fobes, Jon F.; Herner, Robert C.

    1981-01-01

    Nine wild tomato species were surveyed for variability in ripening characteristics. External signs of ripening, age of fruit at ripening, and ethylene production patterns were compared. Ethylene production was monitored using an ethylene-free air stream system and gas chromatography. Based on these ripening characteristics, the fruits fell into three general categories: those that change color when they ripen, green-fruited species that abscise prior to ripening, and green-fruited species that ripen on the vine. The fruits that change color, Lycopersicon esculentum var. cerasiforme, Lycopersicon pimpinellifolium and Lycopersicon cheesmanii, exhibited a peak of ethylene production similar to the cultivated tomato; there were differences, however, in the timing and magnitude of the ethylene production. Peak levels of ethylene production are correlated with age at maturity. For the two species that abscise prior to ripening, Lycopersicon chilense and Lycopersicon peruvianum, ability to produce ethylene varied with stage of maturity. The two species differed from each other in time of endogenous ethylene production relative to abscission, suggesting differences in the control mechanisms regulating their ripening. For two of the green-fruited species that ripen on the vine, Lycopersicon chmielewskii and Lycopersicon parviflorum, ethylene production was correlated to fruit softening. For Lycopersicon hirsutum and Solanum pennellii, however, ethylene production was not correlated with external ripening changes, making questionable the role of ethylene as the ripening hormone in these fruits. PMID:16662121

  3. The effect of application of cold natural smoke on the ripening of Cheddar cheese.

    PubMed

    Shakeel-Ur-Rehman; Farkye, N Y; Drake, M A

    2003-06-01

    The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.

  4. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    PubMed Central

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  5. Characterisation of ethylene pathway components in non-climacteric capsicum.

    PubMed

    Aizat, Wan M; Able, Jason A; Stangoulis, James C R; Able, Amanda J

    2013-11-28

    Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the 'Breaker stage'. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit.

  6. Quality comparison of hydroponic tomatoes (Lycopersicon esculentum) ripened on and off vine

    NASA Technical Reports Server (NTRS)

    Arias, R.; Lee, T. C.; Specca, D.; Janes, H.

    2000-01-01

    There is a general belief that the quality of tomatoes ripened on vine is better than tomatoes ripened off the vine, influencing among other parameters, the price of this commodity. We compared the quality of hydroponic tomatoes ripened on and off vine by chemical, physical, and sensory evaluation to find what attributes are affected and to what extent. Lycopene, beta-carotene, total and soluble solids, moisture content, ascorbic acid, acidity, pH, texture, and color were analyzed. Tomatoes ripened on vine had significantly more lycopene, beta-carotene, soluble and total solids, higher a* and lower L*, and were firmer. However, a 100-judge panel rated only the color and overall liking of the vine-ripened tomatoes as more intense than the fruit ripened off vine. Therefore, the chemical and physical differences were mostly not large enough to influence the panelist's perception. The characterization of tomatoes ripened on and off vine may help to guide post-harvest handling and treatment and to improve the quality of tomatoes ripened off vine.

  7. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality.

    PubMed

    Hu, Wei; Yang, Hai; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Yang; Wu, Chunlai; Wang, Jiashui; Reiter, Russel J; Tan, Dun-Xian; Shi, Haitao; Xu, Biyu; Jin, Zhiqiang

    2017-11-22

    This study aimed to investigate the role of melatonin in postharvest ripening and quality in various banana varieties with contrasting ripening periods. During the postharvest life, endogenous melatonin showed similar performance with ethylene in connection to ripening. In comparison to ethylene, melatonin was more correlated with postharvest banana ripening. Exogenous application of melatonin resulted in a delay of postharvest banana ripening. Moreover, this effect is concentration-dependent, with 200 and 500 μM treatments more effective than the 50 μM treatment. Exogenous melatonin also led to elevated endogenous melatonin content, reduced ethylene production through regulation of the expression of MaACO1 and MaACS1, and delayed sharp changes of quality indices. Taken together, this study highlights that melatonin is an indicator for banana fruit ripening in various varieties, and the repression of ethylene biosynthesis and postharvest ripening by melatonin can be used for biological control of postharvest fruit ripening and quality.

  8. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    PubMed Central

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  9. Au particle formation on the electron beam induced membrane

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Sae-Joong; Kim, Sung-In; Park, Nam Kyou; Park, Doo-Jae; Choi, Soo Bong; Kim, Yong-Sang

    2017-02-01

    Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized by using a portable solidstate nanopore (MinION) with an electrical detection technique. However, there have been several reports about the high error rates of the fabricated nanopore device, possibly due to an electrical double layer formed inside the pore channel. The current DNA sequencing technology utilized is based on the optical detection method. In order to utilize the current optical detection technique, we will present the formation of the Au nano-pore with Au particle under the various electron beam irradiations. In order to provide the diffusion of Au atoms, a 2 keV electron beam irradiation has been performed During electron beam irradiations by using field emission scanning electron microscopy (FESEM), Au and C atoms would diffuse together and form the binary mixture membrane. Initially, the Au atoms diffused in the membrane are smaller than 1 nm, below the detection limit of the transmission electron microscopy (TEM), so that we are unable to observe the Au atoms in the formed membrane. However, after several months later, the Au atoms became larger and larger with expense of the smaller particles: Ostwald ripening. Furthermore, we also observe the Au crystalline lattice structure on the binary Au-C membrane. The formed Au crystalline lattice structures were constantly changing during electron beam imaging process due to Spinodal decomposition; the unstable thermodynamic system of Au-C binary membrane. The fabricated Au nanopore with an Au nanoparticle can be utilized as a single molecule nanobio sensor.

  10. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature.

    PubMed

    Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P

    2018-07-15

    The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.

  11. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  12. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  13. Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation.

    PubMed

    Zhang, Tiankai; Long, Mingzhu; Yan, Keyou; Zeng, Xiaoliang; Zhou, Fengrui; Chen, Zefeng; Wan, Xi; Chen, Kun; Liu, Pengyi; Li, Faming; Yu, Tao; Xie, Weiguang; Xu, Jianbin

    2016-11-30

    Quantification of intergrain length scale properties of CH 3 NH 3 PbI 3 (MAPbI 3 ) can provide further understanding of material physics, leading to improved device performance. In this work, we noticed that two typical types of facets appear in sequential deposited perovskite (SDP) films: smooth and steplike morphologies. By mapping the surface potential as well as the photoluminescence (PL) peak position, we revealed the heterogeneity of SDP thin films that smooth facets are almost intrinsic with a PL peak at 775 nm, while the steplike facets are p-type-doped with 5-nm blue-shifted PL peak. Considering the reaction process, we propose that the smooth facets have well-defined crystal lattices that resulted from the interfacial reaction between MAI and PbI 2 domains containing low trap states density. The steplike facets are MAI-rich originated from the grain boundaries of PbI 2 film and own more trap states. Conversion of steplike facets to smooth facets can be controlled by increasing the reaction time through Ostwald ripening. The improved stability, photoresponsivity up to 0.3 A/W, on/off ratio up to 3900, and decreased photo response time to ∼160 μs show that the trap states can be annihilated effectively to improve the photoelectrical conversion with prolonged reaction time and elimination of steplike facets. Our findings demonstrate the relationship between the facet heterogeneity of SDP films and crystal growth process for the first time, and imply that the systematic control of crystal grain modification will enable amelioration of crystallinity for more-efficient perovskite photoelectrical applications.

  14. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.

  15. Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials

    PubMed Central

    Ji, Zhaoxia; Wang, Xiang; Zhang, Haiyuan; Lin, Sijie; Meng, Huan; Sun, Bingbing; George, Saji; Xia, Tian; Nel, André E.; Zink, Jeffrey I.

    2012-01-01

    While it has been shown that high aspect ratio nanomaterials like carbon nanotubes and TiO2 nanowires can induce toxicity by acting as fiber-like substances that damage the lysosome, it is not clear what the critical lengths and aspect ratios are that induce this type of toxicity. To answer this question, we synthesized a series of cerium oxide (CeO2) nanorods and nanowires with precisely controlled lengths and aspect ratios. Both phosphate and chloride ions were shown to play critical roles in obtaining these high aspect ratio nanostructures. High resolution TEM analysis shows that single crystalline CeO2 nanorods/nanowires were formed along the [211] direction by an “oriented attachment” mechanism, followed by Ostwald ripening. The successful creation of a comprehensive CeO2 nanorod/nanowire combinatorial library allows, for the first time, the systematic study of the effect of aspect ratio on lysosomal damage, cytoxicity and IL-1β production by the human myeloid cell line (THP-1). This in vitro toxicity study demonstrated that at lengths ≥200 nm and aspect ratios ≥ 22, CeO2 nanorods induced progressive cytotoxicity and pro-inflammatory effects. The relatively low “critical” length and aspect ratio were associated with small nanorod/nanowire diameters (6–10 nm), which facilitates the formation of stacking bundles due to strong van der Waals and dipole-dipole attractions. Our results suggest that both length and diameter components of aspect ratio should be considered when addressing the cytotoxic effects of long aspect ratio materials. PMID:22564147

  16. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    PubMed

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Yuwei; Zeng, Suyuan, E-mail: drzengsy@163.com; Li, Lei

    Graphical abstract: The morphologies of the Bi{sub 2}WO{sub 6} nanostructures can be easily tuned by altering the solvent composition during the reaction, which will yield flower-like, pancake-like and tubular nanostructures, respectively. Highlights: ► The morphologies of Bi{sub 2}WO{sub 6} can be controlled by tuning the solvent composition. ► The effects of solvent on the morphologies of Bi{sub 2}WO{sub 6} were carefully investigated. ► The growth mechanisms for the as-prepared samples were investigated. ► The morphologies of the samples greatly affect their photocatalytic activities. -- Abstract: In this work, Bi{sub 2}WO{sub 6} with complex morphologies, namely, flower-like, pancake-like, and tubular shapesmore » have been controllably synthesized by a facile solvothermal process. The as-obtained samples are systematically investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effects of solvents on the morphologies of Bi{sub 2}WO{sub 6} nanostructures are systematically investigated. According to the time-dependent experiments, a two-step growth mode basing on Ostwald ripening process and self-assembly has been proposed for the formation of the flower-like and pancake-like Bi{sub 2}WO{sub 6} nanostructures. The photocatalytic properties of Bi{sub 2}WO{sub 6} nanostructures are strongly dependent on their shapes, sizes, and structures for the degradation of rhodamine B (RhB) under visible-light irradiation. The deduced reasons for the differences in the photocatalytic activities of these Bi{sub 2}WO{sub 6} nanostructures are further discussed.« less

  18. Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian-Aptian, SE France)

    NASA Astrophysics Data System (ADS)

    Léonide, Philippe; Fournier, François; Reijmer, John J. G.; Vonhof, Hubert; Borgomano, Jean; Dijk, Jurrien; Rosenthal, Maelle; van Goethem, Manon; Cochard, Jean; Meulenaars, Karlien

    2014-06-01

    The Urgonian limestones of Late Barremian/Early Aptian from Provence (SE, France) are characterized by the occurrence of microporous limestones at regional scale alternating with tight carbonates. This study, based on petrographical (sediment texture, facies) and diagenetical analyses (cement stratigraphy, porosity and isotope geochemistry) of more than 800 limestone samples provides insight into the parameters controlling the genesis, preservation or occlusion of microporosity along an inner platform to outer shelf transect. The tight and microporous Urgonian limestones from Provence can be grouped into 5 rock-types based on textures, associated depositional environments, porosity and pore-type, being: (1) tight inner-platform: TIP; (2) porous inner platform: PIP; (3) tight outer platform: TOP; (4) porous outer platform: POP and (5) tight outer shelf: TOS. In tight (TIP, TOP and TOS types) limestones intergranular and intragranular pore spaces were entirely occluded by early marine and/or early meteoric cementation, whereas in microporous (PIP, POP) limestones a significant fraction of the intergranular macroporosity was preserved during early and shallow burial diagenesis. Micrite neomorphism (hybrid Ostwald ripening process) occurred during meteoric shallow burial diagenesis in PIP and POP limestones during the regional Durancian Uplift event (Albian-Lower Cenomanian). This process resulted in microporosity enhancement and preservation. Circulation of meteoric fluids during exhumation produces intercrystalline microporosity enhancement and moldic porosity development. The present study documents the important role that both early diagenetic and depositional cycles and long-term tectonic processes have on pore space evolution and distribution in Mesozoic platform carbonates.

  19. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.

    PubMed

    Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P

    2016-01-01

    To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng

    2018-03-01

    The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.

  1. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    PubMed Central

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  2. Analysis of Wilhelm Ostwald's "Colour Organ" with Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Bridarolli, Alexandra; Atak, Sefkan; Herm, Christoph

    2016-11-01

    The "Scientific Colour Organ" is a collection of 680 pigment powders, created by the chemist Wilhelm Ostwald in 1925 as a means to represent his colour system. Today, it remains a leading part of colour theory. Analysis of these materials was undertaken to understand how the colour system was realised and to gain indications for preservation of the collection to which it belongs. Dispersive Raman microspectroscopy was applied directly to the powders, as well as using alternative techniques to suppress fluorescence. Barium sulphate was detected in all of the samples with one exception. Portable X-ray fluorescence revealed that this compound was a constituent of lithopone pigment. Raman spectroscopy furthermore revealed synthetic ultramarine (C.I. PB 29) as well as six different synthetic organic pigments and dyes (C.I. PY3; C.I. PO5; C.I. PR81:1; C.I. PV2 and two different triarylmethane dyes). Thin-layer chromatography was applied to determine the exact combination of dyes causing the gradual change in colour of each powder compared to the adjacent samples. With the exception of triarylmethane, the synthetic organic dyes could be identified with Raman spectroscopy directly on the chromatographic plate. The efficiency of thin-layer chromatography combined with Raman spectroscopy for identification of organic pigments could thus be shown. X-ray fluorescence indicated the presence of tungsten-molybdenum lakes in some samples. Comparison of the analytical results to information published by Oswald in 1917 showed that he switched to more light-stable synthetic organic pigments used for his "Scientific Colour Organ".

  3. Irradiated Chinese Rugao ham: Changes in volatile N-nitrosamine, biogenic amine and residual nitrite during ripening and post-ripening.

    PubMed

    Wei, Fashan; Xu, Xinglian; Zhou, Guanghong; Zhao, Gaiming; Li, Chunbao; Zhang, Yingjun; Chen, Lingzhen; Qi, Jun

    2009-03-01

    N-nitrosamines, biogenic amines and residual nitrite are harmful substances and often present in cured meat. The effects of gamma-irradiation (γ-irradiation) on these chemicals in dry-cured Chinese Rugao ham during ripening and post-ripening were investigated. Rugao hams were irradiated at a dose of 5kGy before ripening and were then ripened in an aging loft. Although γ-irradiation degraded tyramine, putrescine and spermine, on the other hand, it promoted the formation of spermidine, phenylethylamine, cadaverine and tryptamine. Residual nitrite was significantly reduced by γ-irradiation. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosopyrrolidine (NPYR) were found in Chinese Rugao ham during ripening and post-ripening but could be degraded with γ-irradiation. The results suggest that γ-irradiation may be a potential decontamination measure for certain chemical compounds found in dry-cured meat.

  4. Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas

    USDA-ARS?s Scientific Manuscript database

    Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2 %, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening period...

  5. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an Ortholog of OPEN STOMATA1, Is a Negative Regulator of Strawberry Fruit Development and Ripening1[OPEN

    PubMed Central

    Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo

    2015-01-01

    Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556

  6. Characterisation of ethylene pathway components in non-climacteric capsicum

    PubMed Central

    2013-01-01

    Background Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the ‘Breaker stage’. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. Results The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. Conclusions ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit. PMID:24286334

  7. Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules

    NASA Astrophysics Data System (ADS)

    Jang, Ji-Soo; Kim, Sang-Joon; Choi, Seon-Jin; Kim, Nam-Hoon; Hakim, Meggie; Rothschild, Avner; Kim, Il-Doo

    2015-10-01

    Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer.Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04487a

  8. Brucella melitensis survival during manufacture of ripened goat cheese at two temperatures.

    PubMed

    Méndez-González, Karla Y; Hernández-Castro, Rigoberto; Carrillo-Casas, Erika M; Monroy, Jorge F; López-Merino, Ahide; Suárez-Güemes, Francisco

    2011-12-01

    The aim of the current work was to assess the influence of two temperatures, 4°C and 24°C, on pH and water activity and their association with Brucella melitensis survival during the traditional manufacture of ripened goat cheese. Raw milk from a brucellosis-free goat herd was used for the manufacture of ripened cheese. The cheese was inoculated with 5×10(9) of the B. melitensis 16M strain during the tempering stage. The cheeses were matured for 5, 20, and 50 days at both temperatures. To assess Brucella survival, the pH and a(w) were recorded at each stage of the process (curd cutting, draining whey, immersion in brine, ripening I, ripening II, and ripening III). B. melitensis was detected at ripening stage III (1×10(3) colony-forming unit [CFU]/mL) from cheeses matured at 4°C with a pH of 5.0 and a(w) of 0.90, and at a ripening stage II (1×10(4) CFU/mL) from cheeses ripened at 24°C with a pH of 4.0 and a(w) of 0.89. The remaining stages were free from the inoculated pathogen. In addition, viable B. melitensis was recovered in significant amounts (1-2×10(6) CFU/mL) from the whey fractions of both types of cheese ripened at 24°C and 4°C. These results revealed the effects of high temperature (24°C vs. 4°C) on the low pH (4) and a(w) (0.89) that appeared to be associated with the suppression of B. melitensis at the early stages of cheese ripening. In the ripened goat cheeses, B. melitensis survived under a precise combination of temperature during maturation, ripening time, and a(w) in the manufacturing process.

  9. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.

  10. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit

    PubMed Central

    Lang, Zhaobo; Wang, Yihai; Tang, Kai; Tang, Dengguo; Datsenka, Tatsiana; Cheng, Jingfei; Zhang, Yijing; Handa, Avtar K.

    2017-01-01

    DNA methylation is a conserved epigenetic mark important for genome integrity, development, and environmental responses in plants and mammals. Active DNA demethylation in plants is initiated by a family of 5-mC DNA glycosylases/lyases (i.e., DNA demethylases). Recent reports suggested a role of active DNA demethylation in fruit ripening in tomato. In this study, we generated loss-of-function mutant alleles of a tomato gene, SlDML2, which is a close homolog of the Arabidopsis DNA demethylase gene ROS1. In the fruits of the tomato mutants, increased DNA methylation was found in thousands of genes. These genes included not only hundreds of ripening-induced genes but also many ripening-repressed genes. Our results show that SlDML2 is critical for tomato fruit ripening and suggest that active DNA demethylation is required for both the activation of ripening-induced genes and the inhibition of ripening-repressed genes. PMID:28507144

  11. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages.

    PubMed

    Liu, Ying; Ma, Shuang-shuang; Ibrahim, S A; Li, Er-hu; Yang, Hong; Huang, Wen

    2015-10-15

    In this study, polyphenols from lotus seed epicarp (PLSE) at three different ripening stages were purified by column chromatography and identified by RP-HPLC and HPLC-ESI-MS(2). The antioxidant activities of PLSE were also investigated. We found that the contents of PLSE at the green ripening stage, half ripening stage and full ripening stage are 13.08%, 10.95% and 6.73% respectively. The levels of catechin, epicatechin, hyperoside, and isoquercitrin in PLSE at the three different ripening stages were different. Moreover, the amounts of catechin and epicatechin decreased, while the contents of hyperoside and isoquercitrin increased as the seed ripened. We found that PLSE at three different ripening stages had good scavenging abilities on DPPH and ABTS(+) radicals. However, the scavenging ability decreased with maturation. Our results may be valuable with regard to the utilization of lotus seed epicarp as a functional food material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene

    PubMed Central

    Lin, Hong-Hui

    2012-01-01

    Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato. PMID:22915749

  13. Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening.

