Science.gov

Sample records for otolith-ocular reflexes motion

  1. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  2. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  3. Plasticity of the human otolith-ocular reflex

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Smith, T. R.; Furman, J. M.

    1992-01-01

    The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.

  4. Plasticity of the human otolith-ocular reflex

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Smith, T. R.; Furman, J. M.

    1992-01-01

    The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.

  5. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual

  6. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual

  7. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  8. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  9. Off-vertical axis rotation: a test of the otolith-ocular reflex

    NASA Technical Reports Server (NTRS)

    Furman, J. M.; Schor, R. H.; Schumann, T. L.

    1992-01-01

    The vestibulo-ocular reflex was studied via off-vertical axis rotation (OVAR) in the dark. The axis of the turntable could be tilted from vertical by up to 30 degrees. Eye movements were measured with electro-oculography. Results from healthy asymptomatic subjects indicated that 1) a reliable otolith-induced response could be obtained during constant velocity OVAR using a velocity of 60 degrees/s with a tilt of 30 degrees; 2) constant velocity OVAR rotation was nausea-producing and, especially if subjects were rotated in the dark about an earth-vertical axis prior to being tilted, disorienting; and 3) sinusoidal OVAR produced minimal nausea; the eye movement response appeared to be the result of a combination of semicircular canal and otolith components. We conclude that OVAR has the potential of becoming a useful method for clinically assessing both the otolith-ocular reflex and semicircular canal-otolith interaction.

  10. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties

  11. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties

  12. Assessment of the otolith-ocular reflex using ocular vestibular evoked myogenic potentials in patients with episodic lateral tilt sensation.

    PubMed

    Murofushi, Toshihisa; Nakahara, Haruka; Yoshimura, Eriko

    2012-05-02

    The otolith-ocular reflex in patients with episodic lateral tilt sensation without any other vestibular symptoms was assessed using ocular vestibular evoked myogenic potentials (oVEMP). Ten patients (6 men and 4 women, mean age=53.5) were enrolled. All patients had episodic lateral tilt sensation. Patients with a medical history of rotatory vertigo, loss of consciousness, head trauma, or symptoms or signs of central nervous dysfunction or proprioceptive dysfunction and those who had been definitely diagnosed with a disease that causes disequilibrium were excluded. All of the 10 patients had oVEMP tests and cervical VEMP (cVEMP) tests and underwent caloric tests. Eight of the 10 patients showed unilateral absence of oVEMP, one displayed a bilateral absence, and one displayed normal oVEMP. Concerning cVEMP, 4 patients showed a unilateral absence of cVEMP, one displayed unilaterally decreased responses and 5 displayed normal cVEMP. All patients showed normal bilateral caloric responses. The present study showed that patients with episodic lateral tilt sensation displayed abnormal otolith-ocular reflexes, as shown by their oVEMP, suggesting that these patients were suffering from utricular dysfunction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For

  14. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For

  15. Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes.

    PubMed

    Walker, Mark F; Tian, Jing; Shan, Xiaoyan; Tamargo, Rafael J; Ying, Howard; Zee, David S

    2008-01-01

    We studied two rhesus monkeys before and after surgical ablation of the nodulus and uvula (Nod/Uv) of the cerebellum. Three-axis eye movements were recorded with the magnetic-field scleral search coil system during a variety of vestibular and ocular motor tasks. Here we describe the effects of the Nod/Uv lesions on dynamic (head translation) and static (head tilt) otolith-mediated vestibulo-ocular reflexes. The main findings were: 1. eye velocity during sinusoidal vertical translation (1.5 Hz) was reduced by 59% in the dark and 36% in the light; 2. eye velocity during steps of horizontal translation was reduced, but only in the dark and more so during the sustained (constant velocity) than the initial (acceleration) part of the response, and 3. there was a torsional nystagmus that depended on the position of roll head tilt, but static ocular counterroll was unchanged. These results suggest new roles for the Nod/Uv in the processing of otolith signals. This is likely important not only for facilitating gaze during linear head motion, but also for maintaining postural stability and one's orientation relative to gravity. The lesions appeared to have a greater effect on responses to vertical motion, particularly in the light (in contrast, responses to interaural translation in the light were nearly normal), suggesting a particular importance of the Nod/Uv in processing signals arising from the sacculi.

  16. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses To translation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.

    1998-01-01

    The three-dimensional (3-D) properties of the translational vestibulo-ocular reflexes (translational VORs) during lateral and fore-aft oscillations in complete darkness were studied in rhesus monkeys at frequencies between 0.16 and 25 Hz. In addition, constant velocity off-vertical axis rotations extended the frequency range to 0.02 Hz. During lateral motion, horizontal responses were in phase with linear velocity in the frequency range of 2-10 Hz. At both lower and higher frequencies, phase lags were introduced. Torsional response phase changed more than 180 degrees in the tested frequency range such that torsional eye movements, which could be regarded as compensatory to "an apparent roll tilt" at the lowest frequencies, became anticompensatory at all frequencies above approximately 1 Hz. These results suggest two functionally different frequency bandwidths for the translational VORs. In the low-frequency spectrum (<<0.5 Hz), horizontal responses compensatory to translation are small and high-pass-filtered whereas torsional response sensitivity is relatively frequency independent. At higher frequencies however, both horizontal and torsional response sensitivity and phase exhibit a similar frequency dependence, suggesting a common role during head translation. During up-down motion, vertical responses were in phase with translational velocity at 3-5 Hz but phase leads progressively increased for lower frequencies (>90 degrees at frequencies <0.2 Hz). No consistent dependence on static head orientation was observed for the vertical response components during up-down motion and the horizontal and torsional response components during lateral translation. The frequency response characteristics of the translational VORs were fitted by "periphery/brain stem" functions that related the linear acceleration input, transduced by primary otolith afferents, to the velocity signals providing the input to the velocity-to-position neural integrator and the oculomotor plant. The

  17. Physiology of Developing Gravity Receptors and Otolith-Ocular Reflexes in Rat

    NASA Technical Reports Server (NTRS)

    Blanks, Robert H.

    1997-01-01

    This proposal had the long-term objective of examining the effects of microgravity on the physiology of the adult and developing mammalian gravity receptors. The grant outlined three-years of ground-based studies to examine. 1) the physiologic responses or otolith afferents in the adult rat and during postnatal development, and 2) the otolith organ contributions to the vertical vestibulo-ocular (VOR) and postural reflexes.

  18. Physiology of Developing Gravity Receptors and Otolith-Ocular Reflexes in Rat

    NASA Technical Reports Server (NTRS)

    Blanks, Robert H.

    1997-01-01

    This proposal had the long-term objective of examining the effects of microgravity on the physiology of the adult and developing mammalian gravity receptors. The grant outlined three-years of ground-based studies to examine. 1) the physiologic responses or otolith afferents in the adult rat and during postnatal development, and 2) the otolith organ contributions to the vertical vestibulo-ocular (VOR) and postural reflexes.

  19. Three-dimensional analysis of otolith-ocular reflex during eccentric rotation in humans.

    PubMed

    Takimoto, Yasumitsu; Imai, Takao; Okumura, Tomoko; Takeda, Noriaki; Inohara, Hidenori

    2016-10-01

    When a participant is rotated while displaced from the axis of rotation (eccentric rotation, ER), both rotational stimulation and linear acceleration are applied to the participant. As linear acceleration stimulates the otolith, the vestibulo-ocular reflex (VOR) caused by the otolith (linear VOR; lVOR) would be induced during ER. Ten participants were rotated sinusoidally at a maximum angular velocity of 50°/s and at frequencies of 0.1, 0.3, 0.5, and 0.7Hz. The radius of rotation during ER was 90cm. The participants sat on a chair at three different positions: on the axis (center rotation, CR), at 90cm backward from the axis (nose-in ER, NI-ER) and at 90cm forward from the axis (nose-out ER, NO-ER). Their eye movements during rotation were recorded and analyzed three-dimensionally. The VOR gain during NI-ER was lower at 0.5 and 0.7Hz, and that during NO-ER was higher at 0.3, 0.5, and 0.7Hz than during CR. These results indicate that lVOR actually worked at 0.5 and 0.7Hz during ER and that the enhancement and decline of the VOR gain relative to the VOR gain during CR was seen in humans. Thus, we suggest that otolith function can be assessed via rotational testing of NI-ER and NO-ER. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  20. Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.

    2006-01-01

    Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.

  1. Motion analysis of normal patellar tendon reflex.

    PubMed

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-11-01

    Reflex assessment, an essential element in the investigation of the motor system, is currently assessed through qualitative description, which lacks of normal values in the healthy population. This study quantified the amplitude and latency of patellar tendon reflex in normal subjects using motion analysis to determine the factors affecting the reflex amplitude. 100 healthy volunteers were recruited for patellar tendon reflex assessments which were recorded using a motion analysis system. Different levels of input strength were exerted during the experiments. A linear relationship was found between reflex input and reflex amplitude (r = 0.50, P <0.001). The left knee was found to exhibit 26.3% higher reflex amplitude than the right (P <0.001). The Jendrassik manoeuvre significantly increased reflex amplitude by 34.3% (P = 0.001); the effect was especially prominent in subjects with weak reflex response. Reflex latency normality data were established, which showed a gradual reduction with increasing input strength. The quantitative normality data and findings showed that the present method has great potential to objectively quantify deep tendon reflexes. Analyse du mouvement du réflexe rotulien normal.

  2. Biological Motion Cues Trigger Reflexive Attentional Orienting

    ERIC Educational Resources Information Center

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi

    2010-01-01

    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  3. Biological Motion Cues Trigger Reflexive Attentional Orienting

    ERIC Educational Resources Information Center

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi

    2010-01-01

    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  4. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice.

    PubMed

    Shimizu, N; Wood, S; Kushiro, K; Yanai, S; Perachio, A; Makishima, T

    2015-01-29

    The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provide the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration. Copyright © 2014 IBRO. Published by Elsevier Ltd. All

  5. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice

    PubMed Central

    Shimizu, Naoki; Wood, Scott; Kushiro, Keisuke; Yanai, Shuichi; Perachio, Adrian; Makishima, Tomoko

    2014-01-01

    The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1 g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmaus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provides the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration. PMID:25446357

  6. Motion perception correlates with volitional but not reflexive eye movements.

    PubMed

    Price, N S C; Blum, J

    2014-09-26

    Visually-driven actions and perception are traditionally ascribed to the dorsal and ventral visual streams of the cortical processing hierarchy. However, motion perception and the control of tracking eye movements both depend on sensory motion analysis by neurons in the dorsal stream, suggesting that the same sensory circuits may underlie both action and perception. Previous studies have suggested that multiple sensory modules may be responsible for the perception of low- and high-level motion, or the detection versus identification of motion direction. However, it remains unclear whether the sensory processing systems that contribute to direction perception and the control of eye movements have the same neuronal constraints. To address this, we examined inter-individual variability across 36 observers, using two tasks that simultaneously assessed the precision of eye movements and direction perception: in the smooth pursuit task, observers volitionally tracked a small moving target and reported its direction; in the ocular following task, observers reflexively tracked a large moving stimulus and reported its direction. We determined perceptual-oculomotor correlations across observers, defined as the correlation between each observer's mean perceptual precision and mean oculomotor precision. Across observers, we found that: (i) mean perceptual precision was correlated between the two tasks; (ii) mean oculomotor precision was correlated between the tasks, and (iii) oculomotor and perceptual precision were correlated for volitional smooth pursuit, but not reflexive ocular following. Collectively, these results demonstrate that sensory circuits with common neuronal constraints subserve motion perception and volitional, but not reflexive eye movements.

  7. The video ocular counter-roll (vOCR): a clinical test to detect loss of otolith-ocular function

    PubMed Central

    Otero-Millan, Jorge; Treviño, Carolina; Winnick, Ariel; Zee, David S.; Carey, John P.; Kheradmand, Amir

    2017-01-01

    Conclusion vOCR can detect loss of otolith-ocular function without specifying the side of vestibular loss. Since vOCR is measured with a simple head tilt maneuver, it can be potentially used as a bedside clinical test in combination with video head impulse test. Objective Video-oculography (VOG) goggles are being integrated into the bedside assessment of patients with vestibular disorders. Lacking, however, is a method to evaluate otolith function. This study validated a VOG test for loss of otolith function. Methods VOG was used to measure ocular counter-roll (vOCR) in 12 healthy controls, 14 patients with unilateral vestibular loss (UVL), and six patients with bilateral vestibular loss (BVL) with a static lateral head tilt of 30°. The results were compared with vestibular evoked myogenic potentials (VEMP), a widely-used laboratory test of otolith function. Results The average vOCR for healthy controls (4.6°) was significantly different from UVL (2.7°) and BVL (1.6°) patients (p < 0.0001). The vOCR and VEMP measurements were correlated across subjects, especially the click and tap oVEMPs (click oVEMP R = 0.45, tap oVEMP R = 0.51; p < 0.0003). The receiver operator characteristic (ROC) analysis showed that vOCR and VEMPs detected loss of otolith function equally well. The best threshold for vOCR to detect vestibular loss was at 3°. The vOCR values from the side of vestibular loss and the healthy side were not different in UVL patients (2.53° vs 2.8°; p = 0.59). PMID:28084887

  8. Horizontal otolith-ocular responses to lateral translation in benign paroxysmal positional vertigo.

    PubMed

    Anastasopoulos, D; Lempert, T; Gianna, C; Gresty, M A; Bronstein, A M

    1997-07-01

    Benign paroxysmal positional vertigo (BPPV) is assumed to result from utricular damage, but it is controversial if patients have manifest utricular dysfunction. Therefore, we investigated linear vestibulo-ocular reflexes (LVORs) during lateral whole-body translation in 14 patients with unilateral BPPV. Patients were subjected to linear acceleration steps of 0.24 g along the interaural axis, which were applied randomly to the left and right, both in the dark and in the light with a visual target at a distance of 60 cm. The LVOR was measured by EOG from the slow phase velocity of the averaged and desaccaded compensatory eye movement. In normal cases, maximum asymmetry of LVOR velocity was 13% in the dark and 10% in the light. In patients, LVOR velocities were normal in the dark but mildly reduced in the light (p < 0.05). Five patients had mild LVOR asymmetries in the dark (range 18-38%) and two in the light (11 and 13%), but there was no consistent relationship to the affected side. The absence of gross changes of the LVOR may be explained either by minor utricular damage that is functionally irrelevant or by central compensation of a chronic unilateral deficit.

  9. Infant reflexes

    MedlinePlus

    ... in other age groups. These include: Moro reflex Sucking reflex (sucks when area around mouth is touched) ... side that was stroked and begin to make sucking motions. PARACHUTE REFLEX This reflex occurs in slightly ...

  10. The Validity and Reliability of Motion Analysis in Patellar Tendon Reflex Assessment

    PubMed Central

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-01-01

    Background The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method. Methodology/Principal Findings The present study used a motion analysis technique to collect quantitative measurements for both the input and output of normal patellar tendon reflex. Reflex responses were measured as knee angles. The patellar tendon reflexes of 100 healthy subjects were examined using 6 levels of tendon taps, where all the assessments were captured using motion capture system. A linear relationship was found between the experimental maximum tapping velocity and tapping angle (coefficient of determination = 0.989), which was consistent with the theoretical values. Tapping velocities were predictable according to tapping angles. The findings proved the reproducibility of tapping method in producing consistent input. The reflex amplitude was consistent between two randomly assigned groups, and linearly proportionate to the tapping velocity. Conclusions/Significance The findings on reflex amplitude indicate that motion analysis is a valid and reliable method of assessing and measuring deep tendon reflexes. PMID:23409022

  11. The validity and reliability of motion analysis in patellar tendon reflex assessment.

    PubMed

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-01-01

    The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method. The present study used a motion analysis technique to collect quantitative measurements for both the input and output of normal patellar tendon reflex. Reflex responses were measured as knee angles. The patellar tendon reflexes of 100 healthy subjects were examined using 6 levels of tendon taps, where all the assessments were captured using motion capture system. A linear relationship was found between the experimental maximum tapping velocity and tapping angle (coefficient of determination = 0.989), which was consistent with the theoretical values. Tapping velocities were predictable according to tapping angles. The findings proved the reproducibility of tapping method in producing consistent input. The reflex amplitude was consistent between two randomly assigned groups, and linearly proportionate to the tapping velocity. The findings on reflex amplitude indicate that motion analysis is a valid and reliable method of assessing and measuring deep tendon reflexes.

  12. EMG activity during whole body vibration: motion artifacts or stretch reflexes?

    PubMed

    Ritzmann, Ramona; Kramer, Andreas; Gruber, Markus; Gollhofer, Albert; Taube, Wolfgang

    2010-09-01

    The validity of electromyographic (EMG) data recorded during whole body vibration (WBV) is controversial. Some authors ascribed a major part of the EMG signal to vibration-induced motion artifacts while others have interpreted the EMG signals as muscular activity caused at least partly by stretch reflexes. The aim of this study was to explore the origin of the EMG signal during WBV using several independent approaches. In ten participants, the latencies and spectrograms of stretch reflex responses evoked by passive dorsiflexions in an ankle ergometer were compared to those of the EMG activity of four leg muscles during WBV. Pressure application to the muscles was used to selectively reduce the stretch reflex, thus permitting to distinguish stretch reflexes from other signals. To monitor motion artifacts, dummy electrodes were placed close to the normal electrodes. Strong evidence for stretch reflexes was found: the latencies of the stretch reflex responses evoked by dorsiflexions were almost identical to the supposed stretch reflex responses during vibration (differences of less than 1 ms). Pressure application significantly reduced the amplitude of both the supposed stretch reflexes during vibration (by 61 +/- 17%, p < 0.001) and the stretch reflexes in the ankle ergometer (by 56 +/- 13%, p < 0.01). The dummy electrodes showed almost no activity during WBV (7 +/- 4% of the corresponding muscle's iEMG signal). The frequency analyses revealed no evidence of motion artifacts. The present results support the hypothesis of WBV-induced stretch reflexes. Contribution of motion artifacts to the overall EMG activity seems to be insignificant.

  13. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    PubMed Central

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S.

    2015-01-01

    The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG) spectrum recorded during whole-body vibration (WBV) exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental) and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05), and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05). This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity. Key points The spikes observed in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity The motion artifacts are more pronounced in the first spike than the following spikes in the sEMG spectrum Reflex activity during WBV exercises is enhanced with an additional load of approximately 50% of the body mass PMID:25729290

  14. The Effect of Whole Body Vibration on Ankle Range of Motion and the H-reflex.

    PubMed

    Apple, Stacey; Ehlert, Kelly; Hysinger, Pam; Nash, Cara; Voight, Michael; Sells, Pat

    2010-02-01

    Limited research suggests that an effect of whole body vibration (WBV) on the central nervous system (CNS) is suppression. An indirect measure used to assess CNS level of activation is the Soleus H-reflex. If true suppression does occur, other factors such as range of motion may be impacted. The purpose of this study was to examine the impact of WBV on H-reflex amplitude and passive ankle dorsiflexion. Twenty-seven healthy volunteers between the ages of 21-41 participated. Subjects were randomly assigned to a control group (n=13) or WBV group (n=14). H-reflex and ankle dorsiflexion measures were assessed before and after a three minute WBV perturbation (40 μHz, amplitude 2-4 mm). These measurements were repeated every five minutes up to twenty minutes following the intervention. The H-reflex amplitude showed a significant decrease (p<.05) between pre-test and initial post-test for both groups. The H-reflex returned to baseline within five minutes following the intervention. The dorsiflexion range of motion showed significant interaction (p<.05). All changes were less than 5 degrees; therefore, no clear clinical impact was evident. The observed decrease in H-reflex amplitude immediately following WBV agreed with previous research indicating a lower level of CNS activation. However, since the control group also showed this change, WBV does not appear to be a key cause of suppression. Range of motion was not clinically significant for either group.

  15. Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural

    NASA Technical Reports Server (NTRS)

    Tomko, David L.; Paige, Gary D.

    1992-01-01

    Linear vestibuloocular reflexes (LVORs), which stabilize retinal images by producing eye movements to compensate for linear head motion, are of two types: (1) responses to head tilt, which work primarily at low frequencies; and (2) responses to head translation, which act at higher frequencies. This work tested the hypothesis that reflexive eye movements would follow the same kinematics relative to the motion axis regardless of head orientation relative to linear motion. The experiments consisted of recording horizontal and vertical eye movements in squirrel monkeys during linear oscillations at 5 Hz along the head's nasooccipital (NO) axis and along axes lying within +/- 30 deg of the NO axis. It was found that LVORs followed the same kinematics regardless of the eye position in the head or the head orientation relative to motion.

  16. The vestibulo-ocular reflex and its possible roles in space motion sickness

    NASA Technical Reports Server (NTRS)

    Watt, Douglas G. D.

    1987-01-01

    Prolonged exposure to an inappropriate vestibulo-ocular reflex (VOR) will usually lead to motion sickness, and it has been predicted on theoretical grounds that VOR gain may be decreased in weightlessness. While experiments during parabolic flight in aircraft tend to confirm this prediction, experiments during orbital spaceflight have led to apparently contradictory results. It is suggested that VOR gain is reduced initially, but that rapid compensatory mechanisms restore it to normal within minutes of reaching weightlessness. However, even though this process may lead to the rapid return of functionally normal gaze stability, it may not protect against the development of motion sickness.

  17. Recruitment properties and significance of short latency reflexes in neck and eye muscles evoked by brief lateral head accelerations.

    PubMed

    Colebatch, James G; Dennis, Danielle L; Govender, Sendhil; Chen, Peggy; Todd, Neil P McAngus

    2014-09-01

    Short lateral head accelerations were applied to investigate the recruitment properties of the reflexes underlying the earliest ocular and cervical electromyographic reflex responses to these disturbances. Components of both reflexes are vestibular dependent and have been termed "ocular vestibular evoked myogenic potentials" and "cervical vestibular evoked myogenic potentials", respectively. Previous investigations using a unilateral vestibular stimulus have indicated that some but not all these vestibular-dependent reflexes show a simple power law relationship to stimulus intensity. In particular, crossed otolith-ocular reflexes showed evidence of an inflection separating two types of behaviour. The present stimulus acts bilaterally, and only the earliest crossed otolith-ocular reflex, previously shown to have a strictly unilateral origin, showed evidence of an inflection. Reflex changes in ocular torsion could, in principle, correct for the changes associated with translation for an elevated eye, but our findings indicated that the responses were consistent with previous reports of tilt-type reflexes. For the neck, both vestibular and segmental (muscle spindle) reflexes were evoked and followed power law relationships, without any clear separation in sensitivity. Our findings are consistent with previous evidence of "tilt-like" reflexes evoked by lateral acceleration and suggest that the departure from a power law occurs as a consequence of a unilateral crossed pathway. For the neck, responses to transients are likely to always consist of both vestibular and non-vestibular (segmental) components. Most of the translation-evoked ocular and cervical reflexes appear to follow power law relationship to stimulus amplitude over a physiological range.

  18. Effect of Spaceflight on Vestibulo-Ocular Reflexes (VORS) During Angular Head Motion

    NASA Technical Reports Server (NTRS)

    Tomko, David L.; Clifford, James O.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Vestibulo-ocular reflexes (VORs) stabilize the eyes during head motion. During Earth-horizontal (E-H) pitch or roll rotations, canal and otolith stimuli occur together. In Earth-vertical (E-V) pitch or roll rotations, only canal signals occur. In cats and squirrel monkeys, pitch/roll VOR gains during E-H motion have been shown to be larger than during E-V motion, implying that otolith modulation plays a role in producing angular VORs (aVORs). The present experiments replicated this experiment in rhesus monkeys, and examined how spaceflight affected AVOR gain. During yaw, pitch and roll (0.5 - 1.0 Hz, 40-50 deg/s pk) motion, 3-d eye movements were recorded in four Rhesus monkeys using scleral search coils. Mean E-H and E-V pitch VOR gains were 0.85 and 0.71. Torsional VOR gains during E-H and E-V were 0.47 and 0.39. Gains are more compensatory during E-H pitch or roll. Two of the four monkeys flew for 11 days on the COSMOS 2229 Biosatellite. E-H pitch VOR gains were attenuated immediately (72 hrs) post-flight, with similar values to pre-flight E-V pitch gains. Horizontal yaw VOR gains were similar pre- and post-flight.

  19. Effect of Spaceflight on Vestibulo-Ocular Reflexes (VORS) During Angular Head Motion

    NASA Technical Reports Server (NTRS)

    Tomko, David L.; Clifford, James O.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Vestibulo-ocular reflexes (VORs) stabilize the eyes during head motion. During Earth-horizontal (E-H) pitch or roll rotations, canal and otolith stimuli occur together. In Earth-vertical (E-V) pitch or roll rotations, only canal signals occur. In cats and squirrel monkeys, pitch/roll VOR gains during E-H motion have been shown to be larger than during E-V motion, implying that otolith modulation plays a role in producing angular VORs (aVORs). The present experiments replicated this experiment in rhesus monkeys, and examined how spaceflight affected AVOR gain. During yaw, pitch and roll (0.5 - 1.0 Hz, 40-50 deg/s pk) motion, 3-d eye movements were recorded in four Rhesus monkeys using scleral search coils. Mean E-H and E-V pitch VOR gains were 0.85 and 0.71. Torsional VOR gains during E-H and E-V were 0.47 and 0.39. Gains are more compensatory during E-H pitch or roll. Two of the four monkeys flew for 11 days on the COSMOS 2229 Biosatellite. E-H pitch VOR gains were attenuated immediately (72 hrs) post-flight, with similar values to pre-flight E-V pitch gains. Horizontal yaw VOR gains were similar pre- and post-flight.

  20. Lack of effects of astemizole on vestibular ocular reflex, motion sickness, and cognitive performance in man

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Homick, Jerry L.; Cintron, Nitza; Calkins, Dick S.

    1987-01-01

    Astemizole was orally administered to 20 subjects in a randomized, double-blind design to assess the efficacy of this peripherally active antihistamine as an antimotion sickness drug possessing no central side-effects. Measures of vestibular ocular reflex (VOR) were made to evaluate the agent as a selective vestibular depressant. Following one week of orally administered astemizole (30 mg daily), a Staircase Profile Test, a VOR test, and a variety of tests of cognitive performance were administered. These tests revealed no statistically significant effects of astemizole. This leads to the conclusion that, although the drug probably reaches the peripheral vestibular apparatus in man by crossing the blood-vestibular barrier, a selective peripheral antihistamine (H1) action is inadequate to control motion sickness induced through cross-coupled accelerative semicircular canal stimulation in a rotating chair.

  1. Lack of effects of astemizole on vestibular ocular reflex, motion sickness, and cognitive performance in man

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Homick, Jerry L.; Cintron, Nitza; Calkins, Dick S.

    1987-01-01

    Astemizole was orally administered to 20 subjects in a randomized, double-blind design to assess the efficacy of this peripherally active antihistamine as an antimotion sickness drug possessing no central side-effects. Measures of vestibular ocular reflex (VOR) were made to evaluate the agent as a selective vestibular depressant. Following one week of orally administered astemizole (30 mg daily), a Staircase Profile Test, a VOR test, and a variety of tests of cognitive performance were administered. These tests revealed no statistically significant effects of astemizole. This leads to the conclusion that, although the drug probably reaches the peripheral vestibular apparatus in man by crossing the blood-vestibular barrier, a selective peripheral antihistamine (H1) action is inadequate to control motion sickness induced through cross-coupled accelerative semicircular canal stimulation in a rotating chair.

  2. The Vestibulo-ocular Reflex During Active Head Motion in Chiari II Malformation

    PubMed Central

    Salman, Michael S.; Sharpe, James A.; Lillakas, Linda; Dennis, Maureen; Steinbach, Martin J.

    2008-01-01

    Background Chiari type II malformation (CII) is a developmental anomaly of the cerebellum and brainstem, which are important structures for processing the vestibulo-ocular reflex (VOR). We investigated the effects of the deformity of CII on the angular VOR during active head motion. Methods Eye and head movements were recorded using an infrared eye tracker and magnetic head tracker in 20 participants with CII [11 males, age range 8-19 years, mean (SD) 14.4 (3.2) years]. Thirty-eight age-matched healthy children and adolescents (21 males) constituted the control group. Participants were instructed to ‘look’ in darkness at the position of their thumb, placed 25 cm away, while they made horizontal and vertical sinusoidal head rotations at frequencies of about 0.5 Hz and 2 Hz. Parametric and non-parametric tests were used to compare the two groups. Results The VOR gains, the ratio of eye to head velocities, were abnormally low in two participants with CII and abnormally high in one participant with CII. Conclusion The majority of participants with CII had normal VOR performance in this investigation. However, the deformity of CII can impair the active angular VOR in some patients with CII. Low gain is attributed to brainstem damage and high gain to cerebellar dysfunction. PMID:18973069

  3. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex.

    PubMed

    Angelaki, D E; Hess, B J

    1994-03-01

    1. The spatial organization of the vestibuloocular reflex (VOR) was studied in six rhesus monkeys by applying fast, short-lasting, passive head and body tilts immediately after constant-velocity rotation (+/- 90 degrees/s) about an earth-vertical axis. Two alternative hypotheses were investigated regarding the reference frame used for coding angular motion. 1) If the vestibular system is organized in head-centered coordinates, postrotatory eye velocity would decay invariably along the direction of applied head angular acceleration. 2) Alternatively, if the vestibular system codes angular motion in inertial, gravity-centered coordinates, postrotatory eye velocity would decay along the direction of gravity. 2. Horizontal VOR was studied with the monkeys upright. Pitch (roll) tilts away from upright elicited a transient vertical (torsional) VOR and shortened the time constant of the horizontal postrotatory slow phase velocity. In addition, an orthogonal torsional (after pitch tilts) or vertical (after roll tilts) response gradually built up. As a result, the eye velocity vector transiently deviated in the roll (pitch) plane and then gradually rotated in the same direction as gravity in the pitch (roll) head plane until the orthogonal component reached a peak value. Subsequently, the residual postrotatory eye velocity decayed along a line parallel to gravity. 3. The time constant of the horizontal postrotatory response was maximal in upright position (21.5 +/- 5.7 s, mean +/- SD) and minimal after tilts to prone (3.8 +/- 0.7 s), supine (4.5 +/- 1.2 s), and ear-down (5.2 +/- 1.6 s) positions. A similar dependence on head orientation relative to gravity characterized the dynamics of the resultant eye velocity vector in the pitch and roll planes. 4. Torsional VOR was studied with the monkeys in supine or prone position. Pitch (yaw) tilts from the supine or prone position toward upright (ear-down) position elicited a transient vertical (horizontal) VOR and shortened the

  4. Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation.

    PubMed

    Young, Laurence R; Sienko, Kathleen H; Lyne, Lisette E; Hecht, Heiko; Natapoff, Alan

    2003-01-01

    Head movements made while the whole body is rotating at unusually high angular velocities (here with supine body position about an earth-vertical axis) result in inappropriate eye movements, sensory illusions, disorientation, and frequently motion sickness. We investigated the acquisition and retention of sensory adaptation to cross-coupled components of the vestibulo-ocular reflex (VOR) by asking eight subjects to make headturns while being rotated at 23 rpm on two consecutive days, and again a week later. The dependent measures were inappropriate vertical VOR, subjective tilt, and motion sickness in response to 90 degrees yaw out-of-plane head movements. Motion sickness was evaluated during and following exposure to rotation. Significant adaptation effects were found for the slow phase velocity of vertical nystagmus, the reported magnitude of the subjective tilt experienced during head turns, and motion-sickness scores. Retention of adaptation over a six-day rest period without rotation occurred, but was not complete for all measures. Adaptation of VOR was fully maintained while subjective tilt was only partially maintained and motion-sickness scores continued to decrease. Practical implications of these findings are discussed with particular emphasis on artificial gravity, which could be produced in weightlessness by means of a short-radius (2 m) rotator.

  5. Torsional vestibulo-ocular reflex measurements for identifying otolith asymmetries possibly related to space motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    1994-01-01

    Recent studies by Diamond and Markham have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal by von Baumgarten and Thumler which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.

  6. Torsional vestibulo-ocular reflex measurements for identifying otolith asymmetries possibly related to space motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1993-01-01

    Recent studies have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.

  7. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for

  8. Yaw sensory rearrangement alters pitch vestibulo-ocular reflex responses

    NASA Technical Reports Server (NTRS)

    Petropoulos, A. E.; Wall, C. 3rd; Oman, C. M.

    1997-01-01

    Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60 degrees/sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.

  9. Yaw sensory rearrangement alters pitch vestibulo-ocular reflex responses

    NASA Technical Reports Server (NTRS)

    Petropoulos, A. E.; Wall, C. 3rd; Oman, C. M.

    1997-01-01

    Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60 degrees/sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.

  10. The feet have it: local biological motion cues trigger reflexive attentional orienting in the brain.

    PubMed

    Wang, Li; Yang, Xiaoying; Shi, Jinfu; Jiang, Yi

    2014-01-01

    Most vertebrates, humans included, have a primitive visual system extremely sensitive to the motion of biological entities. Most previous studies have examined the global aspects of biological motion perception, but local motion processing has received much less attention. Here we provide direct psychophysical and electrophysiological evidence that human observers are intrinsically tuned to the characteristics of local biological motion cues independent of global configuration. Using a modified central cueing paradigm, we show that observers involuntarily orient their attention towards the walking direction of feet motion sequences, which triggers an early directing attention negativity (EDAN) in the occipito-parietal region 100-160ms after the stimulus onset. Notably, such effects are sensitive to the orientation of the local cues and are independent of whether the observers are aware of the biological nature of the motion. Our findings unambiguously demonstrate the automatic processing of local biological motion without explicit recognition. More importantly, with the discovery that local biological motion signals modulate attention, we highlight the functional importance of such processing in the brain.

  11. Modification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Denise, P.; CLement, G.

    2006-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both torsional and horizontal eye movements as a function of the varying linear acceleration along the lateral plane, and modulation of vertical and vergence eye movements as a function of the varying linear acceleration along the sagittal plane. Previous studies have demonstrated that tilt and translation otolith-ocular responses, as well as motion perception, vary as a function of stimulus frequency during OVAR. The purpose of this study is to examine normative OVAR responses in healthy human subjects, and examine adaptive changes in astronauts following short duration space flight at low (0.125 Hz) and high (0.5 Hz) frequencies. Data was obtained on 24 normative subjects (14 M, 10 F) and 14 (13 M, 1F) astronaut subjects. To date, astronauts have participated in 3 preflight sessions (n=14) and on R+0/1 (n=7), R+2 (n= 13) and R+4 (n= 13) days after landing. Subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography. Perceived motion was evaluated using verbal reports and a two-axis joystick (pitch and roll tilt) mounted on top of a two-axis linear stage (anterior-posterior and medial-lateral translation). Eye responses were obtained in ten of the normative subjects with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias of the responses over several cycles at each stimulus frequency. Eye responses during 0.125 Hz OVAR were dominated by modulation of torsional and vertical eye position, compensatory for tilt relative to gravity. While there is a bias horizontal slow phase velocity (SPV), the

  12. Primate translational vestibuloocular reflexes. I. High-frequency dynamics and three-dimensional properties during lateral motion

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.

    2000-01-01

    The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.

  13. Primate translational vestibuloocular reflexes. I. High-frequency dynamics and three-dimensional properties during lateral motion

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.

    2000-01-01

    The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.

  14. Three dimensional vestibular ocular reflex testing using a six degrees of freedom motion platform.

    PubMed

    Dits, Joyce; Houben, Mark M J; van der Steen, Johannes

    2013-05-23

    The vestibular organ is a sensor that measures angular and linear accelerations with six degrees of freedom (6DF). Complete or partial defects in the vestibular organ results in mild to severe equilibrium problems, such as vertigo, dizziness, oscillopsia, gait unsteadiness nausea and/or vomiting. A good and frequently used measure to quantify gaze stabilization is the gain, which is defined as the magnitude of compensatory eye movements with respect to imposed head movements. To test vestibular function more fully one has to realize that 3D VOR ideally generates compensatory ocular rotations not only with a magnitude (gain) equal and opposite to the head rotation but also about an axis that is co-linear with the head rotation axis (alignment). Abnormal vestibular function thus results in changes in gain and changes in alignment of the 3D VOR response. Here we describe a method to measure 3D VOR using whole body rotation on a 6DF motion platform. Although the method also allows testing translation VOR responses (1), we limit ourselves to a discussion of the method to measure 3D angular VOR. In addition, we restrict ourselves here to description of data collected in healthy subjects in response to angular sinusoidal and impulse stimulation. Subjects are sitting upright and receive whole-body small amplitude sinusoidal and constant acceleration impulses. Sinusoidal stimuli (f = 1 Hz, A = 4°) were delivered about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Impulses were delivered in yaw, roll and pitch and in the vertical canal planes. Eye movements were measured using the scleral search coil technique (2). Search coil signals were sampled at a frequency of 1 kHz. The input-output ratio (gain) and misalignment (co-linearity) of the 3D VOR were calculated from the eye coil signals (3). Gain and co-linearity of 3D VOR depended on the orientation of the stimulus axis. Systematic deviations

  15. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern

  16. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern

  17. Variations in gravitoinertial force level affect the gain of the vestibulo-ocular reflex: implications for the etiology of space motion sickness.

    PubMed

    Lackner, J R; Graybiel, A

    1981-03-01

    Recordings of horizontal nystagmus were obtained on 16 male subjects exposed to repeated patterns of horizontal angular acceleration, constant velocity rotation, and sudden-stop deceleration in the laboratory and in the free-fall and high-force periods of parabolic flight. Nystagmus intensity was a clear function of gravitoinertial force level: slow phase velocity and beat frequency increased during exposure to high force levels and decreased in free-fall compared to values obtained at I G. These findings indicate that the gain of the vestibulo-ocular reflex decreases in free-fall. This fact likely accounts for the disorientation and dizziness sometimes experienced by astronauts when moving their heads in the early phases of orbital flight and again after splashdown. The implications of the present findings, both for the etiology and for the treatment of space motion sickness, are discussed.

  18. Variations in gravitoinertial force level affect the gain of the vestibulo-ocular reflex - Implications of the etiology of space motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1981-01-01

    Recordings of horizontal nystagmus were obtained on 16 male subjects exposed to repeated patterns of horizontal angular acceleration, constant velocity rotation, and sudden-stop deceleration in the laboratory and in the free-fall and high-force periods of parabolic flight. Nystagmus intensity was a clear function of gravitoinertial force level: slow phase velocity and beat frequency increased during exposure to high force levels and decreased in free-fall compared to values obtained at 1 G. These findings indicate that the gain of the vestibulo-ocular reflex decreases in free-fall. This fact likely accounts for the disorientation and dizziness sometimes experienced by astronauts when moving their heads in the early phases of orbital flight and again after splashdown. The implications of the present findings, both for the etiology and for the treatment of space motion sickness, are discussed.

  19. Caring Reflexivity

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.

    2010-01-01

    This article provides a brief summary of the seven articles in this special issue through the lens of the concept of "caring reflexivity". In joining "caring" and "reflexivity", we deepen the conversation about what constitutes reflexivity, encouraging an explicit focus on the relational. Revisiting the first article,…

  20. Caring Reflexivity

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.

    2010-01-01

    This article provides a brief summary of the seven articles in this special issue through the lens of the concept of "caring reflexivity". In joining "caring" and "reflexivity", we deepen the conversation about what constitutes reflexivity, encouraging an explicit focus on the relational. Revisiting the first article,…

  1. Moro reflex

    MedlinePlus

    ... Causes This is a normal reflex present in newborn infants. Absence of the Moro reflex in an infant ... A.M. Editorial team. Related MedlinePlus Health Topics Infant and Newborn Care Browse the Encyclopedia A.D.A.M., ...

  2. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects

    PubMed Central

    Mueller, Juliane; Engel, Tilman; Mueller, Steffen; Stoll, Josefine; Baur, Heiner; Mayer, Frank

    2017-01-01

    Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles

  3. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  4. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  5. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  6. Vestibulo-spinal reflex mechanisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.

    1981-01-01

    The specific objectives of experiments designed to investigate postural reflex behavior during sustained weightlessness are discussed. The first is to investigate, during prolonged weightlessness with Hoffmann response (H-reflex) measurement procedures, vestibulo-spinal reflexes associated with vestibular (otolith) responses evoked during an applied linear acceleration. This objective includes not only an evaluation of otolith-induced changes in a major postural muscle but also an investigation with this technique of the adaptive process of the vestibular system and spinal reflex mechanisms to this unique environment. The second objective is to relate space motion sickness to the results of this investigation. Finally, a return to the vestibulo-spinal and postural reflexes to normal values following the flight will be examined. The flight experiment involves activation of nerve tissue (tibial N) with electrical shock and the recording of resulting muscle activity (soleus) with surface electrodes. Soleus/spinal H-reflex testing procedures will be used in conjuction with linear acceleration through the subject's X-axis.

  7. Infantile reflexes (image)

    MedlinePlus

    Infantile reflexes are tested and observed by medical professionals to evaluate neurological function and development. Absent or ... reflex is normally lost, or redevelopment of an infantile reflex in an older child or adult may ...

  8. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  9. Stretch reflex and Hoffmann reflex responses to osteopathic manipulative treatment in subjects with Achilles tendinitis.

    PubMed

    Howell, John N; Cabell, Karen S; Chila, Anthony G; Eland, David C

    2006-09-01

    Irvin M. Korr, PhD, hypothesized that sensitivity of the monosynaptic stretch reflex (ie, deep tendon reflex) plays a major role in the restriction-of-motion characteristic of somatic dysfunction, and that restoration of range of motion through osteopathic manipulative treatment (OMT) could be achieved by resetting of the stretch receptor gain. To test Korr's hypothesis in the context of Achilles tendinitis, examining whether OMT applied to patients with Achilles tendinitis reduces the strength of the stretch reflex. Subjects were recruited through public advertisements and referrals from healthcare professionals. There were no recruitment restrictions based on demographic factors. Amplitudes for stretch reflex and H-reflex (Hoffmann reflex) in the triceps surae muscles (the soleus together with the lateral and medial heads of the gastrocnemius) were measured in subjects with diagnosed Achilles tendonitis (n=16), both before and after OMT. These measurements were also made in asymptomatic control subjects (n=15) before and after sham manipulative treatment. As predicated on the concepts of the strain-counterstrain model developed by Lawrence H. Jones, DO, the use of OMT produced a 23.1% decrease in the amplitude of the stretch reflex of the soleus (P<.05) in subjects with Achilles tendinitis. Similarly significant responses were measured in the lateral and medial heads of the gastrocnemius in OMT subjects. The H-reflex was not significantly affected by OMT. In control subjects, neither reflex was significantly affected by sham manipulative treatment. By using a rating scale on questionnaires before treatment and daily for 7 days posttreatment, OMT subjects indicated significant clinical improvement in soreness, stiffness, and swelling. The reduction of stretch reflex amplitude with OMT, together with no change in H-reflex amplitude, is consistent with Korr's proprioceptive hypothesis for somatic dysfunction and patient treatment. Because subjects' soreness ratings

  10. Reflexes in psychiatry.

    PubMed

    Sanders, Richard D; Gillig, Paulette Marie

    2011-04-01

    Psychiatric patients often do not cooperate fully with the neurologic examination. Reflexes virtually bypass patient effort and are difficult to consciously determine. This article reviews muscle stretch (deep tendon) reflexes, and pathological reflexes including the extensor plantar (Babinski) and primitive release reflexes. Topics include findings in common psychiatric and neurologic conditions and methods for eliciting these signs.

  11. Reflexives in Veracruz Huastec.

    ERIC Educational Resources Information Center

    Constable, Peter G.

    A study examines various Huastec clause types that are reflexive in some sense, including ordinary reflexives, which involve co-reference. Two mutually exclusive morphosyntactic devices are used in Huastec: reflexive pronouns and verbal morphology. In this way, Huastec is like various European languages. Clauses involving reflexive pronouns and…

  12. The nasocardiac reflex.

    PubMed

    Baxandall, M L; Thorn, J L

    1988-06-01

    The oculocardiac reflex is well described and recognised in anaesthesia. The nasocardiac reflex is less well-known. We describe a clinical manifestation of this reflex and describe the relevant anatomy. This reflex may be obtunded during general anaesthesia. during general anaesthesia.

  13. Reflexives in Japanese

    ERIC Educational Resources Information Center

    Kishida, Maki

    2011-01-01

    The purpose of this dissertation is to reconsider reflexives in Japanese through the following three steps: (a) separation of genuine reflexive elements from elements that are confounded as reflexives, (b) classification of reflexive anaphors into subtypes based on their semantic difference, and (c) classification of predicates that occur with…

  14. Vestibular reflexes of otolith origin

    NASA Technical Reports Server (NTRS)

    Wilson, Victor J.

    1988-01-01

    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.

  15. Embodied Self-Reflexivity

    ERIC Educational Resources Information Center

    Pagis, Michal

    2009-01-01

    Drawing on G. H. Mead and Merleau-Ponty, this paper aims to extend our understanding of self-reflexivity beyond the notion of a discursive, abstract, and symbolic process. It offers a framework for embodied self-reflexivity, which anchors the self in the reflexive capacity of bodily sensations. The data consist of two years of ethnographic…

  16. Embodied Self-Reflexivity

    ERIC Educational Resources Information Center

    Pagis, Michal

    2009-01-01

    Drawing on G. H. Mead and Merleau-Ponty, this paper aims to extend our understanding of self-reflexivity beyond the notion of a discursive, abstract, and symbolic process. It offers a framework for embodied self-reflexivity, which anchors the self in the reflexive capacity of bodily sensations. The data consist of two years of ethnographic…

  17. Influence of Age on Patellar Tendon Reflex Response

    PubMed Central

    Chandrasekhar, Annapoorna; Abu Osman, Noor Azuan; Tham, Lai Kuan; Lim, Kheng Seang; Wan Abas, Wan Abu Bakar

    2013-01-01

    Background A clinical parameter commonly used to assess the neurological status of an individual is the tendon reflex response. However, the clinical method of evaluation often leads to subjective conclusions that may differ between examiners. Moreover, attempts to quantify the reflex response, especially in older age groups, have produced inconsistent results. This study aims to examine the influence of age on the magnitude of the patellar tendon reflex response. Methodology/Principal Findings This study was conducted using the motion analysis technique with the reflex responses measured in terms of knee angles. Forty healthy subjects were selected and categorized into three different age groups. Patellar reflexes were elicited from both the left and right patellar tendons of each subject at three different tapping angles and using the Jendrassik maneuver. The findings suggested that age has a significant effect on the magnitude of the reflex response. An angle of 45° may be the ideal tapping angle at which the reflex can be elicited to detect age-related differences in reflex response. The reflex responses were also not influenced by gender and were observed to be fairly symmetrical. Conclusions/Significance Neurologically normal individuals will experience an age-dependent decline in patellar reflex response. PMID:24260483

  18. The neonatal acoustic reflex.

    PubMed

    Weatherby, L A; Bennett, M J

    1980-01-01

    Probe tones from 220 Hz to 2 000 Hz were used to measure the static and dynamic acoustic impedance of 44 neonates. Acoustic reflex thresholds to broad band noise were obtained from every neonate tested when employing the higher frequency probe tones. The reflex threshold levels measured are similar to those of adults. The static impedance values are discussed to give a possible explanation of why reflex thresholds cannot be detected using conventional 220 Hz impedance bridges.

  19. The menace reflex.

    PubMed

    van Ballegoij, Wouter J C; Koehler, Peter J; Meulen, Bastiaan C Ter

    2015-06-01

    The menace reflex (blink reflex to visual threat) tests visual processing at the bedside in patients who cannot participate in normal visual field testing. We reviewed a collection of recently discovered historical movies showing the experiments of the Dutch physiologist Gysbertus Rademaker (1887-1957), exploring the anatomy of this reflex by making cerebral lesions in dogs. The experiments show not only that the menace reflex is cortically mediated, but also that lesions outside the visual cortex can abolish the reflex. Therefore, although often erroneously used in this way, an absent menace does not always indicate a visual field deficit. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. What is a reflex?

    PubMed Central

    Truog, Robert D.

    2015-01-01

    Uncertainty in diagnosing disorders of consciousness, and specifically in determining whether consciousness has been lost or retained, poses challenging scientific and ethical questions. Recent neuroimaging-based tests for consciousness have cast doubt on the reliability of behavioral criteria in assessing states of consciousness and generate new questions about the assumptions used in formulating coherent diagnostic criteria. The reflex, a foundational diagnostic tool, offers unique insight into these disorders; behaviors produced by unconscious patients are thought to be purely reflexive, whereas those produced by conscious patients can be volitional. Further investigation, however, reveals that reflexes cannot be reliably distinguished from conscious behaviors on the basis of any generalizable empirical characteristics. Ambiguity between reflexive and conscious behaviors undermines the capacity of the reflex to distinguish between disorders of consciousness and has implications for how these disorders should be conceptualized in future diagnostic criteria. PMID:26085602

  1. Linear time delay methods and stability analyses of the human spine. Effects of neuromuscular reflex response.

    PubMed

    Franklin, Timothy C; Granata, Kevin P; Madigan, Michael L; Hendricks, Scott L

    2008-08-01

    Linear stability methods were applied to a biomechanical model of the human musculoskeletal spine to investigate effects of reflex gain and reflex delay on stability. Equations of motion represented a dynamic 18 degrees-of-freedom rigid-body model with time-delayed reflexes. Optimal muscle activation levels were identified by minimizing metabolic power with the constraints of equilibrium and stability with zero reflex time delay. Muscle activation levels and associated muscle forces were used to find the delay margin, i.e., the maximum reflex delay for which the system was stable. Results demonstrated that stiffness due to antagonistic co-contraction necessary for stability declined with increased proportional reflex gain. Reflex delay limited the maximum acceptable proportional reflex gain, i.e., long reflex delay required smaller maximum reflex gain to avoid instability. As differential reflex gain increased, there was a small increase in acceptable reflex delay. However, differential reflex gain with values near intrinsic damping caused the delay margin to approach zero. Forward-dynamic simulations of the fully nonlinear time-delayed system verified the linear results. The linear methods accurately found the delay margin below which the nonlinear system was asymptotically stable. These methods may aid future investigations in the role of reflexes in musculoskeletal stability.

  2. Horizontal otolith-ocular responses in humans after unilateral vestibular deafferentation.

    PubMed

    Lempert, T; Gianna, C; Brookes, G; Bronstein, A; Gresty, M

    1998-02-01

    We studied horizontal eye movements evoked by lateral whole body translation in nine patients who underwent vestibular nerve section. Preoperatively, all had preserved caloric function on both sides. Testing was performed before, 1 week and 6-10 weeks after surgery. Patients were seated upright in an electrically powered car running on a linear track. The car executed acceleration steps of 0.24 g, randomly to the left and right in the dark. The normal response consisted of a bidirectionally symmetrical nystagmus with compensatory slow phases. Response asymmetry of the slow-phase velocity of the desaccaded and averaged eye position signal was less than 13% in normals (n = 21). Before surgery, patients' responses were mostly symmetrical. Postoperatively, responses were diminished or absent with head acceleration towards the operated ear in all patients, causing a marked asymmetry which averaged 56% after correction for spontaneous nystagmus. On follow-up, responses regained symmetry. Thus, early after vestibular nerve section, a single utricle produces a normal LVOR only with ipsilateral head translation. Therefore, afferents for the LVOR seem to originate from the mid-lateral area of the macula, where hair cells are stimulated in their on-direction during ipsilateral head translation. Compensation may depend on recovery of the off-directional responses from lateral hair cells of the remaining utricle.

  3. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  4. Paraspinal muscle reflex dynamics.

