NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie
2013-02-01
We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.
Liu; Yuan; Meyer; Meyer-Hofmeister; Xie
1999-12-10
We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.
Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni
NASA Astrophysics Data System (ADS)
Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.
2016-06-01
Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10-8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.
Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.
Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J
2016-06-02
Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.
You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2017-01-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.
Modulated mass-transfer model for superhumps in SU Ursae Majoris stars
NASA Technical Reports Server (NTRS)
Mineshige, Shin
1988-01-01
The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.
Tracing Interactions of a Protoplanet with its Circumstellar Disk
NASA Astrophysics Data System (ADS)
Stapelfeldt, Karl
2017-08-01
A candidate companion to a very young star has been discovered in HST snapshot optical images. The object is projected at the outer radius of an edge-on protoplanetary disk and is aligned with the disk plane. Keck LGS photometry results indicate the object has the same temperature as brown dwarf GQ Lupi b but with 10x less luminosity - consistent with a planetary mass companion. Because the edge-on disk suppresses the light of the central star, the companion is uniquely accessible to follow-up studies with minimal starlight residuals. We propose HST/WFC3 imaging and spectroscopy of the system to 1) fully define the morphology of the disk scattered light, particularly at the disk outer edge near the companion; 2) search for Halpha emission from the companion as evidence that it is actively accreting; and 3) complete spectral characterization of the companion using G141 spectroscopy. Confirmation of a substellar spectrum, accretion, and disk interaction action would establish this object as a leading example of an accreting protoplanet at 100 AU and offer support to models for planet formation by gravitational instability.
The martian moons as the remnants of a giant impact
NASA Astrophysics Data System (ADS)
Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.
2017-09-01
The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here we show that gas-to-solid condensation of the building blocks in the outer part of an extended impact-generated disk could reproduce the spectral and physical properties of the moons.
The accretion of migrating giant planets
NASA Astrophysics Data System (ADS)
Dürmann, Christoph; Kley, Wilhelm
2017-02-01
Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, S.; Marino, S.; Pérez, S.
2015-10-01
The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less
Reconciling the Orbital and Physical Properties of the Martian Moons
NASA Astrophysics Data System (ADS)
Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.
2016-09-01
The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) are able to reconcile their orbital and physical properties. Here we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present-day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties, alleviating the need to invoke an unlikely capture scenario to explain their physical properties.
Explaining the Birth of the Martian Moons
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
A new study examines the possibility that Marss two moons formed after a large body slammed into Mars, creating a disk of debris. This scenario might be the key to reconciling the moons orbital properties with their compositions.Conflicting EvidenceThe different orbital (left) and spectral (right) characteristics of the Martian moons in the three different formation scenarios. Click for a better look! Phobos and Deimoss orbital characteristics are best matched by formation around Mars (b and c), and their physical characteristics are best matched by formation in the outer region of an impact-generated accretion disk (rightmost panel of c). [Ronnet et al. 2016]How were Marss two moons, Phobos and Deimos, formed? There are three standing theories:Two already-formed, small bodies from the outer main asteroid belt were captured by Mars, intact.The bodies formed simultaneously with Mars, by accretion from the same materials.A large impact on Mars created an accretion disk of material from which the two bodies formed.Our observations of the Martian moons, unfortunately, provide conflicting evidence about which of these scenarios is correct. The physical properties of the moons low albedos, low densities are consistent with those of asteroids in our solar system, and are not consistent with Marss properties, suggesting that the co-accretion scenario is unlikely. On the other hand, the moons orbital properties low inclination, low eccentricity, prograde orbits are consistent with bodies that formed around Mars rather than being captured.In a recent study,a team of scientists led by Thomas Ronnet and Pierre Vernazza (Aix-Marseille University, Laboratory of Astrophysics of Marseille) has attempted to reconcile these conflictingobservations by focusing on the third option.Moons After a Large ImpactIn the thirdscenario, an impactor of perhaps a few percent of Marss mass smashed into Mars, forming a debris disk of hot material that encircled Mars. Perturbations in the disk then led to the formation of large clumps, which eventually agglomerated to form Phobos and Deimos.The authors find that Phobos and Deimos most likely formed in the outer regions of the accretion disk that was created by a large impact with Mars. [Adapted from Ronnet et al. 2016]In the study conducted by Ronnet, Vernazza, and collaborators, the authors investigated the composition and texture of the dust that would have crystallized in an impact-generated accretion disk making up Marss moons. They find that Phobos and Deimos could not have formed out of the extremely hot, magma-filled inner regions of such a disk, because this would have resulted in different compositions than we observe.Phobos and Deimos could have formed, however, in the very outer part of an impact-generated accretion disk, where the hot gas condensed directly into small solid grains instead of passing through the magma phase. Accretion of such tiny grains would naturally explain the similarity in physical properties we observe between Marss moons and some main-belt asteroids and yet this picture is also consistent with the moons current orbital parameters.The authors argue that the formation of the Martian moons from the outer regions of an impact-generated accretion disk is therefore a plausible scenario, neatly reconciling the observed physical properties of Phobos and Diemos with their orbital properties.CitationT. Ronnet et al 2016 ApJ 828 109. doi:10.3847/0004-637X/828/2/109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp
Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less
TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less
LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi
2012-10-20
Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon ismore » quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.« less
The Large-scale Magnetic Fields of Thin Accretion Disks
NASA Astrophysics Data System (ADS)
Cao, Xinwu; Spruit, Hendrik C.
2013-03-01
Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P m is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, β ~ 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.
The Cosmic Battery in Astrophysical Accretion Disks
NASA Astrophysics Data System (ADS)
Contopoulos, Ioannis; Nathanail, Antonios; Katsanikas, Matthaios
2015-06-01
The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large-scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows, ADAFs. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large-scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysically relevant timescales. We confirm that there exists a critical value of the magnetic Prandtl number between unity and 10 in the outer disk above which the Cosmic Battery mechanism is suppressed.
A model for neutrino emission from nuclear accretion disks
NASA Astrophysics Data System (ADS)
Deaton, Michael
2015-04-01
Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).
The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2017-07-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, I.e., state transitions in galactic black hole binaries (GBHBs), and large systems, I.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.
The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, J. Drew; Reynolds, Christopher S.
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to supportmore » this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.« less
Multi-scale simulations of black hole accretion in barred galaxies. Self-gravitating disk models
NASA Astrophysics Data System (ADS)
Jung, M.; Illenseer, T. F.; Duschl, W. J.
2018-06-01
Due to the non-axisymmetric potential of the central bar, in addition to their characteristic arms and bar, barred spiral galaxies form a variety of structures within the thin gas disk, such as nuclear rings, inner spirals, and dust lanes. These structures in the inner kiloparsec are extremely important in order to explain and understand the rate of black hole feeding. The aim of this work is to investigate the influence of stellar bars in spiral galaxies on the thin self-gravitating gas disk. We focus on the accretion of gas onto the central supermassive black hole and its time-dependent evolution. We conducted multi-scale simulations simultaneously resolving the galactic disk and the accretion disk around the central black hole. In all the simulations we varied the initial gas disk mass. As an additional parameter we chose either the gas temperature for isothermal simulations or the cooling timescale for non-isothermal simulations. Accretion was either driven by a gravitationally unstable or clumpy accretion disk or by energy dissipation in strong shocks. Most of the simulations show a strong dependence of the accretion rate at the outer boundary of the central accretion disk (r < 300 pc) on the gas flow at kiloparsec scales. The final black hole masses reach up to 109 M⊙ after 1.6 Gyr. Our models show the expected influence of the Eddington limit and a decline in growth rate at the corresponding sub-Eddington limit.
NASA Astrophysics Data System (ADS)
Frelikh, Renata; Murray-Clay, Ruth
2018-04-01
We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.
Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Lee, Eve J.
2018-06-01
The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.
THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
2016-09-01
We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with thosemore » of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.« less
NASA Astrophysics Data System (ADS)
Kaigorodov, P. V.; Bisikalo, D. V.; Kurbatov, E. P.
2017-08-01
Vertical oscillations of the gas at the outer edge of the accretion disk in a semi-detached binary due to interaction with the stream of matter from the inner Lagrangian point L 1 are considered. Mixing of the matter from the stream from L 1 with matter of the disk halo results in the formation of a system of two diverging shocks and a contact discontinuity, or so-called "hot line". The passage of matter through the region of the hot line leads to an increase in its vertical velocity and a thickening of the disk at phases 0.7-0.8. Subsequently, the matter moving along the outer edge of the disk also experiences vertical oscillations, forming secondary maxima at phases 0.2-0.4. It is shown that, for systems with component mass ratios of 0.6, these oscillations will be amplified with each passage of the matter through the hotline zone, while the observations will be quenched in systems with component mass ratios 0.07 and 7. The most favorable conditions for the flow of matter from the stream through the edge of the disk arise for component mass ratios 0.62. A theoretical relation between the phases of disk thickenings and the component mass ratio of the system is derived.
An Earth with affinities to Enstatite Chondrites
NASA Astrophysics Data System (ADS)
McDonough, W. F.
2015-12-01
The Enstatite chondrite model for the Earth, as envisaged by Marc Javoy and colleagues, has strengths and weaknesses. The overwhelming evidence against layered mantle scenarios makes the existing enstatite Earth models unacceptable. Increasingly, stable and radiogenic isotope data for the Earth and the range of chondrites find that many (but not all) isotopic ratios are shared between the Earth and enstatite chondrites. This significant amount of overlap in isotope space compels one to reconsider the enstatite chondrite model for the Earth. During early solar system formation (circa +1 Ma) radial inward migration of the Jupiter and Saturn in the disk (e.g., Grand Tack model) would fully disrupted an asteroid belt, resulting in mixing and redistribution of preexisting components, while much later after the disk is gone (e.g., +100 Ma) gravitational scattering by these planets may have transported small bodies from the outer reaches of the solar system inward towards the rocky planets (Nice model). Astromineralogy reveals variations in the proportion of olivine to pyroxene in accretion disks, some with inner disk regions being richer in olivine relative to the disk wide composition, while other disks show the abundance of olivine is greater in the outer (vs the inner) part of the circumstellar disk, with differences in disk mineralogy being relating to type of star (e.g., T Tauri vs Herbig Ae/Be stars). The inner disk regions (a few AU) show higher abundances of large grains and generally higher crystallinity as compared to outer disk regions, suggesting grain growth occurs more rapidly in the inner disk regions. Recent results from geoneutrino measurements are most consistent with geochemical models that predict 20 TW of radiogenic power, less so with existing enstatite Earth models predicting less power in the planet. At 1 AU the Earth accreted a greater proportion of olivine to pyroxene (i.e., Mg/Si of pyrolite) than that available to the known enstatite chondrite parent body. The Earth accreted early in a reduced state, perhaps to the point of differentiating silicides into the core. Later accreted material was increasingly more oxidized. Stirring and mixing in the early solar system created opportunities for the Earth and enstatite chondrites to share some, but not all chemical and isotopic characteristics.
NASA Technical Reports Server (NTRS)
Cannizzo, John; Gehrels, Neil
2009-01-01
We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.
Relativistic dust accretion of charged particles in Kerr-Newman spacetime
NASA Astrophysics Data System (ADS)
Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus
2017-09-01
We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.
Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales
NASA Astrophysics Data System (ADS)
Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke
2017-09-01
We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc)3 Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes vary over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star-disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.
On the possibility of enrichment and differentiation in gas giants during birth by disk instability
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, Richard H.
2011-11-01
We investigate the coupling between solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. We find that fragments can become differentiated at birth. Even if an entire clump does not survive, differentiation could create solids cores that survive to accrete gaseous envelopes later.
The Role of the Outer Boundary Condition in Accretion Disk Models: Theory and Application
NASA Astrophysics Data System (ADS)
Yuan, Feng; Peng, Qiuhe; Lu, Ju-fu; Wang, Jianmin
2000-07-01
In a previous paper, we find that the outer boundary conditions (OBCs) of an optically thin accretion flow play an important role in determining the structure of the flow. Here in this paper, we further investigate the influence of OBCs on the dynamics and radiation of the accretion flow on a more detailed level. Bremsstrahlung and synchrotron radiations amplified by Comptonization are taken into account, and two-temperature plasma assumption is adopted. The three OBCs we adopted are the temperatures of the electrons and ions and the specific angular momentum of the accretion flow at a certain outer boundary. We investigate the individual role of each of the three OBCs on the dynamical structure and the emergent spectrum. We find that when the general parameters such as the mass accretion rate M and the viscous parameter α are fixed the peak flux at various bands such as radio, IR, and X-ray can differ by as much as several orders of magnitude under different OBCs in our example. Our results indicate that the OBC is both dynamically and radiatively important and therefore should be regarded as a new ``parameter'' in accretion disk models. As an illustrative example, we further apply the above results to the compact radio source Sgr A* located at the center of our Galaxy. The advection-dominated accretion flow (ADAF) model has turned out to be a great success in explaining its luminosity and spectrum. However, there exists a discrepancy between the mass accretion rate favored by ADAF models in the literature and that favored by the three-dimensional hydrodynamical simulation, with the former being 10-20 times smaller than the latter. By seriously considering the outer boundary condition of the accretion flow, we find that because of the low specific angular momentum of the accretion gas the accretion in Sgr A* should belong to a new accretion pattern, which is characterized by the possession of a very large sonic radius. This accretion pattern can significantly reduce the discrepancy between the mass accretion rates. We argue that the accretion occurred in some detached binary systems; the core of nearby elliptical galaxies and active galactic nuclei very possibly belongs to this accretion pattern.
A comparative study of single-temperature and two-temperature accretion flows around black holes
NASA Astrophysics Data System (ADS)
Dihingia, Indu Kalpa; Das, Santabrata; Mandal, Samir
2018-02-01
We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.
Murchison CM2 chondrite at nanoscale: evidence for hydrated minerals in the protoplanetary disk
NASA Astrophysics Data System (ADS)
Trigo-Rodriguez, J. M.; Vila-Ruaix, A.; Alonso-Azcárate, J.; Abad, M. M.
2017-03-01
The most pristine chondrites are undifferentiated meteorites with highly unequilibrated mineral grains that accreted from the protoplanetary disk about 4.6 Gyrs ago. Here we focus our attention in the study of Murchison, one of the most primitive carbonaceous chondrites belonging to the CM2 group. Despite of being aqueously altered, Murchison matrix is extraordinarily complex at nanoscale, and its study can hold clues to understand the origin of the water incorporated in the parent bodies of carbonaceous chondrites. Murchison comes from an undifferentiated carbon-rich asteroid which formed from the accretion of solid particles formed in the outer protoplanetary disk. Their rock-forming materials felt into the plane of the system where they mixed with organics, and probably with hydrated minerals. Our UHRTEM (ultra-high resolution transmission electron microscopy) data demonstrate that Murchison fine-grained matrix consists of a complex mixture of many ingredients, including chondrule and CAI fragments, stellar grains, phyllosilicates and organic compounds. We describe here some mineral and textural features that exemplify how pristine, and diverse is Murchison matrix. Our results indicate that the study of carbonaceous chondrites at nanoscale can provide a significant progress in our understanding of the accretion of materials and the preservation of presolar grains in the outer regions of the protoplanetary disk.
Nucleosynthesis in the neighborhood of a black hole
NASA Technical Reports Server (NTRS)
Chakrabarti, Sandip K.
1986-01-01
The preliminary results from simulations of nucleosynthesis inside a thick accretion disk around a black hole are discussed as a function of the accretion rate, the viscosity parameter, and the mass of the black hole. Results for the Bondi accretion case are also presented. Taking the case of a 10-solar mass and a 10 to the 6th-solar mass central Schwarzschild hole, detailed evolution of a representative element of matter as it accretes into the hole is presented in the case when the initial abundance (at the outer edge of the disk) is the same as the solar abundance. It is suggested that such studies may eventually shed light on the composition of the outgoing jets observed in the active galaxies and SS433.
Black Hole Disk Accretion in Supernovae
NASA Astrophysics Data System (ADS)
Mineshige, Shin; Nomura, Hideko; Hirose, Masahito; Nomoto, Ken'ichi; Suzuki, Tomoharu
1997-11-01
Massive stars in a certain mass range may form low-mass black holes after supernova explosions. In such massive stars, fallback of ~0.1 M⊙ materials onto a black hole is expected because of a deep gravitational potential or a reverse shock propagating back from the outer composition interface. We study hydrodynamical disk accretion onto a newborn low-mass black hole in a supernova using the smoothed particle hydrodynamics method. If the progenitor was rotating before the explosion, the fallback material should have a certain amount of angular momentum with respect to the black hole, thus forming an accretion disk. The disk material will eventually accrete toward the central object because of viscosity at a supercritical accretion rate, Ṁ/Ṁcrit>106, for the first several tens of days. (Here, Ṁcrit is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection dominated; that is, the disk is so hot that the produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity. The disk becomes hot and dense; for Ṁ/Ṁcrit~106, for example, T ~ 109(αvis/0.01)-1/4 K and ρ ~ 103(αvis/0.01)-1 g cm-3 (with αvis being the viscosity parameter) in the vicinity of the black hole. Depending on the material mixing, some interesting nucleosynthesis processes via rapid proton and alpha-particle captures are expected even for reasonable viscosity magnitudes (αvis ~ 0.01), and some of them could be ejected in a disk wind or a jet without being swallowed by the black hole.
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.
2017-08-10
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.
2017-08-01
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke, E-mail: kueffmeier@nbi.ku.dk
2017-09-01
We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc){sup 3} Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes varymore » over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star–disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.« less
A Venus-mass Planet Orbiting a Brown Dwarf: A Missing Link between Planets and Moons
NASA Astrophysics Data System (ADS)
Udalski, A.; Jung, Y. K.; Han, C.; Gould, A.; Kozłowski, S.; Skowron, J.; Poleski, R.; Soszyński, I.; Pietrukowicz, P.; Mróz, P.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrzyński, G.; Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Gaudi, B. S.; Hwang, K.-H.; Choi, J.-Y.; Shin, I.-G.; Park, H.; Bozza, V.
2015-10-01
The co-planarity of solar system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the Kepler satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. Here we report the discovery of an intermediate system, OGLE-2013-BLG-0723LB/Bb, composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled-down version of a planet plus a star or as a scaled-up version of a moon plus a planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us to suggest that the formation processes of companions within accretion disks around stars, brown dwarfs, and planets are similar.
Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations
NASA Technical Reports Server (NTRS)
Simonelli, D. P.; Pollack, J. B.; McKay, C. P.
1997-01-01
As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.
Simonelli, D P; Pollack, J B; McKay, C P
1997-02-01
As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.
Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes
NASA Astrophysics Data System (ADS)
Yildiran, Deniz; Donmez, Orhan
In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
The near-infrared properties of compact binary systems
NASA Astrophysics Data System (ADS)
Froning, Cynthia Suzanne
I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)
Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure
NASA Astrophysics Data System (ADS)
Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.
2017-08-01
Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r < 1-3 au) spectra exhibit a 10 μm absorption feature related to amorphous silicate grains. The outer disk (r > 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk. Based on observations made with the ESO Very Large Telescope Interferometer at Paranal Observatory (Chile) under the programs 088.C-1007 (PI: L. Mosoni), 090.C-0040 (PI: Th. Ratzka), and 092.C-0086 (PI: Th. Ratzka).
Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles
NASA Technical Reports Server (NTRS)
Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.
1995-01-01
We have obtained the first high-speed photometry of the eclipsing dwarf nova Z Cha at ultraviolet wavelengths with the Hubble Space Telescope (HST). We observed the eclipse roughly every 4 days over two cycles of the normal eruptions of Z Cha, giving a uniquely complete coverage of its outburst cycle. The accretion disk dominated the ultraviolet light curve of Z Cha at the peak of an eruption; the white dwarf, the bright spot on the edge of the disk, and the boundary layer were all invisible. We were able to obtain an axisymmetric map of the accretion disk at this time only by adopting a flared disk with an opening angle of approximately 8 deg. The run of brightness temperature with radius in the disk at the peak of the eruption was too flat to be consistent with a steady state, optically thick accretion disk. The local rate of mass flow through the disk was approximately 5 x 10(exp -10) solar masses/yr near the center of the disk and approximately 5 x 10(exp -9) solar masses/yr near the outer edge. The white dwarf, the accretion disk, and the boundary layer were all significant contributors to the ultraviolet flux on the descending branches of the eruptions. The temperature of the white dwarf during decline was 18,300 K less than T(sub wd) less than 21,800 K, which is significantly greater than at minimum light. Six days after the maximum of an eruption Z Cha has faded to near minimum light at ultraviolet wavelenghts, but was still approximately 70% brighter at minimum light in the B band. About one-quarter of the excess flux in the B band came from the accretion disk. Thus, the accretion disk faded and became invisible at ultraviolet wavelengths before it faded at optical wavelenghts. The disk did, however, remain optically thick and obscured the lower half of the white dwarf at ultraviolet and possibly at optical wavelenghts for 2 weeks after the eruption ended. By the third week after eruptiuons the eclipse looked like a simple occultation of an unobscured, spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.
Towards a Global Evolutionary Model of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
2016-04-01
A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir
In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BPmore » power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.« less
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu
2017-08-10
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magneticmore » field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.« less
Reduced gas accretion on super-Earths and ice giants
NASA Astrophysics Data System (ADS)
Lambrechts, M.; Lega, E.
2017-10-01
A large fraction of giant planets have gaseous envelopes that are limited to about 10% of their total mass budget. Such planets are present in the solar system (Uranus, Neptune) and are frequently observed in short periods around other stars (the so-called super-Earths). In contrast to these observations, theoretical calculations based on the evolution of hydrostatic envelopes argue that such low-mass envelopes cannot be maintained around cores exceeding five Earth masses. Instead, under nominal disk conditions, these planets would acquire massive envelopes through runaway gas accretion within the lifetime of the protoplanetary disk. In this work we show that planetary envelopes are not in hydrostatic balance, which slows down envelope growth. A series of 3D global, radiative hydrodynamical simulations reveal a steady-state gas flow, which enters through the poles and exits in the disk midplane. Gas is pushed through the outer envelope in about ten orbital timescales. In regions of the disk that are not significantly dust-depleted, envelope accretion onto cores of about five Earth masses can get stalled as the gas flow enters the deep interior. Accreted solids sublimate deep in the convective interior, but small opacity-providing grains are trapped in the flow and do not settle, which further prevents rapid envelope accretion. The transition to runaway gas accretion can however be reached when cores grow larger than typical super-Earths, beyond 15 Earth masses, and preferably when disk opacities are below κ = 1 cm2/g. These findings offer an explanation for the typical low-mass envelopes around the cores of super-Earths.
Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk
NASA Astrophysics Data System (ADS)
Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi
2017-11-01
On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.
Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Shu, Frank H.
1995-07-01
We formulate the time-steady, axisymmetric problem of stellar magnetospheric inflow of gas from a surrounding accretion disk. The computational domain is bounded on the outside by a surface of given shape containing the open field lines associated with an induced disk wind. The mechanism for this wind has been investigated in previous publications in this journal. Our zeroth-order solution incorporates an acceptable accounting of the pressure balance between the magnetic field lines loaded with accreting gas (funnel flow) and those empty of matter (dead zone). In comparison with previous models, our funnel-flow/dead-zone solution has the following novel features: (1) Because of a natural tendency for the trapped stellar magnetic flux to pinch toward the corotation radius Rx (X-point of the effective potential), most of the interesting magnetohydrodynamics is initiated within a small neighborhood of Rx (X-region), where the Keplerian angular speed of rotation in the disk equals the spin rate of the star. (2) Unimpeded funnel flow from the inner portion of the X-region to the star can occur when the amount of trapped magnetic flux equals or exceeds 1.5 times the unperturbed dipole flux that would lie outside Rx in the absence of an accretion disk. (3). Near the equatorial plane, radial infall from the X-point is terminated at a "kink" point Rk = 0.74Rx that deflects the flow away from the midplane, mediating thereby between the field topology imposed by a magnetic fan of trapped flux at Rx and the geometry of a strong stellar dipole. (4) The excess angular momentum of accretion that would otherwise spin up the star rapidly is deposited by the magnetic torques of the funnel flow into the inner portion of the X-region of the disk. (5) An induced disk wind arises in the outer portion of the .X-region, where the stellar field lines have been blown open, and removes whatever excess angular momentum that viscous torques do not transport to the outer disk. (6) The interface between open field lines loaded with outflowing matter (connected to the disk) and those not loaded (connected to the star) forms a "helmet streamer," along which major mass-ejection and reconnection events may arise in response to changing boundary conditions (e.g., stellar magnetic cycles), much the way that such events occur in the active Sun. (7) Pressure balance across the dead-zone/wind interface will probably yield an asymptotically vertical (i.e., "jetlike") trajectory for the matter ejected along the helmet streamer, but mathematical demonstration of this fact is left for future studies. (8) In steady state the overall balance of angular momentum in the star/disk/ magnetosphere system fixes the fractions, f and 1 - f, of the disk mass accretion rate into the X-region carried away, respectively, by the wind and funnel flows.
Wind-Driven Global Evolution of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
It has been realized in the recent years that magnetized disk winds
Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars
NASA Technical Reports Server (NTRS)
Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.
2004-01-01
One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.
Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojia; Lin, Douglas N. C.; Liu, Beibei
2014-12-10
According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} >more » 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea
During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for diskmore » formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.« less
On the impact origin of Phobos and Deimos
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Hyodo, Ryuki; Chanorz, Sebastian; Rosenblatt, Pascal
2017-10-01
Phobos and Deimos, the two small satellites of Mars, are thought either to be captured asteroids or to have accreted in an impact-induced debris disk. Recently, we succeeded in making them in a framework of the giant impact scenario [1]. In our canonical simulation, large moons form from the material in the dense inner disk and then migrate outwards due to gravitational interactions with the remnant disk. As the large inner moons migrate outward, their orbital resonances sweep up and gather materials distributed within a thin outer disk, facilitating accretion of two small satellites whose sizes are similar to Phobos and Deimos. The large inner moons fall back to Mars after about 5 million years due to tidal pull of Mars, and the two small outer satellites evolve into current Phobos- and Deimos-like orbits.In addition, we recently perform high-resolution SPH giant impact simulations using sophisticated equation of states (M-ANEOS). We investigate the thermodynamic and physical aspects of the impact-induced disk [2], such as degrees of melting and vaporization of materials, mixing ratio of Mars and impactor’s materials, and expected particle sizes that form Phobos and Deimos. Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.[1] Rosenblatt, P., Charnoz, S., Dunseath, K.M., Terao-Dunseath, M., Trinh, A., Hyodo, R., Genda, H., Toupin, S., 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geoscience 9, 581-583.[2] Hyodo, R., Genda, H., Charnoz, S., Rosenblatt, P., 2017, On the impact origin of Phobos and Deimos I: Thermodynamic and physical aspects. ApJ accepted (arXiv:1707.06282).
Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.
Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto
2016-01-07
How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.
The early evolution of protostellar disks
NASA Technical Reports Server (NTRS)
Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad
1994-01-01
We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).
Cyclotron emission near stellar mass black holes
NASA Technical Reports Server (NTRS)
Apparao, K. M. V.
1984-01-01
Cyclotron emission in the inner regions of an accretion disk around a matter accreting black hole can be appreciable. In the case of the X-ray source Cyg X-1, cyclotron emission may provide the soft photons needed for 'Comptonization' to produce high energy X-rays. The inverse correlation between the fluxes of high energy and low energy X-rays during the 'high' and 'low' states of Cyg X-1, may be understood as a result of the variation of the rate of accretion and the Compton scattering of the cyclotron photons. In the case of the X-ray source GX 339-4, the observed optical flux during the high states does not seem to be due to cyclotron emission, but probably due to reprocessing of high energy X-rays by the outer regions of the disk.
Magnetic Field Transport in Accretion Disks
NASA Astrophysics Data System (ADS)
Jafari, Amir; Vishniac, Ethan T.
2018-02-01
The leading models for launching astrophysical jets rely on strong poloidal magnetic fields threading the central parts of their host accretion disks. Numerical simulations of magneto-rotationally turbulent disks suggest that such fields are actually advected from the environment by the accreting matter rather than generated by internal dynamos. This is puzzling from a theoretical point of view, since the reconnection of the radial field across the midplane should cause an outward drift on timescales much shorter than the accretion time. We suggest that a combination of effects are responsible for reducing the radial field near the midplane, causing efficient inward advection of the poloidal field. Magnetic buoyancy in subsonic turbulence pushes the field lines away from the midplane, decreasing the large-scale radial field in the main body of the disk. In magneto-rotationally driven turbulence, magnetic buoyancy dominates over the effects of turbulent pumping, which works against it, and turbulent diamagnetism, which works with it, in determining the vertical drift of the magnetic field. Balancing buoyancy with diffusion implies that the bending angle of the large-scale poloidal field can be very large near the surface, as required for outflows, but vanishes near the midplane, which impedes turbulent reconnection and outward diffusion. This effect becomes less efficient as the poloidal flux increases. This suggests that accretion disks are less likely to form jets if they have a modest ratio of outer to inner radii or if the ambient field is very weak. The former effect is probably responsible for the scarcity of jets in cataclysmic variable systems.
N-Body Simulations of Planetary Accretion Around M Dwarf Stars
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Ida, Shigeru
2009-07-01
We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions (~0.1 AU). In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. Since the orbital decay is terminated around the disk inner edge and the disk edge is close to the HZ, the protoplanets accumulated near the disk edge affect formation of planets in the HZ. Ice lines are also in relatively inner regions at ~0.3 AU. Due to the small orbital radii, icy protoplanets accrete rapidly and undergo type-I migration before disk depletion. The rapid orbital decay, the proximity of the disk inner edge, and large amount of inflow of icy protoplanets are characteristic in planetary accretion in terrestrial planet regions around M dwarfs. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and four to six planets eventually remain in mutual mean-motion resonances and their orbits have small eccentricities (lsim0.01) and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely packed ~40 small protoplanets remain in mutual mean-motion resonances. In this case, they start orbit crossing, after the disk gas decays and eccentricity damping due to tidal interaction with gas is no more effective. Through merging of the protoplanets, several planets in widely separated non-resonant orbits with relatively large eccentricities (~0.05) are formed. Thus, the final orbital configurations (separations, resonant or non-resonant, eccentricity, and distribution) of the terrestrial planets around M dwarfs sensitively depend on strength of type-I migration. We also found that large amount of water-ice is delivered by type-I migration from outer regions and final planets near the inner disk edge around M dwarfs are generally abundant in water-ice except for the innermost one that is shielded by the outer planets, unless type-I migration speed is reduced by a factor of more than 100 from that predicted by the linear theory.
NASA Astrophysics Data System (ADS)
Sanad, M. R.