    PubMed

    Batool, Maryam; Nadeem, Muhammad; Imran, Muhammad; Gulzar, Nabila; Shahid, Muhammad Qamar; Shahbaz, Muhammad; Ajmal, Muhammad; Khan, Imran Taj

    2018-04-11

    Ripening of cheddar cheese is a time taking process, duration of the ripening may be as long as one year. Long ripening time is a big hindrance in the popularity of cheese in developing countries. Further, energy resources in these countries are either insufficient or very expensive. Therefore, those methods of cheese ripening should be discovered which can significantly reduce the ripening time without compromising the quality characteristics of cheddar cheese. In accelerated ripening, cheese is usually ripened at higher temperature than traditional ripening temperatures. Ripening of cheddar cheese at high temperature with the addition of vitamin E and selenium is not previously studied. This investigation aimed to study the antioxidant activity of selenium and vitamin E in accelerated ripening using cheddar cheese as an oxidation substrate. The ripening of cheddar cheese was performed at 18 °C and to prevent lipid oxidation, vitamin E and selenium were used alone and in combination. The treatments were as: cheddar cheese without any addition of vitamin E and selenium (T1), cheddar cheese added with 100 mg/kg vitamin E (T 2 ), 200 mg/kg vitamin E (T 3 ), 800 μg/kg selenium (T 4 ), 1200 μg/kg selenium (T 5 ), vitamin E 100 mg/kg + 800 μg/kg selenium (T 6 ) and vitamin E 200 mg/kg + 1200 μg/kg selenium (T 7 ). Traditional cheddar cheese ripne ripened at 4-6 °C for 9 months was used as positive control. Cheese samples were ripened at 18 °C for a period of 12 weeks and analyzed for chemical and oxidative stability characteristics at 0, 6 and 12 weeks of storage. All these treatments were compared with a cheddar cheese without vitamin E, selenium and ripened at 4 °C or 12 weeks. Vacuum packaged cheddar cheese was ripened 18 °C for a period of 12 weeks and analyzed for chemical and oxidative stability characteristics at 0, 4 and 8 weeks of storage period. Addition of Vitamin E and selenium did not have any effect on moisture, fat and protein content of cheddar cheese. After 6 weeks of ripening, total antioxidant capacity of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese were 29.61%, 44.7%, 53.6%, 42.5%, 41.4%, 64.1%, 85.1% and 25.4%. After 6 weeks of ripening, reducing power of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and SC cheese were 14.7%, 18.1%, 26.3%, 19.2%, 25.3%, 33.4%, 40.3% and 11.6%. After 6 weeks of ripening, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of T 6 and T 7 were 54.2% and 66.9%. While, DPPH free radical scavenging activity of T 1 and standard cheese after 6 weeks of ripening were, 19.1 and 18.5%, respectively. Free fatty acids of vitamin E and selenium supplemented, non-supplemented and standard cheese were not significantly influenced from each other in 0, 6 and 12 weeks old cheddar cheese. Peroxide values of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese after 6 weeks of accelerated ripening were 1.19, 1.05, 0.88, 1.25, 0.29, 0.25, 0.24 and 0.28 (MeqO 2 /kg). After 6 weeks of ripening, anisidine value of T 6 and T 7 were 6.55 and 6.14. Conjugated dienes of T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese, after 6 weeks of accelerated ripening were 0.61, 0.55, 0.42, 0.77, 0.65, 0.17, 0.15 and 0.19. After 6 weeks of accelerated ripening, concentrations unsaturated fatty acids in T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 and standard cheese decreased by18.19%, 17.45%, 16.82%, 16.19%, 12.71%, 8.48%, 6.92% and 14.71%. After 12 weeks of accelerated ripening, concentration of unsaturated fatty acids in T 1 , T 2 , T 3 , T 4 , T 5 , T 6 and T 7 and standard cheese decreased by 26.2%, 21.2%, 18.7%, 14.2%, 10.4%, 4.84%, 1.03% and 6.78%. Cheddar cheese samples added with vitamin E, selenium and their combinations produced more organic acids during the ripening period of 12 weeks. After 6 and 12 weeks of ripening, flavor score of T 6 and T 7 was better than standard ripened cheddar cheese. After 6 weeks of accelerated ripening, sensory characteristics of T 6 and T 7 were similar to cheddar cheese that was ripened at 4 °C for 9 months. Ripening time of cheddar cheese may be reduced to 6 weeks by elevated temperature (18 °C) using vitamin E and selenium as antioxidants at T 6 and T 7 levels.

  14. Home cervical ripening with dinoprostone gel in nulliparous women with singleton pregnancies.

    PubMed

    Stock, Sarah J; Taylor, Rebecca; Mairs, Rebecca; Azaghdani, Abdulhamid; Hor, Kahyee; Smith, Imogen; Dundas, Kirsty; Kissack, Chris; Norman, Jane E; Denison, Fiona

    2014-08-01

    To evaluate whether home cervical ripening is safe and results in shorter hospital stay. This was a retrospective cohort study of women with singleton pregnancies having induction of labor for postmaturity at a single center between January 2007 and June 2010. Women were offered home cervical ripening with 1 mg dinoprostone gel if they were nulliparous, had uncomplicated singleton pregnancies, and the indication for induction was postmaturity. Nine hundred seven of 1,536 (59.1%) nulliparous women having induction of labor for postmaturity were eligible for home cervical ripening. The median number of hours at home was 11.76 hours (range 0-24.82 hours). There were no cases of birth outside of the hospital, uterine rupture, or significant neonatal morbidity or neonatal death related to home cervical ripening. Eighty-five (5.5%) women who underwent hospital cervical ripening because of maternal preference or social issues formed a hospital cervical ripening comparison group. There was no significant difference in the total number of hours before delivery spent in the hospital between the two groups (26.25; 95% confidence interval [CI] 25.27-27.23 in home cervical ripening group compared with 24.28; 95% CI 22.5-26.0 in the hospital group; P=.26). Clinical outcomes are comparable in nulliparous women who receive a single dose of dinoprostone gel for home cervical ripening compared with those who undergo hospital cervical ripening. However, preadmission home cervical ripening with 1 mg dinoprostone does not decrease the number of hours women spend in the hospital. II.

  15. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security1[OPEN

    PubMed Central

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J.

    2016-01-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  16. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security.

    PubMed

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J; Friedman, Haya

    2016-05-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  18. Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics.

    PubMed

    Zhao, Ran; Chen, Dong; Wu, Hualing

    2017-11-15

    To evaluate effects of Pu-erh ripened tea in hyperuricemic mice, a mouse hyperuricemia model was developed by oral administration of potassium oxonate for 7 d. Serum metabolomics, based on gas chromatography-mass spectrometry, was used to generate metabolic profiles from normal control, hyperuricemic and allopurinol-treated hyperuricemic mice, as well as hyperuricemic mice given Pu-erh ripened tea at three doses. Pu-erh ripened tea significantly lowered serum uric acid levels. Twelve potential biomarkers associated with hyperuricemia were identified. Pu-erh ripened tea and allopurinol differed in their metabolic effects in the hyperuricemic mice. Levels of glutamic acid, indolelactate, L-allothreonine, nicotinoylglycine, isoleucine, l-cysteine and glycocyamine, all involved in amino acid metabolism, were significantly changed in hyperuricemic mice treated Pu-erh ripened tea. Thus, modulating amino acid metabolism might be the primary mechanism of anti-hyperuricemia by Pu-erh ripened tea. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening.

    PubMed

    Alberti, Aline; Zielinski, Acácio Antonio Ferreira; Couto, Marcelo; Judacewski, Priscila; Mafra, Luciana Igarashi; Nogueira, Alessandro

    2017-05-01

    The effect of variety and ripening stage on the distribution of phenolic compounds and in vitro antioxidant capacity of Gala, Fuji Suprema and Eva apples were evaluated. Hydroxycinnamic acids, flavonoids, flavanols, flavonols, dihydrochalcones and antioxidant activity (FRAP and DPPH) were assessed in the epicarp, mesocarp and endocarp of three varieties at three ripening stages (unripe, ripe and senescent). The Fuji Suprema variety distinguished by its content of flavonols at senescent stage, while Eva variety distinguished by its content of dihydrochalcones (unripe stage) and anthocyanins (ripe stage). In general, phenolic acids and flavonoids decreased with ripening in the epicarp and endocarp. However, in the mesocarp, the effect of ripening was related with the apple variety. Hierarchical cluster analysis confirmed the influence of ripening in the apple tissue. The evolution of these compounds during ripening occurred irregularly and it was influenced by the variety.

  20. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  1. Decrease in fruit moisture content heralds and might launch the onset of ripening processes.

    PubMed

    Frenkel, Chaim; Hartman, Thomas G

    2012-10-01

    It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the onset of fruit ripening. © 2012 Institute of Food Technologists®

  2. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    PubMed

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after-ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    PubMed Central

    2010-01-01

    Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species. PMID:20973957

  4. Metabolite Profiling Reveals Developmental Inequalities in Pinot Noir Berry Tissues Late in Ripening.

    PubMed

    Vondras, Amanda M; Commisso, Mauro; Guzzo, Flavia; Deluc, Laurent G

    2017-01-01

    Uneven ripening in Vitis vinifera is increasingly recognized as a phenomenon of interest, with substantial implications for fruit and wine composition and quality. This study sought to determine whether variation late in ripening (∼Modified Eichhorn-Lorenz stage 39) was associated with developmental differences that were observable as fruits within a cluster initiated ripening (véraison). Four developmentally distinct ripening classes of berries were tagged at cluster véraison, sampled at three times late in ripening, and subjected to untargeted HPLC-MS to measure variation in amino acids, sugars, organic acids, and phenolic metabolites in skin, pulp, and seed tissues separately. Variability was described using predominantly two strategies. In the first, multivariate analysis (Orthogonal Projections to Latent Structures-Discriminant Analysis, OPLS-DA) was used to determine whether fruits were still distinguishable per their developmental position at véraison and to identify which metabolites accounted for these distinctions. The same technique was used to assess changes in each tissue over time. In a second strategy and for each annotated metabolite, the variance across the ripening classes at each time point was measured to show whether intra-cluster variance (ICV) was growing, shrinking, or constant over the period observed. Indeed, berries could be segregated by OPLS-DA late in ripening based on their developmental position at véraison, though the four ripening classes were aggregated into two larger ripening groups. Further, not all tissues were dynamic over the period examined. Although pulp tissues could be segregated by time sampled, this was not true for seed and only moderately so for skin. Ripening group differences in seed and skin, rather than the time fruit was sampled, were better able to define berries. Metabolites also experienced significant reductions in ICV between single pairs of time points, but never across the entire experiment. Metabolites often exhibited a combination of ICV expansion, contraction and persistence. Finally, we observed significant differences in the abundance of some metabolites between ripening classes that suggest the berries that initiated ripening first remained developmentally ahead of the lagging fruit even late in the ripening phase. This presents a challenge to producers who would seek to harvest at uniformity or at a predefined level of variation.

  5. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  6. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  7. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  8. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  9. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  10. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    PubMed

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  11. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  12. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese

    PubMed Central

    Martins, José M.; Galinari, Éder; Pimentel-Filho, Natan J.; Ribeiro, José I.; Furtado, Mauro M.; Ferreira, Célia L.L.F.

    2015-01-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September) and rainy season (October–March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g −1 ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g −1 ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  13. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    PubMed

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  14. SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Yuchao; Graduate University of Chinese Academy of Sciences, Beijing 100049; Wu Xiaofeng

    2011-07-15

    SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed thatmore » in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.« less

  15. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-11-01

    In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4 emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis.

    PubMed

    Wang, Wei; Lv, Fan; Lei, Bo; Wan, Sheng; Luo, Mingchuan; Guo, Shaojun

    2016-12-01

    Developing new synthetic methods for the controlled synthesis of Pt-based or non-Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel-cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one-dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt-based, Pd-based, or 1D metal-free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel-cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt-based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt-based NWs or NTs, non-Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel-cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel-cell technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Degradation Mechanisms in Solid-Oxide Fuel and Electrolyzer Cells: Analytical Description of Nickel Agglomeration in a Ni /Y S Z Electrode

    NASA Astrophysics Data System (ADS)

    Kröll, L.; de Haart, L. G. J.; Vinke, I.; Eichel, R.-A.

    2017-04-01

    The microstructural evolution of a porous electrode consisting of a metal-ceramic matrix, consisting of nickel and yttria-stabilized zirconia (Y S Z ), is one of the main degradation mechanisms in a solid-oxide cell (SOC), in either fuel cell or electrolyzer mode. In that respect, the agglomeration of nickel particles in a SOC electrode leads to a decrease in the electronic conductivity as well as in the active catalytic area for the oxidation-reduction reaction of the fuel-water steam. An analytical model of the agglomeration behavior of a Ni /Y S Z electrode is proposed that allows for a quantitative description of the nickel agglomeration. The accuracy of the model is validated in terms of a comparison with experimental degradation measurements. The model is based on contact probabilities of nickel clusters in a porous network of nickel and Y S Z , derived from an algorithm of the agglomeration process. The iterative algorithm is converted into an analytical function, which involves structural parameters of the electrode, such as the porosity and the nickel content. Furthermore, to describe the agglomeration mechanism, the influence of the steam content and the flux rate are taken into account via reactions on the nickel surface. In the next step, the developed agglomeration model is combined with the mechanism of the Ostwald ripening. The calculated grain-size growth is compared to measurements at different temperatures and under low flux rates and low steam content, as well as under high flux rates and high steam content. The results confirm the necessity of connecting the two mechanisms and clarify the circumstances in which the single processes occur and how they contribute to the total agglomeration of the particles in the electrode.

  18. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action.

    PubMed

    Musa, Siti Hajar; Basri, Mahiran; Fard Masoumi, Hamid Reza; Shamsudin, Norashikin; Salim, Norazlinaliza

    2017-01-01

    Psoriasis is a chronic autoimmune disease that cannot be cured. It can however be controlled by various forms of treatment, including topical, systemic agents, and phototherapy. Topical treatment is the first-line treatment and favored by most physicians, as this form of therapy has more patient compliance. Introducing a nanoemulsion for transporting cyclosporine as an anti-inflammatory drug to an itchy site of skin disease would enhance the effectiveness of topical treatment for psoriasis. The addition of nutmeg and virgin coconut-oil mixture, with their unique properties, could improve cyclosporine loading and solubility. A high-shear homogenizer was used in formulating a cyclosporine-loaded nanoemulsion. A D-optimal mixture experimental design was used in the optimization of nanoemulsion compositions, in order to understand the relationships behind the effect of independent variables (oil, surfactant, xanthan gum, and water content) on physicochemical response (particle size and polydispersity index) and rheological response (viscosity and k -value). Investigation of these variables suggests two optimized formulations with specific oil (15% and 20%), surfactant (15%), xanthan gum (0.75%), and water content (67.55% and 62.55%), which possessed intended responses and good stability against separation over 3 months' storage at different temperatures. Optimized nanoemulsions of pH 4.5 were further studied with all types of stability analysis: physical stability, coalescence-rate analysis, Ostwald ripening, and freeze-thaw cycles. In vitro release proved the efficacy of nanosize emulsions in carrying cyclosporine across rat skin and a synthetic membrane that best fit the Korsmeyer-Peppas kinetic model. In vivo skin analysis towards healthy volunteers showed a significant improvement in the stratum corneum in skin hydration.

  19. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  20. Low-cost fabrication of ternary CuInSe{sub 2} nanocrystals by colloidal route using a novel combination of volatile and non-volatile capping agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son

    2014-11-15

    Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (anilinemore » and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.« less

  1. Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    NASA Astrophysics Data System (ADS)

    Crowe, I. F.; Papachristodoulou, N.; Halsall, M. P.; Hylton, N. P.; Hulko, O.; Knights, A. P.; Yang, P.; Gwilliam, R. M.; Shah, M.; Kenyon, A. J.

    2013-01-01

    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb-centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth.

  2. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  3. Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil.

    PubMed

    Ghaderi, L; Moghimi, R; Aliahmadi, A; McClements, D J; Rafati, H

    2017-10-01

    Thymol-rich medicinal plants have been used in traditional medicine to relieve infectious diseases. However, the application of essential oils as medicine is limited by its low water solubility and high vapour pressure. The objective of this study was to produce stable nanoemulsions of Thymus daenensis oil in water by preventing Ostwald ripening and phase separation. The antibacterial activity of bulk and emulsified essential oil against selected pathogenic bacteria including Gram-negative (Haemophilus influenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) were investigated in the liquid and vapour phase. The optimum formulation (L2) contained 2% Tween 80 (surfactant) and 0·1% lecithin (cosurfactant) had a mean droplet diameter of 131 nm. In the liquid phase, the optimized nanoemulsion exhibited good antibacterial activity against S. pneumonia with MIC value of 0·0039 mg mL -1 . In the vapour phase, the MIC values against S. pneumonia were similar (<7·35 μL L -1 ) for both bulk and emulsified essential oil. However, there was no antibacterial activity in the vapour phase against H. influenzae and P. aeruginosa. Analysis of thymol concentration in the head space indicated that the nanoemulsion retarded the release of thymol into the vapour phase. These findings highlight the potential applications of nanoemulsions containing essential oils as antibacterial products. The results of the current study highlight the advantages of nanoemulsification for improvement of the physicochemical properties and the antibacterial activity of T. daenensis EOs in the liquid and vapour phase for therapeutic purposes. © 2017 The Society for Applied Microbiology.

  4. In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell

    NASA Astrophysics Data System (ADS)

    Walte, N.; Keppler, H.

    2005-12-01

    A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.

  5. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.

    PubMed

    Hu, Yandi; Li, Qingyun; Lee, Byeongdu; Jun, Young-Shin

    2014-01-01

    Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe(3+)] = 10(-4) M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al(3+), Al(3+) adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.

  6. Solid-state reduction of iron in olivine-planetary and meteoritic evolution.

    PubMed

    Boland, J N; Duba, A

    1981-11-12

    Iron-nickel metallic particles have been reported in meteorites 1 and lunar 2-5 and terrestrial 6,7 rocks. The origin of these metallic particles is not unique as they may be formed by (1) condensation from a primordial solar nebula 8 ; (2) crystallization from a melt; and (3) subsolidus reduction reactions under low oxygen or sulphur fugacity. We report here an electron microscopy study of the solid-state microstructural development in olivine single crystals (Fo 92 ) in which half of the iron has been reduced to the metallic state by a gas-solid interaction in the temperature range 950-1,500 °C. The reaction, Fo 92 →Fo 96 +metallic Fe(Ni in solid solution)+pyroxene, begins with a homogeneous transformation involving fine-scale metallic precipitates resembling Guinier-Preston zones 9 . The microstructure develops by the growth of the first-formed precipitates during an Ostwald ripening process 9 in which the precipitates located in the dislocation sub-boundaries develop in preference to precipitates in the subgrains. On the other hand, pyroxene is first observed to nucleate heterogeneously at pre-existing dislocations and its coarsening rate is more than an order-of-magnitude faster than that of the metallic phase. Besides the textural similarity of the observed microstructures with that reported for some of the lunar materials 2 , these results have important implications for the physical models of accretion of terrestrial planets, planetesimals and meteorites 10 , especially with respect to the distribution of siderophile elements. The rate of reaction observed here places constraints on models for the formation of the Earth's core by segregation of a metallic phase with or without reduction.

  7. Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina

    2017-12-01

    We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.

  8. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE PAGES

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  9. Luminescence and magnetic properties of novel nanoparticle-sheathed 3D Micro-Architectures of Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) for bifunctional application

    NASA Astrophysics Data System (ADS)

    Krishnan, Rajagopalan; Thirumalai, Jagannathan; Kathiravan, Arunkumar

    2015-01-01

    For the first time, we report the successful synthesis of novel nanoparticle-sheathed bipyramid-like and almond-like Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) 3D hierarchical microstructures through a simple disodium ethylenediaminetetraacetic acid (Na2EDTA) facilitated hydrothermal method. Interestingly, time-dependent experiments confirm that the assembly-disassembly process is responsible for the formation of self-aggregated 3D architectures via Ostwald ripening phenomena. The resultant products are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and magnetic measurements. The growth and formation mechanisms of the self-assembled 3D micro structures are discussed in detail. To confirm the presence of all the elements in the microstructure, the energy loss induced by the K, L shell electron ionization is observed in order to map the Fe, Gd, Mo, O, and Eu components. The photo luminescence properties of Fe0.5R0.5(MoO4)1.5 doped with Eu3+, Tb3+, Dy3+ are investigated. The room temperature and low temperature magnetic properties suggest that the interaction between the local-fields introduced by the magnetic Fe3+ ions and the R3+ (La, Gd) ions in the dodecahedral sites determine the magnetism in Fe0.5R0.5(MoO4)1.5:Eu3+. This work provides a new approach to synthesizing the novel Fe0.5R0.5(MoO4)1.5:Ln3+ for bi-functional magnetic and luminescence applications.

  10. Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology

    NASA Astrophysics Data System (ADS)

    Davis, Ryan Scott

    The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.

  11. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    NASA Astrophysics Data System (ADS)

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.