    PubMed

    Granata, K P; Slota, G P; Bennett, B C

    2004-02-01

    Neuromuscular control of spinal stability may be represented as a control system wherein the paraspinal muscle reflex acts as feedback response to kinetic and kinematic disturbances of the trunk. The influence of preparatory muscle recruitment for the control of spinal stability has been previously examined, but there are few reported studies that characterize paraspinal reflex gain as feedback response. In the current study, the input-output dynamics of paraspinal reflexes were quantified by means of the impulse response function (IRF), with trunk perturbation force representing the input signal and EMG the output signal. Surface EMGs were collected from the trunk muscles in response to a brief anteriorly directed impact force applied to the trunk of healthy participants. Reflex behavior was measured in response to three levels of force impulse, 6.1, 9.2 and 12.0 Ns, and two different levels of external trunk flexion preload, 0 and 110 N anterior force. Reflex EMG was quantifiable in response to 91% of the perturbations. Mean reflex onset latency was 30.7+/-21.3 ms and reflex amplitude increased with perturbation amplitude. Impulse response function gain, G(IRF), was defined as the peak amplitude of the measured IRF and provided a consistent measure of response behavior. EMG reflex amplitude and G(IRF) increased with force impulse. Mean G(IRF) was 2.27+/-1.31% MVC/Ns and demonstrated declining trend with flexion preload. Results agree with a simple systems model of the neuromechanical feedback behavior. The relative contribution of the reflex dynamics to spinal stability must be investigated in future research.

  5. On Reflexive Data Models

    SciTech Connect

    Petrov, S.

    2000-08-20

    An information system is reflexive if it stores a description of its current structure in the body of stored information and is acting on the base of this information. A data model is reflexive, if its language is meta-closed and can be used to build such a system. The need for reflexive data models in new areas of information technology applications is argued. An attempt to express basic notions related to information systems is made in the case when the system supports and uses meta-closed representation of the data.

  6. Reflex operculoinsular seizures.

    PubMed

    Xiao, Handsun; Tran, Thi Phuoc Yen; Pétrin, Myriam; Boucher, Olivier; Mohamed, Ismail; Bouthillier, Alain; Nguyen, Dang Khoa

    2016-03-01

    Activation of specific cortical territories by certain stimuli is known to trigger focal seizures. We report three cases of well documented operculo-insular reflex seizures, triggered by somatosensory stimuli in two and loud noises in the third. Limited operculoinsular resection resulted in an excellent outcome for all. We discuss these observations in regard to the literature on reflex epilepsy and known functions of the insula. [Published with video sequences online].

  7. The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive Reflex Responses

    PubMed Central

    Futagi, Yasuyuki; Toribe, Yasuhisa; Suzuki, Yasuhiro

    2012-01-01

    The plantar grasp reflex is of great clinical significance, especially in terms of the detection of spasticity. The palmar grasp reflex also has diagnostic significance. This grasp reflex of the hands and feet is mediated by a spinal reflex mechanism, which appears to be under the regulatory control of nonprimary motor areas through the spinal interneurons. This reflex in human infants can be regarded as a rudiment of phylogenetic function. The absence of the Moro reflex during the neonatal period and early infancy is highly diagnostic, indicating a variety of compromised conditions. The center of the reflex is probably in the lower region of the pons to the medulla. The phylogenetic meaning of the reflex remains unclear. However, the hierarchical interrelation among these primitive reflexes seems to be essential for the arboreal life of monkey newborns, and the possible role of the Moro reflex in these newborns was discussed in relation to the interrelationship. PMID:22778756

  8. Experimenting With Baroreceptor Reflexes

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.; Goble, Ross L.

    1988-01-01

    Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.

  9. The inhibitory control reflex.

    PubMed

    Verbruggen, Frederick; Best, Maisy; Bowditch, William A; Stevens, Tobias; McLaren, Ian P L

    2014-12-01

    Response inhibition is typically considered a hallmark of deliberate executive control. In this article, we review work showing that response inhibition can also become a 'prepared reflex', readily triggered by information in the environment, or after sufficient training, or a 'learned reflex' triggered by the retrieval of previously acquired associations between stimuli and stopping. We present new results indicating that people can learn various associations, which influence performance in different ways. To account for previous findings and our new results, we present a novel architecture that integrates theories of associative learning, Pavlovian conditioning, and executive response inhibition. Finally, we discuss why this work is also relevant for the study of 'intentional inhibition'.

  10. Design and Reflexivity.

    ERIC Educational Resources Information Center

    van Toorn, Jan

    1994-01-01

    Argues that design, despite frequently well-intentioned ethical starting-points, has become generalized and rudimentary in its substantive and instrumental choices, and naive in its thinking about its own public role. Argues for a "mental ecology," for a multidimensional realistic reflexivity, which makes possible the recuperation of a…

  11. Reflexivity in Pigeons

    ERIC Educational Resources Information Center

    Sweeney, Mary M.; Urcuioli, Peter J.

    2010-01-01

    A recent theory of pigeons' equivalence-class formation (Urcuioli, 2008) predicts that reflexivity, an untrained ability to match a stimulus to itself, should be observed after training on two "mirror-image" symbolic successive matching tasks plus identity successive matching using some of the symbolic matching stimuli. One group of pigeons was…

  12. Studies of the horizontal vestibulo-ocular reflex in spaceflight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Uri, John J.; Moore, Tom; Pool, Sam

    1989-01-01

    Changes in the vestibulo-ocular reflex (VOR) during space flight have been suspected of contributing to space motion sickness. The horizontal VOR was studied in nine subjects on two space shuttle missions. Active unpaced head oscillation at 0.3 Hz was used as the stimulus to examine the gain and phase of the VOR with and without visual input, as well as the visual suppression of the reflex. No statistically significant changes were noted inflight in the gains or phase shifts of the VOR during any test condition, or between space motion sickness susceptible and nonsusceptible populations. Although VOR suppression was unaffected by spaceflight, the space motion sickness-susceptible group tended to exhibit greater error in the suppression than the nonsusceptible group. It is concluded that at this stimulus frequency, VOR gain is unaffected by space-flight, and any minor individual changes do not seem to contribute to space motion sickness.

  13. Studies of the horizontal vestibulo-ocular reflex in spaceflight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Uri, John J.; Moore, Tom; Pool, Sam

    1989-01-01

    Changes in the vestibulo-ocular reflex (VOR) during space flight have been suspected of contributing to space motion sickness. The horizontal VOR was studied in nine subjects on two space shuttle missions. Active unpaced head oscillation at 0.3 Hz was used as the stimulus to examine the gain and phase of the VOR with and without visual input, as well as the visual suppression of the reflex. No statistically significant changes were noted inflight in the gains or phase shifts of the VOR during any test condition, or between space motion sickness susceptible and nonsusceptible populations. Although VOR suppression was unaffected by spaceflight, the space motion sickness-susceptible group tended to exhibit greater error in the suppression than the nonsusceptible group. It is concluded that at this stimulus frequency, VOR gain is unaffected by space-flight, and any minor individual changes do not seem to contribute to space motion sickness.

  14. Primitive reflexes in Parkinson's disease.

    PubMed Central

    Vreeling, F W; Verhey, F R; Houx, P J; Jolles, J

    1993-01-01

    A standardised protocol for the examination of 15 primitive reflexes in which the amplitude and the persistence were scored separately, was applied to 25 patients with Parkinson's disease and an equal number of healthy matched control subjects. Most reflexes were found considerably more often in the patients than in the control subjects, especially the snout, the glabellar tap, and its variant, the nasopalpebral reflex. Only the mouth open finger spread reflex was present more often in the control subjects. For all reflexes except this last, the scores for amplitude and persistence of the reflexes for the control group never exceeded the scores for the patient group. Reflexes persisted more often in the patients than in the control subjects. Parkinsonism alone can explain a large number of primitive reflexes, irrespective of the severity or duration of the disease. In contrast, the number of reflexes was related more closely to cognitive scales. It is concluded that such reflexes may be helpful in diagnosing Parkinson's disease. In addition, a standardised protocol for eliciting and scoring is essential for the study of these reflexes in parkinsonism and other neuropsychiatric conditions. PMID:8270937

  15. Spinal reflexes in brain death.

    PubMed

    Beckmann, Yesim; Çiftçi, Yeliz; Incesu, Tülay Kurt; Seçil, Yaprak; Akhan, Galip

    2014-12-01

    Spontaneous and reflex movements have been described in brain death and these unusual movements might cause uncertainties in diagnosis. In this study we evaluated the presence of spinal reflexes in patients who fulfilled the criteria for brain death. Thirty-two (22 %) of 144 patients presented unexpected motor movements spontaneously or during examinations. These patients exhibited the following signs: undulating toe, increased deep tendon reflexes, plantar responses, Lazarus sign, flexion-withdrawal reflex, facial myokymia, neck-arm flexion, finger jerks and fasciculations. In comparison, there were no significant differences in age, sex, etiology of brain death and hemodynamic laboratory findings in patients with and without reflex motor movement. Spinal reflexes should be well recognized by physicians and it should be born in mind that brain death can be determined in the presence of spinal reflexes.

  16. Sacroiliac joint manipulation decreases the H-reflex.

    PubMed

    Murphy, B A; Dawson, N J; Slack, J R

    1995-03-01

    Joint manipulation is widely utilized clinically to decrease pain and increase the range of motion of joints displaying limited mobility. Evidence of efficacy is based on subjective reports of symptom improvement as well as on the results of clinical trials. Experiments were designed to determine whether or not sacroiliac joint manipulation affects the amplitude of the Hoffman (H) reflex. Surface EMG recordings of the reflex response to electrical stimulation of the tibial nerve in the popliteal fossa were made from the soleus muscle. The averaged amplitudes of H-reflexes were compared on both legs before and after either sacroiliac joint manipulation or a sham procedure. H-reflex amplitude was significantly decreased (12.9%) in the ipsilateral leg (p < 0.001) following a sacroiliac joint manipulation while there was no significant alteration following the sham intervention. There was no significant alteration in reflex excitability in the contralateral leg to the sacroiliac joint manipulation. To further investigate the mechanism of these reflex alterations, the local anaesthetic cream EMLA (Astra Pharmaceuticals) was applied to the skin overlying the sacroiliac joint and the experiments were repeated on a different group of subjects. This was intended to determine if excitation of cutaneous afferents was responsible for the reflex excitability changes. There was still a significant decrease in reflex excitability (10.6%) following sacroiliac joint manipulation (p < 0.001). These findings indicate that joint manipulation exerts physiological effects on the central nervous system, probably at the segmental level. The fact that the changes persisted in the presence of cutaneous anaesthesia suggests that the reflex changes are likely to be mediated by joint and/or muscle afferents.

  17. Mentalis muscle related reflexes.

    PubMed

    Gündüz, Ayşegül; Uyanık, Özlem; Ertürk, Özdem; Sohtaoğlu, Melis; Kızıltan, Meral Erdemir

    2016-05-01

    The mentalis muscle (MM) arises from the incisive fossa of the mandible, raises and protrudes the lower lip. Here, we aim to characterize responses obtained from MM by supraorbital and median electrical as well as auditory stimuli in a group of 16 healthy volunteers who did not have clinical palmomental reflex. Reflex activities were recorded from the MM and orbicularis oculi (O.oc) after supraorbital and median electrical as well as auditory stimuli. Response rates over MM were consistent after each stimulus, however, mean latencies of MM response were longer than O.oc responses by all stimulation modalities. Shapes and amplitudes of responses from O.oc and MM were similar. Based on our findings, we may say that MM motoneurons have connections with trigeminal, vestibulocochlear and lemniscal pathways similar to other facial muscles and electrophysiological recording of MM responses after electrical and auditory stimulation is possible in healthy subjects.

  18. Corporeal reflexivity and autism.

    PubMed

    Ochs, Elinor

    2015-06-01

    Ethnographic video recordings of high functioning children with autism or Aspergers Syndrome in everyday social encounters evidence their first person perspectives. High quality visual and audio data allow detailed analysis of children's bodies and talk as loci of reflexivity. Corporeal reflexivity involves displays of awareness of one's body as an experiencing subject and a physical object accessible to the gaze of others. Gaze, demeanor, actions, and sotto voce commentaries on unfolding situations indicate a range of moment-by-moment reflexive responses to social situations. Autism is associated with neurologically based motor problems (e.g. delayed action-goal coordination, clumsiness) and highly repetitive movements to self-soothe. These behaviors can provoke derision among classmates at school. Focusing on a 9-year-old girl's encounters with peers on the playground, this study documents precisely how autistic children can become enmeshed as unwitting objects of stigma and how they reflect upon their social rejection as it transpires. Children with autism spectrum disorders in laboratory settings manifest diminished understandings of social emotions such as embarrassment, as part of a more general impairment in social perspective-taking. Video ethnography, however, takes us further, into discovering autistic children's subjective sense of vulnerability to the gaze of classmates.

  19. Adductor T reflex abnormalities in patients with decreased patellar reflexes.

    PubMed

    Tataroglu, Cengiz; Deneri, Ersin; Ozkul, Ayca; Sair, Ahmet; Yaycioglu, Soner

    2009-08-01

    The adductor reflex (AR) is a tendon reflex that has various features that differ from other tendon reflexes. This reflex was tested in different disorders presenting with diminished patellar reflexes such as diabetic lumbosacral radiculoplexus neuropathy (DLRPN), L2-L4 radiculopathy, and distal symmetric diabetic neuropathy (diabetic PNP). The AR and crossed-AR (elicited by tapping the contralateral patellar tendon) were recorded using concentric needle electrodes. Additionally, the patellar T reflex (vm-TR) and vastus medialis H reflex (vm-HR) were recorded using surface electrodes. AR was recorded in only one out of eight patients with DLRPN, but it was recorded in 21 out of 22 patients with L2-L4 radiculopathy (95.5%). Of these reflexes, only AR showed prolonged latency in the L2-L4 radiculopathy group. The latencies of AR, vm-TR, and vm-HR were prolonged in patients with diabetic PNP. We conclude that AR can be useful in the differential diagnosis of some lower motor neuron disorders that present with patellar reflex disturbance. Muscle Nerve 40: 264-270, 2009.

  20. Stapedial reflex in Parkinson's disease.

    PubMed

    Murofushi, T; Yamane, M; Osanai, R

    1992-01-01

    In 27 patients with Parkinson's disease (PD), stapedial reflexes were measured using impedance audiometry and compared with those of 11 age-matched control subjects. The reflex threshold of PD patients was lower than that of control subjects. A prolongation of contraction time (C50) and relaxation time (D50) was revealed. Between patients with and without L-dopa, there was no significant difference for any reflex parameter. But, the D50 of patients without anticholinergic drugs was longer than that of patients with anticholinergic drugs. The authors could not find any relationship between the severity of PD and the reflex parameters. The authors assume that the prolongation of reflex parameters might be attributed to the hyperactivity of the indirect pathways of the stapedial reflex.

  1. Reflex sympathetic dystrophy in hemiplegia.

    PubMed

    Gokkaya, Nilufer Kutay Ordu; Aras, Meltem; Yesiltepe, Elcin; Koseoglu, Fusun

    2006-12-01

    There is a high incidence of reflex sympathetic dystrophy of the upper limbs in patients with hemiplegia, and its painful and functional consequences present a problem to specialists in physical medicine and rehabilitation. This study was designed to assess the role of several factors in the occurrence of reflex sympathetic dystrophy in patients with hemiplegia. Ninety-five consecutive stroke patients (63 male and 32 female, mean age 59+/-12 years) admitted to our hospital were evaluated. Of the study group, 29 patients (30.5%) were found to develop reflex sympathetic dystrophy. There were no significant differences between the hemiplegic patient groups with or without reflex sympathetic dystrophy regarding age, gender, etiology, side of involvement, disease duration and the presence of comorbidities. The recovery stages of hemiplegia, as shown by Brunnstrom functional classification, were significantly different between the two groups; patients in lower recovery stages tended to develop reflex sympathetic dystrophy more frequently (P<0.01). Additionally, the presence of flaccidity was also a significant factor in the development of reflex sympathetic dystrophy. Glenohumeral subluxation was present in 37 patients (38.9%) in our study group and the presence of this complication was related to the occurrence of reflex sympathetic dystrophy. The presence of glenohumeral subluxation was significantly higher in patients with reflex sympathetic dystrophy (21/29, 72.4%) when compared to the patients without reflex sympathetic dystrophy (16/66, 24.2%) (P<0.001). Also, hemiplegic patients with more severe shoulder subluxation were significantly more likely to develop reflex sympathetic dystrophy. These results suggest that lower recovery stages, reduced tonus and glenohumeral subluxation significantly contribute to the occurrence of reflex sympathetic dystrophy in the hemiplegic patient. We believe that preventive and treatment measures should consider these factors as they

  2. Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects

    NASA Astrophysics Data System (ADS)

    Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki

    The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was

  3. Stabilizing skateboard speed-wobble with reflex delay.

    PubMed

    Varszegi, Balazs; Takacs, Denes; Stepan, Gabor; Hogan, S John

    2016-08-01

    A simple mechanical model of the skateboard-skater system is analysed, in which the effect of human control is considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of this non-holonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard-skater system at high speed. Moreover, the advantages of standing ahead of the centre of the board are demonstrated from the viewpoint of reflex delay and control gain sensitivity. © 2016 The Author(s).

  4. Stabilizing skateboard speed-wobble with reflex delay

    PubMed Central

    Takacs, Denes; Stepan, Gabor; Hogan, S. John

    2016-01-01

    A simple mechanical model of the skateboard–skater system is analysed, in which the effect of human control is considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of this non-holonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard–skater system at high speed. Moreover, the advantages of standing ahead of the centre of the board are demonstrated from the viewpoint of reflex delay and control gain sensitivity. PMID:27534701

  5. Buccopalpebral reflex in Parkinson disease and blink reflex study.

    PubMed

    Unal, Yasemin; Kutlu, Gulnihal; Erdal, Abidin; Inan, Levent E

    2013-07-01

    To define a new primitive reflex named the buccopalpebral reflex (BPR), and to investigate this reflex clinically and neurophysiologically in patients with Parkinson disease. This prospectively designed study included 17 patients, 9 BPR positive patients, and 8 BPR negative patients in Ankara Research and Training Hospital, Ankara, Turkey, and was carried out between January and December 2008. All patients had Parkinson disease without any medication. Using the blink reflex technique, 3 branches of the trigeminal nerve were stimulated. Additionally, the Mini Mental State Examination (MMSE), the Unified Parkinson`s Disease Rating Scale (UPDRS), the Hoehn and Yahr Score (HYS), the blink frequency, and the duration of Parkinson disease was also matched between the 2 groups. In patients with positive BPR, 5 had tremor and the remaining 4 had bradykinesia as a dominant symptom, while all other patients with negative BPR had only tremor. When blink reflex findings were compared between the 2 groups, R2 and contralateral R2 latencies that were taken by supraorbital stimulus were significantly shorter in the BPR positive patients. There were no statistically significant differences in terms of MMSE, UPDRS, HYS, and frequency of blinking, and duration of illness between the 2 groups. This reflex may be an indicator of sensitivity or decrease of threshold level such as Myerson`s sign, in which there is no inhibition in glabella reflex. The blink reflex findings support this hypothesis.

  6. [Laryngeal and larynx-associated reflexes].

    PubMed

    Ptok, M; Kühn, D; Miller, S; Jungheim, M; Schroeter, S

    2016-06-01

    The laryngeal adductor reflex and the pharyngoglottal closure reflex protect the trachea and lower respiratory tract against the entrance of foreign material. The laryngeal expiration reflex and the cough reflex serve to propel foreign material, which has penetrated in the cranial direction. The inspiration reflex, the sniff reflex, and the swallowing reflex are further larynx-associated reflexes. In patients with dysphagia the laryngeal adductor reflex can be clinically tested with air pulses. The water swallow test serves to show the integrity of the cough reflex. The sniff reflex is useful to test the abduction function of the vocal folds. Future studies should address laryngeal reflexes more specifically, both for a better understanding of these life-supporting mechanisms and to improve diagnostic procedures in patients with impaired laryngeal function.

  7. Patterning of somatosympathetic reflexes

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Yates, B. J.

    1999-01-01

    In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.

  8. Patterning of somatosympathetic reflexes

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Yates, B. J.

    1999-01-01

    In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.

  9. Teaching Reflexivity in Qualitative Interviewing

    ERIC Educational Resources Information Center

    Hsiung, Ping-Chun

    2008-01-01

    Reflexivity has gained paramount status in qualitative inquiry. It is central to debates on subjectivity, objectivity, and, ultimately, the scientific foundation of social science knowledge and research. Although much work on doing reflexivity by researchers and practitioners has been published, scholars have only recently begun to explore how one…

  10. Reflexive Planning for Later Life

    ERIC Educational Resources Information Center

    Denton, Margaret A.; Kemp, Candace L.; French, Susan; Gafni, Amiram; Joshi, Anju; Rosenthal, Carolyn J.; Davies, Sharon

    2004-01-01

    Informed by Giddens' (1991) concept of "reflexive life" planning and the notion of later life as a time of increasing social and financial risk, this research explores the idea of "reflexive planning for later life". We utilize a conceptual model that incorporates three types of planning for later life: public protection, self-insurance, and…

  11. [Reflex seizures, cinema and television].

    PubMed

    Olivares-Romero, Jesús

    2015-12-16

    In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot.

  12. Acoustic reflex and general anaesthesia.

    PubMed

    Farkas, Z

    1983-01-01

    Infant and small children are not always able to cooperate in impedance measurements. For this reason it was decided, -in special cases, -to perform acoustic reflex examination under general anaesthesia. The first report on stapedius reflex and general anaesthesia was published by Mink et al. in 1981. Under the effect of Tiobutabarbital, Propanidid and Diazepam there is no reflex response. Acoustic reflex can be elicited with Ketamin-hydrochlorid and Alphaxalone-alphadolone acetate narcosis. The reflex threshold remains unchanged and the amplitude of muscle contraction is somewhat increased. The method was used: 1. to assess the type and degree of hearing loss in children with cleft palate and/or lip prior to surgery. 2. to exclude neuromuscular disorders with indication of pharyngoplasties. 3. to quantify hearing level in children--mostly multiply handicapped--with retarded speech development. The results of Behavioral Observation and Impedance Audiometry are discussed and evaluated.

  13. Adrenoceptors and colocolonic inhibitory reflex.

    PubMed

    Hughes, S F; Scott, S M; Pilot, M A; Williams, N S

    1999-12-01

    The colocolonic inhibitory reflex is characterized by inhibition of proximal colonic motility induced by distal colonic distension. The aim of this study was to investigate the underlying neural mechanisms of this reflex, in vivo, using an isolated loop of canine colon. In five beagle dogs, motility was recorded from an exteriorized colonic loop via a serosal strain gauge connected to a digital data logger and chart recorder. Inflation of a balloon in the distal colon resulted in inhibition of motility in the isolated loop. Inhibition of motor activity persisted following injection of propranolol (100 microg/kg intravenously), a beta-adrenoceptor antagonist, but was abolished following administration of the alpha2-adrenoceptor antagonist yohimbine (200 microg/kg intravenously). This study confirms that the colocolonic inhibitory reflex is mediated via the extrinsic nerves to the colon. As the reflex was abolished by alpha2-, but not beta-adrenoceptor blockade, this indicates that the reflex pathway involves alpha2-adrenoceptors.

  14. Acoustic reflex measurement.

    PubMed

    Schairer, Kim S; Feeney, M Patrick; Sanford, Chris A

    2013-07-01

    Middle ear muscle reflex (MEMR) measurements have been a part of the standard clinical immittance test battery for decades as a cross-check with the behavioral audiogram and as a way to separate cochlear from retrocochlear pathologies. MEMR responses are measured in the ear canal by using a probe stimulus (e.g., single frequency or broadband noise) to monitor admittance changes elicited by a reflex-activating stimulus. In the clinical MEMR procedures, one test yields changes in a single measurement (i.e., admittance) at a single pure tone (e.g., 226 or 1000 Hz). In contrast, for the wideband acoustic immittance (WAI) procedure,one test yields information about multiple measurements (e.g., admittance, power reflectance, absorbance) across a wide frequency range (e.g., 250 to 8000 Hz analysis bandwidth of the probe). One benefit of the WAI method is that the MEMR can be identified in a single test regardless of the frequency at which the maximum shift in the immittance measurement occurs; this is beneficial because maximal shifts in immittance vary as a function of age and other factors. Another benefit is that the wideband response analysis yields lower MEMR thresholds than with the clinical procedures. Lower MEMR thresholds would allow for MEMR decay tests in ears in which the activator levels could not be safely presented. Finally, the WAI procedures can be automated with objective identification of the MEMR, which would allow for use in newborn and other screening programs in which the tests are completed by nonaudiological personnel.

  15. Shared bimanual tasks elicit bimanual reflexes during movement.

    PubMed

    Mutha, Pratik K; Sainburg, Robert L

    2009-12-01

    Previous research has suggested distinct predictive and reactive control mechanisms for bimanual movements compared with unimanual motion. Recent studies have extended these findings by demonstrating that movement corrections during bimanual movements might differ depending on whether or not the task is shared between the arms. We hypothesized that corrective responses during shared bimanual tasks recruit bilateral rapid feedback mechanisms such as reflexes. We tested this hypothesis by perturbing one arm as subjects performed uni- and bimanual movements. Movements were made in a virtual-reality environment in which hand position was displayed as a cursor on a screen. During bimanual motion, we provided cursor feedback either independently for each arm (independent-cursor) or such that one cursor was placed at the average location between the arms (shared-cursor). On random trials, we applied a 40 N force pulse to the right arm 100 ms after movement onset. Our results show that while reflex responses were rapidly elicited in the perturbed arm, electromyographic activity remained close to baseline levels in the unperturbed arm during the independent-cursor trials. In contrast, when the cursor was shared between the arms, reflex responses were reduced in the perturbed arm and were rapidly elicited in the unperturbed arm. Our results thus suggest that when both arms contribute to achieving the task goal, reflex responses are bilaterally elicited in response to unilateral perturbations. These results agree with and extend recent suggestions that bimanual feedback control might be modified depending on task context.

  16. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury.

    PubMed

    Manella, Kathleen J; Roach, Kathryn E; Field-Fote, Edelle C

    2013-06-01

    Ankle clonus is common after spinal cord injury (SCI) and is attributed to loss of supraspinally mediated inhibition of soleus stretch reflexes and maladaptive reorganization of spinal reflex pathways. The maladaptive reorganization underlying ankle clonus is associated with other abnormalities, such as coactivation and reciprocal facilitation of tibialis anterior (TA) and soleus (SOL), which contribute to impaired walking ability in individuals with motor-incomplete SCI. Operant conditioning can increase muscle activation and decrease stretch reflexes in individuals with SCI. We compared two operant conditioning-based interventions in individuals with ankle clonus and impaired walking ability due to SCI. Training included either voluntary TA activation (TA↑) to enhance supraspinal drive or SOL H-reflex suppression (SOL↓) to modulate reflex pathways at the spinal cord level. We measured clonus duration, plantar flexor reflex threshold angle, timed toe tapping, dorsiflexion (DF) active range of motion, lower extremity motor scores (LEMS), walking foot clearance, speed and distance, SOL H-reflex amplitude modulation as an index of reciprocal inhibition, presynaptic inhibition, low-frequency depression, and SOL-to-TA clonus coactivation ratio. TA↑ decreased plantar flexor reflex threshold angle (-4.33°) and DF active range-of-motion angle (-4.32°) and increased LEMS of DF (+0.8 points), total LEMS of the training leg (+2.2 points), and nontraining leg (+0.8 points), and increased walking foot clearance (+ 4.8 mm) and distance (+12.09 m). SOL↓ decreased SOL-to-TA coactivation ratio (-0.21), increased nontraining leg LEMS (+1.8 points), walking speed (+0.02 m/s), and distance (+6.25 m). In sum, we found increased voluntary control associated with TA↑ outcomes and decreased reflex excitability associated with SOL↓ outcomes.

  17. The Reflexive Suffix -V in Hualapai.

    ERIC Educational Resources Information Center

    Sohn, Joong-Sun

    1995-01-01

    Like many other languages, Hualapai employs the reflexive suffix for several different grammatical purposes. Unlike those languages, however, constructions with a reflexive marker in Hualapai are usually not ambiguous with respect to the expected meanings. This paper identifies four functions that the reflexive suffix may have: reflexive,…

  18. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  19. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  20. Proprioceptive reflexes in patients with reflex sympathetic dystrophy.

    PubMed

    Schouten, A C; Van de Beek, W J T; Van Hilten, J J; Van der Helm, F C T

    2003-07-01

    Reflex sympathetic dystrophy (RSD) is a syndrome that frequently follows an injury and is characterized by sensory, autonomic and motor features of the affected extremities. One of the more common motor features of RSD is tonic dystonia, which is caused by impairment of inhibitory interneuronal spinal circuits. In this study the circuits that modulate the gain of proprioceptive reflexes of the shoulder musculature are quantitatively assessed in 19 RSD patients, 9 of whom presented with dystonia. The proprioceptive reflexes are quantified by applying two types of force disturbances: (1) disturbances with a fixed low frequency and a variable bandwidth and (2) disturbances with a small bandwidth around a prescribed centre frequency. Compared to controls, patients have lower reflex gains for velocity feedback in response to the disturbances around a prescribed centre frequency. Additionally, patients with dystonia lack the ability to generate negative reflex gains for position feedback, for these same disturbances. Proprioceptive reflexes to the disturbances with a fixed low frequency and variable bandwidth present no difference between patients and controls. Although dystonia in the RSD patients was limited to the distal musculature, the results suggest involvement of interneuronal circuits that mediate postsynaptic inhibition of the motoneurons of the proximal musculature.

  1. Reflex Principles of Immunological Homeostasis

    PubMed Central

    Andersson, Ulf; Tracey, Kevin J.

    2015-01-01

    The reasoning that neural reflexes maintain homeostasis in other body organs, and that the immune system is innervated, prompted a search for neural circuits that regulate innate and adaptive immunity. This elucidated the inflammatory reflex, a prototypical reflex circuit that maintains immunological homeostasis. Molecular products of infection or injury activate sensory neurons traveling to the brainstem in the vagus nerve. The arrival of these incoming signals generates action potentials that travel from the brainstem to the spleen and other organs. This culminates in T cell release of acetylcholine, which interacts with α7 nicotinic acetylcholine receptors (α7 nAChR) on immunocompetent cells to inhibit cytokine release in macrophages. Herein is reviewed the neurophysiological basis of reflexes that provide stability to the immune system, the neural- and receptor-dependent mechanisms, and the potential opportunities for developing novel therapeutic devices and drugs that target neural pathways to treat inflammatory diseases. PMID:22224768

  2. Jaw stretch reflexes in children.

    PubMed

    Finan, Donald S; Smith, Anne

    2005-07-01

    The substantial morphological transformations that occur during human development present the nervous system with a considerable challenge in terms of motor control. Variability of skilled motor performance is a hallmark of a developing system. In adults, the jaw stretch reflex contributes to the functional stability of the jaw. We have investigated the response properties of the jaw stretch reflex in two groups of young children and a group of young adults. Response latencies increased with development, and all age groups produced stimulus-magnitude-dependent increases in reflex gain and resulting biting force. Reflex gain was largest for the older children (9-10 years), yet net increases in resulting biting force were comparable across age groups. These data and earlier experiments suggest that oral sensorimotor pathways mature throughout childhood in concert with the continued acquisition of complex motor skills.

  3. The plantar cushion reflex circuit: an oligosynaptic cutaneous reflex

    PubMed Central

    Egger, M. David; Wall, Patrick D.

    1971-01-01

    1. Reflex toe extension elicited by pressure on the plantar cushion (PC) was studied in cats anaesthetized with Dial. Receptive fields and adequate stimuli for the reflex were evaluated. It was concluded that the receptors for the reflex were chiefly cutaneous pressure receptors in PC. 2. The fastest impulses from the PC receptors for this reflex are conducted to the spinal cord at about 64 m/sec via fibres about 10-11 μm in diameter, i.e. the largest afferent fibres from PC. The motoneurones active in the reflex mainly supplied the intrinsic plantar muscles. Most active axons ran in the S1 ventral root. 3. Extracellular recordings of interneurones in the dorsal horn of L7 spinal segment revealed that many units at the medial edge of the dorsal horn, chiefly in Rexed's laminae IV and V, were activated by stimuli similar to those eliciting the PC—toe extension reflex. These were termed intermediate threshold PC units. Some of these medially located units were activated monosynaptically by PC stimulation. Intermediate threshold PC units activated disynaptically or polysynaptically were also found in this medial region of the dorsal horn, as well as ventrolaterally and caudally in lamina V. 4. No intermediate threshold PC units sent axons into dorsolateral ipsilateral thoracic white matter, in contrast to lower threshold PC units, 42% of which were driven by lateral column stimulation. 5. Extracellular and intracellular recordings were made from motoneurones activated by adequate stimuli for the reflex. Minimum latencies of EPSPs revealed that, for the fastest component of the reflex, at most two interneurones could be interposed between a primary sensory neurone and a motoneurone. 6. Although convergence of low threshold PC units on to intermediate threshold PC units or on to motoneurones may play a part in the PC—toe extension reflex, it appears probable that the two populations of intermediate threshold PC interneurones described above, that is, the

  4. Vestibulospinal reflexes as a function of microgravity

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Homick, J. L.; Anderson, D. J.

    1984-01-01

    Data from previous manned space flights suggest that an exposure to microgravity produces significant alterations in vestibular, neuromuscular, and related sensory system functions. It is possible that the observed changes are a function of adaptation induced by altered otolith input. An experiment in Spacelab 1 was conducted with the aim to study this adaptation as it occurred in flight and after flight, and to relate the observed changes to mechanisms underlying space motion sickness. The concept was explored by making use of the anatomic pathway which links the otolith organs and spinal motoneurons. The overall sensitivity of the spinal motoneurons was tested by two related methods. One method involves the electrical excitation of neural tissue and the recording of vestibulospinal reflexes in conjunction with a brief linear acceleration. The second method is concerned with measurements of dynamic postural ataxia. Results suggest that more than a single time constant may be involved in man's ability to return to baseline values.

  5. Sneeze reflex: facts and fiction.

    PubMed

    Songu, Murat; Cingi, Cemal

    2009-06-01

    Sneezing is a protective reflex, and is sometimes a sign of various medical conditions. Sneezing has been a remarkable sign throughout the history. In Asia and Europe, superstitions regarding sneezing extend through a wide range of races and countries, and it has an ominous significance. Although sneezing is a protective reflex response, little else is known about it. A sneeze (or sternutation) is expulsion of air from the lungs through the nose and mouth, most commonly caused by the irritation of the nasal mucosa. Sneezing can further be triggered through sudden exposure to bright light, a particularly full stomach and physical stimulants of the trigeminal nerve, as a result of central nervous system pathologies such as epilepsy, posterior inferior cerebellar artery syndrome or as a symptom of psychogenic pathologies. In this first comprehensive review of the sneeze reflex in the English literature, we aim to review the pathophysiology, etiology, diagnosis, treatment and complications of sneezing.

  6. Spanish Reflexives: A Critique of Pedagogical Descriptions.

    ERIC Educational Resources Information Center

    Lozano, Anthony G.

    1997-01-01

    Discusses pedagogical descriptions in high school textbooks covering Spanish reflexive verb constructions. Points out that these textbooks rarely contain the full reflexive construction displayed with all the grammatical persons and complete English glosses. (17 references) (Author/CK)

  7. The history of examination of reflexes.

    PubMed

    Boes, Christopher J

    2014-12-01

    In the late 1800s, Wilhelm Erb, Joseph Babinski, William Gowers, and others helped develop the neurologic examination as we know it today. Erb was one of the first to emphasize a detailed and systematic neurologic exam and was co-discoverer of the muscle stretch reflex, Gowers began studying the knee jerk shortly after it was described, and Babinski focused on finding reliable signs that could differentiate organic from hysterical paralysis. These physicians and others emphasized the bedside examination of reflexes, which have been an important part of the neurologic examination ever since. This review will focus on the history of the examination of the following muscle stretch and superficial/cutaneous reflexes: knee jerk, jaw jerk, deep abdominal reflexes, superficial abdominal reflexes, plantar reflex/Babinski sign, and palmomental reflex. The history of reflex grading will also be discussed.

  8. The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers.

    PubMed

    Nigmatullina, Yuliya; Hellyer, Peter J; Nachev, Parashkev; Sharp, David J; Seemungal, Barry M

    2015-02-01

    Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. © The Author 2013. Published by Oxford University Press.

  9. Modulation of spinal inhibitory reflex responses to cutaneous nociceptive stimuli during upper limb movement.

    PubMed

    Don, Romildo; Pierelli, Francesco; Ranavolo, Alberto; Serrao, Mariano; Mangone, Massimiliano; Paoloni, Marco; Cacchio, Angelo; Sandrini, Giorgio; Santilli, Valter

    2008-08-01

    In the present study we investigated the probability, latency and duration of the inhibitory component of the withdrawal reflex elicited by painful electrical stimulation of the index finger in humans. The stimulus consisted of a train of high-intensity pulses. The investigation was carried out in several upper limb muscles during isometric contractions of different strengths and during a motor sequence consisting of reaching, picking up and transporting an object. We used a new algorithm to detect and characterize the inhibitory reflex. The reflex was found in all muscles except the brachioradialis at all the isometric contraction strengths, and showed a distal-to-proximal gradient of latency and duration. Conversely, during movement the reflex probability was high (> 80%) in the anterior deltoid and triceps muscles during reaching, in the extensor carpi radialis muscle during transporting of the object, and in the first interosseous muscle during both picking up and transporting of the object. This modulation of inhibitory reflex transmission in the upper limb muscles suggests that the motor response is organized in such a way as to inhibit the overall ongoing motor task by interrupting motion during reaching and by releasing the object during transporting. This pattern of modulation appears to differ markedly from that previously reported for the excitatory component of the withdrawal reflex. Study of the nociceptive inhibitory reflexes during movement offers new and more profound insights into the functional anatomical organization of the spinal interneuronal network mediating sensory-motor integration.

  10. The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers

    PubMed Central

    Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.

    2015-01-01

    Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889

  11. Tonic vibration reflexes and background force level

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Dizio, Paul; Fisk, John

    1992-01-01

    On earth, the functional stretch reflex is an important component in the maintenance of posture and muscle tone. In parabolic flight experiments, it is evaluated whether the functional stretch reflex, as reflected in the tonic vibration reflex, adjusts appropriately for changes in background gravitoinertial force level. Virtually immediate alterations of appropriate sign occurred.

  12. Vestibular control of the head: possible functions of the vestibulocollic reflex.

    PubMed

    Goldberg, Jay M; Cullen, Kathleen E

    2011-05-01

    Here, we review the angular vestibulocollic reflex (VCR) focusing on its function during unexpected and voluntary head movements. Theoretically, the VCR could (1) stabilize the head in space during body movements and/or (2) dampen head oscillations that could occur as a result of the head's underdamped mechanics. The reflex appears unaffected when the simplest, trisynaptic VCR pathways are severed. The VCR's efficacy varies across species; in humans and monkeys, head stabilization is ineffective during low-frequency body movements in the yaw plan. While the appearance of head oscillations after the attenuation of semicircular canal function suggests a role in damping, this interpretation is complicated by defects in the vestibular input to other descending motor pathways such as gaze premotor circuits. Since the VCR should oppose head movements, it has been proposed that the reflex is suppressed during voluntary head motion. Consistent with this idea, vestibular-only (VO) neurons, which are possible vestibulocollic neurons, respond vigorously to passive, but not active, head rotations. Although VO neurons project to the spinal cord, their contribution to the VCR remains to be established. VCR cancelation during active head movements could be accomplished by an efference copy signal negating afferent activity related to active motion. Oscillations occurring during active motion could be eliminated by some combination of reflex actions and voluntary motor commands that take into account the head's biomechanics. A direct demonstration of the status of the VCR during active head movements is required to clarify the function of the reflex.

  13. Reflexive aerostructures: increased vehicle survivability

    NASA Astrophysics Data System (ADS)

    Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.

    2007-04-01

    Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.

  14. Aerial righting reflexes in flightless animals.

    PubMed

    Jusufi, Ardian; Zeng, Yu; Full, Robert J; Dudley, Robert

    2011-12-01

    Animals that fall upside down typically engage in an aerial righting response so as to reorient dorsoventrally. This behavior can be preparatory to gliding or other controlled aerial behaviors and is ultimately necessary for a successful landing. Aerial righting reflexes have been described historically in various mammals such as cats, guinea pigs, rabbits, rats, and primates. The mechanisms whereby such righting can be accomplished depend on the size of the animal and on anatomical features associated with motion of the limbs and body. Here we apply a comparative approach to the study of aerial righting to explore the diverse strategies used for reorientation in midair. We discuss data for two species of lizards, the gecko Hemidactylus platyurus and the anole Anolis carolinensis, as well as for the first instar of the stick insect Extatosoma tiaratum, to illustrate size-dependence of this phenomenon and its relevance to subsequent aerial performance in parachuting and gliding animals. Geckos can use rotation of their large tails to reorient their bodies via conservation of angular momentum. Lizards with tails well exceeding snout-vent length, and correspondingly large tail inertia to body inertia ratios, are more effective at creating midair reorientation maneuvers. Moreover, experiments with stick insects, weighing an order of magnitude less than the lizards, suggest that aerodynamic torques acting on the limbs and body may play a dominant role in the righting process for small invertebrates. Both inertial and aerodynamic effects, therefore, can play a role in the control of aerial righting. We propose that aerial righting reflexes are widespread among arboreal vertebrates and arthropods and that they represent an important initial adaptation in the evolution of controlled aerial behavior.

  15. Spatial Transformation of the Vestibulo-Ocular Reflex during Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.; Reschke, Millard F.

    1996-01-01

    It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.

  16. Spatial Transformation of the Vestibulo-Ocular Reflex during Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.; Reschke, Millard F.

    1996-01-01

    It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.

  17. Transient reversal of the stretch reflex in human arm muscles.

    PubMed

    Lacquaniti, F; Borghese, N A; Carrozzo, M

    1991-09-01

    1. Load perturbation responses can violate the law of reciprocal innervation between antagonist muscles under particular conditions. Thus flexor and extensor muscles of wrist and elbow joints are reflexly coactivated by the impact of a ball on the hand during a catching task. The aim of this study was to determine whether reflex coactivation can be preset within the central nervous system (CNS) or whether it is entirely due to the peripheral stimulus. To this end, we studied the behavior of stretch reflex responses of arm muscles evoked by torque motor perturbations applied before and during the catching task. 2. Subjects were instructed to catch a ball dropped from 1.6 m. A torque motor delivered perturbations to the elbow joint, resulting in angular motion at both elbow and wrist joints because of their dynamic mechanical coupling. Two series of experiments were performed that differed in the perturbation waveform. In the first series, a single torque pulse could be randomly applied at different times during the task. The corresponding responses were recovered by subtracting the average of the unperturbed trials from the averages of perturbed trials. In the second series of experiments, a train of pseudorandom pulses was applied continuously during each trial. The time-varying impulse responses were computed at 20-ms intervals by cross-correlation methods. 3. The pattern of the short-latency electromyographic responses evoked by either single pulses or pseudorandom perturbations obeyed the law of reciprocal innervation of antagonist muscles under basal conditions. However, the pattern of the responses evoked by the same perturbations around the time of ball impact on the hand consisted of a substantial coactivation of both stretched and shortening muscles. Reflex coactivation resulted from response patterns that differed at different joints. At the elbow, reflex coactivation resulted from a transient reversal of the direction of the short-latency responses of

  18. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1995-01-01

    The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.

  19. Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians

    PubMed Central

    Branoner, Francisco; Chagnaud, Boris P.; Straka, Hans

    2016-01-01

    Vestibulo-ocular reflexes (VOR) ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1–8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets. PMID:27877114

  20. Toward reflexive climate adaptation research

    SciTech Connect

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; Keenan, Rodney J.

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this new ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.

  1. Toward reflexive climate adaptation research

    DOE PAGES

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; ...

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this newmore » ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.« less

  2. Human stretch reflex pathways reexamined

    PubMed Central

    Yavuz, Ş. Utku; Mrachacz-Kersting, Natalie; Sebik, Oğuz; Berna Ünver, M.; Farina, Dario

    2013-01-01

    Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways. PMID:24225537

  3. Reflex origin of parkinsonian tremor.

    PubMed

    Burne, J A

    1987-08-01

    The 8-Hz wrist tremor seen in normal subjects results from an oscillation in the spinal stretch reflex arc but the resting 4-Hz tremor of Parkinson's disease is believed to result from synchronization of motor unit activity by periodic descending inputs driven by an oscillator which resides within the brain. Accelerometer and smoothed EMG (0.8 to 16.0-Hz pass) recordings of resting tremor were taken from the upper limbs of 10 volunteers with Parkinson's disease for several different limb positions and while the limb was fixed to prevent tremor movements. The smoothed EMG and accelerometer records produced a complex periodic waveform with prominent 4- and 8-Hz components. Spectral analysis of both records produced large peaks at those frequencies which were harmonically related. The appearance of the regular tremor waveform in accelerometer and smoothed EMG records was greatly altered by changes in limb posture in all patients. Fixing of the shoulder and elbow joints only, also altered the smoothed EMG waveform and reduced the tremor amplitude. Fixing of the entire limb removed all signs of synchronization of motor unit activity in raw and smoothed EMG records. Similarly, the prominent 4- and 8-Hz peaks, found in the smoothed EMG power spectra from trembling muscles, were eliminated if the limb was effectively prevented from trembling. These experiments showed that the synchronization of motor unit activity at Parkinson's tremor frequency is wholly dependent on the oscillation in limb position and thus proprioceptive reflex activity. It is suggested that the known properties of the 4-Hz resting tremor of Parkinson's disease can be attributed to a flip-flop oscillation involving the mutually inhibitory connections between the spinal stretch reflexes of antagonist muscles. The supraspinal contribution to the tremor may thus be confined to an "aperiodic" descending facilitation of spinal reflex pathways.

  4. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  5. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  6. Effects of caffeine on the trigeminal blink reflex.

    PubMed

    Schicatano, Edward J

    2005-04-01

    The acoustic startle and trigeminal blink reflexes share the same motor output. Since caffeine has been shown to augment the startle reflex, it was proposed that caffeine would also increase the trigeminal blink reflex. In 6 humans, the effects of caffeine (100 mg) on the trigeminal blink reflex were investigated. Reflex blinks were elicited by stimulation of the supraorbital branch of the trigeminal nerve. Following ingestion of caffeinated coffee, reflex blinks increased in amplitude and duration and occurred at a shorter latency than reflex blinks following ingestion of decaffeinated coffee. Since the blink reflex is a brainstem reflex, these results suggest that the psychomotor effects of caffeine facilitate brainstem processing.

  7. Multisensory Control of Stabilization Reflexes

    DTIC Science & Technology

    2012-08-22

    retinal slip speed to a velocity range the motion vision pathway is most sensitive to. The second control degree corresponds to negative feedback...provided by the motion vision pathway in an attempt to compensate for the remaining retinal slip speed. The fast response component initiated by the...halteres, in a way, linearizes the system as it shifts the distribution of retinal slip speeds into the operating range of the motion vision pathway

  8. Generalized versus partial reflex seizures: a review.

    PubMed

    Italiano, Domenico; Ferlazzo, Edoardo; Gasparini, Sara; Spina, Edoardo; Mondello, Stefania; Labate, Angelo; Gambardella, Antonio; Aguglia, Umberto

    2014-08-01

    In this review we assess our currently available knowledge about reflex seizures with special emphasis on the difference between "generalized" reflex seizures induced by visual stimuli, thinking, praxis and language tasks, and "focal" seizures induced by startle, eating, music, hot water, somatosensory stimuli and orgasm. We discuss in particular evidence from animal, clinical, neurophysiological and neuroimaging studies supporting the concept that "generalized" reflex seizures, usually occurring in the setting of IGE, should be considered as focal seizures with quick secondary generalization. We also review recent advances in genetic and therapeutic approach of reflex seizures. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Deep tendon reflexes in premature infants.

    PubMed

    Kuban, K C; Skouteli, H N; Urion, D K; Lawhon, G A

    1986-01-01

    Ten classic deep tendon reflexes (DTRs) were evaluated in 62 premature infants of greater than 27 weeks post-conceptional age. The pectoralis major was the most readily elicitable reflex in all infants (100%), regardless of maturity. Achilles, patellar, biceps, thigh adductors, and brachioradialis reflexes also were obtained in at least 98% of babies of greater than 33 weeks gestation. Among these reflexes, less mature infants (less than 33 weeks gestation) had decreased elicitation rates for patellar and biceps reflexes and overall had diminished reflex intensity when compared to older infants (33-36 weeks gestation). By order of decreasing rate, finger flexors, jaw, crossed adductors, and triceps reflexes were less frequently elicited in both groups. Equal DTRs were obtained often in healthy and previously ill infants of less than 33 weeks gestation. Head position had no apparent affect on the ability to elicit reflexes. Theophylline therapy tended to intensify the Achilles reflex and the quiet, wakeful state appeared to be the most optimal state for the elicitation of DTRs.

  10. [Clinical relevance of cardiopulmonary reflexes in anesthesiology].

    PubMed

    Guerri-Guttenberg, R A; Siaba-Serrate, F; Cacheiro, F J

    2013-10-01

    The baroreflex, chemoreflex, pulmonary reflexes, Bezold-Jarisch and Bainbridge reflexes and their interaction with local mechanisms, are a demonstration of the richness of cardiovascular responses that occur in human beings. As well as these, the anesthesiologist must contend with other variables that interact by attenuating or accentuating cardiopulmonary reflexes such as, anesthetic drugs, surgical manipulation, and patient positioning. In the present article we review these reflexes and their clinical relevance in anesthesiology. Copyright © 2012 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  11. Portraying Reflexivity in Health Services Research.

    PubMed

    Rae, John; Green, Bill

    2016-09-01

    A model is proposed for supporting reflexivity in qualitative health research, informed by arguments from Bourdieu and Finlay. Bourdieu refers to mastering the subjective relation to the object at three levels-the overall social space, the field of specialists, and the scholastic universe. The model overlays Bourdieu's levels of objectivation with Finlay's three stages of research (pre-research, data collection, and data analysis). The intersections of these two ways of considering reflexivity, displayed as cells of a matrix, pose questions and offer prompts to productively challenge health researchers' reflexivity. Portraiture is used to show how these challenges and prompts can facilitate such reflexivity, as illustrated in a research project.

  12. Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.

    ERIC Educational Resources Information Center

    Myklebust, Barbara M.; Gottlieb, Gerald L.

    1993-01-01

    When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…

  13. Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.

    ERIC Educational Resources Information Center

    Myklebust, Barbara M.; Gottlieb, Gerald L.

    1993-01-01

    When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…

  14. Visual suppression of the vestibulo-ocular reflex during space flight

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Thornton, William E.; Moore, Thomas P.; Pool, Sam L.

    1989-01-01

    Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight.

  15. Structural cure for reflex syncope?

    PubMed

    Sulke, Neil; Eysenck, William; Badiani, Sveeta; Furniss, Stephen

    2016-01-20

    The ROX Coupler is a device that allows creation of a central arteriovenous anastomosis at the iliac level. The device has been shown to improve exercise capacity in patients with chronic obstructive pulmonary disease and is CE marked for the treatment of resistant and uncontrolled hypertension. Reflex syncope is a challenging clinical condition with limited proven therapeutic options. We describe the resolution of symptoms and tilt table response of a patient who underwent insertion of a ROX Coupler to treat hypertension, and also incidentally had pre-existing vasodepressor syncope.

  16. Rapid motor learning in the translational vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; Weldon, Patrick; Tang, Bingfeng; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    Motor learning was induced in the translational vestibulo-ocular reflex (TVOR) when monkeys were repeatedly subjected to a brief (0.5 sec) head translation while they tried to maintain binocular fixation on a visual target for juice rewards. If the target was world-fixed, the initial eye speed of the TVOR gradually increased; if the target was head-fixed, the initial eye speed of the TVOR gradually decreased. The rate of learning acquisition was very rapid, with a time constant of approximately 100 trials, which was equivalent to <1 min of accumulated stimulation. These learned changes were consolidated over >or=1 d without any reinforcement, indicating induction of long-term synaptic plasticity. Although the learning generalized to targets with different viewing distances and to head translations with different accelerations, it was highly specific for the particular combination of head motion and evoked eye movement associated with the training. For example, it was specific to the modality of the stimulus (translation vs rotation) and the direction of the evoked eye movement in the training. Furthermore, when one eye was aligned with the heading direction so that it remained motionless during training, learning was not expressed in this eye, but only in the other nonaligned eye. These specificities show that the learning sites are neither in the sensory nor the motor limb of the reflex but in the sensory-motor transformation stage of the reflex. The dependence of the learning on both head motion and evoked eye movement suggests that Hebbian learning may be one of the underlying cellular mechanisms.