2015-11-01
We present the first phase resolved ultraviolet spectroscopic study of V Sge in high, intermediate and low states observed with the Hubble Space Telescope High Resolution Spectrograph (HST HRS) and International Ultraviolet Explorer (IUE) during the period 1978-1996 to diagnose the ultraviolet fluxes of C IV 1550 Å and He II 1640 Å emission lines originating in the accretion disk during different orbital phases. Different spectra showing the variations in line fluxes at different orbital phases are presented. The reddening of V Sge is determined from the 2200 Å feature. We concentrated on calculating the line fluxes of C IV & He II emission lines. From HST and IUE data, we derived an accretion luminosity and an accretion rate for V Sge. The average temperature of the outer rim of the accretion disk {˜}10000 K. Our results show that there are variations in line fluxes, accretion luminosities and accretion rates with time for V Sge. These variations are attributed to the variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. These results from the HST and IUE observations are consistent with the binary model consisting of a white dwarf, a disk around the white dwarf, and a lobe-filling main-sequence companion (Hachisu & Kato, Astrophys. J. 598:527H, 2003).
NASA Astrophysics Data System (ADS)
Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.
2017-12-01
Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region <500 mas (<55 au at 109 pc) from the central star, at an angular resolution of 20 mas. Results: Our data show an asymmetry: the SE and NW regions of the outer disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate <10-8 M⊙ yr-1 for a substellar mass of 15 MJup. Finally, we report the first detection (>3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.
Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13
NASA Astrophysics Data System (ADS)
Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian
2018-01-01
Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.
Uranus and Neptune: Refugees from the Jupiter-Saturn zone?
NASA Astrophysics Data System (ADS)
Thommes, E. W.; Duncan, M. J.; Levison, H. F.
1999-09-01
Plantesimal accretion models of planet formation have been quite successful at reproducing the terrestrial region of the Solar System. However, in the outer Solar System these models run into problems, and it becomes very difficult to grow bodies to the current mass of the ``ice giants," Uranus and Neptune. Here we present an alternative scenario to in-situ formation of the ice giants. In addition to the Jupiter and Saturn solid cores, several more bodies of mass ~ 10 MEarth or more are likely to have formed in the region between 4 and 10 AU. As Jupiter's core, and perhaps Saturn's, accreted nebular gas, the other nearby bodies must have been scattered outward. Dynamical friction with the trans-Saturnian part of the planetesimal disk would have acted to decouple these ``failed cores" from their scatterer, and to circularize their orbits. Numerical simulations presented here show that systems very similar to our outer Solar System (including Uranus, Neptune, the Kuiper belt, and the scattered disk) are a natural product of this process.
On the Minimum Core Mass for Giant Planet Formation
NASA Astrophysics Data System (ADS)
Piso, Ana-Maria; Youdin, Andrew; Murray-Clay, Ruth
2013-07-01
The core accretion model proposes that giant planets form by the accretion of gas onto a solid protoplanetary core. Previous studies have found that there exists a "critical core mass" past which hydrostatic solutions can no longer be found and unstable atmosphere collapse occurs. This core mass is typically quoted to be around 10Me. In standard calculations of the critical core mass, planetesimal accretion deposits enough heat to alter the luminosity of the atmosphere, increasing the core mass required for the atmosphere to collapse. In this study we consider the limiting case in which planetesimal accretion is negligible and Kelvin-Helmholtz contraction dominates the luminosity evolution of the planet. We develop a two-layer atmosphere model with an inner convective region and an outer radiative zone that matches onto the protoplanetary disk, and we determine the minimum core mass for a giant planet to form within the typical disk lifetime for a variety of disk conditions. We denote this mass as critical core mass. The absolute minimum core mass required to nucleate atmosphere collapse is ˜ 8Me at 5 AU and steadily decreases to ˜ 3.5Me at 100 AU, for an ideal diatomic gas with a solar composition and a standard ISM opacity law. Lower opacity and disk temperature significantly reduce the critical core mass, while a decrease in the mean molecular weight of the nebular gas results in a larger critical core mass. Our results yield lower mass cores than corresponding studies for large planetesimal accretion rates.
The Nature and Cause of Spectral Variability in LMC X-1
NASA Technical Reports Server (NTRS)
Ruhlen, L.; Smith, D. M.; Scank, J. H.
2011-01-01
We present the results of a long-term observation campaign of the extragalactic wind-accreting black-hole X-ray binary LMC X-1, using the Proportional Counter Array on the Rossi X-Ray Timing Explorer (RXTE). The observations show that LMC X-1's accretion disk exhibits an anomalous temperature-luminosity relation. We use deep archival RXTE observations to show that large movements across the temperature-luminosity space occupied by the system can take place on time scales as short as half an hour. These changes cannot be adequately explained by perturbations that propagate from the outer disk on a viscous timescale. We propose instead that the apparent disk variations reflect rapid fluctuations within the Compton up-scattering coronal material, which occults the inner parts of the disk. The expected relationship between the observed disk luminosity and apparent disk temperature derived from the variable occultation model is quantitatively shown to be in good agreement with the observations. Two other observations support this picture: an inverse correlation between the flux in the power-law spectral component and the fitted inner disk temperature, and a near-constant total photon flux, suggesting that the inner disk is not ejected when a lower temperature is observed.
NASA Astrophysics Data System (ADS)
Ormel, C. W.; Liu, B.; Schoonenberg, D.
2017-09-01
We present a model for the formation of the recently-discovered TRAPPIST-1 planetary system. In our scenario planets form in the interior regions, by accretion of mm to cm-size particles (pebbles) that drifted from the outer disk. This scenario has several advantages: it connects to the observation that disks are made up of pebbles, it is efficient, it explains why the TRAPPIST-1 planets are ˜Earth mass, and it provides a rationale for the system's architecture.
MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.
The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less
Outward Migration of Giant Planets in Orbital Resonance
NASA Astrophysics Data System (ADS)
D'Angelo, G.; Marzari, F.
2013-05-01
A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.
Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds
NASA Astrophysics Data System (ADS)
Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.
2014-08-01
Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The sample analyzed here suggests that, at least for some objects, the process responsible of the inner disk clearing allows for a transfer of gas from the outer disk to the inner region. This should proceed at a rate that does not depend on the physical mechanisms that produces the gap seen in the dust emission and results in a gas density in the inner disk similar to that of unperturbed disks around stars of similar mass. This work is based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 089.C-0840 and 090.C-0050, and on data obtained from the ESO Science Archive Facility observed under programme ID 084.C-1095, 085.C-0764, 085.C-0876, 288.C-5013, and 089.C-0143.
Numerical Modeling of Tidal Effects in Polytropic Accretion Disks
NASA Technical Reports Server (NTRS)
Godon, Patrick
1997-01-01
A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion disks, under the assumptions of a polytropic equation of state and a standard alpha viscosity prescription. Under the influence of the m = 1 azimuthal component of the tidal potential, viscous oscillations in the outer disk excite an m = 1 eccentric instability in the disk. While the m = 2 azimuthal component of the tidal potential excites a Papaloizou-Pringle instability in the inner disk (a saturated m = 2 azimuthal mode), with an elliptic pattern rotating at about a fraction (approx. = 1/3) of the local Keplerian velocity in the inner disk. The period of the elliptic mode corresponds well to the periods of the short-period oscillations observed in cataclysmic variables. In cold disks (r(Omega)/c(sub s) = M approx. = 40) we also find a critical value of the viscosity parameter (alpha approx. = 0.01), below which shock dissipation dominates and is balanced by the wave amplification due to the wave action conservation. In this case the double spiral shock propagates all the way to the inner boundary with a Mach number M(sub s) approx. = 1.3.
Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales
NASA Astrophysics Data System (ADS)
Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy
2018-04-01
Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro
2015-07-01
We report multifrequency phase-referenced observations of the nearby radio galaxy NGC 4261, which has prominent two-sided jets, using the Very Long Baseline Array at 1.4–43 GHz. We measured radio core positions showing observing frequency dependences (known as “core shift”) in both approaching jets and counterjets. The limit of the core position as the frequency approaches infinity, which suggests a jet base, is separated by 82 ± 16 μas upstream in projection, corresponding to (310 ± 60)R{sub s} (R{sub s}: Schwarzschild radius) as a deprojected distance, from the 43 GHz core in the approaching jet. In addition, the innermost component atmore » the counterjet side appeared to approach the same position at infinity of the frequency, indicating that cores on both sides are approaching the same position, suggesting a spatial coincidence with the central engine. Applying a phase-referencing technique, we also obtained spectral index maps, which indicate that emission from the counterjet is affected by free–free absorption (FFA). The result of the core shift profile on the counterjet also requires FFA because the core positions at 5–15 GHz cannot be explained by a simple core shift model based on synchrotron self-absorption (SSA). Our result is apparently consistent with the SSA core shift with an additional disk-like absorber over the counterjet side. Core shift and opacity profiles at the counterjet side suggest a two-component accretion: a radiatively inefficient accretion flow at the inner region and a truncated thin disk in the outer region. We proposed a possible solution about density and temperature profiles in the outer disk on the basis of the radio observation.« less
RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thalmann, C.; Garufi, A.; Quanz, S. P.
2016-09-10
LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures inmore » the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.« less
Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure .
NASA Astrophysics Data System (ADS)
Ábrahám, P.; Varga, J.; Gabányi, K. É.; Chen, L.; Kóspál, Á.; Ratzka, Th.; van Boekel, R.; Mosoni, L.; Henning, Th.
DG Tau is a low-mass young star whose strongly accreting disk shows a variable 10 mu m silicate feature, that may even turn temporarily from emission to absorption. Aiming to find the physical reason of this variability, we analysed multiepoch VLTI/MIDI interferometric observations. We found that the inner disk within 3 au radius exhibits a 10 mu m absorption feature related to amorphous silicate grains, while the outer disk displays a variable crystalline feature in emission, similar in shape to the spectrum of comet Hale-Bopp. The variability may be related to a fluctuating amount of dusty material above the disk surface, possibly due to turbulence.
NASA Astrophysics Data System (ADS)
Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru
2005-11-01
We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called "type-I migration," and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (10 6-10 7 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 10 5 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets ("oligarchic growth") is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested.
Breeding Super-Earths and Birthing Super-puffs in Transitional Disks
NASA Astrophysics Data System (ADS)
Lee, Eve J.; Chiang, Eugene
2016-02-01
The riddle posed by super-Earths (1-4R⊕, 2-20M⊕) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ˜0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4-10R⊕, 2-6M⊕). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ˜1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.
NASA Astrophysics Data System (ADS)
Grady, C. A.; Schneider, G.; Sitko, M. L.; Williger, G. M.; Hamaguchi, K.; Brittain, S. D.; Ablordeppey, K.; Apai, D.; Beerman, L.; Carpenter, W. J.; Collins, K. A.; Fukagawa, M.; Hammel, H. B.; Henning, Th.; Hines, D.; Kimes, R.; Lynch, D. K.; Ménard, F.; Pearson, R.; Russell, R. W.; Silverstone, M.; Smith, P. S.; Troutman, M.; Wilner, D.; Woodgate, B.; Clampin, M.
2009-07-01
SAO 206462 (HD 135344B) has previously been identified as a Herbig F star with a circumstellar disk with a dip in its infrared excess near 10 μm. In combination with a low accretion rate estimated from Br γ, it may represent a gapped, but otherwise primordial or "pre-transitional" disk. We test this hypothesis with Hubble Space Telescope coronagraphic imagery, FUV spectroscopy and imagery and archival X-ray data, and spectral energy distribution (SED) modeling constrained by the observed system inclination, disk outer radius, and outer disk radial surface brightness (SB) profile using the Whitney Monte Carlo Radiative Transfer Code. The essentially face-on (i lsim 20°) disk is detected in scattered light from 0farcs4 to 1farcs15 (56-160 AU), with a steep (r -9.6) radial SB profile from 0farcs6 to 0farcs93. Fitting the SB data requires a concave upward or anti-flared outer disk, indicating substantial dust grain growth and settling by 8 ± 4 Myr. The warm dust component is significantly variable in near to mid-IR excess and in temperature. At its warmest, it appears confined to a narrow belt from 0.08 to 0.2 AU. The steep SED for this dust component is consistent with grains with a<= 2.5 μm. For cosmic carbon to silicate dust composition, conspicuous 10 μm silicate emission would be expected and is not observed. This may indicate an elevated carbon to silicate ratio for the warm dust, which is not required to fit the outer disk. At its coolest, the warm dust can be fit with a disk from 0.14 to 0.31 AU, but with a higher inclination than either the outer disk or the gaseous disk, providing confirmation of the high inclination inferred from mid-IR interferometry. In tandem, the compositional and inclination difference between the warm dust and the outer dust disk suggests that the warm dust may be of second-generation origin, rather than a remnant of a primordial disk component. With its near face-on inclination, SAO 206462's disk is a prime location for planet searches. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Non-thermal X-ray emission from tidal disruption flares
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2016-09-01
A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.
Childhood to adolescence: dust and gas clearing in protoplanetary disks
NASA Astrophysics Data System (ADS)
Brown, Joanna Margaret
Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.
Flares, Magnetic Reconnections and Accretion Disk Viscosity
NASA Astrophysics Data System (ADS)
Welsh, William
2001-07-01
Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.
Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon.
Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis
2018-03-21
Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth-Moon system. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48 Ca/ 44 Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass-independent 48 Ca/ 44 Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near the end of the protoplanetary disk's lifetime.
Multi-layer accretion disks around black holes and formation of a hot ion-torus
NASA Astrophysics Data System (ADS)
Hujeirat, A.; Camenzind, M.
2000-08-01
We present the first 2D steady-state numerical radiative hydrodynamical calculations showing the formation of a low-density hot torus in the very inner region of accretion disks around a black hole. The inner part of the disk is found to be thermally unstable when Bremsstrahlung is the dominant cooling mechanism. Within the parameter regime used and in the absence of magnetic fields, the torus-plasma is highly time-dependent with supersonic oscillating motion with respect to the electron temperature. When the soft photons from the disk comptonize the electrons efficiently, the ion-pressure supported torus shrinks in volume, but decelerates further the inward motion into the hole. We speculate that magnetic fields would stabilize the tori by lowering its energy package through initiating jets and/or outflows. In the outer region, we find that the scale height of the angular velocity HΩ largely exceeds the scale height of the density Hρ. This yields a multi-layer flow-structure in the vertical direction which slows the inwards motion into the BH significantly, enhancing further the formation of the hot torus.
Formation of Outer Planets: Overview
NASA Technical Reports Server (NTRS)
Lissauer, Jack
2003-01-01
An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.
Modeling MHD accretion-ejection: episodic ejections of jets triggered by a mean-field disk dynamo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanovs, Deniss; Fendt, Christian; Sheikhnezami, Somayeh, E-mail: deniss@stepanovs.org, E-mail: fendt@mpia.de
2014-11-20
We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the self-generation of the magnetic field by an α{sup 2}Ω mean-field dynamo. The disk magnetization remains on a rather low level, which helps to evolve the simulations for T > 10, 000 dynamical time steps on a domain extending 1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field structure, favoring magneto-centrifugal launching. The outermore » disk field is highly inclined and predominantly radial. Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.« less
On the jet of a young star RWAurA and related problems
NASA Astrophysics Data System (ADS)
Berdnikov, L. N.; Burlak, M. A.; Vozyakova, O. V.; Dodin, A. V.; Lamzin, S. A.; Tatarnikov, A. M.
2017-07-01
Having compared images of a jet of the young star RWAurA obtained with an interval of 21.3 yr, we have found that the outermost knots of the jet have emerged approximately 350 years ago. We come up with arguments that the jet itself has appeared at the same time, and intensive accretion onto the star has begun due to rearrangement of its protoplanetary disk structure caused by the tidal effect of the companion RWAur B. More precisely suppose that intensification of accretion is a response to changing conditions in the outer-disk regions which has followed after the sound wave, generated by these changes, has passed the disk in the radial direction. In our opinion difference in the parameters of blue and red lobes of the RWAurA jet is a result of the asymmetric distribution of the circumstellar matter above and below the disk due to companion's passage. It was found from the analysis of the RWAur historical light curve that deep and long-term (Δ t > 150 days) light attenuations of RWAurA observed after 2010 had no precedents in the previous 110 years.We also associate the change in the character of photometric variability of the star with the rearrangement of the structure of inner ( r < 1 AU) regions of its protoplanetary disk, and discuss why these changes have begun only 350 years after the beginning of the active accretion phase.
Pebble Accretion in Turbulent Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.
2017-09-01
It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.
Eccentricity Evolution of Migrating Planets
NASA Technical Reports Server (NTRS)
Murray, N.; Paskowitz, M.; Holman, M.
2002-01-01
We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which either the outer or both planets lose energy and angular momentum. The sink of energy and angular momentum could be a gas or planetesimal disk. We analytically calculate the eccentricity damping rate in the case of a single planet migrating through a planetesimal disk. When the planetesimal disk is cold (the average eccentricity is much less than 1), the circularization time is comparable to the inward migration time, as previous calculations have found for the case of a gas disk. If the planetesimal disk is hot, the migration time can be an order of magnitude shorter. We show that the eccentricity of both planetary bodies can grow to large values, particularly if the inner body does not directly exchange energy or angular momentum with the disk. We present the results of numerical integrations of two migrating resonant planets showing rapid growth of eccentricity. We also present integrations in which a Jupiter-mass planet is forced to migrate inward through a system of 5-10 roughly Earth-mass planets. The migrating planets can eject or accrete the smaller bodies; roughly 5% of the mass (averaged over all the integrations) accretes onto the central star. The results are discussed in the context of the currently known extrasolar planetary systems.
WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podio, L.; Dougados, C.; Thi, W.-F.
2013-03-20
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26more » times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.« less
The unusual carbon star HD 59643 - Alternative models
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Eaton, J. A.; Querci, F. R.; Querci, M.; Baumert, J. H.
1988-01-01
A binary model for the carbon star HD 59643 is discussed in which the secondary spectrum is formed in an accretion disk. If this hot, ultraviolet-emitting disk radiates like a 20,000 K black-body, it must be 0.03 solar radii or less across at minimum emission. Large widths of C IV multiplet UV1 on high-resolution spectra indicate its formation in the inner parts of a disk. The semiforbidden C III and Si III lines, however, are much narrower and could be formed in the outer parts of a disk or in the carbon star's chromosphere. The electron density in the region of formation of C III is about 10 to the 10th/cu cm.
Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.
1991-01-01
IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.
Foundations of Black Hole Accretion Disk Theory.
Abramowicz, Marek A; Fragile, P Chris
2013-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).
Strongly Magnetized Accretion Disks in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Begelman, Mitchell
Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co-exist with accretion at large heights. Using simulations, we will study fragmentation conditions, the clumpiness of stable AGN disks, and the mass function of collapsed clumps. (3) Physics of the broad emission line region and dusty torus . We will study the possible role of the strong toroidal field in promoting thermal instabilities to create dense lineemitting filaments, transporting them in height, and confining the line-emitting gas. Extrapolating to slightly larger distances, we will examine whether the field can elevate dusty gas to heights at which it can reprocess a substantial fraction of the AGN radiation. This study will establish a new theoretical framework for interpreting multi-wavelength observations of AGN, involving NASA s infrared, ultraviolet and X-ray observatories as well as ground-based detectors. It addresses fundamental questions about how supermassive black holes interact with their galactic environments, as well as broader issues of feedback and black hole-galaxy co-evolution.
Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon
NASA Astrophysics Data System (ADS)
Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis
2018-03-01
Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth–Moon system. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48Ca/44Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass-independent 48Ca/44Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near the end of the protoplanetary disk’s lifetime.
The Nonbarred Double-Ringed Galaxy, PGC 1000714
NASA Astrophysics Data System (ADS)
Seigar, Marc; Mutlu Pakdil, Burcin; Mangedarage, Mithila; Treuthardt, Patrick M.
2017-01-01
Hoag-type galaxies are rare peculiar systems which bear strong resemblance to Hoag's Object with an elliptical-like core, a detached outer ring, and no signs of a bar or stellar disk. They represent extreme cases and help us understand the formation of galaxies in general by providing clues on formation mechanisms. The nature of outer rings in Hoag-type galaxies is still debated and may be related either to slow secular evolution, such as dissolution of a barlike structure or to environmental processes, such as galaxy-galaxy interactions or gas infall. Due to a fairly superficial resemblance to Hoag's Object, PGC 1000714 is a good target for detailed study of the peculiar structure of this type. We present the first photometric study of PGC 1000714 that has not yet been described in the literature. Our aim is to evaluate its structure and properties as well as understand the origin of outer rings in such galaxies. Surface photometry of the central body is performed using near-UV, BVRI and JHK images. Based on the photometric data, the nearly round central body follows a de Vaucouleurs profile almost all the way to the center. The detailed photometry reveals a reddish inner ring-shaped structure that shares the same center as the central body. However, no sign of a bar or stellar disk is detected. The outer ring appears as a bump in the surface brightness profile with a peak brightness of 25.8 mag/arcsec^{2} in the B-band and shows no sharp outer boundary. By reconstructing the observed SED for the central body and the rings, we recover the stellar population properties of the galaxy components. Our work suggests different formation histories for the inner and outer rings. We rule out the secular evolution model as being a formation mechanism for the outer ring. The colors of the outer ring are consistent with a feature that may have experienced a burst of star formation due to a possible recent accretion event. In addition, our work supports that the central body may be formed by a relatively dry major merger or in a single, short and highly effective star formation burst, and the inner ring may be formed as a result of intergalactic medium accretion or secular evolution of a possible gaseous disk
STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert-Fort, Stephane; Zaritsky, Dennis; Moustakas, John
We present a Large Binocular Telescope imaging study that characterizes the star cluster component of nearby galaxy outer disks (beyond the optical radius R{sub 25}). Expanding on the pilot project of Herbert-Fort et al., we present deep ({approx}27.5 mag V-band point-source limiting magnitude) U- and V-band imaging of six galaxies: IC 4182, NGC 3351, NGC 4736, NGC 4826, NGC 5474, and NGC 6503. We find that the outer disk of each galaxy is populated with marginally resolved star clusters with masses {approx}10{sup 3} M{sub Sun} and ages up to {approx}1 Gyr (masses and ages are limited by the depth ofmore » our imaging and uncertainties are large given how photometry can be strongly affected by the presence or absence of a few stars in such low-mass systems), and that they are typically found out to at least 2 R{sub 25} but sometimes as far as 3-4 R{sub 25}-even beyond the apparent H I disk. The mean rate of cluster formation for 1 R{sub 25} {<=} R {<=} 1.5 R{sub 25} is at least one every {approx}2.5 Myr and the clusters are spatially correlated with the H I, most strongly with higher density gas near the periphery of the optical disk and with lower density neutral gas at the H I disk periphery. We hypothesize that the clusters near the edge of the optical disk are formed in the extension of spiral structure from the inner disk and are a fairly consistent phenomenon and that the clusters formed at the periphery of the H I disk are the result of accretion episodes.« less
NASA Astrophysics Data System (ADS)
Damjanov, Ivana; Jayawardhana, Ray; Scholz, Alexander; Ahmic, Mirza; Nguyen, Duy C.; Brandeker, Alexis; van Kerkwijk, Marten H.
2007-12-01
We present a comprehensive study of disks around 81 young, low-mass stars and brown dwarfs in the nearby ~2 Myr old Chamaeleon I star-forming region. We use mid-infrared photometry from the Spitzer Space Telescope, supplemented by findings from ground-based high-resolution optical spectroscopy and adaptive optics imaging. We derive disk fractions of 52%+/-6% and 58+6-7% based on 8 and 24 μm color excesses, respectively, consistent with those reported for other clusters of similar age. Within the uncertainties, the disk frequency in our sample of K3-M8 objects in Cha I does not depend on stellar mass. Diskless and disk-bearing objects have similar spatial distributions. There are no obvious transition disks in our sample, implying a rapid timescale for the inner disk clearing process; however, we find two objects with weak excess at 3-8 μm and substantial excess at 24 μm, which may indicate grain growth and dust settling in the inner disk. For a subsample of 35 objects with high-resolution spectra, we investigate the connection between accretion signatures and dusty disks: in the vast majority of cases (29/35) the two are well correlated, suggesting that, on average, the timescale for gas dissipation is similar to that for clearing the inner dust disk. The exceptions are six objects for which dust disks appear to persist even though accretion has ceased or dropped below measurable levels. Adaptive optics images of 65 of our targets reveal that 17 have companions at (projected) separations of 10-80 AU. Of the five <~20 AU binaries, four lack infrared excess, possibly indicating that a close companion leads to faster disk dispersal. The closest binary with excess is separated by ~20 AU, which sets an upper limit of ~8 AU for the outer disk radius. The overall disk frequency among stars with companions (35+15-13%) is lower than (but still statistically consistent with) the value for the total sample.
BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu
The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustlymore » emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.« less
Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666
NASA Astrophysics Data System (ADS)
Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke
2018-01-01
Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.
DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J., E-mail: s.mohanty@imperial.ac.uk, E-mail: ercolano@usm.lmu.de, E-mail: neal.turner@jpl.nasa.gov
We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with Mmore » {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.« less
NASA Astrophysics Data System (ADS)
Ghosh, A.; Chakrabarti, Sandip K.
2016-09-01
Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of the Keplerian disk component. Our result thus confirms different sizes of Keplerian disks in these two important classes of binaries. If the orbital periods of any binary system is not known, they may be obtained with reasonable accuracy for HMXBs and with lesser accuracy for LMXBs by our method.
NASA Astrophysics Data System (ADS)
Vorobyov, Eduard I.
2011-03-01
We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun, M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun, M mdn d,CI = 0.15 M sun, respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun. Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.
Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime
NASA Astrophysics Data System (ADS)
Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.
2015-01-01
The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.
United theory of planet formation (i): Tandem regime
NASA Astrophysics Data System (ADS)
Ebisuzaki, Toshikazu; Imaeda, Yusuke
2017-07-01
The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely to be volatile-free because of the high temperature (>1000 K) at this formation site. Such water-free rocky particles may explain the formation of enstatite chondrites, of which the Earth is likely to be primarily composed of. It is also consistent with the model in which the Earth was initially formed as a completely volatile-free planet. The water and other volatile elements came later through the accretion of icy particles by the occasional scatterings in the outer regions. Our new proposed tandem planet formation regime shows that planetesimals are formed at two distinct sites (outer and inner edges of the MRI suppressed region). The former is likely to be the source of outer gas giants and the latter inner rocky planets. The tandem regime also explains the gap in the distribution of solid components (2-4 AU), which is necessary to form a ;solar-system-like; planetary system, which has a relatively small Mars and a very small mass in the main asteroid belt. We found that this tandem regime dose not take place when the vertical magnetic field of the disk five times weaker compared with that we assumed in the present paper, since the outer MRI front shift outward beyond 100 AU. This suggests that yet other regimes exists in our united theory. It may explain the variation observed in exsoplanetary systems by variations in magnetic field and probably angular momentum of the parent molecular cloud.
Active black holes: Relevant plasma structures, regimes and processes involving all phase space
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2011-03-01
The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear ``Master Equation'' describing composite disk structures is derived and solved in appropriate asymptotic limits. A ring configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.
NASA Astrophysics Data System (ADS)
Frinchaboy, Peter Michael, III
Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered ~1-2 km s -1 radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the Local Standard of Rest (LSR) is [Special characters omitted.] km s -1 , (2 ) the local rotation curve is declining with radius having a slope of -9.1 km s -1 kpc -1 , (3) we find (using R 0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km s -1 kpc -1 and B = -8.9 km s -1 kpc -1 , which using a flat rotation curve and our determined values for the rotation velocity of the LSR yields a Galaxy mass within 1.5 R 0 of M = 1.4 ± 0.2 × 10 11 [Spe cial characters omitted.] and a M/L of 9 [Special characters omitted.] . We also explore the distribution of the local velocity field and find evidence for non- circular motion due to the spiral arms. Additionally, a number of outer disk ( R gc > 12 kpc) open clusters, including Be29 and Sa1, are studied that have potentially critical leverage on radial, age and metallicity gradients in the outer Galactic disk. We find that the measured kinematics of Sa1 and Be29 are consistent with being associated with the Galactic anticenter stellar structure (GASS; or Monoceros stream), which points to a possible "accretion" origin for these and possibly other outer disk open clusters, if one believes that GASS represents an accreting dwarf galaxy system.
On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1993-01-01
A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.
NASA Astrophysics Data System (ADS)
Kalyaan, A.; Desch, S. J.; Monga, N.
2015-12-01
The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α ≲ 10-5 in the inner disk (<2 AU), rising to ˜10-1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ({{Σ }}\\propto {r}-< p> with < p> ≈ 2-5 in the 5-30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee
2016-12-01
We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval 0.3 {R}{{p}}≤slant R≤slant 0.7{R}{{p}}, where R p denotes the semimajor axis of the planetary orbit (assumed to be 5 au), the estimated vertical diffusion rate associated with the turbulence is characterized by {α }{diff}∼ (0.2{--}1.2)× {10}-2. For the disk model considered here, the diffusion rate is such that particles with sizes up to several centimeters are vertically mixed within the first pressure scale height. This suggests that the instability of spiral waves launched by a giant planet can significantly disperse solid particles and trace chemical species from the midplane. In planet formation models where the continuous local production of chondrules/pebbles occurs over Myr timescales to provide a feedstock for pebble accretion onto these bodies, this stirring of solid particles may add a time constraint: planetary embryos and large asteroids have to form before a gas giant forms in the outer disk, otherwise the SWI will significantly decrease the chondrule/pebble accretion efficiency.
A pebbles accretion model with chemistry and implications for the solar system in the lights of Juno
NASA Astrophysics Data System (ADS)
Ali-Dib, Mohamad
2016-10-01
The chemical compositions of the solar system giant planets are a major source of informations on their origins. Since the measurements by the Galileo probe, multiple models have been put forward to try and explain the noble gases enrichment in Jupiter. The most discussed among these are its formation in the outer cold nebula and its formation in a partially photoevaporated disk. In this work I couple a pebbles accretion model to the disk's chemistry and photoevaporation in order to make predictions from both scenarios and compare them to the upcoming Juno measurements. The model include pebbles and gas accretion, type I and II migration, photoevaporation and chemical measurements from meteorites, comets and disks. Population synthesis simulations are used to explore the models free parameters (planets initial conditions), where then the results are narrowed down using the planets chemical, dynamical and core mass costraints. We end up with a population that fits all of the constrains. These are then used to predict the oxygen abundance and core mass in Jupiter, to be compared to results of Juno. Same calculations are also done for Saturn and Neptune for comparison. I will present the results from these simulations as well as the predictions from all of the different models.Ali-Dib, M. (2016ab, submitted to MNRAS)
The Cluster Population of UGC 2885
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2017-08-01
UGC 2885 was discoverd to be the most extended disk galaxy [250 kpc diameter] by Vera Rubin in the 1980's. We ask for HST observations of UGC 2885 as it is close enough to resolve the GC population with HST but it is a substantially more extended disk than any studied before. LCDM galaxy assembly implies that the GC population comes from small accreted systems and the disk -and the clusters associated with it- predominantly from gas accretion (matching angular momentum to the disk). Several scaling relations between the GC population and parent galaxy have been observed but these differ for disk and spheroidal (massive) galaxies.We propose to observe this galaxy with HST in 4 point WFC3 mosaic with coordinated ACS parallels to probe both the disk and outer halo component of the GC population. GC populations have been studied extensively using HST color mosaics of local disk galaxies and these can serve as comparison samples. How UGC 2885 cluster populations relate to its stellar and halo mass, luminosity and with radius will reveal the formation history of extra-ordinary disk.Our goals are twofold: our science goal is to map the luminosity, (some) size, and color distributions of the stellar and globular clusters in and around this disk. In absolute terms, we expect to find many GC but the relative relation of the GC population to this galaxy's mass (stellar and halo) and size will shed light on its formation history; similar to a group or cluster central elliptical or to a field galaxy (albeit one with a disk 10x the Milky Way's size)? Our secondary motive is to make an HST tribute image to the late Vera Rubin.