    2015-12-01

    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  12. Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Champagnon, Bernard; Vouagner, Dominique; Nardou, Eric; Lorenzi, Roberto; Paleari, Alberto

    2013-01-07

    Nanoparticles in amorphous oxides are a powerful tool for embedding a wide range of functions in optical glasses, which are still the best solutions in several applications in the ever growing field of photonics. However, the control of the nanoparticle size inside the host material is often a challenging task, even more challenging when detrimental effects on light transmittance have to be avoided. Here we show how the process of phase separation and subsequent nanocrystallization of a Ga-oxide phase can be controlled in germanosilicates - prototypal systems in optical telecommunications - starting from a Ga-modified glass composition designed to favour uniform liquid-liquid phase separation in the melt. Small angle neutron scattering data demonstrate that nanosized structuring occurs in the amorphous as-quenched glass and gives rise to initially smaller nanoparticles, by heating, as in a secondary phase separation. By further heating, the nanophase evolves with an increase of nanoparticle gyration radius, from a few nm to a saturation value of about 10 nm, through an initial growing process followed by an Ostwald ripening mechanism. Nanoparticles finally crystallize, as indicated by transmission electron microscopy and X-ray diffraction, as γ-Ga(2)O(3)- a metastable gallium oxide polymorph. Infrared reflectance and photoluminescence, together with the optical absorption of Ni ions used as a probe, give an indication of the underlying interrelated processes of the structural change in the glass and in the segregated phase. As a result, our data give for the first time a rationale for designing Ga-modified germanosilicates at the nanoscale, with the perspective of a detailed nanostructuring control.

  13. Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers.

    PubMed

    La Torre, Alessandro; Giménez-López, Maria del Carmen; Fay, Michael W; Rance, Graham A; Solomonsz, William A; Chamberlain, Thomas W; Brown, Paul D; Khlobystov, Andrei N

    2012-03-27

    Graphitized carbon nanofibers (GNFs) act as efficient templates for the growth of gold nanoparticles (AuNPs) adsorbed on the interior (and exterior) of the tubular nanostructures. Encapsulated AuNPs are stabilized by interactions with the step-edges of the individual graphitic nanocones, of which GNFs are composed, and their size is limited to approximately 6 nm, while AuNPs adsorbed on the atomically flat graphitic surfaces of the GNF exterior continue their growth to 13 nm and beyond under the same heat treatment conditions. The corrugated structure of the GNF interior imposes a significant barrier for the migration of AuNPs, so that their growth mechanism is restricted to Ostwald ripening. Conversely, nanoparticles adsorbed on smooth GNF exterior surfaces are more likely to migrate and coalesce into larger nanoparticles, as revealed by in situ transmission electron microscopy imaging. The presence of alkyl thiol surfactant within the GNF channels changes the dynamics of the AuNP transformations, as surfactant molecules adsorbed on the surface of the AuNPs diminished the stabilization effect of the step-edges, thus allowing nanoparticles to grow until their diameters reach the internal diameter of the host nanofiber. Nanoparticles thermally evolved within the GNF channel exhibit alignment, perpendicular to the GNF axis due to interactions with the step-edges and parallel to the axis because of graphitic facets of the nanocones. Despite their small size, AuNPs in GNF possess high stability and remain unchanged at temperatures up to 300 °C in ambient atmosphere. Nanoparticles immobilized at the step-edges within GNF are shown to act as effective catalysts promoting the transformation of dimethylphenylsilane to bis(dimethylphenyl)disiloxane with a greater than 10-fold enhancement of selectivity as compared to free-standing or surface-adsorbed nanoparticles. © 2012 American Chemical Society

  14. Interface-defect-mediated photocatalysis of mesocrystalline ZnO assembly synthesized in-situ via a template-free hydrothermal approach

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wang, Cuicui; Chen, Qifeng; Ren, Baosheng; Guan, Ruifang; Cao, Xiaofeng; Yang, Xiaopeng; Duan, Ran

    2017-08-01

    Both architecture construction and defects engineering of photocatalysts are highly vital in the photocatalytic activity. We report herein that the interface-defect-mediated photocatalytic activity of pompon-like ZnO (P-ZnO) mesocrystal photocatalyst synthesized via an aqueous approach, in the presence of sodium citrate without any other organic templates. The microstructure and defects of the diverse ZnO photocatalysts were examined with various techniques. The results indicated that the P-ZnO assemblies were composed of mesocrystal nanosheets exposed high energy (002) facet with high crystallinity. More importantly, the defects located at the interfaces among the nanocrystals in ZnO mesocrystals played an important role in the photocatalytic activity than that of interstitial zinc vacancies in bulk, which was confirmed by photocatalytic degradation of organic pollutants, such as methylene blue (MB) and 2,4,6-trichlorophenol (2,4,6-TCP). The results showed that the P-ZnO exhibited higher photocatalytic activity than that of the nanosized ZnO (N-ZnO), which could be attributed to not only the unique mesocrystal structure and high energy (002) facet exposed, but also the defects located at interfaces among nanocrystals in ZnO mesocrystals. In addition, the formation mechanism of the P-ZnO was investigated via a time-dependent method. It was found that the formation of P-ZnO hierarchical architecture assembled with ZnO mesocrystals involved a nonclassical crystallization growth and Ostwald Ripening process. This study provides a perspective on the improvement in photocatalytic activity via adjusting the bulk and interface defects and construction of hierarchical architectures of semiconductors.

  15. Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment.

    PubMed

    Zhou, Weiran; Zhou, Pengcheng; Lei, Xunyong; Fang, Zhimin; Zhang, Mengmeng; Liu, Qing; Chen, Tao; Zeng, Hualing; Ding, Liming; Zhu, Jun; Dai, Songyuan; Yang, Shangfeng

    2018-01-17

    Organometal halide CH 3 NH 3 PbI 3 (MAPbI 3 ) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI 3 phase with trace of Cl - is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI 3 to phase-pure MAPbCl 3 , demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl 3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI 3 -based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaSalvia, J.C.; Meyers, M.A.

    The micromechanisms involved in the combustion synthesis of a Ti-C-Ni-Mo mixture resulting in the formation of a TiC-based composite were examined using the combustion wave quenching technique developed by Rogachev et al. At the micron level, the main reaction occurs at the interface between a Ti-Ni-C melt and C particles, resulting in the formation of a solid TiC{sub x} layer on the C particles. This layer undergoes a successive process of rapid growth and decomposition into TiC{sub x} spherules until all of the C particle is consumed. This mechanism is consistent with the apparent activation energy (E = 100 kJ/mol)more » for the process obtained from a macrokinetic investigation of the system. The apparent uniformity in size (d = 1 {mu}m) of the TiC{sub x} spherules upon formation indicates a critical condition in the stability of the energetics involved in the process. These TiC{sub x} spherules undergo growth due to Ostwald ripening and coalescence mechanisms resulting in a final apparent size of 2.5 {mu}m. For the compositions investigated, the addition of Mo did not affect either the micromechanisms or macrokinetics of the combustion synthesis process. Densification of the porous body after the combustion synthesis process can be carried out while it is still in a easily deformable state. The highly porous body is densified by a combination of fracture (communition), plastic deformation, and sintering. The mechanisms are identified for the case of combustion synthesized TiC. Mechanical properties and microstructures of a number of materials (e.g. TiC, TiB{sub 2}, Al{sub 2}O{sub 3}-TiB{sub 2}, TiB{sub 2}-SiC, TiC-Ni-Mo) produced by combustion synthesis combined with a high-velocity forging step are reviewed.« less

  17. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    PubMed

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  18. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  19. A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L.

    Treesearch

    Necia B. Bair; Susan E. Meyer; Phil S. Allen

    2006-01-01

    After-ripening, the loss of dormancy under dry conditions, is associated with a decrease in mean base water potential for germination of Bromus tectorum L. seeds. After-ripening rate is a linear function of temperature above a base temperature, so that dormancy loss can be quantified using a thermal after-ripening time (TAR) model. To incorporate storage water...

  20. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Dapeng

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layermore » up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.« less

  1. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening.

  2. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening. PMID:24364881

  3. The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes

    PubMed Central

    Freiman, Zohar E.; Rosianskey, Yogev; Dasmohapatra, Rajeswari; Kamara, Itzhak; Flaishman, Moshe A.

    2015-01-01

    The traditional definition of climacteric and non-climacteric fruits has been put into question. A significant example of this paradox is the climacteric fig fruit. Surprisingly, ripening-related ethylene production increases following pre- or postharvest 1-methylcyclopropene (1-MCP) application in an unexpected auto-inhibitory manner. In this study, ethylene production and the expression of potential ripening-regulator, ethylene-synthesis, and signal-transduction genes are characterized in figs ripening on the tree and following preharvest 1-MCP application. Fig ripening-related gene expression was similar to that in tomato and apple during ripening on the tree, but only in the fig inflorescence–drupelet section. Because the pattern in the receptacle is different for most of the genes, the fig drupelets developed inside the syconium are proposed to function as parthenocarpic true fruit, regulating ripening processes for the whole accessory fruit. Transcription of a potential ripening regulator, FcMADS8, increased during ripening on the tree and was inhibited following 1-MCP treatment. Expression patterns of the ethylene-synthesis genes FcACS2, FcACS4, and FcACO3 could be related to the auto-inhibition reaction of ethylene production in 1-MCP-treated fruit. Along with FcMADS8 suppression, gene expression analysis revealed upregulation of FcEBF1, and downregulation of FcEIL3 and several FcERFs by 1-MCP treatment. This corresponded with the high storability of the treated fruit. One FcERF was overexpressed in the 1-MCP-treated fruit, and did not share the increasing pattern of most FcERFs in the tree-ripened fig. This demonstrates the potential of this downstream ethylene-signal-transduction component as an ethylene-synthesis regulator, responsible for the non-climacteric auto-inhibition of ethylene production in fig. PMID:25956879

  4. Crystallization mechanisms in cream during ripening and initial butter churning.

    PubMed

    Buldo, Patrizia; Kirkensgaard, Jacob J K; Wiking, Lars

    2013-01-01

    The temperature treatment of cream is the time-consuming step in butter production. A better understanding of the mechanisms leading to partial coalescence, such as fat crystallization during ripening and churning of the cream, will contribute to optimization of the production process. In this study, ripening and churning of cream were performed in a rheometer cell and the mechanisms of cream crystallization during churning of the cream, including the effect of ripening time, were investigated to understand how churning time and partial coalescence are affected. Crystallization mechanisms were studied as function of time by differential scanning calorimetry, nuclear magnetic resonance and by X-ray scattering. Microstructure formation was investigated by small deformation rheology and static light scattering. The study demonstrated that viscosity measurements can be used to detect phase inversion of the emulsion during churning of the cream in a rheometer cell. Longer ripening time (e.g., 5h vs. 0 h) resulted in larger butter grains (91 vs. 52 µm), higher viscosity (5.3 vs. 1.3 Pa · s), and solid fat content (41 vs. 13%). Both ripening and churning time had an effect on the thermal behavior of the cream. Despite the increase in solid fat content, no further changes in crystal polymorphism and in melting behavior were observed after 1h of ripening and after churning. The churning time significantly decreased after 0.5h of ripening, from 22.9 min for the cream where no ripening was applied to 16.23 min. Therefore, the crystallization state that promotes partial coalescence (i.e., aggregation of butter grains) is obtained within the first hour of cream ripening at 10 °C. The present study adds knowledge on the fundamental processes of crystallization and polymorphism of milk fat occurring during ripening and churning of cream. In addition, the dairy industry will benefit from these insights on the optimization of butter manufacturing. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling

    NASA Astrophysics Data System (ADS)

    Schwarze, C.; Gupta, A.; Hickel, T.; Darvishi Kamachali, R.

    2017-05-01

    We investigate the evolution of large number of δ' coherent precipitates from a supersaturated Al-8 at.% Li alloy using large-scale phase-field simulations. A chemomechanical cross-coupling between mechanical relaxation and diffusion is taken into account by considering the dependence of elastic constants of the matrix phase onto the local concentration of solute atoms. The elastic constants as a function of solute concentration have been obtained using density functional theory calculations. As a result of the coupling, inverse ripening has been observed where the smaller precipitates grow at the expense of the larger ones. This is due to size-dependent concentration gradients existing around the precipitates. At the same time, precipitates rearrange themselves as a consequence of minimization of the total elastic energy of the system. It is found that the anisotropy of the chemomechanical coupling leads to the formation of new patterns of elasticity in the matrix thereby resulting in new alignments of the precipitates.

  6. The Abundant Class III Chitinase Homolog in Young Developing Banana Fruits Behaves as a Transient Vegetative Storage Protein and Most Probably Serves as an Important Supply of Amino Acids for the Synthesis of Ripening-Associated Proteins1

    PubMed Central

    Peumans, Willy J.; Proost, Paul; Swennen, Rony L.; Van Damme, Els J.M.

    2002-01-01

    Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a β-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669

  7. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  8. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    PubMed

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  9. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages

    PubMed Central

    Tranbarger, Timothy J.; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne

    2017-01-01

    The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are regulated by evolutionarily conserved molecular physiological processes. PMID:28487710

  10. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    PubMed

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  11. Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango

    PubMed Central

    Singh, Rajesh K.; Ali, Sharique A.; Nath, Pravendra; Sane, Vidhu A.

    2011-01-01

    Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit. PMID:21430290

  12. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression.

    PubMed

    Daminato, Margherita; Guzzo, Flavia; Casadoro, Giorgio

    2013-09-01

    Strawberries (Fragaria×ananassa) are false fruits the ripening of which follows the non-climacteric pathway. The role played by a C-type MADS-box gene [SHATTERPROOF-like (FaSHP)] in the ripening of strawberries has been studied by transiently modifying gene expression through either over-expression or RNA-interference-mediated down-regulation. The altered expression of the FaSHP gene caused a change in the time taken by the over-expressing and the down- regulated fruits to attain the pink stage, which was slightly shorter and much longer, respectively, compared to controls. In parallel with the modified ripening times, the metabolome components and the expression of ripening-related genes also appeared different in the transiently modified fruits. Differences in the response time of the analysed genes suggest that FaSHP can control the expression of ripening genes either directly or indirectly through other transcription factor-encoding genes. Because fleshy strawberries are false fruits these results indicate that C-type MADS-box genes like SHATTERPROOF may act as modulators of ripening in fleshy fruit-like structures independently of their anatomical origin. Treatment of strawberries with either auxin or abscisic acid had antagonistic impacts on both the expression of FaSHP and the expression of ripening-related genes and metabolome components.

  13. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    PubMed Central

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  14. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene

    PubMed Central

    Johnston, Jason W.; Gunaseelan, Kularajathaven; Pidakala, Paul; Wang, Mindy; Schaffer, Robert J.

    2009-01-01

    In this study, it is shown that anti-sense suppression of Malus domestica 1-AMINO-CYCLOPROPANE-CARBOXYLASE OXIDASE (MdACO1) resulted in fruit with an ethylene production sufficiently low to be able to assess ripening in the absence of ethylene. Exposure of these fruit to different concentrations of exogenous ethylene showed that flesh softening, volatile biosynthesis, and starch degradation, had differing ethylene sensitivity and dependency. Early ripening events such as the conversion of starch to sugars showed a low dependency for ethylene, but a high sensitivity to low concentrations of ethylene (0.01 μl l−1). By contrast, later ripening events such as flesh softening and ester volatile production showed a high dependency for ethylene but were less sensitive to low concentrations (needing 0.1 μl l−1 for a response). A sustained exposure to ethylene was required to maintain ripening, indicating that the role of ethylene may go beyond that of ripening initiation. These results suggest a conceptual model for the control of individual ripening characters in apple, based on both ethylene dependency and sensitivity. PMID:19429839

  15. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits.

    PubMed

    Chen, Jiao; Liu, Xixia; Li, Fenfang; Li, Yixing; Yuan, Debao

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits.

  16. Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses

    PubMed Central

    Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal

    2015-01-01

    Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897

  17. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits

    PubMed Central

    Li, Fenfang; Li, Yixing

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits. PMID:29253879

  18. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.

    PubMed

    Li, Tong; Jiang, Zhongyu; Zhang, Lichao; Tan, Dongmei; Wei, Yun; Yuan, Hui; Li, Tianlai; Wang, Aide

    2016-12-01

    Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.

    PubMed

    Grassi, Stefania; Piro, Gabriella; Lee, Je Min; Zheng, Yi; Fei, Zhangjun; Dalessandro, Giuseppe; Giovannoni, James J; Lenucci, Marcello S

    2013-11-12

    Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Total carotenoids progressively increased during fruit ripening up to ~55 μg g(-1) fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening.

  20. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    PubMed Central

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  1. Physiological, molecular and ultrastructural analyses during ripening and over-ripening of banana (Musa spp., AAA group, Cavendish sub-group) fruit suggest characteristics of programmed cell death.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, C Eduardo; Kelley, Karen

    2018-01-01

    Programmed cell death (PCD) is a part of plant development that has been studied for petal senescence and vegetative tissue but has not been thoroughly investigated for fleshy fruits. The purpose of this research was to examine ripening and over-ripening in banana fruit to determine if there were processes in common to previously described PCD. Loss of cellular integrity (over 40%) and development of senescence related dark spot (SRDS) occurred after day 8 in banana peel. Nuclease and protease activity in the peel increased during ripening starting from day 2, and decreased during over-ripening. The highest activity was for proteases and nucleases with apparent molecular weights of 86 kDa and 27 kDa, respectively. Images of SRDS showed shrinkage of the upper layers of cells, visually suggesting cell death. Decrease of electron dense areas was evident in TEM micrographs of nuclei. This study shows for the first time that ripening and over-ripening of banana peel share physiological and molecular processes previously described in plant PCD. SRDS could represent a morphotype of PCD that characterizes a structural and biochemical failure in the upper layers of the peel, thereafter spreading to lower and adjacent layers of cells. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes

    PubMed Central

    Feng, Bi-hong; Han, Yan-chao; Xiao, Yun-yi; Kuang, Jian-fei; Fan, Zhong-qi; Chen, Jian-ye; Lu, Wang-jin

    2016-01-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1–MaDof25. Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. PMID:26889012

  3. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.

    PubMed

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne

    2016-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Effects of atmospheric composition on respiratory behavior, weight loss, and appearance of Camembert-type cheeses during chamber ripening.

    PubMed

    Picque, D; Leclercq-Perlat, M-N; Corrieu, G

    2006-08-01

    Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses.

  5. Effect of Gamma Radiation on the Ripening of Bartlett Pears 1

    PubMed Central

    Maxie, E. C.; Sommer, N. F.; Muller, Carlos J.; Rae, Henry L.

    1966-01-01

    Gamma radiation at doses of 300 Krad or more inhibits the ripening of Bartlett pears (Pyrus communis L.). Immediately after irradiation there is a transitory burst of C2H4, which subsequently declines in fruits subjected to inhibitory doses. Ethylene production associated with ripening begins at the same time in unirradiated fruits and those subjected to noninhibitory doses, but the latter produces much more C2H4 at the climacteric peak. Fruits subjected to inhibitory doses produce low levels of C2H4 unless subjected to exogenously applied C2H4, whereupon they produce enough of the gas to induce ripening in unirradiated fruits. Pears subjected to 300 and 400 Krad of gamma rays did not ripen even when held in a flowing atmosphere containing 1000 ppm of C2H4 for 8 days at 20°. It is concluded that the action of gamma rays on Bartlett pears involves both an inhibition of C2H4 production and a decreased sensitivity of the fruit to the ripening action of the gas. Ripening of Bartlett pears is inhibited by gamma radiation only when applied to preclimacteric fruit. PMID:16656274

  6. The influence of ripening temperature on ‘Hass’ fruit quality

    USDA-ARS?s Scientific Manuscript database

    Previous research demonstrated the importance of temperature management during avocado (Persea americana Mill) fruit ripening; however this work was focused on maintaining the fruit at elevated temperatures continuously during the ripening process. We examined the influence of short duration high t...

  7. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    PubMed

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening

    PubMed Central

    Inês, Carla; Parra-Lobato, Maria C.; Paredes, Miguel A.; Labrador, Juana; Gallardo, Mercedes; Saucedo-García, Mariana; Gavilanes-Ruiz, Marina; Gomez-Jimenez, Maria C.

    2018-01-01

    Plant sphingolipids are involved in the building of the matrix of cell membranes and in signaling pathways of physiological processes and environmental responses. However, information regarding their role in fruit development and ripening, a plant-specific process, is unknown. The present study seeks to determine whether and, if so, how sphingolipids are involved in fleshy-fruit development and ripening in an oil-crop species such as olive (Olea europaea L. cv. Picual). Here, in the plasma-membranes of live protoplasts, we used fluorescence to examine various specific lipophilic stains in sphingolipid-enriched regions and investigated the composition of the sphingolipid long-chain bases (LCBs) as well as the expression patterns of sphingolipid-related genes, OeSPT, OeSPHK, OeACER, and OeGlcCerase, during olive-fruit development and ripening. The results demonstrate increased sphingolipid content and vesicle trafficking in olive-fruit protoplasts at the onset of ripening. Moreover, the concentration of LCB [t18:1(8Z), t18:1 (8E), t18:0, d18:2 (4E/8Z), d18:2 (4E/8E), d18:1(4E), and 1,4-anhydro-t18:1(8E)] increases during fruit development to reach a maximum at the onset of ripening, although these molecular species decreased during fruit ripening. On the other hand, OeSPT, OeSPHK, and OeGlcCerase were expressed differentially during fruit development and ripening, whereas OeACER gene expression was detected only at the fully ripe stage. The results provide novel data about sphingolipid distribution, content, and biosynthesis/turnover gene transcripts during fleshy-fruit ripening, indicating that all are highly regulated in a developmental manner. PMID:29434611

  9. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    PubMed

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption.