  17. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  18. Rapid motor learning in the translational vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; Weldon, Patrick; Tang, Bingfeng; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    Motor learning was induced in the translational vestibulo-ocular reflex (TVOR) when monkeys were repeatedly subjected to a brief (0.5 sec) head translation while they tried to maintain binocular fixation on a visual target for juice rewards. If the target was world-fixed, the initial eye speed of the TVOR gradually increased; if the target was head-fixed, the initial eye speed of the TVOR gradually decreased. The rate of learning acquisition was very rapid, with a time constant of approximately 100 trials, which was equivalent to <1 min of accumulated stimulation. These learned changes were consolidated over >or=1 d without any reinforcement, indicating induction of long-term synaptic plasticity. Although the learning generalized to targets with different viewing distances and to head translations with different accelerations, it was highly specific for the particular combination of head motion and evoked eye movement associated with the training. For example, it was specific to the modality of the stimulus (translation vs rotation) and the direction of the evoked eye movement in the training. Furthermore, when one eye was aligned with the heading direction so that it remained motionless during training, learning was not expressed in this eye, but only in the other nonaligned eye. These specificities show that the learning sites are neither in the sensory nor the motor limb of the reflex but in the sensory-motor transformation stage of the reflex. The dependence of the learning on both head motion and evoked eye movement suggests that Hebbian learning may be one of the underlying cellular mechanisms.

  19. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  20. The Dynamics of the Stapedial Acoustic Reflex.

    NASA Astrophysics Data System (ADS)

    Moss, Sherrin Mary

    Available from UMI in association with The British Library. This thesis aims to separate the neural and muscular components of the stapedial acoustic reflex, both anatomically and physiologically. It aims to present an hypothesis to account for the differences between ipsilateral and contralateral reflex characteristics which have so far been unexplained, and achieve a greater understanding of the mechanisms underlying the reflex dynamics. A technique enabling faithful reproduction of the time course of the reflex is used throughout the experimental work. The technique measures tympanic membrane displacement as a result of reflex stapedius muscle contraction. The recorded response can be directly related to the mechanics of the middle ear and stapedius muscle contraction. Some development of the technique is undertaken by the author. A model of the reflex neural arc and stapedius muscle dynamics is evolved that is based upon a second order system. The model is unique in that it includes a latency in the ipsilateral negative feedback loop. Oscillations commonly observed on reflex responses are seen to be produced because of the inclusion of a latency in the feedback loop. The model demonstrates and explains the complex relationships between neural and muscle dynamic parameters observed in the experimental work. This more comprehensive understanding of the interaction between the stapedius dynamics and the neural arc of the reflex would not usually have been possible using human subjects, coupled with a non-invasive measurement technique. Evidence from the experimental work revealed the ipsilateral reflex to have, on average, a 5 dB lower threshold than the contralateral reflex. The oscillatory charcteristics, and the steady state response, of the contralateral reflex are also seen to be significantly different from those of the ipsilateral reflex. An hypothesis to account for the experimental observations is proposed. It is propounded that chemical neurotransmitters

  1. Wireless accelerometer reflex quantification system characterizing response and latency.

    PubMed

    LeMoyne, Robert; Coroian, Cristian; Mastroianni, Timothy

    2009-01-01

    The evaluation of the deep tendon reflex is a standard aspect of a neurological evaluation, which is frequently evoked through the patellar tendon reflex. Important features of the reflex are response and latency, providing insight to status for peripheral neuropathy and upper motor neuron syndrome. A wireless accelerometer reflex quantification system has been developed, tested, and evaluated. The reflex input is derived from a potential energy setting. Wireless accelerometers characterize the reflex hammer strike and reflex response acceleration waveforms, enabling the quantification of reflex response and latency. Spectral analysis of the reflex response acceleration waveform elucidates the frequency domain, opening the potential for new reflex classification metrics. The wireless accelerometer reflex quantification system yields accurate and consistent quantification of reflex response and latency.

  2. Autonomic reflexes in preterm infants.

    PubMed

    Lagercrantz, H; Edwards, D; Henderson-Smart, D; Hertzberg, T; Jeffery, H

    1990-01-01

    Some autonomic nervous reflexes often tested in adult medicine have been studied in 21 preterm infants (25-37 gestational weeks). The aim was to develop such tests for preterm infants and see if there were any differences in babies with recurrent apnea and bradycardia and babies who had been exposed to sympathicolytic drugs before birth. To test sympathetic nervous activity the peripheral vascular resistance was measured before and during 45 degrees of head-up tilting. To test parasympathetic nervous activity the degree of bradycardia was measured in response to cold face test (application of an ice-cube on the fore-head) and laryngeal stimulation with saline. Finally the heart rate changes after a sudden noise (85 dB) were studied as an indicator of both sympathetic and vagal activity. The peripheral resistance was found to be relatively low in these preterm infants, particularly in some infants tested at the postnatal age of about two months. Heart rate and mean blood pressure did not change during tilting, while the peripheral resistance increased significantly mainly due to lowered limb blood flow. The median decrease of the heart rate during the cold face test was 20.0% and during laryngeal receptor stimulation 23.7%. The sudden noise usually caused a biphasic heart rate response. An autonomic nervous reflex score was calculated and found to be negative (parasympathetic) in infants with recurrent prolonged apnea and bradycardia and positive in infants with clinical signs of increased sympathetic nervous activity.

  3. The deep tendon and the abdominal reflexes.

    PubMed

    Dick, J P R

    2003-02-01

    The deep tendon reflexes (and the abdominal reflexes) are important physical signs which have a special place in neurological diagnosis, particularly in early disease when they alone may be abnormal. They act as "hard" signs in situations where clinical assessment is complicated by patient anxiety, and become more useful as clinical experience develops.

  4. Medial olivocochlear reflex in ankylosing spondylitis patients.

    PubMed

    Beyazal, M S; Özgür, A; Terzi, S; Çeliker, M; Dursun, E

    2016-12-01

    Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease. Via autoimmune mediators, AS can damage the auditory system similar to other systems. Otoacoustic emission studies in AS patients showed that the damage that causes hearing loss was in the outer hair cells. The medial olivocochlear (MOC) reflex is used to evaluate the MOC efferent system (MOES), which includes the outer hair cells. The aim of this study was to evaluate the presence of subclinical damage in the inner ear with the aid of the MOC reflex test in AS patients with no hearing complaints. Thirty-four patients with AS and a control group of 30 healthy volunteers with similar demographic characteristics were evaluated in the study. Otoacoustic emission responses, MOC reflex results, and frequency-specific and total suppression findings were compared between the groups. The relationship between clinical and laboratory findings for the AS patients, and the MOC reflex data were also investigated. Reduced MOC reflex response (p = 0.04) and suppression (p = 0.019) were detected in AS patients. When the clinical and laboratory findings for the AS patients and the MOC reflex test results were compared, a significant correlation was found only between the MOC reflex and the erythrocyte sedimentation rate. The results showed that AS can damage the inner ear, especially the MOES, and can reduce the MOC reflex response without clinical hearing loss.

  5. The grasp and other primitive reflexes

    PubMed Central

    Schott, J; Rossor, M

    2003-01-01

    Primitive reflexes are typically present in childhood, suppressed during normal development, and may reappear with diseases of the brain, particularly those affecting the frontal lobes. In this review we discuss some historical aspects surrounding these reflexes, how they might be elicited and interpreted, and their potential clinical utility in modern neurological practice. PMID:12700289

  6. Creating a Complex Schedule with "REFLEX."

    ERIC Educational Resources Information Center

    Kren, George M.; Christakes, George

    1991-01-01

    Discusses "REFLEX," a software package for scheduling. Explores the program's applications in preparing a departmental class schedule. Explains that "REFLEX" includes a filter function and some attributes of a spreadsheet but lacks the ability to interact with other databases. Concludes that the program can make scheduling…

  7. Reflexive Pedagogy in the Apprenticeship in Design

    ERIC Educational Resources Information Center

    Sonntag, Michel

    2006-01-01

    Design is at the heart of vocational training programmes. That is the reason why teaching design and training students to design are major concerns of engineering schools. Our participation in this training favours a particular approach: reflexive practice. The Reflexive pedagogy lays the emphasis on the metaphorical dimension of learning. It is…

  8. The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements.

    PubMed

    Brown, Stephen H M; McGill, Stuart M

    2009-10-01

    Torso muscles contribute both intrinsic and reflexive stiffness to the spine; recent modeling studies indicate that intrinsic stiffness alone is sometimes insufficient to maintain stability in dynamic situations. The purpose of this study was to experimentally test this idea by limiting muscular reflexive responses to sudden trunk perturbations. Nine healthy males lay on a near-frictionless apparatus and were subjected to quick trunk releases from the neutral position into flexion or right-side lateral bend. Different magnitudes of moment release were accomplished by having participants contract their musculature to create a range of moment levels. EMG was recorded from 12 torso muscles and three-dimensional lumbar spine rotations were monitored. A second-order linear model of the trunk was employed to estimate trunk stiffness and damping during each quick release. Participants displayed very limited reflex responses to the quick load release paradigms, and consequently underwent substantial trunk displacements (>50% flexion range of motion and >70% lateral bend range of motion in the maximum moment trials). Trunk stiffness increased significantly with significant increases in muscle activation, but was still unable to prevent the largest trunk displacements in the absence of reflexes. Thus, it was concluded that the intrinsic stiffness of the trunk was insufficient to adequately prevent the spine from undergoing potentially harmful rotational displacements. Voluntary muscular responses were more apparent than reflexive responses, but occurred too late and of too low magnitude to sufficiently make up for the limited reflexes.

  9. Reliability of the NINDS Myotatic Reflex Scale.

    PubMed

    Litvan, I; Mangone, C A; Werden, W; Bueri, J A; Estol, C J; Garcea, D O; Rey, R C; Sica, R E; Hallett, M; Bartko, J J

    1996-10-01

    The assessment of deep tendon reflexes is useful for localization and diagnosis of neurologic disorders, but only a few studies have evaluated their reliability. We assessed the reliability of four neurologists, instructed in two different countries, in using the National Institute of Neurological Disorders and Stroke (NINDS) Myotatic Reflex Scale. To evaluate the role of training in using the scale, the neurologists randomly and blindly evaluated a total of 80 patients, 40 before and 40 after a training session. Inter- and intraobserver reliability were measured with kappa statistics. Our results showed substantial to near-perfect intraobserver reliability, and moderate-to-substantial interobserver reliability of the NINDS Myotatic Reflex Scale. The reproducibility was better for reflexes in the lower than in the upper extremities. Neither educational background nor the training session influenced the reliability of our results. The NINDS Myotatic Reflex Scale has sufficient reliability to be adopted as a universal scale.

  10. Motion Sickness

    MedlinePlus

    Motion sickness is a common problem in people traveling by car, train, airplanes, and especially boats. Anyone ... children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling ...

  11. History of the cushing reflex.

    PubMed

    Fodstad, Harald; Kelly, Patrick J; Buchfelder, Michael

    2006-11-01

    Increasing systolic and pulse pressure with bradycardia and respiratory irregularity are signs of increased intracranial pressure, leading to cerebral herniation and fatal brainstem compression. This phenomenon, the vasopressor response, is generally known as the Cushing reflex based on Harvey Cushing's experimental work in Europe in 1901 and 1902. However, similar experiments had been carried out decades earlier by others, notably Paul Cramer, Ernst von Bergmann, Ernst von Leyden, Georg Althann, Friedrich Jolly, Friedrich Pagenstecher, Henri Duret, Bernard Naunyn, and Julius Schreiber. Cushing initially failed to give credit to the work of these predecessors. Nonetheless, he studied the brain's reaction to compression more carefully than previous researchers and offered an improved explanation of the pathophysiology of the phenomenon named after him.

  12. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  13. Laryngeal and respiratory protective reflexes.

    PubMed

    Altschuler, S M

    2001-12-03

    Swallowing is a complex motor behavior that relies on an interneuronal network of premotor neurons (PMNs) to organize the sequential activity of motor neurons that are active during the buccopharyngeal and esophageal phases. Swallowing PMNs are highly interconnected to multiple areas of the brain stem and the central nervous system and provide a potential anatomic substrate integration of swallowing activity with airway protective reflexes. Because these neurons have synaptic contact with both afferent inputs and motor neurons and exhibit a true central activity, they appear to constitute the swallowing central pattern generator. We studied the viscerotopic organization of the nucleus of the solitary tract (NTS), the nucleus ambiguus (NA), the dorsal motor nucleus (DMN), and the hypoglossal nucleus (XII) using cholera toxin horseradish peroxidase (CT-HRP), a sensitive antegrade and retrograde tracer that effectively labels afferent terminal fields within the NTS as well as swallowing motor neurons and their dendritic fields within the NA, DMN, and XII. We used CT-HRP to provide a comprehensive description of the dendritic architecture of NA motor neurons innervating swallowing muscles. We also conducted studies using pseudorabies virus (PRV), a swine alpha-herpesvirus, to map central neural circuits after injection in the peripheral or central nervous systems. One attenuated vaccine strain, Bartha PRV, has preferential affinity for sites of afferent synaptic contact on the cell body and dendrites and a reactive gliosis that effectively isolates the infected neurons and provides a barrier to the nonspecific spread to adjacent neurons. The findings provide a basis for the central integration of swallowing and respiratory protective reflexes.

  14. Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients

    PubMed Central

    Van Calenbergh, Frank; Swinnen, Stephan P.; Duysens, Jacques

    2014-01-01

    Modulation of cutaneous reflexes is important in the neural control of walking, yet knowledge about underlying neural pathways is still incomplete. Recent studies have suggested that the cerebellum is involved. Here we evaluated the possible roles of the cerebellum in cutaneous reflex modulation and in attenuation of self-induced reflexes. First we checked whether leg muscle activity during walking was similar in patients with focal cerebellar lesions and in healthy control subjects. We then recorded cutaneous reflex activity in leg muscles during walking. Additionally, we compared reflexes after standard (computer triggered) stimuli with reflexes after self-induced stimuli for both groups. Biceps femoris and gastrocnemius medialis muscle activity was increased in the patient group compared with the control subjects, suggesting a coactivation strategy to reduce instability of gait. Cutaneous reflex modulation was similar between healthy control subjects and cerebellar patients, but the latter appeared less able to attenuate reflexes to self-induced stimuli. This suggests that the cerebellum is not primarily involved in cutaneous reflex modulation but that it could act in attenuation of self-induced reflex responses. The latter role in locomotion would be consistent with the common view that the cerebellum predicts sensory consequences of movement. PMID:25392164

  15. Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients.

    PubMed

    Hoogkamer, Wouter; Van Calenbergh, Frank; Swinnen, Stephan P; Duysens, Jacques

    2015-02-01

    Modulation of cutaneous reflexes is important in the neural control of walking, yet knowledge about underlying neural pathways is still incomplete. Recent studies have suggested that the cerebellum is involved. Here we evaluated the possible roles of the cerebellum in cutaneous reflex modulation and in attenuation of self-induced reflexes. First we checked whether leg muscle activity during walking was similar in patients with focal cerebellar lesions and in healthy control subjects. We then recorded cutaneous reflex activity in leg muscles during walking. Additionally, we compared reflexes after standard (computer triggered) stimuli with reflexes after self-induced stimuli for both groups. Biceps femoris and gastrocnemius medialis muscle activity was increased in the patient group compared with the control subjects, suggesting a coactivation strategy to reduce instability of gait. Cutaneous reflex modulation was similar between healthy control subjects and cerebellar patients, but the latter appeared less able to attenuate reflexes to self-induced stimuli. This suggests that the cerebellum is not primarily involved in cutaneous reflex modulation but that it could act in attenuation of self-induced reflex responses. The latter role in locomotion would be consistent with the common view that the cerebellum predicts sensory consequences of movement. Copyright © 2015 the American Physiological Society.

  16. Studies of the vestibulo-ocular reflex on STS 4, 5 and 6

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.

    1988-01-01

    The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.

  17. Vestibular control of the head: possible functions of the vestibulocollic reflex

    PubMed Central

    Cullen, Kathleen E.

    2013-01-01

    Here, we review the angular vestibulocollic reflex (VCR) focusing on its function during unexpected and voluntary head movements. Theoretically, the VCR could (1) stabilize the head in space during body movements and/or (2) dampen head oscillations that could occur as a result of the head’s underdamped mechanics. The reflex appears unaffected when the simplest, trisynaptic VCR pathways are severed. The VCR’s efficacy varies across species; in humans and monkeys, head stabilization is ineffective during low-frequency body movements in the yaw plan. While the appearance of head oscillations after the attenuation of semicircular canal function suggests a role in damping, this interpretation is complicated by defects in the vestibular input to other descending motor pathways such as gaze premotor circuits. Since the VCR should oppose head movements, it has been proposed that the reflex is suppressed during voluntary head motion. Consistent with this idea, vestibular-only (VO) neurons, which are possible vestibulocollic neurons, respond vigorously to passive, but not active, head rotations. Although VO neurons project to the spinal cord, their contribution to the VCR remains to be established. VCR cancelation during active head movements could be accomplished by an efference copy signal negating afferent activity related to active motion. Oscillations occurring during active motion could be eliminated by some combination of reflex actions and voluntary motor commands that take into account the head’s biomechanics. A direct demonstration of the status of the VCR during active head movements is required to clarify the function of the reflex. PMID:21442224

  18. Prolonged Intermittent Trunk Flexion Increases Trunk Muscles Reflex Gains and Trunk Stiffness

    PubMed Central

    Wamerdam, Jeffrey; Kingma, Idsart; Sarabon, Nejc; van Dieën, Jaap H.

    2016-01-01

    The goal of the present study was to determine the effects of prolonged, intermittent flexion on trunk neuromuscular control. Furthermore, the potential beneficial effects of passive upper body support during flexion were investigated. Twenty one healthy young volunteers participated during two separate visits in which they performed 1 hour of intermittent 60 seconds flexion and 30 seconds rest cycles. Flexion was set at 80% lumbar flexion and was performed with or without upper body support. Before and after intermittent flexion exposure, lumbar range of motion was measured using inertial measurement units and trunk stability was assessed during perturbations applied in the forward direction with a force controlled actuator. Closed-loop system identification was used to determine the trunk translational admittance and reflexes as frequency response functions. The admittance describes the actuator displacement as a function of contact force and to assess reflexes muscle activation was related to actuator displacement. Trunk admittance gain decreased after unsupported flexion, while reflex gain and lumbar range of motion increased after both conditions. Significant interaction effects confirmed a larger increase in lumbar range of motion and reflex gains at most frequencies analysed following unsupported flexion in comparison to supported flexion, probably compensating for decreased passive tissue stiffness. In contrast with some previous studies we found that prolonged intermittent flexion decreased trunk admittance, which implies an increase of the lumped intrinsic and reflexive stiffness. This would compensate for decreased stiffness at the cost of an increase in cumulative low back load. Taking into account the differences between conditions it would be preferable to offer upper body support during activities that require prolonged trunk flexion. PMID:27768688

  19. Prolonged Intermittent Trunk Flexion Increases Trunk Muscles Reflex Gains and Trunk Stiffness.

    PubMed

    Voglar, Matej; Wamerdam, Jeffrey; Kingma, Idsart; Sarabon, Nejc; van Dieën, Jaap H

    2016-01-01

    The goal of the present study was to determine the effects of prolonged, intermittent flexion on trunk neuromuscular control. Furthermore, the potential beneficial effects of passive upper body support during flexion were investigated. Twenty one healthy young volunteers participated during two separate visits in which they performed 1 hour of intermittent 60 seconds flexion and 30 seconds rest cycles. Flexion was set at 80% lumbar flexion and was performed with or without upper body support. Before and after intermittent flexion exposure, lumbar range of motion was measured using inertial measurement units and trunk stability was assessed during perturbations applied in the forward direction with a force controlled actuator. Closed-loop system identification was used to determine the trunk translational admittance and reflexes as frequency response functions. The admittance describes the actuator displacement as a function of contact force and to assess reflexes muscle activation was related to actuator displacement. Trunk admittance gain decreased after unsupported flexion, while reflex gain and lumbar range of motion increased after both conditions. Significant interaction effects confirmed a larger increase in lumbar range of motion and reflex gains at most frequencies analysed following unsupported flexion in comparison to supported flexion, probably compensating for decreased passive tissue stiffness. In contrast with some previous studies we found that prolonged intermittent flexion decreased trunk admittance, which implies an increase of the lumped intrinsic and reflexive stiffness. This would compensate for decreased stiffness at the cost of an increase in cumulative low back load. Taking into account the differences between conditions it would be preferable to offer upper body support during activities that require prolonged trunk flexion.

  20. Astronomical Data Reduction Workflows with Reflex

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Bramich, D.; Forchi, V.; Freudling, W.; Garcia-Dabó, C. E.; klein Gebbinck, M.; Modigliani, A.; Moehler, S.; Romaniello, M.

    2014-05-01

    Reflex (http://www.eso.org/reflex) is an environment that provides an easy and flexible way to reduce VLT/VLTI science data using the ESO. Its top-level functionalities are: (1) Reflex allows to graphically specify the sequence in which the data reduction steps are executed, including conditional stops, loops and conditional branches, (2) Reflex makes it easy to inspect the intermediate and final data products and to repeat selected processing steps to optimize the data reduction, (3) the data organization necessary to reduce the data is built into the system and is fully automatic, (4) advanced users can plug-in their own Python or IDL modules and steps into the data reduction sequence, and (5) Reflex supports the development of data reduction workflows based on the ESO Common Pipeline Library. Reflex is based on the concept of a scientific workflow, whereby the data reduction cascade is rendered graphically and data seamlessly flow from one processing step to the next. It is distributed with a number of complete test datasets so that users can immediately start experimenting and familiarize themselves with the system (http://www.eso.org/pipelines). In this demo, we present the latest version of Reflex and its applications for astronomical data reduction processes.

  1. Brainstem reflexes in patients with familial dysautonomia.

    PubMed

    Gutiérrez, Joel V; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2015-03-01

    Several distinctive clinical features of patients with familial dysautonomia (FD) including dysarthria and dysphagia suggest a developmental defect in brainstem reflexes. Our aim was to characterize the neurophysiological profile of brainstem reflexes in these patients. We studied the function of sensory and motor trigeminal tracts in 28 patients with FD. All were homozygous for the common mutation in the IKAP gene. Each underwent a battery of electrophysiological tests including; blink reflexes, jaw jerk reflex, masseter silent periods and direct stimulation of the facial nerve. Responses were compared with 25 age-matched healthy controls. All patients had significantly prolonged latencies and decreased amplitudes of all examined brainstem reflexes. Similar abnormalities were seen in the early and late components. In contrast, direct stimulation of the facial nerve revealed relative preservation of motor responses. The brainstem reflex abnormalities in FD are best explained by impairment of the afferent and central pathways. A reduction in the number and/or excitability of trigeminal sensory axons is likely the main problem. These findings add further evidence to the concept that congenital mutations of the elongator-1 protein (or IKAP) affect the development of afferent neurons including those carrying information for the brainstem reflex pathways. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  3. Altered timing of postural reflexes contributes to falling in persons with chronic stroke.

    PubMed

    Marigold, Daniel S; Eng, Janice J

    2006-06-01

    The purpose of this study was to determine differences in the timing of postural reflexes and changes in kinematics between those who fell (fallers) in response to standing platform translations and those who did not (non-fallers). Forty-four persons with stroke were exposed to unexpected forward and backward platform translations while standing. Surface electromyography from bilateral tibialis anterior, gastrocnemius, rectus femoris, and biceps femoris were recorded along with kinematic data. Those that fell in response to the translations were compared to those who did not fall in terms of (1) postural reflex onset latency, (2) the time interval between the activation of distal and proximal muscles (i.e. intralimb coupling), and (3) changes in joint angles and trunk motion. Approximately 85% of falls occurred in response to the forward translations. Postural reflex onset latencies were delayed and intralimb coupling durations were longer in the faller versus non-faller group. At the time that the platform completed the translating motion (300 ms), the faller group demonstrated higher trunk velocity, greater change in paretic ankle angle, and the trunk was further behind the ankle compared to the non-faller group. This study suggests that following platform translations, delays in the timing of postural reflexes and disturbed intralimb coupling result in changes in kinematics, which contribute to falls in persons with stroke.

  4. Altered Timing of Postural Reflexes Contributes to Falling in Persons with Chronic Stroke

    PubMed Central

    Marigold, Daniel S.; Eng, Janice J.

    2011-01-01

    The purpose of this study was to determine differences in the timing of postural reflexes and changes in kinematics between those who fell (Fallers) in response to standing platform translations and those who did not (Non-fallers). Forty-four persons with stroke were exposed to unexpected forward and backward platform translations while standing. Surface electromyography from bilateral tibialis anterior, gastrocnemius, rectus femoris, and biceps femoris were recorded along with kinematic data. Those that fell in response to the translations were compared to those who did not fall in terms of (1) postural reflex onset latency, (2) the time interval between the activation of distal and proximal muscles (i.e. intralimb coupling), and (3) changes in joint angles and trunk motion. Approximately 85% of falls occurred in response to the forward translations. Postural reflex onset latencies were delayed and intralimb coupling durations were longer in the Faller versus Non-faller group. At the time that the platform completed the translating motion (300 ms), the Faller group demonstrated higher trunk velocity, greater change in paretic ankle angle, and the trunk was further behind the ankle compared to the Non-faller group. This study suggests that following platform translations, delays in the timing of postural reflexes and disturbed intralimb coupling result in changes in kinematics, which contribute to falls in persons with stroke. PMID:16418855

  5. Inactivation of Semicircular Canals Causes Adaptive Increases in Otolith-driven Tilt Responses

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Newlands, Shawn D.; Dickman, J. David

    2002-01-01

    Growing experimental and theoretical evidence suggests a functional synergy in the processing of otolith and semicircular canal signals for the generation of the vestibulo-ocular reflexes (VORs). In this study we have further tested this functional interaction by quantifying the adaptive changes in the otolith-ocular system during both rotational and translational movements after surgical inactivation of the semicircular canals. For 0.1- 0.5 Hz (stimuli for which there is no recovery of responses from the plugged canals), pitch and roll VOR gains recovered during earth- horizontal (but not earth-vertical) axis rotations. Corresponding changes were also observed in eye movements elicited by translational motion (0.1 - 5 Hz). Specifically, torsional eye movements increased during lateral motion, whereas vertical eye movements increased during fore-aft motion. The findings indicate that otolith signals can be adapted according to compromised strategy that leads to improved gaze stabilization during motion. Because canal-plugged animals permanently lose the ability to discriminate gravitoinertial accelerations, adapted animals can use the presence of gravity through otolith-driven tilt responses to assist gaze stabilization during earth-horizontal axis rotations.

  6. The Reflexes of the Fundus Oculi

    PubMed Central

    Ballantyne, A. J.

    1940-01-01

    The fundus reflexes reveal, in a manner not yet completely understood, the texture and contour of the reflecting surfaces and the condition of the underlying tissues. In this way they may play an important part in the biomicroscopy of the eye. The physiological reflexes are seen at their best in the eyes of young subjects, in well-pigmented eyes, with undilated pupils and with emmetropic refraction. Their absence during the first two decades, or their presence after the forties, their occurrence in one eye only, their appearance, disappearance or change of character should suggest the possibility of some pathological state. The investigation and interpretation of the reflexes are notably assisted by comparing the appearances seen with long and short wave lights such as those of the sodium and mercury vapour lamps, in addition to the usual ophthalmoscopic lights. Most of the surface reflexes disappear in the light of the sodium lamp, sometimes revealing important changes in the deeper layers of the retina and choroid. The physiological reflexes, chiefly formed on the surface of the internal limiting membrane, take the forms of the familiar watered silk or patchy reflexes, the peri-macular halo, the fan reflex in the macular depression and the reflex from the foveal pit. The watered silk or patchy reflexes often show a delicate striation which follows the pattern of the nerve-fibre layer, or there may be a granular or criss-cross texture. Reflexes which entirely lack these indications of “texture” should be considered as possibly pathological. This applies to the “beaten metal” reflexes and to those formed on the so-called hyaloid membrane. The occurrence of physiological reflexes in linear form is doubtful, and the only admittedly physiological punctate reflexes are the so-called Gunn's dots. Surface reflexes which are broken up into small points or flakes are pathological, and are most frequently seen in the central area of the fundus in cases of pigmentary

  7. Phase-dependent and task-dependent modulation of stretch reflexes during rhythmical hand tasks in humans

    PubMed Central

    Xia, Ruiping; Bush, Brian M H; Karst, Gregory M

    2005-01-01

    Phase-dependent and task-dependent modulation of reflexes has been extensively demonstrated in leg muscles during locomotory activity. In contrast, the modulation of reflex responses of hand muscles during rhythmic movement is poorly documented. The objective of this study was to determine whether comparable reflex modulation occurs in muscles controlling finger motions during rhythmic, fine-motor tasks akin to handwriting. Twelve healthy subjects performed two rhythmic tasks while reflexes were evoked by mechanical perturbations applied at various phases of each task. Electromyograms (EMGs) were recorded from four hand muscles, and reflexes were averaged during each task relative to the movement phase. Stretch reflexes in all four muscles were found to be modulated in amplitude with respect to the phase of the rhythmic tasks, and also to vary distinctly with the tasks being conducted. The extent and pattern of reflex modulation differed between muscles in the same task, and between tasks for the same muscle. Muscles with a primary role in each task showed a higher correlation between reflex response and background EMG than other muscles. The results suggest that the modulation patterns observed may reflect optimal strategies of central–peripheral interactions in controlling the performance of fine-motor tasks. As with comparable studies on locomotion, the phase-dependency of the stretch reflexes implies a dynamically fluctuating role of proprioceptive feedback in the control of the hand muscles. The clear task-dependency is also consistent with a dynamic interaction of sensory feedback and central programming, presumably adapted to facilitate the successful performance of the different fine-motor tasks. PMID:15746170

  8. Changes in the Achilles tendon reflexes following Skylab missions

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Hordinsky, J. R.

    1977-01-01

    Postflight measurements of Achilles tendon reflex duration on Skylab crewmen indicate a state of disequilibrium between the flexor and extensor muscle groups with an initial decrease in reflex duration. As the muscles regain strength and mass there occurs an overcompensation reflected by increased reflex duration. Finally, when a normal neuromuscular state is reached the reflex duration returns to baseline value.

  9. Changes in the Achilles tendon reflexes following Skylab missions

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Hordinsky, J. R.

    1977-01-01

    Postflight measurements of Achilles tendon reflex duration on Skylab crewmen indicate a state of disequilibrium between the flexor and extensor muscle groups with an initial decrease in reflex duration. As the muscles regain strength and mass there occurs an overcompensation reflected by increased reflex duration. Finally, when a normal neuromuscular state is reached the reflex duration returns to baseline value.

  10. Measuring the Sun's motion with stellar streams

    NASA Astrophysics Data System (ADS)

    Malhan, Khyati; Ibata, Rodrigo A.

    2017-10-01

    We present a method for measuring the Sun's motion using the proper motions of Galactic halo star streams. The method relies on the fact that the motion of the stars perpendicular to a stream from a low-mass progenitor is close to zero when viewed from a non-rotating frame at rest with respect to the Galaxy, and that the deviation from zero is due to the reflex motion of the observer. The procedure we implement here has the advantage of being independent of the Galactic mass distribution. We run a suite of simulations to test the algorithm we have developed, and find that we can recover the input solar motion to good accuracy with data of the quality that will soon become available from the ESA/Gaia mission.

  11. Development of ocular vestibular-evoked myogenic potentials in small children.

    PubMed

    Wang, Shou-Jen; Hsieh, Wu-Shiun; Young, Yi-Ho

    2013-02-01

    This study investigated the development of otolithic-ocular reflex in small children (<3 years old) via the ocular vestibular-evoked myogenic potential (oVEMP) test. Prospective study. Twenty full-term newborns (group A), 15 children aged 1 to 3 years (group B), and 15 children aged 4 to 13 years (group C) were enrolled in this study. All children underwent auditory brainstem response testing or audiometry, and the oVEMP test. All subjects had normal hearing. Typical biphasic oVEMP waveforms were not observed in the 20 newborns, but were present in six (40%) of 15 children aged 1 to 3 years and all (100%) children aged 4 to 13 years, exhibiting a significant difference. In group B, except for the nine children aged 12 to 24 months, the remaining six children, aged 25 to 47 months, had clear oVEMPs, with the mean nI latency and nI-pI amplitude resembling those in children aged 4 to 13 years, indicating that the otolithic-ocular reflex is mature in children aged >2 years. Despite the well-developed caloric and cervical VEMP responses in early life, oVEMPs are not present in newborns, but are present in children aged >2 years who can walk with a gait resembling an adult. Maturation of the otolithic-ocular reflex is important to balance control, which is necessary in small children for independent gait. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Demonstrating the Stretch Reflex: A Mechanical Model.

    ERIC Educational Resources Information Center

    Batavia, Mitchell; McDonough, Andrew L.

    2000-01-01

    Explains the concept of stretch reflexes to students using a mechanical model. The model provides a dynamic multisensory experience using movement, light, and sound. Describes the construction design. (SAH)

  13. Relationship of Postural Reflexes to Learning Disabilities

    ERIC Educational Resources Information Center

    Rider, Barbara A.

    1972-01-01

    The fact that the children with learning disorders had significantly more abnormal reflexes than did the normal children lends empirical support to the theory of minimal neurological impairment as a factor in the etiology of learning disabilities. (Author)

  14. Relationship of Postural Reflexes to Learning Disabilities

    ERIC Educational Resources Information Center

    Rider, Barbara A.

    1972-01-01

    The fact that the children with learning disorders had significantly more abnormal reflexes than did the normal children lends empirical support to the theory of minimal neurological impairment as a factor in the etiology of learning disabilities. (Author)

  15. Demonstrating the Stretch Reflex: A Mechanical Model.

    ERIC Educational Resources Information Center

    Batavia, Mitchell; McDonough, Andrew L.

    2000-01-01

    Explains the concept of stretch reflexes to students using a mechanical model. The model provides a dynamic multisensory experience using movement, light, and sound. Describes the construction design. (SAH)

  16. The legacy of care as reflexive learning

    PubMed Central

    García, Marta Rodríguez; Moya, Jose Luis Medina

    2016-01-01

    Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. Results: the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. Conclusions: reflexive practice is key to tutors' training and students' learning. PMID:27305180

  17. On the Second Language Acquisition of Spanish Reflexive Passives and Reflexive Impersonals by French- and English-Speaking Adults

    ERIC Educational Resources Information Center

    Tremblay, Annie

    2006-01-01

    This study, a partial replication of Bruhn de Garavito (1999a; 1999b), investigates the second language (L2) acquisition of Spanish reflexive passives and reflexive impersonals by French- and English-speaking adults at an advanced level of proficiency. The L2 acquisition of Spanish reflexive passives and reflexive impersonals by native French and…

  18. Acute provoked reflex seizures induced by thinking.

    PubMed

    Nevler, Naomi; Gandelman-Marton, Revital

    2012-11-01

    Thinking epilepsy is a rare form of reflex epilepsy that can be induced by specific cognitive tasks, and occurs mainly in idiopathic generalized epilepsies. We report a case of complex partial seizures triggered by thinking in a young man with acute bacterial meningitis and a remote head injury. This case illustrates that thinking-induced reflex seizures can be partial and can be provoked by an acute brain insult.

  19. Neuromuscular consequences of reflexive covert orienting.

    PubMed

    Corneil, Brian D; Munoz, Douglas P; Chapman, Brendan B; Admans, Tania; Cushing, Sharon L

    2008-01-01

    Visual stimulus presentation activates the oculomotor network without requiring a gaze shift. Here, we demonstrate that primate neck muscles are recruited during such reflexive covert orienting in a manner that parallels activity recorded from the superior colliculus (SC). Our results indicate the presence of a brainstem circuit whereby reflexive covert orienting is prevented from shifting gaze, but recruits neck muscles, predicting that similarities between SC and neck muscle activity should extend to other cognitive processes that are known to influence SC activity.

  20. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1992-01-01

    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness

  1. Impact of aging on long-term ocular reflex adaptation.

    PubMed

    Gutierrez-Castellanos, Nicolas; Winkelman, Beerend H J; Tolosa-Rodriguez, Leonardo; De Gruijl, Jornt R; De Zeeuw, Chris I

    2013-12-01

    Compensatory eye movements (CEMs) stabilize the field of view enabling visual sharpness despite self-induced motion or environmental perturbations. The vestibulocerebellum makes it possible to adapt these reflex behaviors to perform optimally under novel circumstances that are sustained over time. Because of this and the fact that the eye is relatively insensitive to fatigue and musculoskeletal aging effects, CEMs form an ideal motor system to assess aging effects on cerebellar motor learning. In the present study, we performed an extensive behavioral examination of the impact of aging on both basic CEMs and oculomotor-based learning paradigms spanning multiple days. Our data show that healthy aging has little to no effect on basic CEM performance despite sensory deterioration, suggesting a central compensatory mechanism. Young mice are capable of adapting their oculomotor output to novel conditions rapidly and accurately, even to the point of reversing the direction of the reflex entirely. However, oculomotor learning and consolidation capabilities show a progressive decay as age increases.

  2. Reflex responses of masseter muscles to sound.

    PubMed

    Deriu, Franca; Giaconi, Elena; Rothwell, John C; Tolu, Eusebio

    2010-10-01

    Acoustic stimuli can evoke reflex EMG responses (acoustic jaw reflex) in the masseter muscle. Although these were previously ascribed to activation of cochlear receptors, high intensity sound can also activate vestibular receptors. Since anatomical and physiological studies, both in animals and humans, have shown that masseter muscles are a target for vestibular inputs we have recently reassessed the vestibular contribution to masseter reflexes. We found that high intensity sound evokes two bilateral and symmetrical short-latency responses in active unrectified masseter EMG of healthy subjects: a high threshold, early p11/n15 wave and a lower threshold, later p16/n21 wave. Both of these reflexes are inhibitory but differ in their threshold, latency and appearance in the rectified EMG average. Experiments in healthy subjects and in patients with selective lesions showed that vestibular receptors were responsible for the p11/n15 wave (vestibulo-masseteric reflex) whereas cochlear receptors were responsible for the p16/n21 wave (acoustic masseteric reflex). The possible functional significance of the double vestibular control over masseter muscles is discussed. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  3. Reflexive convention: civil partnership, marriage and family.

    PubMed

    Heaphy, Brian

    2017-09-14

    Drawing on an analysis of qualitative interview data from a study of formalized same-sex relationships (civil partnerships) this paper examines the enduring significance of marriage and family as social institutions. In doing so, it intervenes in current debates in the sociology of family and personal life about how such institutions are undermined by reflexivity or bolstered by convention. Against the backdrop of dominating sociological frames for understanding the links between the changing nature of marriage and family and same-sex relationship recognition, the paper analyses the diverse and overlapping ways (including the simple, relational, strategic, ambivalent and critical ways) in which same-sex partners reflexively constructed and engaged with marriage and family conventions. My analysis suggests that instead of viewing reflexivity and convention as mutually undermining, as some sociologists of family and personal life do, it is insightful to explore how diverse forms of reflexivity and convention interact in everyday life to reconfigure the social institutions of marriage and family, but do not undermine them as such. I argue the case for recognizing the ways in which 'reflexive convention', or reflexive investment in convention, contributes to the continuing significance of marriage and family as social institutions. © London School of Economics and Political Science 2017.

  4. Torso flexion modulates stiffness and reflex response.

    PubMed

    Granata, K P; Rogers, E

    2007-08-01

    Neuromuscular factors that contribute to spinal stability include trunk stiffness from passive and active tissues as well as active feedback from reflex response in the paraspinal muscles. Trunk flexion postures are a recognized risk factor for occupational low-back pain and may influence these stabilizing control factors. Sixteen healthy adult subjects participated in an experiment to record trunk stiffness and paraspinal muscle reflex gain during voluntary isometric trunk extension exertions. The protocol was designed to achieve trunk flexion without concomitant influences of external gravitational moment, i.e., decouple the effects of trunk flexion posture from trunk moment. Systems identification analyses identified reflex gain by quantifying the relation between applied force disturbances and time-dependent EMG response in the lumbar paraspinal muscles. Trunk stiffness was characterized from a second order model describing the dynamic relation between the force disturbances versus the kinematic response of the torso. Trunk stiffness increased significantly with flexion angle and exertion level. This was attributed to passive tissue contributions to stiffness. Reflex gain declined significantly with trunk flexion angle but increased with exertion level. These trends were attributed to correlated changes in baseline EMG recruitment in the lumbar paraspinal muscles. Female subjects demonstrated greater reflex gain than males and the decline in reflex gain with flexion angle was greater in females than in males. Results reveal that torso flexion influences neuromuscular factors that control spinal stability and suggest that posture may contribute to the risk of instability injury.

  5. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  6. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  7. Adaptive walking of a quadrupedal robot based on layered biological reflexes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuli; Mingcheng, E.; Zeng, Xiangyu; Zheng, Haojun

    2012-07-01

    A multiple-legged robot is traditionally controlled by using its dynamic model. But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environments. Referring animals' neural control mechanisms, a control model is built for a quadruped robot walking adaptively. The basic rhythmic motion of the robot is controlled by a well-designed rhythmic motion controller(RMC) comprising a central pattern generator(CPG) for hip joints and a rhythmic coupler (RC) for knee joints. CPG and RC have relationships of motion-mapping and rhythmic couple. Multiple sensory-motor models, abstracted from the neural reflexes of a cat, are employed. These reflex models are organized and thus interact with the CPG in three layers, to meet different requirements of complexity and response time to the tasks. On the basis of the RMC and layered biological reflexes, a quadruped robot is constructed, which can clear obstacles and walk uphill and downhill autonomously, and make a turn voluntarily in uncertain environments, interacting with the environment in a way similar to that of an animal. The paper provides a biologically inspired architecture, with which a robot can walk adaptively in uncertain environments in a simple and effective way, and achieve better performances.

  8. Whole-body vibration-induced muscular reflex: Is it a stretch-induced reflex?

    PubMed Central

    Cakar, Halil Ibrahim; Cidem, Muharrem; Sebik, Oguz; Yilmaz, Gizem; Karamehmetoglu, Safak Sahir; Kara, Sadik; Karacan, Ilhan; Türker, Kemal Sıtkı

    2015-01-01

    [Purpose] Whole-body vibration (WBV) can induce reflex responses in muscles. A number of studies have reported that the physiological mechanisms underlying this type of reflex activity can be explained by reference to a stretch-induced reflex. Thus, the primary objective of this study was to test whether the WBV-induced muscular reflex (WBV-IMR) can be explained as a stretch-induced reflex. [Subjects and Methods] The present study assessed 20 healthy males using surface electrodes placed on their right soleus muscle. The latency of the tendon reflex (T-reflex) as a stretch-induced reflex was compared with the reflex latency of the WBV-IMR. In addition, simulations were performed at 25, 30, 35, 40, 45, and 50 Hz to determine the stretch frequency of the muscle during WBV. [Results] WBV-IMR latency (40.5 ± 0.8 ms; 95% confidence interval [CI]: 39.0–41.9 ms) was significantly longer than T-reflex latency (34.6 ± 0.5 ms; 95% CI: 33.6–35.5 ms) and the mean difference was 6.2 ms (95% CI of the difference: 4.7–7.7 ms). The simulations performed in the present study demonstrated that the frequency of the stretch signal would be twice the frequency of the vibration. [Conclusion] These findings do not support the notion that WBV-IMR can be explained by reference to a stretch-induced reflex. PMID:26310784

  9. Vestibulo-Ocular Responses to Vertical Translation using a Hand-Operated Chair as a Field Measure of Otolith Function

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Campbell, D. J.; Reschke, M. F.; Prather, L.; Clement, G.

    2016-01-01

    The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.

  10. Variability in Hoffmann and tendon reflexes in healthy male subjects

    NASA Technical Reports Server (NTRS)

    Good, E.; Do, S.; Jaweed, M.

    1992-01-01

    There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.

  11. Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system

    PubMed Central

    2013-01-01

    Background Spasticity is a prevalent chronic condition among persons with upper motor neuron syndrome that significantly impacts function and can be costly to treat. Clinical assessment is most often performed with passive stretch-reflex tests and graded on a scale, such as the Modified Ashworth Scale (MAS). However, these scales are limited in sensitivity and are highly subjective. This paper shows that a simple wearable sensor system (angle sensor and 2-channel EMG) worn during a stretch-reflex assessment can be used to more objectively quantify spasticity in a clinical setting. Methods A wearable sensor system consisting of a fibre-optic goniometer and 2-channel electromyography (EMG) was used to capture data during administration of the passive stretch-reflex test for elbow flexor and extensor spasticity. A kinematic model of unrestricted passive joint motion was used to extract metrics from the kinematic and EMG data to represent the intensity of the involuntary reflex. Relationships between the biometric results and clinical measures (MAS, isometric muscle strength and passive range of motion) were explored. Results Preliminary results based on nine patients with varying degrees of flexor and extensor spasticity showed that kinematic and EMG derived metrics were strongly correlated with one another, were correlated positively (and significantly) with clinical MAS, and negatively correlated (though mostly non-significant) with isometric muscle strength. Conclusions We conclude that a wearable sensor system used in conjunction with a simple kinematic model can capture clinically relevant features of elbow spasticity during stretch-reflex testing in a clinical environment. PMID:23782931

  12. Soleus H-Reflex Operant Conditioning Changes The H-Reflex Recruitment Curve

    PubMed Central

    Thompson, Aiko K.; Chen, Xiang Yang; Wolpaw, Jonathan R.

    2012-01-01

    Introduction Operant conditioning can gradually change the human soleus H-reflex. The protocol conditions the reflex near M-wave threshold. This study examined its impact on the reflexes at other stimulus strengths. Methods H-reflex recruitment curves were obtained before and after a 24-session exposure to an up-conditioning (HRup) or down-conditioning (HRdown) protocol and were compared. Results In both HRup and HRdown subjects, conditioning affected the entire H-reflex recruitment curve. In 5 of 6 HRup and 3 of 6 HRdown subjects, conditioning elevated (HRup) or depressed (HRdown), respectively, the entire curve. In the other HRup subject or the other 3 HRdown subjects, the curve was shifted to the left or to the right, respectively. Discussion H-reflex conditioning does not simply change the H-reflex to a stimulus of particular strength; it also changes the H-reflexes to stimuli of different strengths. Thus, it is likely to affect many actions in which this pathway participates. PMID:23281107

  13. Evidence for sustained cortical involvement in peripheral stretch reflex during the full long latency reflex period.

    PubMed

    Perenboom, M J L; Van de Ruit, M; De Groot, J H; Schouten, A C; Meskers, C G M

    2015-01-01

    Adaptation of reflexes to environment and task at hand is a key mechanism in optimal motor control, possibly regulated by the cortex. In order to locate the corticospinal integration, i.e. spinal or supraspinal, and to study the critical temporal window of reflex adaptation, we combined transcranial magnetic stimulation (TMS) and upper extremity muscle stretch reflexes at high temporal precision. In twelve participants (age 49 ± 13 years, eight male), afferent signals were evoked by 40 ms ramp and subsequent hold stretches of the m. flexor carpi radialis (FCR). Motor conduction delays (TMS time of arrival at the muscle) and TMS-motor threshold were individually assessed. Subsequently TMS pulses at 96% of active motor threshold were applied with a resolution of 5-10 ms between 10 ms before and 120 ms after onset of series of FCR stretches. Controlled for the individually assessed motor conduction delay, subthreshold TMS was found to significantly augment EMG responses between 60 and 90 ms after stretch onset. This sensitive temporal window suggests a cortical integration consistent with a long latency reflex period rather than a spinal integration consistent with a short latency reflex period. The potential cortical role in reflex adaptation extends over the full long latency reflex period, suggesting adaptive mechanisms beyond reflex onset. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Soleus H-reflex operant conditioning changes the H-reflex recruitment curve.

    PubMed

    Thompson, Aiko K; Chen, Xiang Yang; Wolpaw, Jonathan R

    2013-04-01

    Operant conditioning can gradually change the human soleus H-reflex. The protocol conditions the reflex near M-wave threshold. In this study we examine its impact on the reflexes at other stimulus strengths. H-reflex recruitment curves were obtained before and after a 24-session exposure to an up-conditioning (HRup) or a down-conditioning (HRdown) protocol and were compared. In both HRup and HRdown subjects, conditioning affected the entire H-reflex recruitment curve. In 5 of 6 HRup and 3 of 6 HRdown subjects, conditioning elevated (HRup) or depressed (HRdown), respectively, the entire curve. In the other HRup subject or the other 3 HRdown subjects, the curve was shifted to the left or to the right, respectively. H-reflex conditioning does not simply change the H-reflex to a stimulus of particular strength; it also changes the H-reflexes to stimuli of different strengths. Thus, it is likely to affect many actions in which this pathway participates. Copyright © 2012 Wiley Periodicals, Inc.

  15. Audiogenic reflex seizures in cats

    PubMed Central

    Lowrie, Mark; Bessant, Claire; Harvey, Robert J; Sparkes, Andrew; Garosi, Laurent

    2015-01-01

    Objectives This study aimed to characterise feline audiogenic reflex seizures (FARS). Methods An online questionnaire was developed to capture information from owners with cats suffering from FARS. This was collated with the medical records from the primary veterinarian. Ninety-six cats were included. Results Myoclonic seizures were one of the cardinal signs of this syndrome (90/96), frequently occurring prior to generalised tonic–clonic seizures (GTCSs) in this population. Other features include a late onset (median 15 years) and absence seizures (6/96), with most seizures triggered by high-frequency sounds amid occasional spontaneous seizures (up to 20%). Half the population (48/96) had hearing impairment or were deaf. One-third of cats (35/96) had concurrent diseases, most likely reflecting the age distribution. Birmans were strongly represented (30/96). Levetiracetam gave good seizure control. The course of the epilepsy was non-progressive in the majority (68/96), with an improvement over time in some (23/96). Only 33/96 and 11/90 owners, respectively, felt the GTCSs and myoclonic seizures affected their cat’s quality of life (QoL). Despite this, many owners (50/96) reported a slow decline in their cat’s health, becoming less responsive (43/50), not jumping (41/50), becoming uncoordinated or weak in the pelvic limbs (24/50) and exhibiting dramatic weight loss (39/50). These signs were exclusively reported in cats experiencing seizures for >2 years, with 42/50 owners stating these signs affected their cat’s QoL. Conclusions and relevance In gathering data on audiogenic seizures in cats, we have identified a new epilepsy syndrome named FARS with a geriatric onset. Further studies are warranted to investigate potential genetic predispositions to this condition. PMID:25916687

  16. Jaw, blink and corneal reflex latencies in multiple sclerosis.

    PubMed Central

    Sanders, E A; Ongerboer de Visser, B W; Barendswaard, E C; Arts, R J

    1985-01-01

    Jaw, blink and corneal reflexes, which all involve the trigeminal system, were recorded in 54 patients with multiple sclerosis; thirty-seven of these patients were classified as having definite multiple sclerosis and 17 as indefinite multiple sclerosis, according to Schumacher's criteria. The jaw reflex was abnormal less frequently than either of the other two reflexes, but in four cases it was the only abnormal reflex found. Testing a combination of two or three trigeminal reflexes did not yield a higher incidence of abnormalities than testing the blink or corneal reflex alone. Nine patients showed abnormal reflexes which were unexpected on the basis of clinical symptoms. The combined recordings demonstrate at least one abnormal reflex in 74% of the patients. The various types of reflex abnormalities reflect major damage to different parts of the trigeminal system and may therefore make an important contribution to the diagnosis of multiple sclerosis. PMID:4087004

  17. The trigeminocardiac reflex – a comparison with the diving reflex in humans

    PubMed Central

    Lemaitre, Frederic; Schaller, Bernhard

    2015-01-01

    The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. PMID:25995761

  18. Using ESO Reflex with Web Services

    NASA Astrophysics Data System (ADS)

    Järveläinen, P.; Savolainen, V.; Oittinen, T.; Maisala, S.; Ullgrén, M. Hook, R.