2001-04-10
for gas from the circumbinary disk to cross disk gaps in the...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Evidence for Residual Material in Accretion Disk Gaps : CO Fundamental Emission from the T Tauri...MATERIAL IN ACCRETION DISK GAPS 455 type of modulated, or pulsed, accretion predicted by Arty- mowicz & Lubow (1996) for an eccentric, equal mass
Recent Observational Progress on Accretion Disks Around Compact Objects
NASA Astrophysics Data System (ADS)
Miller, Jon M.
2016-04-01
Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.
Accretion in Radiative Equipartition (AiRE) Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca
2017-07-01
Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks andmore » show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.« less
Accretion in Radiative Equipartition (AiRE) Disks
NASA Astrophysics Data System (ADS)
Yazdi, Yasaman K.; Afshordi, Niayesh
2017-07-01
Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (I.e., inner disk) need to be modified. Here, we present a modification to the Shakura & Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2004-03-01
In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extrasolar planetary systems. We evaluate the cores' mass growth rate Mc through runaway planetesimal accretion and oligarchic growth. The accretion rate of cores is estimated with a two-body approximation. In the inner regions of disks, the cores' eccentricity is effectively damped by their tidal interaction with the ambient disk gas and their early growth is stalled by ``isolation.'' In the outer regions, the cores' growth rate is much smaller. If some cores can acquire more mass than a critical value of several Earth masses during the persistence of the disk gas, they would be able to rapidly accrete gas and evolve into gas giant planets. The gas accretion process is initially regulated by the Kelvin-Helmholtz contraction of the planets' gas envelope. Based on the assumption that the exponential decay of the disk gas mass occurs on the timescales ~106-107 yr and that the disk mass distribution is comparable to those inferred from the observations of circumstellar disks of T Tauri stars, we carry out simulations to predict the distributions of masses and semimajor axes of extrasolar planets. In disks as massive as the minimum-mass disk for the solar system, gas giants can form only slightly outside the ``ice boundary'' at a few AU. However, cores can rapidly grow above the critical mass inside the ice boundary in protostellar disks with 5 times more heavy elements than those of the minimum-mass disk. Thereafter, these massive cores accrete gas prior to its depletion and evolve into gas giants. The limited persistence of the disk gas and the decline in the stellar gravity prevent the formation of cores capable of efficient gas accretion outside 20-30 AU. Unimpeded dynamical accretion of gas is a runaway process that is terminated when the residual gas is depleted either globally or locally in the form of a gap in the vicinity of their orbits. Since planets' masses grow rapidly from 10 to 100 M⊕, the gas giant planets rarely form with asymptotic masses in this intermediate range. Our model predicts a paucity of extrasolar planets with mass in the range 10-100 M⊕ and semimajor axis less than 3 AU. We refer to this deficit as a ``planet desert.'' We also examine the dynamical evolution of protoplanets by considering the effect of orbital migration of giant planets due to their tidal interactions with the gas disks, after they have opened up gaps in the disks. The effect of migration is to sharpen the boundaries and to enhance the contrast of the planet desert. It also clarifies the separation between the three populations of rocky, gas giant, and ice giant planets. Based on our results, we suggest that the planets' mass versus semimajor axes diagram can provide strong constraints on the dominant formation processes of planets analogous to the implications of the color-magnitude diagram on the paths of stellar evolution. We show that the mass and semimajor axis distributions generated in our simulations for the gas giants are consistent with those of the known extrasolar planets. Our results also indicate that a large fraction (90%-95%) of the planets that have migrated to within 0.05 AU must have perished. Future observations can determine the existence and the boundaries of the planet desert in this diagram, which can be used to extrapolate the ubiquity of rocky planets around nearby stars. Finally, the long-term dynamical interaction between planets of various masses can lead to both eccentricity excitation and scattering of planets to large semimajor axes. These effects are to be included in future models.
Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets
NASA Astrophysics Data System (ADS)
Poirier, John; Mathews, Grant
2015-04-01
It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.
Exploring Structures and Variability in the Pre-transitional Disk in HD 169142
NASA Astrophysics Data System (ADS)
Wagner, Kevin Robert; Sitko, Michael L.; Grady, Carol A.; Whitney, Barbara; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Schneider, Glenn; Momose, Muntake; Muto, Takayuki; Inoue, Akio K.; Lauroesch, James Thomas; Hornbeck, Jeremy; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M.; Wisniewski, John P.; Woodgate, Bruce E.
2015-01-01
We present a theoretical modelling analysis of of the structures in the pre-transisitonal disk in HD 169142 using 3D Monte-Carlo radiative transfer simulation. The multi-epoch broadband spectral energy distribution (SED) exhibits clear evidence of changes to the inner (sub-AU) regions of the disk over a maximum timescale of 10 years with the additional constraint that the shadowing of the outer (>25 AU) disk is non-time-dependent. We find that changes to the inner dust rim (0.2 AU) cannot account for this behavior. Instead, we find that if the inner disk posses an optically thin body of small grains then changes to the outer edge of these structures may successfully reproduce the two states in the SED (analogous to what may be occurring due to accretion onto the central star or dynamical clearing by planets). Furthermore, we explore the density distributions of the outer disk structures as they are constrained by the SED and imaged surface brightness profiles, with the conclusion that a mid-plane density power law profile of r^{-2} and r^{-1} for the 35-70 AU and 70-250 AU regions, respectively, may reproduce the observations to the limit of our available complexity of structures within our modelling software. Finally, we find that a 0.3x density scaling of the 35-70 AU region reproduces the second gap imaged in the near-infrared and at 7 mm, strengthening the link to this structure being cleared by one or more planetary mass bodies.This work was supported by NASA ADAP grant NNX09AC73G, Hubble Space Telescope grant HST-GO-13032, the IR&D program at The Aerospace Corporation, and the University of Cincinnati Honors Program.
New insights on the formation and assembly of M83 from deep near-infrared imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.
2014-07-10
We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less
The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841
NASA Astrophysics Data System (ADS)
Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven
2018-03-01
Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.
Formation of Planetary Populations I: Metallicity & Envelope Opacity Effects
NASA Astrophysics Data System (ADS)
Alessi, Matthew; Pudritz, Ralph E.
2018-05-01
We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κenv) and a measure of the efficiency of planetary accretion after gap opening (fmax). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties - their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both X-ray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κenv (0.001-0.002 cm2 g-1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.
Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles
NASA Astrophysics Data System (ADS)
Chambers, John
2017-11-01
In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.
Evolution of a rotating black hole with a magnetized accretion disk.
NASA Astrophysics Data System (ADS)
Lee, H. K.; Kim, H.-K.
2000-03-01
The effect of an accretion disk on the Blandford-Znajek process and the evolution of a black hole are discussed using a simplified system for the black hole-accretion disk in which the accretion rate is supposed to be dominated by the strong magnetic field on the disk. The evolution of the mass and the angular momentum of the black hole are formulated and discussed with numerical calculations.
X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin
NASA Technical Reports Server (NTRS)
Reynolds, C. S.
2000-01-01
The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.
Lunar and Planetary Science XXXV: Origin of Planetary Systems
NASA Technical Reports Server (NTRS)
2004-01-01
The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.
Recent developments on SU UMa stars - theory vs. observation
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2015-01-01
Kepler light curves of short period dwarf novae have resparked interest in the nature of superoutbursts and led to the question: Is the thermal-tidal instability needed, or can the plain vanilla version of the accretion disk limit cycle do the job all by itself? A detailed time-resolved study of an eclipsing SU UMa system during superoutburst onset should settle the question - if there is a dramatic contraction of the disk at superoutburst onset, Osaki's thermal-tidal model would be preferred; if not, the plain disk instability model would be sufficient. I will present recent results that support the contention by Osaki & Kato that the time varying negative superhump frequencies can be taken as a surrogate for the outer disk radius variations. Finally, it may be necessaryto look beyond the short period dwarf novae to gain perspective on the nature of embedded precursors in long outbursts.
NASA Astrophysics Data System (ADS)
Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.
2018-04-01
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
Accretion Disks in Supersoft X-ray Sources
NASA Technical Reports Server (NTRS)
Popham, Robert; DiStefano, Rosanne
1996-01-01
We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.
Accretion of magnetized matter into a black hole.
NASA Astrophysics Data System (ADS)
Bisnovatyj-Kogan, G. S.
1999-12-01
Accretion is the main source of energy in binary X-ray sources inside the Galaxy, and most probably in active galactic nuclei, where numerous observational data for the existence of supermassive black holes have been obtained. Standard accretion disk theory is formulated which is based on local heat balance. The whole energy produced by turbulent viscous heating is supposed to be emitted to the sides of the disk. Sources of turbulence in the accretion disk are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic field. In standard theory there are two branches of solution, optically thick, anti-optically thin, which are individually self-consistent. The choice between these solutions should be done on the basis of a stability analysis. Advection in the accretion disks is described by differential equations, which makes the theory nonlocal. The low-luminosity optically thin accretion disk model with advection under some conditions may become advectively dominated, carrying almost all the energy inside the black hole. A proper account for magnetic field in the process of accretion limits the energy advected into a black hole, and does not allow the radiative efficiency of accretion to become lower than about 1/4 of the standard accretion disk model efficiency.
Debris disks as signposts of terrestrial planet formation
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2011-06-01
There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org
MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froning, Cynthia S.; France, Kevin; Khargharia, Juthika
2011-12-10
We present contemporaneous X-ray, ultraviolet, optical, near-infrared, and radio observations of the black hole binary system, A0620-00, acquired in 2010 March. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00 as well as NUV observations with the Space Telescope Imaging Spectrograph. The observed spectrum is flat in the FUV and very faint (with continuum fluxes {approx_equal} 1e - 17 erg cm{sup -2} s{sup -1} A{sup -1}). The UV spectra also show strong, broad (FWHM {approx} 2000 km s{sup -1}) emission lines of Si IV, C IV, He II, Fe II,more » and Mg II. The C IV doublet is anomalously weak compared to the other lines, which is consistent with the low carbon abundance seen in NIR spectra of the source. Comparison of these observations with previous NUV spectra of A0620-00 shows that the UV flux has varied by factors of 2-8 over several years. We compiled the dereddened, broadband spectral energy distribution (SED) of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at {approx_equal}3000 A. The peak can be fit with a T = 10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that {approx}90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10{sup 5} the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion. We compared our broadband SED to two models of A0620-00 in quiescence: the advection-dominated accretion flow model and the maximally jet-dominated model. The comparison suggests that strong outflows may be present in the system, indicated by the discrepancies in accretion rates and the FUV upturn in flux in the SED.« less
Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Yang, Chao-Chin; Mac Low, M.; Menou, K.
2010-01-01
In core accretion scenario of planet formation, kilometer-sized planetesimals are the building blocks toward planetary cores. Their dynamics, however, are strongly influenced by their natal protoplanetary gas disks. It is generally believed that these disks are turbulent, most likely due to magnetorotational instability. The resulting density perturbations in the gas render the movement of the particles a random process. Depending on its strength, this process might cause several interesting consequences in the course of planet formation, specifically the survivability of objects under rapid inward type-I migration and/or collisional destruction. Using the local-shearing-box approximation, we conduct numerical simulations of planetesimals moving in a turbulent, magnetized gas disk, either unstratified or vertically stratified. We produce a fiducial disk model with turbulent accretion of Shakura-Sunyaev alpha about 10-2 and root-mean-square density perturbation of about 10% and statistically characterize the evolution of the orbital properties of the particles moving in the disk. These measurements result in accurate calibration of the random process of particle orbital change, indicating noticeably smaller magnitudes than predicted by global simulations, although the results may depend on the size of the shearing box. We apply these results to revisit the survivability of planetesimals under collisional destruction or protoplanets under type-I migration. Planetesimals are probably secure from collisional destruction, except for kilometer-sized objects situated in the outer regions of a young protoplanetary disk. On the other hand, we confirm earlier studies of local models in that type-I migration probably dominates diffusive migration due to stochastic torques for most planetary cores and terrestrial planets. Discrepancies in the derived magnitude of turbulence between local and global simulations of magnetorotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.
2014-12-10
We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being duemore » to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.« less
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya
2003-01-01
Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.
Gravitomagnetic acceleration from black hole accretion disks
NASA Astrophysics Data System (ADS)
Poirier, J.; Mathews, G. J.
2016-05-01
We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
The Diversity of Carbon in Cometary Refractory Dust Particles
NASA Technical Reports Server (NTRS)
Wooden, D. H.
2018-01-01
When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.
NASA Technical Reports Server (NTRS)
Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.
1992-01-01
An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.
Water Delivery and Giant Impacts in the 'Grand Tack' Scenario
NASA Technical Reports Server (NTRS)
O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.
2014-01-01
A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in all simulations do experience large late impacts and subsequent accretion consistent with those constraints.
An Observational Study of Accretion Dynamics in Short-Period Pre-Main Sequence Binaries
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin; Mathieu, Robert; Herczeg, Greg; Johns-Krull, Christopher; Akeson, Rachel; Ciardi, David
2018-01-01
Over the past thirty years, a detailed picture of star formation has emerged that highlights the importance of the interaction between a pre-main sequence (pre-MS) star and its protoplanetary disk. The properties of an emergent star, the lifetime of a protoplanetary disk, and the formation of planets are all, in part, determined by this star-disk interaction. Many stars, however, form in binary or higher-order systems where orbital dynamics are capable of fundamentally altering this star-disk interaction. Orbital resonances, especially in short-period systems, are capable of clearing the central region of a protoplanetary disk, leaving the possibility for three stable accretion disks: a circumstellar disk around each star and a circumbinary disk. In this model, accretion onto the stars is predicted to proceed in periodic streams that form at the inner edge of the circumbinary disk, cross the dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars themselves. This pulsed-accretion paradigm predicts bursts of accretion that are periodic with the orbital period, where the duration, amplitude, location in orbital phase, and which star if preferentially fed, all depend on the orbital parameters. To test these predictions, we have carried out intensive observational campaigns combining time-series, optical and near-infrared photometry with time-series, optical spectroscopy. These data are capable of monitoring the stellar accretion rate, the properties of warm circumstellar dust, and the kinematics of accretion flows, all as a function of orbital phase. In our sample of 9 pre-MS binaries with diverse orbital parameters, we search for evidence of periodic accretion events and seek to determine the role orbital parameters have on the characteristics of accretion events. Two results from our campaign will be highlighted: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system. We compare these findings to the results of numerical simulations and comment on the role of magnetospheric accretion in pre-MS binaries.
The magnetic nature of disk accretion onto black holes.
Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy
2006-06-22
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
Dancing Twins: Stellar Hierarchies That Formed Sequentially?
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei
2018-04-01
This paper draws attention to the class of resolved triple stars with moderate ratios of inner and outer periods (possibly in a mean motion resonance) and nearly circular, mutually aligned orbits. Moreover, stars in the inner pair are twins with almost identical masses, while the mass sum of the inner pair is comparable to the mass of the outer component. Such systems could be formed either sequentially (inside-out) by disk fragmentation with subsequent accretion and migration, or by a cascade hierarchical fragmentation of a rotating cloud. Orbits of the outer and inner subsystems are computed or updated in four such hierarchies: LHS 1070 (GJ 2005, periods 77.6 and 17.25 years), HIP 9497 (80 and 14.4 years), HIP 25240 (1200 and 47.0 years), and HIP 78842 (131 and 10.5 years).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, M.; Uematsu, S.; Abe, J., E-mail: yokosawa@mx.ibaraki.ac.j
The standard massive accretion disk with Keplerian angular momentum (standard accretion disk) producing gamma-ray bursts (GRBs) is investigated on the bases of the microphysics of neutrinos and general relativity. Since the accretion disk gradually heated by viscosity is efficiently cooled by antielectron neutrinos, the accreting flow maintains a relatively low temperature, T {approx} 3 x 10{sup 10} K, over a long range of accreting radius that produces very high dense matter around a rotating black hole, {rho} {>=} 10{sup 13} g cm{sup -3}. Thus, the massively accreting matter is in the domain of heavy nuclei all over the accreting flowmore » onto a central black hole where the fraction of evaporated free neutrons is large, Y{sub n} {approx} 0.8, and that of protons is infinitesimal, Y{sub p} {approx} 10{sup -4}. The electron neutrinos in the disk are almost absorbed by rich neutrons while the antielectron neutrinos are little absorbed by rarefied protons. The mean energy of antielectron neutrinos ejected from the disk is extraordinarily high, because the antielectron neutrinos are degenerated in the high dense disk. The huge antielectron neutrinos with high mean energy and large luminosity, are ejected from the massive accretion disk. The antielectron neutrinos are possibly the sources of the relativistic jets producing GRBs.« less
Black Hole Disk Accretion in Supernovae
NASA Astrophysics Data System (ADS)
Nomura, H.; Mineshige, S.; Hirose, M.; Nomoto, K.; Suzuki, T.
Hydrodynamical disk accretion flow onto a new-born black hole in a supernova is studied using the SPH (Smoothed Particle Hydrodynamics) method. It has been suggested that a mass of ~0.1Modot falls back to a black hole by a reverse shock. If the progenitor was rotating before the explosion, the accreting material should have a certain amount of angular momentum, thus forming an accretion disk. Disk material will eventually accrete towards the central object via viscosity with a supercritical accretion rate, dotM / dotMc > 106, for first several tens of days. (Here, dotMc is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection-dominated; that is, the disk is so hot that produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity (~1038erg s-1). The disk becomes hot and dense; for dotM / dotMc ~106 and the viscosity parameter alphavis ~0.01, for example, T ~109K and rho ~103gcm-3 in the vicinity of the central object. Efficient nucleosynthesis is hence expected even for reasonable viscosity magnitudes, although produced elements may be swallowed by the black hole.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Technical Reports Server (NTRS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-01-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-03-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Photon Bubbles and the Vertical Structure of Accretion Disks
NASA Astrophysics Data System (ADS)
Begelman, Mitchell C.
2006-06-01
We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.
Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM.
NASA Astrophysics Data System (ADS)
Zharikov, S.
2014-03-01
We present results of time-resolved spectroscopy and photometry of faint (∼17-19 mag) Cataclysmic Variable stars with periods around the minimum orbital period (∼80 min). In this work we concentrated to our results of study of CVs systems which have evolved beyond the period minimum (so-called bounce-back systems). Using various instruments attached to 2.1m, 1.5m and 0.84m telescopes of OAN SPM of IA UNAM we explored conditions and structure of accretion disks in those short-period Cataclysmic Variables. We showed that the accretion disk in a system with an extremely low mass ratio (≤0.05) grows in the size reaching 2:1 resonance radius and is relatively cool. The disk in such systems also becomes largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence. Thanks to support of our programs by the Time Allocation Commission of OAN SPM, the perfect astroclimate in the observatory, and the phase-locked method of spectroscopic observations, the significant progress in the study of bounce-back systems using a small size telescope was reached.
Kinematic Dynamo In Turbulent Circumstellar Disks
NASA Technical Reports Server (NTRS)
Stepinski, T.
1993-01-01
Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.
Filling a SMBH accretion disk atmosphere at small and intermediate radii
NASA Astrophysics Data System (ADS)
Karas, Vladimir; Czerny, Bozena; Kunneriath, Devaky
2017-08-01
The medium above an accretion disk is highly diluted and hot. An efficient mechanism to deliver particles and dust grains is an open question; apparently, different processes must be in operation. We discuss an interplay of two different scenarios, where the material is elevated from the plane of an equatorial accretion disk into a corona near a supermassive black hole: (i) an electromagnetically induced transport, which can be driven by magnetic field of stars passing across an accretion disk (Karas et al., 2017); and (ii) radiatively driven acceleration by radiation emerging from the disk (Czerny et al 2015), which can launch a dusty wind near above the dust sublimation radius. The former process can operate in the vicinity of a supermassive black hole (SMBH) surrounded by a dense nuclear star-cluster. The latter process involves the effect of radiation pressure from various sources - stars, accretion disc, and the central accreting SMBH; it can help filling the Broad-Line Region against the vertical component of the black hole gravitational attraction and the accretion disk self-gravity at radius about a few $\\times 10^3 R_g$.
Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1994-01-01
Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial distribution Q(r) evolves on a considerably longer timescale. It is this evolution that is the subject of this paper.
Review of gravitomagnetic acceleration from accretion disks
NASA Astrophysics Data System (ADS)
Poirier, J.; Mathews, G. J.
2015-11-01
We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
Jets in black-hole and neutron-star X-ray binaries
NASA Astrophysics Data System (ADS)
Kylafis, Nikolaos
2016-07-01
Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.
Reverberation Mapping of AGN Accretion Disks
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; AGN STORM Collaboration
2017-01-01
I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.
Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.
2013-04-01
We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.
Gravitomagnetic acceleration of accretion disk matter to polar jets
NASA Astrophysics Data System (ADS)
Poirier, John; Mathews, Grant
2016-03-01
The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.
NASA Astrophysics Data System (ADS)
Ott, Juergen; Koribalski, Baerbel; Henkel, Christian; Edwards, Philip; Norris, Ray; Meier, David; Feain, Ilana; Curran, Steve; Martin-Pintado, Jesus; Beelen, Alexandre; Aalto, Susanne; Combes, Francoise; Israel, Frank; Muller, Sebastien; Espada, Daniel; Guelin, Michel; Black, John Harry; V-Trung, Dinh; Impellizzeri, Caterina M. V.; Persson, Carina
2011-10-01
Centaurus A with its host NGC5128 is the most nearby radio galaxy. Its molecular spectrum exhibits three prominent features: a) gas that is located in the outer disk and dust lanes, b) absorption lines that are supposedly close to the central AGN, and c) gas in emission from the nucleus. We propose to perform an extensive line survey toward CenA using the exciting new capabilities of CABB. The broad basebands and narrow zoom bands of CABB are ideal to capture the full breath of the CenA spectral features. Our multi-band line observations will allow us to derive the exact physical conditions of each component as well as the chemistry involved. We will therefore obtain a comprehensive view of the physics imprinted on the molecular spectrum of a radio galaxy and its host, reaching from the central supermassive black hole, through the accretion region and the inner disk to the outer dust lanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.
2013-09-20
Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processesmore » (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.« less
Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, John, E-mail: jchambers@carnegiescience.edu
In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planetsmore » with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.« less
LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, Julien; Canup, Robin M., E-mail: julien@boulder.swri.edu, E-mail: robin@boulder.swri.edu
2012-11-20
We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk, consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale of a few months obtained with prior pure N-body codes, here the final stage of the Moon's growth is controlled by the slow spreading of themore » inner disk, resulting in a total lunar accretion timescale of {approx}10{sup 2} years. It has been proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and exterior growing moons. For initial disks containing <2.5 lunar masses (M{sub Last-Quarter-Moon }), we find that a final Moon with mass > 0.8 M{sub Last-Quarter-Moon} contains {<=}60% material derived from the inner disk, with this material preferentially delivered to the Moon at the end of its accretion.« less
Dynamically important magnetic fields near accreting supermassive black holes.
Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A
2014-06-05
Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.
Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion
NASA Technical Reports Server (NTRS)
Kenyon, S. J.; Hartmann, L.
1987-01-01
The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.
Generation of a dynamo magnetic field in a protoplanetary accretion disk
NASA Technical Reports Server (NTRS)
Stepinski, T.; Levy, E. H.
1987-01-01
A new computational technique is developed that allows realistic calculations of dynamo magnetic field generation in disk geometries corresponding to protoplanetary and protostellar accretion disks. The approach is of sufficient generality to allow, in the future, a wide class of accretion disk problems to be solved. Here, basic modes of a disk dynamo are calculated. Spatially localized oscillatory states are found to occur in Keplerain disks. A physical interpretation is given that argues that spatially localized fields of the type found in these calculations constitute the basic modes of a Keplerian disk dynamo.
HD 100453: An evolutionary link between protoplanetary disks and debris disks
NASA Astrophysics Data System (ADS)
Collins, Karen
2008-12-01
Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.
Evolution of Pre-Main Sequence Accretion Disks
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2004-01-01
The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.
Evolution of Pre-Main Sequence Accretion Disks
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2003-01-01
The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.
Evolution of Pre-Main Sequence Accretion Disks
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2005-01-01
The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.
Accretion tori and cones of ionizing radiation in Seyfert galaxies
NASA Technical Reports Server (NTRS)
Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.
1990-01-01
The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.
Non-blackbody Disks Can Help Explain Inferred AGN Accretion Disk Sizes
NASA Astrophysics Data System (ADS)
Hall, Patrick B.; Sarrouh, Ghassan T.; Horne, Keith
2018-02-01
If the atmospheric density {ρ }atm} in the accretion disk of an active galactic nucleus (AGN) is sufficiently low, scattering in the atmosphere can produce a non-blackbody emergent spectrum. For a given bolometric luminosity, at ultraviolet and optical wavelengths such disks have lower fluxes and apparently larger sizes as compared to disks that emit as blackbodies. We show that models in which {ρ }atm} is a sufficiently low fixed fraction of the interior density ρ can match the AGN STORM observations of NGC 5548 but produce disk spectral energy distributions that peak at shorter wavelengths than observed in luminous AGN in general. Thus, scattering atmospheres can contribute to the explanation for large inferred AGN accretion disk sizes but are unlikely to be the only contributor. In the appendix section, we present unified equations for the interior ρ and T in gas pressure-dominated regions of a thin accretion disk.
NASA Astrophysics Data System (ADS)
Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe
2017-09-01
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
Where a Neutron Star's Accretion Disk Ends
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the neutron star as evidenced by X-ray flaring (almost certainly caused by accretion) that occurred during the authors observations.Magnetic EffectsWhat could cause the truncation of the disk? The authors believe the most likely factor is pressure from the neutron stars sizable magnetic field, pushing the inner edge of the disk out. They calculate that a field strength of roughly 5*108 Gauss (for comparison, a typical refrigerator magnet has a field strength of ~100 G!) would be necessary to hold the inner edge this far out. This is consistent with previous estimates for the field of the neutron star in Aquila X-1.The authors point out that magnetic field lines could also explain how the neutron star is still accreting material despite the gap between it and its disk: gas could be channeled along field lines from the inner edge of the disk which is roughly co-rotating with the neutron star onto the neutron star poles.The observations of Aquila X-1s truncated disk are an important step toward confirming models of how neutron stars magnetic fields interact with their accretion disks in X-ray binaries.CitationAshley L. King et al 2016 ApJ 819 L29. doi:10.3847/2041-8205/819/2/L29
NASA Astrophysics Data System (ADS)
Bednarek, W.
2016-12-01
We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.
The Structure of a Quasi-Keplerian Accretion Disk around Magnetized Stars
NASA Astrophysics Data System (ADS)
Habumugisha, Isaac; Jurua, Edward; Tessema, Solomon B.; Simon, Anguma K.
2018-06-01
In this paper, we present the complete structure of a quasi-Keplerian thin accretion disk with an internal dynamo around a magnetized neutron star. We assume a full quasi-Keplerian disk with the azimuthal velocity deviating from the Keplerian fashion by a factor of ξ (0 < ξ < 2). In our approach, we vertically integrate the radial component of the momentum equation to obtain the radial pressure gradient equation for a thin quasi-Keplerian accretion disk. Our results show that, at large radial distance, the accretion disk behaves in a Keplerian fashion. However, close to the neutron star, pressure gradient force (PGF) largely modifies the disk structure, resulting into sudden dynamical changes in the accretion disk. The corotation radius is shifted inward (outward) for ξ > 1 (for ξ < 1), and the position of the inner edge with respect to the new corotation radius is also relocated accordingly, as compared to the Keplerian model. The resulting PGF torque couples with viscous torque (when ξ < 1) to provide a spin-down torque and a spin-up torque (when ξ > 1) while in the advective state. Therefore, neglecting the PGF, as has been the case in previous models, is a glaring omission. Our result has the potential to explain the observable dynamic consequences of accretion disks around magnetized neutron stars.
Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies
NASA Astrophysics Data System (ADS)
Noguchi, Masafumi
2018-01-01
Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.
Workshop on Physics of Accretion Disks Around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Liang, E (Editor); Stepinski, T. F. (Editor)
1995-01-01
The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.
Short Gamma-Ray Bursts from the Merger of Two Black Holes
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Lazzati, Davide; Giacomazzo, Bruno
2016-04-01
Short gamma-ray bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars or a neutron star and a black hole (BH). The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger BH powers the burst. The recent tentative detection by the Fermi satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two BHs has challenged this standard paradigm. Here, we show that the evolution of two high-mass, low-metallicity stars with main-sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion can produce a short GRB. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magnetorotational instability, and hence the viscosity. The disk remains “long-lived dead” until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short GRB.
X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst
NASA Astrophysics Data System (ADS)
Grebenev, S. A.; Prosvetov, A. V.; Burenin, R. A.; Krivonos, R. A.; Mescheryakov, A. V.
2016-02-01
Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.
NASA Astrophysics Data System (ADS)
Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.
2016-01-01
Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. Conclusions: The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.
NASA Astrophysics Data System (ADS)
Wolff, Schuyler; Schuyler G. Wolff
2018-01-01
The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties.
Shaping Disk Galaxy Stellar Populations via Internal and External Processes
NASA Astrophysics Data System (ADS)
Roškar, Rok
2015-03-01
In recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
Dynamo magnetic-field generation in turbulent accretion disks
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1991-01-01
Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.
On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Rosenblatt, Pascal; Genda, Hidenori; Charnoz, Sébastien
2017-12-01
Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J 2 term of its gravity field and particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.
EARTH, MOON, SUN, AND CV ACCRETION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, M. M.
2009-11-01
Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths'more » equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.« less
NASA Technical Reports Server (NTRS)
Baker, John
2012-01-01
Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.
CN rings in full protoplanetary disks around young stars as probes of disk structure
NASA Astrophysics Data System (ADS)
Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.
2018-01-01
Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.