  10. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    PubMed

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general.

  11. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313

  12. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    PubMed Central

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  13. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    PubMed Central

    2012-01-01

    Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions. PMID:22330838

  14. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor.

    PubMed

    Ríos, Pablo; Argyris, Jason; Vegas, Juan; Leida, Carmen; Kenigswald, Merav; Tzuri, Galil; Troadec, Christelle; Bendahmane, Abdelhafid; Katzir, Nurit; Picó, Belén; Monforte, Antonio J; Garcia-Mas, Jordi

    2017-08-01

    Fruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.5 and ETHQV6.3, into the non-climacteric 'Piel de Sapo' background are able to induce climacteric ripening independently. We report that the gene underlying ETHQV6.3 is MELO3C016540 (CmNAC-NOR), encoding a NAC (NAM, ATAF1,2, CUC2) transcription factor that is closely related to the tomato NOR (non-ripening) gene. CmNAC-NOR was functionally validated through the identification of two TILLING lines carrying non-synonymous mutations in the conserved NAC domain region. In an otherwise highly climacteric genetic background, both mutations provoked a significant delay in the onset of fruit ripening and in the biosynthesis of ethylene. The PI 161375 allele of ETHQV6.3 is similar to that of climacteric lines of the cantalupensis type and, when introgressed into the non-climacteric 'Piel de Sapo', partially restores its climacteric ripening capacity. CmNAC-NOR is expressed in fruit flesh of both climacteric and non-climacteric lines, suggesting that the causal mutation may not be acting at the transcriptional level. The use of a comparative genetic approach in a species with both climacteric and non-climacteric ripening is a powerful strategy to dissect the complex mechanisms regulating the onset of fruit ripening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Comparative Transcriptome Analyses between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild Type Suggest the Functions of ABA, Sucrose and JA during Citrus Fruit Ripening

    PubMed Central

    Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin

    2014-01-01

    A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568

  16. Viscosity of Common Seed and Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  17. Stochastic transitions and jamming in granular pipe flow

    NASA Astrophysics Data System (ADS)

    Brand, Samuel; Ball, Robin C.; Nicodemi, Mario

    2011-03-01

    We study a model granular suspension driven down a channel by an embedding fluid via computer simulations. We characterize the different system flow regimes and the stochastic nature of the transitions between them. For packing fractions below a threshold ϕm, granular flow is disordered and exhibits an Ostwald-de Waele-type power-law shear-stress constitutive relation. Above ϕm, two asymptotic states exist; disordered flow can persist indefinitely, yet, in a fraction of samples, the system self-organizes in an ordered form of flow where grains move in parallel ordered layers. In the latter regime, the Ostwald-de Waele relationship breaks down and a nearly solid plug appears in the center, with linear shear regions at the boundaries. Above a higher threshold ϕg, an abrupt jamming transition is observed if ordering is avoided.

  18. Transcriptomic analysis of apple fruit ripening and texture attributes

    USDA-ARS?s Scientific Manuscript database

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. The ripening behavior and texture attributes of two apple cultivars, ‘Pink Lady’ and ‘Honey...

  19. A DEMETER-like DNA demethylase governs tomato fruit ripening

    USDA-ARS?s Scientific Manuscript database

    This work shows that active DNA demethylation governs ripening, an important plant developmental process. Our work defines a molecular mechanism, which has until now been missing, to explain the correlation between genomic DNA demethylation and fruit ripening. It demonstrates a direct cause-and-effe...

  20. How chemical ripeners of sugarcane affect the starch and color quality of juices

    USDA-ARS?s Scientific Manuscript database

    The application of chemical ripeners is an important component of sugarcane cultivation management to increase sucrose concentrations. Unfortunately, very little information is available concerning the effects of ripener on quality parameters which are critical to both factory and refinery processi...

  1. Acrylamide formation in plantain (Musa paradisiaca) chips influenced by different ripening stages: A correlation study with respect to reducing sugars, amino acids and phenolic content.

    PubMed

    Shamla, L; Nisha, P

    2017-05-01

    The effect of ripening on the formation of acrylamide in deep fried plantain chips made from Nendran variety (Musa paradisiaca) was investigated. The precursors of acrylamide formation, reducing sugars (glucose and fructose) and ten major amino acids, were quantified during different stages of ripening using HPLC and correlated with acrylamide formation. The total phenolic content and total flavonoid content were also estimated and correlated with acrylamide formation. Both glucose and fructose increased during ripening and demonstrated a positive correlation on formation of acrylamide (correlation coefficient of r=0.95 and 0.94 respectively (p<0.05), whereas asparagine, was poorly correlated (p>0.05). The decreased levels of phenolic content during ripening of plantain were negatively correlated with acrylamide formation in the deep fried chips prepared. Thus the selection of proper ripening stage renders reduced formation of acrylamide in plantain chips to a reasonable extend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The effect of ripening stages on the antioxidant potential of melon (Cucumis melo L.) cultivar Hikapel

    NASA Astrophysics Data System (ADS)

    Wulandari, Puji; Daryono, Budi Setiadi; Supriyadi

    2017-06-01

    Melon (Cucumis melo L.) cultivar Hikapel, a new cultivar of melon, is one of non-netted orange-fleshed melon. Non-netted orange-fleshed melon is known as source of several phytochemicals such as phenolics, flavonoids, ascorbic acid, and carotenoids. During the ripening stages there are chemical changes of the fruit including antioxidant properties. The aims of this research were to study the changes of antioxidant activity and antioxidant compound during ripening stages of melon cv. Hikapel. Melon with three ripening stages (27 DAA, 29 DAA, and 32 DAA) were harvested and analyzed their antioxidant activity, ascorbic acid, total-phenolic, -flavonoid, and -carotenoid content. The results showed that ascorbic acid and carotenoid content increased during ripening stages, whereas total phenolic and antioxidant activity decreased. The ripening stages affected antioxidant activity of Cucumis melo L. cv. Hikapel. Antioxidant activity positively correlated with ascorbic acid, total-phenolic, and -flavonoid content. On the other hand, total carotenoid negatively correlated with antioxidant activity.

  3. Temperature and relative humidity influence the ripening descriptors of Camembert-type cheeses throughout ripening.

    PubMed

    Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G

    2015-02-01

    Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes.

    PubMed

    Meli, Vijaykumar S; Ghosh, Sumit; Prabha, T N; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2010-02-09

    In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.

  5. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    PubMed

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP.

  6. Role of Sucrose Phosphate Synthase in Sucrose Biosynthesis in Ripening Bananas and Its Relationship to the Respiratory Climacteric 1

    PubMed Central

    Hubbard, Natalie L.; Pharr, D. Mason; Huber, Steven C.

    1990-01-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO2 respired during ripening was positively correlated with sugar accumulation (R2 = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO2 was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  7. Expression profiling of various genes during the fruit development and ripening of mango.

    PubMed

    Pandit, Sagar S; Kulkarni, Ram S; Giri, Ashok P; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Gupta, Vidya S

    2010-06-01

    Mango (Mangifera indica L. cv. Alphonso) development and ripening are the programmed processes; conventional indices and volatile markers help to determine agronomically important stages of fruit life (fruit-setting, harvesting maturity and ripening climacteric). However, more and precise markers are required to understand this programming; apparently, fruit's transcriptome can be a good source of such markers. Therefore, we isolated 18 genes related to the physiology and biochemistry of the fruit and profiled their expression in developing and ripening fruits, flowers and leaves of mango using relative quantitation PCR. In most of the tissues, genes related to primary metabolism, abiotic stress, ethylene response and protein turnover showed high expression as compared to that of the genes related to flavor production. Metallothionin and/or ethylene-response transcription factor showed highest level of transcript abundance in all the tissues. Expressions of mono- and sesquiterpene synthases and 14-3-3 lowered during ripening; whereas, that of lipoxygenase, ethylene-response factor and ubiquitin-protein ligase increased during ripening. Based on these expression profiles, flower showed better positive correlation with developing and ripening fruits than leaf. Most of the genes showed their least expression on the second day of harvest, suggesting that harvesting signals significantly affect the fruit metabolism. Important stages in the fruit life were clearly indicated by the significant changes in the expression levels of various genes. These indications complemented those from the previous analyses of fruit development, ripening and volatile emission, revealing the harmony between physiological, biochemical and molecular activities of the fruit.

  8. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit.

    PubMed

    Asiche, William O; Mitalo, Oscar W; Kasahara, Yuka; Tosa, Yasuaki; Mworia, Eric G; Owino, Willis O; Ushijima, Koichiro; Nakano, Ryohei; Yano, Kentaro; Kubo, Yasutaka

    2018-03-21

    Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acβ-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acβ-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acβ-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable endogenous ethylene production, and coincided with increased expression of low temperature-responsive DEGs as well as the decrease in environmental temperature. These results indicate that kiwifruit possess both ethylene-dependent and low temperature-modulated ripening mechanisms that are distinct and independent of each other. The current work provides a foundation for elaborating the control of these two ripening mechanisms in kiwifruit.

  9. 21 CFR 133.182 - Soft ripened cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Soft ripened cheeses. 133.182 Section 133.182 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.182 Soft ripened cheeses. (a) The cheeses for which definitions and standards of...

  10. A DEMETER-like DNA demethylase governs tomato fruit ripening.

    PubMed

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H; Maucourt, Mickael; Hodgman, T Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B; Giovannoni, James J; Gallusci, Philippe

    2015-08-25

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening- an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.

  11. Lipolytic and oxidative changes in 'Chorizo' during ripening.

    PubMed

    Fernández, M C; Rodríguez, J M

    1991-01-01

    Changes in fats during the ripening of 'chorizo'-a Spanish dry sausage- elaborated by traditional and industrial processes have been studied. Total free fatty acids (FFA), carbonyls, volatile fatty acids (acetic acid), TBA number and individual FFA were determined. A marked increase of total free fatty acids was observed, although an increase of rancidity was not detected. Except in one of the batches studied in which a rise in carbonyls was reported, these compounds remained unchanged during the ripening in the rest of the batches analysed. No significant change occurred in the proportions of different free fatty acids during ripening in both types of 'chorizo'. There was a marked increase of acetic acid during the first days of ripening followed by a slow fall in the ultimate stages. Copyright © 1990. Published by Elsevier Ltd.

  12. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.

    PubMed

    Keller, Markus; Zhang, Yun; Shrestha, Pradeep M; Biondi, Marco; Bondada, Bhaskar R

    2015-06-01

    We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink-driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought-induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink-driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow. © 2014 John Wiley & Sons Ltd.

  13. Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese.

    PubMed

    Cakmakci, Songul; Gurses, Mustafa; Hayaloglu, A Adnan; Cetin, Bulent; Sekerci, Pinar; Dagdemir, Elif

    2015-01-01

    Mould-ripened civil is a traditional cheese produced mainly in eastern Turkey. The cheese is produced with a mixture of civil and whey curd cheeses (lor). This mixture is pressed into goat skins or plastic bags and is ripened for more than three months. Naturally occurring moulds grow on the surface and inside of the cheese during ripening. In this research, 140 Penicillium roqueforti strains were isolated from 41 samples of mould-ripened civil cheese collected from Erzurum and around towns in eastern Turkey. All strains were capable of mycotoxin production and were analysed using an HPLC method. It was established that all the strains (albeit at very low levels) produced roquefortine C, penicillic acid, mycophenolic acid and patulin. The amounts of toxins were in the ranges 0.4-47.0, 0.2-43.6, 0.1-23.1 and 0.1-2.3 mg kg(-1), respectively. Patulin levels of the samples were lower than the others. The lowest level and highest total mycotoxin levels were determined as 1.2 and 70.1 mg kg(-1) respectively. The results of this preliminary study may help in the choice of secondary cultures for mould-ripened civil cheese and other mould-ripened cheeses.

  14. Identification of genes differentially expressed during ripening of banana.

    PubMed

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  15. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis

    PubMed Central

    Yuan, Xin-Yu; Wang, Rui-Heng; Zhao, Xiao-Dan; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato. PMID:27732677

  16. Comprehensive ripeness-index for prediction of ripening level in mangoes by multivariate modelling of ripening behaviour

    NASA Astrophysics Data System (ADS)

    Eyarkai Nambi, Vijayaram; Thangavel, Kuladaisamy; Manickavasagan, Annamalai; Shahir, Sultan

    2017-01-01

    Prediction of ripeness level in climacteric fruits is essential for post-harvest handling. An index capable of predicting ripening level with minimum inputs would be highly beneficial to the handlers, processors and researchers in fruit industry. A study was conducted with Indian mango cultivars to develop a ripeness index and associated model. Changes in physicochemical, colour and textural properties were measured throughout the ripening period and the period was classified into five stages (unripe, early ripe, partially ripe, ripe and over ripe). Multivariate regression techniques like partial least square regression, principal component regression and multi linear regression were compared and evaluated for its prediction. Multi linear regression model with 12 parameters was found more suitable in ripening prediction. Scientific variable reduction method was adopted to simplify the developed model. Better prediction was achieved with either 2 or 3 variables (total soluble solids, colour and acidity). Cross validation was done to increase the robustness and it was found that proposed ripening index was more effective in prediction of ripening stages. Three-variable model would be suitable for commercial applications where reasonable accuracies are sufficient. However, 12-variable model can be used to obtain more precise results in research and development applications.

  17. Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition.

    PubMed

    Diboun, Ilhame; Mathew, Sweety; Al-Rayyashi, Maryam; Elrayess, Mohamed; Torres, Maria; Halama, Anna; Méret, Michaël; Mohney, Robert P; Karoly, Edward D; Malek, Joel; Suhre, Karsten

    2015-12-16

    Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology.

  18. Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq.

    PubMed

    Shen, Yan Hong; Lu, Bing Guo; Feng, Li; Yang, Fei Ying; Geng, Jiao Jiao; Ming, Ray; Chen, Xiao Jing

    2017-08-31

    Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya fruit. Comparing the differential gene expression in ETH/1-MCP-treated papaya using RNA-seq is a sound approach to isolate ripening-related genes. The results of this study can improve our understanding of papaya fruit ripening molecular mechanism and reveal candidate fruit ripening-related genes for further research.

  19. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    PubMed

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  20. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum).

    PubMed

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.

  1. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. “Hayward”] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this “dilemma,” kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L−1, 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  2. Tissue Specific Localization of Pectin–Ca2+ Cross-Linkages and Pectin Methyl-Esterification during Fruit Ripening in Tomato (Solanum lycopersicum)

    PubMed Central

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue. PMID:24236073

  3. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.

    PubMed

    Maheshwari, Shantanu; van der Hoef, Martin; Rodrı Guez Rodrı Guez, Javier; Lohse, Detlef

    2018-03-27

    The stability of two neighboring surface nanobubbles on a chemically heterogeneous surface is studied by molecular dynamics (MD) simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. A diffusion equation-based stability analysis suggests that two nanobubbles sitting next to each other remain stable, provided the contact line is pinned, and that their radii of curvature are equal. However, many experimental observations seem to suggest some long-term kind of ripening or shrinking of the surface nanobubbles. In our MD simulations we find that the growth/dissolution of the nanobubbles can occur due to the transfer of gas particles from one nanobubble to another along the solid substrate. That is, if the interaction between the gas and the solid is strong enough, the solid-liquid interface can allow for the existence of a "tunnel" which connects the liquid-gas interfaces of the two nanobubbles to destabilize the system. The crucial role of the gas-solid interaction energy is a nanoscopic element that hitherto has not been considered in any macroscopic theory of surface nanobubbles and may help to explain experimental observations of the long-term ripening.

  4. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue

    USDA-ARS?s Scientific Manuscript database

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programs of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and...

  5. Complex interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. virgin olive oil phenols, volatiles and sensory quality.

    PubMed

    Lukić, Igor; Žanetić, Mirella; Jukić Špika, Maja; Lukić, Marina; Koprivnjak, Olivera; Brkić Bubola, Karolina

    2017-10-01

    The interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. (Olea europaea L.) virgin olive oil phenols, volatiles, and sensory quality were investigated. Olives were picked at three ripening degrees with International Olive Council indices of 0.68, 2.48 and 4.10, and processed by malaxation at 22 and 30°C, and at both temperatures for 30 and 60min. Ripening exhibited the strongest effect, and malaxation duration the weakest. Phenols were generally found to decrease during ripening; however 3,4-DHPEA-EDA and p-HPEA-EDA increased. Similar behaviour was observed for (E)-2-hexenal. Higher malaxation temperature induced an increase in particular important phenols and C6 alcohols, while C6 aldehydes mostly decreased. Interactions between the factors were established, mostly between ripening degree and malaxation temperature: the effect of the latter was most pronounced for ripe olives, especially for 3,4-DHPEA-EDA, p-HPEA-EDA and C6 volatiles. Sensory attributes were generally in agreement with the chemical composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit.

    PubMed

    Dang, Khuyen T H; Singh, Zora; Swinny, Ewald E

    2008-02-27

    The effects of different edible coatings on mango fruit ripening and ripe fruit quality parameters including color, firmness, soluble solids concentrations, total acidity, ascorbic acid, total carotenoids, fatty acids, and aroma volatiles were investigated. Hard mature green mango (Mangifera indica L. cv. Kensigton Pride) fruits were coated with aqueous mango carnauba (1:1 v/v), Semperfresh (0.6%), Aloe vera gel (1:1, v/v), or A. vera gel (100%). Untreated fruit served as the control. Following the coating, fruits were allowed to dry at room temperature and packed in soft-board trays to ripen at 21+/-1 degrees C and 55.2+/-11.1% relative humidity until the eating soft stage. Mango carnauba was effective in retarding fruit ripening, retaining fruit firmness, and improving fruit quality attributes including levels of fatty acids and aroma volatiles. Semperfresh and A. vera gel (1:1 or 100%) slightly delayed fruit ripening but reduced fruit aroma volatile development. A. vera gel coating did not exceed the commercial mango carnauba and Semperfresh in retarding fruit ripening and improving aroma volatile biosynthesis.

  7. Olive oil quality and ripening in super-high-density Arbequina orchard.

    PubMed

    Benito, Marta; Lasa, José Manuel; Gracia, Pilar; Oria, Rosa; Abenoza, María; Varona, Luis; Sánchez-Gimeno, Ana Cristina

    2013-07-01

    The aim of this work was to evaluate the evolution of the quality of extra virgin olive oil obtained from a super-high-density Arbequina orchard, under a drip irrigation system, throughout the ripening process. For this objective, physicochemical, nutritional and sensory parameters were studied. In addition, the oxidative stability, pigment content and colour evolution of olive oil were analysed during the ripening process. Free acidity increased slightly throughout the ripening process, while peroxide value and extinction coefficient decreased. Total phenol content and oxidative stability showed a similar trend, increasing at the beginning of ripening up to a maximum and thereafter decreasing. α-Tocopherol and pigment contents decreased with ripening, leading to changes in colour coordinates. Sensory parameters were correlated with total phenol content, following a similar trend throughout the maturation process. By sampling and monitoring the ripeness index weekly, it would be possible to determine an optimal harvesting time for olives according to the industrial yield and the physicochemical, nutritional and sensory properties of the olive oil. © 2012 Society of Chemical Industry.

  8. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    PubMed

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.

  9. The influence of the wooden equipment employed for cheese manufacture on the characteristics of a traditional stretched cheese during ripening.