    2008-08-01

    ESO Reflex is a prototype graphical workflow system, based on Taverna, and primarily intended to be a flexible way of running ESO data reduction recipes along with other legacy applications and user-written tools. ESO Reflex can also readily use the Taverna Web Services features that are based on the Apache Axis SOAP implementation. Taverna is a general purpose Web Service client, and requires no programming to use such services. However, Taverna also has some restrictions: for example, no numerical types such integers. In addition the preferred binding style is document/literal wrapped, but most astronomical services publish the Axis default WSDL using RPC/encoded style. Despite these minor limitations we have created simple but very promising test VO workflow using the Sesame name resolver service at CDS Strasbourg, the Hubble SIAP server at the Multi-Mission Archive at Space Telescope (MAST) and the WESIX image cataloging and catalogue cross-referencing service at the University of Pittsburgh. ESO Reflex can also pass files and URIs via the PLASTIC protocol to visualisation tools and has its own viewer for VOTables. We picked these three Web Services to try to set up a realistic and useful ESO Reflex workflow. They also demonstrate ESO Reflex abilities to use many kind of Web Services because each of them requires a different interface. We describe each of these services in turn and comment on how it was used

  19. [Latency values of 248 H reflexes in 124 normal subjects].

    PubMed

    Goizueta-San Martín, G; Ruiz-Rodríguez, G; Gutiérrez-Gutiérrez, G; Gutiérrez-Rivas, E; Millán-Santos, I

    2010-11-16

    The Hoffmann reflex or H reflex is an electrical counterpart of the myotatic reflex. In normal adults is elicited with stimulating the tibial and the median nerves. It is useful as an adjunct study of neuroexamination and assesses the corresponding arc reflexes in their integrity. 248 H reflexes were studied stimulating the tibial nerve in 124 healthy subjects. The latency values were: minimum 23.6 ms; maximum 29.8 ms; mean value 27.6 ± 1.41 ms. This work explains the technique to obtain the H reflex and discusses the need for normalized values for each neurophysiology lab.

  20. Validation of Centrifugation as a Countermeasure for Otolith Deconditioning During Spaceflight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.

    2004-01-01

    In contrast to previous studies, post-flight measures of both otolith-ocular function and orthostatic tolerance were unimpaired in four payload crewmembers exposed to artificial gravity generated by in-flight centrifugation during the Neurolab (STS-90) mission. The aim of the current proposal is to obtain control measures of otolith and orthostatic function following short duration missions, utilizing the centrifugation and autonomic testing techniques developed for the Neurolab mission, from astronauts who have not been exposed to in-flight centrifugation. This will enable a direct comparison with data obtained from the Neurolab crew. Deficits in otolith-ocular reflexes would support the hypothesis that intermittent exposure to in-flight centripetal acceleration is a countermeasure for otolith deconditioning. Furthermore, a correlation between post-flight otolith deconditioning and orthostatic intolerance would establish an otolithic basis for this condition.

  1. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  2. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  3. Applying the extensor digitorum reflex to neurological examination.

    PubMed

    Zhang, Ming-Juan; Zhu, Can-Zhan; Duan, Zong-ming; Niu, Xiaolin

    2010-10-01

    To determine the value of the extensor digitorum reflex in neurologic examination. The extensor digitorum, biceps, and brachioradialis reflexes were elicited in 65 patients with hemiplegia and upper-limb paralysis and in a control group of 120 apparently healthy people. Reflexes were elicited by both conventional means and a new method for the extensor digitorum reflex. The sensitivity and specificity of the extensor digitorum reflex were compared with that of the conventional biceps and brachioradialis reflexes to evaluate the value of the extensor digitorum reflex for neurologic examination. The sensitivity of the extensor digitorum, biceps, and brachioradialis reflexes were 93.65%, 90.48%, and 90.48%, respectively. The specificity of the extensor digitorum, biceps, and brachioradialis reflexes were 95.83%, 94.17%, and 93.33%, respectively. The diagnostic efficacies of the extensor digitorum, biceps, and brachioradialis reflexes were 95.08%, 92.90%, and 91.26%, respectively. There were no significant differences (p > 0.05) in sensitivity, specificity, or accuracy among the extensor digitorum, biceps or brachioradialis reflexes in neurologic examination. The extensor digitorum reflex is a sensitive and useful deep tendon reflex and is suitable for widespread use in neurological examination.

  4. The effect of elbow position on biceps tendon reflex.

    PubMed

    Keles, Isik; Nilufer, Balci; Mehmet, Beyazova

    2004-09-01

    Testing of tendon (T) reflex is the basic method used in the diagnostic procedure of clinical neurology. Measurement of T reflexes precisely can be a valuable adjunct to clinical examination. Quantification of T reflexes may provide more accurate results. To analyze the effect of elbow position on biceps T reflex. A self-controlled clinical trial of biceps T reflex testing at the Electrophysiology Unit of the Department of Physical Medicine and Rehabilitation. Biceps T reflex was obtained utilizing a hand-held electronic reflex hammer in 50 extremities of 25 healthy volunteers and the effect of elbow position (at 90 degrees , 120 degrees and 150 degrees ) on reflex response was evaluated. Repeated-measures analysis of variance by the General Linear Model and Pearson correlation test procedures. Onset latency was significantly shorter at 120 degrees of elbow position. The maximum amplitude value of biceps T reflex was obtained at 90 degrees of elbow position. Onset latency of the reflex correlated significantly with the height and arm length but not with age. The electrophysiological measurement of T reflexes is an easy and useful method in the quantification of reflexes, supplying more objective data. However, when performing T reflex studies, the position of the extremity should be taken into consideration to achieve more reliable results.

  5. The stretch reflex and the contributions of C David Marsden.

    PubMed

    Bhattacharyya, Kalyan B

    2017-01-01

    The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail, and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.

  6. The stretch reflex and the contributions of C David Marsden

    PubMed Central

    Bhattacharyya, Kalyan B.

    2017-01-01

    The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail, and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component. PMID:28298835

  7. Laryngeal Reflexes: Physiology, Technique and Clinical Use

    PubMed Central

    Ludlow, Christy L.

    2015-01-01

    This review examines the current level of knowledge and techniques available for the study of laryngeal reflexes. Overall, the larynx is under constant control of several systems (including respiration, swallowing and cough) as well as sensory-motor reflex responses involving glossopharyngeal, pharyngeal, laryngeal and tracheobronchial sensory receptors. Techniques for the clinical assessment of these reflexes are emerging and need to be examined for sensitivity and specificity in identifying laryngeal sensory disorders. Quantitative assessment methods for the diagnosis of sensory reductions as well as sensory hypersensitivity may account for laryngeal disorders such as chronic cough, paradoxical vocal fold disorder and muscular tension dysphonia. The development of accurate assessment techniques could improve our understanding of the mechanisms involved in these disorders. PMID:26241237

  8. Reflex: Graphical workflow engine for data reduction

    NASA Astrophysics Data System (ADS)

    ESO Reflex development Team

    2014-01-01

    Reflex provides an easy and flexible way to reduce VLT/VLTI science data using the ESO pipelines. It allows graphically specifying the sequence in which the data reduction steps are executed, including conditional stops, loops and conditional branches. It eases inspection of the intermediate and final data products and allows repetition of selected processing steps to optimize the data reduction. The data organization necessary to reduce the data is built into the system and is fully automatic; advanced users can plug their own modules and steps into the data reduction sequence. Reflex supports the development of data reduction workflows based on the ESO Common Pipeline Library. Reflex is based on the concept of a scientific workflow, whereby the data reduction cascade is rendered graphically and data seamlessly flow from one processing step to the next. It is distributed with a number of complete test datasets so users can immediately start experimenting and familiarize themselves with the system.

  9. Neural reflexes in inflammation and immunity

    PubMed Central

    2012-01-01

    The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit. PMID:22665702

  10. Sudden infant death triggered by dive reflex

    PubMed Central

    Matturri, L; Ottaviani, G; Lavezzi, A M

    2005-01-01

    The dive reflex is the reflex mechanism most frequently considered in the aetiopathogenesis of sudden infant death syndrome (SIDS). This seems to persist in human beings as an inheritance from diver birds and amphibians. It has been reported that washing the face with cold water or plunging into cold water can provoke cardiac deceleration through the intervention of the ambiguus and the vagal dorsal nuclei. This report describes a case of SIDS that offers a unique insight into the role of the dive reflex in determining a lethal outcome. Examination of the brainstem on serial sections revealed severe bilateral hypoplasia of the arcuate nucleus and gliosis of the other cardiorespiratory medullary nuclei. The coronary and cardiac conduction arteries presented early atherosclerotic lesions. The possible role of parental cigarette smoking in the pathogenesis of arcuate nucleus hypoplasia and early coronary atherosclerotic lesions is also discussed. PMID:15623488

  11. HOMOSTROPHIC REFLEX AND STEREOTROPISM IN DIPLOPODS

    PubMed Central

    Crozier, W. J.; Moore, A. R.

    1923-01-01

    1. With suitable arthropods, such as the diplopods, it can be shown that body orientation following passive unilateral tension involves the homostrophic reflex. The phenomenon is exhibited when the animal is quiescent and during forward locomotion, but nothing of the sort appears in backward locomotion. 2. Receptors for the homostrophic reflex are in the body wall and are distributed throughout the length of the animal. 3. The effector nerves take their origin from the ganglia of the head alone. 4. The diplopods are stereotropic, the head turning toward the side in contact with a solid surface only as long as some part of the body maintains contact. Under suitable conditions stereotropism may mask the homostrophic reflex. 5. When a diplopod is in contact with two lateral surfaces of equal extent the path upon emergence is a straight one, conforming to the law of the parallelogram of forces. PMID:19872021

  12. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes

    PubMed Central

    McCall, Andrew A.; Miller, Derek M.; Yates, Bill J.

    2017-01-01

    This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known

  13. New molecular knowledge towards the trigemino-cardiac reflex as a cerebral oxygen-conserving reflex.

    PubMed

    Sandu, N; Spiriev, T; Lemaitre, F; Filis, A; Schaller, B

    2010-05-04

    The trigemino-cardiac reflex (TCR) represents the most powerful of the autonomous reflexes and is a subphenomenon in the group of the so-called "oxygen-conserving reflexes". Within seconds after the initiation of such a reflex, there is a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF), with no changes in the cerebral metabolic rate of oxygen (CMRO2) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently. Features of the reflex have been discovered during skull base surgery, mediating reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus, which finally engage a small population of neurons in the cortex. This cortical center appears to be dedicated to transduce a neuronal signal reflexively into cerebral vasodilatation and synchronization of electrocortical activity; a fact that seems to be unique among autonomous reflexes. Sympathetic excitation is mediated by cortical-spinal projection to spinal preganglionic sympathetic neurons, whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to the brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Previous studies showed a great variability in the human TCR response, in special to external stimuli and individual factors. The TCR gives, therefore, not only new insights into novel therapeutic options for a range of disorders characterized by neuronal death, but also into the cortical and molecular organization of the brain.

  14. Threat of suffocation and defensive reflex activation.

    PubMed

    Lang, Peter J; Wangelin, Bethany C; Bradley, Margaret M; Versace, Francesco; Davenport, Paul W; Costa, Vincent D

    2011-03-01

    The current study examined emotional reflex reactions of participants threatened with respiratory distress caused by imposing a resistive load at inspiration. Cues signaling threat (breathing MAY be difficult) and safe periods were intermixed while startle reflexes, heart rate, skin conductance, and facial EMG activity were measured. Compared to safe cues, threat cues elicited significant startle potentiation, enhanced skin conductance, heightened corrugator EMG changes, and pronounced "fear bradycardia" consistent with defensive activation in the context of threatened respiratory dysfunction. These data indicate that anticipating respiratory resistance activates defensive responding, which may mediate symptomatology in patients with panic and other anxiety disorders. Copyright © 2010 Society for Psychophysiological Research.

  15. [Benign reflex myoclonic epilepsy in infants].

    PubMed

    Cuvellier, J C; Lamblin, M D; Cuisset, J M; Vallée, L; Nuyts, J P

    1997-08-01

    Myoclonic epilepsy of infancy are seldom benign. A 25-month old girl developed myoclonic jerks either spontaneously either as reflex responses to auditory and tactile stimuli, such as sudden touching of the face or trunk from the age of 4 months. The jerks disappeared after valproate therapy. Neurological examination was normal with a follow-up of 9 months. This condition resembles that described in 1995 by Ricci et al. In must be differentiated from other myoclonic epilepsies of infancy, reflex epilepsies and hyperekplexia. It could be the earliest from of idiopathic generalized epilepsy.

  16. Earth horizontal axis rotational responses in patients with unilateral peripheral vestibular deficits

    NASA Technical Reports Server (NTRS)

    Furman, Joseph M. R.; Kamerer, Donald B.; Wall, Conrad, III

    1989-01-01

    The vestibulo-ocular reflex (VOR) of five patients with surgically confirmed unilateral peripheral vestibular lesions is evaluated. Testing used both earth vertical axis (EVA) and earth horizontal axis (EHA) yaw rotation. Results indicated that the patients had short VOR time constants, asymmetric responses to both EVA and EHA rotation, and normal EHA modulation components. These findings suggest that unilateral peripheral vestibular loss causes a shortened VOR time constant even with the addition of dynamic otolithic stimulation and causes an asymmetry in semicircular canal-ocular reflexes and one aspect of otolith-ocular reflexes.

  17. Earth horizontal axis rotational responses in patients with unilateral peripheral vestibular deficits

    NASA Technical Reports Server (NTRS)

    Furman, Joseph M. R.; Kamerer, Donald B.; Wall, Conrad, III

    1989-01-01

    The vestibulo-ocular reflex (VOR) of five patients with surgically confirmed unilateral peripheral vestibular lesions is evaluated. Testing used both earth vertical axis (EVA) and earth horizontal axis (EHA) yaw rotation. Results indicated that the patients had short VOR time constants, asymmetric responses to both EVA and EHA rotation, and normal EHA modulation components. These findings suggest that unilateral peripheral vestibular loss causes a shortened VOR time constant even with the addition of dynamic otolithic stimulation and causes an asymmetry in semicircular canal-ocular reflexes and one aspect of otolith-ocular reflexes.

  18. Charitable giving and reflexive individuals: How personal reflexivity mediates between structure and agency

    PubMed Central

    Sanghera, Balihar

    2016-01-01

    This article examines how individuals are reflexive beings who interpret the world in relation to things that matter to them, and how charitable acts are evaluated and embedded in their lives with different degrees of meaning and importance. Rather than framing the discussion of charitable practices in terms of an altruism/egoism binary or imputing motivations and values to social structures, the article explains how reflexivity is an important and neglected dimension of social practices, and how it interacts with sympathy, sentiments and discourses to shape giving. The study also shows that there are different modes of reflexivity, which have varied effects on charity and volunteering. PMID:28232772

  19. Charitable giving and reflexive individuals: How personal reflexivity mediates between structure and agency.

    PubMed

    Sanghera, Balihar

    2017-03-01

    This article examines how individuals are reflexive beings who interpret the world in relation to things that matter to them, and how charitable acts are evaluated and embedded in their lives with different degrees of meaning and importance. Rather than framing the discussion of charitable practices in terms of an altruism/egoism binary or imputing motivations and values to social structures, the article explains how reflexivity is an important and neglected dimension of social practices, and how it interacts with sympathy, sentiments and discourses to shape giving. The study also shows that there are different modes of reflexivity, which have varied effects on charity and volunteering.

  20. A Prototype Analysis of Spanish Indeterminate Reflexive Constructions.

    ERIC Educational Resources Information Center

    Turley, Jeffrey S.

    1998-01-01

    Discussion of the Spanish indeterminate reflexive construction, the impersonal reflexive, finds that prototype theory allows this subjectless Spanish construction to be included within the category of generally subject-bearing indeterminates in Romance languages. (MSE)

  1. Primate translational vestibuloocular reflexes. IV. Changes after unilateral labyrinthectomy

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Newlands, S. D.; Dickman, J. D.

    2000-01-01

    The effects of unilateral labyrinthectomy on the properties of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient displacements. During small-amplitude, steady-state sinusoidal lateral oscillations, a small decrease in the horizontal trVOR sensitivity and its dependence on viewing distance was observed during the first week after labyrinthectomy. These deficits gradually recovered over time. In addition, the vertical response component increased, causing a tilt of the eye velocity vector toward the lesioned side. During large, transient lateral displacements, the deficits were larger and longer lasting. Responses after labyrinthectomy were asymmetric, with eye velocity during movements toward the side of the lesion being more compromised. The most profound effect of the lesions was observed during fore-aft motion. Whereas responses were kinematically appropriate for fixation away from the side of the lesion (e.g., to the left after right labyrinthectomy), horizontal responses were anticompensatory during fixation at targets located ipsilateral to the side of the lesion (e.g., for targets to the right after right labyrinthectomy). This deficit showed little recovery during the 3-mo post-labyrinthectomy testing period. These results suggest that inputs from both labyrinths are important for the proper function of the trVORs, although the details of how bilateral signals are processed and integrated remain unknown.

  2. Primate translational vestibuloocular reflexes. IV. Changes after unilateral labyrinthectomy

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Newlands, S. D.; Dickman, J. D.

    2000-01-01

    The effects of unilateral labyrinthectomy on the properties of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient displacements. During small-amplitude, steady-state sinusoidal lateral oscillations, a small decrease in the horizontal trVOR sensitivity and its dependence on viewing distance was observed during the first week after labyrinthectomy. These deficits gradually recovered over time. In addition, the vertical response component increased, causing a tilt of the eye velocity vector toward the lesioned side. During large, transient lateral displacements, the deficits were larger and longer lasting. Responses after labyrinthectomy were asymmetric, with eye velocity during movements toward the side of the lesion being more compromised. The most profound effect of the lesions was observed during fore-aft motion. Whereas responses were kinematically appropriate for fixation away from the side of the lesion (e.g., to the left after right labyrinthectomy), horizontal responses were anticompensatory during fixation at targets located ipsilateral to the side of the lesion (e.g., for targets to the right after right labyrinthectomy). This deficit showed little recovery during the 3-mo post-labyrinthectomy testing period. These results suggest that inputs from both labyrinths are important for the proper function of the trVORs, although the details of how bilateral signals are processed and integrated remain unknown.

  3. On Reflection: Is Reflexivity Necessarily Beneficial in Intercultural Education?

    ERIC Educational Resources Information Center

    Blasco, Maribel

    2012-01-01

    This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending on the concepts of selfhood that prevail and how…

  4. On Reflection: Is Reflexivity Necessarily Beneficial in Intercultural Education?

    ERIC Educational Resources Information Center

    Blasco, Maribel

    2012-01-01

    This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending on the concepts of selfhood that prevail and how…

  5. 21 CFR 890.1450 - Powered reflex hammer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered reflex hammer. 890.1450 Section 890.1450...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex hammer. (a) Identification. A powered reflex hammer is a motorized device intended for medical...

  6. 21 CFR 890.1450 - Powered reflex hammer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered reflex hammer. 890.1450 Section 890.1450...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex hammer. (a) Identification. A powered reflex hammer is a motorized device intended for medical...

  7. 21 CFR 890.1450 - Powered reflex hammer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered reflex hammer. 890.1450 Section 890.1450...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex hammer. (a) Identification. A powered reflex hammer is a motorized device intended for medical...

  8. Snout and Visual Rooting Reflexes in Infantile Autism. Brief Report.

    ERIC Educational Resources Information Center

    Minderaa, Ruud B.; And Others

    1985-01-01

    The authors conducted extensive neurological evaluations of 42 autistic individuals and were surprised to discover a consistently positive snout reflex in most of them. Difficulties with assessing the reflex are noted. The authors then reassessed the Ss for a series of primitive reflexes which are interpreted as signs of diffuse cortical brain…

  9. The Limits of Institutional Reflexivity in Bulgarian Universities

    ERIC Educational Resources Information Center

    Slantcheva, Snejana

    2004-01-01

    This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…

  10. Snout and Visual Rooting Reflexes in Infantile Autism. Brief Report.

    ERIC Educational Resources Information Center

    Minderaa, Ruud B.; And Others

    1985-01-01

    The authors conducted extensive neurological evaluations of 42 autistic individuals and were surprised to discover a consistently positive snout reflex in most of them. Difficulties with assessing the reflex are noted. The authors then reassessed the Ss for a series of primitive reflexes which are interpreted as signs of diffuse cortical brain…

  11. The Limits of Institutional Reflexivity in Bulgarian Universities

    ERIC Educational Resources Information Center

    Slantcheva, Snejana

    2004-01-01

    This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…

  12. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways

    PubMed Central

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi

    2015-01-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin–horseradish peroxidase (WGA–HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA–HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg. PMID:25582052

  13. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways.

    PubMed

    He, Jun; Li, Guitao; Luo, Dixin; Sun, Hongtao; Qi, Yong; Li, Yiyi; Jin, Xunjie

    2015-11-01

    Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.

  14. A Testbed for Autonomous Reflexive Grasping

    DTIC Science & Technology

    1993-03-01

    written in C. The tactile sensor is neural network causes the reflex layer of the a 10 x 10 Tekscan sensor with an active area subsumption architecture to...Doctoral Thesis, March 1990. [9] J. G. Webster, Tactile Sensors for Robotics and Medicine, John Wiley & Sons, 1988 [10] Tekscan Inc., " Tekscan Corporate

  15. Plasma quiescence in a reflex discharge

    SciTech Connect

    Jerde, L.; Friedman, S.; Carr, W.; Seidl, M.

    1980-02-01

    A thermionic cathode reflex discharge and the plasma it produces are studied. It is found that extremely quiescent plasmas can be produced when the electron-loss rate due to classical diffusion is equal to the ion-loss rate. Particle and power balances for the quiescent plasma are obtained, and the average electron energy loss per ion produced is determined.

  16. Reflexive Learning: Stages towards Wisdom with Dreyfus

    ERIC Educational Resources Information Center

    McPherson, Ian

    2005-01-01

    The Dreyfus (2001) account of seven stages of learning is considered in the context of the Dreyfus (1980s) account of five stages of skill development. The two new stages, Mastery and Practical Wisdom, make more explicit certain themes implicit in the five-stage account. In this way Dreyfus (2001) encourages a more reflexive approach. The themes…

  17. Taking Control of Reflexive Social Attention

    ERIC Educational Resources Information Center

    Ristic, Jelena; Kingstone, Alan

    2005-01-01

    Attention is shifted reflexively to where other people are looking. It has been argued by a number of investigators that this social attention effect reflects the obligatory bottom-up activation of domain-specific modules within the inferior temporal (IT) cortex that are specialized for processing face and gaze information. However, it is also the…

  18. Nociceptive trigeminocervical reflexes in healthy subjects.

    PubMed

    Serrao, Mariano; Coppola, Gianluca; Di Lorenzo, Cherubino; Di Fabio, Roberto; Padua, Luca; Sandrini, Giorgio; Pierelli, Francesco

    2010-09-01

    Electrical stimulation of the supraorbital trigeminal nerve branch induces trigeminocervical reflex responses (TCRs) in the neck muscles. The purpose of this study was to elicit more nociceptive TCR responses through preferential activation of the nociceptive afferents with a concentric surface electrode. We recorded TCRs in 10 healthy subjects using both a standard (sTCR) and a nociceptive (nTCR) concentric surface electrode. We compared the baseline parameters, stimulus intensity/response, recovery, and habituation curves recorded for the two types of electrode, and assessed the effects of local anaesthesia. Compared with the sTCRs, nTCRs showed a significantly longer latency of the late reflex component, as well as lower pain and higher reflex thresholds. They also showed a different recovery cycle and stimulus intensity/response curve, but similar habituation rate. Local anaesthesia attenuated by 85% the late reflex response to stimulation by the concentric electrode, and by only 15% the response to standard electrode stimulation. The differences observed stimulating with these two electrode types may be due to their different activation of the afferent fibres. If this study were extended to patients affected by primary headaches, TCR monitoring could emerge as a sensitive tool for detecting changes in nociceptive transmission at the level of trigeminocervical complex. 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Reflexivity and the Researcher: An Illumination

    ERIC Educational Resources Information Center

    Ryan, Thomas

    2004-01-01

    Is reflexivity the condition of taking account of the personality and presence of the researcher within the investigation? Some argue that it is and it is necessary because self-examination is commonplace in society today. Improving and building are common goals, and within education we are committed to questioning in order to examine, build, and…

  20. Reflex Anuria After Renal Tumor Embolization

    SciTech Connect

    Kervancioglu, Selim Sirikci, Akif; Erbagci, Ahmet

    2007-04-15

    We report a case of reflex anuria after transarterial embolization of a renal tumor. Anuria developed immediately after embolization and resolved 74 hr following the procedure. We postulate that reflux anuria in our case was related to mechanoreceptors, chemoreceptors, or both, as these are stimulated by the occluded blood vessels, ischemia, and edema of the normal renal tissue of an embolized kidney.

  1. Taking Control of Reflexive Social Attention

    ERIC Educational Resources Information Center

    Ristic, Jelena; Kingstone, Alan

    2005-01-01

    Attention is shifted reflexively to where other people are looking. It has been argued by a number of investigators that this social attention effect reflects the obligatory bottom-up activation of domain-specific modules within the inferior temporal (IT) cortex that are specialized for processing face and gaze information. However, it is also the…

  2. Perspective on the human cough reflex

    PubMed Central

    2011-01-01

    This review dissects the complex human cough reflex and suggests hypotheses about the evolutionary basis for the reflex. A mechanosensory-induced cough reflex conveys through branches of myelinated Aδ nerve fibers is not chemically reactive (i.e., capsaicin, bradykinin); possibly, its evolution is to prevent the harmful effects of aspiration of gastric or particulate contents into the lungs. This became necessary as the larynx moves closer to the opening of the esophagus as human ancestors adapt phonation over olfaction beginning less than 10 million years ago. The second type of cough reflex, a chemosensory type, is carried by unmyelinated C fibers. Supposedly, its origin dates back when prehistoric humans began living in close proximity to each other and were at risk for infectious respiratory diseases or irritant-induced lung injury. The mechanism for the latter type of cough is analogous to induced pain after tissue injury; and, it is controlled by the identical transient receptor potential vanilloid cation channel (TRPV1). The airways do not normally manifest nociceptive pain from a stimulus but the only consistent response that capsaicin and lung inflammation provoke in healthy human airways is cough. TRPA1, another excitatory ion channel, has been referred to as the "irritant receptor" and its activation also induces cough. For both types of cough, the motor responses are identical and via coordinated, precisely-timed and sequential respiratory events orchestrated by complex neuromuscular networking of the diaphragm, chest and abdominal respiratory muscles, the glottis and parts of the brain. PMID:22074326

  3. Acoustic reflex patterns in amyotrophic lateral sclerosis.

    PubMed

    Canale, Andrea; Albera, Roberto; Lacilla, Michelangelo; Canosa, Antonio; Albera, Andrea; Sacco, Francesca; Chiò, Adriano; Calvo, Andrea

    2017-02-01

    The aim of the study is to investigate acoustic reflex testing in amyotrophic lateral sclerosis patients. Amplitude, latency, and rise time of stapedial reflex were recorded for 500 and 1000 Hz contralateral stimulus. Statistical analysis was performed by the Wilcoxon test and the level of significance was set at 5 %. Fifty-one amyotrophic lateral sclerosis patients and ten sex- and age-matched control subjects were studied. Patients were further divided in two groups: amyotrophic lateral sclerosis-bulbar (38 cases, with bulbar signs at evaluation) and amyotrophic lateral sclerosis-spinal (13 cases, without bulbar signs at evaluation). Stapedial reflex was present in all patients. There was a statistically significant difference in the mean amplitude, latency, and rise time between the amyotrophic lateral sclerosis patients as compared with the controls. Amplitude was lower in both the amyotrophic lateral sclerosis-bulbar and the amyotrophic lateral sclerosis-spinal patients than in the controls (p < 0.05) and rise time was longer in both patient groups compared with the controls (p < 0.05). These results confirm the presence of abnormal acoustic reflex patterns in amyotrophic lateral sclerosis cases with bulbar signs and, moreover, suggesting a possible subclinical involvement of the stapedial motor neuron even in amyotrophic lateral sclerosis-spinal patients. Amplitude and rise time seem to be good sensitive parameters for investigating subclinical bulbar involvement.

  4. Doing Reflexivity: Moments of Unbecoming and Becoming

    ERIC Educational Resources Information Center

    Fox, Alison; Allan, Julie

    2014-01-01

    This paper offers an account of a reflexive "trip" undertaken by a professional doctoral student and her supervisor. It presents a series of vignettes which offer an account of unbecomings and becomings encountered by the student. Making use of a dialogic approach in which the supervisor responds to the student, we suggest this method of…

  5. Reflexivity and the Researcher: An Illumination

    ERIC Educational Resources Information Center

    Ryan, Thomas

    2004-01-01

    Is reflexivity the condition of taking account of the personality and presence of the researcher within the investigation? Some argue that it is and it is necessary because self-examination is commonplace in society today. Improving and building are common goals, and within education we are committed to questioning in order to examine, build, and…

  6. Reflexivity as a Learning Strategy in EFL.

    ERIC Educational Resources Information Center

    Chi, Feng-ming

    Reflexivity, defined as the self-applied process of learning, the use of self and others as active signs in the learning process, is examined through relevant literature in English-as-a-Foreign-Language (EFL) instruction. When EFL learners are encouraged to stand back and examine the way they learn and why they learn this way, reflexivity…

  7. Reflectivity, Reflexivity and Situated Reflective Practice

    ERIC Educational Resources Information Center

    Malthouse, Richard; Roffey-Barentsen, Jodi; Watts, Mike

    2014-01-01

    This paper describes an aspect of reflective practice referred to as situated reflective practice. The overarching theory is derived from social theories of structuration and reflexivity. In particular, from Giddens' theory of structuration, which sees social life as an interplay of agency and structure. Discussion of the research reported here…

  8. Masseter reflex in childhood and adolescence.

    PubMed

    Koehler, Jürgen; Hölker, Cordula

    2004-05-01

    We report normative data of masseter reflex from a group of 54 children 2-16 years of age. For statistical analysis, the patients were divided into five age groups: 2-4, 5-7, 8-10, 11-13, and 14-16 years of age. A tap to the chin, using a hammer with a trigger device, elicited the masseter reflex. The response was recorded by surface electrodes. The onset latency and peak-to-peak amplitude of the averaged curve of eight reflex responses were measured. The reflex response could be recorded in all children and adolescents of all groups. The mean latency shortened from age 2 to 7 and was stable at the age of 8 years. As a sign of maturation, the increase of amplitude corresponded to the shortening of latency and was also stable at the age of 8 years. Abnormal side differences in latency of 0.9 ms (age group 2-4 years), 1.1 ms (age group 5-7 years), and 0.8 ms (age group 8-16 years) were evaluated. An amplitude ratio (lower amplitude divided by higher one) above 0.33 was calculated as normal.

  9. Reflexive Learning: Stages towards Wisdom with Dreyfus

    ERIC Educational Resources Information Center

    McPherson, Ian

    2005-01-01

    The Dreyfus (2001) account of seven stages of learning is considered in the context of the Dreyfus (1980s) account of five stages of skill development. The two new stages, Mastery and Practical Wisdom, make more explicit certain themes implicit in the five-stage account. In this way Dreyfus (2001) encourages a more reflexive approach. The themes…

  10. Head Stabilization by Vestibulocollic Reflexes During Quadrupedal Locomotion in Monkey

    PubMed Central

    Xiang, Yongqing; Yakushin, Sergei B.; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard

    2008-01-01

    Little is known about the three-dimensional characteristics of vestibulocollic reflexes during natural locomotion. Here we determined how well head stability is maintained by the angular and linear vestibulocollic reflexes (aVCR, lVCR) during quadrupedal locomotion in rhesus and cynomolgus monkeys. Animals walked on a treadmill at velocities of 0.4–1.25 m/s. Head rotations were represented by Euler angles (Fick convention). The head oscillated in yaw and roll at stride frequencies (≈1–2 Hz) and pitched at step frequencies (≈2–4 Hz). Head angular accelerations (100–2,500°/s2) were sufficient to have excited the aVOR to stabilize gaze. Pitch and roll head movements were <7°, peak to peak, and the amplitude was unrelated to stride frequency. Yaw movements were larger due to spontaneous voluntary head shifts and were smaller at higher walking velocities. Head translations were small (≤4 cm). Cynomolgus monkeys positioned their heads more forward in pitch than the rhesus monkeys. None of the animals maintained a forward head fixation point, indicating that the lVCR contributed little to compensatory head movements in these experiments. Significantly, aVCR gains in roll and pitch were close to unity and phases were ≈180° over the full frequency range of natural walking, which is in contrast to previous findings using anesthesia or passive trunk rotation with body restraint. We conclude that the behavioral state associated with active body motion is necessary to maintain head stability in pitch and roll over the full range of stride/step frequencies encountered during walking. PMID:18562554

  11. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1994-01-01

    The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.

  12. Rotational kinematics of the human vestibuloocular reflex. II. Velocity steps.

    PubMed

    Tweed, D; Fetter, M; Sievering, D; Misslisch, H; Koenig, E

    1994-11-01

    1. Gain matrices were used to quantify the three-dimensional vestibuloocular reflex (VOR) in five human subjects who were accelerated over 1 s and then spun at a constant 150 degrees/s for 29 s in darkness. Rotations were torsional, vertical and horizontal, about earth-vertical and earth-horizontal axes. 2. Elements on the main diagonal of the gain matrices were much smaller than the optimal value of -1, and torsional gain was weaker than vertical or horizontal. Off-diagonal elements, indicating cross talk, were minimal except for a small but consistent horizontal response to torsional head rotation. 3. Downward slow phases were more than twice as fast as upward at the start of rotation about both earth-vertical and earth-horizontal axes, but the asymmetry vanished later in the rotation. 4. During earth-vertical-axis rotation, all matrix elements decayed to zero. The main-diagonal torsional and vertical gains waned with time constants close to that of the cupula (6.7 and 7.3 s). Velocity storage prolonged the horizontal response to horizontal head rotation (time constant 14.2 s) but not the horizontal response to torsion (7.7 s). A simple explanation is that velocity storage acts on a central estimate of head motion that accurately distinguishes horizontal from torsional and that the inappropriate horizontal eye velocity response to torsion occurs because of cross talk downstream from velocity storage. 5. During earth-horizontal-axis rotation, the torsional, vertical, and horizontal main-diagonal elements declined, with time constants of 7.6, 8.2, and 7.9 s, to maintained nonzero values, all equal to about -0.1. Off-diagonal elements, including the horizontal response to torsion, decayed to zero, so that the otolith-driven reflex, late in the rotation, was equally strong in all dimensions and almost free of detectable cross talk. 6. The difference between gain curves over the course of earth-vertical- and earth-horizontal-axis rotations was not constant but

  13. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  14. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  15. Specificity of reflex adaptation for task-relevant variability.

    PubMed

    Franklin, David W; Wolpert, Daniel M

    2008-12-24

    The motor system responds to perturbations with reflexes, such as the vestibulo-ocular reflex or stretch reflex, whose gains adapt in response to novel and fixed changes in the environment, such as magnifying spectacles or standing on a tilting platform. Here we demonstrate a reflex response to shifts in the hand's visual location during reaching, which occurs before the onset of voluntary reaction time, and investigate how its magnitude depends on statistical properties of the environment. We examine the change in reflex response to two different distributions of visuomotor discrepancies, both of which have zero mean and equal variance across trials. Critically one distribution is task relevant and the other task irrelevant. The task-relevant discrepancies are maintained to the end of the movement, whereas the task-irrelevant discrepancies are transient such that no discrepancy exists at the end of the movement. The reflex magnitude was assessed using identical probe trials under both distributions. We find opposite directions of adaptation of the reflex response under these two distributions, with increased reflex magnitudes for task-relevant variability and decreased reflex magnitudes for task-irrelevant variability. This demonstrates modulation of reflex magnitudes in the absence of a fixed change in the environment, and shows that reflexes are sensitive to the statistics of tasks with modulation depending on whether the variability is task relevant or task irrelevant.

  16. Modulation of the initial light reflex during affective picture viewing.

    PubMed

    Henderson, Robert R; Bradley, Margaret M; Lang, Peter J

    2014-09-01

    An initial reflexive constriction of the pupil to stimulation-the light reflex-is primarily modulated by brightness, but is attenuated when participants are under threat of shock (i.e., fear-inhibited light reflex). The present study assessed whether the light reflex is similarly attenuated when viewing emotional pictures. Pupil diameter was recorded while participants viewed erotic, violent, and neutral scenes that were matched in brightness; scrambled versions identical in brightness were also presented as an additional control. Compared to viewing neutral scenes, the light reflex was reliably modulated by hedonic content, with significant attenuation both when viewing unpleasant as well as pleasant pictures. No differences in the light reflex were found among scrambled versions. Thus, emotional modulation of the initial light reflex is not confined to a context of fear and is not indicative of brightness differences when viewing pictures of natural scenes. Copyright © 2014 Society for Psychophysiological Research.

  17. Modulation of the initial light reflex during affective picture viewing

    PubMed Central

    Henderson, Robert R.; Bradley, Margaret M.; Lang, Peter J.

    2014-01-01

    An initial reflexive constriction of the pupil to stimulation – the light reflex – is primarily modulated by brightness, but is attenuated when participants are under threat of shock (e.g. "fear-inhibited light reflex").The present study assessed whether the light reflex is similarly attenuated when viewing emotional pictures. Participants viewed erotic, violent, and neutral scenes that were matched in brightness; as an additional control, scrambled versions identical in brightness were also presented. Compared to viewing neutral scenes, the light reflex was reliably modulated by hedonic content, with significant attenuation both when viewing unpleasant, as well as pleasant, pictures. No differences in the light reflex were found among scrambled versions. Modulation of the initial light reflex is therefore not confined to a context of fear, and also is not indicative of differences in brightness when viewing pictures of natural scenes. PMID:24849784

  18. Effect of Contralateral Noise on Acoustic Reflex Latency Measures.

    PubMed

    Prabhu, Prashanth; Divyashree, Koratagere Narayanaswamy; Neeraja, Raju; Akhilandeshwari, Sivaswami

    2015-12-01

    The present study was conducted to determine the effect of contralateral broadband noise on acoustic reflex latency (ARL). Acoustic reflex latency changes for 10 and 90% on- and off-time acoustic reflexes with contralateral broadband noise were measured in 30 adults with normal hearing. The results of the study demonstrate that there was a latency prolongation for reflex on-time (10 and 90%) and latency reduction for reflex off-time (10 and 90%). This effect was seen for 500, 1000, and 2000 Hz reflex-eliciting signals. The results also showed that there was no effect of gender on latency changes in acoustic reflexes. Latency changes may explain efferent auditory system mechanisms used for the protection of the cochlea and improvement in speech perception. Thus, contralateral changes of ARL can serve as an additional tool to assess the efferent system functioning.

  19. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  20. Ocular vestibular evoked myogenic potentials induced by air-conducted sound in patients with acute brainstem lesions.

    PubMed

    Oh, Sun-Young; Kim, Ji Soo; Lee, Jong-Min; Shin, Byoung-Soo; Hwang, Seung-Bae; Kwak, Ki-Chang; Kim, Chanmi; Jeong, Seul-Ki; Kim, Tae-Woo

    2013-04-01

    The ocular vestibular-evoked myogenic potential (oVEMP), a recently documented otolith-ocular reflex, is considered to reflect the central projections of the primary otolithic afferent fibers to the oculomotor nuclei. The aim of our study is to define air-conducted sound oVEMP abnormality in patients with acute brainstem lesions and to determine the brainstem structures involved in the generation of oVEMPs. In response to air-conducted tone burst sounds (ACS), oVEMP was measured in 52 patients with acute brainstem lesions. Individualized brainstem lesions were analyzed by means of MRI-based voxel-wise lesion-behavior mapping, and the probabilistic lesion maps were constructed. More than half (n=28, 53.8%) of the patients with acute brainstem lesions showed abnormal oVEMP in response to ACS. The majority of patients with abnormal oVEMPs had lesions in the dorsomedial brainstem that contains the medial longitudinal fasciculus (MLF), the crossed ventral tegmental tract (CVTT), and the oculomotor nuclei and nerves. MLF, CVTT, and the oculomotor nuclei and nerves appear to be responsible for otolith-ocular responses in the brainstem. Complemented to cervical VEMP for the uncrossed otolith-spinal function, oVEMP to ACS may be applied to evaluate the crossed otolith-ocular function in central vestibulopathies. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  2. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  3. Somatoautonomic reflexes in acupuncture therapy: A review.

    PubMed

    Uchida, Sae; Kagitani, Fusako; Sato-Suzuki, Ikuko

    2017-03-01

    Oriental therapies such as acupuncture, moxibustion, or Anma, have been used to treat visceral disorders since ancient times. In each of these therapies, stimulation of the skin or underlying muscles leads to excitation of afferent nerves. The sensory information is carried to the central nervous system, where it is transferred to autonomic efferents, thus affecting visceral functions. This neuronal pathway, known as the "somatoautonomic reflex", has been systematically studied by Sato and his colleagues for over a half century. Nearly all their studies were conducted in anesthetized animals, whereas human patients are conscious. Responses in patients or the events following therapeutic somatic stimulation may differ from those observed in anesthetized animals. In fact, it is increasingly apparent that the responses in patients and animals are not always coincident, and the differences have been difficult for clinicians to reconcile. We review the mechanism of the "somatoautonomic reflex" as described in anesthetized animals and then discuss how it can be applied clinically.

  4. A graph-based reflexive artificial chemistry.

    PubMed

    Salzberg, Chris

    2007-01-01

    The conceptual divide between formal systems of computation and abstract models of chemistry is considered. As an attempt to concretely bridge this divide, a formalism is proposed that describes a constructive artificial chemistry on a space of directed graph structures. The idea for the formalism originates in computer science theory, with the traditional abstraction of a physical machine, the finite-state machine (FSM). In the FSM, the machine (state-transition graph) and input string (series of binary digits) are fundamentally distinct objects, separated by nature of the underlying formalism. This distinction is dissolved in the proposed system, resulting in a construction process that is reflexive: graphs interact with their own topological structure to generate a product. It is argued that this property of reflexivity is a key element missing from earlier model chemistries. Examples demonstrate the continuous emergence complex self-similar topologies, novel reaction pathways, and seemingly open-ended diversity. Implications of these findings are discussed.

  5. Labyrinthine lesions and motion sickness susceptibility.

    PubMed

    Dai, Mingjia; Raphan, Theodore; Cohen, Bernard

    2007-04-01

    The angular vestibulo-ocular reflex (aVOR) has a fast pathway, which mediates compensatory eye movements, and a slow (velocity storage) pathway, which determines its low frequency characteristics and orients eye velocity toward gravity. We have proposed that motion sickness is generated through velocity storage, when its orientation vector, which lies close to the gravitational vertical, is misaligned with eye velocity during head motion. The duration of the misalignment, determined by the dominant time constant of velocity storage, causes the buildup of motion sickness. To test this hypothesis, we studied bilateral labyrinthine-defective subjects with short vestibular time constants but normal aVOR gains for their motion sickness susceptibility. Time constants and gains were taken from rotational responses. Motion sickness was generated by rolling the head while rotating, and susceptibility was assessed by the number of head movements made before reaching intolerable levels of nausea. More head movements signified lower motion sickness susceptibility. Labyrinthine-defective subjects made more head movements on their first exposure to roll while rotating than normals (39.8 +/- 7.2 vs 13.7 +/- 5.5; P < 0.0001). Normals were tested eight times, which habituated their time constants and reduced their motion sickness susceptibility. Combining data from all subjects, there was a strong inverse relationship between time constants and number of head movements (r = 0.94), but none between motion sickness susceptibility and aVOR gains. This provides further evidence that motion sickness is generated through velocity storage, not the direct pathway, and suggests that motion sickness susceptibility can be reduced by reducing the aVOR time constant.

  6. The spinal reflex cannot be perceptually separated from voluntary movements.

    PubMed

    Ghosh, Arko; Haggard, Patrick

    2014-01-01

    Both voluntary and involuntary movements activate sensors in the muscles, skin, tendon and joints. As limb movement can result from a mixture of spinal reflexes and voluntary motor commands, the cortical centres underlying conscious proprioception might either aggregate or separate the sensory inputs generated by voluntary movements from those generated by involuntary movements such as spinal reflexes. We addressed whether healthy volunteers could perceive the contribution of a spinal reflex during movements that combined both reflexive and voluntary contributions. Volunteers reported the reflexive contribution in leg movements that were partly driven by the knee-jerk reflex induced by a patellar tendon tap and partly by voluntary motor control. In one condition, participants were instructed to kick back in response to a tendon tap. The results were compared to reflexes in a resting baseline condition without voluntary movement. In a further condition, participants were instructed to kick forwards after a tap. Volunteers reported the perceived reflex contribution by repositioning the leg to the perceived maximum displacement to which the reflex moved the leg after each tendon tap. In the resting baseline condition, the reflex was accurately perceived. We found a near-unity slope of linear regressions of perceived on actual reflexive displacement. Both the slope value and the quality of regression fit in individual volunteers were significantly reduced when volunteers were instructed to generate voluntary backward kicks as soon as they detected the tap. In the kick forward condition, kinematic analysis showed continuity of reflex and voluntary movements, but the reflex contribution could be estimated from electromyography (EMG) recording on each trial. Again, participants' judgements of reflexes showed a poor relation to reflex EMG, in contrast to the baseline condition. In sum, we show that reflexes can be accurately perceived from afferent information. However

  7. The spinal reflex cannot be perceptually separated from voluntary movements

    PubMed Central

    Ghosh, Arko; Haggard, Patrick

    2014-01-01

    Abstract Both voluntary and involuntary movements activate sensors in the muscles, skin, tendon and joints. As limb movement can result from a mixture of spinal reflexes and voluntary motor commands, the cortical centres underlying conscious proprioception might either aggregate or separate the sensory inputs generated by voluntary movements from those generated by involuntary movements such as spinal reflexes. We addressed whether healthy volunteers could perceive the contribution of a spinal reflex during movements that combined both reflexive and voluntary contributions. Volunteers reported the reflexive contribution in leg movements that were partly driven by the knee-jerk reflex induced by a patellar tendon tap and partly by voluntary motor control. In one condition, participants were instructed to kick back in response to a tendon tap. The results were compared to reflexes in a resting baseline condition without voluntary movement. In a further condition, participants were instructed to kick forwards after a tap. Volunteers reported the perceived reflex contribution by repositioning the leg to the perceived maximum displacement to which the reflex moved the leg after each tendon tap. In the resting baseline condition, the reflex was accurately perceived. We found a near-unity slope of linear regressions of perceived on actual reflexive displacement. Both the slope value and the quality of regression fit in individual volunteers were significantly reduced when volunteers were instructed to generate voluntary backward kicks as soon as they detected the tap. In the kick forward condition, kinematic analysis showed continuity of reflex and voluntary movements, but the reflex contribution could be estimated from electromyography (EMG) recording on each trial. Again, participants’ judgements of reflexes showed a poor relation to reflex EMG, in contrast to the baseline condition. In sum, we show that reflexes can be accurately perceived from afferent information

  8. Development of a quantitative reflex hammer for measurement of tendon stretch reflex.

    PubMed

    Kim, Kyu-Jung; Hwang, Il-Kyu; Wertsch, Jacqueline J

    2002-09-01

    Quantification of tendon stretch reflex requires precise measurement of the tapping force of a reflex hammer. A quantitative reflex (QR) hammer consisting of two cut rubber pieces from a generic rubber reflex hammer and a uniaxial force transducer was constructed. Finite element stress analyses were conducted to estimate the natural frequency characteristics of the hammer and to find the stress distributions during the impact. Pendulum impact testing was conducted at four different heights to assess the calibration linearity and repeatability of the measurement. The QR hammer had a fundamental natural frequency of 515 Hz and showed minimal displacement and stress at the tip from the finite element simulation of the impact. The QR hammer also provided reliable and repeatable measurements as demonstrated with high coefficients of determination, exceeding 0.994 and small coefficients of variations, less than 4%. The calibration linearity was 0.64% compared with the reference force platform measurement. The QR hammer demonstrated sufficient accuracy and reliability for precise clinical assessment of tendon stretch reflexes.

  9. The effect of distraction strategies on pain perception and the nociceptive flexor reflex (RIII reflex).

    PubMed

    Ruscheweyh, Ruth; Kreusch, Annette; Albers, Christoph; Sommer, Jens; Marziniak, Martin

    2011-11-01

    Distraction from pain reduces pain perception, and imaging studies have suggested that this may at least partially be mediated by activation of descending pain inhibitory systems. Here, we used the nociceptive flexor reflex (RIII reflex) to directly quantify the effects of different distraction strategies on basal spinal nociception and its temporal summation. Twenty-seven healthy subjects participated in 3 distraction tasks (mental imagery, listening to preferred music, spatial discrimination of brush stimuli) and, in a fourth task, concentrated on the painful stimulus. Results show that all 3 distraction tasks reduced pain perception, but only the brush task also reduced the RIII reflex. The concentration-on-pain task increased both pain perception and the RIII reflex. The extent of temporal summation of pain perception and the extent of temporal summation of the RIII reflex were not affected by any of the tasks. These results suggest that some, but not all, forms of pain reduction by distraction rely on descending pain inhibition. In addition, pain reduction by distraction seems to preferentially affect mechanisms of basal nociceptive transmission, not of temporal summation. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Social orienting: reflexive versus voluntary control

    PubMed Central

    Hill, Julia L.; Patel, Saumil; Gu, Xue; Seyedali, Nassim S.; Bachevalier, Jocelyne; Sereno, Anne B.

    2010-01-01

    Many studies have shown that the direction of gaze of a face covertly facilitates the response to a target presented in the matching direction. In this study we seek to determine whether there exist separate reflexive and voluntary forms of such covert social orienting and how they interact with each other. We measured the effect of the predictive value of a gaze cue on manual choice reaction times. When the predictive value of the gaze cue was zero, a facilitatory cueing effect was still observed which peaked at a Cue onset to Target onset Delay (CTD) of 150 ms and largely diminished beyond a CTD of 500 ms. When the gaze cue was 100% predictive of the future location of the target, at CTDs greater than 200, the predictive cue resulted in a significantly greater facilitation of response than occurred with a non-predictive cue. These results suggest that given enough time (about 200 ms), the social cue is interpreted and a willful or voluntary spatially-specific social cueing effect occurs. In addition, we found that a predictive cue resulted in a significant slowing of the observer’s responses up to a CTD of 200 ms. These findings show that, similar to non-social spatial orienting, there appear to be two forms of social orienting including a reflexive component and voluntary component. We suggest a model of social orienting in which the voluntary social orienting system modulates tonic inhibition of the reflexive social orienting system. PMID:20673778

  11. Social orienting: reflexive versus voluntary control.

    PubMed

    Hill, Julia L; Patel, Saumil; Gu, Xue; Seyedali, Nassim S; Bachevalier, Jocelyne; Sereno, Anne B

    2010-09-24

    Many studies have shown that the direction of gaze of a face covertly facilitates the response to a target presented in the matching direction. In this study we seek to determine whether there exist separate reflexive and voluntary forms of such covert social orienting and how they interact with each other. We measured the effect of the predictive value of a gaze cue on manual choice reaction times. When the predictive value of the gaze cue was zero, a facilitatory cueing effect was still observed which peaked at a cue onset to target onset delay (CTD) of 150ms and largely diminished beyond a CTD of 500ms. When the gaze cue was 100% predictive of the future location of the target, at CTDs greater than 200, the predictive cue resulted in a significantly greater facilitation of response than occurred with a non-predictive cue. These results suggest that given enough time (about 200ms), the social cue is interpreted and a willful or voluntary spatially-specific social cueing effect occurs. In addition, we found that a predictive cue resulted in a significant slowing of the observer's responses up to a CTD of 200ms. These findings show that, similar to non-social spatial orienting, there appear to be two forms of social orienting including a reflexive component and voluntary component. We suggest a model of social orienting in which the voluntary social orienting system modulates tonic inhibition of the reflexive social orienting system. Published by Elsevier Ltd.

  12. Basic Gravitational Reflexes in the Larval Frog

    NASA Technical Reports Server (NTRS)

    Cochran, Stephen L.

    1996-01-01

    This investigation was designed to determine how a primitive vertebrate, the bullfrog tadpole, is able to sense and process gravitational stimuli. Because of the phylogenetic similarities of the vestibular systems in all vertebrates, the understanding of the gravitational reflexes in this relatively simple vertebrate should elucidate a skeletal framework on a elementary level, upon which the more elaborate reflexes of higher vertebrates may be constructed. The purpose of this study was to understand how the nervous system of the larval amphibian processes gravitational information. This study involved predominantly electrophysiological investigations of the isolated, alert (forebrain removed) bullfrog tadpole head. The focus of these experiments is threefold: (1) to understand from whole extraocular nerve recordings the signals sent to the eye following static gravitational tilt of the head; (2) to localize neuronal centers responsible for generating these signals through reversible pharmacological ablation of these centers; and (3) to record intracellularly from neurons within these centers in order to determine the single neuron's role in the overall processing of the center. This study has provided information on the mechanisms by which a primitive vertebrate processes gravitational reflexes.