The Dynamics of Truncated Black Hole Accretion Disks. II. Magnetohydrodynamic Case
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2018-02-01
We study a truncated accretion disk using a well-resolved, semi-global magnetohydrodynamic simulation that is evolved for many dynamical times (6096 inner disk orbits). The spectral properties of hard-state black hole binary systems and low-luminosity active galactic nuclei are regularly attributed to truncated accretion disks, but a detailed understanding of the flow dynamics is lacking. In these systems the truncation is expected to arise through thermal instability driven by sharp changes in the radiative efficiency. We emulate this behavior using a simple bistable cooling function with efficient and inefficient branches. The accretion flow takes on an arrangement where a “transition zone” exists in between hot gas in the innermost regions and a cold, Shakura & Sunyaev thin disk at larger radii. The thin disk is embedded in an atmosphere of hot gas that is fed by a gentle outflow originating from the transition zone. Despite the presence of hot gas in the inner disk, accretion is efficient. Our analysis focuses on the details of the angular momentum transport, energetics, and magnetic field properties. We find that the magnetic dynamo is suppressed in the hot, truncated inner region of the disk which lowers the effective α-parameter by 65%.
A Low Mass for Mars from Jupiter's Early Gas-Driven Migration
NASA Technical Reports Server (NTRS)
Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.
2011-01-01
Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.
Investigating FP Tau’s protoplanetary disk structure through modeling
NASA Astrophysics Data System (ADS)
Brinjikji, Marah; Espaillat, Catherine
2017-01-01
This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less
Kratter, Kaitlin M.; Matzner, Christopher D.; Krumholz, Mark R.; ...
2009-12-23
We study rapidly accreting, gravitationally unstable disks with a series of idealized global, numerical experiments using the code ORION. Our numerical parameter study focuses on protostellar disks, showing that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the infall rate to the disk sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infallmore » rate and governed by gravitational torques generated by low-m spiral modes. Furthermore, we also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.« less
Continuum Reverberation Mapping of AGN Accretion Disks
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael M.; Peterson, Bradley M.; Starkey, David A.; Horne, Keith; AGN Storm Collaboration
2017-12-01
We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3 to 3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T˜ R^{-3/4} expected for a standard thin disk . Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminsoity AGN.
The MagAO Giant Accreting Protoplanet Survey (GAPlanetS): Recent Results
NASA Astrophysics Data System (ADS)
Follette, Katherine; Close, Laird; Males, Jared; Morzinski, Katie; Leonard, Clare; MagAO
2018-01-01
I will summarize recent results of the MagAO Giant Accreting Protoplant Survey (GAPlanetS), a search for accreting protoplanets at H-alpha inside of transitional disk gaps. These young, centrally-cleared circumstellar disks are often hosted by stars that are still actively accreting, making it likely that any planets that lie in their central cavities will also be actively accreting. Through differential imaging at Hydrogen-alpha using Magellan's visible light adaptive optics system, we have completed the first systematic search for H-alpha emission from accreting protoplanets in fifteen bright Southern hemisphere transitional disks. I will present results from this survey, including a second epoch on the LkCa 15 system that shows several accreting protoplanet candidates.
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min
2013-11-01
Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we also find some evidence of clumpy star formation or mini-clusters within Tr 37. Observations reported here were obtained at the MMT Observatory, a jointfacility of the Smithsonian Institution and the University of Arizona.Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).Appendices A and B are available in electronic form at http://www.aanda.orgFull Tables A.1-A.5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A3
NASA Astrophysics Data System (ADS)
Fridman, A. M.; Bisikalo, D. V.
2008-06-01
The current status of the physics of accretion disks in close binary stars is reviewed, with an emphasis on the hydrodynamic overreflection instability, which is a factor leading to the accretion disk turbulence. The estimated turbulent viscosity coefficients are in good agreement with observations and explain the high angular momentum transfer rate and the measured accretion rate. Based on the observations, a power-law spectrum for the developed turbulence is obtained.
Evolution of the luminosity function of quasar accretion disks
NASA Technical Reports Server (NTRS)
Caditz, David M.; Petrosian, Vahe; Wandel, Amri
1991-01-01
Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.
Numerical Simulations of Wind Accretion in Symbiotic Binaries
NASA Astrophysics Data System (ADS)
de Val-Borro, M.; Karovska, M.; Sasselov, D.
2009-08-01
About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.
Young Stellar Objects in Lynds 1641: Disks and Accretion
NASA Astrophysics Data System (ADS)
Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin
2013-07-01
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
NASA Astrophysics Data System (ADS)
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
On the Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, Richard H.
2010-11-01
We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamic simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10 cm size particles. We then compare these results to a simulation with 1 km size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) temporary clumps can concentrate tens of M ⊕ of solids in very localized regions before clump disruption; (3) the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) the solid distribution may affect the fragmentation process; (6) proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and (8) large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.
Vacuum birefringence and the x-ray polarization from black-hole accretion disks
NASA Astrophysics Data System (ADS)
Caiazzo, Ilaria; Heyl, Jeremy
2018-04-01
In the next decade, x-ray polarimetry will open a new window on the high-energy Universe, as several missions that include an x-ray polarimeter are currently under development. Observations of the polarization of x rays coming from the accretion disks of stellar-mass and supermassive black holes are among the new polarimeters' major objectives. In this paper, we show that these observations can be affected by the quantum electrodynamic (QED) effect of vacuum birefringence: after an x-ray photon is emitted from the accretion disk, its polarization changes as the photon travels through the accretion disk's magnetosphere, as a result of the vacuum becoming birefringent in the presence of a magnetic field. We show that this effect can be important for black holes in the energy band of the upcoming polarimeters and has to be taken into account in a complete model of the x-ray polarization that we expect to detect from black-hole accretion disks, both for stellar mass and for supermassive black holes. We find that, for a chaotic magnetic field in the disk, QED can significantly decrease the linear polarization fraction of edge-on photons, depending on the spin of the hole and on the strength of the magnetic field. This effect can provide, for the first time, a direct way to probe the magnetic field strength close to the innermost stable orbit of black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.
Simulating a Thin Accretion Disk Using PLUTO
NASA Astrophysics Data System (ADS)
Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.
2017-08-01
Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.
NASA Astrophysics Data System (ADS)
Montgomery, M. M.
2012-02-01
Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.
Accretion Discs Around Black Holes: Developement of Theory
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.
Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes the theory nonlocal. Low-luminous optically thin accretion disc model with advection at some suggestions may become advectively dominated, carrying almost all the energy inside the black hole. The proper account of magnetic filed in the process of accretion limits the energy advected into a black hole, efficiency of accretion should exceed ˜ 1/4 of the standard accretion disk model efficiency.
TESTING THE PROPAGATING FLUCTUATIONS MODEL WITH A LONG, GLOBAL ACCRETION DISK SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, J Drew; Reynolds, Christopher S.
2016-07-20
The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin ( h / r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in themore » accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.« less
Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A.
Muzerolle; Calvet; Briceño; Hartmann; Hillenbrand
2000-05-20
We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.
2015-01-01
Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.
Dynamically important magnetic fields near supermassive black holes in radio-loud AGN
NASA Astrophysics Data System (ADS)
Savolainen, Tuomas; Zamaninasab, Mohammad; Clausen-Brown, Eric; Tchekhovskoy, Alexander
The powerful radio jets ejected from the vicinity of accreting supermassive black holes in active galactic nuclei are thought to be formed by magnetic forces. However, there is little observational evidence of the actual strength of the magnetic fields in the jet-launching region, and in the accretion disks, of AGN. We have collected from the literature jet magnetic field estimates determined by very long baseline interferometry observations of the opacity-driven core-shift effect for 76 blazars and radio galaxies. We show that the jet magnetic flux of these radio-loud AGN tightly correlates with their accretion disk luminosity -- over seven orders of magnitude in accretion power. Moreover, the estimated magnetic flux threading the black hole quantitatively agrees with the saturation value expected in the magnetically arrested disk scenario. This implies that black holes in many, if not most, of the radio-loud AGN are surrounded by accretion disks that have dynamically important magnetic fields. Such disks behave very differently from the standard model disks with sub-equipartition magnetic fields, which may have important consequences for attempts to interpret disk spectral energy distributions or signatures of the possible black hole shadow in mm-VLBI images.
Exploring Disks Around Planets
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515
NASA Technical Reports Server (NTRS)
Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry
1994-01-01
Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.
Disk Accretion and the Stellar Birthline
NASA Astrophysics Data System (ADS)
Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.
1997-02-01
We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our calculations also suggest that the relatively low disk accretion rates characteristic of T Tauri stars below the birthline cause low-mass stars to contract only slightly faster than normal Hayashi track evolution, so that ages for older pre-main-sequence stars estimated from H-R diagram positions are relatively secure.
NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw
The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk,more » Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.« less
Evolution of Pre-Main Sequence Accretion Disks
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2000-01-01
The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we: (1) Developed detailed calculations of disk structure to study physical conditions and investigate the observational effects of grain growth in T Tauri disks; (2) Studied the dusty emission and accretion rates in older disk systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr, and (3) Began a project to develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution.
Origin and abundance of water in carbonaceous asteroids
NASA Astrophysics Data System (ADS)
Marrocchi, Yves; Bekaert, David V.; Piani, Laurette
2018-01-01
The origin and abundance of water accreted by carbonaceous asteroids remains underconstrained, but would provide important information on the dynamic of the protoplanetary disk. Here we report the in situ oxygen isotopic compositions of aqueously formed fayalite grains in the Kaba and Mokoia CV chondrites. CV chondrite bulk, matrix and fayalite O-isotopic compositions define the mass-independent continuous trend (δ17O = 0.84 ± 0.03 × δ18O - 4.25 ± 0.1), which shows that the main process controlling the O-isotopic composition of the CV chondrite parent body is related to isotopic exchange between 16O-rich anhydrous silicates and 17O- and 18O-rich fluid. Similar isotopic behaviors observed in CM, CR and CO chondrites demonstrate the ubiquitous nature of O-isotopic exchange as the main physical process in establishing the O-isotopic features of carbonaceous chondrites, regardless of their alteration degree. Based on these results, we developed a new approach to estimate the abundance of water accreted by carbonaceous chondrites (quantified by the water/rock ratio) with CM (0.3-0.4) ≥ CR (0.1-0.4) ≥ CV (0.1-0.2) > CO (0.01-0.10). The low water/rock ratios and the O-isotopic characteristics of secondary minerals in carbonaceous chondrites indicate they (i) formed in the main asteroid belt and (ii) accreted a locally derived (inner Solar System) water formed near the snowline by condensation from the gas phase. Such results imply low influx of D- and 17O- and 18O-rich water ice grains from the outer part of the Solar System. The latter is likely due to the presence of a Jupiter-induced gap in the protoplanetary disk that limited the inward drift of outer Solar System material at the exception of particles with size lower than 150 μm such as presolar grains. Among carbonaceous chondrites, CV chondrites show O-isotopic features suggesting potential contribution of 17-18O-rich water that may be related to their older accretion relative to other hydrated carbonaceous chondrites.
Classical Accreting Pulsars with NICER
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2014-01-01
Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.
The Growth of Central Black Hole and the Ionization Instability of Quasar Disk
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.
The Evolution of the Accretion Disk Around 4U 1820-30 During a Superburst
NASA Technical Reports Server (NTRS)
Ballantyne, D. R.; Strohmayer, T. E.
2004-01-01
Accretion from a disk onto a collapsed, relativistic star - a neutron star or black hole - is the mechanism widely believed to be responsible for the emission from compact X-ray binaries. Because of the extreme spatial resolution required, it is not yet possible to directly observe the evolution or dynamics of the inner parts of the accretion disk where general relativistic effects are dominant. Here, we use the bright X-ray emission from a superburst on the surface of the neutron star 4U 1820-30 as a spotlight to illuminate the disk surface. The X-rays cause iron atoms in the disk t o fluoresce, allowing a determination of the ionization state, covering factor and inner radius of the disk over the course of the burst. The time-resolved spectral fitting shows that the inner region of the disk is disrupted by the burst, possibly being heated into a thicker, more tenuous flow, before recovering its previous form in approximately 1000 s. This marks the first instance that the evolution of the inner regions of an accretion disk has been observed in real-time.
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.
NASA Technical Reports Server (NTRS)
2002-01-01
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.
Accretion Disk and Dust Emission in Low-Luminosity AGN
NASA Astrophysics Data System (ADS)
Biddle, Lauren I.; Mason, Rachel; Alonso-Herrero, Almudena; Colina, Luis; Diaz, Ruben; Flohic, Helene; Gonzalez-Martin, Omaira; Ho, Luis C.; Lira, Paulina; Martins, Lucimara; McDermid, Richard; Perlman, Eric S.; Ramos Almeida, Christina; Riffel, Rogerio; Ardila, Alberto; Ruschel Dutra, Daniel; Schiavon, Ricardo; Thanjavur, Karun; Winge, Claudia
2015-01-01
Observations obtained in the near-infrared (near-IR; 0.8 - 2.5 μm) can assist our understanding of the physical and evolutionary processes of galaxies. Using a set of near-IR spectra of nearby galaxies obtained with the cross-dispersed mode of GNIRS on the Gemini North telescope, we investigate how the accretion disk and hot dust emission depend on the luminosity of the active nucleus. We recover faint AGN emission from the starlight-dominated nuclear regions of the galaxies, and measure properties such as the spectral shape and luminosity of the accretion disk and dust. The aim of this work is to establish whether the standard thin accretion disk may be truncated in low-accretion-rate AGN, as well as evaluate whether the torus of the AGN unified model still exists at low luminosities.
Migration of accreting giant planets
NASA Astrophysics Data System (ADS)
Robert, C.; Crida, A.; Lega, E.; Méheut, H.
2017-09-01
Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho
2018-02-01
We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.
Lessons from accretion disks in cataclysmic variables
NASA Astrophysics Data System (ADS)
Horne, Keith
1998-04-01
We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.
ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G., E-mail: bge@us.ibm.com
2015-12-01
A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less
Radiative Hydrodynamics and the Formation of Gas Giant Planets
NASA Astrophysics Data System (ADS)
Durisen, Richard H.
2009-05-01
Gas giant planets undoubtedly form from the orbiting gas and dust disks commonly observed around young stars, and there are two principal mechanisms proposed for how this may occur. The core accretion plus gas capture model argues that a solid core forms first and then accretes gas from the surrounding disk once the core becomes massive enough (about 10 Earth masses). The gas accumulation process is comparatively slow but becomes hydrodynamic at later times. The disk instability model alternatively suggests that gas giant planet formation is initiated by gas-phase gravitational instabilities (GIs) that fragment protoplanetary disks into bound gaseous protoplanets rapidly, on disk orbit period time scales. Solid cores then form more slowly by accretion of solid planetesimals and settling. The overall formation time scales for these two mechanisms can differ by orders of magnitude. Both involve multidimensional hydrodynamic flows at some phase, late in the process for core accretion and early on for disk instability. The ability of cores to accrete gas and the ability of GIs to produce bound clumps depend on how rapidly gas can lose energy by radiation. This regulatory process, while important for controlling the time scale for core accretion plus gas capture, turns out to be absolutely critical for disk instability to work at all. For this reason, I will focus in my talk on the use of radiation hydrodynamics simulations to determine whether and where disk instability can actually form gas giant planets in disks. Results remain controversial, but simulations by several different research groups support analytic arguments that disk instability leading to fragmentation probably cannot occur in disks around Sun-like stars at orbit radii of 10's of Earth-Sun distances or less. On the other hand, very recent simulations suggest that very young, rapidly accreting disks with much larger radii (100's of times the Sun-Earth distance) can indeed readily fragment by disk instability into super-Jupiters and brown dwarfs. It is possible that there are two distinct modes of gas giant planet formation in Nature which operate at different times and in different regions of disks around young stars. The application of more radiative hydrodynamics codes with better numerical techniques could play an important role in future theoretical developments.
NASA Astrophysics Data System (ADS)
Close, Laird
TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a steady diet of hydrogen gas. Such planets should then be quite bright in Halpha accretion emission. The key point is that: instead of a steep drop off in the luminosity of the planet’s atmosphere, the accretion luminosity of these planets will just linearly decrease with decreasing mass. At an accretion rate=6e-10 Msun/yr we find low mass (~1 Mjup) accreting gap planets are much (50-1000x) brighter (for 0-3.4 mag of Halpha extinction) in Halpha than at H band. PROOF-OF_CONCEPT: A 3 hour MagAO observation at Halpha of a transitional disk in April 2013 was made. The resulting deep diffraction-limited images discovered (at 10.5 sigma) an Halpha source that was 295% above the continuum just 0.083” from the star (edge of the inner 10 AU disk gap). We also detected (at 5 sigma) an excellent (though much fainter) ~1 Mjup mass Halpha planet candidate located auspiciously at the outer edge (145 AU) of the gap. If confirmed by our “second epoch” follow-up as common proper motion then this would be the lowest mass (~1 Mjup) planet ever imaged. SURVEY: Scaling off of this exciting success we propose to deeply image (120 min) all 14 nearby (D<250pc), bright (R<11 mag) , not edge-on (i<80 deg) , young (~5 Myr) transitional disks with MagAO simultaneously at Halpha and L’. In addition, we will use BrGamma instead of Halpha for 8 additional fainter (11
A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick
How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentarymore » intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.« less
HCO+ Detection of Dust-depleted Gas in the Inner Hole of the LkCa 15 Pre-transitional Disk
NASA Astrophysics Data System (ADS)
Drabek-Maunder, E.; Mohanty, S.; Greaves, J.; Kamp, I.; Meijerink, R.; Spaans, M.; Thi, W.-F.; Woitke, P.
2016-12-01
LkCa 15 is an extensively studied star in the Taurus region, known for its pre-transitional disk with a large inner cavity in the dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4\\to 3 observations of the LkCa 15 disk from the James Clerk Maxwell telescope (JCMT) and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within ≲50 au of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor ≳104 compared to the interstellar medium (ISM)) and a substantial increase in the gas scale-height within the cavity (H 0/R 0 ˜ 0.6). An ISM dust-to-gas ratio (d:g = 10-2) yields too little line-wing flux, regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under-predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M d ˜ 0.03 M ⊙), and masses lower by a factor ≳10 appear to be ruled out.
The Effects of Accretion Disk Geometry on AGN Reflection Spectra
NASA Astrophysics Data System (ADS)
Taylor, Corbin James; Reynolds, Christopher S.
2017-08-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.
The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum
NASA Astrophysics Data System (ADS)
Taylor, Corbin; Reynolds, Christopher S.
2018-01-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.
Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model
NASA Technical Reports Server (NTRS)
Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana
1994-01-01
We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org
2011-12-10
The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto
2016-01-01
Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.
Measurements of mass accretion rates in Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Donehew, Brian
Herbig Ae/Be stars(HAeBes) are young stellar objects of spectral class F2 through B0, with the central star often surrounded by a circumstellar disk of gas and dust. They are the higher mass analogs to T Tauri stars. The interaction between the star and the disk is not well understood, nor is the disk structure. The central star will often accrete mass from the disk, and the mass accretion rate is an important parameter for modeling the disk structure and evolution. The methods for measuring mass accretion rates of T Tauri stars are generally not applicable to HAeBe stars. As such, reliable measurements of mass accretion rates for HAeBes are rare. Garrison(1978) saw that the Balmer Discontinuity of HAeBes was veiled, and attributed this veiling to accretion luminosity. Building on Garrison(1978) and the work of Muzerolle et al. (2004), I determine the mass accretion rates and accretion luminosities of a large sample of HAeBe stars by measuring the veiling of the Balmer Discontinuity due to the accretion luminosity. Muzerolle et al. (1998) established a strong correlation between the accretion luminosity of T Tauri stars and the luminosity of Br gamma, and this correlation seems to extend to the evolutionary precursors to HAeBes, intermediate T Tauri stars, as well Calvet et al. (2004). I test this correlation for HAeBes and discover that it is valid for HAe stars but not for HBe stars. From examining the HAeBes of my sample from spectral range A3 to B7, there does not seem to be a particular spectral type at which the correlation fails. A few of the late HBe stars are consistent with the correlation, but most of the HBe stars have Br gamma luminosities much larger than what one would expect from the correlation. This suggests that there might be a significant stellar wind component to the Br gamma luminosity for many of the HBe stars. T Tauri stars accrete mass from their disks magnetospherically, in which the strong stellar field of the star truncates the disk at some distance from the star and the disk material than falls to the stellar surface along the magnetic field lines. HAeBe stars are not expected to have strong stellar magnetic fields, and observations have failed to find any such fields for most HAeBes (Alecian 2007). However, circumstantial evidence suggests that some HAeBe stars are accreting magnetospherically (Muzerolle et al. 2004, Brittain et al. 2009). Since the correlation between accretion luminosity and Br γ luminosity is valid for both T Tauri stars and HAe stars, this suggests that the same basic accretion process is occuring for both.
Optical veiling, disk accretion, and the evolution of T Tauri stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, L.W.; Kenyon, S.J.
1990-01-01
High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar massmore » is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs.« less
Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks.
Boss
2000-06-20
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.
A low mass for Mars from Jupiter's early gas-driven migration.
Walsh, Kevin J; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Mandell, Avi M
2011-06-05
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ∼100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought. ©2011 Macmillan Publishers Limited. All rights reserved
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Wang, Jun-Xian; Gu, Wei-Min; Sun, Yu-Han; Wu, Mao-Chun; Huang, Xing-Xing; Chen, Xiao-Yang
2016-07-01
The UV-optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV-optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in the global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (I.e., τ ˜ r; based on that originally proposed by Dexter & Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.
An Accretion Model for the Growth of Black Hole in Quasars
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bednarek, W., E-mail: bednar@uni.lodz.pl
We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such amore » hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.« less
Primordial black holes as seeds of magnetic fields in the universe
NASA Astrophysics Data System (ADS)
Safarzadeh, Mohammadtaher
2018-06-01
Although it is assumed that magnetic fields in accretion disks are dragged from the interstellar medium, the idea is likely not applicable to primordial black holes (PBHs) formed in the early universe. Here we show that magnetic fields can be generated in initially unmagnetized accretion disks around PBHs through the Biermann battery mechanism, and therefore provide the small scale seeds of magnetic field in the universe. The radial temperature and vertical density profiles of these disks provide the necessary conditions for the battery to operate naturally. The generated seed fields have a toroidal structure with opposite sign in the upper and lower half of the disk. In the case of a thin accretion disk around a rotating PBH, the field generation rate increases with increasing PBH spin. At a fixed r/risco, where r is the radial distance from the PBH and risco is the radius of the innermost stable circular orbit, the battery scales as M-9/4, where M is the PBH's mass. The very weak dependency of the battery on accretion rate, makes this mechanism a viable candidate to provide seed fields in an initially unmagnetized accretion disk, following which the magnetorotational instability could take over.
NASA Technical Reports Server (NTRS)
Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.;
2017-01-01
We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
Conservative GRMHD simulations of moderately thin, tilted accretion disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.
2014-12-01
This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Izidoro, Andre
2017-11-01
There is a long-standing debate regarding the origin of the terrestrial planets' water as well as the hydrated C-type asteroids. Here we show that the inner Solar System's water is a simple byproduct of the giant planets' formation. Giant planet cores accrete gas slowly until the conditions are met for a rapid phase of runaway growth. As a gas giant's mass rapidly increases, the orbits of nearby planetesimals are destabilized and gravitationally scattered in all directions. Under the action of aerodynamic gas drag, a fraction of scattered planetesimals are deposited onto stable orbits interior to Jupiter's. This process is effective in populating the outer main belt with C-type asteroids that originated from a broad (5-20 AU-wide) region of the disk. As the disk starts to dissipate, scattered planetesimals reach sufficiently eccentric orbits to cross the terrestrial planet region and deliver water to the growing Earth. This mechanism does not depend strongly on the giant planets' orbital migration history and is generic: whenever a giant planet forms it invariably pollutes its inner planetary system with water-rich bodies.
ASCA Observation of the Dipping X-Ray Source X1916-053
NASA Technical Reports Server (NTRS)
Ko, Yuan-Kuen; Makai, Koji; Smale, Alan P.; White, Nick E.
1997-01-01
We present the results of timing and spectral studies of the dipping X-ray source X1916-053, observed by ASCA during its Performance Verification phase. The detected dipping activity is consistent with previous observations, with a period of 3008s and an intermittent secondary dip observed roughly 0.4 out of phase with the primary dip. The energy spectra of different intensity states are fitted with a power law with partial covering fraction absorption and interstellar absorption. The increase in the hardness ratio during the primary and secondary dips, and the increase in the covering fraction and column density with decreasing X-ray intensity, all imply that the dipping is caused by the photo-absorbing materials which have been suggested to be where the accreted flow hits the outer edge of the disk materials. The spectra at all intensity levels show no apparent evidence for Fe or Ne emission lines. This may be due to the low metal abundance in the accretion flow. Alternatively, the X-ray luminosity of the central source may be too weak to excite emission lines, which are assumed to be produced by X-ray photoionization of the disk materials.
HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao Heng; Elvis, Martin; Civano, Francesca
2010-11-20
We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energymore » distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.« less
Features of the accretion in the EX Hydrae system: Results of numerical simulation
NASA Astrophysics Data System (ADS)
Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.
2017-07-01
A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzatti, A.; Meyer, M. R.; Manara, C. F.
2014-01-01
Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less
NASA Astrophysics Data System (ADS)
Zhu, Zhaohuan; Stone, James M.
2018-04-01
We report results from global ideal MHD simulations that study thin accretion disks (with thermal scale height H/R = 0.1 and 0.05) threaded by net vertical magnetic fields. Our computations span three orders of magnitude in radius, extend all the way to the pole, and are evolved for more than 1000 innermost orbits. We find that (1) inward accretion occurs mostly in the upper magnetically dominated regions of the disk at z ∼ R, similar to predictions from some previous analytical work and the “coronal accretion” flows found in GRMHD simulations. (2) A quasi-static global field geometry is established in which flux transport by inflows at the surface is balanced by turbulent diffusion. The resulting field is strongly pinched inwards at the surface. A steady-state advection–diffusion model, with a turbulent magnetic Prandtl number of order unity, reproduces this geometry well. (3) Weak unsteady disk winds are launched beyond the disk corona with the Alfvén radius R A /R 0 ∼ 3. Although the surface inflow is filamentary and the wind is episodic, we show that the time-averaged properties are well-described by steady-wind theory. Even with strong fields, β 0 = 103 at the midplane initially, only 5% of the angular momentum transport is driven by the wind, and the wind mass flux from the inner decade of the radius is only ∼0.4% of the mass accretion rate. (4) Within the disk, most of the accretion is driven by the Rϕ stress from the MRI and global magnetic fields. Our simulations have many applications to astrophysical accretion systems.
Simulations of polarization from accretion disks
NASA Astrophysics Data System (ADS)
Schultz, J.
2000-12-01
The Monte Carlo Method was used to estimate the level of polarization from axisymmetric accretion disks similar to those in low-mass X-ray binaries and some classes of cataclysmic variables. In low-mass X-ray binaries electron scattering is supposed to be the dominant opacity source in the inner disk, and most of the optical light is produced in the disk. Thompson scattering occuring in the disk corona produces linear polarization. Detailed theoretical models of accretion disks are numerous, but simple mathematical disk models were used, as the accuracy of polarization measurements does not allow distinction of the fine details of disk models. Stokes parameters were used for the radiative transfer. The simulations indicate that the vertical distribution of emissivity has the greatest effect on polarization, and variations of radial emissivity distribution have no detectable effect on polarization. Irregularities in the disk may reduce the degree of polarization. The polarization levels produced by simulations are detectable with modern instruments. Polarization measurements could be used to get rough constraints on the vertical emissivity distribution of an accretion disk, provided that a reasonably accurate disk model can be constructed from photometric or spectrosopic observations in optical and/or X-ray wavelengths. Mainly based on observations taken at the Observatoire de Haute-Provence, France, and on some observations obtained at the European Southern Observatory, Chile (ESO Prog. IDs: 57.C-0492, 59.C-0293, 61.C-0512).
Imaging accretion sources and circumbinary disks in young brown dwarfs
NASA Astrophysics Data System (ADS)
Reiners, Ansgar
2010-09-01
We propose to obtain deep WFC3/UVIS imaging observations of two accreting, nearby, young brown dwarf binaries. The first, 2M1207, is a brown dwarf with a planetary mass companion that became a benchmark in low-mass star formation and low-mass evolutionary models. The second, 2M0041, is a nearby young brown dwarf with clear evidence for accretion, but its space motion suggests a slightly higher age than the canonical accretion lifetime of 5-10 Myr. It has recently been discovered to be a binary and is likely to become a second benchmark object in this field. With narrow band images centered on the Halpha line that is indicative of accretion, we aim to determine the accretion ratio between the two components in each system. Halpha was observed in both systems but so far not spatially resolved. In particular, we want to search for accretion in the planetary mass companion of 2M1207. The evidence for accretion in 2M0041 and the possibility that it is in fact older than 10Myr suggests that the accretion lifetime is longer in brown dwarfs than in stars, and in particular that it is longer in brown dwarf binaries. Accretion could be sustained for a longer time if the accreting material is replenished by a circumbinary disk that might exist in both systems. We propose deep WFC/UVIS observations in the optical to search for circumbinary disks, similar to the famous disk around the binary TTauri system GG Tau.
NASA Astrophysics Data System (ADS)
Wachlin, F. C.; Vauclair, G.; Vauclair, S.; Althaus, L. G.
2017-05-01
Context. A large fraction of white dwarfs show photospheric chemical composition that is polluted by heavy elements accreted from a debris disk. Such debris disks result from the tidal disruption of rocky planetesimals that have survived to whole stellar evolution from the main sequence to the final white dwarf stage. Determining the accretion rate of this material is an important step toward estimating the mass of the planetesimals and understanding the ultimate fate of the planetary systems. Aims: The accretion of heavy material with a mean molecular weight, μ, higher than the mean molecular weight of the white dwarf outer layers, induces a double-diffusive instability producing the fingering convection and an extra-mixing. As a result, the accreted material is diluted deep into the star. We explore the effect of this extra-mixing on the abundance evolution of Mg, O, Ca, Fe and Si in the cases of the two well-studied polluted DAZ white dwarfs: GD 133 and G 29-38. Methods: We performed numerical simulations of the accretion of material that has a chemical composition similar to the bulk Earth composition. We assumed a continuous and uniform accretion and considered a range of accretion rates from 104 g/s to 1010 g/s. Two cases are simulated, one using the standard mixing length theory (MLT) and one including the double-diffusive instability (fingering convection). Results: The double-diffusive instability develops on a very short timescale. The surface abundance rapidly reaches a stationary value while the depth of the zone mixed by the fingering convection increases. In the case of GD 133, the accretion rate needed to reproduce the observed abundances exceeds by more than two orders of magnitude the rate estimated by neglecting the fingering convection. In the case of G 29-38 the needed accretion rate is increased by approximately 1.7 dex. Conclusions: Our numerical simulations of the accretion of heavy elements on the hydrogen-rich white dwarf GD 133 and G 29-38 show that fingering convection is an efficient mechanism to mix the accreted material deeply. We find that when fingering convection is taken into account, accretion rates higher by 1.7 to 2 dex than those inferred from the standard MLT are needed to reproduce the abundances observed in G 29-38 and GD 133.