    PubMed

    Di Grigoli, Antonino; Francesca, Nicola; Gaglio, Raimondo; Guarrasi, Valeria; Moschetti, Marta; Scatassa, Maria Luisa; Settanni, Luca; Bonanno, Adriana

    2015-04-01

    The influence of the wooden equipment used for the traditional cheese manufacturing from raw milk was evaluated on the variations of chemico-physical characteristics and microbial populations during the ripening of Caciocavallo Palermitano cheese. Milk from two farms (A, extensive; B, intensive) was processed in traditional and standard conditions. Chemical and physical traits of cheeses were affected by the farming system and the cheese making technology, and changed during ripening. Content in NaCl and N soluble was lower, and paste consistency higher in cheese from the extensive farm and traditional technology, whereas ripening increased the N soluble and the paste yellow and consistency. The ripening time decreased the number of all lactic acid bacteria (LAB) groups, except enterococci detected at approximately constant levels (10(4) and 10(5) cfu g(-1) for standard and traditional cheeses, respectively), till 120 d of ripening. In all productions, at each ripening time, the levels detected for enterococci were lower than those for the other LAB groups. The canonical discriminant analysis of chemical, physical and microbiological data was able to separate cheeses from different productions and ripening time. The dominant LAB were isolated, phenotypically characterised and grouped, genetically differentiated at strain level and identified. Ten species of LAB were found and the strains detected at the highest levels were Pediococcus acidilactici and Lactobacillus casei. Ten strains, mainly belonging to Lactobacillus rhamnosus and Lactobacillus fermentum showed an antibacterial activity. The comparison of the polymorphic profiles of the LAB strains isolated from the wooden vat with those of the strains collected during maturation, showed the persistence of three enterococci in traditional cheeses, with Enterococcus faecalis found at dominant levels over the Enterococcus population till 120 d; the absence of these strains in the standard productions evidenced the contribution of vat LAB during Caciocavallo Palermitano cheese ripening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin. PMID:22768087

  11. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits.

    PubMed

    Muñoz-Bertomeu, J; Miedes, E; Lorences, E P

    2013-09-01

    Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Changes in proteins during the ripening of Spanish dried beef 'Cecina'.

    PubMed

    García, I; Díez, V; Zumalacárregui, J M

    1997-08-01

    Changes in the solubility of sarcoplasmic and myofibrillar proteins were tracked in Semitendinosus and Rectus femoris muscles during the ripening process of Spanish 'Cecina'. The extractability of both types of proteins decreased during the ripening. This phenomenon was more marked in the initial stages of processing. Electrophoretic studies of the myofibrillar proteins showed the virtual disappearance of the myosin heavy chain, troponin C and myosin light chain 2 from the smoking phase onward and the appearance of three components of molecular weight of about 65, 70 and 75 kda during ripening. The remaining proteins did not suffer appreciable changes.

  13. Garden-like perovskite superstructures with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation. Electronic supplementary information (ESI) available: FESEM images and the XRD pattern of SrTiO3 films (effects of growth temperature, initial precursor concentration, and pH value), EDS analysis of ZnO, TiO2 and SrTiO3, the XRD pattern and PL spectra of PbTiO3, UV-vis spectra of different films, and UV photo-degradation of MB. See DOI: 10.1039/c3nr05564g

  14. Li1.2Mn0.6Ni0.1Co0.1O2 microspheres constructed by hierarchically arranged nanoparticles as lithium battery cathode with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Remith, P.; Kalaiselvi, N.

    2014-11-01

    Novel lithium-rich layered Li1.2Mn0.6Ni0.1Co0.1O2 microspheres containing hierarchically arranged and interconnected nanostructures have been synthesized by a combination of template-free co-precipitation and solid-state methods. The in situ formed γ-MnO2 spherical template upon co-precipitation gets sacrificed during the course of solid-state fusion of cobalt, nickel and lithium precursors to produce the title compound in the form of microspheres constructed by nanoparticles as building blocks. Porous and hollow microspheres of Li1.2Mn0.6Ni0.1Co0.1O2 are formed out of the spontaneous aggregation of nanoparticles, obtained from the custom-designed synthesis protocol. The growth mechanism of Li1.2Mn0.6Ni0.1Co0.1O2 spheres could be understood in terms of the Kirkendall effect and Ostwald ripening. The nanocrystalline Li1.2Mn0.6Ni0.1Co0.1O2 compound is obtained as a solid solution consisting of rhombohedral R3&cmb.macr;m and monoclinic C2/m group symmetries, as evidenced by XRD, Raman spectra and HRTEM equipped with FFT and STEM. The currently synthesized Li1.2Mn0.6Ni0.1Co0.1O2 cathode exhibits an appreciable discharge capacity of 242 mA h g-1 at a current density of 50 mA g-1, due to the synergistic effect of the capacity obtained from the rhombohedral and monoclinic phases.Novel lithium-rich layered Li1.2Mn0.6Ni0.1Co0.1O2 microspheres containing hierarchically arranged and interconnected nanostructures have been synthesized by a combination of template-free co-precipitation and solid-state methods. The in situ formed γ-MnO2 spherical template upon co-precipitation gets sacrificed during the course of solid-state fusion of cobalt, nickel and lithium precursors to produce the title compound in the form of microspheres constructed by nanoparticles as building blocks. Porous and hollow microspheres of Li1.2Mn0.6Ni0.1Co0.1O2 are formed out of the spontaneous aggregation of nanoparticles, obtained from the custom-designed synthesis protocol. The growth mechanism of Li1.2Mn0.6Ni0.1Co0.1O2 spheres could be understood in terms of the Kirkendall effect and Ostwald ripening. The nanocrystalline Li1.2Mn0.6Ni0.1Co0.1O2 compound is obtained as a solid solution consisting of rhombohedral R3&cmb.macr;m and monoclinic C2/m group symmetries, as evidenced by XRD, Raman spectra and HRTEM equipped with FFT and STEM. The currently synthesized Li1.2Mn0.6Ni0.1Co0.1O2 cathode exhibits an appreciable discharge capacity of 242 mA h g-1 at a current density of 50 mA g-1, due to the synergistic effect of the capacity obtained from the rhombohedral and monoclinic phases. Electronic supplementary information (ESI) available: Fig. S1 represents the STEM elemental mapping of pristine Li1.2Mn0.6Ni0.1Co0.1O2. Fig. S2 is the EDX spectrum obtained from HRTEM and Fig. S3 is the SAED pattern. Fig. S4 shows the room temperature conductivity plot and Fig. S5 shows the comparison of the discharge capacity values of LiMn1/3Ni1/3Co1/3O2 and Li1.2Mn0.6Ni0.1Co0.1O2 cathodes and Table 1 shows the d spacing values corresponding to different space group symmetries, derived from XRD and TEM studies. See DOI: 10.1039/c4nr04314f

  15. Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.).

    PubMed

    Coetzee, Zelmari A; Walker, Rob R; Deloire, Alain J; Barril, Célia; Clarke, Simon J; Rogiers, Suzy Y

    2017-11-01

    To assess the robustness of the apparent sugar-potassium relationship during ripening of grape berries, a controlled-environment study was conducted on Shiraz vines involving ambient and reduced (by 34%) atmospheric CO 2 concentrations, and standard and increased (by 67%) soil potassium applications from prior to the onset of ripening. The leaf net photoassimilation rate was decreased by 35% in the reduced CO 2 treatment. The reduction in CO 2 delayed the onset of ripening, but at harvest the sugar content of the berry pericarp was similar to that of plants grown in ambient conditions. The potassium content of the berry pericarp in the reduced CO 2 treatment was however higher than for the ambient CO 2 . Berry potassium, sugar and water content were strongly correlated, regardless of treatments, alluding to a ternary link during ripening. Root starch content was lower under reduced CO 2 conditions, and therefore likely acted as a source of carbohydrates during berry ripening. Root carbohydrate reserve replenishment could also have been moderated under reduced CO 2 at the expense of berry ripening. Given that root potassium concentration was less in the vines grown in the low CO 2 atmosphere, these results point toward whole-plant fine-tuning of carbohydrate and potassium partitioning aimed at optimising fruit ripening. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening.

    PubMed

    Duru, Ilhan Cem; Laine, Pia; Andreevskaya, Margarita; Paulin, Lars; Kananen, Soila; Tynkkynen, Soile; Auvinen, Petri; Smolander, Olli-Pekka

    2018-05-19

    In Swiss-type cheeses, characteristic nut-like and sweet flavor develops during the cheese ripening due to the metabolic activities of cheese microbiota. Temperature changes during warm and cold room ripening, and duration of ripening can significantly change the gene expression of the cheese microbiota, which can affect the flavor formation. In this study, a metagenomic and metatranscriptomic analysis of Swiss-type Maasdam cheese was performed on samples obtained during ripening in the warm and cold rooms. We reconstructed four different bacterial genomes (Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus helveticus, and Propionibacterium freudenreichii subsp. shermanii strain JS) from the Maasdam cheese to near completeness. Based on the DNA and RNA mean coverage, Lc. lactis strongly dominated (~80-90%) within the cheese microbial community. Genome annotation showed the potential for the presence of several flavor forming pathways in these species, such as production of methanethiol, free fatty acids, acetoin, diacetyl, acetate, ethanol, and propionate. Using the metatranscriptomic data, we showed that, with the exception of Lc. lactis, the central metabolism of the microbiota was downregulated during cold room ripening suggesting that fewer flavor compounds such as acetoin and propionate were produced. In contrast, Lc. lactis genes related to the central metabolism, including the vitamin biosynthesis and homolactic fermentation, were upregulated during cold room ripening. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    PubMed

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  18. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato

    PubMed Central

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life. PMID:27558543

  19. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    PubMed

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  20. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  1. The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening[W

    PubMed Central

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M.; Bovy, Arnaud G.; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C.; de Maagd, Ruud A.

    2012-01-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter. PMID:23136376

  2. Artificial ripening of sugar pine seeds

    Treesearch

    Stanley L. Krugman

    1966-01-01

    Immature sugar pine seeds were collected and ripened either in the cone or in moist vermiculate. Seeds collected before the second week of August could not be artificially ripened and the causes for these failures were investigated. After the second week of August, immature seeds could be brought to maturity. A practical method for a commercial operation should be...

  3. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening.

    PubMed

    Upreti, P; McKay, L L; Metzger, L E

    2006-02-01

    Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during early ripening, whereas during later ripening, a substantial increase was observed. A gradual decrease in orotic acid and a gradual increase in pyruvic acid content of the cheeses were observed during 12 mo of ripening. In contrast, acetic acid did not show a particular trend, indicating its role as an intermediate in a biochemical pathway, rather than a final product.

  4. Camembert-type cheese ripening dynamics are changed by the properties of wrapping films.

    PubMed

    Picque, D; Leclercq-Perlat, M N; Guillemin, H; Perret, B; Cattenoz, T; Provost, J J; Corrieu, G

    2010-12-01

    Four gas-permeable wrapping films exhibiting different degrees of water permeability (ranging from 1.6 to 500 g/m(2) per d) were tested to study their effect on soft-mold (Camembert-type) cheese-ripening dynamics compared with unwrapped cheeses. Twenty-three-day trials were performed in 2 laboratory-size (18L) respiratory-ripening cells under controlled temperature (6 ± 0.5°C), relative humidity (75 ± 2%), and carbon dioxide content (0.5 to 1%). The films allowed for a high degree of respiratory activity; no limitation in gas permeability was observed. The wide range of water permeability of the films led to considerable differences in cheese water loss (from 0.5 to 12% on d 23, compared with 15% for unwrapped cheeses), which appeared to be a key factor in controlling cheese-ripening progress. A new relationship between 2 important cheese-ripening descriptors (increase of the cheese core pH and increase of the cheese's creamy underrind thickness) was shown in relation to the water permeability of the wrapping film. High water losses (more than 10 to 12% on d 23) also were observed for unwrapped cheeses, leading to Camembert cheeses that were too dry and poorly ripened. On the other hand, low water losses (from 0.5 to 1% on d 23) led to over-ripening in the cheese underrind, which became runny as a result. Finally, water losses from around 3 to 6% on d 23 led to good ripening dynamics and the best cheese quality. This level of water loss appeared to be ideal in terms of cheese-wrapping film design. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Control of oxidation-reduction potential during Cheddar cheese ripening and its effect on the production of volatile flavour compounds.

    PubMed

    Caldeo, Veronica; Hannon, John A; Hickey, Dara-Kate; Waldron, Dave; Wilkinson, Martin G; Beresford, Thomas P; McSweeney, Paul L H

    2016-11-01

    In cheese, a negative oxidation-reduction (redox) potential is required for the stability of aroma, especially that associated with volatile sulphur compounds. To control the redox potential during ripening, redox agents were added to the salted curd of Cheddar cheese before pressing. The control cheese contained only salt, while different oxidising or reducing agents were added with the NaCl to the experimental cheeses. KIO3 (at 0·05, 0·1 and 1%, w/w) was used as the oxidising agent while cysteine (at 2%, w/w) and Na2S2O4 (at 0·05 and 0·1%, w/w) were used as reducing agents. During ripening the redox potential of the cheeses made with the reducing agents did not differ significantly from the control cheese (E h ≈ -120 mV) while the cheeses made with 0·1 and 0·05% KIO3 had a significantly higher and positive redox potential in the first month of ripening. Cheese made with 1% KIO3 had positive values of redox potential throughout ripening but no starter lactic acid bacteria survived in this cheese; however, numbers of starter organisms in all other cheeses were similar. Principal component analysis (PCA) of the volatile compounds clearly separated the cheeses made with the reducing agents from cheeses made with the oxidising agents at 2 month of ripening. Cheeses with reducing agents were characterized by the presence of sulphur compounds whereas cheeses made with KIO3 were characterized mainly by aldehydes. At 6 month of ripening, separation by PCA was less evident. These findings support the hypothesis that redox potential could be controlled during ripening and that this parameter has an influence on the development of cheese flavour.

  6. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening.

    PubMed

    Palma, José M; Corpas, Francisco J; del Río, Luís A

    2011-08-12

    Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    PubMed

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    PubMed

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Effect of different ripening stages on walnut kernel quality: antioxidant activities, lipid characterization and antibacterial properties.

    PubMed

    Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad

    2017-11-01

    Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.

  10. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits.

    PubMed

    Han, Sang Eun; Seo, Young Sam; Kim, Daeil; Sung, Soon-Kee; Kim, Woo Taek

    2007-08-01

    Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.

  11. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    PubMed Central

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo

    2016-01-01

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915

  12. Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety 'Robusta'.

    PubMed

    Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N

    2011-12-01

    Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality.

  13. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening.

    PubMed

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-02-01

    The effect of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds in probiotic dry-fermented sausages during ripening was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture were also included in the study. Samples were collected after 1, 28 and 45days of ripening and subjected to SPME GC/MS analysis. Both the probiotic culture and the ripening process affected significantly the concentration of all volatile compounds. The significantly highest content of total volatiles, esters, alcohols and miscellaneous compounds was observed in sausages containing the highest amount of immobilized culture (300g/kg of stuffing mixture) ripened for 45days. Principal component analysis of the semi-quantitative data revealed that primarily the concentration of the immobilized probiotic culture affected the volatile composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Textural properties of mango cultivars during ripening.

    PubMed

    Jha, Shyam Narayan; Jaiswal, Pranita; Narsaiah, Kairam; Kaur, Poonam Preet; Singh, Ashish Kumar; Kumar, Ramesh

    2013-12-01

    Firmness and toughness of fruit, peel and pulp of seven different mango cultivars were studied over a ripening period of ten days to investigate the effects of harvesting stages (early, mid and late) on fruit quality. Parameters were measured at equatorial region of fruits using TA-Hdi Texture Analyzer. The textural characteristics showed a rapid decline in their behaviour until mangoes got ripened and thereafter, the decline became almost constant indicating the completion of ripening. However, the rate of decline in textural properties was found to be cultivar specific. In general, the changes in textural attributes were found to be significantly influenced by ripening period and stage of harvesting, but firmness attributes (peel, fruit and pulp) of early harvested mangoes did not differ significantly from mid harvested mangoes, while peel, fruit and pulp firmness of late harvested mangoes were found to be significantly lower than early and mid harvested mangoes.

  15. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    USDA-ARS?s Scientific Manuscript database

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  16. Genetic introgression of ethylene-suppressed, long shelf-life transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on metabolome

    USDA-ARS?s Scientific Manuscript database

    Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated bi...

  17. Population Dynamics of Lactobacillus helveticus in Swiss Gruyère-Type Cheese Manufactured With Natural Whey Cultures.

    PubMed

    Moser, Aline; Schafroth, Karl; Meile, Leo; Egger, Lotti; Badertscher, René; Irmler, Stefan

    2018-01-01

    Lactobacillus helveticus , a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening.

  18. Dynamics of Penicillium camemberti growth quantified by real-time PCR on Camembert-type cheeses under different conditions of temperature and relative humidity.

    PubMed

    Leclercq-Perlat, Marie-Noëlle; Picque, Daniel; Martin Del Campo Barba, Sandra Teresita; Monnet, Christophe

    2013-06-01

    Penicillium camemberti plays a major role in the flavor and appearance of Camembert-type cheeses. However, little is known about its mycelium growth kinetics during ripening. We monitored the growth of P. camemberti mycelium in Camembert-type cheeses using real-time PCR in 4 ripening runs, performed at 2 temperatures (8 and 16°C) and 2 relative humidities (88 and 98%). These findings were compared with P. camemberti quantification by spore concentration. During the first phase, the mycelium grew but no spores were produced, regardless of the ripening conditions. During the second phase, which began when lactose was depleted, the concentration of spores increased, especially in the cheeses ripened at 16°C. Sporulation was associated with a large decrease in the mycelial concentration in the cheeses ripened at 16°C and 98% relative humidity. It was hypothesized that lactose is the main energy source for the growth of P. camemberti mycelium at the beginning of ripening and that its depletion would trigger stress, resulting in sporulation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.)

    NASA Astrophysics Data System (ADS)

    Addai, Zuhair Radhi; Abdullah, Aminah; Mutalib, Sahilah Abd.

    2013-11-01

    Papaya (Carica papaya L. cv Eksotika) is one of the most commonly consumed tropical fruits by humans, especially Malaysians. The objective of this study was to determine the phenolic compounds and antioxidants activity in different ripening stages of papaya fruit. The fruits were harvested at five different, stages RS1, RS2, RS3, RS4, and RS5 corresponding to 12, 14, 16, 18, and 20 weeks after anthesis, respectively. Papayas fruit at five different stage of ripening were obtained from farms at Pusat Flora Cheras, JabatanPertanian and Hulu Langat Semenyih, Selangor, Malaysia. The antioxidants activity were analyzed using the total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The analyses were conducted in triplicate and the data were subjected to statistical analysis using SPSS. The results showed significant differences (P< 0.05) were found at different stages of ripening. The total phenol content TPC, TFC, FRAP and DPPH values increased significantly (P<0.05) with the ripening process. The results showed the important role of the ripening stage in increasing the antioxidant content of papaya fruits.

  20. Changes in sugars, acids, and volatiles during ripening of koubo [Cereus peruvianus (L.) Miller] fruits.

    PubMed

    Ninio, Racheli; Lewinsohn, Efraim; Mizrahi, Yosef; Sitrit, Yaron

    2003-01-29

    The columnar cactus Cereus peruvianus (L.) Miller, Cactaceae (koubo), is grown commercially in Israel. The unripe fruits are green, and the color changes to violet and then to red when the fruit is fully ripe. The content of soluble sugars was found to increase 5-fold during ripening. Glucose and fructose were the main sugars accumulated in the fruit pulp, and each increased from 0.5 to 5.5 g/100 g fresh weight during ripening. The polysaccharides content decreased during ripening from 1.4 to 0.4 g/100 g fresh weight. The titratable acidity decreased and the pH increased during ripening. The major organic acid found in the fruit was malic acid, which decreased from 0.75 g/100 g fresh weight at the mature green stage to 0.355 g/100 g fresh weight in ripe fruits. Citric, succinic, and oxalic acids were found in concentrations lower than 0.07 g/100 g fresh weight. Prominent accumulation of aroma volatiles occurred toward the end of the ripening process. The main volatile found in the ripe fruit was linalool, reaching concentrations of 1.5-3.5 microg/g fresh weight.

  1. Formation of early and advanced Maillard reaction products correlates to the ripening of cheese.

    PubMed

    Spanneberg, Robert; Salzwedel, Grit; Glomb, Marcus A

    2012-01-18

    The present study deals with the characterization of the ripening of cheese. A traditional German acid curd cheese was ripened under defined conditions at elevated temperature, and protein and amino acid modifications were investigated. Degree of proteolysis and analysis of early [Amadori compound furosine (6)] and advanced [N(ε)-carboxymethyllysine (4), N(ε)-carboxyethyllysine (5)] Maillard reaction products confirmed the maturation to proceed from the rind to the core of the cheese. Whereas 6 was decreased, 4 and 5 increased over time. Deeper insight into the Maillard reaction during the ripening of cheese was achieved by the determination of selected α-dicarbonyl compounds. Especially methylglyoxal (2) showed a characteristic behavior during storage of the acid curd cheese. Decrease of this reactive structure was directly correlated to the formation of 5. To extend the results of experimental ripening to commercial cheeses, different aged Gouda types were investigated. Maturation times of the samples ranged from 6 to 8 weeks (young) to more than 1 year (aged). Again, increase of 5 and decrease of 2 were able to describe the ripening of this rennet coagulated cheese. Therefore, both chemical parameters are potent markers to characterize the degree of maturation, independent of coagulation.