  13. Cortical reflex myoclonus in Rett syndrome.

    PubMed

    Guerrini, R; Bonanni, P; Parmeggiani, L; Santucci, M; Parmeggiani, A; Sartucci, F

    1998-04-01

    Rett syndrome (RS) is one of the most frequent causes of mental retardation in females. As there are no known biochemical, genetic, or morphological markers, diagnosis is based on clinical phenotype including severe dementia, autism, truncal ataxia/apraxia, loss of purposeful hand movements, breathing abnormalities, stereotypies, seizures, and extrapyramidal signs. Myoclonus, although reported in some series, has never been characterized. We studied 10 RS patients, age 3 to 20 years, and observed myoclonus in 9. Severity of myoclonus did not correlate with that of the other symptoms or with age. Multifocal, arrhythmic, and asynchronous jerks mainly involved distal limbs. Electromyographic bursts lasted 48 +/- 12 msec. Burst-locked electroencephalographic averaging generated a contralateral centroparietal premyoclonus transient preceding the burst by 34 +/- 7.2 msec. Motor evoked potentials showed normal latencies, indicating integrity of the corticospinal pathway. Somatosensory evoked potentials were enlarged. The C-reflex was hyperexcitable and markedly prolonged (62 +/- 4.3 msec), mainly due to increase in cortical relay time (28.4 +/- 4.5 msec). We conclude that RS patients show a distinctive pattern of cortical reflex myoclonus with prolonged intracortical delay of the long-loop reflex.

  14. The importance of acoustic reflex for communication.

    PubMed

    de Andrade, Kelly Cristina Lira; Camboim, Elizângela Dias; Soares, Ilka do Amaral; Peixoto, Marcus Valerius da Silva; Neto, Silvio Caldas; Menezes, Pedro de Lemos

    2011-01-01

    The purpose of the study was to compare the speech recognition capacity between listeners with and without acoustic reflex using different types of noises and intensities. We studied 18 women allocated to 2 groups: acoustic reflex present (20 ears) and absent (16 ears). They were presented with 180 disyllable words (90 to each ear), emitted randomly at a fixed intensity of 40 dB above the pure tone average hearing level. At the same time, 3 types of noises were presented ipsilaterally (white, pink, and speech), one at a time, at 3 intensities: 40, 50, and 60 dB above the pure tone average hearing level. The ages and auditory thresholds were statistically equal between the groups. There was a significant difference in mean number of hits between the 2 groups for the 3 types of noises used. There was also a significant difference in mean number of hits for noise type and intensity when white and pink noise was used at 40 and 50 dB and for all the intensities when speech was used. Acoustic reflex helps communication in high-noise environments and is more efficient for speech sounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The lack of deep reflexes in myotonic dystrophy.

    PubMed

    Messina, C; Tonali, P; Scoppetta, C

    1976-12-01

    Clinical and electrophysiological observations have been carried out on 12 patients with myotonic dystrophy. Neurological examination showed that the tendon reflexes were absent or weak in almost all cases, whereas the cutaneous reflexes were normal. Examination of both deep and superficial sensibility gave normal results. Electromyography confirmed widespread "myopathic" activity and myotonic discharges were recorded on insertion of the needle electrode and at rest. Motor and sensory conduction velocity in the ulnar nerve and motor conduction in the peroneal nerve proved to be normal. Repetitive supramaximal nerve stimulation showed in 10 cases a decrease in potential amplitude, more evident at higher frequencies of stimulation. In the 2 other cases, by contrast, an increase in amplitude was observed, and this was suggestive of a partial presynaptic block. The jaw reflex was absent in 5 cases and reduced in amplitude in the 7 other cases. The results of blink reflex investigations were normal, with the exception of 2 cases where no early response was elicited. Spinal monosynaptic reflexes were absent in 7 cases after both electrical (H reflex) and mechanical stimulation (T reflex), whereas the response to direct stimulation of nerve motor fibres (the M response) was always present, even though reduced in amplitude. Such data lead one to reject the hypothesis that the absence of deep reflexes is due to pathological change in the muscle spindles. It seems more likely that the selective atrophy of Type 1 muscle fibres, known to be involved in deep reflex responses, is responsible for the early disappearance of the tendon reflexes.

  16. Clinical correlation of cervical myelopathy and the hyperactive pectoralis reflex.

    PubMed

    Paholpak, Permsak; Jirarattanaphochai, Kitti; Sae-Jung, Surachai; Wittayapairoj, Kriangkrai

    2013-12-01

    A diagnostic study. To validate the correlation between hyperactive pectoralis reflex and the level of cervical myelopathy. The hyperactive pectoralis reflex was proposed to be present in patients with spinal cord compression at the C2-3 and/or C3-4 level. Nevertheless, in a validation study on the correlation of various hyperactive reflexes and the cervical myelopathic level, this particular reflex was not evaluated. All patients presenting with cervical myelopathy between August 2009 and June 2012 were included in this study. Each patient underwent neurological examination for cervical myelopathy focusing on the examination of pathologic reflexes, including the hyperactive pectoralis reflex. We recorded the presence or absence of these reflexes and the level of cervical myelopathy as detected on magnetic resonance imaging. We used the level of spinal cord compression-cranial to C4 of the vertebral body-as the reference level to validate a hyperactive pectoralis reflex. The study included 95 cervical myelopathy patients: 33 patients had most of their compressed cervical cord somewhere above the C4 vertebral body. The hyperactive pectoralis reflex for cervical myelopathy at this level had a respective sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of 84.8%, 96.7%, 26.67, and 0.16. The high sensitivity and specificity of the hyperactive pectoralis reflex is very useful for screening and diagnosis of the cervical myelopathic level when it is above the C4 vertebral body.

  17. The acoustic reflex in children without an hermetic seal.

    PubMed

    Kaplan, H; Babecki, S; Thomas, C

    1980-01-01

    In clinical practice with children, the hermetic seal is either often not obtainable or is lost before acoustic reflex measures are obtained. In a recent study, Surr and Schuchman (Archives of Otolaryngology 102, 160--161, 1976.) found that in the majority of cases reflex thresholds could be measured in adults with normal middle ears in the absence of an hermetic seal. This study was designed to find out whether the conclusions of Surr and Schuchman could be extended to children. Sealed and unsealed reflexes were compared in 30 children, ages 3 to 7, with normal middle ears. Results indicated that: (1) approximately two-thirds of the children demonstrated reflexes in the unsealed condition; (2) differences between sealed and unsealed reflex thresholds were not clinically significant; (3) in most cases, unsealed reflexes were measurable at all frequencies or at none; (4) neither size of ear canal volume nor amplitude of the sealed reflex at 10 dB SL seemed to be related to the presence or absence of the unsealed reflex. It was concluded that reflex thresholds obtained in the absence of an hermetic seal may be considered valid but the absence of an unsealed reflex should not be considered diagnostically significant.

  18. Reflex receptive fields for human withdrawal reflexes elicited by non-painful and painful electrical stimulation of the foot sole.

    PubMed

    Andersen, O K; Sonnenborg, F A; Arendt-Nielsen, L

    2001-04-01

    Human withdrawal reflex receptive fields (RRFs) were assessed for 4 different electrical stimulus intensities, ranging from below the pain threshold (PTh) to up to two times the PTh intensity (0.8x, 1.2x, 1.6x, and 2.0xPTh). Thirteen subjects participated, and the reflexes were recorded in a sitting position. The stimuli were delivered in random order to 12 positions distributed over the foot sole. Tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL), and biceps femoris (BF) reflexes were recorded. Further, knee and ankle joint angle changes were recorded. The strongest reflexes were seen in the TA compared with the other 3 muscles. Dorsi-flexion dominated distal to the talocrural joint corresponding to the TA receptive field area. An expansion of the RRF for the TA and GM was seen when increasing the stimulus intensity from 0.8xPTh to 1.2xPTh and from 1.2xPTh to 1.6xPTh, indicating a gradually increasing reflex threshold towards the border, where TA contraction is inappropriate in a withdrawal reaction. For the BF and VL, the borders of the RRF areas were not detected. By integrating the reflex size within the RRF (i.e. the reflex volume), gradually increasing reflexes for increasing stimulus intensity were seen in all 4 muscles tested, most clearly in the TA and GM. The subjective pain intensity correlated to the reflex volume for the TA, GM, and BF. In conclusion, the highest reflex sensitivity was seen in the centre of the RRF, while the stimulus intensity needed for eliciting a reflex increased towards the receptive field border. Within the RRF, stronger reflexes were evoked for increasing stimulus intensity. The limit in the size of the receptive field size for the TA and GM supports a modular withdrawal reflex organisation.

  19. Vergence-dependent adaptation of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Lewis, Richard F.; Clendaniel, Richard A.; Zee, David S.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.

  20. Reflexive obstacle avoidance for kinematically-redundant manipulators

    NASA Technical Reports Server (NTRS)

    Karlen, James P.; Thompson, Jack M., Jr.; Farrell, James D.; Vold, Havard I.

    1989-01-01

    Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration.

  1. Reflex (unloading) and (defensive capitulation) responses in human neck muscle.

    PubMed Central

    Corna, S; Ito, Y; von Brevern, M; Bronstein, A M; Gresty, M A

    1996-01-01

    1. We studied unloading and stretch responses in human neck muscle during manoeuvres in which the head pulled against a 2-3 kg weight which could be abruptly released or applied electromagnetically. 2. During head tracking in pitch, unloading of the weight induced inhibition of EMG in the contracting sternocleidomastoid at a mean latency of 24.9 ms in normal subjects and at 41 ms in bilateral labyrinthine-defective subjects, with antagonist (trapezius) excitation at 30.5 and 41.3 ms, respectively. During tracking in yaw, unloading induced inhibition in the contracting splenius capitis (SpC) at a mean latency of 20.4 ms in normal subjects and 25 ms in labyrinthine-defective subjects, with excitation in the antagonist SpC at 22.2 and 24 ms, respectively. 3. If subjects tried to resist an unexpected sideways tug on the head a burst occurred in the stretched SpC at a mean latency of 53.5 ms. When subjects relaxed there was excitation of the shortening of SpC at 75.9 ms, which assisted the imposed motion and is possibly a "defensive reflex". PMID:8910241

  2. Vergence-dependent adaptation of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Lewis, Richard F.; Clendaniel, Richard A.; Zee, David S.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.

  3. Assessment of Hyperactive Reflexes in Patients with Spinal Cord Injury

    PubMed Central

    Yang, Chung-Yong

    2015-01-01

    Hyperactive reflexes are commonly observed in patients with spinal cord injury (SCI) but there is a lack of convenient and quantitative characterizations. Patellar tendon reflexes were examined in nine SCI patients and ten healthy control subjects by tapping the tendon using a hand-held instrumented hammer at various knee flexion angles, and the tapping force, quadriceps EMG, and knee extension torque were measured to characterize patellar tendon reflexes quantitatively in terms of the tendon reflex gain (G tr), contraction rate (R c), and reflex loop time delay (t d). It was found that there are significant increases in G tr and R c and decrease in t d in patients with spinal cord injury as compared to the controls (P < 0.05). This study presented a convenient and quantitative method to evaluate reflex excitability and muscle contraction dynamics. With proper simplifications, it can potentially be used for quantitative diagnosis and outcome evaluations of hyperreflexia in clinical settings. PMID:25654084

  4. The exercise pressor reflex and peripheral artery disease.

    PubMed

    Stone, Audrey J; Kaufman, Marc P

    2015-03-01

    The exercise pressor reflex contributes to increases in cardiovascular and ventilatory function during exercise. These reflexive increases are caused by both mechanical stimulation and metabolic stimulation of group III and IV afferents with endings in contracting skeletal muscle. Patients with peripheral artery disease (PAD) have an augmented exercise pressor reflex. Recently, an animal model of PAD was established which allows further investigation of possible mechanisms involved in this augmented reflex. Earlier studies have identified ASIC3 channels, bradykinin receptors, P2X receptors, endoperoxide receptors, and thromboxane receptors as playing a role in evoking the exercise pressor reflex in healthy rats. This review focuses on recent studies using a rat model of PAD in order to determine possible mechanisms contributing to the exaggerated exercise pressor reflex seen in patients with this disease.

  5. The parallel programming of voluntary and reflexive saccades.

    PubMed

    Walker, Robin; McSorley, Eugene

    2006-06-01

    A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.

  6. Chronic Trigemino-Cardiac Reflex: An Underestimated Truth

    PubMed Central

    Chowdhury, Tumul; Schaller, Bernhard

    2017-01-01

    The trigemino-cardiac reflex (TCR) is a brainstem reflex that manifests as adverse cardiorespiratory events upon the stimulation of sensory branches of the fifth cranial nerve. This reflex is mainly investigated in different neurosurgical procedures and intervention. This reflex is commonly considered as an acute and mild physiological response. On the other hand, more devastating and chronic nature of this reflex is largely underreported and unknown. Therefore, this article aims to provide the comprehensive understanding of the chronic form of TCR, its manifestations, and management by literature search. Also, this paper would certainly impart a better diagnosis and understanding of TCR phenomenon by knowing the relatively less common form of a chronic TCR. This will help thousands and thousands of patients who are still in the phase of diagnosis and are suffering from vague symptoms related to this reflex. PMID:28194134

  7. Relationship between vomiting reflex during esophagogastroduodenoscopy and dyspepsia symptoms.

    PubMed

    Enomoto, Shotaro; Watanabe, Mika; Yoshida, Takeichi; Mukoubayashi, Chizu; Moribata, Kosaku; Muraki, Yosuke; Shingaki, Naoki; Deguchi, Hisanobu; Ueda, Kazuki; Inoue, Izumi; Maekita, Takao; Iguchi, Mikitaka; Tamai, Hideyuki; Kato, Jun; Fujishiro, Mitsuhiro; Oka, Masashi; Mohara, Osamu; Ichinose, Masao

    2012-09-01

    Although frequent vomiting reflexes during esophagogastroduodenoscopy (EGD) causes suffering in patients, very few studies have investigated the characteristics of subjects who frequently develop vomiting reflexes. This study examined the incidence of the vomiting reflex and related factors, especially upper gastrointestinal symptoms, among individuals undergoing transoral EGD. Subjects included 488 consecutive adults (mean age, 56.1 ± 8.9 years) who underwent transoral EGD for gastric cancer screening between February 2010 and March 2011. All procedures were performed by an endoscopist with 15 years of experience. Based on a questionnaire survey using the frequency scale for the symptoms of gastroesophageal reflux disease (FSSG), symptoms (dyspepsia and acid reflux symptoms) and the number of vomiting reflexes during EGD were recorded. Of the 488 subjects, 271 (56%) developed vomiting reflexes (mean, 4.2 times). This reflex-positive group was younger (54.3 ± 9.5 years) than the reflex-negative group (58.3 ± 7.7 years, P < 0.001). The number of subjects in the reflex-positive group with a high FSSG dyspepsia score (2.27 ± 2.57 vs 1.23 ± 1.84; P < 0.001), acid reflux symptom score (1.96 ± 2.22 vs 1.34 ± 2.14; P < 0.01) or an esophageal hiatal hernia (14.8% vs 4.6%; P < 0.001) was significantly higher than in the reflex-negative group. Multivariate analysis also showed a significant correlation between these four factors and the occurrence of vomiting reflexes. Using an FSSG dyspepsia score of 1 as the cut-off offered 68% sensitivity and 57% specificity for predicting the occurrence of vomiting reflexes. Based on FSSG questionnaire responses on upper gastrointestinal symptoms, dyspepsia symptoms, in particular, are related to presence of vomiting reflexes during EGD. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.

  8. Flexion reflex modulation during stepping in human spinal cord injury.

    PubMed

    Knikou, Maria; Angeli, Claudia A; Ferreira, Christie K; Harkema, Susan J

    2009-07-01

    The flexion reflex modulation pattern was investigated in nine people with a chronic spinal cord injury during stepping using body weight support on a treadmill and manual assistance by therapists. Body weight support was provided by an upper body harness and was adjusted for each subject to promote the best stepping pattern with the least manual assistance required by the therapists. The flexion reflex was elicited by sural nerve stimulation with a 30 ms pulse train at 1.2-2 times the tibialis anterior reflex threshold. During stepping, stimuli were randomly dispersed across the gait cycle which was divided into 16 equal bins. A long latency (>110 ms) flexion reflex was present in all subjects, while a short (>30 ms) and a medium latency (>70 ms) flexion reflex were present only in three subjects. For each response, the non-stimulated EMG was subtracted from the stimulated EMG at identical time windows and bins, normalized to the maximal corresponding EMG, and significant differences were established with a Wilcoxon rank-sum test. The long latency flexion reflex was facilitated at late stance and during the swing-to-stance transition phase. A reflex depression was present from heel strike until mid-stance and during the swing-to-stance transition phase. The short and medium latency flexion reflexes were depressed during mid-stance followed by facilitation during the stance-to-swing transition phase. Regardless of the latency, facilitatory flexion responses during the swing phase coincided with decreased activity of ipsilateral ankle extensors. The flexion reflex was modulated in a phase dependent manner, a behavior that was absent for the soleus H-reflex in most of these patients (Knikou et al. in Exp Brain Res 193:397-407, 2009). We propose that training should selectively target spinal reflex circuits in which extensor muscles and reflexes are involved in order to maximize sensorimotor recovery in these patients.

  9. Deep tendon reflex in Eaton-Lambert syndrome.

    PubMed

    Doi, H; Murai, Y; Kuroiwa, Y

    1978-01-01

    The mechanism of absent or decreased deep tendon reflex in Eaton-Lambert syndrome was studied. There was no evidence suggestive of the presence of a neuropathy. On the other hand, a brief (about 10 seconds) maximal voluntary contraction made the absent deep tendon reflexes elicitable, which suggests that the block of neuromuscular transmission in Eaton-Lambert syndrome is responsible for the absent or decreased deep tendon reflex. Such enhancement of the decreased deep tendon reflex in Eaton-Lambert syndrome might be helpful in differentiating neuropathy and Eaton-Lambert syndrome.

  10. Quantification of Rossolimo reflexes: a sensitive marker for spondylotic myelopathy.

    PubMed

    Chang, C-W; Chang, K-Y; Lin, S-M

    2011-02-01

    Prospective study. To assess and quantify Rossolimo reflexes using an electrophysiological test, and correlate the findings with the severity of spinal cord dysfunction in cervical and thoracic spondylotic myelopathy (CTSM). A university neurorehabilitation center. We enlisted 42 patients with CTSM between the fifth cervical and the ninth thoracic cord levels. Using electrophysiological assessments, Rossolimo reflexes were evaluated in all patients. Conduction latencies and amplitude of muscle action potentials (MAPs) of the reflexes were measured, analyzed and compared with the grading of spinal cord dysfunction and the cord compression ratios. We found a high diagnostic sensitivity of quantified Rossolimo reflex in patients with CTSM. A positive correlation exists between the MAP amplitude of Rossolimo reflexes and the different grades of spinal cord dysfunction. A negative linear relationship was found between the MAP amplitude of Rossolimo reflexes and the cord compression ratios in CTSM patients. Rossolimo reflexes can be measured by electrophysiological assessments, and we demonstrate a quantification method for an established neurological sign. Not only is the Rossolimo reflex found to be a highly sensitive test in clinical neurological examination but the electrophysiological assessment for this reflex can also serve as an objective marker for evaluation of the severity of spinal cord dysfunction in CTSM.

  11. Reflex Seizures Triggered by Diaper Change in Dravet Syndrome.

    PubMed

    Subki, Ahmed H; Alasmari, Aishah S; Jan, Fadi M; Moria, Feras A; Jan, Mohammed M

    2016-07-01

    Dravet syndrome (DS) is a severe epilepsy syndrome characterized by early onset of multiple types of seizures. We report the first case of reflex seizures triggered by diaper change in a girl at 9 months old and 2 years old with a mutation in the SCN1A gene causing DS. Reflex seizures have been reported in patients with DS provoked by increased body temperature or visual stimulation. The case we report widens the spectrum of triggers causing reflex seizures in children with DS. Cortical hyperexcitability resulting from the genetic defect explains the tendency to experience such reflex seizures.

  12. Influence of the acoustic reflex on vowel recognition.

    PubMed

    Dorman, M; Cedar, I; Hannley, M; Leek, M; Lindholm, J M

    1986-09-01

    Computer synthesized vowels of 50- and 300-ms duration were presented to normal-hearing listeners at a moderate and high sound pressure level (SPL). Presentation at the high SPL resulted in poor recognition accuracy for vowels of a duration (50 ms) shorter than the latency of the acoustic stapedial reflex. Presentation level had no effect on recognition accuracy for vowels of sufficient duration (300 ms) to elicit the reflex. The poor recognition accuracy for the brief, high intensity vowels was significantly improved when the reflex was preactivated. These results demonstrate the importance of the acoustic reflex in extending the dynamic range of the auditory system for speech recognition.

  13. Effects of repeated Achilles tendon vibration on triceps surae stiffness and reflex excitability.

    PubMed

    Lapole, Thomas; Pérot, Chantal

    2011-02-01

    Clinical studies frequently report an increase in stiffness and a loss of range of motion at joints placed in disuse or immobilization. This is notably the case for subjects maintained in bed for a long period, whilst their joints are not affected. Recently we documented on healthy subjects the benefit in terms of force and activation capacities of the triceps surae offered by vibrations applied to the Achilles tendon. Knowing that stiffness changes may contribute to force changes, the aim of the present study was to investigate the effects of tendon vibration on the triceps surae stiffness of healthy subjects. The vibration program consisted in 14 days of 1h daily Achilles tendon vibration applied at rest. Nineteen healthy students were involved in this study. Before and at the end of the vibration program, musculo-tendinous stiffness in active conditions was determined by use of a quick-release test. Passive stiffness was also analyzed by a flexibility test: passive torque-angle relationships were established from maximal plantar-flexion to maximal dorsiflexion. Passive stiffness indexes at 10°, 15° and 20° dorsiflexion were defined as the slope of the relationships at the corresponding angle. Tendinous reflex, influenced by stiffness values, was also investigated as well as the H reflex to obtain an index of the central reflex excitability. After the program, musculo-tendinous stiffness was significantly decreased (p=.01). At the same time, maximal passive dorsiflexion was increased (p=.005) and passive stiffness indexes at 10°, 15° and 20° dorsiflexion decreased (p<.001; p<.001 and p=.011, respectively). Tendinous reflex also significantly decreased. As the triceps surae parameters are diminished after the vibration program, it could be beneficial to immobilized persons as hypo-activity is known to increase muscular stiffness.

  14. The legacy of care as reflexive learning.

    PubMed

    García, Marta Rodríguez; Moya, Jose Luis Medina

    2016-06-14

    to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. reflexive practice is key to tutors' training and students' learning. analisar se o uso de estratégias reflexivas por parte da tutora de estágio clínico estimula a reflexão nos estudantes. A intenção é descobrir qual tipo de estratégias podem ajudar a fazê-lo e como as tutoras e os estudantes se comportam no contexto prático. foi adotado um enfoque qualitativo de cunho etnográfico em que participaram 27 estudantes e 15 tutores de três centros de saúde que haviam recebido formação específica sobre tutoria clínica reflexiva. A análise foi realizada por meio de comparações constantes das categorias. os resultados demonstram que o uso de estratégias reflexivas como a interrogação didática, a empatia didática e o silêncio pedagógico por parte das tutoras, contribui para fomentar a reflexão do estudante e sua aprendizagem significativa. a prática reflexiva é a chave para a formação dos tutores e para a aprendizagem dos estudantes. analizar si el uso de estrategias reflexivas por parte de la tutora de prácticas clínicas fomenta la reflexión en los estudiantes. Se trata de conocer qué tipo de estrategias pueden ayudar a hacerlo y cómo se comportan tutoras y estudiantes en el contexto práctico. se ha utilizado un enfoque

  15. OPERANT CONDITIONING OF RAT SOLEUS H-REFLEX OPPOSITELY AFFECTS ANOTHER H-REFLEX AND CHANGES LOCOMOTOR KINEMATICS

    PubMed Central

    Chen, Yi; Chen, Lu; Wang, Yu; Wolpaw, Jonathan R.; Chen, Xiang Yang

    2011-01-01

    H-reflex conditioning is a model for studying the plasticity associated with a new motor skill. We are exploring its effects on other reflexes and on locomotion. Rats were implanted with EMG electrodes in both solei (SOLR and SOLL) and right quadriceps (QDR), and stimulating cuffs on both posterior tibial (PT) nerves and right posterior femoral nerve. When SOLR EMG remained in a defined range, PTR stimulation just above M-response threshold elicited the SOLR H-reflex. Analogous procedures elicited the QDR and SOLL H-reflexes. After a control period, each rat was exposed for 50 days to a protocol that rewarded SOLR H-reflexes that were above (HRup rats) or below (HRdown rats) a criterion. HRup conditioning increased the SOLR H-reflex to 214(±37SEM)% of control (P=0.02) and decreased the QDR H-reflex to 71(±26)% (P=0.06). HRdown conditioning decreased the SOLR H-reflex to 69(±2)% (P<0.001) and increased the QDR H-reflex to 121(±7)% (P=0.02). These changes remained during locomotion. The SOLL H-reflex did not change. During the stance phase of locomotion, ankle plantarflexion increased in HRup rats and decreased in HRdown rats, hip extension did the opposite, and hip height did not change. The plasticity that changes the QDR H-reflex and locomotor kinematics may be inevitable (i.e., reactive) due to the ubiquity of activity-dependent CNS plasticity, and/or necessary (i.e., compensatory) to preserve other behaviors (e.g., locomotion) that would otherwise be disturbed by the change in the SOLR H-reflex pathway. The changes in joint angles, coupled with the preservation of hip height, suggest that compensatory plasticity did occur. PMID:21813696

  16. Axially evoked postural reflexes: influence of task.

    PubMed

    Govender, Sendhil; Dennis, Danielle L; Colebatch, James G

    2015-01-01

    Postural reflexes were recorded in healthy subjects (n = 17) using brief axial accelerations and tap stimuli applied at the vertebra prominens (C7) and manubrium sterni. Short latency (SL) responses were recorded from the soleus, hamstrings and tibialis anterior muscles and expressed as a percentage of the background EMG prior to stimulus onset. In the majority of postural conditions tested, subjects were recorded standing erect and leaning forward with their feet together. The SL response was larger for soleus than for the hamstrings during standing (soleus vs hamstrings; 70.4 vs 28.1%), whereas the opposite occurred during kneeling (25.3 vs 127.3%). Concordant head and trunk accelerations produced larger SL responses than discordant accelerations for soleus and hamstrings, but the evoked excitatory response was independent of head direction and as expected for the direction of truncal acceleration. Postural reflexes for soleus and tibialis anterior were strongly affected by conditions that posed a significant threat to postural stability; stimulation at C7 was associated with significant SL enhancement for soleus during anterior lean while sternal stimulation showed SL enhancement for tibialis anterior during posterior lean. Cutaneous anaesthesia applied over the C7 stimulation site had no significant effect on EMG responses, nor did vision or surface type (rigid or compliant). This study provides further evidence that postural reflexes produced by brief axial accelerations are independent of cutaneous receptors, vestibular afferents and ankle proprioceptors, and demonstrates that postural tasks and truncal orientation significantly affect the evoked response, consistent with a role in stabilising posture.

  17. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  18. Methodological Reflexivity: Towards Evolving Methodological Frameworks through Critical and Reflexive Deliberations

    ERIC Educational Resources Information Center

    Raven, Glenda

    2006-01-01

    In this article, the author argues for a central and critical role for "reflexivity in research" with the aim of developing and strengthening not only everyone's understanding of what everyone does in environmental education research, but also how, and why everyone does it. In a narrative account of methodological issues that occurred…

  19. An Enabling Framework for Reflexive Learning: Experiential Learning and Reflexivity in Contemporary Modernity

    ERIC Educational Resources Information Center

    Dyke, Martin

    2009-01-01

    The paper presents an enabling framework for experiential learning that connects with reflexive modernity. This framework places an emphasis on learning with others and on the role of theory, practice and reflection. A sociological argument is constructed for an alternative framework for experiential learning that derives from social theory. It is…

  20. Leveraging Researcher Reflexivity to Consider a Classroom Event over Time: Reflexive Discourse Analysis of "What Counts"

    ERIC Educational Resources Information Center

    Anderson, Kate T.

    2017-01-01

    This article presents a reflexive and critical discourse analysis of classroom events that grew out of a cross-cultural partnership with a secondary school teacher in Singapore. I aim to illuminate how differences between researcher and teacher assumptions about what participation in classroom activities should look like came into high relief when…

  1. Multi-MA reflex triode research.

    SciTech Connect

    Swanekamp, Stephen Brian; Commisso, Robert J.; Weber, Bruce V.; Riordan, John C.; Allen, Raymond J.; Goyer, John R.; Murphy, Donald P.; Mikkelson, Kenneth A.; Harper-Slaboszewicz, Victor Jozef

    2010-08-01

    The Reflex Triode can efficiently produce and transmit medium energy (10-100 keV) x-rays. Perfect reflexing through thin converter can increase transmission of 10-100 keV x-rays. Gamble II experiment at 1 MV, 1 MA, 60 ns - maximum dose with 25 micron tantalum. Electron orbits depend on the foil thickness. Electron orbits from LSP used to calculate path length inside tantalum. A simple formula predicts the optimum foil thickness for reflexing converters. The I(V) characteristics of the diode can be understood using simple models. Critical current dominates high voltage triodes, bipolar current is more important at low voltage. Higher current (2.5 MA), lower voltage (250 kV) triodes are being tested on Saturn at Sandia. Small, precise, anode-cathode gaps enable low impedance operation. Sample Saturn results at 2.5 MA, 250 kV. Saturn dose rate could be about two times greater. Cylindrical triode may improve x-ray transmission. Cylindrical triode design will be tested at 1/2 scale on Gamble II. For higher current on Saturn, could use two cylindrical triodes in parallel. 3 triodes in parallel require positive polarity operation. 'Triodes in series' would improve matching low impedance triodes to generator. Conclusions of this presentation are: (1) Physics of reflex triodes from Gamble II experiments (1 MA, 1 MV) - (a) Converter thickness 1/20 of CSDA range optimizes x-ray dose; (b) Simple model based on electron orbits predicts optimum thickness from LSP/ITS calculations and experiment; (c) I(V) analysis: beam dynamics different between 1 MV and 250 kV; (2) Multi-MA triode experiments on Saturn (2.5 MA, 250 kV) - (a) Polarity inversion in vacuum, (b) No-convolute configuration, accurate gap settings, (c) About half of current produces useful x-rays, (d) Cylindrical triode one option to increase x-ray transmission; and (3) Potential to increase Saturn current toward 10 MA, maintaining voltage and outer diameter - (a) 2 (or 3) cylindrical triodes in parallel, (b) Triodes

  2. Wh-filler-gap dependency formation guides reflexive antecedent search

    PubMed Central

    Frazier, Michael; Ackerman, Lauren; Baumann, Peter; Potter, David; Yoshida, Masaya

    2015-01-01

    Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD) and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1), where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. (1). Which cowgirl did Mary expect to have injured herself due to negligence? Four eye-tracking text-reading experiments were conducted on examples like (1), differing in whether the embedded clause was non-finite (1 and 3) or finite (2 and 4), and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2) or the wh-dependency was associated with a position earlier in the sentence (3 and 4). The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Experiments 3 and 4), wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure. PMID:26500579

  3. Contribution of spindle reflexes to post-inspiratory activity in the canine external intercostal muscles

    PubMed Central

    Berdah, Stéphane V; De Troyer, André

    2001-01-01

    The external intercostal muscles have greater post-inspiratory activity than the parasternal intercostal muscles and are more abundantly supplied with muscle spindles. In the present study, the hypothesis was tested that spindle afferent inputs play a major role in determining this activity. The electrical activity of the external and parasternal intercostal muscles in the rostral interspaces was recorded in anaesthetized spontaneously breathing dogs, and the ribs were manipulated so as to alter their normal caudal displacement and the normal lengthening of the muscles in early expiration. Post-inspiratory activity in the external intercostal muscles showed a reflex decrease when the caudal motion of the ribs and the lengthening of the muscles was impeded, and it showed a reflex increase when the rate of caudal rib motion and muscle lengthening was increased. In contrast, the small post-inspiratory activity in the parasternal intercostal muscles remained unchanged. When the two ribs making up the interspace investigated were locked to keep muscle length constant, post-inspiratory activity in the external intercostal muscles was reduced and no longer responded to cranial rib manipulation. These observations confirm that afferent inputs from muscle receptors, presumably muscle spindles, are a primary determinant of post-inspiratory activity in the canine external intercostal muscles. In anaesthetized animals, the contribution of central control mechanisms to this activity is small. PMID:11483716

  4. Functional organization of primate translational vestibulo-ocular reflexes and effects of unilateral labyrinthectomy

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    Translational vestibulo-ocular reflexes (trVORs) are characterized by distinct spatio-temporal properties and sensitivities that are proportional to the inverse of viewing distance. Anodal (inhibitory) labyrinthine stimulation (100 microA, < 2 s) during motion decreased the high-pass filtered dynamics, as well as horizontal trVOR sensitivity and its dependence on viewing distance. Cathodal (excitatory) currents had opposite effects. Translational VORs were also affected after unilateral labyrinthectomy. Animals lost their ability to modulate trVOR sensitivity as a function of viewing distance acutely after the lesion. These deficits partially recovered over time, albeit a significant reduction in trVOR sensitivity as a function of viewing distance remained in compensated animals. During fore-aft motion, the effects of unilateral labyrinthectomy were more dramatic. Both acute and compensated animals permanently lost their ability to modulate fore-aft trVOR responses as a function of target eccentricity. These results suggest that (1) the dynamics and viewing distance-dependent properties of the trVORs are very sensitive to changes in the resting firing rate of vestibular afferents and, consequently, vestibular nuclei neurons; (2) the most irregularly firing primary otolith afferents that are most sensitive to labyrinthine electrical stimulation might contribute to reflex dynamics and sensitivity; (3) inputs from both labyrinths are necessary for the generation of the translational VORs.

  5. Functional organization of primate translational vestibulo-ocular reflexes and effects of unilateral labyrinthectomy

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    Translational vestibulo-ocular reflexes (trVORs) are characterized by distinct spatio-temporal properties and sensitivities that are proportional to the inverse of viewing distance. Anodal (inhibitory) labyrinthine stimulation (100 microA, < 2 s) during motion decreased the high-pass filtered dynamics, as well as horizontal trVOR sensitivity and its dependence on viewing distance. Cathodal (excitatory) currents had opposite effects. Translational VORs were also affected after unilateral labyrinthectomy. Animals lost their ability to modulate trVOR sensitivity as a function of viewing distance acutely after the lesion. These deficits partially recovered over time, albeit a significant reduction in trVOR sensitivity as a function of viewing distance remained in compensated animals. During fore-aft motion, the effects of unilateral labyrinthectomy were more dramatic. Both acute and compensated animals permanently lost their ability to modulate fore-aft trVOR responses as a function of target eccentricity. These results suggest that (1) the dynamics and viewing distance-dependent properties of the trVORs are very sensitive to changes in the resting firing rate of vestibular afferents and, consequently, vestibular nuclei neurons; (2) the most irregularly firing primary otolith afferents that are most sensitive to labyrinthine electrical stimulation might contribute to reflex dynamics and sensitivity; (3) inputs from both labyrinths are necessary for the generation of the translational VORs.

  6. Cough reflex sensitization from esophagus and nose.

    PubMed

    Hennel, Michal; Brozmanova, Mariana; Kollarik, Marian

    2015-12-01

    The diseases of the esophagus and nose are among the major factors contributing to chronic cough although their role in different patient populations is debated. Studies in animal models and in humans show that afferent C-fiber activators applied on esophageal or nasal mucosa do not initiate cough, but enhance cough induced by inhaled irritants. These results are consistent with the hypothesis that activation of esophageal and nasal C-fibers contribute to cough reflex hypersensitivity observed in chronic cough patients with gastroesophageal reflux disease (GERD) and chronic rhinitis, respectively. The afferent nerves mediating cough sensitization from the esophagus are probably the neural crest-derived vagal jugular C-fibers. In addition to their responsiveness to high concentration of acid typical for gastroesophageal reflux (pH < 5), esophageal C-fibers also express receptors for activation by weakly acidic reflux such as receptors highly sensitive to acid and receptors for bile acids. The nature of sensory pathways from the nose and their activators relevant for cough sensitization are less understood. Increased cough reflex sensitivity was also reported in many patients with GERD or rhinitis who do not complain of cough indicating that additional endogenous or exogenous factors may be required to develop chronic coughing in these diseases.

  7. [Reflexes in brain-dead patients].

    PubMed

    Ulvik, A; Salvesen, R; Nielsen, E W

    1998-05-20

    We report on a patient who suffered an acute, extensive intracerebral haemorrhage, leading to symptoms of cerebral herniation within a few hours. The clinical diagnosis of brain death was made based on a neurological examination, and an apnoea test eight hours after the haemorrhage. A few hours later the diagnosis was changed, as several reflexes reappeared. After six days mechanical ventilation was withdrawn, as the brain damage was considered so serious as to render further therapy futile. It was considered unethical to sustain therapy for a possible organ donation at a later date. A review of relevant the literature, however, shows that brain-dead patients may exhibit such varying degrees of autonomic and spinal reflexes as to cause confusion, thus delaying the physician in making a diagnosis. Often, an opportunity for organ donation is lost. Based on this review, we believe that our patient was indeed brain dead when the first diagnosis was made, and that a cerebral angiography should have been performed. Because organ donation is an important issue, the diagnosis of brain death must be definitive.

  8. Airway reflexes, autonomic function, and cardiovascular responses.

    PubMed Central

    Widdicombe, J; Lee, L Y

    2001-01-01

    In this article, we review the cardiovascular responses to the inhalation of irritants and pollutants. Many sensory receptors in the respiratory system, from nose to alveoli, respond to these irritants and set up powerful reflex changes, including those in the cardiovascular system. Systemic hypotension or hypertension, pulmonary hypertension, bradycardia, tachycardia, and dysrhythmias have all been described previously. Most of the experiments have been acute and have been performed on anesthetized experimental animals. Experiments on humans suggest we have similar sensory systems and reflex responses. However, we must use caution when applying the animal results to humans. Most animal experiments, unlike those with humans, have been performed using general anesthesia, with irritants administered in high concentrations, and often to a restricted part of the respiratory tract. Species differences in the response to irritants are well established. We must be even more careful when applying the results of acute experiments in animals to the pathophysiologic changes observed in prolonged exposure to environmental pollution in humans. PMID:11544167

  9. Effect of guaifenesin on cough reflex sensitivity.

    PubMed

    Dicpinigaitis, Peter V; Gayle, Yvonne E

    2003-12-01

    Guaifenesin, a commonly used agent for the treatment of cough, is termed an expectorant since it is believed to alleviate cough discomfort by increasing sputum volume and decreasing its viscosity, thereby promoting effective cough. Despite its common usage, relatively few studies, yielding contrasting results, have been performed to investigate the action and efficacy of guaifenesin. To evaluate the effect of guaifenesin on cough reflex sensitivity. Randomized, double-blind, placebo-controlled trial. Academic medical center. Fourteen subjects with acute viral upper respiratory tract infection (URI) and 14 healthy volunteers. On 2 separate days, subjects underwent capsaicin cough challenge 1 to 2 h after receiving a single, 400-mg dose (capsules) of guaifenesin or matched placebo. The concentration of capsaicin inducing five or more coughs (C(5)) was determined. Among subjects with URI, mean (+/- SEM) log C(5) after guaifenesin and placebo were 0.92 +/- 0.17 and 0.66 +/- 0.14, respectively (p = 0.028). No effect on cough sensitivity was observed in healthy volunteers. Our results demonstrate that guaifenesin inhibits cough reflex sensitivity in subjects with URI, whose cough receptors are transiently hypersensitive, but not in healthy volunteers. Possible mechanisms include a central antitussive effect, or a peripheral effect by increased sputum volume serving as a barrier shielding cough receptors within the respiratory epithelium from the tussive stimulus.

  10. Cough reflex sensitization from esophagus and nose

    PubMed Central

    Hennel, Michal; Brozmanova, Mariana; Kollarik, Marian

    2015-01-01

    The diseases of the esophagus and nose are among the major factors contributing to chronic cough although their role in different patient populations is debated. Studies in animal models and in humans show that afferent C-fiber activators applied on esophageal or nasal mucosa do not initiate cough, but enhance cough induced by inhaled irritants. These results are consistent with the hypothesis that activation of esophageal and nasal C-fibers contribute to cough reflex hypersensitivity observed in chronic cough patients with gastroesophageal reflux disease (GERD) and chronic rhinitis, respectively. The afferent nerves mediating cough sensitization from the esophagus are probably the neural crest-derived vagal jugular C-fibers. In addition to their responsiveness to high concentration of acid typical for gastroesophageal reflux (pH<5), esophageal C-fibers also express receptors for activation by weakly acidic reflux such as receptors highly sensitive to acid and receptors for bile acids. The nature of sensory pathways from the nose and their activators relevant for cough sensitization are less understood. Increased cough reflex sensitivity was also reported in many patients with GERD or rhinitis who do not complain of cough indicating that additional endogenous or exogenous factors may be required to develop chronic coughing in these diseases. PMID:26498387

  11. Nasonasal reflexes, the nasal cycle, and sneeze.

    PubMed

    Baraniuk, James N; Kim, Dennis

    2007-05-01

    The nasal mucosa is a complex tissue that interacts with its environment and effects local and systemic changes. Receptors in the nose receive signals from stimuli, and respond locally through afferent, nociceptive, type C neurons to elicit nasonasal reflex responses mediated via cholinergic neurons. This efferent limb leads to responses in the nose (eg, rhinorrhea, glandular hyperplasia, hypersecretion with mucosal swelling). Anticholinergic agents appear useful against this limb for symptomatic relief of a "runny nose." Chronic exposure to allergens can lead to hyperresponsiveness of the nasal mucosa. As a result, receptors upregulate specific ion channels to increase the sensitivity and potency of their reflex response. Nasal stimuli also affect distant parts of the body. Nerves in the sinus mucosa cause vasodilation; the lacrimal glands can be stimulated by nasal afferent triggers. Even the cardiopulmonary system can be affected via the trigeminal chemosensory system, where sensed irritants can lead to changes in tidal volume, respiratory rate, and blink frequency. The sneeze is an airway defense mechanism that removes irritants from the nasal epithelial surface. It is generally benign, but can lead to problems in certain circumstances. The afferent pathway involves histamine-mediated depolarization of H1 receptor-bearing type C trigeminal neurons and a complex coordination of reactions to effect a response.

  12. Metabolic syndrome and the hepatorenal reflex

    PubMed Central

    Wider, Michael D.

    2016-01-01

    Insufficient hepatic O2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in the stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to loss of appetite or dietary restriction. PMID:28168086

  13. Metabolic syndrome and the hepatorenal reflex

    PubMed Central

    Wider, Michael D.

    2016-01-01

    Insufficient hepatic O2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to the loss of appetite or dietary restriction. PMID:27656314

  14. Auditory Motion Elicits a Visual Motion Aftereffect

    PubMed Central

    Berger, Christopher C.; Ehrsson, H. Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates. PMID:27994538

  15. Approaches to Reflexivity: Navigating Educational and Career Pathways

    ERIC Educational Resources Information Center

    Dyke, Martin; Johnston, Brenda; Fuller, Alison

    2012-01-01

    This paper provides a critical appraisal of approaches to reflexivity in sociology. It uses data from social network research to argue that Archer's approach to reflexivity provides a valuable lens with which to understand how people navigate their education and career pathways. The paper is also critical of Archer's methodology and typology of…

  16. Reflexivity in Teams: A Review and New Perspectives.

    PubMed

    Konradt, Udo; Otte, Kai-Philip; Schippers, Michaéla C; Steenfatt, Corinna

    2016-01-01

    Team reflexivity posits that the extent to which teams reflect upon and adapt their functioning is positively related to team performance. While remarkable progress has been made to provide evidence of this relationship, the underlying framework is missing elements of current theoretical streams for analyzing and describing teamwork, leaving the diversity of effects of team reflexivity often untouched. In this article, we present an update for this framework, by reviewing previous research on reflexivity, addressing gaps in the literature, and revising the original model by integrating feedback and dynamic team effectiveness frameworks for describing temporal developments of reflexivity. We furthermore propose a new dimensional structure for reflexivity, relying on prior work conceptualizing teams as information-processing systems that learn and advance through social-cognitive elements. Our model is therefore not only suitable for explaining the diverse set of relationships between team reflexivity on outcomes, but also provides valuable directions for viewing reflexivity as process that takes place during both transition and action phases of teamwork. We conclude with implications for managers, identify limitations, and propose an agenda for further research into this area. This article contributes an extended perspective relevant for further theory development and for effectively managing reflexivity in teams.

  17. Masseter reflex potentials in olivo-ponto-cerebellar atrophy.

    PubMed

    Imai, T; Matsumoto, H; Ohmoto, H; Chiba, S; Kobayashi, N

    1998-01-01

    We recorded masseter reflex potentials to examine the correlation between the masseter reflex and the muscle stretch reflexes of limbs in 19 patients with olivo-ponto-cerebellar atrophy (OPCA). The patients were subdivided into hyper- (n = 5), normo- (n = 7) and hypo- (n = 7) reflexia groups according to the degrees of the conventional deep tendon jerks in the upper limbs. The masseter reflex potentials, elicited by tapping the chin with a reflex hammer, were recorded from the bilateral masseters using a pair of surface electrodes. The latency of the potentials in the hyporeflexia was significantly longer than in the other groups, while the amplitude of those in the hyperreflexia group was significantly higher than in the other groups. These results indicate that in patients with OPCA the magnitude and latency of the masseter reflex correlates with the status of the muscle stretch reflexes of the limbs in contrast with Friedreich's ataxia where the masseter reflex has been reported to be normal or hyperactive despite hyporeflexia in the limbs.

  18. Role of stretch reflex in voluntary movements. [of human foot

    NASA Technical Reports Server (NTRS)

    Gottlieb, G. L.; Agarwal, G. C.

    1975-01-01

    The stretch reflex is often described as a spinal servomechanism, a device for assisting in the regulation of muscle length. Observation of the EMG response to mechanical interruption of voluntary movements fails to demonstrate a significant role for spinal reflexes at 40 msec latency. Two functional responses with latencies of 120 msec and 200 msec, implying supraspinal mediation, are observed.

  19. The proboscis extension reflex not elicited in Magachilid bees

    USDA-ARS?s Scientific Manuscript database

    Honey bees (Apis mellifera L.) will reflexively extend their proboscis in response to antennal stimulation with sucrose solution. For decades, the proboscis extension reflex (PER) of honey bees has been used as a tool to further the understanding of their cognitive processes, such as learning and m...

  20. Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.

    PubMed

    Farrugia, David; Woodman, Dan

    2015-12-01

    Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.

  1. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Reflexive Management Learning: An Integrative Review and a Conceptual Typology

    ERIC Educational Resources Information Center

    Cotter, Richard J.; Cullen, John G.

    2012-01-01

    The scale and reach of the recent global financial has created a fresh wave of interest in exploring more sustainable forms of management. A central thrust behind this trend in the practice of management development and education has been the accentuation of reflexivity. There are many variations in how reflexivity is understood, and this article…

  3. Iris Pigmentation and Fractionated Reaction and Reflex Time.

    ERIC Educational Resources Information Center

    Hale, Bruce D.; And Others

    Behavioral measures, fractionated reaction and reflex times by means of electromyography, were used to determine if the eye color differences are found in the central or peripheral regions of the nervous system. The purpose of this research was to determine the truth of the hypothesis that dark-eyed individuals have faster reflex and reaction time…

  4. Bourdieu and Science Studies: Toward a Reflexive Sociology

    ERIC Educational Resources Information Center

    Hess, David J.

    2011-01-01

    Two of Bourdieu's fundamental contributions to science studies--the reflexive analysis of the social and human sciences and the concept of an intellectual field--are used to frame a reflexive study of the history and social studies of science and technology as an intellectual field in the United States. The universe of large, Ph.D.-granting…

  5. Effects of Static Flexion-relaxation on Paraspinal Reflex Behavior

    PubMed Central

    Granata, Kevin P.; Rogers, Ellen; Moorhouse, Kevin

    2006-01-01

    Background. Static trunk flexion working postures and disturbed trunk muscle reflexes are related to increased risk of low-back pain. Animal studies conclude that these factors may be related; passive tissue strain in spinal ligaments causes subsequent short-term changes in reflex. Although studies have documented changes in the myoelectric onset angle of flexion-relaxation following prolonged static flexion and cyclic flexion we could find no published evidence related to the human reflex response of the trunk extensor muscles following a period of static flexion-relaxation loading. Methods. Eighteen subjects maintained static lumbar flexion for 15 min. Paraspinal muscle reflexes were elicited both before and after the flexion-relaxation protocol using pseudorandom stochastic force disturbances while recording EMG. Reflex gain was computed from the peak value of the impulse response function relating input force perturbation to EMG response using time-domain deconvolution analyses. Findings. Reflexes showed a trend toward increased gain after the period of flexion-relaxation (P < 0.055) and were increased with trunk extension exertion (P < 0.021). Significant gender differences in reflex gain were observed (P < 0.01). Interpretations. Occupational activities requiring extended periods of trunk flexion contribute to changes in reflex behavior of the paraspinal muscles. Results suggest potential mechanisms by which flexed posture work may contribute to low-back pain. Significant gender differences indicate risk analyses should consider personal factors when considering neuromuscular behavior. PMID:15567532

  6. Reflexive Management Learning: An Integrative Review and a Conceptual Typology

    ERIC Educational Resources Information Center

    Cotter, Richard J.; Cullen, John G.

    2012-01-01

    The scale and reach of the recent global financial has created a fresh wave of interest in exploring more sustainable forms of management. A central thrust behind this trend in the practice of management development and education has been the accentuation of reflexivity. There are many variations in how reflexivity is understood, and this article…

  7. Iris Pigmentation and Fractionated Reaction and Reflex Time.

    ERIC Educational Resources Information Center

    Hale, Bruce D.; And Others

    Behavioral measures, fractionated reaction and reflex times by means of electromyography, were used to determine if the eye color differences are found in the central or peripheral regions of the nervous system. The purpose of this research was to determine the truth of the hypothesis that dark-eyed individuals have faster reflex and reaction time…

  8. [Value of blink reflex studies in neurosurgical problems].

    PubMed

    Jamjoom, Z; Nahser, H C; Nau, H E

    1983-09-01

    Blinking reflex studies were done in neurosurgical patients with processes in the posterior fossa and idiopathic trigeminal neuralgia. Alterations were found in space occupying, ischemic, and traumatic lesions of the trigemino-facial system. The analysis of the components of the blinking reflex can give hints to the site of the lesion and also to the prognosis of the underlying process.

  9. A Movement Account of Long-Distance Reflexives

    ERIC Educational Resources Information Center

    McKeown, Rebecca Katherine

    2013-01-01

    This thesis examines reflexive pronouns, such as Icelandic "sig" (Cf. Thrainsson 2007), which may be bound from outside of an infinitive clause (which I call MD "medium distance" binding) in addition to being bound locally. I propose that such reflexives are linked to their antecedents via sisterhood followed by movement: the…

  10. Bourdieu and Science Studies: Toward a Reflexive Sociology

    ERIC Educational Resources Information Center

    Hess, David J.

    2011-01-01

    Two of Bourdieu's fundamental contributions to science studies--the reflexive analysis of the social and human sciences and the concept of an intellectual field--are used to frame a reflexive study of the history and social studies of science and technology as an intellectual field in the United States. The universe of large, Ph.D.-granting…

  11. Role of stretch reflex in voluntary movements. [of human foot

    NASA Technical Reports Server (NTRS)

    Gottlieb, G. L.; Agarwal, G. C.