Accretion Disks and the Formation of Stellar Systems
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin Michelle
2011-02-01
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
Planet Formation by Coagulation: A Focus on Uranus and Neptune
NASA Astrophysics Data System (ADS)
Goldreich, Peter; Lithwick, Yoram; Sari, Re'em
2004-09-01
Planets form in the circumstellar disks of young stars. We review the basic physical processes by which solid bodies accrete each other and alter each others' random velocities, and we provide order-of-magnitude derivations for the rates of these processes. We discuss and exercise the two-groups approximation, a simple yet powerful technique for solving the evolution equations for protoplanet growth. We describe orderly, runaway, neutral, and oligarchic growth. We also delineate the conditions under which each occurs. We refute a popular misconception by showing that the outer planets formed quickly by accreting small bodies. Then we address the final stages of planet formation. Oligarchy ends when the surface density of the oligarchs becomes comparable to that of the small bodies. Dynamical friction is no longer able to balance viscous stirring and the oligarchs' random velocities increase. In the inner-planet system, oligarchs collide and coalesce. In the outer-planet system, some of the oligarchs are ejected. In both the inner- and outer-planet systems, this stage ends once the number of big bodies has been reduced to the point that their mutual interactions no longer produce large-scale chaos. Subsequently, dynamical friction by the residual small bodies circularizes and flattens their orbits. The final stage of planet formation involves the clean up of the residual small bodies. Clean up has been poorly explored.
A Strong Shallow Heat Source in the Accreting Neutron Star MAXI J0556-332
NASA Astrophysics Data System (ADS)
Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Page, Dany
2015-08-01
An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star’s crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is ≈4-10 MeV per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to ≈6-16 MeV. This shallow heating is still required to fit the light curve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ({T}b≳ {10}9 {{K}}) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the light curve disfavor the presence of Urca cooling pairs in the crust.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
NASA Astrophysics Data System (ADS)
Nordsiek, Freja
This dissertation consists of two projects: Rayleigh-stable Taylor-Couette flow and granular electrification. Taylor-Couette flow is the fluid flow in the gap between two cylinders rotating at different rates. Azimuthal velocity profiles, dye visualization, and inner cylinder torques were measured on two geometrically similar Taylor-Couettes with axial boundaries attached to the outer cylinder, the Maryland and Twente T3C experiments. This was done in the Rayleigh stable regime, where the specific angular momentum increases radially, which is relevant to astrophysical and geophysical flows and in particular, stellar and planetary accretion disks. The flow substantially deviates from laminar Taylor-Couette flow beginning at moderate Reynolds number. Angular momentum is primarily transported to the axial boundaries instead of the outer cylinder due to Ekman pumping when the inner cylinder is rotating faster than the outer cylinder. A phase diagram was constructed from the transitions identified from torque measurements taken over four decades of the Reynolds number. Flow angular velocities larger and smaller than both cylinders were found. Together, these results indicate that experimental Taylor-Couette with axial boundaries attached to the outer cylinder is an imperfect model for accretion disk flows. Thunderstorms, thunder-snow, volcanic ash clouds, and dust storms all display lightning, which results from electrification of droplets and particles in the atmosphere. While lightning is fairly well understood (plasma discharge), the mechanisms that result in million-volt differences across the storm are not. A novel granular electrification experiment was upgraded and used to study some of these mechanisms in the lab. The relative importance of collective interactions between particles versus particle properties (material, size, etc.) on collisional electrification was investigated. While particle properties have an order of magnitude effect on the strength of macroscopic electrification, all particle types electrified with dynamics that suggest a major role for collective interactions in electrification. Moreover, mixing two types of particles together does not lead to increased electrification except for specific combinations of particles which clump, which further points towards the importance of collective phenomena. These results help us better understand the mechanisms of electrification and lightning generation in certain atmospheric systems.
NASA Technical Reports Server (NTRS)
Lu, Y.; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.
NASA Technical Reports Server (NTRS)
Becker, Peter A.; Kafatos, Menas
1995-01-01
We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically in gamma - ray blazars, then these objects should appear as bright MeV sources when viewed along off-axis lines of sight.
Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity
NASA Astrophysics Data System (ADS)
Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea
2014-11-01
According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espaillat, C.; Andrews, S.; Qi, C.
Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We findmore » that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.« less
NASA Technical Reports Server (NTRS)
Strom, Stephen E.; Edwards, Suzan
1993-01-01
Recent observations of circumstellar disks and their evolutionary timescales are reviewed. It is concluded that disks appear to be a natural outcome of the star-formation process. The disks surrounding young stars initially are massive, with optically thick structures comprised of gas and micron-sized grains. Disk masses are found to range from 0.01 to 0.2 solar masses for solar-type PMS stars, and from 0.01 to 6 solar masses for young, intermediate mass stars. Massive, optically thick accretion disks have accretion rates between 10 exp -8 and 10 exp -6 solar masses/yr for solar type PMS stars and between 10 exp -6 and 10 exp -4 solar masses/yr for intermediate stars. The results suggest that a significant fraction of the mass comprising the star may have passed through a circumstellar accretion disk.
Theory of active galactic nuclei
NASA Technical Reports Server (NTRS)
Shields, G. A.
1986-01-01
The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.
Wave Excitation in Accretion Disks by Protoplanets
NASA Astrophysics Data System (ADS)
Koller, J.; Li, H.
2002-05-01
The ongoing discoveries of extrasolar planets in the recent years revealed remarkable properties and unexpected results concerning the formation process. We studied the perturbation of a protostellar accretion disk by a companion utilizing APOLLO, a fast hydro disk code well tested in the case of accretion disks without a companion (Li et al. 2001, ApJ, 551, 874). We consider limiting cases where the companion's mass is much smaller than the central protostar and resides in a circular keplerian orbit. The gravitational field of the protoplanet, embedded in a numerically thin disk, generates spiral density waves and Rossby instabilities resulting in a non-axisymmetric density distribution. We present nonlinear hydro simulations to investigate those non-axisymmetric density distribution with different disk and planet parameters in order to understand how disks respond to a fixed companion in orbit. This work has been supported by IGPP at LANL (award # 1109) and NASA (grant # NAG5-9223).
Phase-Resolved Spectroscopy of the Low-Mass X-ray Binary V801 Ara
NASA Astrophysics Data System (ADS)
Brauer, Kaley; Vrtilek, Saeqa Dil; Peris, Charith; McCollough, Michael
2018-06-01
We present phase-resolved optical spectra of the low mass X-ray binary system V801 Ara. The spectra, obtained in 2014 with IMACS on the Magellan/Baade telescope at Las Campanas Observatory, cover the full binary orbit of 3.8 hours. They contain strong emission features allowing us to map the emission of Hα, Hβ, He II λ4686, and the Bowen blend at λ4640. The radial velocity curves of the Bowen blend shows significantly stronger modulation at the orbital period than Hα as expected for the former originating on the secondary with the latter consistent with emission dominated by the disk. Our tomograms of Hα and Hβ are the most detailed studies of these lines for V801 to date and they clearly detect the accretion disk. The Hβ emission extends to higher velocities than Hα, suggesting emission from closer to the neutron star and differentiating temperature variance in the accretion disk for the first time. The center of the accretion disk appears offset from the center-of-mass of the neutron star as has been seen in several other X-ray binaries. This is often interpreted to imply disk eccentricity. Our tomograms do not show strong evidence for a hot spot at the point where the accretion stream hits the disk. This could imply a reduced accretion rate or could be due to the spot being drowned out by bright accretion flow around it. There is enhanced emission further along the disk, however, which implies gas stream interaction downstream of the hot spot.
Misaligned Accretion and Jet Production
NASA Astrophysics Data System (ADS)
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zhen-Yi; Wang, Jun-Xian; Sun, Yu-Han
The UV–optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV–optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in themore » global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (i.e., τ ∼ r ; based on that originally proposed by Dexter and Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.« less
Disorder in the Disk: The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo.
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2018-01-01
The evolution of the magnetic field from the enigmatic large-scale dynamo is often considered a central feature of the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the growth and decay of the field strength, along with the change in field orientation, are thought to be intimately tied to variability from the disk. Several factors are at play, but the dynamo can either be directly tied to observable signatures through modulation of the heating rate, or indirectly as the source of quasiperiodic oscillations, the driver of nonlinear structure from propagating fluctuations in mass accretion rate, or even the trigger of state transitions. We present a selection of results from a recent study of this process using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary the scale height ratio and find the large-scale dynamo fails to develop above a scale height ratio of h/r ≥ 0.2. Using “butterfly” diagrams of the azimuthal magnetic field, we show the large-scale dynamo exists in the thinner accretion disk models, but fails to excite when the scale height ratio is increased, a feature which is also reflected in 2D Fourier transforms. Additionally, we calculate the dynamo α-parameter through correlations in the averaged magnetic field and turbulent electromotive force, and also generate synthetic light curves from the disk cooling. Using our emission proxy, we find the disks have markedly different characters as photometric fluctuations are larger and less ordered when the disk is thicker and the dynamo is absent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.
Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less
Evolution of Pre-Main Sequence Accretion Disks
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2002-01-01
The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we plan to: (1) Develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; (2) Study the dusty emission and accretion rates in these systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr; and (3) Develop detailed model disk structures consistent with observations to infer physical conditions in protoplanetary disks and to constrain possible grain growth as the first stage of planetesimal formation.
Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.
We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less
Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime
Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; ...
2017-05-04
We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less
NASA Astrophysics Data System (ADS)
Papitto, A.; Rea, N.; Coti Zelati, F.; de Martino, D.; Scaringi, S.; Campana, S.; de Ońa Wilhelmi, E.; Knigge, C.; Serenelli, A.; Stella, L.; Torres, D. F.; D’Avanzo, P.; Israel, G. L.
2018-05-01
We report on the first continuous, 80-day optical monitoring of the transitional millisecond pulsar PSR J1023+0038 carried out in mid 2017 with Kepler in the K2 configuration, when an X-ray subluminous accretion disk was present in the binary. Flares lasting from minutes to 14 hr were observed for 15.6% of the time, which is a larger fraction than previously reported on the basis of X-ray and past optical observations, and more frequently when the companion was at superior conjunction of the orbit. A sinusoidal modulation at the binary orbital period was also present with an amplitude of ≃16%, which varied by a few percent over timescales of days, and with a maximum that took place 890 ± 85 s earlier than the superior conjunction of the donor. We interpret this phenomena in terms of reprocessing of the X-ray emission by an asymmetrically heated companion star surface and/or a non-axisymmetric outflow possibly launched close to the inner Lagrangian point. Furthermore, the non-flaring average emission varied by up to ≈40% over a timescale of days in the absence of correspondingly large variations of the irradiating X-ray flux. The latter suggests that the observed changes in the average optical luminosity might be due to variations of the geometry, size, and/or mass accretion rate in the outer regions of the accretion disk.
THE DUAL ORIGIN OF STELLAR HALOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, Adi; Hogg, David W.; Willman, Beth
2009-09-10
We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surroundedmore » by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Kevin R.; Sitko, Michael L.; Swearingen, Jeremy R.
We present near-IR (NIR) and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ∼1.5-10 μm over a maximum timescale of 10 yr. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the ≲1 AU region of the disk. Through analysis of the Pa β and Brmore » γ lines in our data we derive a mass accretion rate in 2013 May of M-dot ≈ (1.5-2.7) × 10{sup –9} M {sub ☉} yr{sup –1}. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 yr of observations. We find that shifting the outer edge (r ≈ 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ∼40-70 AU dark ring imaged in the NIR by Quanz et al. and Momose et al. and at 7 mm by Osorio et al. may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.« less
Nucleosynthesis inside Supernova-Driven Supercritical Accretion Disks
NASA Astrophysics Data System (ADS)
Fujimoto, Shin-Ichirou; Arai, Kenzo; Matsuba, Ryuichi; Hashimoto, Masa-Aki; Koike, Osamu; Mineshige, Shin
2001-06-01
We have investigated nucleosynthesis in a supercritical accretion disk around a compact object of 1.4Msolar, using the self-similar solution of an optically thick advection dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a new-born compact object. It has been found that appreciable nuclear reactions take place even for a reasonable value of the viscosity parameter, αvissimeq 0.01, when the accretion rate dot{m}=dot{M}c2/(16LEdd) > 105, where LEdd is the Eddington luminosity. If dot{m} ge 4 × 106, all heavy elements are destroyed to 4He through photodisintegrations at the inner part of the disk. Even 4He is also disintegrated to protons and neutrons near the inner edge when dot{m} ge 2 × 107. If the fallback matter of the supernova explosion has the composition of a helium-rich layer of the progenitor, a considerable amount of 44Ti could be ejected via a jet from the disk.
WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lile; Goodman, Jeremy J.
Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionlessmore » ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.« less
Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudd, D.; et al.
We present accretion disk size measurements for 15 luminous quasars atmore » $$0.7 \\leq z \\leq 1.9$$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.« less
The rotating wind of the quasar PG 1700+518.
Young, S; Axon, D J; Robinson, A; Hough, J H; Smith, J E
2007-11-01
It is now widely accepted that most galaxies undergo an active phase, during which a central super-massive black hole generates vast radiant luminosities through the gravitational accretion of gas. Winds launched from a rotating accretion disk surrounding the black hole are thought to play a critical role, allowing the disk to shed angular momentum that would otherwise inhibit accretion. Such winds are capable of depositing large amounts of mechanical energy in the host galaxy and its environs, profoundly affecting its formation and evolution, and perhaps regulating the formation of large-scale cosmological structures in the early Universe. Although there are good theoretical grounds for believing that outflows from active galactic nuclei originate as disk winds, observational verification has proven elusive. Here we show that structures observed in polarized light across the broad Halpha emission line in the quasar PG 1700+518 originate close to the accretion disk in an electron scattering wind. The wind has large rotational motions (approximately 4,000 km s(-1)), providing direct observational evidence that outflows from active galactic nuclei are launched from the disks. Moreover, the wind rises nearly vertically from the disk, favouring launch mechanisms that impart an initial acceleration perpendicular to the disk plane.
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2011-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.
Studies of Circumstellar Disk Evolution
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2005-01-01
The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.
Tilted Thick-Disk Accretion onto a Kerr Black Hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragile, P C; Anninos, P
2003-12-12
We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}.more » The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.« less
Reconstruction of the accretion disk in six cataclysmic variable stars
NASA Astrophysics Data System (ADS)
Rutten, R. G. M.; van Paradijs, J.; Tinbergen, J.
1992-07-01
The maximum-entropy eclipse-mapping algorithm is used to reconstruct images of the accretion disks of the novalike variable stars RW Tri, UX UMa, SW Sex, LX Ser, V 1315 Aql, and V363 Aur. The 2D disk intensity maps deduced from the light curves reveal the size of the disk and its radial intensity dependence. Black-body temperature maps deduced from the intensity maps at different wavelengths show that the disks in RW Tri, UX UMa, and V363 Aur have a radial temperature dependence which closely matches the fundamental theoretical run of the effective temperature with radial distance from disk center: T(eff) varies as R exp -3/4. The system V1315 Aql and SW Sex exhibit a much flatter run of T(R) in the inner region of the disk, while LX Ser appears to hold a position in between these two extremes. The consequences of these results for accretion disk models are also discussed.
Accretion Disks and Coronae in the X-Ray Flashlight
NASA Astrophysics Data System (ADS)
Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan
2018-02-01
Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.
Accretion disks around black holes
NASA Technical Reports Server (NTRS)
Abramowicz, M. A.
1994-01-01
The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.
Theories of the origin and evolution of the giant planets
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Bodenheimer, P.
1989-01-01
Following the accretion of solids and gases in the solar nebula, the giant planets contracted to their present sizes over the age of the solar system. It is presently hypothesized that this contraction was rapid, but not hydrodynamic; at a later stage, a nebular disk out of which the regular satellites formed may have been spun out of the outer envelope of the contracting giant planets due to a combination of total angular momentum conservation and the outward transfer of specific angular momentum in the envelope. If these hypotheses are true, the composition of the irregular satellites directly reflects the composition of planetesimals from which the giant planets formed, while the composition of the regular satellites is indicative of the composition of the less volatile components of the outer envelopes of the giant planets.
MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian-Min; Qiu, Jie; Du, Pu
2014-12-10
Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energymore » distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.« less
Collapse of primordial gas clouds and the formation of quasar black holes
NASA Technical Reports Server (NTRS)
Loeb, Abraham; Rasio, Frederic A.
1994-01-01
The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.
NASA Astrophysics Data System (ADS)
Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter
2017-12-01
We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.
THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, K.; France, K.; McJunkin, M.
2015-10-10
Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less
Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk
Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; ...
2018-02-26
Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less
Line formation in the hot spot region of cataclysmic variable accretion disks
NASA Technical Reports Server (NTRS)
Elitzur, Moshe; Clarke, John T.; Kallman, T. R.
1988-01-01
The paper presents a theoretical analysis of the emission lines observed in the cataclysmic variable A0 Psc (=H2252-035), including detailed modeling of the hydrogen Balmer line emission. The analysis makes it possible to deduce the physical conditions in the so called 'hot spot', or 'bulge' region where the accretion column hits the rim of the accretion disk. It is concluded that the bulge is optically thick to the ionizing disk radiation. Consequently, its disk illuminated face is fully ionized whereas the side facing away from the disk is neutral, resulting in modulation of the observed emission lines with the orbital period. The density in the hot spot is about 5 x 10 to the 12th to 10 to the 13th/cu cm.
Quasar Probing Galaxies: New Constraints on Cold Gas Accretion at Z=0.2
NASA Astrophysics Data System (ADS)
Ho, Stephanie H.
2017-07-01
Galactic disks grow by accreting cooling gas from the circumgalactic medium, and yet direct observations of inflowing gas remain sparse. We observed quasars behind star-forming galaxies and measured the kinematics of circumgalactic absorption. Near the galaxy plane, the Mg II Doppler shifts share the same sign as the galactic rotation, which implies the gas co-rotates with the galaxy disk. However, a rotating disk model fails to explain the observed broad velocity range. Gas spiraling inward near the disk plane offers a plausible explanation for the lower velocity gas. We will discuss the sizes of these circumgalactic disks, the properties of their host galaxies, and predictions for the spiral arms. Our results provide direct evidence for cold gas accretion at redshift z=0.2.
Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History
NASA Astrophysics Data System (ADS)
Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin
2013-07-01
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.
NASA Astrophysics Data System (ADS)
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
NASA Astrophysics Data System (ADS)
Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.
1998-05-01
We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY Aur B. Comparison of our IR images and the millimeter images of the gas clearly show that the dust seen in our IR images traces the gas in the circumbinary disk, as was also the case with GG Tau.
Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems
NASA Astrophysics Data System (ADS)
Qian, Qian; Fendt, Christian; Vourellis, Christos
2018-05-01
We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.
Propagation of tidal disturbance in gaseous accretion disks
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J. C. B.; Savonije, G. J.
1990-01-01
Linear wave propagation is studied in geometrically thin accretion disks where the equilibrium variables, such as density and temperature, are stratified in the direction normal to the plane of the disk; i.e., the vertical direction. It is shown, due to refraction effects, that waves excited by tidal disturbances induced by a satellite or a companion of the central object are not expected to reach the interior regions of the disk with a significant amplitude.
Locating the Accretion Footprint on a Herbig Ae Star: MWC 480
NASA Technical Reports Server (NTRS)
Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.;
2011-01-01
Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, Elisa V.; Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov
Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 Mmore » {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.« less
Far-Ultraviolet Spectroscopy of Three Long-Period Novalike Variables
NASA Astrophysics Data System (ADS)
Bisol, Alexandra C.; Godon, Patrick; Sion, Edward M.
2012-02-01
We have selected three novalike variables at the long-period extreme of novalike orbital periods: V363 Aur, RZ Gru, and AC Cnc, all with IUE archival far-ultraviolet spectra. All are UX UMa-type novalike variables and all have Porb > 7 hr. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru has not proven to be a member of the SW Sex subclass. We have carried out the first synthetic spectral analysis of far-ultraviolet spectra of the three systems using state-of-the-art models of both accretion disks and white dwarf photospheres. We find that the FUV spectral energy distribution of both V363 Aur and RZ Gru are in agreement with optically thick steady-state accretion disk models in which the luminous disk accounts for 100% of the FUV light. We present accretion rates and model-derived distances for V363 Aur and RZ Gru. For AC Cnc, we find that a hot accreting white dwarf accounts for ˜60% of the FUV light, with an accretion disk providing the rest. We compare our accretion rates and model-derived distances with estimates in the literature.
Reduced modeling of the magnetorotational instability
NASA Astrophysics Data System (ADS)
Jamroz, Ben F.
2009-06-01
Accretion describes the process by which matter in an astrophysical disk falls onto a central massive object. Accretion disks are present in many astrophysical situations including binary star systems, young stellar objects, and near black holes at the center of galaxies. Measurements from observations of these disks have shown that viscous processes are unable to transport the necessary levels of angular momentum needed for accretion. Therefore, accretion requires an efficient mechanism of angular momentum transport. Mixing by turbulent processes greatly enhances the level of angular momentum transport in a turbulent fluid. Thus, the generation of turbulence in these disks may provide the mechanism needed for accretion. A classical result of hydrodynamic theory is that typical accretion disks are hydrodynamically stable to shear instabilities, since the specific angular momentum increases outwards. Other processes of generating hydrodynamic turbulence (barotropic instability, baroclinic instability, sound wave, shock waves, finite amplitude instabilities) may be present in these disks, however, none of these mechanisms has been shown to produce the level of angular momentum transport needed for accretion. Hydrodynamical turbulence does not produce enough angular momentum transport to produce the level of accretion observed in astrophysical accretion disks. The leading candidate for the source of turbulence leading to the transport of angular momentum is the magnetorotational instability, a linear axisymmetric instability of electrically conducting fluid in the presence of an imposed magnetic field and shear (or differential rotation). This instability is an efficient mechanism of angular momentum transport generating the level of transport needed for accretion. The level of effective angular momentum transport is determined by the saturated state of sustained turbulence generated by the instability. The mechanism of nonlinear saturation of this instability is not well understood. Many recent numerical investigations of this problem are performed in a local domain, where the global cylindrical background state is projected onto a local Cartesian domain. The resulting system is then numerically modeled within a "shearing box" framework to obtain estimates of angular momentum transport and therefore accretion. However, the simplified geometry of the local domain, and the projection of global quantities leads to a model where the instability is able to grow unboundedly. Utilizing disparate characteristic scales, this thesis presents a reduced asymptotic model for the magnetorotational instability that allows a large scale feedback of local stresses (Reynolds, Maxwell and mixed) onto the projected background state. This system is investigated numerically to determine the impact of allowing this feedback on the saturated level of angular momentum transport.
On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars
NASA Astrophysics Data System (ADS)
Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada
2017-02-01
We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}⊙ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}⊙ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (˜85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ˜ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (I.e., z≳ 10).
Nonlinear calculations of the time evolution of black hole accretion disks
NASA Technical Reports Server (NTRS)
Luo, C.
1994-01-01
Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov
2016-11-20
We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2009-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.
Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.
Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S
2015-03-26
Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmer, Bernd; Leroy, Adam K., E-mail: bvollmer@astro.u-strasbg.fr
2011-01-15
Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproducedmore » by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.« less
NASA Astrophysics Data System (ADS)
Vollmer, Bernd; Leroy, Adam K.
2011-01-01
Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.
Shrinking galaxy disks with fountain-driven accretion from the halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Struck, Curtis; Hunter, Deidre A., E-mail: bge@watson.ibm.com, E-mail: curt@iastate.edu, E-mail: dah@lowell.edu
2014-12-01
Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. The gas disk then expands or shrinks over time. Here we show that condensation of halo gas at a ratemore » proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for blue compact dwarfs, which tend to have large, irregular gas reservoirs and steep blue profiles in their inner stellar disks.« less
Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1993-01-01
The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.
UV line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1992-01-01
The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.
On the effects of tidal interaction on thin accretion disks: An analytic study
NASA Technical Reports Server (NTRS)
Dgani, R.; Livio, M.; Regev, O.
1994-01-01
We calculate tidal effects on two-dimensional thin accretion disks in binary systems. We apply a perturbation expansion to obtain an analytic solution of the tidally induced waves. We obtain spiral waves that are stronger at the inner parts of the disks, in addition to a local disturbance which scales like the strength of the local tidal force. Our results agree with recent calculations of the linear response of the disk to tidal interaction.
ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C., E-mail: mponce@astro.rit.edu, E-mail: jafsma@rit.edu, E-mail: jalombar@allegheny.edu
2012-01-20
Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick anglemore » with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.« less
Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei
NASA Astrophysics Data System (ADS)
Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.
2017-11-01
Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.
Nodding motions of accretion rings and disks - A short-term period in SS 433
NASA Technical Reports Server (NTRS)
Katz, J. I.; Anderson, S. F.; Grandi, S. A.; Margon, B.
1982-01-01
It is pointed out that accretion disks and rings in mass transfer binaries have been observed spectroscopically and calculated theoretically for many years. The present investigation is partly based on the availability of several years of spectroscopic observations of the Doppler shifts of the moving lines in SS433. A formalism is presented to compute frequencies and amplitudes of short-term 'nodding' motions in precessing accretion disks in close binary systems. This formalism is applied to an analysis of the moving-line Doppler shifts in SS433. The 35d X-ray cycle of Hercules X-1 is also discussed. In the considered model, the companion star exerts a gravitational torque on the disk rim. Averaged over the binary orbit, this yields a steady torque which results in the mean driven counterprecession of the disk.
The evolution of a binary in a retrograde circular orbit embedded in an accretion disk
NASA Astrophysics Data System (ADS)
Ivanov, P. B.; Papaloizou, J. C. B.; Paardekooper, S.-J.; Polnarev, A. G.
2015-04-01
Aims: Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary with a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate the time scales for inward migration that leads to coalescence and the accretion rate to the secondary component. Methods: We employed both semi-analytic methods and two-dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. Results: We develop the theory of type I migration in this case and go on to determine the conditions for gap formation. We find that when this happens inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed accretion disk. The accretion rate onto the secondary itself is found to only play a minor role in the orbital evolution as it is of the order of q1/3 of that to the primary. We obtain good general agreement between the semi-analytic and fully numerical approaches and note that the former can be applied to disks with a wide dynamic range on long time scales. Conclusions: We conclude that inward migration induced by interaction with the disk can enable the binary to migrate inwards, alleviating the so-called final parsec problem. When q is sufficiently small, there is no well-pronounced cavity inside the binary orbit, unlike the prograde case. The accretion rate to the secondary does not influence the binary orbital evolution much, but can lead to some interesting observational consequences, provided the accretion efficiency is sufficiently large. In this case the binary may be detected as, for example, two sources of radiation rotating around each other. However, the study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Also, torques acting between a circumbinary accretion disk, which has a non-zero inclination with respect to a retrograde binary orbit at large distances, may cause the inclination to increase on a time scale that can be similar to, or smaller than, the time scale of orbital evolution, depending on the disk parameters and binary mass ratio. This is also an aspect for future study. The movies are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Natta, A.
Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary
The accretion and spreading of matter on white dwarfs
NASA Astrophysics Data System (ADS)
Fisker, Jacob Lund; Balsara, Dinshaw S.; Burger, Tom
2006-10-01
For a slowly rotating non-magnetized white dwarf the accretion disk extends all the way to the star. At the interface between the accretion disk and the star, the matter moves through a boundary layer (BL) and then spreads toward the poles as new matter continuously piles up behind it. We have solved the 3d compressible Navier-Stokes equations on an axisymmetric grid to determine the structure of this BL for different accretion rates (states). The high states show a spreading BL which sets off a gravity wave in the surface matter. The accretion flow moves supersonically over the cusp making it susceptible to the rapid development of gravity wave and/or Kelvin-Helmholtz instabilities. This BL is optically thick and extends more than 30° to either side of the disk plane after 3/4 of a Keplerian rotation period (tK = 19 s). The low states also show a spreading BL, but here the accretion flow does not set off gravity waves and it is optically thin.
NASA Astrophysics Data System (ADS)
Kóspál, Á.; Ábrahám, P.; Csengeri, T.; Fehér, O.; Hogerheijde, M. R.; Brinch, Ch.; Dunham, M. M.; Vorobyov, E. I.; Salter, D. M.; Henning, Th.
2017-07-01
A long-standing open issue of the paradigm of low-mass star formation is the luminosity problem: most protostars are less luminous than theoretically predicted. One possible solution is that the accretion process is episodic. FU Ori-type stars (FUors) are thought to be the visible examples for objects in the high accretion state. FUors are often surrounded by massive envelopes, which replenish the disk material and enable the disk to produce accretion outbursts. However, we have insufficient information on the envelope dynamics in FUors, about where and how mass transfer from the envelope to the disk happens. Here we present ALMA observations of the FUor-type star V346 Nor at 1.3 mm continuum and in different CO rotational lines. We mapped the density and velocity structure of its envelope and analyze the results using channel maps, position-velocity diagrams, and spectro-astrometric methods. We found that V346 Nor is surrounded by gaseous material on a 10,000 au scale in which a prominent outflow cavity is carved. Within the central ˜700 au, the circumstellar matter forms a flattened pseudo-disk where material is infalling with conserved angular momentum. Within ˜350 au, the velocity profile is more consistent with a disk in Keplerian rotation around a central star of 0.1 {M}⊙ . We determined an infall rate from the envelope onto the disk of 6× {10}-6 {M}⊙ yr-1, a factor of a few higher than the quiescent accretion rate from the disk onto the star, hinting at a mismatch between the infall and accretion rates as the cause of the eruption.
On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars
NASA Technical Reports Server (NTRS)
Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.
1997-01-01
Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.
Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.
Neilsen, Joseph; Lee, Julia C
2009-03-26
Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.
General Relativistic MHD Simulations of Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.
2005-01-01
We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp
By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less
VIVA (VLA Imaging of Virgo in Atomic gas): H I Stripping in Virgo Galaxies
NASA Astrophysics Data System (ADS)
Chung, A.; van Gorkom, J. H.; Crowl, H.; Kenney, J. D. P.; Vollmer, B.
2008-08-01
We present results of a new Very Large Array survey of 53 Virgo galaxies (48 spirals and 5 dwarf/irregular systems). The goal is to study how the H I gas properties are affected by the cluster environment. The survey covers galaxies in a wide range of densities from the center of the cluster to more than 3 Mpc from M 87. The gas is imaged down to a column-density sensitivity of a few times 1019cm-2. We find examples of gas stripping at all stages. Within ˜0.5 Mpc from M 87, most galaxies are severely H I stripped. The H I disks are truncated to well within the optical disks. While the H I looks asymmetric, the outer stellar disks look undisturbed. The fact that only the gas and not the stars has been stripped suggests that those galaxies have been affected by the hot and dense cluster gas. Interestingly we also find a few truncated disks at large projected distances from the center. Although some of these may have been stripped while crossing the cluster core, a detailed population-synthesis study of the outer disk of one of these shows that star formation was terminated recently. The time since stripping is too short for the galaxy to have traveled from the core to its current location. So at least one galaxy has lost its gas from the outer disk by another mechanism than ram-pressure stripping in the dense cluster core. At intermediate- to low-density regions (>0.6 Mpc) we find H I tails with various lengths. We find seven galaxies with long one-sided H I tails pointing away from M 87. The galaxies are at 0.6-1 Mpc from M 87. Since these galaxies are only mildly H I deficient and the tails point away from M 87, these galaxies are probably falling into the cluster for the first time on highly radial orbits. For all but two of the galaxies the estimated ram pressure at their location in the cluster would be sufficient to pull out the H I in the very outer disks. One galaxy also looks optically disturbed and a simulation suggests that a combination of ram pressure plus a tidal interaction has pulled out the tail. In the outskirts of the cluster we find several examples of tidally interacting galaxies. We possibly see evidence for some accretion of gas as well. Lastly, the merging of subclusters with Virgo can cause bulk motions of the ICM. We see one example of a galaxy far out that appears to be ram-pressure stripped by a dynamic ICM. In summary, our results show that galaxies are already affected in the low-density outer regions of the cluster through ram-pressure stripping and tidal interactions, or a combination of both.