  2. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties.

    PubMed

    Saladié, Montserrat; Cañizares, Joaquin; Phillips, Michael A; Rodriguez-Concepcion, Manuel; Larrigaudière, Christian; Gibon, Yves; Stitt, Mark; Lunn, John Edward; Garcia-Mas, Jordi

    2015-06-09

    In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in having climacteric and non-climacteric varieties, providing an interesting model system to compare both ripening types. Transcriptomic analysis of developing melon fruits from Védrantais and Dulce (climacteric) and Piel de sapo and PI 161375 (non-climacteric) varieties was performed to understand the molecular mechanisms that differentiate the two fruit ripening types. Fruits were harvested at 15, 25, 35 days after pollination and at fruit maturity. Transcript profiling was performed using an oligo-based microarray with 75 K probes. Genes linked to characteristic traits of fruit ripening were differentially expressed between climacteric and non-climacteric types, as well as several transcription factor genes and genes encoding enzymes involved in sucrose catabolism. The expression patterns of some genes in PI 161375 fruits were either intermediate between. Piel de sapo and the climacteric varieties, or more similar to the latter. PI 161375 fruits also accumulated some carotenoids, a characteristic trait of climacteric varieties. Simultaneous changes in transcript abundance indicate that there is coordinated reprogramming of gene expression during fruit development and at the onset of ripening in both climacteric and non-climacteric fruits. The expression patterns of genes related to ethylene metabolism, carotenoid accumulation, cell wall integrity and transcriptional regulation varied between genotypes and was consistent with the differences in their fruit ripening characteristics. There were differences between climacteric and non-climacteric varieties in the expression of genes related to sugar metabolism suggesting that they may be potential determinants of sucrose content and post-harvest stability of sucrose levels in fruit. Several transcription factor genes were also identified that were differentially expressed in both types, implicating them in regulation of ripening behaviour. The intermediate nature of PI 161375 suggested that classification of melon fruit ripening behaviour into just two distinct types is an over-simplification, and that in reality there is a continuous spectrum of fruit ripening behaviour.

  3. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    PubMed

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own promoter suggests the presence of autoregulation for RIN expression. ChIP-based analyses identified a novel RIN-binding CArG-box site that harbors a gene associated with RIN expression in its flanking region. These findings clarify the crucial role of RIN in the transcriptional regulation of ripening initiation and progression.

  4. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    PubMed Central

    Bartley, Glenn E; Ishida, Betty K

    2003-01-01

    Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion. PMID:12906715

  5. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.).

    PubMed

    Tadiello, Alice; Longhi, Sara; Moretto, Marco; Ferrarini, Alberto; Tononi, Paola; Farneti, Brian; Busatto, Nicola; Vrhovsek, Urska; Molin, Alessandra Dal; Avanzato, Carla; Biasioli, Franco; Cappellin, Luca; Scholz, Matthias; Velasco, Riccardo; Trainotti, Livio; Delledonne, Massimo; Costa, Fabrizio

    2016-12-01

    Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.

    PubMed

    Carbonell-Bejerano, Pablo; Santa María, Eva; Torres-Pérez, Rafael; Royo, Carolina; Lijavetzky, Diego; Bravo, Gema; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Antolín, M Carmen; Martínez-Zapater, José M

    2013-07-01

    Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.

  7. Prostaglandin dehydrogenase is a target for successful induction of cervical ripening

    PubMed Central

    Kishore, Annavarapu Hari; Liang, Hanquan; Xing, Chao; Ganesh, Thota; Akgul, Yucel; Posner, Bruce; Ready, Joseph M.; Markowitz, Sanford D.; Word, Ruth Ann

    2017-01-01

    The cervix represents a formidable structural barrier for successful induction of labor. Approximately 10% of pregnancies undergo induction of cervical ripening and labor with prostaglandin (PG) E2 or PGE analogs, often requiring many hours of hospitalization and monitoring. On the other hand, preterm cervical ripening in the second trimester predicts preterm birth. The regulatory mechanisms of this paradoxical function of the cervix are unknown. Here, we show that PGE2 uses cell-specific EP2 receptor-mediated increases in Ca2+ to dephosphorylate and translocate histone deacetylase 4 (HDAC4) to the nucleus for repression of 15-hydroxy prostaglandin dehydrogenase (15-PGDH). The crucial role of 15-PGDH in cervical ripening was confirmed in vivo. Although PGE2 or 15-PGDH inhibitor alone did not alter gestational length, treatment with 15-PGDH inhibitor + PGE2 or metabolism-resistant dimethyl-PGE2 resulted in preterm cervical ripening and delivery in mice. The ability of PGE2 to selectively autoamplify its own synthesis in stromal cells by signaling transcriptional repression of 15-PGDH elucidates long sought-after molecular mechanisms that govern PG action in the cervix. This report details unique mechanisms of action in the cervix and serves as a catalyst for (i) the use of 15-PGDH inhibitors to initiate or amplify low-dose PGE2-mediated cervical ripening or (ii) EP2 receptor antagonists, HDAC4 inhibitors, and 15-PGDH activators to prevent preterm cervical ripening and preterm birth. PMID:28716915

  8. Influence of cold storage prior to and after ripening on quality factors and sensory attributes of ‘Hass’ avocados

    USDA-ARS?s Scientific Manuscript database

    Partially-ripened avocados are often held in cold storage in an attempt to enable the consistent delivery of ripe fruit to food service or retail outlets, although the effect on the quality of such fruit is incompletely understood. ‘Hass’ avocados were ripened to near ripeness (13.3 - 17.8 N) at 20 ...

  9. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of different members from each of five gene families suggests a highly complex and finely-tuned regulation of cytokinin concentrations and response to different cytokinin species at particular stages of fruit development. The same complexity and specialisation is also reflected in the distinct expression profiles of cytokinin-related genes in other grapevine organs.

  10. Pectic-β(1,4)-galactan, extensin and arabinogalactan–protein epitopes differentiate ripening stages in wine and table grape cell walls

    PubMed Central

    Moore, John P.; Fangel, Jonatan U.; Willats, William G. T.; Vivier, Melané A.

    2014-01-01

    Background and Aims Cell wall changes in ripening grapes (Vitis vinifera) have been shown to involve re-modelling of pectin, xyloglucan and cellulose networks. Newer experimental techniques, such as molecular probes specific for cell wall epitopes, have yet to be extensively used in grape studies. Limited general information is available on the cell wall properties that contribute to texture differences between wine and table grapes. This study evaluates whether profiling tools can detect cell wall changes in ripening grapes from commercial vineyards. Methods Standard sugar analysis and infra-red spectroscopy were used to examine the ripening stages (green, véraison and ripe) in grapes collected from Cabernet Sauvignon and Crimson Seedless vineyards. Comprehensive microarray polymer profiling (CoMPP) analysis was performed on cyclohexanediaminetetraacetic acid (CDTA) and NaOH extracts of alcohol-insoluble residue sourced from each stage using sets of cell wall probes (mAbs and CBMs), and the datasets were analysed using multivariate software. Key Results The datasets obtained confirmed previous studies on cell wall changes known to occur during grape ripening. Probes for homogalacturonan (e.g. LM19) were enriched in the CDTA fractions of Crimson Seedless relative to Cabernet Sauvignon grapes. Probes for pectic-β-(1,4)-galactan (mAb LM5), extensin (mAb LM1) and arabinogalactan proteins (AGPs, mAb LM2) were strongly correlated with ripening. From green stage to véraison, a progressive reduction in pectic-β-(1,4)-galactan epitopes, present in both pectin-rich (CDTA) and hemicellulose-rich (NaOH) polymers, was observed. Ripening changes in AGP and extensin epitope abundance also were found during and after véraison. Conclusions Combinations of cell wall probes are able to define distinct ripening phases in grapes. Pectic-β-(1,4)-galactan epitopes decreased in abundance from green stage to véraison berries. From véraison there was an increase in abundance of significant extensin and AGP epitopes, which correlates with cell expansion events. This study provides new ripening biomarkers and changes that can be placed in the context of grape berry development. PMID:24812249

  11. Population Dynamics of Lactobacillus helveticus in Swiss Gruyère-Type Cheese Manufactured With Natural Whey Cultures

    PubMed Central

    Moser, Aline; Schafroth, Karl; Meile, Leo; Egger, Lotti; Badertscher, René; Irmler, Stefan

    2018-01-01

    Lactobacillus helveticus, a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening. PMID:29670601

  12. Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life.

    PubMed

    Matas, Antonio J; Gapper, Nigel E; Chung, Mi-Young; Giovannoni, James J; Rose, Jocelyn K C

    2009-04-01

    Commercial regulation of ripening is currently achieved through early harvest, by controlling the postharvest storage atmosphere and genetic selection for slow or late ripening varieties. Although these approaches are often effective, they are not universally applicable and often result in acceptable, but poor quality, products. With increased understanding of the molecular biology underlying ripening and the advent of genetic engineering technologies, researchers have pursued new strategies to address problems in fruit shelf-life and quality. These have been guided by recent insights into mechanisms by which ethylene and a complex network of transcription factors regulate ripening, and by an increased appreciation of factors that contribute to shelf-life, such as the fruit cuticle.

  13. Some Properties of Fresh and Ripened Traditional Akcakatik Cheese

    PubMed Central

    2018-01-01

    Akcakatik cheese (yogurt cheese) is produced by drying strained yogurt with or without adding cloves or black cumin. The main objective of this study was to detect the properties of both fresh and ripened Akcakatik cheeses and to compare them. For this purpose the biogenic amine content, volatile flavor compounds, protein degradation level, chemical properties and some microbiological properties of 15 Akcakatik cheese samples were investigated. Titratable acidity, total dry matter, NaCl, total nitrogen, water soluble nitrogen, ripened index, histamine, diacetyl and acetaldehyde levels were found to be higher in ripened cheese samples than in fresh cheese samples. On the other hand, the clove and black cumin ratios were found to be higher in the fresh cheese samples. Sodium dodecyl sulphate polyacrylamide gel electropherograms of cheese samples showed that protein degradation was higher in ripened cheese samples than in fresh samples, as expected. The dominant Lactic acid bacteria (LAB) flora of Akcakatik cheese samples were found to be Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. PMID:29725229

  14. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less

  15. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  16. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    DOE PAGES

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less

  17. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Steingass, Christof Björn; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.

  18. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion.

    PubMed

    Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne

    2018-04-15

    The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Utilization of a freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of grape seeds in red (Vitis vinifera L.) cultivars.

    PubMed

    Rustioni, Laura; Cola, Gabriele; VanderWeide, Josh; Murad, Patrick; Failla, Osvaldo; Sabbatini, Paolo

    2018-09-01

    Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality. Relying on the key role of oxidation for phenolic ripening, a freeze-thaw treatment was proposed to improve the fruit quality for potential use in challenging growing conditions. The experiment was carried on in two distinctive viticultural areas, Michigan and Italy. Five cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot noir and Chambourcin) and six cultivars (Cabernet Sauvignon, Sangiovese, Syrah, Croatina, Barbera and Nebbiolo) were used in Michigan and Italy, respectively. Samples were collected at different phenological stages, to describe the natural ripening process and grape seeds were characterized before and after a freeze-thaw treatment. Colorimetric and spectrophotometric data highlighted similarities among natural and artificial seed ripening promising future applications for the wine industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Scanning electron and light microscopic study of microbial succession on bethlehem st. Nectaire cheese.

    PubMed

    Marcellino, S N; Benson, D R

    1992-11-01

    St. Nectaire cheese is a semisoft cheese of French origin that, along with Brie and Camembert cheeses, belongs to the class of surface mold-ripened cheese. The surface microorganisms that develop on the cheese rind during ripening impart a distinctive aroma and flavor to this class of cheese. We have documented the sequential appearance of microorganisms on the cheese rind and in the curd over a 60-day ripening period. Scanning electron microscopy was used to visualize the development of surface fungi and bacteria. Light microscopy of stained paraffin sections was used to study cross sections through the rind. We also monitored the development of bacterial and yeast populations in and the pH of the curd and rind. The earliest stage of ripening (0 to 2 days) is dominated by the lactic acid bacterium Streptococcus cremoris and multilateral budding yeasts, primarily Debaryomyces and Torulopsis species. Geotrichum candidum follows closely, and then zygomycetes of the genus Mucor develop at day 4 of ripening. At day 20, the deuteromycete Trichothecium roseum appears. From day 20 until the end of the ripening process, coryneforms of the genera Brevibacterium and Arthrobacter can be seen near the surface of the cheese rind among fungal hyphae and yeast cells.

  1. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.).

    PubMed

    Bombai, Giuseppe; Pasini, Federica; Verardo, Vito; Sevindik, Onur; Di Foggia, Michele; Tessarin, Paola; Bregoli, Anna Maria; Caboni, Maria F; Rombolà, Adamo D

    2017-07-01

    Seed oil and flours have been attracting the interest of researchers and industry, since they contain various bioactive components. We monitored the effects of ripening on lipids, monomeric flavan-3-ols, proanthocyanidins and tocols concentration in seed extracts from organically cultivated cv. Sangiovese vines. Linoleic acid was the most abundant fatty acid, followed by oleic, palmitic and stearic acids. The tocols detected were α-tocopherol, α-tocotrienol and γ-tocotrienol. The proanthocyanidins degree of polymerisation ranged from dimers to dodecamers; moreover, monomeric flavan-3-ols and polymeric proanthocyanidins were detected. Total flavan-3-ols (monomers, oligomers and polymers) concentration in grape seeds decreased during ripening. Fatty acids reached the highest level in post-veraison. The concentration of these compounds varied considerably during ripening. Capric acid has been found for the first time in grape seeds. α-Tocopherol and γ-tocotrienol decreased during ripening, while α-tocotrienol increased. The HPLC analysis with fluorimetric detection, conducted for the first time on cv. Sangiovese, revealed that the concentration of flavan-3-ols monomers, oligomeric proanthocyanidins and polymers greatly changed during ripening. These results suggest that the timing of bunch harvest plays a crucial role in the valorisation of grape seed flour. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1

    PubMed Central

    Rose, Jocelyn K.C.; Hadfield, Kristen A.; Labavitch, John M.; Bennett, Alan B.

    1998-01-01

    The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon. PMID:9625688

  3. Differential gene expression in ripening banana fruit.

    PubMed Central

    Clendennen, S K; May, G D

    1997-01-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  4. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Belghazi, Maya; Job, Dominique; Manganaris, George A.; Molassiotis, Athanassios; Vasilakakis, Miltiadis

    2012-01-01

    Post-harvest ozone application has recently been shown to inhibit the onset of senescence symptoms on fleshy fruit and vegetables; however, the exact mechanism of action is yet unknown. To characterize the impact of ozone on the post-harvest performance of kiwifruit (Actinidia deliciosa cv. ‘Hayward’), fruits were cold stored (0 °C, 95% relative humidity) in a commercial ethylene-free room for 1, 3, or 5 months in the absence (control) or presence of ozone (0.3 μl l−1) and subsequently were allowed to ripen at a higher temperature (20 °C), herein defined as the shelf-life period, for up to 12 days. Ozone blocked ethylene production, delayed ripening, and stimulated antioxidant and anti-radical activities of fruits. Proteomic analysis using 1D-SDS-PAGE and mass spectrometry identified 102 kiwifruit proteins during ripening, which are mainly involved in energy, protein metabolism, defence, and cell structure. Ripening induced protein carbonylation in kiwifruit but this effect was depressed by ozone. A set of candidate kiwifruit proteins that are sensitive to carbonylation was also discovered. Overall, the present data indicate that ozone improved kiwifruit post-harvest behaviour, thus providing a first step towards understanding the active role of this molecule in fruit ripening. PMID:22268155

  5. Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in tabasco pepper.

    PubMed

    Arancibia, Ramón A; Motsenbocker, Carl E

    2006-03-01

    Polygalacturonase (PG) and pectin methylesterase (PME) activities were analyzed in ripening fruits of two tabasco pepper (Capsicum frutescens) lines that differ in the extent of pectin degradation (depolymerization and dissolution). Ripe 'Easy Pick' fruit is characterized by pectin ultra-degradation and easy fruit detachment from the calyx (deciduous trait), while pectin depolymerization and dissolution in ripe 'Hard Pick' fruit is limited. PG activity in protein extracts increased similarly in both lines during fruit ripening. PME activity in vivo assessed by methanol production, however, was detected only in fruit of the 'Easy Pick' line and was associated with decreased pectin methyl-esterification. In contrast, methanol production in vivo was not detected in fruits of the 'Hard Pick' line and the degree of pectin esterification remained the same throughout ripening. Consequently, a ripening specific PME that is active in vivo appears to enhance PG-mediated pectin ultra-degradation resulting in cell wall dissolution and the deciduous fruit trait. PME activity in vitro, however, was detected in protein extracts from both lines at all ripening stages. This indicates that some PME isozymes are apparently inactive in vivo, particularly in green fruit and throughout ripening in the 'Hard Pick' line, limiting PG-mediated pectin depolymerization which results in moderately difficult fruit separation from the calyx.

  6. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  7. An infrared based sensor system for the detection of ethylene for the discrimination of fruit ripening

    NASA Astrophysics Data System (ADS)

    Kathirvelan, J.; Vijayaraghavan, R.

    2017-09-01

    We report the fabrication and testing of a prototype ethylene sensing device for use in fruit ripening applications. A sensor based on infrared (IR) thermal emission was developed and used to detect the ethylene level released during the fruit ripening process. An IR thermal source tuned to the 10.6 μm wavelength was linked to a high-sensitivity silicon temperature detector. When introduced into the wave path between the IR source and temperature detector, ethylene absorbs the 10.6 μm IR waves and decreases the surface temperature of the detector. The output is then converted to an electrical signal (in mV), which gives a direct measurement of the ethylene level. Using this sensor, ethylene concentration measured from a fruit sample continuously decreased from 59 to 5 ppm during the natural ripening process. The sensor exhibited a sensitivity of 3.3 ± 0.2% (change in detector output (mV)/ppm × 100) and could measure concentrations as low as 5 ppm with rise and recovery times of 1 and 3 s, respectively. The system demonstrated good reproducibility. Devices employing this sensor system may be used for fruit ripening applications on site and in the field and for screening artificially ripened fruits, therefore contributing to ensure food safety.

  8. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese

    PubMed Central

    2014-01-01

    Background Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. Results The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. Conclusions These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment. PMID:24670012

  9. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese.

    PubMed

    Lessard, Marie-Hélène; Viel, Catherine; Boyle, Brian; St-Gelais, Daniel; Labrie, Steve

    2014-03-26

    Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01 was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment.

  10. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  11. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit.

    PubMed

    Wang, Aide; Yamakake, Junko; Kudo, Hisayuki; Wakasa, Yuhya; Hatsuyama, Yoshimichi; Igarashi, Megumi; Kasai, Atsushi; Li, Tianzhong; Harada, Takeo

    2009-09-01

    Expression of MdACS1, coding for 1-aminocyclopropane-1-carboxylate synthase (ACS), parallels the level of ethylene production in ripening apple (Malus domestica) fruit. Here we show that expression of another ripening-specific ACS gene (MdACS3) precedes the initiation of MdACS1 expression by approximately 3 weeks; MdACS3 expression then gradually decreases as MdACS1 expression increases. Because MdACS3 expression continues in ripening fruit treated with 1-methylcyclopropene, its transcription appears to be regulated by a negative feedback mechanism. Three genes in the MdACS3 family (a, b, and c) were isolated from a genomic library, but two of them (MdACS3b and MdACS3c) possess a 333-bp transposon-like insertion in their 5' flanking region that may prevent transcription of these genes during ripening. A single nucleotide polymorphism in the coding region of MdACS3a results in an amino acid substitution (glycine-289 --> valine) in the active site that inactivates the enzyme. Furthermore, another null allele of MdACS3a, Mdacs3a, showing no ability to be transcribed, was found by DNA sequencing. Apple cultivars homozygous or heterozygous for both null allelotypes showed no or very low expression of ripening-related genes and maintained fruit firmness. These results suggest that MdACS3a plays a crucial role in regulation of fruit ripening in apple, and is a possible determinant of ethylene production and shelf life in apple fruit.