    1975-01-01

    The stretch reflex is often described as a spinal servomechanism, a device for assisting in the regulation of muscle length. Observation of the EMG response to mechanical interruption of voluntary movements fails to demonstrate a significant role for spinal reflexes at 40 msec latency. Two functional responses with latencies of 120 msec and 200 msec, implying supraspinal mediation, are observed.

  12. [The development of I. P. Pavlov's conditioned reflex theory].

    PubMed

    Kim, O J

    1992-01-01

    This paper deals with the theory of Ivan Petrovich Pavlov (1849-1936), a Russian physiologist who presented for the first time the systematic theory of the function of the brain that controls the whole behavior of animals, i.e. higher nervous activity through experimental studies. This paper, principally based on Lectures on Conditioned Reflexes (1928), investigates the development of conditioned reflex theory from its beginning by dividing it into three periods. First, during the period from 1898 to 1906, the fundamental concept of conditioned reflex was established and the study of conditioned reflex became an independent discipline. From 1907 to 1916, the second period, Pavlov theorized on higher nervous activity on the basis of extensive data from his laboratory experiments of conditioned reflex. And Pavlov complemented conditioned reflex theory, during the third period from 1916 to 1928, and extended the boundaries of it through applications of conditioned reflex theory to psychopathology and typology. The study contributes to the understanding that conditioned reflex theory was historically developed, and not presented as a complete form from the beginning, and that Pavlov intended to study the higher nervous activity through the method of neurophysiology.

  13. A Movement Account of Long-Distance Reflexives

    ERIC Educational Resources Information Center

    McKeown, Rebecca Katherine

    2013-01-01

    This thesis examines reflexive pronouns, such as Icelandic "sig" (Cf. Thrainsson 2007), which may be bound from outside of an infinitive clause (which I call MD "medium distance" binding) in addition to being bound locally. I propose that such reflexives are linked to their antecedents via sisterhood followed by movement: the…

  14. H-reflexes in masseter and temporalis muscles in man.

    PubMed

    Macaluso, G M; De Laat, A

    1995-01-01

    In contrast with limb muscles, studies on H-reflexes in the trigeminal system are scarce. The present report aimed at reevaluating the responses obtained in the masseter and temporalis muscles after electrical stimulation of their nerves. Twenty-four subjects participated in the experiments. The reflexes were elicited in the masseter and temporal muscles by monopolar stimulation and recorded using surface electrodes. Stimulation of the masseteric nerve evoked an M-response in the masseter and an H-reflex in both the masseter and the temporal muscles. In contrast with the masseter muscle, where the homonymous H-reflex disappeared at higher stimulation intensities, the heteronymous temporal H-reflex remained and reached a plateau. Simultaneous stimulation of the masseteric and deep temporal nerves resulted in an M-response and an H-reflex in both the masseter and temporal muscles. Increasing stimulus intensitites led to disappearance of the H-reflex in both muscles. The results were compared with those obtained by others on limb muscles. As in these muscles, the presence of heteronymous H-reflexes in the jaw muscles can be used in future studies of motoneuronal excitability.

  15. Reflexive OKN is Biased Like Perception

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Beutter, B. R.; Stevenson, S. B.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The classic "barber-pole illusion" demonstrates how the perceived motion of an ambiguous stimulus is influenced by the shape of the viewing aperture: the motion is preferentially seen in the direction of the long axis of the aperture. We have previously reported (ARVO 94) that we are able to continuously vary the strength of this effect by varying the aspect ratio of the window. In the present study we examined the motion of the eyes while subjects viewed such stimuli in an attempt to discover whether the eye movement control system performs the same computation underlying the perceptual judgments.

  16. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  17. Human intersegmental reflexes from intercostal afferents to scalene muscles.

    PubMed

    McBain, Rachel A; Taylor, Janet L; Gorman, Robert B; Gandevia, Simon C; Butler, Jane E

    2016-10-01

    What is the central question of this study? The aim was to determine whether specific reflex connections operate between intercostal afferents and the scalene muscles in humans, and whether these connections operate after a clinically complete cervical spinal cord injury. What is the main finding and its importance? This is the first description of a short-latency inhibitory reflex connection between intercostal afferents from intercostal spaces to the scalene muscles in able-bodied participants. We suggest that this reflex is mediated by large-diameter afferents. This intercostal-to-scalene inhibitory reflex is absent after cervical spinal cord injury and may provide a way to monitor the progress of the injury. Short-latency intersegmental reflexes have been described for various respiratory muscles in animals. In humans, however, only short-latency reflex responses to phrenic nerve stimulation have been described. Here, we examined the reflex connections between intercostal afferents and scalene muscles in humans. Surface EMG recordings were made from scalene muscles bilaterally, in seven able-bodied participants and seven participants with motor- and sensory-complete cervical spinal cord injury (median 32 years postinjury, range 5 months to 44 years). We recorded the reflex responses produced by stimulation of the eighth or tenth left intercostal nerve. A short-latency (∼38 ms) inhibitory reflex was evident in able-bodied participants, in ipsilateral and contralateral scalene muscles. This bilateral intersegmental inhibitory reflex occurred in 46% of recordings at low stimulus intensities (at three times motor threshold). It was more frequent (in 75-85% of recordings) at higher stimulus intensities (six and nine times motor threshold), but onset latency (38 ± 9 ms, mean ± SD) and the size of inhibition (23 ± 10%) did not change with stimulus intensity. The reflex was absent in all participants with spinal cord injury. As the intercostal

  18. Postexercise facilitation of reflexes is not common in Lambert-Eaton myasthenic syndrome.

    PubMed

    Odabasi, Z; Demirci, M; Kim, D S; Lee, D K; Ryan, H F; Claussen, G C; Tseng, A; Oh, S J

    2002-10-08

    Postexercise facilitation (PEF) with clinical reflexes, H-reflex, and T-reflexes at the ankle and knee was systematically studied in 16 patients with Lambert-Eaton myasthenic syndrome (LEMS). PEF was observed in ankle and knee deep tendon reflexes in five patients, in H-reflex in three patients, and in T-reflexes in six patients. When all reflex tests were combined, 7 (43.7%) of 16 patients showed PEF by at least one test. The authors conclude that the PEF of reflexes, the most helpful diagnostic clinical marker for LEMS, is not common.

  19. [The dynamics of forming an active defensive reflex in cats].

    PubMed

    Fokin, V F

    1975-01-01

    Active defensive reflexes were elaborated in cats with pain stimulations of the forepaw by means of an electrical pricking device with a target attached to it. The elaboration was carried out during action of a flickering light used for the convenience of the EEG analysis. Repeated pain stimulation led to elaboration of an aggressive attacking reaction, chiefly manifested in the paw striking the target. At the beginning of the elaboration, passive-defensive reactions were manifest, which did not completely disappear even after formation of a stable attacking reflex. Two types of active defensive reflexes were elaborated: A-type reflex which helped the animal to get rid of the pain stimulation at the very beginning; B-type reflex which prevented the pain stimulation. The difference beteween these two types is discussed.

  20. Auditory startle reflex inhibited by preceding self-action.

    PubMed

    Kawachi, Yousuke; Matsue, Yoshihiko; Shibata, Michiaki; Imaizumi, Osamu; Gyoba, Jiro

    2014-01-01

    A startle reflex to a startle pulse is inhibited when preceded by a prestimulus. We introduced a key-press action (self-action) or an 85 dB noise burst as a prestimulus, followed by a 115 dB noise burst as a startle pulse. We manipulated temporal offsets between the prestimulus and the startle pulse from 30-1,500 ms to examine whether self-action modulates the startle reflex and the temporal properties of the modulatory effect. We assessed eyeblink reflexes by electromyography. Both prestimuli decreased reflexes compared to pulse-alone trials. Moreover, the temporal windows of inhibition were different between the types of prestimuli. A faster maximal inhibition and narrower temporal window in self-action trials suggest that preceding self-action inhibits the startle reflex and allows prediction of the coming pulse in different ways from auditory prestimuli.

  1. Visual motion aftereffect from understanding motion language.

    PubMed

    Dils, Alexia Toskos; Boroditsky, Lera

    2010-09-14

    Do people spontaneously form visual mental images when understanding language, and if so, how truly visual are these representations? We test whether processing linguistic descriptions of motion produces sufficiently vivid mental images to cause direction-selective motion adaptation in the visual system (i.e., cause a motion aftereffect illusion). We tested for motion aftereffects (MAEs) following explicit motion imagery, and after processing literal or metaphorical motion language (without instructions to imagine). Intentionally imagining motion produced reliable MAEs. The aftereffect from processing motion language gained strength as people heard more and more of a story (participants heard motion stories in four installments, with a test after each). For the last two story installments, motion language produced reliable MAEs across participants. Individuals differed in how early in the story this effect appeared, and this difference was predicted by the strength of an individual's MAE from imagining motion. Strong imagers (participants who showed the largest MAEs from imagining motion) were more likely to show an MAE in the course of understanding motion language than were weak imagers. The results demonstrate that processing language can spontaneously create sufficiently vivid mental images to produce direction-selective adaptation in the visual system. The timecourse of adaptation suggests that individuals may differ in how efficiently they recruit visual mechanisms in the service of language understanding. Further, the results reveal an intriguing link between the vividness of mental imagery and the nature of the processes and representations involved in language understanding.

  2. Resuscitation and auto resuscitation by airway reflexes in animals

    PubMed Central

    2013-01-01

    Various diseases often result in decompensation requiring resuscitation. In infants moderate hypoxia evokes a compensatory augmented breath – sigh and more severe hypoxia results in a solitary gasp. Progressive asphyxia provokes gasping respiration saving the healthy infant – autoresuscitation by gasping. A neonate with sudden infant death syndrome, however, usually will not survive. Our systematic research in animals indicated that airway reflexes have similar resuscitation potential as gasping respiration. Nasopharyngeal stimulation in cats and most mammals evokes the aspiration reflex, characterized by spasmodic inspiration followed by passive expiration. On the contrary, expiration reflex from the larynx, or cough reflex from the pharynx and lower airways manifest by a forced expiration, which in cough is preceded by deep inspiration. These reflexes of distinct character activate the brainstem rhythm generators for inspiration and expiration strongly, but differently. They secondarily modulate the control mechanisms of various vital functions of the organism. During severe asphyxia the progressive respiratory insufficiency may induce a life-threatening cardio-respiratory failure. The sniff- and gasp-like aspiration reflex and similar spasmodic inspirations, accompanied by strong sympatho-adrenergic activation, can interrupt a severe asphyxia and reverse the developing dangerous cardiovascular and vasomotor dysfunctions, threatening with imminent loss of consciousness and death. During progressive asphyxia the reversal of gradually developing bradycardia and excessive hypotension by airway reflexes starts with reflex tachycardia and vasoconstriction, resulting in prompt hypertensive reaction, followed by renewal of cortical activity and gradual normalization of breathing. A combination of the aspiration reflex supporting venous return and the expiration or cough reflex increasing the cerebral perfusion by strong expirations, provides a powerful resuscitation

  3. Differences between Perception and Eye Movements during Complex Motions

    PubMed Central

    Holly, Jan E.; Davis, Saralin M.; Sullivan, Kelly E.

    2013-01-01

    During passive whole-body motion in the dark, the motion perceived by subjects may or may not be veridical. Either way, reflexive eye movements are typically compensatory for the perceived motion. However, studies are discovering that for certain motions, the perceived motion and eye movements are incompatible. The incompatibility has not been explained by basic differences in gain or time constants of decay. This paper uses three-dimensional modeling to investigate gondola centrifugation (with a tilting carriage) and off-vertical axis rotation. The first goal was to determine whether known differences between perceived motions and eye movements are true differences when all three-dimensional combinations of angular and linear components are considered. The second goal was to identify the likely areas of processing in which perceived motions match or differ from eye movements, whether in angular components, linear components and/or dynamics. The results were that perceived motions are more compatible with eye movements in three dimensions than the one-dimensional components indicate, and that they differ more in their linear than their angular components. In addition, while eye movements are consistent with linear filtering processes, perceived motion has dynamics that cannot be explained by basic differences in time constants, filtering, or standard GIF-resolution processes. PMID:21846952

  4. Reflex control of human jaw muscles.

    PubMed

    Türker, Kemal S

    2002-01-01

    The aim of this review is to discuss what is known about the reflex control of the human masticatory system and to propose a method for standardized investigation. Literature regarding the current knowledge of activation of jaw muscles, receptors involved in the feedback control, and reflex pathways is discussed. The reflexes are discussed under the headings of the stimulation conditions. This was deliberately done to remind the reader that under each stimulation condition, several receptor systems are activated, and that it is not yet possible to stimulate only one afferent system in isolation in human mastication experiments. To achieve a method for uniform investigation, we need to set a method for stimulation of the afferent pathway under study with minimal simultaneous activation of other receptor systems. This stimulation should also be done in an efficient and reproducible way. To substantiate our conviction to standardize the stimulus type and parameters, we discuss the advantages and disadvantages of mechanical and electrical stimuli. For mechanical stimulus to be delivered in a reproducible way, the following precautions are suggested: The stimulus delivery system (often a probe attached to a vibrator) should be brought into secure contact with the area of stimulation. To minimize the slack between the probe, the area to be stimulated should be taken up by the application of pre-load, and the delivered force should be recorded in series. Electrical stimulus has advantages in that it can be delivered in a reproducible way, though its physiological relevance can be questioned. It is also necessary to standardize the method for recording and analyzing the responses of the motoneurons to the stimulation. For that, a new technique is introduced, and its advantages over the currently used methods are discussed. The new method can illustrate the synaptic potential that is induced in the motoneurons without the errors that are unavoidable in the current

  5. Voluntary and reflex control of human back muscles during induced pain

    PubMed Central

    Zedka, Milan; Prochazka, Arthur; Knight, Brian; Gillard, Debby; Gauthier, Michel

    1999-01-01

    Back pain is known to change motor patterns of the trunk. The purpose of this study was to examine the motor output of the erector spinae (ES) muscles during pain in the lumbar region. First, their voluntary activation was assessed during flexion and re-extension of the trunk. Second, effects of cutaneous and muscle pain on the ES stretch reflex were measured, since increased stretch reflex gain has been suggested to underlie increased muscle tone in painful muscles. The trunk movement and electromyographical (EMG) signals from the right and left ES during pain were compared with values before pain. Controlled muscle pain was induced by infusion of 5% saline into the right lumbar ES. Cutaneous pain was elicited by mechanical or electrical stimulation of the dorsal lumbar skin. The stretch reflex was evoked by rapidly indenting the right lumbar ES with a servo-motor prodder. The results from the voluntary task show that muscle pain decreased the modulation depth of ES EMG activity. This pattern was associated with a decreased range and velocity of motion of the painful body segment, which would normally serve to avoid further injury. Interestingly, when subjects overcame this guarding tendency and made exactly the same movements during pain as before pain, the EMG modulation depth was still reduced. The results seem to reconcile the controversy of previous studies, in which both hyper- and hypoactivity of back muscles in pain have been reported. In the tapped muscle, the EMG response consisted of two peaks (latency 19.3 ± 2.1 and 44.6 ± 2.5 ms, respectively) followed by a trough. On the contralateral side the first response was a trough (26.2 ± 3.2 ms) while the second (46.4 ± 4.3 ms) was a peak, similar to the second peak on the tapped side. Cutaneous pain had no effect on the short-latency response but significantly increased the second response on the tapped side. Surprisingly, deep muscle pain had no effect on the stretch reflex. A short-latency reciprocal

  6. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1987-01-01

    The objectives of this proposal were developed to further explore and quantify the orientation reference selection abilities of subjects and the relation, if any, between motion sickness and orientation reference selection. The overall objectives of this proposal are to determine (1) if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects, (2) if abnormal vertical canal-otolith function is the source of these abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and (3) if quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability demonstrated by tests which systematically control the sensory imformation available for orientation.

  7. Intact thumb reflex in areflexic Guillain Barré syndrome: A novel phenomenon.

    PubMed

    Naik, Karkal Ravishankar; Saroja, Aralikatte Onkarappa; Mahajan, Manik

    2014-04-01

    Areflexia is one of the cardinal clinical features for the diagnosis of Guillain Barré syndrome. However, some patients may have sluggish proximal muscle stretch reflexes. Presence of thumb reflex, a distal stretch muscle reflex has not been documented in Guillain Barré syndrome. We prospectively evaluated thumb reflex in Guillain Barré syndrome patients and age matched controls from April to September 2013. There were 31 patients with Guillain Barré syndrome in whom thumb reflex could be elicited in all (24 brisk, 7 sluggish), whereas all the other muscle stretch reflexes were absent in 29 patients at presentation and the remaining two had sluggish biceps and quadriceps reflexes (P = 0.001). Serial examination revealed gradual diminution of the thumb reflex (P < 0.001). Rapid progression of weakness was associated with early loss of the thumb reflex. Thumb reflex, a distal stretch reflex is preserved in the early phase of Guillain Barré syndrome.

  8. The pattern of reflex recovery during spinal shock.

    PubMed

    Ko, H Y; Ditunno, J F; Graziani, V; Little, J W

    1999-06-01

    A prospective descriptive study of the course of recovery of reflexes following acute spinal cord injury (SCI). The purpose of the study was to observe the pattern of reflex recovery following acute SCI in order to determine the prognostic significance of reflexes for ambulation and their relationship to spinal shock. A regional spinal cord injury center in Philadelphia, Pennsylvania, USA. Fifty subjects admitted consecutively over a 9 month period and on the day of injury were observed for the following reflexes; bulbo-cavernosis (BC), delayed plantar response (DPR), cremasteric (CRM), ankle jerk (AJ), knee jerk (KJ), and normal plantar response for 5 7 days a week and 6-8 weeks duration. The 50 subjects were assessed for ambulation of 200 feet at time of discharge. MRI studies were reviewed on 13/28 complete (ASIA A) injuries. Thirty-five subjects (28 ASIA A, 4 ASIA B, 3 ASIA C) had a DPR of 2 days or longer duration and these subjects were not ambulatory. The fourteen subjects (12 ASIA D and 2 ASIA C), who were ambulatory, either had no DPR (11/14) or had a DPR of only 1 days duration (3/14). One subject (ASIA B) was not ambulatory and had a DRP of 1 days duration. The DPR was the first reflex to recover most often, followed by the BC, CRM in the first few days and later followed by the deep tendon reflexes (AJ & KJ) by 1-2 weeks respectively. Less than 8% of subjects had no reflexes on the day of injury and the reflexes did not follow a caudal-rostral pattern of recovery. Prognosis for ambulation based on reflexes early after SCI should not be linked to current descriptions of spinal shock. In fact, the view of spinal shock, based on the absence of reflexes and the recovery of reflexes in a caudal to rostral sequence, is of limited clinical utility and should be discarded. The evolution of reflexes over several days following injury may be more relevant to prognosis than the use of the term spinal shock and the presence or absence of reflexes on the day of

  9. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  10. Primate translational vestibuloocular reflexes. III. Effects of bilateral labyrinthine electrical stimulation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Dickman, J. D.; Perachio, A. A.

    2000-01-01

    The effects of functional, reversible ablation and potential recruitment of the most irregular otolith afferents on the dynamics and sensitivity of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near and far targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient lateral head displacements. Short-duration (usually <2 s) anodal (inhibitory) and cathodal (excitatory) currents (50-100 microA) were delivered bilaterally during motion. In the presence of anodal labyrinthine stimulation, trVOR sensitivity and its dependence on viewing distance were significantly decreased. In addition, anodal currents significantly increased phase lags. During transient motion, anodal stimulation resulted in significantly lower initial eye acceleration and more sluggish responses. Cathodal currents tended to have opposite effects. The main characteristics of these results were simulated by a simple model where both regularly and irregularly discharging afferents contribute to the trVORs. Anodal labyrinthine currents also were found to decrease eye velocity during long-duration, constant velocity rotations, although results were generally more variable compared with those during translational motion.

  11. Primate translational vestibuloocular reflexes. III. Effects of bilateral labyrinthine electrical stimulation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Dickman, J. D.; Perachio, A. A.

    2000-01-01

    The effects of functional, reversible ablation and potential recruitment of the most irregular otolith afferents on the dynamics and sensitivity of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near and far targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient lateral head displacements. Short-duration (usually <2 s) anodal (inhibitory) and cathodal (excitatory) currents (50-100 microA) were delivered bilaterally during motion. In the presence of anodal labyrinthine stimulation, trVOR sensitivity and its dependence on viewing distance were significantly decreased. In addition, anodal currents significantly increased phase lags. During transient motion, anodal stimulation resulted in significantly lower initial eye acceleration and more sluggish responses. Cathodal currents tended to have opposite effects. The main characteristics of these results were simulated by a simple model where both regularly and irregularly discharging afferents contribute to the trVORs. Anodal labyrinthine currents also were found to decrease eye velocity during long-duration, constant velocity rotations, although results were generally more variable compared with those during translational motion.

  12. Lower esophageal sphincter relaxation reflex kinetics: effects of peristaltic reflexes and maturation in human premature neonates.

    PubMed

    Pena, Eneysis M; Parks, Vanessa N; Peng, Juan; Fernandez, Soledad A; Di Lorenzo, Carlo; Shaker, Reza; Jadcherla, Sudarshan R

    2010-12-01

    We defined the sensory-motor characteristics of the lower esophageal sphincter relaxation (LESR) (stimulus threshold volume, response onset, and relaxation period, relaxation magnitude, nadir) during maturation in human neonates. We hypothesized that LESR kinetics differs during maturation and with peristaltic reflex type. Basal and adaptive esophageal motility testing was performed (N = 20 premature neonates) at 34.7 and 39.1 wk (time 1 and time 2). Effects of midesophageal provocation with graded stimuli (N = 1,267 stimuli, air and liquids) on LESR kinetics during esophagodeglutition response (EDR) and secondary peristalsis (SP) were analyzed by mixed models. Frequency of LESR with basal primary peristalsis were different during maturation (P = 0.03). During adaptive responses with maturation, 1) the frequencies of peristaltic reflexes and LESR were similar; 2) liquid stimuli resulted in a shorter LESR response latency and LESR nadir and greater LESR magnitude (all P < 0.05); 3) media differences were noted with LESR response latency (air vs. liquids, P < 0.02); and 4) infusion flow rate-LESR were different (P < 0.01 for air and liquids). Mechanistically, 1) frequency of LESR was greater during peristaltic reflexes at both times (vs. none, P < 0.0001); 2) LESR response latency, duration, and time to complete LESR were longer with EDR (all P < 0.05, vs. SP at time 2); and 3) graded stimulus volume LESR were different for air and liquids (P < 0.01). In conclusion, sensory-motor characteristics of LESR depend on the mechanosensitive properties of the stimulus (media, volume, flow), type of peristaltic reflex, and postnatal maturation. Maturation modulates an increased recruitment of inhibitory pathways that favor LESR.

  13. The Chinchilla's vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Merwin, W. H., Jr.; Wall, Conrad, III; Tomko, D. L.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) was measured and characterized in seven adult chinchillas using 0.01 to 1.0 Hz angular velocity sinusoids. Gains were less than compensatory, and were variable from day to day, but phases were highly repeatable both within and between animals. The best fitting transfer function to the average data of all animals had a dominant time constant of 7.5 sec, and an adaptation operator with a time constant of 24.0 sec. There were certain nonlinearities in the horizontal VOR of this animal, and it was difficult to elicit a robust optokinetic response. Results are discussed in relation to similar measurements in other species.

  14. Bremsstrahlung target optimization for reflex triodes

    SciTech Connect

    Swanekamp, S. B.; Weber, B. V.; Stephanakis, S. J.; Mosher, D.; Commisso, R. J.

    2008-08-15

    The anode (tantalum) foil thickness in a reflex triode was varied from 2.5 to 250 {mu}m to maximize the dose from bremsstrahlung produced by a 1 MV, 1 MA, 100 ns electron beam. Experiments and computer simulations show that the dose is maximized for a foil thickness of about 25 {mu}m, 1/18th of the electron range computed from the continuous slowing down approximation. For foils thicker than optimum, self-absorption in the foil attenuates 10-100 keV photons, reducing the dose. For foils thinner than optimum, the dose decreases as a result of electron migration to large radius. A simple formula that predicts the optimum thickness as a function of the beam current and voltage is derived that should be applicable to a large range of experimental parameters.

  15. Vestibular-ocular accommodation reflex in man

    NASA Technical Reports Server (NTRS)

    Clark, B.; Randle, R. J.; Stewart, J. D.

    1975-01-01

    Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present paper studies a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 sec of rotating. Accommodation was recorded continuously on an infrared optometer for 110 sec under two conditions: while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.

  16. Cultural Reflexivity in Health Research and Practice

    PubMed Central

    Aronowitz, Robert; Deener, Andrew; Keene, Danya; Schnittker, Jason

    2015-01-01

    Recent public health movements have invoked cultural change to improve health and reduce health disparities. We argue that these cultural discourses have sometimes justified and maintained health inequalities when those with power and authority designated their own social practices as legitimate and healthy while labeling the practices of marginalized groups as illegitimate or unhealthy. This “misrecognition,” which creates seemingly objective knowledge without understanding historical and social conditions, sustains unequal power dynamics and obscures the fact that what is deemed legitimate and healthy can be temporally, geographically, and socially relative. We use examples from research across multiple disciplines to illustrate the potential consequences of cultural misrecognition, highlight instances in which culture was invoked in ways that overcame misrecognition, and discuss how cultural reflexivity can be used to improve health research and practice. PMID:25905833

  17. Potentiation by naloxone of pressor reflexes.

    PubMed Central

    Montastruc, J. L.; Montastruc, P.; Morales-Olivas, F.

    1981-01-01

    1 The effect of intravenous naloxone, and opiate antagonist, was studied on the pressor responses elicited by stimulation of afferent nerves (vagus and laryngeal superior nerves) in anaesthetized dogs. 2 Although naloxone (0.1 mg/kg i.v.) alone failed to modify basic blood pressure, the pressor responses induced by stimulation of either the vagus or laryngeal nerve were potentiated by naloxone. 3 Morphine (0.2 mg/kg i.v.) suppressed these two cardiovascular responses. These depressor effects of morphine were reversed by subsequent injection of naloxone (0.1 mg/kg i.v.). 4 The results suggest the involvement of endogenous opiate peptides in pressor reflexes elicited by stimulation of the afferent nerves. PMID:7272594

  18. Margin reflex distance in different ethnic groups.

    PubMed

    Murchison, Ann P; Sires, Bryan A; Jian-Amadi, Arash

    2009-01-01

    To determine the normal range for eyelid margin reflex distance (MRD) in adults according to their ethnicity, age, and sex. A prospective study of eyelid measurements in 112 consecutive adult African American, Asian, white, and Latino patients was compared using t test analysis. Measurements of MRD were collected by a single examiner across 5 months. Patients with conditions disposing to eyelid height changes were excluded. The MRD showed statistically significant variance among select ethnic groups. There was no statistical significance between sexes within each ethnic group. Variance in MRD exists among ethnic groups. This information and further data on ethnicity and sex variance of eyelid measurements can be used for both diagnostic purposes and surgical treatment of patients for optimal results.

  19. Is there a hierarchy of survival reflexes?

    PubMed

    Macphail, Kieran

    2013-10-01

    A hierarchy of survival reflexes for prioritising assessment and treatment in patients with pain of insidious onset is hypothesised. The hierarchy asserts that some systems are more vital than others and that the central nervous system (CNS) prioritises systems based on their significance to survival. The hypothesis suggests that dysfunction in more important systems will cause compensation in less important systems. This paper presents studies examining these effects for each system, arguing that each section of the hierarchy may have effects on other systems within the hierarchy. This concept is untested empirically, highly speculative and substantial research is required to validate the suggested hierarchical prioritisation by the CNS. Nonetheless, the hierarchy does provide a theoretical framework to use to exclude contributing systems in patients with pain of insidious onset. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The Chinchilla's vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Merwin, W. H., Jr.; Wall, Conrad, III; Tomko, D. L.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) was measured and characterized in seven adult chinchillas using 0.01 to 1.0 Hz angular velocity sinusoids. Gains were less than compensatory, and were variable from day to day, but phases were highly repeatable both within and between animals. The best fitting transfer function to the average data of all animals had a dominant time constant of 7.5 sec, and an adaptation operator with a time constant of 24.0 sec. There were certain nonlinearities in the horizontal VOR of this animal, and it was difficult to elicit a robust optokinetic response. Results are discussed in relation to similar measurements in other species.

  1. Vestibular-ocular accommodation reflex in man

    NASA Technical Reports Server (NTRS)

    Clark, B.; Randle, R. J.; Stewart, J. D.

    1975-01-01

    Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present paper studies a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 sec of rotating. Accommodation was recorded continuously on an infrared optometer for 110 sec under two conditions: while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.

  2. Modeling of deep breath vasoconstriction reflex.

    PubMed

    Chalacheva, Patjanaporn; Khoo, Michael C K

    2015-01-01

    Deep breaths akin to sighs have been reported to cause peripheral vasoconstriction. Our previous simulation studies have shown that this phenomenon cannot be reproduced in existing circulatory control models without inclusion of a respiratory-vascular coupling mechanism. To better understand this "sigh-vasoconstriction reflex", we investigated the effect of spontaneous and passively induced sighs as well as spontaneous breathing on peripheral vasoconstriction during wakefulness and non-rapid eye movement sleep in human subjects. We found that both spontaneous and induced sighs caused vasoconstriction during wakefulness and sleep. The coupling between respiration and vasoconstriction is also present even in an absence of deep breaths. The coupling mechanism is largely linear with increased nonlinearity during induced sighs. Since peripheral vascular resistance modulation is known to be sympathetically mediated, investigation of this coupling could potentially allow us to assess sympathetic function through non-invasive measurements and simple interventions.

  3. Initiation of the human heave linear vestibulo-ocular reflex.

    PubMed

    Crane, Benjamin T; Tian, Junru; Wiest, Gerald; Demer, Joseph L

    2003-01-01

    The linear vestibulo-ocular reflex (LVOR) was studied in eight normal human subjects of average age 24+/-5 years. Subjects underwent a sudden heave (mediolateral) translation delivered by a pneumatic servo-driven chair with a peak acceleration of 0.5 g while viewing earth-fixed targets at 15, 25, 50, and 200 cm. Stimuli were provided both with targets continuously visible or extinguished just prior to motion. Cancellation was tested using chair-fixed targets at each viewing distance. Eye movements were recorded using binocular magnetic search coils. Head translation was measured using a linear accelerometer attached to the upper teeth, to which also was attached a magnetic search coil verifying absence of head rotation. Vergence angles achieved by all subjects were appropriate to interpupillary distance and target distance. Heave translations evoked horizontal ocular rotations in the opposite direction following a brief latency. Latency of the LVOR was determined by automated algorithms based on identification of times when eye position and head acceleration exceeded three standard deviations (SDs) of baseline noise, and was corrected for differing transducer delays. Mean LVOR latency was 30+/-16 ms (mean +/- SD), range 12-53 ms. Slow phase LVOR amplitude was greater for near and less for more distant targets, although all observed responses were suboptimal. Measured 100 ms after head translation onset, mean response was 20% of ideal for the target at 15 cm, 22% at 25 cm, 31% at 50 cm, and 53% at 200 cm. Mean latency was significantly longer than the previously reported values for both the human angular VOR and the monkey LVOR, and had significant inverse correlation with response magnitude. The relatively longer latency of the human LVOR than angular VOR may be tailored to match human head movement dynamics.

  4. Auditory startle reflex and startle reflex to somatosensory inputs in generalized dystonia.

    PubMed

    Kiziltan, Meral E; Gunduz, Aysegul; Apaydın, Hulya; Ertan, Sibel; Kiziltan, Gunes

    2015-09-01

    Startle reflex is a generalized defense reaction after unexpected auditory, visual, or tactile stimuli. Auditory startle reflex (ASR) and startle reflex to somatosensory inputs (SSS) have never been studied in generalized dystonia. Here, we aimed to study the characteristics and changes of ASR and SSS in this group. We have examined ASR and SSS in patients with generalized dystonia (n=11) and healthy subjects (n=25) under the same conditions. ASRs and SSSs were recorded over the orbicularis oculi (O.oc), sternocleidomastoid, biceps brachii (BB), and abductor pollicis brevis (APB) muscles after bilateral auditory stimulation and unilateral median nerve electrical stimulation at the wrist, respectively. Both ASR and SSS showed the same sequence of muscle activation in both groups. However, the presence rates over the APB and BB muscles after both modalities of stimuli were significantly higher in the generalized dystonia group. ASR did not habituate in the dystonia group. Both ASR and SSS are disinhibited, and both show a similar sequence of muscle recruitment in generalized dystonia. Higher probabilities over caudal muscles probably depend on the higher excitability of motor neurons secondary to central modulation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Sudomotor function in sympathetic reflex dystrophy.

    PubMed

    Birklein, F; Sittl, R; Spitzer, A; Claus, D; Neundörfer, B; Handwerker, H O

    1997-01-01

    Sudomotor functions were studied in 27 patients suffering from reflex sympathetic dystrophy (RSD) according to the criteria established by Bonica (18 women, 9 men; mean age 50 +/- 12.3 years; median duration of disease 8 weeks, range 2-468 weeks). To measure local sweating rates, two small chambers (5 cm2) were affixed to corresponding areas of hairy skin on the affected and unaffected limbs. Dry nitrogen gas was passed through the chambers (270 ml/min) and evaporation was recorded at both devices with hygrometers. Thermoregulatory sweating (TST) was induced by raising body temperature (intake of 0.5 1 hot tea and infra-red irradiation). Local sweating was also induced through an axon reflex (QSART) by transcutaneous iontophoretic application of carbachol (5 min, 1 mA). In addition, skin temperature was measured on the affected and unaffected side by infra-red thermography. Mean skin temperature was significantly higher on the affected side (P < 0.003). In spite of the temperature differences, there was no difference in basal sweating on the affected and unaffected side. However, both methods of sudomotor stimulation lead to significantly greater sweating responses on the affected compared to the unaffected side (TST: P < 0.05, QSART: P < 0.004). Latency to onset of sweating was significantly shorter on the affected side under both test conditions (P < 0.04 and P < 0.003, respectively). Sweat responses were not correlated to absolute skin temperature but were probably related to the increased blood flow on the affected side. Our findings imply a differential disturbance of vasomotor and sudomotor mechanisms in affected skin. Whereas vasoconstrictor activity is apparently lowered, sudomotor output is either unaltered or may even be enhanced.

  6. The oculocardiac reflex in aponeurotic blepharoptosis surgery.

    PubMed

    Uda, Hirokazu; Sugawara, Yasusih; Sarukawa, Syunji; Sunaga, Ataru

    2014-06-01

    The purpose of this study was to investigate the correlation between the oculocardiac reflex (OCR) and blepharoptosis surgery for safe eyelid surgery. Fifty-four consecutive patients with bilateral aponeurotic blepharoptosis were enrolled in this study. Changes in electrocardiography (ECG) monitoring were recorded during surgery. Preoperative pressing on the globe and intraoperative stretching of the levator aponeurosis were also carried out and the occurrence rate of the OCR was recorded. A positive OCR was observed in 12 patients (22.2%) in the preoperative globe-pressing test, whereas a positive OCR was observed in 22 patients (40.7%) in the levator-stretching test. The levator-stretching test did not indicate a significant difference in the rate of heart rate decrease with respect to laterality. No correlation was observed between age and the occurrence of OCR. On the other hand, there was a significant difference in the percentage of heart rate decrease between patients with positive OCR and negative OCR as determined in the globe-pressing test (mean = 13.1% vs. 5.4%). During the practical operative manoeuvre, no bradycardia was observed in any case. This study confirmed that a rapid and strong traction of levator aponeurosis induces the OCR regardless of laterality and age. Atraumatic and gentle handling are essential to prevent OCR. The preoperative globe-pressing test may be an index of the OCR in reflex-prone patients. Intraoperative ECG monitoring will be useful for early onset detection, although positive OCR was not observed in any patient during the practical surgical manoeuvre.

  7. Somatosensory imprinting in spinal reflex modules.

    PubMed

    Schouenborg, Jens

    2003-05-01

    Understanding how sensory information is used by motor systems for motor commands requires detailed knowledge about how the body shape and biomechanics are represented in the motor circuits. We have used the withdrawal reflex system as a model for studies of sensorimotor transformation. This system has a modular organisation in the adult. Each module performs a detailed and functionally adapted sensorimotor transformation related to the withdrawal efficacy of its output muscle(s). The weight distribution of the cutaneous input to a module is determined by the pattern of withdrawal efficacy of the muscle. Recently, we found that the somatotopic organisation and weight of the cutaneous input to the dorsal horn of the lower lumbar cord is related to this modular organisation. The dorsal horn in the lower lumbar cord thus appears to be organised in a column-like fashion, where each column performs a basic sensorimotor transformation related to the movement caused by a single muscle and the body shape. Since the withdrawal reflex system encodes error signals to the cerebellum through some of the spino-olivo cerebellar pathways, the modular concept is, in fact, a key to understanding sensory processing in higher order motor systems as well. Developmental studies indicate that each module is a self-organising circuitry that uses sensory feedback on muscle contractions to adjust its synaptic organisation. Furthermore, these studies suggest that the spontaneous movements during development, by providing structured sensory information related to movement pattern of single muscles and body shape, are instrumental in shaping the sensorimotor transformation in the spinal cord. These findings and their implications for the understanding of higher motor functions and their clinical aspects will be discussed.

  8. Analysing responses to climate change through the lens of reflexivity.

    PubMed

    Davidson, Debra

    2012-12-01

    Sociologists are increasingly directing attention toward social responses to climate change. As is true of any new field of inquiry, theoretical frameworks guiding the research to date have room for improvement. One advance could be achieved through closer engagement with Reflexivity Theory, particularly the work of Margaret Archer, who asks just how individuals come to give attention to certain problems, and formulate responses to them. Individuals vary significantly in regard to their understanding of and concern for anthropogenic climate change, and these standpoints in turn influence commitment to mitigation and adaptation. The emergent social interactions among all such agents in turn influence the morphogenetic trajectories through which social structures will evolve, but the role of 'meta-reflexives' is particularly crucial. Identifying pathways of individual climate change reflexivity can make a valuable contribution to our understanding of the potential for and nature of collective responses. In this paper, I explore climate change reflexivity, with particular attention to climate change meta-reflexives, through a qualitative analysis of personal interviews with residents of two small communities in Alberta, Canada. Applying Reflexivity Theory to this context articulates dimensions of reflexive processing not elaborated in current theoretical treatments, including future outlook and comfort with uncertainty, among others.

  9. Clinical utility of reflex studies in assessing cervical radiculopathy.

    PubMed

    Miller, T A; Pardo, R; Yaworski, R

    1999-08-01

    We prospectively studied the diagnostic utility of upper limb segmental reflexes in patients with suspected cervical radiculopathy (CR). Fifty-three patients (29 men and 24 women), referred for electrodiagnostic testing, were positive for at least one of four clinical criteria for CR: abnormal (1) history, (2) motor (myotomal) examination, (3) sensory (dermatomal) examination, and (4) changes in deep tendon reflexes (DTR). All underwent electrodiagnostic assessment, needle electrode examination (NEE), specialized segmental reflexes (heteronymous and Hoffman's reflexes [H reflexes]), and neuroimaging. The clinical diagnosis was supported in all 32 patients who entered the study with two or more clinical signs for CR. Abnormal NEE was found in 90% of subjects with three clinical signs, 59% with two signs, and only 10% of those with one sign. H reflexes demonstrated a sensitivity of 72% and specificity of 85% for detection of CR and were particularly helpful when forming conclusions in the 21 subjects with only one clinical sign for CR. Specialized segmental H-reflex studies of the upper limb were as sensitive and specific as neuroimaging (magnetic resonance imaging). Copyright 1999 John Wiley & Sons, Inc.

  10. Modification of cutaneous reflexes during visually guided walking.

    PubMed

    Ruff, Casey R; Miller, Andreas B; Delva, Mona L; Lajoie, Kim; Marigold, Daniel S

    2014-01-01

    Although it has become apparent that cutaneous reflexes can be adjusted based on the phase and context of the locomotor task, it is not clear to what extent these reflexes are regulated when locomotion is modified under visual guidance. To address this, we compared the amplitude of cutaneous reflexes while subjects performed walking tasks that required precise foot placement. In one experiment, subjects walked overground and across a horizontal ladder with narrow raised rungs. In another experiment, subjects walked and stepped onto a series of flat targets, which required different levels of precision (large vs. narrow targets). The superficial peroneal or tibial nerve was electrically stimulated in multiple phases of the gait cycle in each condition and experiment. Reflexes between 50 and 120 ms poststimulation were sorted into 10 equal phase bins, and the amplitudes were then averaged. In each experiment, differences in cutaneous reflexes between conditions occurred predominantly during swing phase when preparation for precise foot placement was necessary. For instance, large excitatory cutaneous reflexes in ipsilateral tibialis anterior were present in the ladder condition and when stepping on narrow targets compared with inhibitory responses in the other conditions, regardless of the nerve stimulated. In the ladder experiments, additional effects of walking condition were evident during stance phase when subjects had to balance on the narrow ladder rungs and may be related to threat and/or the unstable foot-surface interaction. Taken together, these results suggest that cutaneous reflexes are modified when visual feedback regarding the terrain is critical for successful walking.

  11. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  12. Interindividual differences in H reflex modulation during normal walking.

    PubMed

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, Tine; Aagaard, Per; Magnusson, S Peter

    2002-01-01

    Based on previous studies, at least two different types of soleus Hoffmann (H) reflex modulation were likely to be found during normal human walking. Accordingly, the aim of the present study was to identify different patterns of modulation of the soleus H reflex and to examine whether or not subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during treadmill walking at 4.5 km/h. Using a two-dimensional analysis joint angles, angular velocities, accelerations, linear velocities and accelerations were calculated, and net joint moments about the ankle, knee and hip joint were computed by inverse dynamics from the video and force plate data. Six subjects (group S) showed a suppressed H reflex during the swing phase, and 9 subjects (group LS) showed increasing reflex excitability during the swing phase. The plantar flexor dominated moment about the ankle joint was greater for group LS. In contrast, the extensor dominated moment about the knee joint was greater for the S group. The hip joint moment was similar for the groups. The EMG activity in the vastus lateralis and anterior tibial muscles was greater prior to heel strike for the S group. These data indicate that human walking exhibits at least two different motor patterns as evaluated by gating of afferent input to the spinal cord, by EMG activity and by walking mechanics. Increasing H reflex excitability during the swing phase appears to protect the subject against unexpected perturbations around heel strike by a facilitated stretch reflex in the triceps surae muscle. Alternatively, in subjects with a suppressed H reflex in the swing phase the knee joint extensors seem to form the primary protection around heel strike.

  13. Reflex anuria: an old concept with new evidence.

    PubMed

    Hou, Weibin; Wen, Jin; Ji, Zhigang; Chen, Jian; Li, Hanzhong

    2014-02-01

    Reflex anuria (RA) was defined by Hull as cessation of urine output from both kidneys due to irritation or trauma to one kidney or its ureter, or severely painful stimuli to other organs. This is not a common concept among urologists or nephrologists even though it has been proposed for more than half a century. The phenomenon has not been thoroughly understood. But intrarenal arteriolar spasm and ureteral spasm have gained wide acceptance as the mechanisms of RA. The present review summarized papers published up to now on RA, in order to depict the general profile of the disease and to further elucidate the pathogenesis of RA. A classification system of RA was proposed as neurovascular reflex, ureterorenal reflex, radiated renovascular reflex, renoureteral reflex, ureteroureteral reflex and radiated ureteral reflex, based on the two assumed mechanisms and the stimulus' origins. All these types except renoureteral reflex had gained supporting evidence from animal experiments and/or clinical case reports. RA is a diagnosis of exclusion, only being considered after ruling out common and tangible etiologies such as ureteral calculi, acute tubular necrosis, renal vascular occlusion, hypovolemia, infection, etc. If the diagnosis has been established, treatment plan should be directed toward the mechanisms more than the causative factors. Abnormalities of the autonomic nerve system and congenital urogenital malformations incline people to RA. In summary, RA is a cessation of urine production caused by stimuli on kidney, ureter or other organs, through a mechanism of reflex spasm of intrarenal arterioles or ureters, leading to acute renal failure. It is a functional rather than parenchymal disease.

  14. Exercise-induced neuromuscular dysfunction under reflex conditions.

    PubMed

    Kaufman, T; Burke, J R; Davis, J M; Durstine, J L

    2001-06-01

    The purpose of this research was to describe further the effects of exercise-induced muscle damage on reflex sensitivity. The subjects were eight physically active, but untrained males, between the ages of 18 and 29 years. The effects of eccentric and concentric exercise on patellar tendon reflex responses were determined. The 8 week experiment consisted of two, 5 day, test protocols with a 6 week wash-out period between test protocols. Each 5 day test protocol consisted of the following six test sessions: (1) day 1--baseline, (2) day 2 baseline, (3) day 2--immediate post-exercise, and (4-6) days 3-5: 24, 48, and 72 h post-exercise. On day 2, the subjects made either 100 fatiguing concentric or eccentric isotonic contractions using the right leg at 75% of the corresponding repetition maximum values. During each test session, the electromyogram (EMG) and force-time characteristics of basic and conditioned patellar tendon reflex responses were measured. The reflex amplitudes of basic and conditioned patellar tendon reflex responses were decreased following fatiguing concentric exercise. There were no immediate effects of fatiguing eccentric exercise on the basic and conditioned patellar tendon reflex responses, but the EMG amplitudes of these reflex responses were reduced on the days following eccentric exercise. The amount of conditioned patellar tendon reflex facilitation was decreased following the concentric exercise protocol and at 48 h post-eccentric exercise. Our conditioned reflex data suggest that post-exercise changes to the physiological mechanisms that modulate the recruitment gain of the alpha-motoneuron pool may depend upon the type of fatiguing exercise.

  15. Reflex sympathetic dystrophy: skin blood flow, sympathetic vasoconstrictor reflexes and pain before and after surgical sympathectomy.

    PubMed

    Baron, R; Maier, C

    1996-10-01

    To examine the pathophysiological mechanisms of vascular disturbances and to assess the role of the sympathetic nervous system, 12 patients with reflex sympathetic dystrophy (RSD) of the hand were studied using laser Doppler flowmetry. Cutaneous blood flow, skin resistance and skin temperature were measured at the affected and contralateral hands. Sympathetic vasoconstrictor reflexes were induced bilaterally by deep inspiration. Four patients were treated with unilateral surgical sympathectomy and pain and vascular changes were documented in follow-up investigations. (1) After acclimatization in cold environment (< or = 18 degrees C) blood flow and skin temperature were considerably lower on the affected side in 10 patients. No additional vasoconstrictor reflexes could be elicited. (2) After acclimatization in warm environment (22-24 degrees C) blood flow and skin temperature demonstrated no side differences in all cases. Vasoconstrictor responses were the same on both sides. (3) After sympathectomy vasoconstrictor reflexes were absent. Skin resistance was considerably higher on the affected side. In the first 4 weeks the affected hand was warmer and blood flow was higher compared with the healthy side. Thereafter, skin temperature and perfusion slowly decreased and the affected hand turned from warm to cold. Very regular high amplitude vasomotion waves occurred unilaterally. There were no signs of reinnervation. Two patients had long-term pain relief. We conclude as follows. (1) Side differences in skin temperature and blood flow are no static descriptors in RSD. They are dynamic values depending critically on environmental temperature. Therefore, they have to be interpreted with care when defining reliable diagnostic criteria. (2) Vascular disturbances in RSD are not due to constant overactivity of sympathetic vasoconstrictor neurons. Changes in vascular sensitivity to cold temperature and circulating catecholamines may be responsible for vascular abnormalities

  16. Reversible abnormalities of the Hering Breuer reflex in acrylamide neuropathy.

    PubMed Central

    Satchell, P

    1985-01-01

    The sensitivity of the Hering Breuer reflex was compared in anaesthetised rabbits before, during and after the induction of acrylamide neuropathy, and was measured as the tracheal pressure which produced 30 seconds of apnoea. After four weeks of acrylamide (400 mg/kg total dose) there was ataxia and the conduction velocity of hindlimb motor nerves was significantly reduced. At this time there was a marked and reproducible reduction in the sensitivity of the Hering Breuer reflex. The ataxia resolved within a month of stopping acrylamide administration. Three months after the cessation of acrylamide the sensitivity of the Hering Breuer reflex had increased significantly but had not returned to normal. PMID:2993526

  17. Development of sensory motor reflexes in 2 G exposed rats.

    PubMed

    Wubbels, Réne; Bouët, Valentine; de Jong, Herman; Gramsbergen, Albert

    2004-07-01

    During gestation and early postnatal development, the animal's size and weight rapidly increase. Within that period, gravity affects sensory and motor development. We studied age-dependent modifications of several types of motor reflexes in 5 groups of rats conceived, born and reared in hypergravity (HG; 2 g). These rats were transferred to normal gravity (NG; 1 g) at various postnatal days, and their behavioral reflexes were compared with a control group which was constantly kept under NG. HG induced a retarded development of vestibular dependent reflexes. Other types of motor behavior were not delayed.

  18. [Human physiology: images and practices of the reflex].

    PubMed

    Wübben, Yvonne

    2010-01-01

    The essay examines the function of visualizations and practices in the formation of the reflex concept from Thomas Willis to Marshall Hall. It focuses on the specific form of reflex knowledge that images and practices can contain. In addition, the essay argues that it is through visual representations and experimental practices that technical knowledge is transferred to the field of human reflex physiology. When using technical metaphors in human physiology authors often seem to feel obliged to draw distinctions between humans, machines and animals. On closer scrutiny, these distinctions sometimes fail to establish firm borders between the human and the technical.

  19. Primitive Reflexes and Attention-Deficit/Hyperactivity Disorder: Developmental Origins of Classroom Dysfunction

    ERIC Educational Resources Information Center

    Taylor, Myra; Houghton, Stephen; Chapman, Elaine

    2004-01-01

    The present research studied the symptomatologic overlap of AD/HD behaviours and retention of four primitive reflexes (Moro, Tonic Labyrinthine Reflex [TLR], Asymmetrical Tonic Neck Reflex [ATNR], Symmetrical Tonic Neck Reflex [STNR]) in 109 boys aged 7-10 years. Of these, 54 were diagnosed with AD/HD, 34 manifested sub-syndromal coordination,…

  20. Leg muscle reflexes mediated by cutaneous A-beta fibres are normal during gait in reflex sympathetic dystrophy.

    PubMed

    van der Laan, L; Boks, L M; van Wezel, B M; Goris, R J; Duysens, J E

    2000-04-01

    Reflex sympathetic dystrophy (RSD) is, from the onset, characterized by various neurological deficits such as an alteration of sensation and a decrease in muscle strength. We investigated if afferent A-beta fibre-mediated reflexes are changed in lower extremities affected by acute RSD. The involvement of these fibres was determined by analyzing reflex responses from the tibialis anterior (TA) and biceps femoris (BF) muscles after electrical stimulation of the sural nerve. The reflexes were studied during walking on a treadmill to investigate whether the abnormalities in gait of the patients were related either to abnormal amplitudes or deficient phase-dependent modulation of reflexes. In 5 patients with acute RSD of the leg and 5 healthy volunteers these reflex responses were determined during the early and late swing phase of the step cycle. No significant difference was found between the RSD and the volunteers. During early swing the mean amplitude of the facilitatory P2 responses in BF and TA increased as a function of stimulus intensity (1.5, 2 and 2.5 times the perception threshold) in both groups. At end swing the same stimuli induced suppressive responses in TA. This phase-dependent reflex reversal from facilitation in early swing to suppression in late swing occurred equally in both groups. In the acute phase of RSD of the lower extremity there is no evidence for abnormal A-beta fibre-mediated reflexes or for defective regulation of such reflexes. This finding has implications for both the theory on RSD pathophysiology and RSD models, which are based on abnormal functioning of A-beta fibres.