Observational diagnostics of accretion on young stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Stelzer, Beate; Argiroffi, Costanza
I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.
On Noble Gas Processing in the Solar Accretion Disk
NASA Astrophysics Data System (ADS)
Pepin, R. O.
2003-04-01
Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk. A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions.
The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores
NASA Astrophysics Data System (ADS)
Morbidelli, A.; Lambrechts, M.; Jacobson, S.; Bitsch, B.
2015-09-01
The basic structure of the Solar System is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
The Structure of Young Stellar Systems: Establishing the Initial Conditions for Planet Formation
NASA Technical Reports Server (NTRS)
Blake, Geoffrey A.
2004-01-01
FYO1-FY03 Origins support to the PI had been as part of an effort involving Profs. Blake, van Dishoeck and L.G. Mundy of the University of Maryland. As outlined below, the merging of BIMA+OVRO into the Combined Array for Research in Millimeter Astronomy (CARMA) and our mutual involvement in the Spitzer Legacy Science program now provides a more natural means of continuing the Caltech/Maryland collaboration. In addition, the spectroscopy/radiative transfer programs led by Profs. Blake, Hogerheijde, and van Dishoeck form a more cohesive basis for a single proposal. Students supported by our previous Origins grant have been involved in making some of the first sub-arcsecond resolution images of the morphology and chemistry of individual YSOs at OVRO and BIMA, in the analysis of IR spectra taken by ISO, and in continuing exploratory IR diffraction-limited imaging and spectroscopy at the Keck and VLT observatories. Notable scientific accomplishments in the past grant period include: 1) detecting high density and temperature hot cores in the dynamically accreting envelopes of low mass protostars that contain significant quantities of complex, prebioitc molecules, 2) imaging chemical and isotopic zonation in the outer regions of T Tauri star accretion disks, particularly fractional ionization and D/H studies, 3) acquiring and modeling the first extensive CO v = 1 approaches 0 spectroscopy survey of the terrestrial planet-forming region of circumstellar accretion disks, and 4) optimizing detailed radiative transfer modeling of the molecular and dust emission from YSO envelopes and from comets, including a new parallelized implementation.
The Formation of Super-Earths by Tidally Forced Turbulence
NASA Astrophysics Data System (ADS)
Yu, Cong
2017-12-01
The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.
Radio transients from newborn black holes
NASA Astrophysics Data System (ADS)
Kashiyama, Kazumi; Hotokezaka, Kenta; Murase, Kohta
2018-05-01
We consider radio emission from a newborn black hole (BH), which is accompanied by a mini-disk with a mass of ≲ M⊙. Such a disk can be formed from an outer edge of the progenitor's envelope, especially for metal-poor massive stars and/or massive stars in close binaries. The disk accretion rate is typically super-Eddington and an ultrafast outflow with a velocity of ˜0.1-0.3 c will be launched into the circumstellar medium. The outflow forms a collisionless shock, and electrons are accelerated and emit synchrotron emission in radio bands with a flux of ˜ 10^{26-30} erg s^{-1} Hz^{-1} days to decades after the BH formation. The model predicts not only a fast UV/optical transient but also quasi-simultaneous inverse-Compton X-ray emission ˜ a few days after the BH formation, and the discovery of the radio counterpart with coordinated searches will enable us to identify this type of transients. The occurrence rate can be 0.1 - 10 % of the core-collapse supernova rate, which makes them a promising target of dedicated radio observations such as the Jansky VLA Sky Survey.
ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keek, L.; Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov
2016-07-20
Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burstmore » spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.« less
OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements
NASA Astrophysics Data System (ADS)
Pascucci, I.
2010-07-01
Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Drory, Niv; Fabricius, Maximilian H.
2009-05-20
We study star formation rates (SFRs) and stellar masses in bulges of nearby disk galaxies. For this we construct a new SFR indicator that linearly combines data from the Spitzer Space Telescope and the Galaxy Evolution Explorer. All bulges are found to be forming stars irrespective of bulge type (pseudobulge or classical bulge). At present-day SFR the median pseudobulge could have grown the present-day stellar mass in 8 Gyr. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time, and thus the present-day SFR does not likely play a major role inmore » the evolution of classical bulges. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk. This suggests that almost all galaxies are increasing their B/T through internal star formation. The SFR in pseudobulges correlates with their structure. More massive pseudobulges have higher SFR density, this is consistent with that stellar mass being formed by moderate, extended star formation. Bulges in late-type galaxies have similar SFRs as pseudobulges in intermediate-type galaxies, and are similar in radial size. However, they are deficient in mass; thus, they have much shorter growth times, {approx}2 Gyr. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. These are possibly composite objects, evolved pseudobulges or classical bulges experiencing transient, enhanced nuclear star formation. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Those galaxies with large classical bulges are not affected by the in situ bulge growth, likely because the majority of their stellar mass comes from some other phenomenon. Yet, those galaxies without a classical bulge, over long periods of extended star formation are able to growth a pseudobulge. Though cold accretion is not ruled out, for pseudobulge galaxies an addition of stellar mass from mergers or accretion is not required to explain the bulge mass. In this sense, galaxies with pseudobulges may very well be bulgeless (or 'quasi-bulgeless') galaxies, and galaxies with classical bulges are galaxies in which both internal evolution and hierarchical merging are responsible for the bulge mass by fractions that vary from galaxy to galaxy.« less
[Predicting Spectra of Accretion Disks Around Galactic Black Holes
NASA Technical Reports Server (NTRS)
Krolik, Julian H.
2004-01-01
The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikoma, M.; Hori, Y., E-mail: ikoma@eps.s.u-tokyo.ac.jp, E-mail: yasunori.hori@nao.ac.jp
2012-07-01
Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. Wemore » have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.« less
Implosive accretion and outbursts of active galactic nuclei
NASA Technical Reports Server (NTRS)
Lovelace, R. V. E.; Romanova, M. M.; Newman, W. I.
1994-01-01
A model and simulation code have been developed for time-dependent axisymmetric disk accretion onto a compact object including for the first time the influence of an ordered magnetic field. The accretion rate and radiative luminosity of the disk are naturally coupled to the rate of outflow of energy and angular momentum in magnetically driven (+/- z) winds. The magnetic field of the wind is treated in a phenomenological way suggested by self-consistent wind solutions. The radial accretion speed u(r, t) of the disk matter is shown to be the sum of the usual viscous contribution and a magnetic contribution proportional to r(exp 3/2)(B(sub p exp 2))/sigma, where B(sub p)(r,t) is the poloidal field threading the disk and sigma(r,t) is the disk's surface mass density. An enhancement or variation in B(sub p) at a large radial distance leads to the formation of a soliton-like structure in the disk density, temperature, and B-field which propagates implosively inward. The implosion gives a burst in the power output in winds or jets and a simultaneous burst in the disk radiation. The model is pertinent to the formation of discrete fast-moving components in jets observed by very long baseline interferometry. These components appear to originate at times of optical outbursts of the active galactic nucleus.
Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission
NASA Astrophysics Data System (ADS)
Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao
2011-12-01
Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
More on accreting black hole spacetime in equatorial plane
NASA Astrophysics Data System (ADS)
Salahshoor, K.; Nozari, K.; Khesali, A. R.
2017-02-01
Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark
2018-06-01
We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~<1 year for cluster transverse velocities of v_T<~1000 km/s.Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3-30 lensing clusters to AB<29 mag over a decade (see Windhorst et al. 2018, ApJS, 234, 41; astro-ph/1801.03584).This work was supported by NASA JWST Interdisciplinary Scientist grants NAG5-12460, NX14AN10G, and 80NSSC18K0200, NASA Theoretical and Computational Astrophysics Networks grant NNX14AB53G, NSF Software Infrastructure for Sustained Innovation grant 1339600, NSF Physics Frontier Center JINA-CEE grant PHY-1430152, Australian Research Council projects AYA2015-64508-P, AYA2012-39475-C02-01, and Ministerio de Economia y Competitividad of Spain Consolider Project CSD2010-00064.
Probing Stellar Accretion with Mid-infrared Hydrogen Lines
NASA Astrophysics Data System (ADS)
Rigliaco, Elisabetta; Pascucci, I.; Duchene, G.; Edwards, S.; Ardila, D. R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Mulders, G. D.; Najita, J. R.; Carpenter, J.; Furlan, E.; Gorti, U.; Meijerink, R.; Meyer, M. R.
2015-03-01
In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010-1011 cm-3. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10-10 M ⊙ yr-1. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.
Physical Structure of Four Symbiotic Binaries
NASA Technical Reports Server (NTRS)
Kenyon, Scott J. (Principal Investigator)
1997-01-01
Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the outbursts of symbiotic stars, with an emphasis on understanding the differences between disk-driven and nuclear-powered eruptions.
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2017-01-01
We utilize the time dependent accretion disk model described by Ichikawa & Osaki (1992) to explore two basic ideas for the outbursts in the SU UMa systems, Osaki's Thermal-Tidal Model, and the basic accretion disk limit cycle model. We explore a range in possible input parameters and model assumptions to delineate under what conditions each model may be preferred.
UV Spectroscopy of face-on accretion disks
NASA Astrophysics Data System (ADS)
Wade, Richard
1996-07-01
We will obtain GHRS spectra at 1 Angstrom resolution of three novalike variables that have low orbital inclinations, BD-7D3007 {= RW Sex}, HD174107 {= V603 Aql}, and MV-LYR. The blending and broadening of absorption lines from the accretion disk will not be as severe in these objects as in more edge-on systems, and we expect to see individual lines or blends that are distinctively characteristic of the varying projected velocities at different temperatures { i.e. radii} in the disk. These aspects of the UV disk spectrum have not previously been used as a tool to study accretion disk physics. Comparison of line strengths with our detailed models will indicate whether it is necessary to consider irradiated or NLTE disks, and test in a new way whether the disks are in steady state. The shapes of lines that would be formed in the inner disk will tell whether the inner disk is actually present, an important check on observational and theoretical suggestions that the inner disk is missing in some cataclysmic variables. The improved understanding and characterization of the photospheric spectrum will aid in the analysis of the wind-formed P Cygni lines that are seen in these objects. We will use grating G140L, covering much of the mid-UV spectrum with S/N up to 200.
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.
2018-04-01
The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.
Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes
NASA Technical Reports Server (NTRS)
Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang
2000-01-01
Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.
Three-layered atmospheric structure in accretion disks around stellar-mass black holes
Zhang; Cui; Chen; Yao; Zhang; Sun; Wu; Xu
2000-02-18
Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of their accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.
Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.
Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew
2018-03-15
Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.
Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk
NASA Astrophysics Data System (ADS)
Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew
2018-03-01
Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.
AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punzi, K. M.; Kastner, J. H.; Hily-Blant, P.
2015-06-01
The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO andmore » its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.« less
The protoplanetary disk of FT Tauri: multiwavelength data analysis and modeling
NASA Astrophysics Data System (ADS)
Garufi, A.; Podio, L.; Kamp, I.; Ménard, F.; Brittain, S.; Eiroa, C.; Montesinos, B.; Alonso-Martínez, M.; Thi, W. F.; Woitke, P.
2014-07-01
Context. Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. There have been several theoretical and observational studies in past decades to advance this knowledge. The launch of satellites operating at infrared wavelengths, such as the Spitzer Space Telescope and the Herschel Space Observatory, has provided important tools for investigating the properties of circumstellar disks. Aims: FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion/ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. Methods: We performed a multiwavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG/DOLoRes, WHT/LIRIS, NOT/NOTCam, Keck/NIRSpec, and Herschel/PACS spectra. From the literature, we compiled a complete spectral energy distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multiwavelength spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. Results: We have determined the stellar mass (~ 0.3 M⊙), luminosity (~ 0.35 L⊙), and age (~ 1.6 Myr), as well as the visual extinction of the system (1.8 mag). We estimate the mass accretion rate (~ 3 × 10-8 M⊙/yr) to be within the range of accreting objects in Taurus. The evolutionary state and the geometric properties of the disk are also constrained. The radial extent (0.05 to 200 AU), flaring angle (power law with exponent =1.15), and mass (0.02 M⊙) of the circumstellar disk are typical of a young primordial disk. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content, and typical size. Based on Herschel data. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 3, 4 and Appendix A are available in electronic form at http://www.aanda.org
An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624
NASA Technical Reports Server (NTRS)
King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.
2012-01-01
Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems
A Stellar-mass Black Hole in the Ultra-luminous X-ray Source M82 X-1
NASA Technical Reports Server (NTRS)
Okajima, Takashi; Ebisawa, Ken; Kawaguchi, Toshihiro
2007-01-01
We have analyzed the archival XMM-Newton data of the archetypal Ultra-Luminous X-ray Source (ULX) M82 X-1 with an LO5 ksec exposure when the source was in the steady state. Thanks to the high photon statistics from the large effective area and long exposure, we were able to discriminate different X-ray continuum spectral models. Neither the standard accretion disk model (where the radial dependency of the disk effective temperature is T(r) proportional to r(sup -3/4)) nor a power-law model gives a satisfactory fit. In fact, observed curvature of the M82 X-1 spectrum was just between those of the two models. When the exponent of the radial dependence (p in T(r) proportional to r(sup -P)) of the disk temperature is allowed to be free, we obtained p = 0.61 (sup +0.03)(sub -0.02). Such a reduction of p from the standard value 3/4 under extremely high mass accretion rates is predicted from the accretion disk theory as a consequence of the radial energy advection. Thus, the accretion disk in M82 X-1 is considered to be in the Slim disk state, where an optically thick Advection Dominant Accretion Flow (ADAF) is taking place. We have applied a theoretical slim disk spectral model to M82 X-1, and estimated the black hole mass approximately equal to 19 - 32 solar mass. We conclude that M82 X-1 is a stellar black hole which has been produced through evolution of an extremely massive star, shining at a several times the super-Eddington luminosity.
ALMA observations of AGN fuelling. The case of PKS B1718-649
NASA Astrophysics Data System (ADS)
Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Emonts, B. H. C.
2018-06-01
We present ALMA observations of the 12CO (2-1) line of the newly born (tradio 102 years) active galactic nucleus (AGN), PKS B1718-649. These observations reveal that the carbon monoxide in the innermost 15 kpc of the galaxy is distributed in a complex warped disk. In the outer parts of this disk, the CO gas follows the rotation of the dust lane and of the stellar body of the galaxy hosting the radio source. In the innermost kiloparsec, the gas abruptly changes orientation and forms a circumnuclear disk (r ≲ 700 pc) with its major axis perpendicular to that of the outer disk. Against the compact radio emission of PKS B1718-649 (r 2 pc), we detect an absorption line at red-shifted velocities with respect to the systemic velocity (Δv = +365 ± 22 km s-1). This absorbing CO gas could trace molecular clouds falling onto the central super-massive black hole. A comparison with the near-infrared H2 1-0 S(1) observations shows that the clouds must be close to the black hole (r ≲ 75 pc). The physical conditions of these clouds are different from the gas at larger radii, and are in good agreement with the predictions for the conditions of the gas when cold chaotic accretion triggers an active galactic nucleus. These observations on the centre of PKS B1718-649 provide one of the best indications that a population of cold clouds is falling towards a radio AGN, likely fuelling its activity. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A42
NASA Astrophysics Data System (ADS)
Mosoni, L.; Sipos, N.; Ábrahám, P.; Moór, A.; Kóspál, Á.; Henning, Th.; Juhász, A.; Kun, M.; Leinert, Ch.; Quanz, S. P.; Ratzka, Th.; Schegerer, A. A.; van Boekel, R.; Wolf, S.
2013-04-01
Context. It is hypothesized that low-mass young stellar objects undergo eruptive phases during their early evolution. These eruptions are thought to be caused by highly increased mass accretion from the disk onto the star, and therefore play an important role in the early evolution of Sun-like stars, of their circumstellar disks (structure, dust composition), and in the formation of their planetary systems. The outburst of V1647 Ori between 2003 and 2006 offered a rare opportunity to investigate such an accretion event. Aims: By means of our interferometry observing campaign during this outburst, supplemented by other observations, we investigate the temporal evolution of the inner circumstellar structure of V1647 Ori, the region where Earth-like planets could be born. We also study the role of the changing extinction in the brightening of the object and separate it from the accretional brightening. Methods: We observed V1647 Ori with MIDI on the VLTI at two epochs in this outburst. First, during the slowly fading plateau phase (2005 March) and second, just before the rapid fading of the object (2005 September), which ended the outburst. We used the radiative transfer code MC3D to fit the interferometry data and the spectral energy distributions from five different epochs at different stages of the outburst. The comparison of these models allowed us to trace structural changes in the system on AU-scales. We also considered qualitative alternatives for the interpretation of our data. Results: We found that the disk and the envelope are similar to those of non-eruptive young stars and that the accretion rate varied during the outburst. We also found evidence for the increase of the inner radii of the circumstellar disk and envelope at the beginning of the outburst. Furthermore, the change of the interferometric visibilities indicates structural changes in the circumstellar material. We test a few scenarios to interpret these data. We also speculate that the changes are caused by the fading of the central source, which is not immediately followed by the fading of the outer regions. Conclusions: We found that most of our results fit in the canonical picture of young eruptive stars. Our study provided dynamical information from the regions of the innermost few AU of the system: changes of the inner radii of the disk and envelope. However, if the delay in the fading of the disk is responsible for the changes seen in the MIDI data, the effect should be confirmed by dynamical modeling. Based on observations made with ESO telescopes at the Paranal Observatory under program IDs 274.C-5026 and 076.C-0736. In addition, this work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.
Disk tides and accretion runaway
NASA Technical Reports Server (NTRS)
Ward, William R.; Hahn, Joseph M.
1995-01-01
It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
NASA Astrophysics Data System (ADS)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.
2015-06-01
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin a\\gt 0.9 accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.
Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes
NASA Astrophysics Data System (ADS)
Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes
2001-05-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Large scale dynamics of protoplanetary discs
NASA Astrophysics Data System (ADS)
Béthune, William
2017-08-01
Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from a simplified chemical network in a global geometry. It reveals that the flow is essentially laminar, and that the magnetic field can adopt different global configurations, drastically affecting mass and magnetic flux transport through the disk. A new self-organization process is identified, also leading to the formation of axisymmetric structures, whereas the previous mechanism is discarded by the action of the wind. The properties of magnetothermal winds are examined for various disk magnetizations, allowing discrimination between magnetized and photoevaporative winds based upon their ejection efficiency.
Ultraviolet Spectral Behavior of TVCol During and After Flaring Activity
NASA Astrophysics Data System (ADS)
Sanad, M. R.; Abdel-Sabour, M. A.
2018-01-01
We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E ( B - V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s-1 and 9 × 1030 erg s-1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s-1 (4.76 × 10-11 M ⊙ yr-1) and 5 × 1013 erg s-1 (7.93 × 10-13 M ⊙ yr-1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.
NASA Astrophysics Data System (ADS)
Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.
2016-11-01
Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).
bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport
Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.
2015-06-25
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and tomore » a slowly accreting Kerr black hole in axisymmetry.« less
NASA Astrophysics Data System (ADS)
Farahinezhad, M.; Khesali, A. R.
2018-05-01
In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhaohuan; Ju, Wenhua; Stone, James M., E-mail: zhzhu@physics.unlv.edu
Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up bymore » spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm{sup −2} in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.« less
The Radio Jets and Accretion Disk in NGC 4261
NASA Astrophysics Data System (ADS)
Jones, Dayton L.; Wehrle, Ann E.; Meier, David L.; Piner, B. Glenn
2000-05-01
The structure of active galactic nucleus (AGN) accretion disks on subparsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets. For objects in which both jet and counterjet are detectable with very long baseline interferometry (VLBI), the accretion disk will cover part of the counterjet and produce diminished brightness whose angular size and depth as a function of frequency can reveal the radial distribution of free electrons in the disk. The nearby (41 Mpc, independent of H0) FR I radio galaxy NGC 4261 contains a pair of symmetric kiloparsec-scale jets. On parsec scales, radio emission from the nucleus is strong enough for detailed imaging with VLBI. We present new Very Long Baseline Array (VLBA) observations of NGC 4261 at 22 and 43 GHz, which we combine with previous observations at 1.6 and 8.4 GHz to map absorption caused by an inner accretion disk. The relative closeness of NGC 4261 combined with the high angular resolution provided by the VLBA at 43 GHz gives us a very high linear resolution, approximately 2×10-2 pc ~4000 AU ~400 Schwarzschild radii for a 5×108 Msolar black hole. The jets appear more symmetric at 1.6 GHz because of the low angular resolution available. The jets are also more symmetric at 22 and 43 GHz, presumably because the optical depth of free-free absorption is small at high frequencies. At 8.4 GHz, neither confusion effect is dominant and absorption of counterjet emission by the presumed disk is detectable. We find that the orientation of the radio jet axis is the same on parsec and kiloparsec scales, indicating that the spin axis of the inner accretion disk and black hole has remained unchanged for at least 106 (and more likely >107) yr. This suggests that a single merger event may be responsible for the supply of gas in the nucleus of NGC 4261. The jet opening angle is between 0.3d and 20° during the first 0.2 pc of the jet and must be less than 5° during the first 0.8 pc. Assuming that the accretion disk is geometrically and optically thin and composed of a uniform 104 K plasma, the average electron density in the inner 0.1 pc of the disk is 103-108 cm-3. The mass of ionized gas in the inner pc of the disk is 101-103 Msolar, sufficient to power the radio source for ~104-106 yr. Equating thermal gas pressure and magnetic field strength gives a disk magnetic field of ~10-4 to 10-2 gauss at 0.1 pc. We include an appendix containing expressions for a simple, optically thin, gas-pressure-dominated accretion disk model that may be applicable to other galaxies in addition to NGC 4261.
THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu
2015-07-01
Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.
2015-07-01
Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
NASA Astrophysics Data System (ADS)
Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.
2012-07-01
Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that AFGL 2591-VLA3 may be a special case linking transition of velocity field of massive disks from pure Keplerian rotation to solid-body rotation though definitely more new detections of circumstellar disks around high-mass YSOs are required to examine this hypothesis. Our results support the idea that early B-type stars could be formed with a circumstellar disk from the point of view of the disk-outflow geometry, though the accretion processes in the disk need to be further investigated.
Protoplanetary Disks as (Possibly) Viscous Disks
NASA Astrophysics Data System (ADS)
Rafikov, Roman R.
2017-03-01
Protoplanetary disks are believed to evolve on megayear timescales in a diffusive (viscous) manner as a result of angular momentum transport driven by internal stresses. Here we use a sample of 26 protoplanetary disks resolved by ALMA with measured (dust-based) masses and stellar accretion rates to derive the dimensionless α-viscosity values for individual objects, with the goal of constraining the angular momentum transport mechanism. We find that the inferred values of α do not cluster around a single value, but instead have a broad distribution extending from 10-4 to 0.04. Moreover, they correlate with neither the global disk parameters (mass, size, surface density) nor the stellar characteristics (mass, luminosity, radius). However, we do find a strong linear correlation between α and the central mass accretion rate \\dot{M}. This correlation is unlikely to result from the direct physical effect of \\dot{M} on internal stress on global scales. Instead, we suggest that it is caused by the decoupling of stellar \\dot{M} from the global disk characteristics in one of the following ways: (1) The behavior (and range) of α is controlled by a yet-unidentified parameter (e.g., ionization fraction, magnetic field strength, or geometry), ultimately driving the variation of \\dot{M}. (2) The central \\dot{M} is decoupled from the global accretion rate as a result of an instability, or mass accumulation (or loss in a wind or planetary accretion) in the inner disk. (3) Perhaps the most intriguing possibility is that angular momentum in protoplanetary disks is transported nonviscously, e.g., via magnetohydrodynamic winds or spiral density waves.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
He2-90'S APPEARANCE DECEIVES ASTRONOMERS
NASA Technical Reports Server (NTRS)
2002-01-01
Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a gamma-ray source in the vicinity of He2-90, suggesting that the companion may be a neutron star or a black hole (the compact corpses of dying, massive stars). But the jets from accretion disks around neutron stars or black holes travel at a few tenths the speed of light, much faster than the plodding pace of He2-90's jets. The Hubble astronomers are planning more observations to pinpoint the gamma-ray source to determine whether it is associated with He2-90. An accretion disk needs gravity to form. For gravity to create He2-90's disk, the pair of stars must reside at a cozy distance from each other: within about 10 astronomical units. Although the astronomers are uncertain about the details, they believe that magnetic fields associated with the accretion disk produce and constrict the pencil-thin jets seen in the Hubble image. The close-up Hubble photo at bottom shows a dark, flaring, disk-like structure [off-center] bisecting the bright light from the object. The disk is seen edge-on. Although too large to be an accretion disk, this dark, flaring disk may provide indirect proof of the other's existence. Most theories for producing jets require the presence of an accretion disk. The jets are seen streaming from both sides of the central object. The round, white objects at the lower left and upper right corners are two bright clumps of gas in the jets. The astronomers traced the jets to within 1,000 astronomical units of the central obscured star. The star ejected this jet material about 30 years ago. Scientists discovered this puzzling object while taking a census of planetary nebulae. They knew it had been classified as a dying, sun-like star. He2-90 is enshrouded in very hot (17,500 degrees Fahrenheit or 10,000 degrees Kelvin), glowing gas, a typical feature of planetary nebulae. And yet the disk and jets indicated the presence of an embryonic star. The mystified astronomers needed more information. Since embryonic stars are usually associated with cool, dense clouds of gas and dust, they used a ground-based radio telescope in Chile to look for evidence of such a cloud around He2-90. No such cloud was found, and He2-90's neighborhood showed no traces of developing stars. He2-90 lies about 8,000 light-years from Earth in the constellation Centaurus in the southern sky. The images were taken Sept 28, 1999 with the Wide Field and Planetary Camera 2. The images and results appear in the Aug. 1 issue of the Astrophysical Journal Letters. Credits: NASA, Raghvendra Sahai (NASA Jet Propulsion Laboratory), Lars-Ake Nyman (European Southern Observatory, Chile and Onsala Space Observatory, Sweden)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansdell, M.; Williams, J. P.; Gaidos, E.
We present ten young (≲10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show ∼10–20 dips in flux over the 80-day observing campaign with durations of ∼0.5–2 days and depths of up to ∼40%. These stars are all members of the ρ Ophiuchus (∼1 Myr) or Upper Scorpius (∼10 Myr) star-forming regions. To investigate the nature of these “dippers” we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions thatmore » could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li i absorption and Hα emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within ∼10 stellar radii in most cases; however, the sub-millimeter observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 (Wide-field Infrared Survey Explorer-2) excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.« less
NASA Astrophysics Data System (ADS)
Nimmer, R. P.
1980-09-01
A hybrid flywheel design concept based on the use of a laminated central disk with a filament-wound outer ring is analyzed for several different combinations of composite materials. Some of the results of this study are: (1) an optimized E-glass disk with Kevlar-49 outer ring offers the prospect of 30% additional energy density over a laminated disk without a ring; (2) a laminated S2-glass disk is capable of storing more energy per unit mass than an E-glass disk because of its higher tensile strength; and (3) the use of wound graphite outer rings with S2-glass disks leads to substantial reductions in the size of the interference fit while offering still higher energy densities than for a Kevlar-49 outer ring.
Studies of Circumstellar Disk Evolution
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2004-01-01
Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.
Tidal Barrier and the Asymptotic Mass of Proto-Gas Giant Planets
NASA Astrophysics Data System (ADS)
Dobbs-Dixon, Ian; Li, Shu Lin; Lin, D. N. C.
2007-05-01
According to the conventional sequential accretion scenario, observed extrasolar planets acquired their current masses via efficient gas accretion onto super-Earth cores with accretion timescales that rapidly increase with mass. Gas accretion in weak-line T Tauri disks may be quenched by global depletion of gas, but such a mechanism is unlikely to have stalled the growth in planetary systems that contain relatively low-mass, close-in planets together with more massive, longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both its Bondi and Roche radii. Above the critical mass where the Roche and Bondi radii are equal to the disk thickness, the protoplanet's tidal perturbation induces the formation of a gap. However, despite continued diffusion into the gap, the azimuthal flux across the protoplanet's Roche lobe will be quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Gas accretion is quenched, yielding relatively low protoplanetary masses, in regions with low aspect ratios. This becomes important for determining the gas giant planet's mass function, the distribution of their masses within multiple-planet systems, and for suppressing the emergence of gas giants around low-mass stars. Finally, we find that accretion rates onto protoplanets declines gradually on a characteristic timescale of a few Myr, during which the protracted accretion timescale onto circumplanetary disks may allow for the formation and retention of regular satellites.
DIAGNOSING MASS FLOWS AROUND HERBIG Ae/Be STARS USING THE HE I λ10830 LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cauley, P. Wilson; Johns-Krull, Christopher M., E-mail: pcauley@wesleyan.edu, E-mail: cmj@rice.edu
2014-12-20
We examine He I λ10830 profile morphologies for a sample of 56 Herbig Ae/Be stars (HAEBES). We find significant differences between HAEBES and classical T-Tauri stars (CTTS) in the statistics of both blueshifted absorption (i.e., mass outflows) and redshifted absorption features (i.e., mass infall or accretion). Our results suggest that, in general, Herbig Be (HBe) stars do not accrete material from their inner disks in the same manner as CTTS, which are believed to accrete material via magnetospheric accretion, whereas Herbig Ae (HAe) stars generally show evidence for magnetospheric accretion. We find no evidence in our sample of narrow blueshiftedmore » absorption features, which are typical indicators of inner disk winds and are common in He I λ10830 profiles of CTTS. The lack of inner-disk-wind signatures in HAEBES, combined with the paucity of detected magnetic fields on these objects, suggests that accretion through large magnetospheres that truncate the disk several stellar radii above the surface is not as common for HAe and late-type HBe stars as it is for CTTS. Instead, evidence is found for smaller magnetospheres in the maximum redshifted absorption velocities in our HAEBE sample. These velocities are, on average, a smaller fraction of the system escape velocity than is found for CTTS, suggesting accretion is taking place closer to the star. Smaller magnetospheres, and evidence for boundary layer accretion in HBe stars, may explain the less common occurrence of redshifted absorption in HAEBES. Evidence is found that smaller magnetospheres may be less efficient at driving outflows compared to CTTS magnetospheres.« less
Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling
NASA Technical Reports Server (NTRS)
Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.