  12. Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars

    PubMed Central

    Sousa, Lisete; Pais, Maria Salomé; Kopka, Joachim; Fortes, Ana Margarida

    2013-01-01

    Background Grapes (Vitis species) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to ripening of berries as well as how aroma is developed are not fully understood. Methodology/Principal Findings In an attempt to identify the common mechanisms associated with the onset of ripening independently of the cultivar, grapes of Portuguese elite cultivars, Trincadeira, Aragonês, and Touriga Nacional, were studied. The mRNA expression profiles corresponding to veraison (EL35) and mature berries (EL36) were compared. Across the three varieties, 9,8% (2255) probesets corresponding to 1915 unigenes were robustly differentially expressed at EL 36 compared to EL 35. Eleven functional categories were represented in this differential gene set. Information on gene expression related to primary and secondary metabolism was verified by RT-qPCR analysis of selected candidate genes at four developmental stages (EL32, EL35, EL36 and EL 38). Gene expression data were integrated with metabolic profiling data from GC-EI-TOF/MS and headspace GC-EI-MS platforms. Conclusions/Significance Putative molecular and metabolic markers of grape pre-ripening and ripening related to primary and secondary metabolism were established and revealed a substantial developmental reprogramming of cellular metabolism. Altogether the results provide valuable new information on the main metabolic events leading to grape ripening. Furthermore, we provide first hints about how the development of a cultivar specific aroma is controlled at transcriptional level. PMID:23565246

  13. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  14. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).

    PubMed

    Pua, Eng-Chong; Lee, Yi-Chuan

    2003-02-13

    As part of a study to understand the molecular basis of fruit ripening, this study reports the isolation and characterization of a banana cytochrome P450 (P450) cDNA, designated as MAP450-1, which was associated with fruit ripening of banana. MAP450-1 encoded a single polypeptide of 507 amino acid residues that shared an overall identity of 27-45% with that of several plant P450s, among which MAP450-1 was most related phylogenetically to the avocado P450 CYP71A1. The polypeptide that possessed residue domains conserved in all P450s was classified as CYP71N1. Expression of CYP71N1 varied greatly between banana organs. Transcripts were detected only in peel and pulp of the ripening fruit and not in unripe fruit tissues at all developmental stages or other organs (root, leaf, ovary and flower). During ripening, transcripts were barely detectable in pre-climacteric and climacteric fruits but, as ripening progressed, they began to accumulate and reached a maximum in post-climacteric fruits. CYP71N1 expression in pre-climacteric fruit could be upregulated by exogenous application of ethylene (1-5 ppm) and treatment of overripe fruit with exogenous sucrose (50-300 mM) but not glucose downregulated the expression. These results indicate that P450s may not play a role in fruit development and its expression is associated with ripening, which may be regulated, in part, by ethylene and/or sucrose, at the transcript level.

  15. Dynamic changes in the date palm fruit proteome during development and ripening

    PubMed Central

    Marondedze, Claudius; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    Date palm (Phoenix dactylifera) is an economically important fruit tree in the Middle East and North Africa and is characterized by large cultivar diversity, making it a good model for studies on fruit development and other important traits. Here in gel comparative proteomics combined with tandem mass spectrometry were used to study date fruit development and ripening. Total proteins were extracted using a phenol-based protocol. A total of 189 protein spots were differentially regulated (p≤0.05). The identified proteins were classified into 14 functional categories. The categories with the most proteins were ‘disease and defense’ (16.5%) and ‘metabolism’ (15.4%). Twenty-nine proteins have not previously been identified in other fleshy fruits and 64 showed contrasting expression patterns in other fruits. Abundance of most proteins with a role in abiotic stress responses increased during ripening with the exception of heat shock proteins. Proteins with a role in anthocyanin biosynthesis, glycolysis, tricarboxylic acid cycle and cell wall degradation were upregulated particularly from the onset of ripening and during ripening. In contrast, expression of pentose phosphate- and photosynthesis-related proteins decreased during fruit maturation. Although date palm is considered a climacteric species, the analysis revealed downregulation of two enzymes involved in ethylene biosynthesis, suggesting an ethylene-independent ripening of ‘Barhi’ fruits. In summary, this proteomics study provides insights into physiological processes during date fruit development and ripening at the systems level and offers a reference proteome for the study of regulatory mechanisms that can inform molecular and biotechnological approaches to further improvements of horticultural traits including fruit quality and yield. PMID:26504545

  16. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening.

    PubMed

    Wang, Rui-Heng; Yuan, Xin-Yu; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.

  17. Functional genomics provides insights into the role of Propionibacterium freudenreichii ssp. shermanii JS in cheese ripening.

    PubMed

    Ojala, Teija; Laine, Pia K S; Ahlroos, Terhi; Tanskanen, Jarna; Pitkänen, Saara; Salusjärvi, Tuomas; Kankainen, Matti; Tynkkynen, Soile; Paulin, Lars; Auvinen, Petri

    2017-01-16

    Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and amino acid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii and sheds light on its activities during cheese ripening. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery.

    PubMed

    Di Lonardo, Maria Chiara; Binner, Erwin; Lombardi, Francesco

    2015-09-01

    In this study, the influence of an additional ripening process on the quality of mechanically-biologically treated MSW was evaluated in the prospective of recovering the end material, rather than landfilling. The biostabilised waste (BSW) coming from one of the MBT plants of Rome was therefore subjected to a ripening process in slightly aerated lab test cells. An in-depth investigation on the biological reactivity was performed by means of different types of tests (aerobic and anaerobic biological tests, as well as FT-IR spectroscopy method). A physical-chemical characterisation of waste samples progressively taken during the ripening phase was carried out, as well. In addition, the ripened BSW quality was assessed by comparing the characteristics of a compost sampled at the composting plant of Rome which treat source segregated organic wastes. Results showed that the additional ripening process allowed to obtain a better quality of the biostabilised waste, by achieving a much higher biological stability compared to BSW as-received and similar to that of the tested compost. An important finding was the lower heavy metals (Co, Cr, Cu, Ni, Pb and Zn) release in water phase at the end of the ripening compared to the as-received BSW, showing that metals were mainly bound to solid organic matter. As a result, the ripened waste, though not usable in agriculture as found for the compost sample, proved anyhow to be potentially suitable for land reclamation purposes, such as in landfills as cover material or mixed with degraded and contaminated soil for organic matter and nutrients supply and for metals recovery, respectively. In conclusion the study highlights the need to extend and optimise the biological treatment in the MBT facilities and opens the possibility to recover the output waste instead of landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening

    PubMed Central

    Ji, Kai; Kai, Wenbin; Zhao, Bo; Sun, Yufei; Yuan, Bing; Dai, Shengjie; Li, Qian; Chen, Pei; Wang, Ya; Pei, Yuelin; Wang, Hongqing; Guo, Yangdong; Leng, Ping

    2014-01-01

    Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8′-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. PMID:25039074

  20. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    PubMed

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.

  1. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening

    PubMed Central

    Shan, Wei; Kuang, Jian-fei; Chen, Jian-ye; Lu, Wang-jin

    2012-01-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1–MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1–MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components. PMID:22888129

  2. Proteomic Analysis of Grape Berry Cell Cultures Reveals that Developmentally Regulated Ripening Related Processes Can Be Studied Using Cultured Cells

    PubMed Central

    Sharathchandra, Ramaschandra G.; Stander, Charmaine; Jacobson, Dan; Ndimba, Bongani; Vivier, Melané A.

    2011-01-01

    Background This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. Methodology/Principal Findings In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. Conclusions The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening. PMID:21379583

  3. Reticulite, Scoria and Lava: Foam Formation in Hawaiian Fire Fountain Eruptions

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Cashman, K. V.

    2006-12-01

    Hawaiian fire fountain eruptions can generate three types of foams: 1) scoria pyroclasts characterized by spherical bubbles and typical vesicularities of 70-85%, 2) reticulite pyroclasts consisting of a polygonal network of trigonal glass struts and vesicularities of 95-99% and 3) lava flows with bubble contents as high as 70-80%. We use bubble textures to explore the origins of these three distinct foams. With these data and the observation that all three foam types can erupt simultaneously, we discuss the dynamics of Hawaiian eruptions. Our main focus is reticulite, which is a minor but ubiquitous product of relatively high Hawaiian fountains. Compared to scoria, reticulite is more vesicular and has a larger mean bubble size and a much more uniform bubble size distribution. It was previously suggested that reticulite results from further expansion of hot scoria foam. However, to form reticulite from scoria requires not only that gas expand faster than it can percolate through bubble networks in scoria, but also requires processes such as Ostwald ripening that will reduce the range of bubble sizes. Such processes commonly occur in the formation of polygonal soap foams for instance. However, we suggest that a better analogue for reticulite formation is popcorn. In particular we propose that reticulite did not evolve from scoria but from magma that experienced (1) near-instantaneous bubble nucleation followed by (2) rapid and uniform expansion to generate (3) a polyhedral 'dry' foam that then (4) experienced near-instantaneous film rupture and quenching throughout the foam. In contrast, it seems that there are other parts of the system where bubble nucleation is not instantaneous and yields a broader size distribution of bubbles that expand more slowly, maintain spherical shapes, and become permeable through coalescence of small melt films between spherical bubble walls. We suggest that reticulite only forms in relatively high fire fountains, not because of longer time for expansion but because of higher ascent rates in these eruptions.

  4. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  5. Probing the Pathways and Interactions Controlling Crystallization by Particle Attachment

    NASA Astrophysics Data System (ADS)

    De Yoreo, J. J.; Li, D.; Chun, J.; Schenter, G.; Mundy, C.; Rosso, K. M.

    2016-12-01

    Crystallization by particle attachment appears to be a widespread mechanism of mineralization. Yet many long-standing questions surrounding nucleation and assembly of precursor particles remain unanswered, due in part to a lack of tools to probe mineralization dynamics with adequate spatial and temporal resolution. Here we report results of liquid phase TEM studies of nucleation and particle assembly in a number of mineral systems. We interpret the results within a framework that considers the impact of both the complexity of free energy landscapes and kinetic factors associated with high supersaturation or slow dynamics. In the calcium carbonate system, the need for high supersturations to overcome the high barrier to nucleation of calcite leads to simultaneous occurrence of multiple pathways, including direct formation of all the common ploymorphs, as well as two-step pathways through which initial precursors, particularly ACC, undergo a direct transformation to a more stable phase. Introduction of highly charged polymers that bind calcium inhibits nucleation, but directs the pathway to a metastable amorphous phase that no longer transforms to more stable polymorphs. Experiments in the iron oxide and oxyhydroxide systems show that, when high supersaturations lead to nucleation of many nanoprticles, further growth occurs through a combination of particle aggregation events and Ostwald ripening. In some cases, aggregation occurs only through oriented attachment on lattice matched faces, leading to single crystals with complex topologies and internal twin boundaries, while in others aggregation results initially in poor co-alignment, but over time the particles undergo atomic rearrangements to achieve a single crystal structure. AFM-based measurements of forces between phyllosilicate surfaces reveal the importance of long-range dispersion interactions in driving alignment, as well as the impact of electrolyte concentration and temperature on the competition of those attractive forces with repulsive electrostatic interactions. Taken together, the results help to define an emerging framework for understanding crystallization by particle attachment.

  6. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.

    PubMed

    Johnston, Jessica C; Molinero, Valeria

    2012-04-18

    Water nanoparticles play an important role in atmospheric processes, yet their equilibrium and nonequilibrium liquid-ice phase transitions and the structures they form on freezing are not yet fully elucidated. Here we use molecular dynamics simulations with the mW water model to investigate the nonequilibrium freezing and equilibrium melting of water nanoparticles with radii R between 1 and 4.7 nm and the structure of the ice formed by crystallization at temperatures between 150 and 200 K. The ice crystallized in the particles is a hybrid form of ice I with stacked layers of the cubic and hexagonal ice polymorphs in a ratio approximately 2:1. The ratio of cubic ice to hexagonal ice is insensitive to the radius of the water particle and is comparable to that found in simulations of bulk water around the same temperature. Heating frozen particles that contain multiple crystallites leads to Ostwald ripening and annealing of the ice structures, accompanied by an increase in the amount of ice at the expense of the liquid water, before the particles finally melt from the hybrid ice I to liquid, without a transition to hexagonal ice. The melting temperatures T(m) of the nanoparticles are not affected by the ratio of cubic to hexagonal layers in the crystal. T(m) of the ice particles decreases from 255 to 170 K with the particle size and is well described by the Gibbs-Thomson equation, T(m)(R) = T(m)(bulk) - K(GT)/(R - d), with constant K(GT) = 82 ± 5 K·nm and a premelted liquid of width d = 0.26 ± 0.05 nm, about one monolayer. The freezing temperatures also decrease with the particles' radii. These results are important for understanding the composition, freezing, and melting properties of ice and liquid water particles under atmospheric conditions. © 2012 American Chemical Society

  7. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<20 MPa in basalt and andesite, ca. 100 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.

  8. Orbicules and Comb Layers: Igneous Layering in Shallow Plutons as a Result of Mineral Growth in Subvolcanic Conduits

    NASA Astrophysics Data System (ADS)

    McCarthy, A. J.; Müntener, O.

    2017-12-01

    Different processes have been proposed to explain the variety of igneous layering in plutonic rocks. Vertical layering in particular has been described as resulting from various processes such as Ostwald ripening, oscillatory crystallization or reactive mush infiltration in cooling plutons. Comb layers and orbicules are formed by the growth of elongated, feather-like minerals growing ±perpendicular to the layering and nucleating either on dyke walls (comb layers) or on xenoliths (orbicules) at the contact between homogenous plutons. Through a detailed study of the mineralogy, bulk chemistry and the size-frequency distribution of representative comb layers and orbicules of the 110Ma Fisher Lake Pluton (Sierra Nevada, USA), we show that comb layers and orbicules show no evidence of forming through a self-organizing, oscillatory crystallization process, but represent crystallization fronts resulting from in-situ crystallization and extraction of evolved melt fractions during decompression-driven crystallization of superheated melts in subvolcanic conduits. The microstructures are dominated by the formation of a plagioclase-dominated cres-cumulate at the mm- to m-scale. We propose that the crystal content of the melt and the dynamics of the magmatic system control the mechanisms responsible for vertical igneous layering in shallow reservoirs. Moreover, the mineralogical and compositional variation of orbicules rims and comb layers can be ascribed to variations in pressure, temperature and cooling rates within the subvolcanic conduit, with estimated growth timescales of mm- to m-thick orbicules and comb layers ranging from weeks to years. Moreover, though plagioclase-glomerocrysts found in erupted volcanic products are generally interpreted as remobilized crystal-mush, we propose that some glomerocrysts might represent "failed" orbicules forming within vertical conduits upon eruption. Such glomerocrysts, as well as orbicules found in erupted volcanic products, might allow for unique insights into the dynamics, timescales and P-T conditions within volcanic conduits upon eruption.

  9. Complex Fluids at Interfaces and Interfaces of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Nouri, Mariam

    The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.

  10. Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tufano, K.J.; Benner, S.G.; Mayer, K.U.

    There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less

  11. Analysis of Nanoprecipitates in a Na-Doped PbTe-SrTe Thermoelectric Material with a High Figure of Merit.

    PubMed

    Kim, Yoon-Jun; Zhao, Li-Dong; Kanatzidis, Mercouri G; Seidman, David N

    2017-07-05

    The dimensionless figure of merit, ZT, of bulk thermoelectric materials depends mainly on the transport properties of charge carriers and heat-carrying phonons. PbTe-4 mol % SrTe doped with 2 mol % Na (Pb 0.94 Na 0.02 Sr 0.04 Te) is a nanostructured material system that exhibits a ZT higher than 2. The precipitate size distribution of SrTe precipitates is believed to play a key role. This raises the question of whether its performance is limited by precipitate coarsening (Ostwald ripening) at elevated temperatures. Herein, we utilize an atom-probe tomography (APT) to study the number density and mean radii of precipitates in concert with partial radial distribution functions (RDFs) of individual atoms. We find that the SrTe precipitates actually contain oxygen: SrTe 1-x O x . We correlate this information with the overall ZT performance, specifically focusing on the electrical and lattice thermal conductivities after isothermal heat treatments at 300 and 400 °C for 7 days, followed by furnace cooling. Comparison of the samples annealed at 400 and 300 °C demonstrates significant coarsening of SrTe 1-x O x precipitates as well as strong segregation of oxygen impurities in the SrTe 1-x O x precipitates. Additionally, on the basis of the partial RDFs, the Na dopant atoms cluster with other Na atoms as well as with Pb, Te, and Sr atoms; clustering depends strongly on the annealing temperature and concomitantly affects the overall ZT values. We found that the coarsening slightly increases the lattice thermal conductivity and also increases the electrical conductivity, thereby having little or even a beneficial effect on the ZT values. Importantly, these findings demonstrate that APT enables quantitative analyses in three dimensions of the PbTe-4 mol % SrTe samples in addition to correlation of their properties with the thermoelectric performance.

  12. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas–Surface Interaction

    PubMed Central

    2018-01-01

    The stability of two neighboring surface nanobubbles on a chemically heterogeneous surface is studied by molecular dynamics (MD) simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. A diffusion equation-based stability analysis suggests that two nanobubbles sitting next to each other remain stable, provided the contact line is pinned, and that their radii of curvature are equal. However, many experimental observations seem to suggest some long-term kind of ripening or shrinking of the surface nanobubbles. In our MD simulations we find that the growth/dissolution of the nanobubbles can occur due to the transfer of gas particles from one nanobubble to another along the solid substrate. That is, if the interaction between the gas and the solid is strong enough, the solid–liquid interface can allow for the existence of a “tunnel” which connects the liquid–gas interfaces of the two nanobubbles to destabilize the system. The crucial role of the gas–solid interaction energy is a nanoscopic element that hitherto has not been considered in any macroscopic theory of surface nanobubbles and may help to explain experimental observations of the long-term ripening. PMID:29438620

  13. Polyribosomes from Aging Apple and Cherry Fruit

    PubMed Central

    Drouet, Alain; Nivet, Claude; Hartmann, Claude

    1983-01-01

    The sequence of events which occurs during the ripening of the Passe-Crassane pear fruit have been previously studied. In this work, we have investigated the ripening of another climacteric fruit (Pyrus malus L. cv Golden Delicious) and of a nonclimacteric fruit (Prunus avium L. cv Bigarreau Napoléon). We show that both climacteric fruits exhibit the same preclimacteric sequence of events. Differences exist, however, between the Golden Delicious apple and the Passe-Crassane pear in that the protein synthesis capacity of the two fruits is not the same during the over-ripening period. On the other hand, a nonclimacteric fruit, the Bigarreau Napoléon cherry, does not show an increase in its protein synthesis capacity during the over-ripening period. PMID:16663295

  14. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    PubMed Central

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This knowledge of the ABA cascade in berry skin contributes not only to the understanding of berry ripening regulation but might be useful to other areas of viticultural interest, such as bud dormancy regulation and drought stress tolerance. PMID:28680438

  15. Linking hormonal profiles with variations in sugar and anthocyanin contents during the natural development and ripening of sweet cherries.

    PubMed

    Teribia, Natalia; Tijero, Verónica; Munné-Bosch, Sergi

    2016-12-25

    Sweet cherries are highly appreciated by consumers worldwide and are usually cold-stored during postharvest to prevent over-ripening before distribution to the market. Sweet cherry is a non-climacteric fruit, for which ripening is known to be regulated by abscisic acid. Here we aimed to examine the hormone profiles, including measurements of abscisic acid, auxins, cytokinins and gibberellins by ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), in relation to variations in sugar and anthocyanin contents, during growth and ripening of this fruit. Hormonal profiling revealed that indole-3-acetic acid, GA 1 and trans-zeatin levels decreased at early stages of fruit development, while GA 3 levels decreased at early stages but also later, once anthocyanin accumulation started. Conversely, abscisic acid levels rose significantly once the fruit started to synthetize anthocyanins, and isopentenyladenosine levels also increased during the ripening of sweet cherries. A strong negative correlation was found between GA 4 levels and both fruit biomass and anthocyanin levels, and between the levels of trans-zeatin and both fruit biomass and total sugar contents. In contrast, abscisic acid and isopentenyladenosine levels correlated positively with fruit biomass, anthocyanin and total soluble sugar content. Results suggest that auxins, cytokinins and gibberellins may act coordinately with abscisic acid in the regulation of sweet cherry development and ripening. Furthermore, it is shown that hormonal profile measurements by UHPLC-MS/MS may be a helpful tool to elucidate the timing of action of each specific hormonal compound during ripening, which has important applications in the agri-food biotechnological sector. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Describing Quality and Sensory Attributes of 3 Mango (Mangifera indica L.) Cultivars at 3 Ripeness Stages Based on Firmness.