  1. Recreational soccer can improve the reflex response to sudden trunk loading among untrained women.

    PubMed

    Pedersen, Mogens T; Randers, Morten B; Skotte, Jørgen H; Krustrup, Peter

    2009-12-01

    A slower reflex response to sudden trunk loading (SL) has been shown to increase future risk of low back injuries in healthy subjects, and specific readiness training can improve the response to SL among healthy subjects. The purpose of the study was to investigate the effect of recreational soccer training on the reaction to SL among untrained healthy women. Thirty-six healthy, untrained, Danish women (age 19-45 years) were randomly assigned to a soccer group (SO, n = 19) and a running group (RU, n = 17). In addition, an untrained control group (CON, n = 10) was recruited. Training was performed for 1 hour twice a week (mean heart rate of 165 b.min-1 in SO and 164 b.min-1 in RU) for 16 weeks. Test of reactions to sudden unexpected trunk loading was performed before and after the training period. Furthermore, time-motion analysis of the soccer training was performed for 9 subjects. Group assignment was blinded to the test personnel. Physical education students organized the training. During 1 hour of soccer training, the total number of sudden moves including sudden loading of the upper body (e.g. turns, stops, throw-ins, headers, and shoulder tackles) was 192 (63). In SO, time elapsed until stopping of the forward movement of the trunk (stopping time) decreased (p < 0.05) by 15% and distance moved after unexpected SL decreased (p < 0.05) by 24% compared with no changes in RU and CON. In conclusion, football training includes a high number of sudden loadings of the upper body and can improve the reflex response to SL. The faster reflex response indicates that soccer training can reduce the risk of low back injuries.

  2. Operant conditioning of rat soleus H-reflex oppositely affects another H-reflex and changes locomotor kinematics.

    PubMed

    Chen, Yi; Chen, Lu; Wang, Yu; Wolpaw, Jonathan R; Chen, Xiang Yang

    2011-08-03

    H-reflex conditioning is a model for studying the plasticity associated with a new motor skill. We are exploring its effects on other reflexes and on locomotion. Rats were implanted with EMG electrodes in both solei (SOL(R) and SOL(L)) and right quadriceps (QD(R)), and stimulating cuffs on both posterior tibial (PT) nerves and right posterior femoral nerve. When SOL(R) EMG remained in a defined range, PT(R) stimulation just above M-response threshold elicited the SOL(R) H-reflex. Analogous procedures elicited the QD(R) and SOL(L) H-reflexes. After a control period, each rat was exposed for 50 d to a protocol that rewarded SOL(R) H-reflexes that were above (HRup rats) or below (HRdown rats) a criterion. HRup conditioning increased the SOL(R) H-reflex to 214 ± 37% (mean ± SEM) of control (p = 0.02) and decreased the QD(R) H-reflex to 71 ± 26% (p = 0.06). HRdown conditioning decreased the SOL(R) H-reflex to 69 ± 2% (p < 0.001) and increased the QD(R) H-reflex to 121 ± 7% (p = 0.02). These changes remained during locomotion. The SOL(L) H-reflex did not change. During the stance phase of locomotion, ankle plantarflexion increased in HRup rats and decreased in HRdown rats, hip extension did the opposite, and hip height did not change. The plasticity that changes the QD(R) H-reflex and locomotor kinematics may be inevitable (i.e., reactive) due to the ubiquity of activity-dependent CNS plasticity, and/or necessary (i.e., compensatory) to preserve other behaviors (e.g., locomotion) that would otherwise be disturbed by the change in the SOL(R) H-reflex pathway. The changes in joint angles, coupled with the preservation of hip height, suggest that compensatory plasticity did occur.

  3. Quantified reflex strategy using an iPod as a wireless accelerometer application.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren

    2012-01-01

    A primary aspect of a neurological evaluation is the deep tendon reflex, frequently observed through the patellar tendon reflex. The reflex response provides preliminary insight as to the status of the nervous system. A quantified reflex strategy has been developed, tested, and evaluated though the use of an iPod as a wireless accelerometer application integrated with a potential energy device to evoke the patellar tendon reflex. The iPod functions as a wireless accelerometer equipped with robust software, data storage, and the capacity to transmit the recorded accelerometer waveform of the reflex response wirelessly through email for post-processing. The primary feature of the reflex response acceleration waveform is the maximum acceleration achieved subsequent to evoking the patellar tendon reflex. The quantified reflex strategy using an iPod as a wireless accelerometer application yields accurate and consistent quantification of the reflex response.

  4. [Red reflex: prevention way to blindness in childhood].

    PubMed

    de Aguiar, Adriana Sousa Carvalho; Cardoso, Maria Vera Lúcia Moreira Leitão; Lúcio, Ingrid Martins Leite

    2007-01-01

    This study had as objective to investigate the result and the colour gradation of red reflex test in newborns (NB). It is a exploratory, quantitative study and the sample was 180 NB from maternity ward in Fortaleza-CE. From this, 156 showed result "no altered" and 24 "suspect". About the aspect of red reflex, 144 NB showed the same coloration in the two eyes, in 35 of this, the colour was red, in 33, orange reddish, in 46 orange colour, in 24 light yellow, in 6 yellow with whitish stains central. Of the suspect cases, the reflex was light yellow with whitish stains with lines. The nurse trained to accomplish the red reflex test can have important role at Neonatal Unit with actions about the prevention of ocular alterations in the childhood.

  5. Reconsidering reflexivity: introducing the case for intellectual entrepreneurship.

    PubMed

    Cutcliffe, John R

    2003-01-01

    In this article, the author reconsiders reflexivity and attempts to examine some unresolved issues by drawing particular attention to the relationship between reflexivity and certain related phenomena/processes: the researcher's a priori knowledge, values, beliefs; empathy within qualitative research; the presence and influence of the researcher's tacit knowledge, and May's "magic" in method. Given the limitations of some reflexive activity identified in this article, the author introduces the case for greater intellectual entrepreneurship within the context of qualitative research. He suggests that excessive emphasis on reflexive activity might inhibit intellectual entrepreneurship. Wherein intellectual entrepreneurship implies a conscious and deliberate attempt on the part of academics to explore the world of ideas boldly; to take more risks in theory development and to move away from being timid researchers.

  6. Response characteristics of the human torsional vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1992-01-01

    The characteristics of the response dynamics of the human torsional vestibuloocular reflex were studied during controlled rotations about an earth-horizontal axis. The results extended the frequency range to 2 Hz and identified the nonlinearity of the amplitude response.

  7. Sensory and circuit mechanisms mediating lower urinary tract reflexes.

    PubMed

    Danziger, Zachary C; Grill, Warren M

    2016-10-01

    Neural control of continence and micturition is distributed over a network of interconnected reflexes. These reflexes integrate sensory information from the bladder and urethra and are modulated by descending influences to produce different physiological outcomes based on the information arriving from peripheral afferents. Therefore, the mode of activation of primary afferents is essential in understanding the action of spinal reflex pathways in the lower urinary tract. We present an overview of sensory mechanisms in the bladder and urethra focusing on their spinal integration, identify the cardinal spinal reflexes responsible for continence and micturition, and describe how their functional role is controlled via peripheral afferent activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Speech Performance, Dysphagia and Oral Reflexes in Cerebral Palsy.

    ERIC Educational Resources Information Center

    Love, Russell J.; And Others

    1980-01-01

    The adequacy of biting, sucking, swallowing, and chewing as well as the presence or absence of nine infantile oral reflexes were assessed in 60 cerebral palsied individuals (ages 3 to 23). (Author/PHR)

  9. Experimental study of oculocardiac reflex (OCR) with graded stimuli.

    PubMed

    Khurana, Indu; Sharma, Rajeev; Khurana, A K

    2006-01-01

    The present study was conducted to observe the effect of graded mechanical stimuli on occurrence of oculocardiac reflex (OCR). The experiments were carried out in twenty albino rabbits of either sex weighing between 1-2 kg. Changes in heart rate and/or cardiac rhythm (oculocardiac reflex) were studied by applying traction with progressively increasing weights to medial rectus muscle. Mean threshold value of square wave mechanical stimulus just sufficient to produce oculocardiac reflex was found to be 19 +/- 8.52 g. As the traction weights were progressively increased, more and more decrease in heart rate was observed. It was concluded that once the threshold value of stimulus was reached, the oculocardiac reflex showed a graded response with progressively increasing traction weights.

  10. Nasal Reflexes: Implications for Exercise, Breathing, and Sex

    PubMed Central

    Baraniuk, James N.; Merck, Samantha J.

    2014-01-01

    Nasal patency, with both congestion and decongestion, is affected in a wide variety of reflexes. Stimuli that lead to nasal reflexes include exercise, alterations of body position, pressure, and temperature, neurological syndromes, and dentists. As anticipated, the vagal and trigeminal systems are closely integrated through nasobronchial and bronchonasal reflexes. However, perhaps of greater pathophysiological importance are the naso-hypopharyngea-laryngeal reflexes that become aggravated during sinusitis. None other than Sigmund Freud saw deeply beyond the facial adornment and recognized the deeper sexual tensions that can regulate nasal functions and psychoanalytical status. Wine, women and song are linked with airflow through the nose, the nose, that by any other name would still smell as sweetly. PMID:18417057

  11. Reflexive Research Ethics in Fetal Tissue Xenotransplantation Research

    PubMed Central

    Panikkar, Bindu; Smith, Natasha; Brown, Phil

    2013-01-01

    For biomedical research in which the only involvement of the human subject is the provision of tissue or organ samples, a blanket consent, i.e. consent to use the tissue for anything researchers wish to do, is considered by many to be adequate for legal and IRB requirements. Alternatively, a detailed informed consent provides patients or study participants with more thorough information about the research topic. We document here the beliefs and opinions of the research staff on informed consent and the discussion-based reflexive research ethics process that we employed in our fetal tissue xenotransplantion research on the impact of environmental exposures on fetal development. Reflexive research ethics entails the continued adjustment of research practice according to relational and reflexive understandings of what might be beneficent or harmful. Such reflexivity is not solely an individual endeavor, but rather a collective relationship between all actors in the research process. PMID:23074992

  12. Speech Performance, Dysphagia and Oral Reflexes in Cerebral Palsy.

    ERIC Educational Resources Information Center

    Love, Russell J.; And Others

    1980-01-01

    The adequacy of biting, sucking, swallowing, and chewing as well as the presence or absence of nine infantile oral reflexes were assessed in 60 cerebral palsied individuals (ages 3 to 23). (Author/PHR)

  13. Sacculo-ocular reflex connectivity in cats.

    PubMed

    Isu, N; Graf, W; Sato, H; Kushiro, K; Zakir, M; Imagawa, M; Uchino, Y

    2000-04-01

    The otolith system contributes to the vestibulo-ocular reflexes (VOR) when the head moves linearly in the horizontal plane or tilts relative to gravity. The saccules are thought to detect predominantly accelerations along the gravity vector. Otolith-induced vertical eye movements following vertical linear accelerations are attributed to the saccules. However, information on the neural circuits of the sacculo-ocular system is limited, and the effects of saccular inputs on extraocular motoneurons remain unclear. In the present study, synaptic responses to saccular-nerve stimulation were recorded intracellularly from identified motoneurons of all twelve extraocular muscles. Experiments were successfully performed in eleven cats. Individual motoneurons of the twelve extraocular muscles--the bilateral superior recti (SR), inferior recti (IR), superior obliques (SO), inferior obliques (IO), lateral recti (LR), and medial recti (MR) were identified antidromically following bipolar stimulation of their respective nerves. The saccular nerve was selectively stimulated by a pair of tungsten electrodes after removing the utricular nerve and the ampullary nerves of the semicircular canals. Stimulus intensities were determined from the stimulus-response curves of vestibular N1 field potentials in order to avoid current spread. Intracellular recordings were performed from 129 extraocular motoneurons. The majority of the neurons showed no response to saccular-nerve stimulation. In 17 (30%) of 56 extraocular motoneurons related to vertical eye movements (bilateral SR and IR), depolarizing and/or hyperpolarizing postsynaptic potentials (PSPs) were observed in response to saccular-nerve stimulation. The latencies of PSPs ranged from 2.3 to 8.9 ms, indicating that the extraocular motoneurons received neither monosynaptic nor disynaptic inputs from saccular afferents. The majority of the latencies of the depolarization, including depolarization-hyperpolarization, were in the range of 2

  14. Position-dependent, hyperexcitable patellar reflex dynamics in chronic stroke.

    PubMed

    Yang, Chung-Yong; Guo, Xin; Ren, Yupeng; Kang, Sang Hoon; Zhang, Li-Qun

    2013-02-01

    To quantify tendon tap response (TTR) properties and their position dependence using multiple neuromechanical parameters, and to analyze correlations among neuromechanical and clinical measures. Hyperexcitable dynamics of TTR were investigated in a case-control manner. An instrumented hammer was used to induce the patellar deep tendon reflex (DTR), with reflex-mediated electromyography and torque responses measured across a range of knee flexion. Research laboratory in a rehabilitation hospital. Chronic hemiplegic stroke survivors (n=9) and healthy subjects (n=13). Not applicable. Neuromechanical measures (system gain, contraction rate, half-relaxation rate, reflex loop delay, peak reflex torque, peak reflex electromyography, and reflex threshold in tapping force) were measured to characterize neuromuscular properties of patellar TTR. Clinical measurements were taken using the DTR scale and the Modified Ashworth Scale. The system gain, contraction rate, half-relaxation rate, and peak reflex-mediated torque in the stroke group were generally higher, whereas the reflex threshold in the stroke group was significantly lower than their counterparts in the control group across 45° to 90° of knee flexion (P<.05). The 4 parameters were significantly higher at 60° and 75° of flexion than at 15°, 30°, 45°, and 90°, and their correlations with the 2 clinical scales at 60°, 75°, and 90° of flexion were also significantly higher than those at 15°, 30°, and 45° (P<.05). The results showed hyperexcitability of TTR in stroke, quantified using a number of neuromechanical measures. Those measures peak around 60° to 75° of knee flexion and were correlated with clinical scales. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Deep tendon reflex: The background story of a simple technique.

    PubMed

    Bhattacharyya, Kalyan B

    2017-01-01

    Wilhelm Erb and Carl Otto Westphal from Prussia first described the knee jerk in the same issue of the journal Archiv für Psychiatrie und Nervenkrankheiten in January 1875. This article retraces the history of development of 'deep tendon reflex' as an integral clinical sign during every neurological examination. The history of the evolving shapes of the reflex hammer, the iconic trademark and the ultimate signature of a neuroscientist, is also presented.

  16. Blink reflex in Parkinson's disease with levodopa-induced dyskinesia.

    PubMed

    Iriarte, L M; Chacon, J; Madrazo, J; Chaparro, P

    1989-01-01

    We have studied the electrically evoked blink reflex (R1 and R2 components) in 40 parkinsonian patients with levodopa-induced dyskinesia (15 with facial dyskinesia, 13 with limb-truncal dyskinesia and 12 with mixed dyskinesia). R2 latencies (both ipsilateral and contralateral) were significantly prolonged in dyskinetic patients. These findings are indicative of decreased excitability of brainstem interneurones in the dyskinetic parkinsonians. We found no correlation between the neurophysiological pattern of blink reflex and the localization of dyskinesia.

  17. Stretch reflex instability compared in three different human muscles.

    PubMed

    Durbaba, R; Taylor, A; Manu, C A; Buonajuti, M

    2005-06-01

    The possibility of causing instability in the stretch reflex has been examined in three different human muscles: biceps, first dorsal interosseous (FDI) of the hand and digastric. Tremor recorded as fluctuation of isometric force was compared with that occurring during contraction against a spring load. The spring compliance was selected to make the natural frequency of the part in each case appropriate for oscillations in the short latency stretch reflex. A computer model of the whole system was used to predict the frequency at which oscillations should be expected and to estimate the reflex gain required in each case to cause sustained oscillations. Estimates were computed of the autospectra of the force records and of the rectified surface EMG signals and of the coherence functions. Normal subjects showed no evidence of a distinct spectral peak during isometric recording from any of the three muscles. However, in anisometric conditions regular oscillations in force occurred in biceps, but not in FDI or digastric. The oscillations in biceps at 8-9 Hz were accompanied by similar oscillations in the EMG which were highly coherent with the force signal. The results are consistent with the presence of a strong segmental stretch reflex effect in biceps and weak or absent reflex in FDI. Digastric is known to contain no muscle spindles and therefore to lack a stretch reflex. In two subjects who volunteered that they had more tremor than normal, but had no known neurological abnormality, there was a distinct peak in the force spectrum at 8-9 Hz in biceps and FDI in isometric conditions with coherent EMG activity. The peak increased in size in anisometric conditions in biceps but not in FDI. This component appears to be of central rather than of reflex origin. No equivalent component was found in digastric records. The results are discussed in relation to the possible role of the short latency stretch reflex in the genesis of physiological tremor in different muscles.

  18. [Synthetic sentence identification (SSI) and contralateral acoustic stapedius reflex].

    PubMed

    Anastasio, Adriana Ribeiro Tavares; Momensohn-Santos, Teresa Maria

    2005-01-01

    The study of the relationship of the contralateral acoustic reflex with the auditory skill of closure. To analyze the identification of a speech signal in the presence of competitive sounds in subjects with absence of contralateral acoustic reflex. Application of the synthetic sentence identification (SSI) test under the conditions of competitive contralateral message (SSI-CCM), with the signal-to-noise ratio of 0 and -40dB, and ipsilateral competitive message (SSI-ICM), with the signal-to-noise ratio of 0, -10, -15 and -20dB, in 43 young adults (group A = 21 subjects with contralateral acoustic reflex present in all of the investigated frequencies, and group B = 22 subjects with contralateral reflex absent at the frequency of 500Hz, or in all of the investigated frequencies, or still in some of the investigated frequencies necessarily including 500Hz), of both gender, with no hearing, otologic or learning disabilities. The acoustic reflex threshold was above 100dB NA in 59% of the individuals in group B and in 14% of the individuals in group A. All subjects performed according to the normal pattern suggested in the specialized literature for the SSI test. The performance of group B in the SSI-ICM test was inferior to that of group A for all the signal-to-noise ratios used, although the difference was not statistically significant. Group B, which presented an acoustic reflex threshold higher than 100dB NA or the absence of the acoustic reflex, was also the group that presented the worse performance in the SSI test. The absence of the contralateral acoustic reflex seems to interfere in the identification of the speech signal in the presence of competitive noises.

  19. Comparison between Experimental and Numerical Studies of a Reflex Triode

    DTIC Science & Technology

    2005-06-01

    This paper presents a comparison of experimental and simulated results of a reflex triode driven by a compact Marx system. The experimental setup...consists of a Marx system and a reflex triode together with a short output waveguide. A parametric study has been performed. The diagnostics used include...particle-in-cell simulation code MAGIC is used to numerically study the system described above. A 1D model of the Marx system has been designed and this is

  20. FluidReflex Concentrator: From Elementary Unit to Module

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Askins, S.; Domínguez, C.; Antón, I.; Sala, G.

    2011-12-01

    FluidReflex concentrator is a novel CPV design that uses a fluid dielectric to increase optical efficiency and improve module thermal behavior. An optical efficiency of 83.5% at 1035X has been measured when using an antireflection coating over the cell optimized for wide incidence angle and high reflectivity silver mirrors. In addition, first results for the FluidReflex prototype modules are presented in this article.

  1. Estrogen attenuates the exercise pressor reflex in female cats.

    PubMed

    Schmitt, Petra M; Kaufman, M P

    2003-10-01

    In humans, the pressor and muscle sympathetic nerve responses to static exercise are less in women than in men. The difference has been attributed to the effect of estrogen on the exercise pressor reflex. Estrogen receptors are abundant in areas of the dorsal horn receiving input from group III and IV muscle afferents, which comprise the sensory limb of the exercise pressor reflex arc. These findings prompted us to investigate the effect of estrogen on the spinal pathway of the exercise pressor reflex arc. Previously, we found that the threshold concentration of 17beta-estradiol needed to attenuate the exercise pressor reflex in male decerebrate cats was 10 microg/ml (Schmitt PM and Kaufman MP. J Appl Physiol 94: 1431-1436, 2003). The threshold concentration for female cats, however, is not known. Consequently, we applied 17beta-estradiol to a well covering the L6-S1 spinal cord in decerebrate female cats. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that the pressor response to contraction averaged 38 +/- 7 mmHg before the application of 17beta-estradiol (0.01 microg/ml) to the spinal cord, whereas it averaged only 23 +/- 4 mmHg 30 min after application (P < 0.05). Recovery of the pressor response to contraction was not obtained for 2 h after application of 17beta-estradiol. Application of 17beta-estradiol in a dose of 0.001 microg/ml had no effect on the exercise pressor reflex (n = 5). We conclude that the concentration of 17beta-estradiol required to attenuate the exercise pressor reflex is 1,000 times more dilute in female cats than that needed to attenuate this reflex in male cats.

  2. Nasocardiac reflex during aspiration and injection through a nasogastric tube: An infrequent occurrence.

    PubMed

    Haldar, Rudrashish; Kaur, Jasleen; Bajwa, Sukhminder Jit Singh

    2015-04-01

    Nasocardiac reflex is a relatively less discussed variant of trigeminovagal reflex where the afferent arc of the reflex is represented by any of the branches of the trigeminal nerves, and the efferent arc is via the vagus nerve. Elicitation of this reflex is commonly seen during surgical manipulation and is manifested as bradycardia or even asystole. We report a case where nasocardiac reflex was unusually observed in a patient when aspiration and injection were done through a nasogastric tube.

  3. Nasocardiac reflex during aspiration and injection through a nasogastric tube: An infrequent occurrence

    PubMed Central

    Haldar, Rudrashish; Kaur, Jasleen; Bajwa, Sukhminder Jit Singh

    2015-01-01

    Nasocardiac reflex is a relatively less discussed variant of trigeminovagal reflex where the afferent arc of the reflex is represented by any of the branches of the trigeminal nerves, and the efferent arc is via the vagus nerve. Elicitation of this reflex is commonly seen during surgical manipulation and is manifested as bradycardia or even asystole. We report a case where nasocardiac reflex was unusually observed in a patient when aspiration and injection were done through a nasogastric tube. PMID:25878434

  4. Modulation of trigeminal reflex excitability in migraine: effects of attention and habituation on the blink reflex.

    PubMed

    de Tommaso, Marina; Murasecco, Donatella; Libro, Giuseppe; Guido, Marco; Sciruicchio, Vittorio; Specchio, Luigi Maria; Gallai, Virgilio; Puca, Francomichele

    2002-06-01

    The modulation of trigeminal reflex excitability in migraine patients was evaluated during the asymptomatic phase by studying the effects of attention, habituation and preconditioning stimulus on the R2 and R3 components of the blink reflex (BR). Fifty patients suffering from migraine without aura, 20 affected by migraine with aura and 35 sex- and age-matched controls were selected. In subgroups of migraine with-aura and without-aura patients, and normal controls, the blink reflex was elicited during different cognitive situations: (a) spontaneous mental activity; (b) stimulus anticipation; (c) recognition of target numbers. In the remaining subjects, R2 and R3 habituation was evaluated by repetitive stimulation at 1, 5, 10, 15, 20, 25 and 30 s intervals. The R2 and R3 recovery curves were also computed. A reduced R3 threshold with a normal pain threshold was found in migraine with-aura and without-aura patients; the R3 component was not significantly correlated with the pain thresholds in patients and controls. The R2 and R3 components were less influenced by the warning of the stimulus in migraine without-aura and migraine with-aura patients, in comparison with the control group. A slight increase of both R2 and R3 recovery after preconditioning stimulus was also observed in migraine patients, probably caused by a phenomenon of trigeminal hyperexcitability persisting after the last attack. The abnormal BR modulation by alerting expresses in migraine a dysfunction of adaptation capacity to environmental conditions, probably predisposing to migraine.

  5. Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Uri, John J.; Moore, Thomas P.; Pool, Sam L.

    1988-01-01

    Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS.

  6. Assessment of Patellar Tendon Reflex Responses Using Second-Order System Characteristics.

    PubMed

    Steineman, Brett D; Karra, Pavan; Park, Kiwon

    2016-01-01

    Deep tendon reflex tests, such as the patellar tendon reflex (PTR), are widely accepted as simple examinations for detecting neurological disorders. Despite common acceptance, the grading scales remain subjective, creating an opportunity for quantitative measures to improve the reliability and efficacy of these tests. Previous studies have demonstrated the usefulness of quantified measurement variables; however, little work has been done to correlate experimental data with theoretical models using entire PTR responses. In the present study, it is hypothesized that PTR responses may be described by the exponential decay rate and damped natural frequency of a theoretical second-order system. Kinematic data was recorded from both knees of 45 subjects using a motion capture system and correlation analysis found that the mean R (2) value was 0.99. Exponential decay rate and damped natural frequency ranges determined from the sample population were -5.61 to -1.42 and 11.73 rad/s to 14.96 rad/s, respectively. This study confirmed that PTR responses strongly correlate to a second-order system and that exponential decay rate and undamped natural frequency are novel measurement variables to accurately measure PTR responses. Therefore, further investigation of these measurement variables and their usefulness in grading PTR responses is warranted.

  7. An internal model of head kinematics predicts the influence of head orientation on reflexive eye movements.

    PubMed

    Zupan, L H; Merfeld, D M

    2005-09-01

    Our sense of self-motion and self-orientation results from combining information from different sources. We hypothesize that the central nervous system (CNS) uses internal models of the laws of physics to merge cues provided by different sensory systems. Different models that include internal models have been proposed; we focus herein on that referred to as the sensory weighting model. For simplicity, we isolate the portion of the sensory weighting model that estimates head angular velocity: it includes an inverse internal model of head kinematics and an 'idiotropic' vector aligned with the main body axis. Following a post-rotatory tilt in the dark, which is a rapid tilt following a constant-velocity rotation about an earth-vertical axis, the inverse internal model is applied to conflicting vestibular signals. Consequently, the CNS computes an inaccurate estimate of head angular velocity that shifts toward alignment with an estimate of gravity. Since reflexive eye movements known as vestibulo-ocular reflexes (VOR) compensate for this estimate of head angular velocity, the model predicts that the VOR rotation axis shifts toward alignment with this estimate of gravity and that the VOR time constant depends on final head orientation. These predictions are consistent with experimental data.

  8. Submaximal fatigue of the hamstrings impairs specific reflex components and knee stability.

    PubMed

    Melnyk, Mark; Gollhofer, Albert

    2007-05-01

    Rupture of the anterior cruciate ligament (ACL) is one of the most serious sports-related injuries and requires long recovery time. The quadriceps and hamstring muscles are functionally important to control stability of the knee joint complex. Fatigue, however, is an important factor that may influence stabilizing control and thus cause ACL injuries. The objective of this study was therefore to assess how submaximal fatigue exercises of the hamstring muscles affect anterior tibial translation as a direct measure of knee joint stability. While 15 test participants were standing upright with the knees in 30 degrees of flexion, anterior tibial translation was induced by a force of 315 N. Two linear potentiometers placed on the tibial tuberosity and the patella recorded tibial motion relative to the femur. Reflex latencies and neuromuscular hamstring activity were determined using surface electromyography (EMG). Muscle fatigue produced a significant longer latency for the monosynaptic reflex latencies, whereas no differences in the latencies of the medium latency component were found. Fatigue significantly reduced EMG amplitudes of the short and medium latency components. These alterations were in line with significantly increased anterior tibial translation. Our results suggest that hamstring fatigue is effectively associated with mechanical loss of knee stability. This decrease in joint stability may at least in part explain higher risk of ACL injury, especially in fatigued muscles. Furthermore, we discuss why the present findings indicate that reduced motor activity rather than the extended latency of the first hamstring response is the reason for possible failure.

  9. An internal model of head kinematics predicts the influence of head orientation on reflexive eye movements

    NASA Astrophysics Data System (ADS)

    Zupan, L. H.; Merfeld, D. M.

    2005-09-01

    Our sense of self-motion and self-orientation results from combining information from different sources. We hypothesize that the central nervous system (CNS) uses internal models of the laws of physics to merge cues provided by different sensory systems. Different models that include internal models have been proposed; we focus herein on that referred to as the sensory weighting model (Zupan et al 2002 Biol. Cybern. 86 209-30). For simplicity, we isolate the portion of the sensory weighting model that estimates head angular velocity: it includes an inverse internal model of head kinematics and an 'idiotropic' vector aligned with the main body axis. Following a post-rotatory tilt in the dark, which is a rapid tilt following a constant-velocity rotation about an earth-vertical axis, the inverse internal model is applied to conflicting vestibular signals. Consequently, the CNS computes an inaccurate estimate of head angular velocity that shifts toward alignment with an estimate of gravity. Since reflexive eye movements known as vestibulo-ocular reflexes (VOR) compensate for this estimate of head angular velocity, the model predicts that the VOR rotation axis shifts toward alignment with this estimate of gravity and that the VOR time constant depends on final head orientation. These predictions are consistent with experimental data.

  10. Massage and stretching reduce spinal reflex excitability without affecting twitch contractile properties.

    PubMed

    Behm, David G; Peach, Ashley; Maddigan, Meaghan; Aboodarda, Saied Jalal; DiSanto, Mario C; Button, Duane C; Maffiuletti, Nicola A

    2013-10-01

    Both stretching and massage can increase range of motion. Whereas the stretching-induced increases in ROM have been attributed to changes in neural and muscle responses, there is no literature investigating the ROM mechanisms underlying the interaction of stretch and massage. The objective of this paper was to evaluate changes in neural and evoked muscle responses with two types of massage and static stretching. With this repeated measures design, 30s of plantar flexors musculotendinous junction (MTJ) and tapotement (TAP) massage were implemented either with or without 1min of concurrent stretching as well as a control condition. Measures included the soleus maximum H-reflex/M-wave (H/M) ratio, as well as electromechanical delay (EMD), and evoked contractile properties of the triceps surae. With the exception of EMD, massage and stretch did not significantly alter triceps surae evoked contractile properties. Massage with and without stretching decreased the soleus H/M ratio. Both TAP conditions provided greater H/M ratio depression than MTJ massage while the addition of stretch provided the greatest inhibition. Both massage types when combined with stretching increased the duration of the EMD. In conclusion, MTJ and TAP massage as well as stretching decreased spinal reflex excitability, with TAP providing the strongest suppression. While static stretching prolongs EMD, massage did not affect contractile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Training-induced adaptive plasticity in human somatosensory reflex pathways.

    PubMed

    Zehr, E Paul

    2006-12-01

    This paper reviews evidence supporting adaptive plasticity in muscle and cutaneous afferent reflex pathways induced by training and rehabilitative interventions. The perspective is advanced that the behavioral and functional relevance of any intervention and the reflex pathway under study should be considered when evaluating both adaptation and transfer. A cornerstone of this concept can be found in acute task-dependent reflex modulation. Because the nervous system allows the expression of a given reflex according to the motor task, an attempt to evaluate the training adaptation should also be evoked under the same conditions as training bearing in mind the functional role of the pathway under study. Within this framework, considerable evidence supports extensive adaptive plasticity in human muscle afferent pathways in the form of operant conditioning, strength training, skill training, and locomotor training or retraining. Directly comparable evidence for chronic adaptation in cutaneous reflex pathways is lacking. However, activity-dependent plasticity in cutaneous pathways is documented particularly in approaches to neurological rehabilitation. Overall, the adaptive range for human muscle afferent reflexes appears bidirectional (that is, increased or reduced amplitudes) and on the order of 25-50%. The adaptive range for cutaneous pathways is currently uncertain.

  12. Effect of hypoxia and hypercapina on the airways defence reflexes.

    PubMed

    Tatár, M; Tarkanov, I A; Korpás, J; Kulik, A M

    1987-01-01

    In experiments on 10 adult anaesthetized cats (pentobarbital 30 mg.kg-1 i.p.) the effect of stimultaneous hypoxia and hypercapnia was studied on the defence respiratory reflexes of the airways. Expiratory reflex and cough were elicited by mechanical stimulation of the airways mucosa, and the obtained values were evaluated on basis of the intrapleural pressure. Inhalation of the hypoxic-hypercapnic gas mixture (11% + 7% CO2 in N2) for 15 minutes led to a significant decrease of respiratory frequency, tidal volume and PaCO2, while pHa and PaCO2 also decreased significantly together with the intensity of the expiratory reflex and that of cough. Recent studies, showed that in the course of the effect of hypoxia (11% O2) and of hypercapnia (5% CO2), cough intensity decreased, but the change was not significant. The decrease of the intensity of respiratory defence reflexes under hypoxic-hypercapnic conditions might have been due to the changes of centrally controlling structures, or to the effector part of the reflex arc, resulting from fatigue of the respiratory muscles. The possible effect of anaesthesia exerting a significant influence on the intensity and character of airways defence reflexes could not be excluded.

  13. Changes in nociceptive reflex facilitation during carrageenan-induced arthritis.

    PubMed

    Herrero, J F; Cervero, F

    1996-04-22

    Facilitation of neuronal responses induced by repetitive electrical stimulation of C-fibres (wind-up) is thought to be a substrate of hyperalgesia. There is little information on how these responses are in turn modified during hyperalgesia, and the extent to which hyperalgesic states also induce a facilitation of the neuronal responses mediated by A-fibres. The current study was undertaken in order to evaluate the effects of peripheral inflammation and stimulus presentation on the facilitation of nociceptive reflexes. Flexor reflexes, recorded as single motor units, were evoked in rats by cycles of low and high frequency electrical stimulation with pulse durations of 0.2, 0.5 and 2 ms. Responses were studied in control and inflammatory conditions, using the carrageenan-induced mono-arthritis model. The results show that the facilitation of late (C-fibre mediated) responses was proportional to the pulse duration of stimulation, as well as to the stimulation frequency. Facilitation was always higher when animals were subjected to inflammation. In inflammatory conditions, facilitation of reflexes was observed not only for late (C-fibre mediated) but also for early (A-fibre mediated) reflex responses. However, the facilitation of these early responses was not proportional to the intensity of stimulation. Thus, in arthritic animals, late (C-fibre mediated) flexion reflexes elicited from the skin, are facilitated and early (A-fibre mediated) reflexes are not only facilitated but, in addition, show a novel wind-up phenomenon.

  14. Frequency of spinal reflex movements in brain-dead patients.

    PubMed

    Döşemeci, L; Cengiz, M; Yilmaz, M; Ramazanoĝlu, A

    2004-01-01

    Spontaneous and reflex movements may occur in brain-dead patients. These movements originate from spinal cord neurons and do not preclude a brain-death diagnosis. In this study, we sought to determine the frequency and characteristics of motor movements in patients who fulfilled diagnostic criteria for brain death. Patients admitted to our department between January 2000 and March 2003 and diagnosed as brain-dead were prospectively evaluated in terms of spinal reflexes. Clinical brain death was diagnosed according to our national law. We also prefer to document the diagnosis of brain death with an EEG and/or TCD. Spinal reflex movements were observed in 18 out of 134 (13.4%) brain-dead patients during the study period. Lazarus sign, the most dramatic and complex movement seen in brain-dead patients, was observed a few times in two patients during an apnea test, an oculocephalic test, after a painful stimulus, and after removal of a ventilator. The other reflex movements observed in our brain-dead patients were finger and toe jerks, extension at arms and shoulders, and flexion of arms and feet. The occurrence of spinal reflexes in brain-dead patients may certainly delay decision making, such as starting a transplantation procedure, because of difficulties in convincing the family or even a physician taking part in the diagnosis of brain death. An awareness of spinal reflexes may prevent delays in and misinterpretations of the brain-death diagnosis.

  15. Functional principal component analysis of H-reflex recruitment curves.

    PubMed

    Kipp, Kristof; Johnson, Samuel T; Hoffman, Mark A

    2011-04-30

    The primary purpose of this study was to use functional principal component analysis (FPCA) to analyze Hoffman-reflex (H-reflex) recruitment curves. Smoothed and interpolated recruitment curves from 38 participants were used for analysis. Standard methods were used to calculate three discrete variables (i.e., H(max)/M(max) ratio, H(th), H(slp)). FPCA was then used to extract principal component functions (PCFs) from the processed recruitment curves. PCF scores were calculated to determine how much each PCF contributed to an individuals' recruitment curve. The analysis extracted three PCFs, and three sets of PCF scores. Correlation analyses and systematic variation in the PCF scores indicated that the scores for the first PCF were primarily correlated to H-reflex threshold (H(th)) and that the scores for the second and third PCFs were correlated to H-reflex magnitude (H(max)/M(max) ratio) and slope (H(slp)), respectively. In addition, results from the FPCA indicated that the first PCF explained 56.0% of the variance between all H-reflex recruitment curves, whereas the second and third PCFs explained 24.1% and 13.0%, respectively. The high correlations indicate FPCA-derived PCFs capture similar physiological information as the standard discrete variables and suggest that application of FPCA to H-reflex recruitment curves could be used in future studies to complement traditional analyses that investigate excitability of the motoneuron pool. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Diving bradycardia is not correlated to the oculocardiac reflex.

    PubMed

    Folgering, H; Wijnheymer, P; Geeraedts, L

    1983-08-01

    Both facial immersion in cold water and pressure on the eyeball cause reflex bradycardia. These reflexes are called diving reflex and oculocardiac reflex, respectively. The latter is sometimes used in diving medicine to estimate the risk of severe diving bradycardia. The purpose of this study was to quantify the effects of both reflexes on heart rate in 15 subjects. All subjects performed four tests: (1) breath-holding (2) breath-holding and facial immersion in water of 10 degrees, 15 degrees, and 20 degrees C; (3) facial immersion in water and snorkeling; (4) application of pressure of 30, 50, and 70 mmHg on the eyeball. In seven subjects an additional test was done: (5) eyeball pressures during breath-holding. It was shown that the intensity of the oculocardiac reflex is not a good indication of the bradycardia that can be expected during diving. It is proposed that breath-holding with facial immersion in water of 20 degrees C or colder during at least 10 s is a more appropriate test to assess the possibility of severe diving bradycardia and cardiac arrhythmias.

  17. Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex

    PubMed Central

    Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.

    2010-01-01

    The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664

  18. [Dissociated near reflex and accommodative convergence excess].

    PubMed

    Gräf, M; Becker, R; Kloss, S

    2004-10-01

    We report on an 8-year-old boy whose near reflex could be elicited exclusively when the left eye was fixing (LF) but not when the right eye was fixing (RF). With RE +1.25/-1.25/169 degrees and LE +1.0/-0.75/24 degrees, the visual acuity was 1.0 OU at 5 m and RE 0.5, LE 1.0 at 0.3 m improving to 1.0 OU by a near addition of 3.0 D. Stereopsis was 100 degrees (Titmus test). The prism and cover test revealed an esophoria of 4 degrees at 5 m. At 3 m there was an esophoria of 6 degrees (RF) and an esotropia of 28 degrees (LF), compensating to an esophoria of 3 degrees (RF/LF) with a near addition of 3.0 D. Accommodation and the pupillary near reaction (OU) were hardly elicitable during RF. During LF, retinoscopy revealed an accommodation of 8 D (OU) and the pupils constricted normally. Correction by bifocal glasses yielded orthotropia with random dot stereopsis at near.

  19. Vestibuloocular reflex of rhesus monkeys after spaceflight

    NASA Technical Reports Server (NTRS)

    Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei

    1992-01-01

    The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.

  20. The canine phrenic-to-intercostal reflex

    PubMed Central

    De Troyer, André

    1998-01-01

    Paralysis of the diaphragm in the dog causes a non-vagal, non-chemical increase in the activity of the inspiratory intercostal muscles. In the present studies, the hypothesis was tested that phrenic afferent fibres may elicit a reflex inhibition of inspiratory intercostal activity. The electrical activity of the three groups of inspiratory intercostal muscles (parasternal intercostals, external intercostals, levator costae) was recorded in twenty vagotomized, spontaneously breathing dogs, and the proximal end of one or both C5 phrenic nerve roots was stimulated during inspiration. Stimulation of the ipsilateral and contralateral C5 phrenic roots caused an immediate reduction in inspiratory intercostal activity. This reduction was abolished when phrenic stimulation was repeated after section of the C5 dorsal roots. The reduction in external intercostal and levator costae activity during bilateral C5 afferent stimulation appeared when the stimulus strength was 3 times the motor threshold and it increased in magnitude when stimulus intensity was increased further. In contrast, the reduction in parasternal intercostal activity occurred only when the stimulus strength was 12 times the motor threshold. These observations confirm the hypothesis that diaphragmatic receptors may reflexly inhibit efferent activity to the inspiratory intercostal muscles, in particular the external intercostals and levator costae. This inhibition appears to be primarily mediated by small myelinated fibres. PMID:9518742

  1. Crossed reflex reversal during human locomotion.

    PubMed

    Gervasio, Sabata; Farina, Dario; Sinkjær, Thomas; Mrachacz-Kersting, Natalie

    2013-05-01

    During human walking, precise coordination between the two legs is required in order to react promptly to any sudden hazard that could threaten stability. The networks involved in this coordination are not yet completely known, but a direct spinal connection between soleus (SOL) muscles has recently been revealed. For this response to be functional, as previously suggested, we hypothesize that it will be accompanied by a reaction in synergistic muscles, such as gastrocnemius lateralis (GL), and that a reversal of the response would occur when an opposite reaction is required. In the present study, surface EMGs of contralateral SOL and GL were analyzed after tibial nerve (TN), sural nerve (SuN), and medial plantar nerve (MpN) stimulation during two tasks in which opposite reactions are functionally expected: normal walking (NW), just before ipsilateral heel strike, and hybrid walking (HW) (legs walking in opposite directions), at ipsilateral push off and contralateral touchdown. Early crossed facilitations were observed in the contralateral GL after TN stimulation during NW, and a reversal of such responses occurred during HW. These results underline the functional significance of short-latency crossed responses and represent the first evidence for short-latency reflex reversal in the contralateral limb for humans. Muscle afferents seem to mediate the response during NW, while during HW cutaneous afferents are likely involved. It is thus possible that different afferents mediate the crossed response during different tasks.

  2. Artificial balancer - supporting device for postural reflex.

    PubMed

    Wojtara, Tytus; Sasaki, Makoto; Konosu, Hitoshi; Yamashita, Masashi; Shimoda, Shingo; Alnajjar, Fady; Kimura, Hidenori

    2012-02-01

    The evolutionarily novel ability to keep ones body upright while standing or walking, the human balance, deteriorates in old age or can be compromised after accidents or brain surgeries. With the aged society, age related balance problems are on the rise. Persons with balance problems are more likely to fall during their everyday life routines. Especially in elderly, falls can lead to bone fractures making the patient bedridden, weakening the body and making it more prone to other diseases. Health care expenses for a fall patient are often very high. There is a great deal of research being done on exoskeletons and power assists. However, these technologies concentrate mainly on the amplifications of human muscle power while balance has to be provided by the human themself. Our research has been focused on supporting human balance in harmony with the human's own posture control mechanisms such as postural reflexes. This paper proposes an artificial balancer that supports human balance through acceleration of a flywheel attached to the body. Appropriate correcting torques are generated through our device based on the measurements of body deflections. We have carried out experiments with test persons standing on a platform subject to lateral perturbations and ambulatory experiments while walking on a balance beam. These experiments have demonstrated the effectiveness of our device in supporting balance and the possibility of enhancing balance-keeping capability in human beings through the application of external torque.

  3. Compensatory adrenal growth - A neurally mediated reflex

    NASA Technical Reports Server (NTRS)

    Dallman, M. F.; Engeland, W. C.; Shinsako, J.

    1976-01-01

    The responses of young rats to left adrenalectomy or left adrenal manipulation were compared to surgical sham adrenalectomy in which adrenals were observed but not touched. At 12 h right adrenal wet weight, dry weight, DNA, RNA, and protein content were increased (P less than 0.05) after the first two operations. Left adrenal manipulation resulted in increased right adrenal weight at 12 h but no change in left adrenal weight. Sequential manipulation of the left adrenal at time 0 and the right adrenal at 12 h resulted in an enlarged right adrenal at 12 h (P less than 0.01), and an enlarged left adrenal at 24 h (P less than 0.05), showing that the manipulated gland was capable of response. Bilateral adrenal manipulation of the adrenal glands resulted in bilateral enlargement of 12 h (P less than 0.01). Taken together with previous results, these findings strongly suggest that compensatory adrenal growth is a neurally mediated reflex.

  4. Vestibuloocular reflex of rhesus monkeys after spaceflight

    NASA Technical Reports Server (NTRS)

    Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei

    1992-01-01

    The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.

  5. Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors.

    PubMed

    Kurtzer, Isaac; Meriggi, Jenna; Parikh, Nidhi; Saad, Kenneth

    2016-04-01

    Postural corrections of the upper limb are required in tasks ranging from handling an umbrella in the changing wind to securing a wriggling baby. One complication in this process is the mechanical interaction between the different segments of the arm where torque applied at one joint induces motion at multiple joints. Previous studies have shown the long-latency reflexes of shoulder muscles (50-100 ms after a limb perturbation) account for these mechanical interactions by integrating information about motion of both the shoulder and elbow. It is less clear whether long-latency reflexes of elbow muscles exhibit a similar capability and what is the relation between the responses of shoulder and elbow muscles. The present study utilized joint-based loads tailored to the subjects' arm dynamics to induce well-controlled displacements of their shoulder and elbow. Our results demonstrate that the long-latency reflexes of shoulder and elbow muscles integrate motion from both joints: the shoulder and elbow flexors respond to extension at both joints, whereas the shoulder and elbow extensors respond to flexion at both joints. This general pattern accounts for the inherent flexion-extension coupling of the two joints arising from the arm's intersegmental dynamics and is consistent with spindle-based reciprocal excitation of shoulder and elbow flexors, reciprocal excitation of shoulder and elbow extensors, and across-joint inhibition between the flexors and extensors.

  6. Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors

    PubMed Central

    Meriggi, Jenna; Parikh, Nidhi; Saad, Kenneth

    2016-01-01

    Postural corrections of the upper limb are required in tasks ranging from handling an umbrella in the changing wind to securing a wriggling baby. One complication in this process is the mechanical interaction between the different segments of the arm where torque applied at one joint induces motion at multiple joints. Previous studies have shown the long-latency reflexes of shoulder muscles (50–100 ms after a limb perturbation) account for these mechanical interactions by integrating information about motion of both the shoulder and elbow. It is less clear whether long-latency reflexes of elbow muscles exhibit a similar capability and what is the relation between the responses of shoulder and elbow muscles. The present study utilized joint-based loads tailored to the subjects' arm dynamics to induce well-controlled displacements of their shoulder and elbow. Our results demonstrate that the long-latency reflexes of shoulder and elbow muscles integrate motion from both joints: the shoulder and elbow flexors respond to extension at both joints, whereas the shoulder and elbow extensors respond to flexion at both joints. This general pattern accounts for the inherent flexion-extension coupling of the two joints arising from the arm's intersegmental dynamics and is consistent with spindle-based reciprocal excitation of shoulder and elbow flexors, reciprocal excitation of shoulder and elbow extensors, and across-joint inhibition between the flexors and extensors. PMID:26864766

  7. Vibration-induced finger flexion reflex and inhibitory effect of acupuncture on this reflex in cervical spinal cord injury patients.

    PubMed

    Takakura, N; Iijima, S; Kanamaru, A; Shibuya, M; Homma, I; Ohashi, M

    1996-12-01

    The vibration-induced finger flexion reflex (VFR) and the inhibitory effect of acupuncture on this reflex were studied in five cervical spinal cord injury patients (C-SCIs). VFR, which is a tonic finger flexion reflex induced by vibratory stimulation on the finger tip, was induced before and after acupuncture was carried out on the same hand. A stainless steel needle was inserted to the Hoku point. As in healthy subjects, VFR was performed and it was significantly inhibited by acupuncture in the C-SCIs; mean maximum VFR was 204.2 +/- S.E. 68.6 g before and 119.8 +/- S.E. 42.2 g after acupuncture. The present results suggest that at least part of the reflex center for VFR is located in the spinal cord and that part of VFR inhibition by acupuncture may be mediated via the spinal cord.

  8. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping.

    PubMed

    Ritzmann, R; Kramer, A; Gollhofer, A; Taube, W

    2013-06-01

    The effect of whole body vibration (WBV) on reflex responses is controversially discussed in the literature. In this study, three different modalities of reflex activation with increased motor complexity have been selected to clarify the effects of acute WBV on reflex activation: (1) the electrically evoked H-reflex, (2) the mechanically elicited stretch reflex, and (3) the short-latency response (SLR) during hopping. WBV-induced changes of the H-reflex, the stretch reflex, and the SLR during hopping were recorded in the soleus and gastrocnemius muscles and were analyzed before, during (only the H-reflex), immediately after, 5 min and 10 min after WBV. The main findings were that (1) the H-reflexes were significantly reduced during and at least up to 5 min after WBV, (2) the stretch reflex amplitudes were also significantly reduced immediately after WBV but recovered to their initial amplitudes within 5 min, and (3) the SLR during hopping showed no vibration-induced modulation. With regard to the modalities with low motor complexities, the decreased H- and stretch reflex responses are assumed to point toward a reduced Ia afferent transmission during and after WBV. However, it is assumed that during hopping, the suppression of reflex sensitivity is compensated by facilitatory mechanisms in this complex motor task.

  9. Motion regularization for matting motion blurred objects.

    PubMed

    Lin, Hai Ting; Tai, Yu-Wing; Brown, Michael S

    2011-11-01

    This paper addresses the problem of matting motion blurred objects from a single image. Existing single image matting methods are designed to extract static objects that have fractional pixel occupancy. This arises because the physical scene object has a finer resolution than the discrete image pixel and therefore only occupies a fraction of the pixel. For a motion blurred object, however, fractional pixel occupancy is attributed to the object’s motion over the exposure period. While conventional matting techniques can be used to matte motion blurred objects, they are not formulated in a manner that considers the object’s motion and tend to work only when the object is on a homogeneous background. We show how to obtain better alpha mattes by introducing a regularization term in the matting formulation to account for the object’s motion. In addition, we outline a method for estimating local object motion based on local gradient statistics from the original image. For the sake of completeness, we also discuss how user markup can be used to denote the local direction in lieu of motion estimation. Improvements to alpha mattes computed with our regularization are demonstrated on a variety of examples.

  10. A method of reflexive balancing in a pragmatic, interdisciplinary and reflexive bioethics.

    PubMed

    Ives, Jonathan

    2014-07-01

    In recent years there has been a wealth of literature arguing the need for empirical and interdisciplinary approaches to bioethics, based on the premise that an empirically informed ethical analysis is more grounded, contextually sensitive and therefore more relevant to clinical practice than an 'abstract' philosophical analysis. Bioethics has (arguably) always been an interdisciplinary field, and the rise of 'empirical' (bio)ethics need not be seen as an attempt to give a new name to the longstanding practice of interdisciplinary collaboration, but can perhaps best be understood as a substantive attempt to engage with the nature of that interdisciplinarity and to articulate the relationship between the many different disciplines (some of them empirical) that contribute to the field. It can also be described as an endeavour to explain how different disciplinary approaches can be integrated to effectively answer normative questions in bioethics, and fundamental to that endeavour is the need to think about how a robust methodology can be articulated that successfully marries apparently divergent epistemological and metaethical perspectives with method. This paper proposes 'Reflexive Bioethics' (RB) as a methodology for interdisciplinary and empirical bioethics, which utilizes a method of 'Reflexive Balancing' (RBL). RBL has been developed in response to criticisms of various forms of reflective equilibrium, and is built upon a pragmatic characterization of Bioethics and a 'quasi-moral foundationalism', which allows RBL to avoid some of the difficulties associated with RE and yet retain the flexible egalitarianism that makes it intuitively appealing to many.

  11. Modulation of high-frequency vestibuloocular reflex during visual tracking in humans

    NASA Technical Reports Server (NTRS)

    Das, V. E.; Leigh, R. J.; Thomas, C. W.; Averbuch-Heller, L.; Zivotofsky, A. Z.; Discenna, A. O.; Dell'Osso, L. F.

    1995-01-01

    1. Humans may visually track a moving object either when they are stationary or in motion. To investigate visual-vestibular interaction during both conditions, we compared horizontal smooth pursuit (SP) and active combined eye-head tracking (CEHT) of a target moving sinusoidally at 0.4 Hz in four normal subjects while the subjects were either stationary or vibrated in yaw at 2.8 Hz. We also measured the visually enhanced vestibuloocular reflex (VVOR) during vibration in yaw at 2.8 Hz over a peak head velocity range of 5-40 degrees/s. 2. We found that the gain of the VVOR at 2.8 Hz increased in all four subjects as peak head velocity increased (P < 0.001), with minimal phase changes, such that mean retinal image slip was held below 5 degrees/s. However, no corresponding modulation in vestibuloocular reflex gain occurred with increasing peak head velocity during a control condition when subjects were rotated in darkness. 3. During both horizontal SP and CEHT, tracking gains were similar, and the mean slip speed of the target's image on the retina was held below 5.5 degrees/s whether subjects were stationary or being vibrated at 2.8 Hz. During both horizontal SP and CEHT of target motion at 0.4 Hz, while subjects were vibrated in yaw, VVOR gain for the 2.8-Hz head rotations was similar to or higher than that achieved during fixation of a stationary target. This is in contrast to the decrease of VVOR gain that is reported while stationary subjects perform CEHT.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Modulation of high-frequency vestibuloocular reflex during visual tracking in humans.