2013-01-01
We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.
Formation Of the Giant Planets By Concurrent Accretion Of Solids And Gas
NASA Technical Reports Server (NTRS)
Pollack, James B.; Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.; Podolak, Morris; Greenzweig, Yuval; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
New numerical simulations of the formation of the giant planets are presented, in which for the first time both the gas and planetesimal accretion rates are calculated in a self-consistent, interactive fashion. The simulations combine three elements: 1) three-body accretion cross-sections of solids onto an isolated planetary embryo, 2) a stellar evolution code for the planet's gaseous envelope, and 3) a planetesimal dissolution code within the envelope, used to evaluate the planet's effective capture radius and the energy deposition profile of accreted material. Major assumptions include: The planet is embedded in a disk of gas and small planetesimals with locally uniform initial surface mass density, and planetesimals are not allowed to migrate into or out of the planet's feeding zone. All simulations are characterized by three major phases. During the first phase, the planet's mass consists primarily of solid material. The planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted. During the second phase, both solid and gas accretion rates are small and nearly independent of time. The third phase, marked by runaway gas accretion, starts when the solid and gas masses are about equal. It is engendered by a strong positive feedback on the gas accretion rates, driven by the rapid contraction of the gaseous envelope and the rapid expansion of the outer boundary, which depends on the planet's total mass. The overall evolutionary time scale is generally determined by the length of the second phase. The actual rates at which the giant planets accreted small planetesimals is probably intermediate between the constant rates assumed in most previous studies and the highly variable rates that we have used. Within the context, of the adopted model of planetesimal accretion, the joint constraints of the time scale for dissipation of the solar nebula and the current high-Z masses of the giant planets lead to estimates of the initial surface density (sigma(sub init)) of planetesimals in the outer region of the solar nebula. The results show sigma(sub init) approx. = 10 g/sq cm near Jupiter's orbit and that sigma(sub init) proportional to alpha(sup -2), where alpha is the distance from the Sun. These values are a factor of 3 - 4 times as high as that of the "minimum mass" solar nebula at Jupiter's distance and a factor of 2 - 3 times as high it Saturn's distance. Our estimates for the formation time of Jupiter and Saturn are 1 - 10 million years while those for Uranus fall in the range of 2 - 16 million years. These estimates follow from the properties of our Solar System and do not necessarily apply to giant planets in other planetary systems.
Protoplanetary Formation and the FU Orionis Outburst
NASA Technical Reports Server (NTRS)
Bodenheimer, P. H.
1996-01-01
The following three publications which reference the above grant from the NASA Origins of Solar Systems program are attached and form the final technical report for this project. The research involved comparisons of the spectral energy distributions of FU Orionis objects with theoretical models and associated studies of the structure of the outbursting accretion disks, as well as related studies on the effects of magnetic fields in disks, which will lead in the future to models of FU Orionis outbursts which include the effects of magnetic fields. The project was renewed under a new grant NAGW-4456, entitled 'Effects of FU Orionis Outbursts on Protoplanetary Disks'. Work now being prepared for publication deals more specifically with the issue of the effects of the outbursts on protoplanetary formation. Models of the spectral energy distribution of FU Orionis stars. A simple model of a buoyant magnetic dynamo in accretion disks and a numerical study of magnetic buoyancy in an accretion disk have been submitted.
Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group
NASA Astrophysics Data System (ADS)
Yin, J.
2011-05-01
Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the model fails to match the present SFR in M31 disk by predicting too much SFR in the outer disk. We attribute this disagreement to the fact that M31 has been perturbed recently by a violent encounter. The observed SFR profile of M31 caused by this encounter does not seem to follow any form of the K-S law. On the other hand, the stellar metallicity distribution functions (MDFs) measured along the disk of M31 indicate the integrated star formation during the whole disk history and should not be affected by recent events. Our model reproduces rather well those distributions from 6 kpc to 21 kpc (except the region at 16 kpc). Basically, the disks of MW and M31 are formed "inside-out" with similar infall timescale. If M31 is closer to a typical disk galaxy, it would be the best that the researches on the models of this disk galaxy are carried out within the cosmological framework. Simple models, like the one adopted in this thesis, could be used to describe the quiescent galaxy, like the MW. Secondly, the similar model is applied to investigate the formation history of M33 disk. We calculate the radial profiles of gas surface density and SFR surface density, gas fraction, abundances, the surface brightness of FUV and K bands, FUV-K color gradient and so on. All those properties are compared with observations if available. Two different infall histories, namely collapse model and accretion model, are adopted respectively. The effects of free parameters (infall timescale, infall delay time and efficiency of outflow) on the model results are discussed in detail. It is found that the disk of M33 can not be formed by fast collapse process. Observations show that M33 is much smaller and less massive than MW, but has larger gas fraction and lower metallicity. This implies that it should be formed by slow accretion process and is consistent with the slow accretion model. We study the abundance gradients of different elements in M33 disk and find that outflow should play an important role in the evolution of abundance gradients. The present abundances will be much higher than the observation if without outflow. When the disk undergoes an outflow with a similar strength to the local SFR, the abundance within the radius of 6 kpc will be reduced dramatically, but no noticeable change occurs in outer regions, resulting in a flatter abundance gradient. This is consistent with the observed features. Our model predicts a slightly flatter FUV-K color gradient when the long infall timescale and proper outflow are adopted. Considering the uncertainty of the extinction correction, the results are acceptable.
Post-merger evolution of a neutron star-black hole binary with neutrino transport
NASA Astrophysics Data System (ADS)
Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew D.; Haas, Roland; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela
2015-06-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general-relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of an accretion disk after a black hole-neutron star merger. We use as initial data an existing general-relativistic simulation of the merger of a neutron star of mass 1.4 M⊙ with a black hole of mass 7 M⊙ and dimensionless spin χBH=0.8 . Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron-to-proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that both the disk and the disk outflows are less neutron rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects, due to large velocities and curvature in the regions of strongest emission. Over the short time scale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3 ×10-4M⊙ ) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich (electron fraction Ye˜0.15 - 0.25 ). Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the light curve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk remains neutron rich (Ye˜0.15 - 0.2 and decreasing), its outer layers have a higher electron fraction: 10% of the remaining mass has Ye>0.3 . As that material would be the first to be unbound by disk outflows on longer time scales, and as composition evolution is slower at later times, the changes in Ye experienced during the formation phase of the disk could have an impact on nucleosynthesis outputs from neutrino-driven and viscously driven outflows. Finally, we find that the effective viscosity due to momentum transport by neutrinos is unlikely to have a strong effect on the growth of the magnetorotational instability in the post-merger accretion disk.
DASCH ON KU Cyg: A {approx} 5 YEAR DUST ACCRETION EVENT IN {approx} 1900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Sumin; Grindlay, Jonathan; Los, Edward
2011-09-01
KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a {approx}0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg ismore » probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.« less
Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto
2017-01-01
The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.
Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550
NASA Astrophysics Data System (ADS)
Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry
2009-05-01
XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.
Accretion and outflow in the proplyd-like objects near Cygnus OB2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarcello, M. G.; Drake, J. J.; Wright, N. J.
2014-09-20
Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. Inmore » this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.« less
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.
2017-10-01
Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.
Possible Accretion Disk Origin of the Emission Variability of a Blazar Jet
NASA Astrophysics Data System (ADS)
Chatterjee, Ritaban; Roychowdhury, Agniva; Chandra, Sunil; Sinha, Atreyee
2018-06-01
We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope (SXT) and the Large Area X-ray Proportional Counter (LAXPC) instrument on board the Indian space telescope AstroSat and archival observations from Swift. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break; i.e., the index becomes more negative below a characteristic “break timescale.” Galactic black hole (BH) X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective BH mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk–jet connection. However, evidence of such a link has been scarce and indirect. Mrk 421 is a BL Lac object that has a prominent jet pointed toward us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, the existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale, are translating into the jet where the X-rays are produced.
Ocean-bearing planets near the ice line: How far does the water's edge go?
NASA Astrophysics Data System (ADS)
Gaidos, E.; Seager, S.; Gaudi, S.
2008-12-01
A leading theory for giant planet formation involves the accretion of a solid core, probably ice-rich, that in turn accretes a massive mantle of hydrogen-helium gas from a primordial disk. The relative timing of core formation and disappearance of nebular gas in a few millions of years is critical; the correlation between heavy element abundance in stellar photospheres and their propensity to host giant planets is cited as support for the theory. Conversely, systems that are relatively heavy element-poor or lose their gas earlier should contain either "failed" cores or a set of icy planetary embryos that did not accrete. Indeed, Uranus and Neptune may represent similar embryos that were scattered by Jupiter into the outer disk where they efficiently accreted planetesimals rich in volatiles with low condensation temperatures. We propose that a region straddling the "snowline" (3-5~AU for solar-mass stars) could frequently be inhabited by one or more water ice-rich, super-Earth-mass objects that accreted only a modest amount of nebular gas. We predict that metal-poor bulge and halo stars are more likely to host such objects. Current and future microlensing surveys will be able to determine the population of Earth-mass planets in this range of semimajor axes and test this hypothesis. If they are sufficiently frequent, the nearest examples will be detectable by the Space Interferometer Mission and perhaps a visible-light Terrestrial Planet Finder mission. We show that retention of a ~1~bar hydrogen-helium atmosphere is sufficient to maintain a surface water ocean, depending on semimajor axis and thermal history, and that sufficiently massive, "naked" ice planets can have interior oceans a la Europa. Planets with more substantial (>200~bar) atmospheres will be devoid of a liquid water phase at the surface. The existence of a surface water ocean could be inferred by the absence of highly soluble molecules such as NH3 or SO2 in the atmosphere. Objects with such oceans, although outside the conventional habitable zone, could nevertheless conceivably support life.
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.
NuSTAR Observations of Water Megamaser AGN
NASA Technical Reports Server (NTRS)
Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.
2016-01-01
Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.
An Analytical Model for the Evolution of the Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khajenabi, Fazeleh; Kazrani, Kimia; Shadmehri, Mohsen, E-mail: f.khajenabi@gu.ac.ir
We obtain a new set of analytical solutions for the evolution of a self-gravitating accretion disk by holding the Toomre parameter close to its threshold and obtaining the stress parameter from the cooling rate. In agreement with the previous numerical solutions, furthermore, the accretion rate is assumed to be independent of the disk radius. Extreme situations where the entire disk is either optically thick or optically thin are studied independently, and the obtained solutions can be used for exploring the early or the final phases of a protoplanetary disk evolution. Our solutions exhibit decay of the accretion rate as amore » power-law function of the age of the system, with exponents −0.75 and −1.04 for optically thick and thin cases, respectively. Our calculations permit us to explore the evolution of the snow line analytically. The location of the snow line in the optically thick regime evolves as a power-law function of time with the exponent −0.16; however, when the disk is optically thin, the location of the snow line as a function of time with the exponent −0.7 has a stronger dependence on time. This means that in an optically thin disk inward migration of the snow line is faster than an optically thick disk.« less
Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum
NASA Astrophysics Data System (ADS)
Taylor, Corbin; Reynolds, Christopher S.
2018-03-01
The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.
Liners and Low Luminosity AGN in the ROSAT Database
NASA Technical Reports Server (NTRS)
Elvis, Martin; West, Donald K. (Technical Monitor)
2003-01-01
This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Tracy L.; Lubow, S. H.; Bary, Jeffrey S.
We present high spatial resolution maps of ro-vibrational molecular hydrogen emission from the environment of the GG Tau A binary component in the GG Tau quadruple system. The H{sub 2} v = 1-0 S(1) emission is spatially resolved and encompasses the inner binary, with emission detected at locations that should be dynamically cleared on several hundred year timescales. Extensions of H{sub 2} gas emission are seen to {approx}100 AU distances from the central stars. The v = 2-1 S(1) emission at 2.24 {mu}m is also detected at {approx}30 AU from the central stars, with a line ratio of 0.05 {+-}more » 0.01 with respect to the v = 1-0 S(1) emission. Assuming gas in LTE, this ratio corresponds to an emission environment at {approx}1700 K. We estimate that this temperature is too high for quiescent gas heated by X-ray or UV emission from the central stars. Surprisingly, we find that the brightest region of H{sub 2} emission arises from a spatial location that is exactly coincident with a recently revealed dust 'streamer' which seems to be transferring material from the outer circumbinary ring around GG Tau A into the inner region. As a result, we identify a new excitation mechanism for ro-vibrational H{sub 2} stimulation in the environment of young stars. The H{sub 2} in the GG Tau A system appears to be stimulated by mass accretion infall as material in the circumbinary ring accretes onto the system to replenish the inner circumstellar disks. We postulate that H{sub 2} stimulated by accretion infall could be present in other systems, particularly binaries and 'transition disk' systems which have dust-cleared gaps in their circumstellar environments.« less
Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1991-01-01
An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.
Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection
NASA Technical Reports Server (NTRS)
Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff
2010-01-01
The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.
NASA Astrophysics Data System (ADS)
Klahr, Hubert; Brandner, Wolfgang
2011-02-01
1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; ...
2015-06-15
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
Relativistic particle transport in hot accretion disks
NASA Technical Reports Server (NTRS)
Becker, Peter A.; Kafatos, Menas; Maisack, Michael
1994-01-01
Accretion disks around rapidly rotating black holes provide one of the few plausible models for the production of intense radiation in Acitve Galactic Nuclei (AGNs) above energies of several hundred MeV. The rapid rotation of the hole increases the binding energy per nucleon in the last stable orbit relative to the Schwarzschild case, and naturally leads to ion temperatures in the range 10(exp 12) - 10(exp 13) K for sub-Eddington accretion rates. The protons in the hot inner region of a steady, two-temperature disk form a reservoir of energy that is sufficient to power the observed Energetic Gamma Ray Experiment Telescope (EGRET) outbursts if the black hole mass is 10(exp 10) solar mass. Moreover, the accretion timescale for the inner region is comparable to the observed transient timescale of approximately 1 week. Hence EGRET outbursts may be driven by instabilities in hot, two-temperature disks around supermassive black holes. In this paper we discuss turbulent (stochastic) acceleration in hot disks as a possible source of GeV particles and radiation. We constrain the model by assuming the turbulence is powered by a collective instability that drains energy from the hot protons. We also provide some ideas concerning new, high-energy Penrose processes that produce GeV emission be directly tapping the rotational energy of Kerr black holes.
Minidisks in Binary Black Hole Accretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu
Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less
NASA Technical Reports Server (NTRS)
Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.
1997-01-01
We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D.
In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81more » μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J. Y.; Liu, B. F.; Qiao, E. L.
We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpretmore » HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.« less
Chandra Pinpoints Edge Of Accretion Disk Around Black Hole
NASA Astrophysics Data System (ADS)
2001-05-01
Using four NASA space observatories, astronomers have shown that a flaring black hole source has an accretion disk that stops much farther out than some theories predict. This provides a better understanding of how energy is released when matter spirals into a black hole. On April 18, 2000, the Hubble Space Telescope and the Extreme Ultraviolet Explorer observed ultraviolet radiation from the object known as XTE J1118+480, a black hole roughly seven times the mass of the Sun, locked in a close binary orbit with a Sun-like star. Simultaneously, the Rossi X-ray Timing Explorer observed high-energy X-rays from matter plunging toward the black hole, while the Chandra X-ray Observatory focused on the critical energy band between the ultraviolet and high-energy X-rays, providing the link that tied all the data together. "By combining the observations of XTE J1118+480 at many different wavelengths, we have found the first clear evidence that the accretion disk can stop farther out," said Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics who led the Chandra observations. "The Chandra data indicate that this accretion disk gets no closer to the event horizon than about 600 miles, a far cry from the 25 miles that some had expected." Scientists theorize that the accretion disk is truncated there because the material erupts into a hot bubble of gas before taking its final plunge into the black hole. Matter stripped from a companion star by a black hole can form a flat, pancake-like structure, called an “accretion disk.” As material spirals toward the inner edge of the accretion disk, it is heated by the immense gravity of the black hole, which causes it to radiate in X-rays. By examining the X-rays, researchers can gauge how far inward the accretion disk extends. Most astronomers agree that when material is transferred onto the black hole at a high rate, then the accretion disk will reach to within about 25 miles of the event horizon -- the surface of “no return” for matter or light falling into a black hole. However, scientists disagree on how close the accretion disk comes when the rate of transfer is much less. "The breakthrough came when Chandra did not detect the X-ray signature one would expect if the accretion disk came as near as 25 miles," said Ann Esin, a Caltech theoretical astrophysicist who led a group that explored the implications of the observations. "This presents a fundamental problem for models in which the disk extends close to the event horizon." In March 2000, XTE J1118+480 experienced a sudden eruption in X-rays that led to the discovery of the object by RXTE. The X-ray source was in a direction where absorption by gas and dust was minimal, allowing ultraviolet and low-energy X-rays to be observed. In the following month, an international team organized observations of XTE J1118+480 in other wavelengths. Chandra observed XTE J1118+480 for 27,000 seconds with its Low-Energy Transmission Grating (LETG) and the Advanced CCD Imaging Spectrometer (ACIS). The research team for this investigation also included scientists from both the United States (CfA, MIT, University of Notre Dame, Lawrence Livermore National Laboratory, NASA Goddard Space Flight Center) and the United Kingdom (The Open University, University of Southampton, Mullard Radio Astronomy Observatory). The LETG was built by the SRON and the Max Planck Institute, and the ACIS instrument by the Massachusetts Institute of Technology, Cambridge, Mass., and Penn State University, University Park. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Simulations of the Boundary Layer Between a White Dwarf and Its Accretion Disk
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Fisker, Jacob Lund; Godon, Patrick; Sion, Edward M.
2009-09-01
Using a 2.5D time-dependent numerical code we recently developed, we solve the full compressible Navier-Stokes equations to determine the structure of the boundary layer (BL) between the white dwarf (WD) and the accretion disk in nonmagnetic cataclysmic variable systems. In this preliminary work, our numerical approach does not include radiation. In the energy equation, we either take the dissipation function (Φ) into account or we assume that the energy dissipated by viscous processes is instantly radiated away (Φ = 0). For a slowly rotating nonmagnetized accreting WD, the accretion disk extends all the way to the stellar surface. There, the matter impacts and spreads toward the poles as new matter continuously piles up behind it. We carry out numerical simulations for different values of the alpha-viscosity parameter (α), corresponding to different mass accretion rates. In the high viscosity cases (α = 0.1), the spreading BL sets off a gravity wave in the surface matter. The accretion flow moves supersonically over the cusp making it susceptible to the rapid development of gravity wave and/or Kelvin-Helmholtz shearing instabilities. This BL is optically thick and extends more than 30° to either side of the disk plane after only 3/4 of a Keplerian rotation period (tK = 19 s). In the low viscosity cases (α = 0.001), the spreading BL does not set off gravity waves and it is optically thin.
Heating the Primordial Soup: X-raying the Circumstellar Disk of RY Lupi
NASA Astrophysics Data System (ADS)
Principe, David
2015-09-01
X-ray irradiation of circumstellar disks plays a vital role in their chemical evolution yet few high resolution X-ray observations exist characterizing both the disk-illuminating radiation field and the soft energy spectrum absorbed by the disk. We propose HETG spectroscopic observations of RY Lupi, a rare example of a nearly edge-on, actively accreting star-disk system within 150 pc. We aim to take advantage of its unique viewing geometry with the goals of (a) determining the intrinsic X-ray spectrum of the central pre-MS star so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.
The Chemistry of Multiply Deuterated Molecules in Protoplanetary Disks: I. The Outer Disk
NASA Technical Reports Server (NTRS)
Willacy, K.
2007-01-01
We present new models of the deuterium chemistry in protoplanetary disks, including, for the first time, multiply deuterated species. We use these models to explore whether observations in combination with models can give us clues as to which desorption processes occur in disks.We find, in common with other authors, that photodesorption can allow strongly bound molecules such as HDO to exist in the gas phase in a layer above the midplane. Models including this process give the best agreement with the observations. In the midplane, cosmic-ray heating can desorb weakly bound molecules such as CO and N2. We find the observations suggest that N2 is gaseous in this region, but that CO must be retained on the grains to account for the observed DCO+/HCO+. This could be achieved by CO having a higher binding energy than N2 (as may be the case when these molecules are accreted onto water ice) or by a smaller cosmic-ray desorption rate for CO than assumed here, as suggested by recent theoretical work. For gaseous molecules the calculated deuteration can be greatly changed by chemical processing in the disk from the input molecular cloud values. On the grains singly deuterated species tend to retain the D/H ratio set in the molecular cloud, whereas multiply deuterated species are more affected by the disk chemistry. Consequently, the D/H ratios observed in comets may be partly set in the parent cloud and partly in the disk, depending on the molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.
The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres nearmore » periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.« less
Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Cauley, Paul W.; Johns-Krull, Christopher M.
2015-01-01
The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are observed are likely driven, at least in part, by boundary layer accretion. The smaller (or absent) disk truncation radii in HAEBES may have consequences for the frequency of planets in close orbits around main sequence B and A stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yan-Fei; Green, Paul J.; Pancoast, Anna
We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band ( g , r , i , z ) light curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts of z ≈ 1 or z ≈ 0.3 that are relatively emission-line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on themore » scale of the light crossing time of the accretion disks. With the code JAVELIN , we detect typical lags of several days in the rest frame between the g band and the riz bands. The detected lags are ∼2–3 times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC 5548 and microlensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from g − r to g − i and then to g − z is slower than predicted in the thin disk model, particularly for high-luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet Fe ii lines and Mg ii, which may point to changes in the accretion disk structure at higher metallicity.« less
NASA Technical Reports Server (NTRS)
Chen, Xingming; Taam, Ronald E.
1995-01-01
The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.
New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku
NASA Technical Reports Server (NTRS)
Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.
2011-01-01
From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.
The ω{OMEGA} dynamo in accretion disks of rotating black holes.
NASA Astrophysics Data System (ADS)
Khanna, R.; Camenzind, M.
1996-03-01
We develop the kinematic theory of axisymmetric dynamo action in the innermost part of an accretion disk around a rotating black hole. The problem is formulated in the 3+1 split of Kerr spacetime. It turns out that the gravitomagnetic field of the hole gives rise to a dynamo current for the the poloidal magnetic field without any need of turbulent plasma motions even in axisymmetry. We show that Cowling's theorem does not apply in the Kerr metric. This gravitomagnetic dynamo effect (ω-effect) requires finite diffusivity and is enhanced by anomalous or turbulent magnetic diffusivity. The reformulation of the problem in the framework of mean field magnetohydrodynamics introduces the familiar α-effect. The dynamo equations are formally identical with their classical equivalents (i.e. equations for the α{OMEGA} dynamo in flat space), augmented by the general relativistic ω-effect-term as source. We have carried out time-dependent numerical simulations of the dynamo in a turbulent differentially rotating accretion disk using a finite element code with implicit time-stepping. The advection of the magnetic field with the plasma is fully included. Solutions are discussed for extremely and less rapidly rotating black holes. We observe growing dipolar, quadrupolar and mixed modes, the second being, however, dominant. A common feature of all our simulations of the ω{OMEGA} dynamo is that it will finally build up a stellar like magnetosphere around the black hole, which blends into the outer disk field topology in a transition region. This finding enforces the analogy in the models of jet formation in AGN and YSOs. An interesting feature occurs for less rapidly rotating holes. The frame dragging effect introduces a boundary layer in the plasma rotation, where the plasma is prone to resistive magnetohydrodynamical instabilities such as the rippling mode or the tearing mode and thus the boundary layer has to be regarded as a potential site of particle acceleration. We also present a simulation of the αω{OMEGA} dynamo. For a heuristic description of α in the 3+1 split of Kerr spacetime, the ω-effect is dominated by the α-effect. For the same parameters as in the simulations of the ω{OMEGA} dynamo, the αω{OMEGA} dynamo behaves much more dynamically. The simulation shows radially and vertically oscillating dipolar, quadrupolar and mixed modes.
NASA Technical Reports Server (NTRS)
Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.
1998-01-01
Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).
The vertical structure of the boundary layer around compact objects
NASA Astrophysics Data System (ADS)
Hertfelder, Marius; Kley, Wilhelm
2017-09-01
Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary layer (BL). Aims: In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional (1D) simulations. Methods: We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the flux-limited diffusion approximation. Results: The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar radius, a heavy depletion of mass, and a high temperature ( 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗, and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that the 1D approximation matches the 2D data well, apart from an underestimated temperature.
Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragile, P C; Lindner, C C; Anninos, P
2008-09-24
In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcomingmore » we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.« less
Noncircular outer disks in unbarred S0 galaxies: NGC 502 and NGC 5485
NASA Astrophysics Data System (ADS)
Sil'chenko, O. K.
2016-03-01
Highly noncircular outer stellar disks have been detected in two SA0 (unbarred) galaxies by comparing the spectroscopic data on the rotation of stars and the photometric data on the shape and orientation of isophotes. In NGC 502, the oval distortion of the disk is manifested in the shape of the inner and outer elliptical rings occupying wide radial zones between the bulge and the disk and at the outer disk edge; such a structure can be a consequence of the so-called "dry minor merger," multiple cannibalization of gas-free satellites. In NGC 5485, the stellar kinematics is absolutely unrelated to the orientation of isophotes in the disk region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.
The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models
NASA Astrophysics Data System (ADS)
Yang, Yao-Lun; Evans, Neal J., II; Green, Joel D.; Dunham, Michael M.; Jørgensen, Jes K.
2017-02-01
We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to provide new constraints on its physical properties. We detect 645 (non-unique) spectral lines among all spatial pixels. At least 61 different spectral lines originate from the central region. A CO rotational diagram analysis shows four excitation temperature components, 43, 197, 397, and 1057 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of {{{H}}}2{{O}} trace the large-scale outflow, while the high-excitation emission lines trace a small-scale distribution around the equatorial plane. We model the envelope structure using the dust radiative transfer code, hyperion, incorporating rotational collapse, an outer static envelope, outflow cavity, and disk. The evolution of a rotating collapsing envelope can be constrained by the far-infrared/millimeter spectral energy distribution along with the azimuthally averaged radial intensity profile, and the structure of the outflow cavity plays a critical role at shorter wavelengths. Emission at 20-40 μm requires a cavity with a constant-density inner region and a power-law density outer region. The best-fit model has an envelope mass of 19 {M}⊙ inside a radius of 0.315 pc and a central luminosity of 18.8 {L}⊙ . The time since collapse began is 24,630-44,000 years, most likely around 36,000 years. The corresponding mass infall rate in the envelope (1.2 × 10-5 {M}⊙ {{yr}}-1) is comparable to the stellar mass accretion rate, while the mass-loss rate estimated from the CO outflow is 20% of the stellar mass accretion rate. We find no evidence for episodic accretion.
Search for and follow-up imaging of subparsec accretion disks in AGN
NASA Astrophysics Data System (ADS)
Kondratko, Paul Thomas
We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic minor axis. We also report the first VLBI map of the pc-scale accretion disk in NGC 3393. Water maser emission in this source appears to follow Keplerian rotation and traces a linear structure between disk radii of 0.36 and ~ 1 pc. Assuming an edge-on disk and Keplerian rotation, the inferred central mass is (3.1±0.2) × 10^7 [Special characters omitted.] enclosed within 0.36±0.02 pc, which corresponds to a mean mass density of ~ 10 8.2 [Special characters omitted.] pc -3 . We also measured with the Green Bank Telescope centripetal acceleration within the disk, from which we infer the disk radius of 0.17±0.02 pc for the maser feature that is located along the line of sight to the dynamical center. This emission evidently occurs much closer to the center than the emission from the disk midline (0.17 vs. 0.36 pc), contrary to the situation in the two archetypal maser systems NGC 4258 and NGC 1068.
CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264
NASA Astrophysics Data System (ADS)
Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.
2016-02-01
Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A47
NASA Astrophysics Data System (ADS)
Miller, Jon M.
2017-08-01
Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.
Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects
NASA Technical Reports Server (NTRS)
Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.
1991-01-01
A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.
Wind accretion and formation of disk structures in symbiotic binary systems
NASA Astrophysics Data System (ADS)
de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.
2015-05-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.
NASA Astrophysics Data System (ADS)
Starkey, David; Agn Storm Team
2015-01-01
Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less
NASA Astrophysics Data System (ADS)
Xiong, Ying; Wiita, Paul J.; Bao, Gang
2000-12-01
The possibility that some of the observed X-ray and optical variability in active galactic nuclei and galactic black hole candidates are produced in accretion disks through the development of a self-organized critical state is reconsidered. New simulations, including more complete calculations of relativistic effects, do show that this model can produce light-curves and power-spectra for the variability which agree with the range observed in optical and X-ray studies of AGN and X-ray binaries. However, the universality of complete self-organized criticality has not quite been achieved. This is mainly because the character of the variations depend quite substantially on the extent of the unstable disk region. If it extends close to the innermost stable orbit, a physical scale is introduced and the scale-free character of self-organized criticality is vitiated. A significant dependence of the power spectrum density slope on the type of diffusion within the disk and a weaker dependence on the amount of differential rotation are noted. When general-relativistic effects are incorporated in the models, additional substantial differences are produced if the disk is viewed from directions far from the accretion disk axis.
Parsec-Scale Accretion and Winds Irradiated by a Quasar
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2016-01-01
We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.
Stratified Simulations of Collisionless Accretion Disks
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
2017-06-01
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.
Angular Momentum Transport in Thin Magnetically Arrested Disks
NASA Astrophysics Data System (ADS)
Marshall, Megan D.; Avara, Mark J.; McKinney, Jonathan C.
2018-05-01
In accretion disks with large-scale ordered magnetic fields, the magnetorotational instability (MRI) is marginally suppressed, so other processes may drive angular momentum transport leading to accretion. Accretion could then be driven by large-scale magnetic fields via magnetic braking, and large-scale magnetic flux can build-up onto the black hole and within the disk leading to a magnetically-arrested disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) instability, which itself leads to vigorous turbulence and the emergence of low-density highly-magnetized bubbles. This instability was studied in a thin (ratio of half-height H to radius R, H/R ≈ 0.1) MAD simulation, where it has a more dramatic effect on the dynamics of the disk than for thicker disks. Large amounts of flux are pushed off the black hole into the disk, leading to temporary decreases in stress, then this flux is reprocessed as the stress increases again. Throughout this process, we find that the dominant component of the stress is due to turbulent magnetic fields, despite the suppression of the axisymmetric MRI and the dominant presence of large-scale magnetic fields. This suggests that the magnetic RT instability plays a significant role in driving angular momentum transport in MADs.