    PubMed

    Nassur, Rita de Cássia Mirela Resende; González-Moscoso, Sara; Crisosto, Gayle M; Lima, Luiz Carlos de Oliveira; Vilas Boas, Eduardo Valério de Barros; Crisosto, Carlos H

    2015-09-01

    To determine the ideal ripening stage for consumption of the mango cultivars, "Ataulfo," "Haden," and "Tommy Atkins"; fruits at 3 flesh firmness levels (ripeness stages) were evaluated by a trained panel using descriptive analysis after instrumental measurements were made. After harvest, all fruits were ripened to allow softening and quality and sensory attribute changes. Ripening changes during softening of Ataulfo mangos were expressed by a characteristic increase in the perception of "tropical fruit" and "peach" aromas, an increase in "juiciness," "sweetness," and "tropical fruit" flavor, while "fibrousness," "chewiness," and "sourness" decreased. Similar desirable sensory changes were also detected during softening of Haden mangos; an increase in tropical fruit and peach aromas, sweetness and tropical fruit flavor, and a decrease in chewiness, sourness, and bitterness. Softening of Tommy Atkins mangos was followed by reduced chewiness and sourness and increased peach aroma. Softening of all cultivars was followed by decreased sourness and titratable acidity (TA) and increased soluble solids concentration (SSC) and SSC:TA ratio. The results indicate that mango ripening leads to increased expression of sensory attributes such as tropical fruit and peach aromas, tropical flavor, and sweetness that have been related to improved eating quality and these final changes in sensory quality attributes are specific for each cultivar. For example, Ataulfo and Haden mangos had greater improvement in quality and sensory attributes related to fruit eating quality during ripening-softening than Tommy Atkins. In our consumer test, these quality-sensory attributes expressed during ripening that were perceived by the trained panel were also validated, supporting the need for a controlled ripening protocol in mangos. © 2015 Institute of Food Technologists®

  17. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening

    PubMed Central

    Blanco-Ulate, Barbara; Hopfer, Helene; Figueroa-Balderas, Rosa; Ye, Zirou; Rivero, Rosa M.; Albacete, Alfonso; Pérez-Alfocea, Francisco; Koyama, Renata; Anderson, Michael M.; Smith, Rhonda J.; Ebeler, Susan E.

    2017-01-01

    Abstract Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds. PMID:28338755

  18. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening.

    PubMed

    Blanco-Ulate, Barbara; Hopfer, Helene; Figueroa-Balderas, Rosa; Ye, Zirou; Rivero, Rosa M; Albacete, Alfonso; Pérez-Alfocea, Francisco; Koyama, Renata; Anderson, Michael M; Smith, Rhonda J; Ebeler, Susan E; Cantu, Dario

    2017-02-01

    Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Null Mutation of the MdACS3 Gene, Coding for a Ripening-Specific 1-Aminocyclopropane-1-Carboxylate Synthase, Leads to Long Shelf Life in Apple Fruit1[W][OA

    PubMed Central

    Wang, Aide; Yamakake, Junko; Kudo, Hisayuki; Wakasa, Yuhya; Hatsuyama, Yoshimichi; Igarashi, Megumi; Kasai, Atsushi; Li, Tianzhong; Harada, Takeo

    2009-01-01

    Expression of MdACS1, coding for 1-aminocyclopropane-1-carboxylate synthase (ACS), parallels the level of ethylene production in ripening apple (Malus domestica) fruit. Here we show that expression of another ripening-specific ACS gene (MdACS3) precedes the initiation of MdACS1 expression by approximately 3 weeks; MdACS3 expression then gradually decreases as MdACS1 expression increases. Because MdACS3 expression continues in ripening fruit treated with 1-methylcyclopropene, its transcription appears to be regulated by a negative feedback mechanism. Three genes in the MdACS3 family (a, b, and c) were isolated from a genomic library, but two of them (MdACS3b and MdACS3c) possess a 333-bp transposon-like insertion in their 5′ flanking region that may prevent transcription of these genes during ripening. A single nucleotide polymorphism in the coding region of MdACS3a results in an amino acid substitution (glycine-289 → valine) in the active site that inactivates the enzyme. Furthermore, another null allele of MdACS3a, Mdacs3a, showing no ability to be transcribed, was found by DNA sequencing. Apple cultivars homozygous or heterozygous for both null allelotypes showed no or very low expression of ripening-related genes and maintained fruit firmness. These results suggest that MdACS3a plays a crucial role in regulation of fruit ripening in apple, and is a possible determinant of ethylene production and shelf life in apple fruit. PMID:19587104

  20. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  1. Changes in Gene Expression during Tomato Fruit Ripening 1

    PubMed Central

    Biggs, M. Scott; Harriman, Robert W.; Handa, Avtar K.

    1986-01-01

    Total proteins from pericarp tissue of different chronological ages from normally ripening tomato (Lycopersicon esculentum Mill. cv Rutgers) fruits and from fruits of the isogenic ripening-impaired mutants rin, nor, and Nr were extracted and separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Analysis of the stained bands revealed increases in 5 polypeptides (94, 44, 34, 20, and 12 kilodaltons), decreases in 12 polypeptides (106, 98, 88, 76, 64, 52, 48, 45, 36, 28, 25, and 15 kilodaltons), and fluctuations in 5 polypeptides (85, 60, 26, 21, and 16 kilodaltons) as normal ripening proceeded. Several polypeptides present in ripening normal pericarp exhibited very low or undetectable levels in developing mutant pericarp. Total RNAs extracted from various stages of Rutgers pericarp and from 60 to 65 days old rin, nor, and Nr pericarp were fractionated into poly(A)+ and poly(A)− RNAs. Peak levels of total RNA, poly(A)+ RNA, and poly(A)+ RNA as percent of total RNA occurred between the mature green to breaker stages of normal pericarp. In vitro translation of poly(A)+ RNAs from normal pericarp in rabbit reticulocyte lysates revealed increases in mRNAs for 9 polypeptides (116, 89, 70, 42, 38, 33, 31, 29, and 26 kilodaltons), decreases in mRNAs for 2 polypeptides (41 and 35 kilodaltons), and fluctuations in mRNAs for 5 polypeptides (156, 53, 39, 30, and 14 kilodaltons) during normal ripening. Analysis of two-dimensional separation of in vitro translated polypeptides from poly(A)+ RNAs isolated from different developmental stages revealed even more extensive changes in mRNA populations during ripening. In addition, a polygalacturonase precursor (54 kilodaltons) was immunoprecipitated from breaker, turning, red ripe, and 65 days old Nr in vitro translation products. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:16664828

  2. Effect of microgravity simulation using 3D clinostat on cavendish banana (Musa acuminata AAA Group) ripening process

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny Martha; Esyanti, Rizkita R.; Prapaisie, Adeline; Puspa Kirana, Listya; Latief, Chunaeni; Ginaldi, Ari

    2016-11-01

    The objective of the research was to determine the effect of microgravity simulation by 3D clinostat on Cavendish banana (Musa acuminata AAA group) ripening process. In this study, physical, physiological changes as well as genes expression were analysed. The result showed that in microgravity simulation condition ripening process in banana was delayed and the MaACOl, MaACSl and MaACS5 gene expression were affected.

  3. Investigation into the role of endogenous abscisic acid during ripening of imported avocado cv. Hass.

    PubMed

    Meyer, Marjolaine D; Chope, Gemma A; Terry, Leon A

    2017-08-01

    The importance of ethylene in avocado ripening has been extensively studied. In contrast, little is known about the possible role of abscisic acid (ABA). The present work studied the effect of 1-methylcyclopropene (1-MCP) (0.3 μL L -1 ), e+® Ethylene Remover and the combination thereof on the quality of imported avocado cv. Hass fruit stored for 7 days at 12 °C. Ethylene production, respiration, firmness, colour, heptose (C7) sugars and ABA concentrations in mesocarp tissue were measured throughout storage. Treatment with e+® Ethylene Remover reduced ethylene production, respiration rate and physiological ripening compared with controls. Fruit treated with 1-MCP + e+® Ethylene Remover and, to a lesser extent 1-MCP alone, had the lowest ethylene production and respiration rate and hence the best quality. Major sugars measured in mesocarp tissue were mannoheptulose and perseitol, and their content was not correlated with ripening parameters. Mesocarp ABA concentration, as determined by mass spectrometry, increased as fruit ripened and was negatively correlated with fruit firmness. Results suggest a relationship between ABA and ethylene metabolism since blocking ethylene, and to a larger extent blocking and removing ethylene, resulted in lower ABA concentrations. Whether ABA influences avocado fruit ripening needs to be determined in future research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp.

    PubMed

    Macoris, Mariana S; De Marchi, Renata; Janzantti, Natália S; Monteiro, Magali

    2012-07-01

    This work aimed to investigate the influence of both ripening stage and cultivation system on the total phenolic compounds (TPC) and total antioxidant activity (TAA) of passion fruit pulp. TPC extraction was optimized using a 2³ central composed design. The variables were fruit pulp volume, methanol volume and extraction solution volume. TPC was determined using the Folin-Ciocalteu reaction, and TAA using the ABTS radical reaction. The conditions to extract TPC were 2 mL passion fruit pulp and 9 mL extraction solution containing 40% methanol:water (v/v). TPC values increased in the passion fruit pulp during ripening for both cultivation systems, ranging from 281.8 to 361.9 mg gallic acid L⁻¹ (P ≤ 0.05) for the organic pulp and from 291.0 to 338.6 mg gallic acid L⁻¹ (P ≤ 0.05) for the conventional pulp. TPC values increased during ripening for both organic and conventional passion fruit. The same was true for TAA values for conventional passion fruit. For organic passion fruit, however, TAA values were highest at the initial ripening stages. These results suggest that antioxidant compounds exert strong influence on the initial ripening stages for organic passion fruit, when TPC still did not reach its maximum level. Copyright © 2012 Society of Chemical Industry.

  6. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  7. Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene.

    PubMed

    Guo, Jiaxuan; Wang, Shufang; Yu, Xiaoyang; Dong, Rui; Li, Yuzhong; Mei, Xurong; Shen, Yuanyue

    2018-05-01

    Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry ( Fragaria ananassa ), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S -adenosyl-l-Met decarboxylase gene ( FaSAMDC ), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a K d of 1.7 × 10 -3 m In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening. © 2018 American Society of Plant Biologists. All Rights Reserved.

  8. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.

    PubMed

    Lenucci, Marcello S; Serrone, Lucia; De Caroli, Monica; Fraser, Paul D; Bramley, Peter M; Piro, Gabriella; Dalessandro, Giuseppe

    2012-02-22

    This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.

  9. Evidences for Chlorogenic Acid — A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit

    PubMed Central

    Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo

    2016-01-01

    To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple (‘Golden Delicious’) pulp discs prepared from pre-climacteric fruit were treated with 50 mg L-1 CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence. PMID:26756813

  10. Influence of vegetable coagulant and ripening time on the lipolytic and sensory profile of cheeses made with raw goat milk from Canary breeds.

    PubMed

    Rincón, Arturo A; Pino, Verónica; Fresno, María R; Jiménez-Abizanda, Ana I; Álvarez, Sergio; Ayala, Juan H; Afonso, Ana M

    2017-04-01

    Free fatty acids and sensory profiles were obtained for cheeses made with raw goat milk and vegetable coagulant, derived from the cardoon flower ( Cynara cardunculus), at different ripening times (7 and 20 days). A solid-liquid phase extraction method followed by solid-phase extraction and gas chromatography was used. Profiles were also obtained with cheeses made with commercial coagulant, traditional kid rennet paste, and mixture coagulant (vegetable coagulant-kid rennet). The use of vegetable coagulant and vegetable coagulant-kid rennet is common in traditional Protected Designation of Origin cheeses such as " Queso Flor de Guía" and " Queso Media Flor de Guía" (Spain). Contents of short-chain free fatty acids (7.5-22.5 mmol·kg -1 ), medium-chain free fatty acids (0.4-3.7 mmol·kg -1 ), and long-chain free fatty acids (0.2-2.1 mmol·kg -1 ) varied depending on the coagulant type and the ripening time. Vegetable coagulant cheeses present odour intensity and flavour intensity much higher than commercial coagulant cheeses in the sensory analysis for cheeses obtained with seven days of ripening, but the values decrease when increasing the ripening time. Multivariate analysis allowed us to differentiate cheese samples according to the ripening time when using lipolytic profile and according to the coagulant type using the sensory profile.

  11. Compositional Variation in Sugars and Organic Acids at Different Maturity Stages in Selected Small Fruits from Pakistan

    PubMed Central

    Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Boyce, Mary C.; Saari, Nazamid

    2012-01-01

    Selected soluble sugars and organic acids were analyzed in strawberry, sweet cherry, and mulberry fruits at different ripening stages by HPLC. The amounts of fructose, glucose and sucrose were found to be: strawberry (1.79–2.86, 1.79–2.25 and 0.01–0.25 g/100 g FW), sweet cherry (0.76–2.35, 0.22–3.39 and 0.03–0.13 g/100 g) and mulberry (3.07–9.41, 1.53–4.95 and 0.01–0.25 g/100 g) at un-ripened to fully-ripened stages, respectively. The strawberry, sweet cherry and mulberry mainly contained tartaric, citric and ascorbic acids in the range of 16–55, 70–1934 and 11–132 mg/100 g; 2–8, 2–10 and 10–17 mg/100 g; 2–118, 139–987 and 2–305 mg/100 g at un-ripened to fully-ripened stages, respectively. Fructose and glucose were established to be the major sugars in all the tested fruit while citric and ascorbic acid were the predominant organic acids in strawberry and mulberry while tartaric acid was mainly present in sweet cherry. The tested fruits mostly showed an increase in the concentration of sugars and organic acids with ripening. PMID:22408396

  12. Alterations in the morphological, sugar composition, and volatile flavor properties of petai (Parkia speciosa Hassk.) seed during ripening.

    PubMed

    Asikin, Yonathan; Kusumiyati; Taira, Eizo; Wada, Koji

    2018-04-01

    Petai seeds are one of the well-known strong-smelling foods of the Southeast Asian region that have been harvested and commercially offered in different ripening forms. The current study focused on alterations in the size, color, sugar composition, and volatile flavor properties of petai seeds in the four ripening stages (unripe, mid ripe, ripe, and over-ripe). The ripening process was mainly indicated by the increase in size and weight as seed color turned paler and less greenish. The total sugar content gradually increased during ripening, and then elevated from 1.60 g/100 g (ripe seed) to the level of 2.82 g/100 g in the over-ripe seed. Ripening also altered the volatile flavor composition of petai seed, wherein the predominant aldehydes (hexanal and acetaldehyde) were decreased, and the sulfuric compounds (hydrogen sulfide, methanethiol, and 1,2,4-trithiolane) tended to increase. Additionally, gas chromatography-olfactometry (GC-O) analysis revealed alterations in the perceived odor strength and sensation of each volatile compound and demonstrated volatile flavor profiles, viz. detection percentages of volatile group odor strengths and descriptive odors, of petai seed. These results provide valuable information for monitoring alterations in the physical appearance, sugar composition, and aroma that represent the flavor quality in seasonal petai seed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration).

  14. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage.

    PubMed

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun

    2018-03-21

    Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.

  15. Different Citrus rootstocks present high dissimilarities in their antioxidant activity and vitamins content according to the ripening stage.

    PubMed

    Cardeñosa, Vanessa; Barros, Lillian; Barreira, João C M; Arenas, Francisco; Moreno-Rojas, José M; Ferreira, Isabel C F R

    2015-02-01

    "Lane Late" sweet orange grafted on six different citrus rootstocks and grown in the Guadalquivir valley (Seville, Spain) were picked at different ripening stages in two consecutive seasons to characterize their antioxidant activity (free radicals scavenging activity, reducing power and lipid peroxidation inhibition) and quantify their main antioxidant compounds (vitamin E and vitamin C). Linear discriminant analysis and 2-way ANOVA were applied to compare the effects induced by citrus rootstock and ripening stage. The results showed that differences in antioxidant activity and related compounds are mainly dependent on the citrus rootstock, despite ripening stage had also some particular effects. Changes observed in 2012 showed less marked differences among the citrus rootstock. Nevertheless, Cleopatra rootstock showed the highest antioxidant activity in both years, indicating that an increase in its cultivation might be a good solution to sweet orange farmers. Concerning the ripening stage, samples collected in January presented higher vitamin contents, while those collected in April showed higher antioxidant activity. This result allows deciding the harvesting period according to the desired effect. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene.

  17. Virus-Induced Gene Silencing of the Eggplant Chalcone Synthase Gene during Fruit Ripening Modifies Epidermal Cells and Gravitropism.

    PubMed

    Wang, Cuicui; Fu, Daqi

    2018-03-21

    Eggplant ( Solanum melongena L.) fruits accumulate flavonoids in their cuticle and epidermal cells during ripening. Although many mutants available in model plant species, such as Arabidopsis thaliana and Medicago truncatula, are enabling the intricacies of flavonoid-related physiology to be deduced, the mechanisms whereby flavonoids influence eggplant fruit physiology are unknown. Virus-induced gene silencing (VIGS) is a reliable tool for the study of flavonoid function in fruit, and in this study, we successfully applied this technique to downregulate S. melongena chalcone synthase gene ( SmCHS) expression during eggplant fruit ripening. In addition to the expected change in fruit color attributable to a lack of anthocyanins, several other modifications, including differences in epidermal cell size and shape, were observed in the different sectors. We also found that silencing of CHS gene expression was associated with a negative gravitropic response in eggplant fruits. These observations indicate that epidermal cell expansion during ripening is dependent upon CHS expression and that there may be a relationship between CHS expression and gravitropism during eggplant fruit ripening.

  18. Non-climacteric ripening and sorbitol homeostasis in plum fruits.

    PubMed

    Kim, Ho-Youn; Farcuh, Macarena; Cohen, Yuval; Crisosto, Carlos; Sadka, Avi; Blumwald, Eduardo

    2015-02-01

    During ripening fruits undergo several physiological and biochemical modifications that influence quality-related properties, such as texture, color, aroma and taste. We studied the differences in ethylene and sugar metabolism between two genetically related Japanese plum cultivars with contrasting ripening behaviors. 'Santa Rosa' (SR) behaved as a typical climacteric fruit, while the bud sport mutant 'Sweet Miriam' (SM) displayed a non-climacteric ripening pattern. SM fruit displayed a delayed ripening that lasted 120 days longer than that of the climacteric fruit. At the full-ripe stage, both cultivars reached similar final size and weight but the non-climacteric fruits were firmer than the climacteric fruits. Fully ripe non-climacteric plum fruits, showed an accumulation of sorbitol that was 2.5 times higher than that of climacteric fruits, and the increase in sorbitol were also paralleled to an increase in sucrose catabolism. These changes were highly correlated with decreased activity and expression of NAD(+)-dependent sorbitol dehydrogenase and sorbitol oxidase and increased sorbitol-6-phosphate dehydrogenase activity, suggesting an enhanced sorbitol synthesis in non-climacteric fruits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. “Dashehari”) unravels ripening associated genes

    PubMed Central

    Srivastava, Smriti; Singh, Rajesh K.; Pathak, Garima; Goel, Ridhi; Asif, Mehar Hasan; Sane, Aniruddha P.; Sane, Vidhu A.

    2016-01-01

    Ripening in mango is under a complex control of ethylene. In an effort to understand the complex spatio-temporal control of ripening we have made use of a popular N. Indian variety “Dashehari” This variety ripens from the stone inside towards the peel outside and forms jelly in the pulp in ripe fruits. Through a combination of 454 and Illumina sequencing, a transcriptomic analysis of gene expression from unripe and midripe stages have been performed in triplicates. Overall 74,312 unique transcripts with ≥1 FPKM were obtained. The transcripts related to 127 pathways were identified in “Dashehari” mango transcriptome by the KEGG analysis. These pathways ranged from detoxification, ethylene biosynthesis, carbon metabolism and aromatic amino acid degradation. The transcriptome study reveals differences not only in expression of softening associated genes but also those that govern ethylene biosynthesis and other nutritional characteristics. This study could help to develop ripening related markers for selective breeding to reduce the problems of excess jelly formation during softening in the “Dashehari” variety. PMID:27586495

  20. Impact of casing damaging on aflatoxin B1 concentration during the ripening of dry-fermented meat sausages.

    PubMed

    Pleadin, Jelka; Kovačević, Dragan; Perković, Irena

    2015-01-01

    The aim of this article is to investigate the impact of casing damaging on the formation of aflatoxin B1 (AFB1) during the ripening of dry-fermented meat sausages. The level of AFB1 contamination was determined in 24 samples using the ELISA immunoassay throughout a six-month production period. While with intact casing samples no contamination was observed throughout the whole production process, in damaged casing samples AFB1 was detected in the ripening end-stages in the range of 1.62-4.49 μg/kg. The results showed that casing damaging occurring during long-term ripening of dry-fermented sausages can cause AFB1 contamination, possibly arising on the grounds of diffusion of this mycotoxin from the product surface to its interior.

Top