    PubMed

    Das, V E; Leigh, R J; Thomas, C W; Averbuch-Heller, L; Zivotofsky, A Z; Discenna, A O; Dell'Osso, L F

    1995-08-01

    1. Humans may visually track a moving object either when they are stationary or in motion. To investigate visual-vestibular interaction during both conditions, we compared horizontal smooth pursuit (SP) and active combined eye-head tracking (CEHT) of a target moving sinusoidally at 0.4 Hz in four normal subjects while the subjects were either stationary or vibrated in yaw at 2.8 Hz. We also measured the visually enhanced vestibuloocular reflex (VVOR) during vibration in yaw at 2.8 Hz over a peak head velocity range of 5-40 degrees/s. 2. We found that the gain of the VVOR at 2.8 Hz increased in all four subjects as peak head velocity increased (P < 0.001), with minimal phase changes, such that mean retinal image slip was held below 5 degrees/s. However, no corresponding modulation in vestibuloocular reflex gain occurred with increasing peak head velocity during a control condition when subjects were rotated in darkness. 3. During both horizontal SP and CEHT, tracking gains were similar, and the mean slip speed of the target's image on the retina was held below 5.5 degrees/s whether subjects were stationary or being vibrated at 2.8 Hz. During both horizontal SP and CEHT of target motion at 0.4 Hz, while subjects were vibrated in yaw, VVOR gain for the 2.8-Hz head rotations was similar to or higher than that achieved during fixation of a stationary target. This is in contrast to the decrease of VVOR gain that is reported while stationary subjects perform CEHT.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The Cerebellar Nodulus/Uvula Integrates Otolith Signals for the Translational Vestibulo-Ocular Reflex

    PubMed Central

    Walker, Mark F.; Tian, Jing; Shan, Xiaoyan; Tamargo, Rafael J.; Ying, Howard; Zee, David S.

    2010-01-01

    Background The otolith-driven translational vestibulo-ocular reflex (tVOR) generates compensatory eye movements to linear head accelerations. Studies in humans indicate that the cerebellum plays a critical role in the neural control of the tVOR, but little is known about mechanisms of this control or the functions of specific cerebellar structures. Here, we chose to investigate the contribution of the nodulus and uvula, which have been shown by prior studies to be involved in the processing of otolith signals in other contexts. Methodology/Principal Findings We recorded eye movements in two rhesus monkeys during steps of linear motion along the interaural axis before and after surgical lesions of the cerebellar uvula and nodulus. The lesions strikingly reduced eye velocity during constant-velocity motion but had only a small effect on the response to initial head acceleration. We fit eye velocity to a linear combination of head acceleration and velocity and to a dynamic mathematical model of the tVOR that incorporated a specific integrator of head acceleration. Based on parameter optimization, the lesion decreased the gain of the pathway containing this new integrator by 62%. The component of eye velocity that depended directly on head acceleration changed little (gain decrease of 13%). In a final set of simulations, we compared our data to the predictions of previous models of the tVOR, none of which could account for our experimental findings. Conclusions/ Significance Our results provide new and important information regarding the neural control of the tVOR. Specifically, they point to a key role for the cerebellar nodulus and uvula in the mathematical integration of afferent linear head acceleration signals. This function is likely to be critical not only for the tVOR but also for the otolith-mediated reflexes that control posture and balance. PMID:21085587

  14. Modulation of high-frequency vestibuloocular reflex during visual tracking in humans

    NASA Technical Reports Server (NTRS)

    Das, V. E.; Leigh, R. J.; Thomas, C. W.; Averbuch-Heller, L.; Zivotofsky, A. Z.; Discenna, A. O.; Dell'Osso, L. F.

    1995-01-01

    1. Humans may visually track a moving object either when they are stationary or in motion. To investigate visual-vestibular interaction during both conditions, we compared horizontal smooth pursuit (SP) and active combined eye-head tracking (CEHT) of a target moving sinusoidally at 0.4 Hz in four normal subjects while the subjects were either stationary or vibrated in yaw at 2.8 Hz. We also measured the visually enhanced vestibuloocular reflex (VVOR) during vibration in yaw at 2.8 Hz over a peak head velocity range of 5-40 degrees/s. 2. We found that the gain of the VVOR at 2.8 Hz increased in all four subjects as peak head velocity increased (P < 0.001), with minimal phase changes, such that mean retinal image slip was held below 5 degrees/s. However, no corresponding modulation in vestibuloocular reflex gain occurred with increasing peak head velocity during a control condition when subjects were rotated in darkness. 3. During both horizontal SP and CEHT, tracking gains were similar, and the mean slip speed of the target's image on the retina was held below 5.5 degrees/s whether subjects were stationary or being vibrated at 2.8 Hz. During both horizontal SP and CEHT of target motion at 0.4 Hz, while subjects were vibrated in yaw, VVOR gain for the 2.8-Hz head rotations was similar to or higher than that achieved during fixation of a stationary target. This is in contrast to the decrease of VVOR gain that is reported while stationary subjects perform CEHT.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Self-motion direction discrimination in the visually impaired.

    PubMed

    Moser, Ivan; Grabherr, Luzia; Hartmann, Matthias; Mast, Fred W

    2015-11-01

    Despite the close interrelation between vestibular and visual processing (e.g., vestibulo-ocular reflex), surprisingly little is known about vestibular function in visually impaired people. In this study, we investigated thresholds of passive whole-body motion discrimination (leftward vs. rightward) in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the interaural axis at two different frequencies (0.33 and 2 Hz) by means of a motion platform. Superior performance of visually impaired participants was found in the 0.33 Hz roll tilt condition. No differences were observed in the other motion conditions. Roll tilts stimulate the semicircular canals and otoliths simultaneously. The results could thus reflect a specific improvement in canal-otolith integration in the visually impaired and are consistent with the compensatory hypothesis, which implies that the visually impaired are able to compensate the absence of visual input.

  16. Primate translational vestibuloocular reflexes. II. Version and vergence responses to fore-aft motion

    NASA Technical Reports Server (NTRS)

    McHenry, M. Q.; Angelaki, D. E.

    2000-01-01

    To maintain binocular fixation on near targets during fore-aft translational disturbances, largely disjunctive eye movements are elicited the amplitude and direction of which should be tuned to the horizontal and vertical eccentricities of the target. The eye movements generated during this task have been investigated here as trained rhesus monkeys fixated isovergence targets at different horizontal and vertical eccentricities during 10 Hz fore-aft oscillations. The elicited eye movements complied with the geometric requirements for binocular fixation, although not ideally. First, the corresponding vergence angle for which the movement of each eye would be compensatory was consistently less than that dictated by the actual fixation parameters. Second, the eye position with zero sensitivity to translation was not straight ahead, as geometrically required, but rather exhibited a systematic dependence on viewing distance and vergence angle. Third, responses were asymmetric, with gains being larger for abducting and downward compared with adducting and upward gaze directions, respectively. As frequency was varied between 4 and 12 Hz, responses exhibited high-pass filter properties with significant differences between abduction and adduction responses. As a result of these differences, vergence sensitivity increased as a function of frequency with a steeper slope than that of version. Despite largely undercompensatory version responses, vergence sensitivity was closer to ideal. Moreover, the observed dependence of vergence sensitivity on vergence angle, which was varied between 2.5 and 10 MA, was largely linear rather than quadratic (as geometrically predicted). We conclude that the spatial tuning of eye velocity sensitivity as a function of gaze and viewing distance follows the general geometric dependencies required for the maintenance of foveal visual acuity. However, systematic deviations from ideal behavior exist that might reflect asymmetric processing of abduction/adduction responses perhaps because of different functional dependencies of version and vergence eye movement components during translation.

  17. Primate translational vestibuloocular reflexes. II. Version and vergence responses to fore-aft motion

    NASA Technical Reports Server (NTRS)

    McHenry, M. Q.; Angelaki, D. E.

    2000-01-01

    To maintain binocular fixation on near targets during fore-aft translational disturbances, largely disjunctive eye movements are elicited the amplitude and direction of which should be tuned to the horizontal and vertical eccentricities of the target. The eye movements generated during this task have been investigated here as trained rhesus monkeys fixated isovergence targets at different horizontal and vertical eccentricities during 10 Hz fore-aft oscillations. The elicited eye movements complied with the geometric requirements for binocular fixation, although not ideally. First, the corresponding vergence angle for which the movement of each eye would be compensatory was consistently less than that dictated by the actual fixation parameters. Second, the eye position with zero sensitivity to translation was not straight ahead, as geometrically required, but rather exhibited a systematic dependence on viewing distance and vergence angle. Third, responses were asymmetric, with gains being larger for abducting and downward compared with adducting and upward gaze directions, respectively. As frequency was varied between 4 and 12 Hz, responses exhibited high-pass filter properties with significant differences between abduction and adduction responses. As a result of these differences, vergence sensitivity increased as a function of frequency with a steeper slope than that of version. Despite largely undercompensatory version responses, vergence sensitivity was closer to ideal. Moreover, the observed dependence of vergence sensitivity on vergence angle, which was varied between 2.5 and 10 MA, was largely linear rather than quadratic (as geometrically predicted). We conclude that the spatial tuning of eye velocity sensitivity as a function of gaze and viewing distance follows the general geometric dependencies required for the maintenance of foveal visual acuity. However, systematic deviations from ideal behavior exist that might reflect asymmetric processing of abduction/adduction responses perhaps because of different functional dependencies of version and vergence eye movement components during translation.

  18. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    PubMed Central

    Sloot, Lizeth H.; van den Noort, Josien C.; van der Krogt, Marjolein M.; Bruijn, Sjoerd M.; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  19. Bilateral Reflex Fluctuations during Rhythmic Movement of Remote Limb Pairs

    PubMed Central

    Mezzarane, Rinaldo A.; Nakajima, Tsuyoshi; Zehr, E. Paul

    2017-01-01

    The modulation of spinal cord excitability during rhythmic limb movement reflects the neuronal coordination underlying actions of the arms and legs. Integration of network activity in the spinal cord can be assessed by reflex variability between the limbs, an approach so far very little studied. The present work addresses this question by eliciting Hoffmann (H-) reflexes in both limbs to assess if common drive onto bilateral pools of motoneurons influence spinal cord excitability simultaneously or with a delay between sides. A cross-covariance (CCV) sequence between reflexes in both arms or legs was evaluated under conditions providing common drive bilaterally through voluntary muscle contraction and/or rhythmic movement of the remote limbs. For H-reflexes in the flexor carpi radialis (FCR) muscle, either contraction of the FCR or leg cycling induced significant reduction in the amplitude of the peak at the zero lag in the CCV sequence, indicating independent variations in spinal excitability between both sides. In contrast, for H-reflexes in the soleus (SO) muscle, arm cycling revealed no reduction in the amplitude of the peak in the CCV sequence at the zero lag. This suggests a more independent control of the arms compared with the legs. These results provide new insights into the organization of human limb control in rhythmic activity and the behavior of bilateral reflex fluctuations under different motor tasks. From a functional standpoint, changes in the co-variability might reflect dynamic adjustments in reflex excitability that are subsumed under more global control features during locomotion. PMID:28725191

  20. Avian reflex and electroencephalogram responses in different states of consciousness.

    PubMed

    Sandercock, Dale A; Auckburally, Adam; Flaherty, Derek; Sandilands, Victoria; McKeegan, Dorothy E F

    2014-06-22

    Defining states of clinical consciousness in animals is important in veterinary anaesthesia and in studies of euthanasia and welfare assessment at slaughter. The aim of this study was to validate readily observable reflex responses in relation to different conscious states, as confirmed by EEG analysis, in two species of birds under laboratory conditions (35-week-old layer hens (n=12) and 11-week-old turkeys (n=10)). We evaluated clinical reflexes and characterised electroencephalograph (EEG) activity (as a measure of brain function) using spectral analyses in four different clinical states of consciousness: conscious (fully awake), semi-conscious (sedated), unconscious-optimal (general anaesthesia), unconscious-sub optimal (deep hypnotic state), as well as assessment immediately following euthanasia. Jaw or neck muscle tone was the most reliable reflex measure distinguishing between conscious and unconscious states. Pupillary reflex was consistently observed until respiratory arrest. Nictitating membrane reflex persisted for a short time (<1 min) after respiratory arrest and brain death (isoelectric EEG). The results confirm that the nictitating membrane reflex is a conservative measure of death in poultry. Using spectral analyses of the EEG waveforms it was possible to readily distinguish between the different states of clinical consciousness. In all cases, when birds progressed from a conscious to unconscious state; total spectral power (PTOT) significantly increased, whereas median (F50) and spectral edge (F95) frequencies significantly decreased. This study demonstrates that EEG analysis can differentiate between clinical states (and loss of brain function at death) in birds and provides a unique integration of reflex responses and EEG activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The role of the superior laryngeal nerve in esophageal reflexes.

    PubMed

    Lang, I M; Medda, B K; Jadcherla, S; Shaker, R

    2012-06-15

    The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not

  2. Trigeminal Cardiac Reflex and Cerebral Blood Flow Regulation

    PubMed Central

    Lapi, Dominga; Scuri, Rossana; Colantuoni, Antonio

    2016-01-01

    The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals). During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart, and brain and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is sequestered within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing. The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min) by jaw extension in rats produces interesting effects both at systemic and cerebral levels, reducing the arterial blood pressure, and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activate the nitric oxide release by vascular endothelial cells. Therefore, the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension. Opposite effects, such as hypotension, and modulation of cerebral arteriolar tone, were observed, when these responses were compared to those elicited by the diving reflex. PMID:27812317

  3. The role of the superior laryngeal nerve in esophageal reflexes

    PubMed Central

    Medda, B. K.; Jadcherla, S.; Shaker, R.

    2012-01-01

    The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not

  4. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  5. Gravity and Development of Cardiopulmonary Reflex

    NASA Astrophysics Data System (ADS)

    Nagaoka, Shunji; Eno, Yuko; Ohira, Yoshinobu

    Cardio-pulmonary reflex, which our cardiac activity is synchronized to the respiration by autonomic nervous system regulation, is called as "respiratory sinus arrhythmia" and commonly found in adult. The physiological function of the espiratory sinus arrhythmia is considered to maximize the gas exchange during respiration cycle. This respiration induced heart rate variability (RHRV) is only found in mammals and avian showing a remarkable postnatal development, whereas no RHRV in aquatic species such as fish or amphibian. To elucidate our hypothesis that gravity exposure may plays a key role in the postnatal development of RHRV as well as its evolutional origin in these ground animals, we have studied effects of hypergravity (2G) on the postnatal development of RHRV using rat. Pregnant Wister rats were kept in centrifugal cages system for 38 days from 6th days of pregnant mother to have neonates until 23 days old. Electrocardiograph was recorded from the neonates in 2 to 23 days old in 2G group with simultaneous control (1G) group. The RHRV analysis was performed by calculating a component of Fourier power spectral coincide with the respiration frequency. In both groups, averaged resting heart rate gradually increase from 2 to 23 days old. When comparing the heart rate between the two groups, the 2G group indicated significantly lower (240± 8 bpm) than 1G control (326±21 bpm, p¡0.001) in 2 days old, where as no significance in 23 days old. The RHRV of 2 days old neonates in both groups indicated very small magnitude but significantly lower in 2G group than 1G control (p¡0.01). The RHRV gradually increase during the first 2 weeks and then rapid increased to reached 45 fold of magnitude in 1G control, whereas 69 fold in 2G group. The results strongly suggested that the postnatal innervation from respiration to cardiovascular centers was gravity dependent.

  6. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  7. Reflex seizures triggered by cutaneous stimuli.

    PubMed

    Sala-Padró, J; Toledo, M; Sarria, S; Santamarina, E; Gonzalez-Cuevas, M; Sueiras-Gil, M; Salas-Puig, J

    2015-12-01

    Among the different precipitating stimuli for reflex seizures, Touch-Induced Seizures (TIS) and Hot Water Seizures (HWS) are consistently described in different reports. The aim of this study was to analyze the clinical, EEG and image data of patients with TIS and HWS. We retrospectively analyzed patients who were followed up in our Epilepsy Unit and had seizures triggered by these stimuli. All patients were studied with electroencephalography (EEG) and magnetic resonance (MR). We recruited six patients, including five men, with an age range of 30-64 years-old. Four patients had TIS; all them had focal motor seizures after the stimuli, with epileptic foci in the fronto-central regions associated with peri-central gyri lesions on MR. One patient had HWS related to a septo-optic dysplasia with periopercular polymicrogyria, and one patient had focal seizures that evolved into bilateral convulsions triggered by washing the mouth with cold water. We considered this last patient to have water contact-induced seizures (WCIS). Seizures in TIS are most likely focal, without impairment of awareness, and refractory to medical treatment. Antiepileptic drugs can prevent the progression to bilateral convulsion. The origins of such seizures seem to be related to small lesions or epileptogenic zones in the perirolandic areas. Lesional HWS and WCIS are focal seizures that involve impairment of consciousness or focal seizures that evolve to bilateral convulsion, are not such location specific and involve larger ictogenic areas. In both epilepsies, stimulus avoidance is the most effective treatment. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. Reflex epilepsies: experience in Sri Lanka.

    PubMed

    Senanayake, N

    1994-06-01

    Reflex epilepsy (RE) is characterised by seizures that are regularly elicited by some specific stimulus or event mediated by neural pathways. In a prospective study of 1287 epileptic patients seen at Peradeniya, 223 (17.3%) were found to have RE, eating being the commonest stimulus (191 patients, 85.7%). Photosensitive epilepsy (PSE) was relatively rare. Intermittent photic stimulation on 874 unselected epileptic patients produced a positive photoconvulsive response in 60 (6.9%). None had photosensitive seizures, but 3 had a higher frequency of seizures while watching television. Eating epilepsy (EE) had the highest prevalence at Peradeniya (148/1000 epileptic patients). This group was male predominant, and the onset of epilepsy in most cases was in the second decade. The majority experienced partial complex seizures. Repetitive and chronic stimulation of the amygdala during eating is suggested as the mechanism underlying EE. Twenty-one patients had seizures evoked by calculation, problem solving or spatial tasks. Juvenile myoclonic epilepsy was the commonest form of seizure disorder in them. Although PSE itself is rare, self-induced epilepsy (SIE) was common. There were 8 patients who self-induced seizures. The majority were photosensitive and they induced seizures by gazing at the sun and waving a hand in front of the eyes. In the management of REs, clobazam produced impressive results. As for possible seizure-inhibitory mechanisms, our studies on a "Sathi" mediator showed definite EEG changes during mediation. Can mediation increase the seizure-threshold and abort or prevent the propagation of the epileptic discharge? The answer, apart from its possible therapeutic applications, may provide insight into the mechanisms of seizure generation.

  9. Hyperekplexia and stiff-man syndrome: abnormal brainstem reflexes suggest a physiological relationship

    PubMed Central

    Khasani, S; Becker, K; Meinck, H

    2004-01-01

    Background and objectives: Hyperekplexia and the stiff-man syndrome (SMS) are both conditions with exaggerated startle suggesting abnormal brainstem function. Investigation of brainstem reflexes may provide insight into disturbed reflex excitation and inhibition underlying these movement disorders. Patients and methods: Using four-channel EMG, we examined four trigeminal brainstem reflexes (monosynaptic masseter, masseter inhibitory, glabella, and orbicularis oculi blink reflexes) and their spread into pericranial muscles in five patients with familial hyperekplexia (FH), two with acquired hyperekplexia (AH), 10 with SMS, and 15 healthy control subjects. Results: Both FH/AH and SMS patients had abnormal propagation of brainstem reflexes into pericranial muscles. All patients with hyperekplexia showed an abnormal short-latency (15–20 ms) reflex in the trapezius muscle with a characteristic clinical appearance ("head retraction jerk") evoked by tactile or electrical stimulation of the trigeminal nerve, but normal monosynaptic masseter reflexes. Inhibitory brainstem reflexes were attenuated in some FH/AH patients. Four of 10 patients with SMS had similar short-latency reflexes in the neck muscles and frequently showed widespread enhancement of other excitatory reflexes, reflex spasms, and attenuation of inhibitory brainstem reflexes. Conclusion: Reflex excitation is exaggerated and inhibition is attenuated in both stiff-man syndrome and familial or acquired hyperekplexia, indicating a physiological relationship. Reflex transmission in the brainstem appears biased towards excitation which may imply dysfunction of inhibitory glycinergic or GABAergic interneurons, or both. PMID:15314112

  10. Hyperekplexia and stiff-man syndrome: abnormal brainstem reflexes suggest a physiological relationship.

    PubMed

    Khasani, S; Becker, K; Meinck, H-M

    2004-09-01

    Hyperekplexia and the stiff-man syndrome (SMS) are both conditions with exaggerated startle suggesting abnormal brainstem function. Investigation of brainstem reflexes may provide insight into disturbed reflex excitation and inhibition underlying these movement disorders. Using four-channel EMG, we examined four trigeminal brainstem reflexes (monosynaptic masseter, masseter inhibitory, glabella, and orbicularis oculi blink reflexes) and their spread into pericranial muscles in five patients with familial hyperekplexia (FH), two with acquired hyperekplexia (AH), 10 with SMS, and 15 healthy control subjects. Both FH/AH and SMS patients had abnormal propagation of brainstem reflexes into pericranial muscles. All patients with hyperekplexia showed an abnormal short-latency (15-20 ms) reflex in the trapezius muscle with a characteristic clinical appearance ("head retraction jerk") evoked by tactile or electrical stimulation of the trigeminal nerve, but normal monosynaptic masseter reflexes. Inhibitory brainstem reflexes were attenuated in some FH/AH patients. Four of 10 patients with SMS had similar short-latency reflexes in the neck muscles and frequently showed widespread enhancement of other excitatory reflexes, reflex spasms, and attenuation of inhibitory brainstem reflexes. Reflex excitation is exaggerated and inhibition is attenuated in both stiff-man syndrome and familial or acquired hyperekplexia, indicating a physiological relationship. Reflex transmission in the brainstem appears biased towards excitation which may imply dysfunction of inhibitory glycinergic or GABAergic interneurons, or both.

  11. Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord

    PubMed Central

    Knikou, M

    2006-01-01

    Study design Spinal reflex excitability study in sensory–motor incomplete spinal cord-injured (SCI) and spinal intact subjects. Objectives To investigate the effects of plantar cutaneous afferent excitation on the soleus H-reflex and flexion reflex in both subject groups while seated. Setting Rehabilitation Institute of Chicago and City University of New York, USA. Methods The flexion reflex in SCI subjects was elicited by non-nociceptive stimulation of the sural nerve. In normal subjects, it was also elicited via innocuous medial arch foot stimulation. In both cases, reflex responses were recorded from the ipsilateral tibialis anterior muscle. Soleus H-reflexes were elicited and recorded via conventional methods. Both reflexes were conditioned by plantar cutaneous afferent stimulation at conditioning test intervals ranging from 3 to 90 ms. Results Excitation of plantar cutaneous afferents resulted in facilitation of the soleus H-reflex and late flexion reflex in SCI subjects. In normal subjects, the soleus H-reflex was depressed while the late flexion reflex was absent. The early flexion reflex was irregularly observed in SCI patients, while in normal subjects a bimodal reflex modulation pattern was observed. Conclusion The effects of plantar cutaneous afferents change following a lesion to the spinal cord leading to exaggerated activity in both flexors and extensors. This suggests impaired modulation of the spinal inhibitory mechanisms involved in the reflex modulation. Our findings should be considered in programs aimed to restore sensorimotor function and promote recovery in these patients. PMID:16534501

  12. Rotational kinematics of the human vestibuloocular reflex. I. Gain matrices.

    PubMed

    Tweed, D; Sievering, D; Misslisch, H; Fetter, M; Zee, D; Koenig, E

    1994-11-01

    1. This series of three papers aims to describe the three-dimensional, kinematic input-output relations of the rotational vestibuloocular reflex (VOR) in humans, and to identify the functional advantages of these relations. In this first paper the response to sinusoidal rotation in darkness at 0.3 Hz, maximum speed 37.5%/s, was quantified by the use of the three-dimensional analogue of VOR gain: a 3 x 3 matrix where each element describes the dependence of one component (torsional, vertical, or horizontal) of eye velocity on one component of head velocity. 2. The three matrix elements indicating collinear gains (i.e., dependence of torsional eye velocity on torsional head velocity, vertical on vertical, and horizontal on horizontal) were smaller than the -1's required for optimal retinal image stabilization. Of these three the torsional gain was weakest: -0.37 for rotation about an earth-vertical axis, versus -0.73 and -0.64 for vertical and horizontal gains. Matrix elements indicating cross talk were mostly negligible. There was a tendency to leftward eye rotation in response to clockwise head motion, but this was not statistically significant. 3. VOR responses were compared for rotation about earth-vertical and earth-horizontal axes. The varying otolith input due to the rotation of the gravity vector relative to the head during earth-horizontal axis rotation made no difference to the collinear gains. 4. There were no consistent phase leads or lags except for a torsional phase lead of up to 10 degrees, usually more marked for clock-wise head rotation versus counterclockwise, and for oblique axis rotations versus purely torsional. 5. Torsional gain was magnified, averaging -0.52, when the torsional component of head rotation was only a small part of a predominantly vertical or horizontal rotation, i.e., when the axis of head rotation was near the frontal plane. Because most natural head rotations occur about such axes, the torsional VOR is probably somewhat

  13. Managing Motion Sickness

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_166982.html Managing Motion Sickness You may never love some pursuits, like ... there anything you can do to quell your motion sickness so you can join in the fun? ...

  14. Essay on Gyroscopic Motions.

    ERIC Educational Resources Information Center

    Tea, Peter L., Jr.

    1988-01-01

    Explains gyroscopic motions to college freshman or high school seniors who have learned about centripetal acceleration and the transformations of a couple. Contains several figures showing the direction of forces and motion. (YP)

  15. Conceptualizing Mathematics "Motion Problems"

    ERIC Educational Resources Information Center

    McKeough, William J.

    1970-01-01

    Describes an instructional method in secondary school mathematics applicable to physics instruction, to develop conceptual understanding of motion word problems. Distance, rate, and time are defined, used as variables and considered with relative motion as a unifying concept. (JM)

  16. Limited range of motion

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003173.htm Limited range of motion To use the sharing features on this page, please enable JavaScript. Limited range of motion is a term meaning that a joint or ...

  17. Adaptation of reflexive feedback during arm posture to different environments.

    PubMed

    de Vlugt, Erwin; Schouten, Alfred C; van der Helm, Frans C T

    2002-07-01

    In this study we have examined the ability of the central nervous system (CNS) to use spinal reflexes to minimize displacements during postural control while continuous force perturbations were applied at the hand. The subjects were instructed to minimize the displacements of the hand from a reference position that resulted from the force perturbations. The perturbations were imposed in one direction by means of a hydraulic manipulator of which the virtual mass and damping were varied. Resistance to the perturbations came from intrinsic and reflexive stiffness, and from the virtual environment. It is hypothesized that reflexive feedback during posture maintenance is optimally adjusted such that position deviations are minimal for a given virtual environment. Frequency response functions were estimated, capturing all mechanical properties of the arm at the end point (hand) level. Intrinsic and reflexive parameters were quantified by fitting a linear neuromuscular model to the frequency responses. The reflexive length feedback gain increased strongly with damping and little with the eigenfrequency of the total combined system (i.e. arm plus environment). The reflexive velocity feedback gain decreased slightly with relative damping at the largest eigenfrequency and more markedly at smaller eigenfrequencies. In the case of highest reflex gains, the total system remained stable and sufficiently damped while the responses of only the arm were severely underdamped and sometimes even unstable. To further analyse these results, a model optimization was performed. Intrinsic and reflexive parameters were optimized such that two criterion functions were minimized. The first concerns performance and penalized hand displacements from a reference point. The second one weights afferent control effort to avoid inefficient feedback. The simulations showed good similarities with the estimated values. Length feedback was adequately predicted by the model for all conditions. The

  18. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  19. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  20. Processing reflexives and pronouns in picture noun phrase.

    PubMed

    Runner, Jeffrey T; Sussman, Rachel S; Tanenhaus, Michael K

    2006-03-04

    Binding theory (e.g., Chomsky, 1981) has played a central role in both syntactic theory and models of language processing. Its constraints are designed to predict that the referential domains of pronouns and reflexives are nonoverlapping, that is, are complementary; these constraints are also thought to play a role in online reference resolution. The predictions of binding theory and its role in sentence processing were tested in four experiments that monitored participants' eye movements as they followed spoken instructions to have a doll touch a picture belonging to another doll. The instructions used pronouns and reflexives embedded in picture noun phrases (PNPs) containing possessor phrases (e.g., Pick up Ken. Have Ken touch Harry's picture of himself). Although the interpretations assigned to pronouns were generally consistent with binding theory, reflexives were frequently assigned interpretations that violated binding theory. In addition, the timing and pattern of eye movements were inconsistent with models of language processing that assume that binding theory acts as an early filter to restrict the referential domain. The interpretations assigned to reflexives in PNPs with possessors suggest that they are binding-theory-exempt logophors, a conclusion that unifies the treatment of reflexives in PNPs. 2006 Lawrence Erlbaum Associates, Inc.

  1. Effect of cervicolabyrinthine impulsation on the spinal reflex apparatus

    NASA Technical Reports Server (NTRS)

    Yarotskiy, A. I.

    1980-01-01

    In view of the fact that the convergence effect of vestibular impulsation may both stimulate and inhibit intra and intersystemic coordination of physiological processes, an attempt was made to define the physiological effect on the spinal reflex apparatus of the convergence of cervicolabyrinthine impulsation on a model of the unconditioned motor reflex as a mechanism of the common final pathway conditioning the formation and realization of a focused beneficial result of human motor activities. More than 100 persons subjected to rolling effect and angular acceleration during complexly coordinated muscular loading were divided according to typical variants of the functional structure of the patella reflex in an experiment requiring 30 rapid counterclockwise head revolutions at 2/sec with synchronous recording of a 20 item series of patella reflex acts. A knee jerk coefficient was used in calculations. In 85 percent of the cases 2 patellar reflexograms show typical braking and release of knee reflex and 1 shows an extreme local variant. The diagnostic and prognostic value of these tests is suggested for determining adaptive possibilities of functional systems in respect to acceleration and proprioceptive stimuli.

  2. Reflex control of inflammation by sympathetic nerves, not the vagus.

    PubMed

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-04-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge - the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg(-1)), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases.

  3. Comparison of operant escape and reflex tests of nociceptive sensitivity.

    PubMed

    Vierck, Charles J; Yezierski, Robert P

    2015-04-01

    Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Trigemino-cervical-spinal reflexes after traumatic spinal cord injury.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Orioli, Andrea; Brigo, Francesco; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2015-05-01

    After spinal cord injury (SCI) reorganization of spinal cord circuits occur both above and below the spinal lesion. These functional changes can be determined by assessing electrophysiological recording. We aimed at investigating the trigemino-cervical reflex (TCR) and trigemino-spinal reflex (TSR) responses after traumatic SCI. TCR and TSR were registered after stimulation of the infraorbital nerve from the sternocleidomastoid, splenius, deltoid, biceps and first dorsal interosseous muscles in 10 healthy subjects and 10 subjects with incomplete cervical SCI. In the control subjects reflex responses were registered from the sternocleidomastoid, and splenium muscles, while no responses were obtained from upper limb muscles. In contrast, smaller but clear short latency EMG potentials were recorded from deltoid and biceps muscles in about half of the SCI patients. Moreover, the amplitudes of the EMG responses in the neck muscles were significantly higher in patients than in control subjects. The reflex responses are likely to propagate up the brainstem and down the spinal cord along the reticulospinal tracts and the propriospinal system. Despite the loss of corticospinal axons, synaptic plasticity in pre-existing pathways and/or formation of new circuits through sprouting processes above the injury site may contribute to the findings of this preliminary study and may be involved in the functional recovery. Trigemino-cervical-spinal reflexes can be used to demonstrate and quantify plastic changes at brainstem and cervical level following SCI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Reflexivity, critical qualitative research and emancipation: a Foucauldian perspective.

    PubMed

    McCabe, Janet L; Holmes, Dave

    2009-07-01

    In this paper, we consider reflexivity, not only as a concept of qualitative validity, but also as a tool used during the research process to achieve the goals of emancipation that are intrinsic to qualitative research conducted within a critical paradigm. Research conducted from a critical perspective poses two challenges to researchers: validity of the research must be ensured and the emancipatory aims of the research need to be realized and communicated. The traditional view of reflexivity as a means of ensuring validity in qualitative research limits its potential to inform the research process. The Medline and CINAHL data bases were searched (1998-2008 inclusive) using keywords such as reflexivity, validity, subjectivity, bias, emancipation, empowerment and disability. In addition, the work of Michel Foucault was examined. Using the work of the late French philosopher Michel Foucault, we explore how Foucault's 'technologies of the self' can be employed during critical qualitative research to achieve emancipatory changes. Using research conducted with marginalized populations as an example (specifically, individuals with disabilities), we demonstrate the potential for using reflexivity, in a Foucauldian sense, during the research process. Shifting the traditional view of reflexivity allows researchers to focus on the subtle changes that comprise emancipation (in a Foucauldian sense). As a result, researchers are better able to see, understand and analyse this process in both the participants and themselves.

  6. Trigeminocardiac Reflex: A Reappraisal with Relevance to Maxillofacial Surgery.

    PubMed

    Bhargava, Darpan; Thomas, Shaji; Chakravorty, Nupur; Dutt, Ashutosh

    2014-12-01

    The purpose of this paper was to undertake a review of literature on trigeminocardiac reflex in oral and maxillofacial online data-base and discuss the pathophysiology, risk factor assessment, presentation of the reflex, prevention, management with emphasis on the role of the attending anaesthetist and the maxillofacial surgeon. The available literature relevant to oral and maxillofacial surgery in online data-base of the United States National Library of Medicine: Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/) was searched. The inclusion criterion was to review published clinical papers, abstracts and evidence based reviews on trigeminocardiac reflex relevant to oral and maxillofacial surgery. Sixty-five articles were found with the search term "trigeminocardiac reflex" in the literature searched. Eighteen articles met the inclusion criteria for this study. The relevant data was extracted, tabulated and reviewed to draw evidence based conclusions for the management of trigeminocardiac reflex. Conclusions were drawn and discussed based on the reviewed maxillofacial literature with emphasis on the anaesthetist's and the surgeon's role in the management of this detrimental event in maxillofacial surgical practice.

  7. Characterization of the pharyngo-UES contractile reflex in humans.

    PubMed

    Shaker, R; Ren, J; Xie, P; Lang, I M; Bardan, E; Sui, Z

    1997-10-01

    Preliminary human studies suggest the presence of an upper esophageal sphincter (UES) contractile reflex triggered by pharyngeal water stimulation. The purposes of this study were to further characterize this reflex and determine the threshold volume for its activation. We studied 10 healthy young volunteers by manometric technique before and after topical pharyngeal anesthesia. UES pressure responses to various volumes and temperatures of water injected into the pharynx were elucidated. At a threshold volume, rapid-pulse and slow continuous pharyngeal water injection resulted in significant augmentation of UES pressure in all volunteers. Threshold volume for inducing UES contraction averaged 0.1 +/- 0.01 ml for rapid-pulse injection and was significantly smaller than that for slow continuous injection (1.0 +/- 0.2 ml). UES pressure increase duration averaged 16 +/- 4 s. Augmentation of UES resting tone by injection of water with three different temperatures was similar. This augmentation was abolished after topical anesthesia. Conclusions were that stimulation of the human pharynx by injection of minute amounts of water results in a significant increase in resting UES pressure: the pharyngo-UES contractile reflex. The magnitude of pressure increase due to activation of this reflex is not volume or temperature dependent. Loss of pharyngeal sensation abolishes this reflex.

  8. Reflexivity: a methodological tool in the knowledge translation process?

    PubMed

    Alley, Sarah; Jackson, Suzanne F; Shakya, Yogendra B

    2015-05-01

    Knowledge translation is a dynamic and iterative process that includes the synthesis, dissemination, exchange, and application of knowledge. It is considered the bridge that closes the gap between research and practice. Yet it appears that in all areas of practice, a significant gap remains in translating research knowledge into practical application. Recently, researchers and practitioners in the field of health care have begun to recognize reflection and reflexive exercises as a fundamental component to the knowledge translation process. As a practical tool, reflexivity can go beyond simply looking at what practitioners are doing; when approached in a systematic manner, it has the potential to enable practitioners from a wide variety of backgrounds to identify, understand, and act in relation to the personal, professional, and political challenges they face in practice. This article focuses on how reflexive practice as a methodological tool can provide researchers and practitioners with new insights and increased self-awareness, as they are able to critically examine the nature of their work and acknowledge biases, which may affect the knowledge translation process. Through the use of structured journal entries, the nature of the relationship between reflexivity and knowledge translation was examined, specifically exploring if reflexivity can improve the knowledge translation process, leading to increased utilization and application of research findings into everyday practice.

  9. Reflex conditioning: A new strategy for improving motor function after spinal cord injury

    PubMed Central

    Chen, Xiang Yang; Chen, Yi; Wang, Yu; Thompson, Aiko; Carp, Jonathan S.; Segal, Richard L.; Wolpaw, Jonathan R.

    2010-01-01

    Spinal reflex conditioning changes reflex size, induces spinal cord plasticity, and modifies locomotion. Appropriate reflex conditioning can improve walking in rats after spinal cord injury (SCI). Reflex conditioning offers a new therapeutic strategy for restoring function in people with SCI. This approach can address the specific deficits of individuals with SCI by targeting specific reflex pathways for increased or decreased responsiveness. In addition, once clinically significant regeneration can be achieved, reflex conditioning could provide a means of re-educating the newly (and probably imperfectly) reconnected spinal cord. PMID:20590534

  10. [Nystagmus the diagnosis of vertigo and dizziness].

    PubMed

    Johkura, Ken

    2013-09-01

    Vertigo or dizziness is primarily caused by peripheral vestibular disorders, such as benign paroxysmal positional vertigo (BPPV) and vestibular neuritis. BPPV can be diagnosed from associated positional torsional or direction-changing horizontal nystagmus and can be treated with canalith repositioning procedures. In contrast, vestibular neuritis and other acute peripheral vestibulopathies can be diagnosed from associated unidirectional horizontal nystagmus. Evaluation of nystagmus is essential for the diagnosis of peripheral vestibular disorders. Vertigo/dizziness caused by disorders in the brainstem or upper cerebellum is usually associated with other neurological signs or symptoms, such as motor palsy, sensory deficit, dysarthria, ocular motor palsy, and limb ataxia. In contrast, vertigo/dizziness caused by disorders in the lower cerebellum is not associated with these signs or symptoms; however, truncal ataxia becomes apparent in a standing position. Small lesions in the lower cerebellum can rarely cause unidirectional horizontal nystagmus directed toward the side of the lesions or direction-changing apogeotropic positional nystagmus; both types of nystagmus are enhanced when a patient lies on the non-affected side. This positional enhancement suggests that the same pathogenetic mechanism is involved in both types of nystagmus. The cerebellar lesions may disinhibit both semicircular-ocular and otolith-ocular reflexes. Semicircular-ocular reflex-dominant disinhibitions may result in the ipsilateral horizontal nystagmus, whereas otolith-ocular reflex-dominant disinhibitions may result in the direction-changing apogeotropic positional nystagmus.

  11. The blink reflex and the corneal reflex are followed by cortical activity resembling the nociceptive potentials induced by trigeminal laser stimulation in man.

    PubMed

    de Tommaso, M; Libro, G; Guido, M; Sciruicchio, V; Puca, F

    2001-09-07

    Laser stimulation of the supraorbital regions evokes brain potentials (LEPs) related to trigeminal nociception. The aim of this study was to record the R2 component of the blink reflex and the corneal reflex in 20 normal subjects, comparing the scalp activity following these reflexes with the nociceptive potentials evoked by CO2 laser stimulation of supraorbital regions. Cortical and muscular reflexes evoked by stimulation of the first trigeminal branch were recorded simultaneously. The R2 component of the blink reflex and the corneal reflex were followed by two cortical peaks, which resembled morphologically N-P waves of LEPs. The two peaks demonstrated a difference in latency of approximately 40 ms, which is consistent with activation time of nociception. This finding suggests that these reflexes are induced by activation of small pain-related fibers.

  12. The effect of tone-reducing orthotic devices on soleus muscle reflex excitability while standing in patients with spasticity following stroke.

    PubMed

    Ibuki, Aileen; Bach, Timothy; Rogers, Douglas; Bernhardt, Julie

    2010-03-01

    Orthoses are commonly prescribed for the management of spasticity but their neurophysiologic effect on spasticity remains unsubstantiated. The purpose of this study was to investigate the effect of three tone-reducing devices (dynamic foot orthosis, muscle stretch, and orthokinetic compression garment) on soleus muscle reflex excitability while standing in patients with spasticity following stroke. A repeated measures intervention study was conducted on 13 patients with stroke selected from a sample of convenience. A custom-made dynamic foot orthosis, a range of motion walker to stretch the soleus muscle and class 1 and class 2 orthokinetic compression garments were assessed using the ratio of maximum Hoffmann reflex amplitude to maximum M-response amplitude (Hmax:Mmax) to determine their effect on soleus muscle reflex excitability. Only 10 subjects were able to complete the testing. There were no significant treatment effects for the interventions (F=1.208, df=3.232, p=0.328); however, when analyzed subject-by-subject, two subjects responded to the dynamic foot orthosis and one of those two subjects also responded to the class 1 orthokinetic compression garment. Overall, the results demonstrated that the tone-reducing devices had no significant effect on soleus reflex excitability suggesting that these tone-reducing orthotic devices have no significant neurophysiologic effect on spasticity.

  13. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  14. Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo-colonic inhibitory reflex.

    PubMed Central

    Kreulen, D L; Szurszewski, J H

    1979-01-01

    1. In vitro experiments were performed on preparations consisting of prevertebral ganglia attached to the entire colon of guinea-pigs. The colon was divided into an orad and a caudad segment and intraluminal pressure was recorded from the terminal end of each segment. Intracellular recordings were simultaneously obtained from neurones in the coeliac plexus. 2. The source of mechanosensory input from the colon paralleled the responses to mesenteric nerve stimulation. That is, section of the mesenteric nerve that contributed the strongest synaptic input to a neurone eliminated most of the mechanosensory input to that neurone. 3. The origin of the mechanosensory input to some neurones could be localized as coming from either the orad or caudad segment of the colon. In the coeliac ganglia 68% of the neurones tested responded primarily to orad distension and 37% to caudad distension. In the superior mesenteric ganglion 57% responded to orad distension and 43% to caudad distension. 4. Repetitive stimulation of the mesenteric nerve trunks arising from the prevertebral ganglia inhibited contractions differentially in the orad and caudad segments. The inferior coeliac nerves inhibited primarily the orad segments of colon and the lumbar colonic nerves inhibited primarily the caudad segments of colon. Stimulation of the superior coeliac nerves did not alter the motility of either segment. 5. When one of the colonic segments was distended, contractions in the other colonic segment were inhibited in 71% of the distensions. This inhibition operated in both directions: either orad inhibiting caudad or vice versa. 6. Cutting the intermesenteric nerve which communicates between the orad and caudad prevertebral ganglia eliminated the inhibitory reflex. 7. These experiments provide evidence for a colo-colonic inhibitory reflex mediated through pathways in the prevertebral ganglia. PMID:521925

  15. Chromatic contrast sensitivity during optokinetic nystagmus, visually enhanced vestibulo-ocular reflex, and smooth pursuit eye movements.

    PubMed

    Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2009-05-01

    Recently we showed that sensitivity for chromatic- and high-spatial frequency luminance stimuli is enhanced during smooth-pursuit eye movements (SPEMs). Here we investigated whether this enhancement is a general property of slow eye movements. Besides SPEM there are two other classes of eye movements that operate in a similar range of eye velocities: the optokinetic nystagmus (OKN) is a reflexive pattern of alternating fast and slow eye movements elicited by wide-field visual motion and the vestibulo-ocular reflex (VOR) stabilizes the gaze during head movements. In a natural environment all three classes of eye movements act synergistically to allow clear central vision during self- and object motion. To test whether the same improvement of chromatic sensitivity occurs during all of these eye movements, we measured human detection performance of chromatic and luminance line stimuli during OKN and contrast sensitivity during VOR and SPEM at comparable velocities. For comparison, performance in the same tasks was tested during fixation. During the slow phase of OKN we found a similar enhancement of chromatic detection rate like that during SPEM, whereas no enhancement was observable during VOR. This result indicates similarities between slow-phase OKN and SPEM, which are distinct from VOR.

  16. Pedaling alters the excitability and modulation of vastus medialis H-reflexes after stroke.

    PubMed

    Fuchs, Dana P; Sanghvi, Namita; Wieser, Jon; Schindler-Ivens, Sheila

    2011-10-01

    Individuals post-stroke display abnormal Group Ia reflex excitability. Pedaling has been shown to reduce Group Ia reflexes and to normalize the relationship between EMG and reflex amplitude in the paretic soleus (SO). The purpose of this study was to determine whether these changes extend to the paretic quadriceps. H-reflexes were used to examine Group Ia reflex excitability of the vastus medialis (VM). H-reflexes were elicited in paretic (n=13) and neurologically intact (n=13) individuals at 11 positions in the pedaling cycle and during static knee extension at comparable limb positions and levels of VM EMG. VM H-reflexes were abnormally elevated in the paretic limb of stroke survivors. During static muscle activation, H-reflex amplitude did not change with the level of background VM activity. Pedaling reduced the amplitude of paretic VM H-reflexes and restored the normal relationship between VM EMG and H-reflex amplitude. Pedaling-induced changes in Group Ia reflex excitability that have been reported for the paretic SO are evident in the paretic VM. Pedaling may have a generalized effect on lower extremity Group Ia reflexes post-stroke. Pedaling may be therapeutic for reducing Group Ia reflexes after stroke. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Direct and consensual murine pupillary reflex metrics: Establishing normative values

    PubMed Central

    Hussain, Rehana Z.; Hopkins, Steven C.; Frohman, Elliot M.; Eagar, Todd N.; Cravens, Petra C.; Greenberg, Benjamin M.; Vernino, Steven; Stüve, Olaf

    2014-01-01

    Pupillometry is a non-invasive technique, based on well-established neurophysiologic principles, that can be utilized to objectively characterize pathophysiologic demyelinating and neurodegenerative changes involving the pupillary reflex pathway. In animal models of human disorders, pupillometry derived reflex metrics could potentially be used to longitudinally monitor disease activity and responses to pharmacotherapies. These investigations would have important implications for translational initiatives focused on the identification and application of novel neuroprotective and restorative treatments for human diseases such as multiple sclerosis. Here, we have established normal reference values for various pupillary reflex metrics across different mouse strains. Ultimately, we anticipate that this new data will help to catalyze unique lines of inquiry using pupillometry methods. PMID:19683968

  18. Forces, movements and reflexes produced by pushing human teeth.

    PubMed

    Scott, Brendan J J; Mason, Andrew G; Cadden, Samuel W

    2012-05-01

    Pushing a tooth results in movement of the tooth and reflex inhibition of activity in jaw-closing muscles. The aims of this study were to determine how much tooth movement is required to elicit such reflexes and whether this is dependent on the point of force application to the tooth. Eight experiments were performed on six volunteer subjects. Electromyograms (EMGs) were recorded from a masseter muscle while the subjects produced approximately 12.5 % of the EMG associated with maximal clenching. Reflexes were evoked by pushing at two positions (incisal and cervical) on an upper central incisor. The forces applied and the resulting movements of the tooth were recorded. There was a linear relationship between force and movement regardless of whether the force was incisal or cervical (Pearson's r = 0.91 and r = 0.93 respectively). There were no differences between the slopes or intercepts for these relationships (ANCOVA p = 0.42, p = 0.46 respectively). There were linear relationships between the logarithms of force or movement and the resulting inhibitory reflexes (r = 0.81, 0.79, 0.81 and 0.74 for incisal and cervical forces and incisal and cervical movements, respectively). Again, there were no significant differences between the slopes for these relationships (ANCOVA p = 0.75, p = 0.46 for force and movement, respectively). There were no significant differences between the reflex thresholds for incisal and cervical stimuli in terms of force (0.23 and 0.25 N, ANCOVA p = 0.1) or movement (9.7 and 8.5 μm, ANCOVA p = 0.22). Thus, it appears that neither tooth movements nor jaw reflexes are dependent on the point of force application to a tooth.

  19. Perceptual Rivalry: Reflexes Reveal the Gradual Nature of Visual Awareness

    PubMed Central

    Naber, Marnix; Frässle, Stefan; Einhäuser, Wolfgang

    2011-01-01

    Rivalry is a common tool to probe visual awareness: a constant physical stimulus evokes multiple, distinct perceptual interpretations (“percepts”) that alternate over time. Percepts are typically described as mutually exclusive, suggesting that a discrete (all-or-none) process underlies changes in visual awareness. Here we follow two strategies to address whether rivalry is an all-or-none process: first, we introduce two reflexes as objective measures of rivalry, pupil dilation and optokinetic nystagmus (OKN); second, we use a continuous input device (analog joystick) to allow observers a gradual subjective report. We find that the “reflexes” reflect the percept rather than the physical stimulus. Both reflexes show a gradual dependence on the time relative to perceptual transitions. Similarly, observers' joystick deflections, which are highly correlated with the reflex measures, indicate gradual transitions. Physically simulating wave-like transitions between percepts suggest piece-meal rivalry (i.e., different regions of space belonging to distinct percepts) as one possible explanation for the gradual transitions. Furthermore, the reflexes show that dominance durations depend on whether or not the percept is actively reported. In addition, reflexes respond to transitions with shorter latencies than the subjective report and show an abundance of short dominance durations. This failure to report fast changes in dominance may result from limited access of introspection to rivalry dynamics. In sum, reflexes reveal that rivalry is a gradual process, rivalry's dynamics is modulated by the required action (response mode), and that rapid transitions in perceptual dominance can slip away from awareness. PMID:21677786

  20. Vestibulocollic reflexes in the absence of head postural control.

    PubMed

    Forbes, Patrick A; Siegmund, Gunter P; Happee, Riender; Schouten, Alfred C; Blouin, Jean-Sébastien

    2014-10-01

    Percutaneous electrical vestibular stimulation evokes reflexive responses in appendicular muscles that are suppressed during tasks in which the muscles are not contributing to balance control. In neck muscles, which stabilize the head on the torso and in space, it is unclear whether similar postural task dependence shapes vestibular reflexes. We investigated whether vestibulocollic reflexes are modulated during tasks in which vestibular information is not directly relevant to maintaining the head balanced on the torso. We hypothesized that vestibulocollic reflexes would be 1) evoked when neck muscles are not involved in balancing the head on the torso and 2) invariant across synergistic neck muscle contraction tasks. Muscle activity was recorded bilaterally in sternocleidomastoid and splenius capitis muscles during head-free and head-fixed conditions while subjects were exposed to stochastic electrical vestibular stimulation (± 5 mA, 0-75 Hz). Significant vestibular reflex responses (P < 0.05) were observed during head-free and head-fixed trials. Response magnitude and timing were similar between head-free and head-fixed trials for sternocleidomastoid, but splenius capitis magnitudes decreased with the head fixed by ∼ 25% (P < 0.05). Nevertheless, this indicates that vestibulocollic responses are evoked independent of the requirement to maintain postural control of the head on the torso. Response magnitude and timing were similar across focal muscle contractions (i.e., axial rotation/flexion/extension) provided the muscle was active. In contrast, when subjects cocontracted neck muscles, vestibular-evoked responses decreased in sternocleidomastoid by ∼ 30-45% (P < 0.05) compared with focal muscle contractions but remained unchanged in splenius capitis. These results indicate robust vestibulocollic reflex coupling, which we suggest functions through its closed-loop influence on head posture to ensure cervical spine stabilization.