H I in the Shell Elliptical Galaxy NGC 3656
NASA Astrophysics Data System (ADS)
Balcells, Marc; van Gorkom, J. H.; Sancisi, Renzo; del Burgo, Carlos
2001-10-01
Very Large Array7 neutral hydrogen observations of the shell elliptical galaxy NGC 3656 reveal an edge-on, warped minor-axis gaseous disk (MHI~2×109 Msolar) extending 7 kpc. H I is also found outside the optical image, on two complexes to the northeast and northwest that seem to trace one or two tidal tails, or possibly an outer broken H I disk or ring. These complexes link with the outer edges of the inner disk and appear displaced with respect to the two optical tails in the galaxy. The disk kinematics is strongly lopsided, suggesting recent or ongoing accretion. Integral-field optical fiber spectroscopy at the region of the bright southern shell of NGC 3656 has provided a determination of the stellar velocities of the shell. The shell, at 9 kpc from the center, has traces of H I with velocities bracketing the stellar velocities, providing evidence for a dynamical association of H I and stars at the shell. Within the errors the stars have systemic velocity, suggesting a possible phase-wrapping origin for the shell. We probed a region of 40'×40' (480 kpc×480 kpc)×1160 km s-1 down to an H I mass sensitivity (6 σ) of 3×107 Msolar and detect five dwarf galaxies with H I masses ranging from 2×108 to 2×109 Msolar, all within 180 kpc of NGC 3656 and all within the velocity range (450 km s-1) of the H I of NGC 3656. The dwarfs had been previously cataloged, but none had a known redshift. For the NGC 3656 group to be bound requires a total mass of (3-7.4)×1012 Msolar, yielding a mass-to-light ratio from 125 to 300. The overall H I picture presented by NGC 3656 supports the hypothesis of a disk-disk merger origin or possibly an ongoing process of multiple mergers with nearby dwarfs. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
NASA Astrophysics Data System (ADS)
Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.
2016-05-01
The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.
Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propellermore » stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.« less
A disk wind in AB Aurigae traced with Hα interferometry
NASA Astrophysics Data System (ADS)
Perraut, K.; Dougados, C.; Lima, G. H. R. A.; Benisty, M.; Mourard, D.; Ligi, R.; Nardetto, N.; Tallon-Bosc, I.; ten Brummelaar, T.; Farrington, C.
2016-11-01
Context. A crucial issue in star formation is understanding the physical mechanism by which mass is accreted onto and ejected by a young star, then collimated into jets. Hydrogen lines are often used to trace mass accretion in young stars, but recent observations suggest that they could instead trace mass outflow in a disk wind. Aims: Obtaining direct constraints on the HI line formation regions is crucial in order to disentangle the different models. We present high angular and spectral resolution observations of the Hα line of the Herbig Ae star AB Aur to probe the origin of this line at sub-AU scales, and to place constraints on the geometry of the emitting region. Methods: We use the visible spectrograph VEGA at the CHARA long-baseline optical array to resolve the AB Aur circumstellar environment from spectrally resolved interferometric measurements across the Hα emission line. We developed a 2D radiative transfer model to fit the emission line profile and the spectro-interferometric observables. The model includes the combination of a Blandford & Payne magneto-centrifugal disk wind and a magnetospheric accretion flow. Results: We measure a visibility decrease within the Hα line, indicating that we clearly resolve the Hα formation region. We derive a Gaussian half width at half maximum between 0.05 and 0.15 AU in the core of the line, which indicates that the bulk of the Hα emission has a size scale intermediate between the disk inner truncation radius and the dusty disk inner rim. A clear asymmetric differential phase signal is found with a minimum of -30° ± 15° towards the core of the line. We show that these observations are in general agreement with predictions from a magneto-centrifugal disk wind arising from the innermost regions of the disk. Better agreement, in particular with the differential phases, is found when a compact magnetospheric accretion flow is included. Conclusions: We resolve the Hα formation region in a young accreting intermediate mass star and show that both the spectroscopic and interferometric measurements can be reproduced well by a model where the bulk of Hα forms in a MHD disk wind arising from the innermost regions of the accretion disk. These findings support similar results recently obtained in the Brγ line and confirm the importance of outflows in the HI line formation processes in young intermediate mass stars. Based on observations made with the VEGA/CHARA instrument.
Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis
NASA Technical Reports Server (NTRS)
Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.
1993-01-01
We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.
A hybrid scenario for gas giant planet formation in rings
NASA Astrophysics Data System (ADS)
Durisen, Richard H.; Cai, Kai; Mejía, Annie C.; Pickett, Megan K.
2005-02-01
The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.
Heating the Primordial Soup: X-raying the Circumstellar Disk of T Cha
NASA Astrophysics Data System (ADS)
Principe, David
2012-09-01
T Cha is the only known example of a nearly edge-on actively accreting young star-disk system within 100 pc, and is likely orbited by a very low-mass companion or massive planet that has cleared an inner hole in its disk. We propose to obtain a 150 ks observation of T Cha with Chandra's HETGS with twin goals of (a) determining the intrinsic X-ray spectrum of T Cha so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pott, Jorg-Uwe; Perrin, Marshall D.; Furlan, Elise
With the Keck Interferometer, we have studied at 2 {mu}m the innermost regions of several nearby, young, dust-depleted 'transitional' disks. Our observations target five of the six clearest cases of transitional disks in the Taurus/Auriga star-forming region (DM Tau, GM Aur, LkCa 15, UX Tau A, and RY Tau) to explore the possibility that the depletion of optically thick dust from the inner disks is caused by stellar companions rather than the more typical planet-formation hypothesis. At the 99.7% confidence level, the observed visibilities exclude binaries with flux ratios of at least 0.05 and separations ranging from 2.5 to 30more » mas (0.35-4 AU) over {approx}>94% of the area covered by our measurements. All targets but DM Tau show near-infrared (NIR) excess in their spectral energy distribution (SED) higher than our companion flux ratio detection limits. While a companion has previously been detected in the candidate transitional disk system CoKu Tau/4, we can exclude similar mass companions as the typical origin for the clearing of inner dust in transitional disks and of the NIR excess emission. Unlike CoKu Tau/4, all our targets show some evidence of accretion. We find that all but one of the targets are clearly spatially resolved, and UX Tau A is marginally resolved. Our data are consistent with hot material on small scales (0.1 AU) inside of and separated from the cooler outer disk, consistent with the recent SED modeling. These observations support the notion that some transitional disks have radial gaps in their optically thick material, which could be an indication for planet formation in the habitable zone ({approx} a few AU) of a protoplanetary disk.« less
Water vapor distribution in protoplanetary disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Fujun; Bergin, Edwin A., E-mail: fdu@umich.edu
Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapormore » with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.« less
Laboratory Investigation of Astrophysical Collimated Jets with Intense Lasers
NASA Astrophysics Data System (ADS)
Yuan, Dawei; Li, Yutong; Tao, Tao; Wei, Huigang; Zhong, Jiayong; Zhu, Baojun; Li, Yanfei; Zhao, Jiarui; Li, Fang; Han, Bo; Zhang, Zhe; Liang, Guiyun; Wang, Feilu; Hu, Guangyue; Zheng, Jian; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhou, Shenlei; Zhu, Baoqiang; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie
2018-06-01
One of the remarkable dynamic features of the Herbig–Haro (HH) object is its highly collimated propagation far away from the accretion disk. Different factors are proposed to give us a clearly physical explanation behind these fascinating phenomena, including magnetic field, radiation cooling, surrounding medium, and so on. Laboratory astrophysics, as a new complementary method of studying astrophysical issues, can provide an insight into these behaviors in a similar and controllable laboratory environment. Here we report the scaled laboratory experiments that a well-collimated radiative jet with high Mach number is successfully created to mimic the evolution of HH objects. According to our results, we find that the radiation cooling effect within the jet and the outer rare surrounding plasmas from the X-ray (>keV) photoionized target contribute to the jet collimation. The local nonuniform density structures along the collimated radiative jet axis are caused by the pressure competition between the inner jet and the outer plasmas. The corresponding simulations performed with radiation-hydrodynamic codes FLASH reveal how the radiative jet evolves.
NASA Technical Reports Server (NTRS)
Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)
2001-01-01
MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.
NASA Technical Reports Server (NTRS)
Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.;
2014-01-01
Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.
Understanding Recent Magnetar Observations from the Magnetospheric Point of View
NASA Astrophysics Data System (ADS)
Tong, H.
The wind braking model and its applications to magnetars are discussed. The decreasing torque of magnetars during outbursts, anti-glitch, and anti-correlations between radiation and timing are understandable in the wind braking model. Recent timing observations of magnetars are also consistent with the previous modeling. A magnetism-powered wind nebula and a braking index smaller than three are the two predictions. Besides isolated magnetars, there may also be accreting magnetars in binary systems and magnetars accreting from fallback disks. Observationally, ultra-luminous X-ray pulsars may be accreting magnetars, while super-slow magnetars may be magnetars with fallback disks in the past. Many works are needed for both isolated magnetars and accreting magnetars.
Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir
We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that themore » necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.« less
NASA Technical Reports Server (NTRS)
Sun, Wei-Hsin; Malkan, Matthew A.
1988-01-01
Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.
Gamma-ray bursts from stellar mass accretion disks around black holes
NASA Technical Reports Server (NTRS)
Woosley, S. E.
1993-01-01
A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.
PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafikov, Roman R., E-mail: rrr@ias.edu
2016-11-10
Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1%more » level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.« less
INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com
2016-12-01
We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, themore » humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.« less
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.
2012-01-20
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less
Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds
NASA Astrophysics Data System (ADS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
NASA Astrophysics Data System (ADS)
Hughes, Anna; Boley, Aaron C.
2016-10-01
The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.
Physics-Based Spectra of Accretion Disks around Black Holes
NASA Technical Reports Server (NTRS)
Krolik, Julian H.
2005-01-01
The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important continuum opacity sources, including Compton scattering and bound-free opacity from abundant metal species. The principal new result is that bound-free opacity is very significant in altering the continuum spectral shape, resulting for example in quite different "color correction factors" compared to those predicted previously. In addition, the models predict a relationship between luminosity and inner disk temperature that is, for the first time, in accord with that observed. The primary purpose of the grant was to incorporate more realistic accretion disk physics, learned largely from simulations, into such spectral models. The Davis et al. paper includes consideration of a vertical dissipation profile computed from radiation magneto-hydrodynamic simulations of MRI turbulence by N. J. Turner (2004). So long as the disk is effectively thick, such dissipation profiles do not affect the predicted spectrum significantly. (More work needs to be done on these simulations, however.) A potentially more serious issue is that MRI turbulence produces substantial inhomogeneities, as do photon bubble instabilities. These inhomogeneities can affect the spectra by enhancing the effects of absorption opacity over scattering opacity. We have done some preliminary Monte Carlo calculations to explore these effects.
Grumblings from an Awakening Black Hole
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-11-01
In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404 Cygs winds which the authors measure to be moving at a whopping ~4,000 km/s appear to originate from much further out in the disk than whats typical. Furthermore, the presence of disk winds and jets is normally anti-correlated, yet in V404 Cyg, both are active at the same time.King and collaborators believe that the winds are likely associated with the disruption of the outer accretion disk due to pressure from the radiation in the central region as it becomes very luminous. V404 Cygs behavior is actually more similar to that of some supermassive black holes than to most stellar-mass black holes, which is extremely intriguing.The authors are currently working to complete a more detailed analysis of the spectra and build a model of the processes occurring in this awakening black hole, but these initial results demonstrate that V404 Cyg has some interesting things to teach us.CitationAshley L. King et al 2015 ApJ 813 L37. doi:10.1088/2041-8205/813/2/L37
Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars
NASA Technical Reports Server (NTRS)
Wade, Richard A.
1997-01-01
This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.
PX Andromedae and the SW Sextantis phenomenon
NASA Technical Reports Server (NTRS)
Hellier, Coel; Robinson, E. L.
1994-01-01
We show that the emission-line peculiarities of PX And and other SW Sex stars can be explained by an accretion stream which overflows the initial impact with the accretion disk and continues to a later reimpact. The overflowing stream is seen projected against a brighter disk and produces the 'phase 0.5 absorption' features. Emission from the reimpact site produces the high-velocity line wings which alternate from red to blue on the orbital cycle. We conclude that substantial disk overflow is the property distinguishing SW Sex stars from other cataclysmic variables.
A NICER View of the Accretion Disk in GX 339-4
NASA Astrophysics Data System (ADS)
Steiner, James Francis; Bulbul, Esra; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Neilsen, Joseph; Ranga Reddy Pasham, Dheeraj; Remillard, Ron; Uttley, Phil; Wood, Kent S.
2018-01-01
The poster-child black hole transient GX 339-4 has gone into outburst once again. With no pileup, low-background, and high fidelity in the soft X-ray bandpass, NICER is uniquely positioned to detect emergent thermal disk emission from an optically thick accretion flow approaching the innermost-stable circular orbit. We present NICER's results on the 2017 outburst, and detail its implications for the disk-truncation controversy. We also investigate the X-ray state evolution, as seen in NICER's spectral range of 0.2 to 12 keV.
Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks
NASA Astrophysics Data System (ADS)
Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.
2018-04-01
We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.
Hot accretion disks with pairs: Effects of magnetic field and thermal cyclocsynchrotron radiation
NASA Technical Reports Server (NTRS)
Kusunose, Masaaki; Zdziarski, Andrzej A.
1994-01-01
We show the effects of thermal cyclosynchrotron radiation and magnetic viscosity on the structure of hot, two-temperature accretion disks. Magnetic field, B, is assumed to be randomly oriented and the ratio of magnetic pressure to either gas pressure, alpha = P(sub mag)/P(sub gas), or the sum of the gas and radiation pressures, alpha = (P(sub mag)/P(sub gas) + P(sub rad)), is fixed. We find those effects do not change the qualitative properties of the disks, i.e., there are still two critical accretion rates related to production of e(sup +/-) pairs, (M dot)((sup U)(sub cr)) and (M dot)((sup L)(sub cr)), that affect the number of local and global disk solutions, as recently found by Bjoernsson and Svensson for the case with B = 0. However, a critical value of the alpha-viscosity parameter above which those critical accretion rates disappear becomes smaller than alpha(sub cr) = 1 found in the case of B = 0, for P(sub mag) = alpha(P(sub gas) + P(sub rad)). If P(sub mag) = alpha P(sub gas), on the other hand, alpha(sub cr) is still about unity. Moreover, when Comptonized cyclosynchrotron radiation dominates Comptonized bremsstrahlung, radiation from the disk obeys a power law with the energy spectral index of approximately 0.5, in a qualitative agreement with X-ray observations of active galactic nuclei (AGNS) and Galactic black hole candidates. We also extend the hot disk solutions for P(sub mag) = alpha(P(sub gas) + P(sub rad)) to the effectively optically thick region, where they merge with the standard cold disk solutions. We find that the mapping method by Bjoernsson and Svensson gives a good approximation to the disk structure in the hot region and show where it breaks in the transition region. Finally, we find a region in the disk parameter space with no solutions due to the inability of Coulomb heating to supply enough energy to electrons.
NASA Astrophysics Data System (ADS)
Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.
2017-08-01
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.
The formation of protoplanets in the planetesimal disk
NASA Astrophysics Data System (ADS)
Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru
We have performed N-body simulations on the stage of protoplanet formation from planetesimals. Generally accepted planet formation theory suggests that protoplanets are formed through accretion of ~km sized planetesimals. The formation process proceeds in the nebular disk. Hence the bodies in the disk suffer gas drag and interact tidally with the nebula. Such interaction triggers the type I migration. We found that the runaway protoplanet forms a gap in the planetesimal disk. It results in the slow down of the migration by factor of ~0.7, and the accretion rate. However, the shepherding does not last so long. Hence the overall migration time scale can not be changed by the formation of the gap in the planetesimal disk. However, if the depletion of the gas occurs from the inner region of the disk, the planets may survive from migration.
The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables
NASA Technical Reports Server (NTRS)
Begelman, Mitchell
2002-01-01
This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.
The (BETA) Pictoris Phenomenon Among Herbig Ae/Be Stars
NASA Technical Reports Server (NTRS)
Grady, C. A.; Perez, M. R.; Talavera, A.; Bjorkman, K. S.; deWinter, D.; The, P.-S.; Molster, F. J.; vandenAncker, M. E.; Sitko, M. L.; Morrison, N. D.;
1996-01-01
We present a survey of high dispersion UV and optical spectra of Herbig Ae/Be (HAeBe) and related stars. We find accreting, circumstellar gas over the velocity range +100 to +400 km/s, and absorption profiles similar to those seen toward Beta Pic, in 36% of the 33 HAeBe stars with IUE data as well as in 3 non-emission B stars. We also find evidence of accretion in 7 HAeBe stars with optical data only. Line profile variability appears ubiquitous. As a group, the stars with accreting gas signatures have higher v sin i than the stars with outflowing material, and tend to exhibit large amplitude (greater than or equal to 1(sup m)) optical light variations. All of the program stars with polarimetric variations that are anti-correlated with the optical light, previously interpreted as the signature of a dust disk viewed close to equator-on, also show spectral signatures of accreting gas. These data imply that accretion activity in HAeBe stars is preferentially observed when the line of sight transits the circumstellar dust disk. Our data imply that the spectroscopic signatures of accreting circumstellar material seen in Beta Pic are not unique to that object, but instead are consistent with interpretation of Beta Pic as a comparatively young A star with its associated circumstellar disk.
Exploring the Accretion Model of M87 and 3C 84 with the Faraday Rotation Measure Observations
NASA Astrophysics Data System (ADS)
Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo
2016-10-01
Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni
2010-05-10
We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less
NASA Technical Reports Server (NTRS)
Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang
1999-01-01
We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.
Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Metzger, Brian D.
2018-05-01
Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.
The Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.
Probing circumplanetary disks with MagAO and ALMA
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin
2018-01-01
The dedication of the Magellan Adaptive Optics (MagAO) on the 6.5 m Clay Telescope has opened a new era in high-contrast imaging. Its unique diffraction-limited wavelengths of 0.6 to 1 micron helps to probe circumplanetary disks by measuring the amount of dust reddening as well as by searching for the strongest gas accretion indicator H-alpha (0.65 micron). Using MagAO, I found that two wide-orbit planetary-mass companions CT Cha B and 1RXS 1609 B have a significant dust extinction of Av ~ 3 to 5 mag likely from their disks. For GQ Lup B, I found that it is actively accreting material from its disk and emitting strong H-alpha emission. My research with MagAO demonstrates that circumplanetary disks could be ubiquitous among young giant planets. I later carried out a survey using ALMA to image accretion disks around several wide planet-mass companions at 1.3 mm continuum and CO (2-1). This is the first systematic study aiming to measure the size, mass, and structure of planetary disks. However, except for FW Tau C (which was shown to actually be a low-mass star from the dynamical mass measurement) no disks around the companions were found in my ALMA survey. This surprising null result implies that circumplanetary disks are much more compact and denser than expected, so they are faint and optically thick in the radio wavelengths. Therefore, mid- to far-infrared may be more favorable to characterize disk properties. The MIRI camera on the JWST can test this compact optically-thick disk hypothesis by probing disk thermal emission between 10 and 25 micron.
Super-Earths as Failed Cores in Orbital Migration Traps
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro
2016-11-01
I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.
NASA Astrophysics Data System (ADS)
Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard
2017-12-01
Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Edward C.; Etzel, Paul B., E-mail: olsoneco@aol.com, E-mail: pbetzel@mail.sdsu.edu
We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations inmore » Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.« less
Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies
NASA Astrophysics Data System (ADS)
Ekejiuba, I. E.; Okeke, P. N.
1993-05-01
Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.
Hybrid accretion disks in active galactic nuclei. I - Structure and spectra
NASA Technical Reports Server (NTRS)
Wandel, Amri; Liang, Edison P.
1991-01-01
A unified treatment is presented of the two distinct states of vertically thin AGN accretion disks: a cool (about 10 to the 6th K) optically thick solution, and a hot (about 10 to the 9th K) optically thin solution. A generalized formalism and a new radiative cooling equation valid in both regimes are introduced. A new luminosity limit is found at which the hot and cool alpha solutions merge into a single solution of intermediate optical depth. Analytic solutions for the disk structure are given, and output spectra are computed numerically. This is used to demonstrate the prospect of fitting AGN broadband spectra containing both the UV bump as well as the hard X-ray and gamma-ray tail, using a single accretion disk model. Such models are found to make definite predictions about the observed spectrum, such as the relation between the hard X-ray spectral index, the UV-to-X-ray luminosity ratio, and a feature of about 1 MeV.
Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.
Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin
2016-02-23
The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.
Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites
Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin
2016-01-01
The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438
Wong, Chee Wai; Wong, Doric; Mathur, Ranjana
2014-01-01
A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Boss, A. P.; Mayer, L.; Nelson, A. F.; Quinn, T.; Rice, W. K. M.
Protoplanetary gas disks are likely to experience gravitational instabilities (GIs) during some phase of their evolution. Density perturbations in an unstable disk grow on a dynamic timescale into spiral arms that produce efficient outward transfer of angular momentum and inward transfer of mass through gravitational torques. In a cool disk with sufficiently rapid cooling, the spiral arms in an unstable disk form self-gravitating clumps. Whether gas giant protoplanets can form by such a disk instability process is the primary question addressed by this review. We discuss the wide range of calculations undertaken by ourselves and others using various numerical techniques, and we report preliminary results from a large multicode collaboration. Additional topics include triggering mechanisms for GIs, disk heating and cooling, orbital survival of dense clumps, interactions of solids with GI-driven waves and shocks, and hybrid scenarios where GIs facilitate core accretion. The review ends with a discussion of how well disk instability and core accretion fare in meeting observational constraints.
Spiral Arms in the Asymmetrically Illuminated Disk of MWC 758 and Constraints on Giant Planets
NASA Technical Reports Server (NTRS)
Grady, C. A.; Muto, T.; Hashimoto, J.; Fukagawa, M.; Currie, T.; Biller, B.; Thalmann, C.; Sitko, M. L.; Russell, R.; Wisniewski, J.;
2013-01-01
We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micrometer Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavity with r = 0".35, we find scattered light as close as 0".1 (20-28 AU) from the star, with no visible cavity at H, K', or Ks . We find two small-scaled spiral structures that asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h approximately 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5(exp +3)(sub -4) M(sub J), in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and Ks , we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0".5. We reach 5 sigma contrasts limiting companions to planetary masses, 3-4 M(sub J) at 1".0 and 2 M(sub J) at 1".55, using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.
The evolution of a dead zone in a circumplanetary disk
NASA Astrophysics Data System (ADS)
Chen, Cheng; Martin, Rebecca; Zhu, Zhaohuan
2018-01-01
Studying the evolution of a circumplanetary disk can help us to understand the formation of Jupiter and the four Galilean satellites. With the grid-based hydrodynamic code, FARGO3D, we simulate the evolution of a circumplanetary disk with a dead zone, a region of low turbulence. Tidal torques from the sun constrain the size of the circumplanetary disk to about 0.4 R_H. The dead zone provides a cold environment for icy satellite formation. However, as material builds up there, the temperature of the dead zone may reach the critical temperature required for the magnetorotational instability to drive turbulence. Part of the dead zone accretes on to the planet in an accretion outburst. We explore possible disk parameters that provide a suitable environment for satellite formation.
Correlation analysis of radio properties and accretion-disk luminosity for low luminosity AGNs
NASA Astrophysics Data System (ADS)
Su, Renzhi; Liu, Xiang; Zhang, Zhen
2017-01-01
The correlation between the jet power and accretion disk luminosity is investigated and analyzed with our model for 7 samples of low luminosity active galactic nuclei (LLAGNs). The main results are: (1) the power-law correlation index (P_{jet} ∝ L_{disk} ^{μ}) typically ranges μ=0.4-0.7 for the LLAGN samples, and there is a hint of steep index for the LLAGN sample which hosted by a high fraction of elliptical galaxies, and there are no significant correlation between the μ and the LLAGN types (Seyfert, LINER); (2) for μ≈1, as noted in Liu et al., the accretion disk dominates the jet power and the black hole (BH) spin is not important, for the LLAGN samples studied in this paper we find that the μ is significantly less than unity, implying that BH spin may play a significant role in the jet power of LLAGNs; (3) the BH spin-jet power is negatively correlated with the BH mass in our model, which means a high spin-jet efficiency in the `low' BH-mass LLAGNs; (4) an anti-correlation between radio loudness and disk luminosity is found, which is apparently due to the flatter power-law index in the jet-disk correlation of the LLAGNs, and the radio loudness can be higher in the LLAGNs than in luminous AGNs/quasars when the BH spin-jet power is comparable to or dominate over the accretion-jet power in the LLAGNs. The high radio-core dominance of the LLAGNs is also discussed.
ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begelman, Mitchell C.; Armitage, Philip J.; Reynolds, Christopher S., E-mail: mitch@jila.colorado.edu
2015-08-20
Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in themore » presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a “dead zone” where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the spectral states of X-ray binaries. Specifically, “intermediate” and “hard” accretion states occur when MRI is triggered in the hot, upper zone of the corona, while disks in “soft” states do not develop the upper MRI zone. We discuss the conditions under which various transitions should take place and speculate on the relationship of dynamo activity to the various types of quasi-periodic oscillations that sometimes appear in the hard spectral components. The model also explains why luminous accretion disks in the “soft” state show no signs of the thermal/viscous instability predicted by standard α-models.« less
Black Hole Foraging: Feedback Drives Feeding
NASA Astrophysics Data System (ADS)
Dehnen, Walter; King, Andrew
2013-11-01
We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.
How Turbulence Can Set the Radial Distribution of Gas Giants Formed by Pebble Accretion
NASA Astrophysics Data System (ADS)
Morley Rosenthal, Mickey; Murray-Clay, Ruth
2018-04-01
I discuss how turbulence impacts the orbital separation at which the cores of gas giants can form via pebble accretion. While pebble accretion is extremely rapid for massive planets, I demonstrate that pebble accretion is inhibited at protoplanet masses, an effect which is strongly enhanced in a turbulent disk. Using these considerations I derive a “minimum” mass, past which pebble accretion proceeds on timescales less than the disk lifetime. By considering core formation where early growth to this minimum mass proceeds by gravitational focusing of planetesimals, I demonstrate that the the semi-major axes where gas giants can form are more restricted as the strength of the nebular turbulence increases — e.g. formation can only occur at distances < 30 AU for α > 10^-2. I also examine the implications of turbulence on the mass gas giants can reach before opening a substantial gap and halting growth. I find that while weak turbulence allows gas giants to form far out in the disk, the masses of these planets are substantially lower (< 1 Jupiter mass), which would preclude them from having been detected by the current generation of direct imaging surveys.
TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, S.; Lin, D. N. C.; Nagasawa, M., E-mail: ida@geo.titech.ac.jp, E-mail: lin@ucolick.org, E-mail: nagasawa.m.ad@m.titech.ac.jp
2013-09-20
The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamicalmore » interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits.« less
Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration
NASA Astrophysics Data System (ADS)
Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta
2018-04-01
Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.
Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.
NASA Astrophysics Data System (ADS)
Johnstone, Douglas Ian
1995-01-01
Newly formed stars produce sufficient Lyman continuum luminosity phi to significantly alter the structure and evolution of the accretion disk surrounding them. In the absence of a stellar wind, a nearly static, photoionized, 10^4 K, disk atmosphere, with a scale height that increases with disk radius varpi as varpi^{3/2 }, forms inside the gravitational radius varpig ~ 1014(M_*/ M_odot) cm where M _* is the mass of the central star. This ionized atmosphere is maintained by both the direct radiation from the central star and the diffuse field produced in the disk atmosphere by the significant fraction of hydrogen recombinations directly to the ground state. Beyond varpig the material evaporated from the disk is capable of escaping from the system and produces an ionized disk wind. The mass-loss due to this disk wind peaks at varpig . The inclusion of a stellar wind into the basic picture reduces the height of the inner disk atmosphere and introduces a new scale radius varpi_ {w} where the thermal pressure of the material evaporated from the disk balances the ram pressure in the wind. In this case the mass-loss due to the disk wind peaks at varpiw and is enhanced over the no-wind case. The photoevaporation of disks around newly formed stars has significance to both ultracompact HII regions and the dispersal of solar-type nebulae. High mass stars are intrinsically hot and thus yield sufficient Lyman luminosity to create, even without a stellar wind, disk mass-loss rates of order 2 times 10 ^{-5}phi_sp{49} {1/2} M_odotyr ^{-1}, where phi 49 = phi/(10 49 Lyman continuum photons s^{-1}). This wind, which will last until the disk is dispersed, ~ 10^5 yrs if the disk mass is M_ {d}~0.3M_*, yields sizes, emission measures and ages consistent with observations of ultracompact HII regions. The well-observed high mass star MWC 349 may be the best example to date of an evaporating disk around a high mass star. On the other end of the stellar scale, many newly formed low-mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.
Accretion dynamics in pre-main sequence binaries
NASA Astrophysics Data System (ADS)
Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.
Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.
Chandra Imaging of the Outer Accretion Flow onto the Black Hole at the Center of the Perseus Cluster
NASA Astrophysics Data System (ADS)
Miller, J. M.; Bautz, M. W.; McNamara, B. R.
2017-11-01
Nowhere is black hole feedback seen in sharper relief than in the Perseus cluster of galaxies. Owing to a combination of astrophysical and instrumental challenges, however, it can be difficult to study the black hole accretion that powers feedback into clusters of galaxies. Recent observations with Hitomi have resolved the narrow Fe Kα line associated with accretion onto the black hole in NGC 1275 (3C 84), the active galaxy at the center of Perseus. The width of that line indicates that the fluorescing material is located 6-45 pc from the black hole. Here, we report on a specialized Chandra imaging observation of NGC 1275 that offers a complementary angle. Using a sub-array, sub-pixel event repositioning, and an X-ray “lucky imaging” technique, Chandra imaging suggests an upper limit of about 0.3 arcsec on the size of the Fe Kα emission region, corresponding to ˜98 pc. Both spectroscopy and direct imaging now point to an emission region consistent with an extended molecular torus or disk, potentially available to fuel the black hole. A low X-ray continuum flux was likely measured from NGC 1275; contemporaneously, radio flaring and record-high GeV fluxes were recorded. This may be an example of the correlation between X-ray flux dips and jet activity that is observed in other classes of accreting black holes across the mass scale.
NASA Astrophysics Data System (ADS)
Blum, Kfir; Kushnir, Doron
2016-09-01
Collapse-induced thermonuclear explosion (CITE) may explain core-collapse supernovae (CCSNe). We analyze the neutrino signal in CITE and compare it to the neutrino burst of SN 1987A. For strong (≳ {10}51 erg) CCSNe, such as SN 1987A, CITE predicts a proto-neutron star (PNS) accretion phase lasting up to a few seconds that is cut off by black hole (BH) formation. The neutrino luminosity can later be revived by accretion disk emission after a dead time of a few to a few tens of seconds. In contrast, the neutrino mechanism for CCSNe predicts a short (≲s) PNS accretion phase, followed by slowly declining PNS cooling luminosity. We repeat statistical analyses used in the literature to interpret the neutrino mechanism, and apply them to CITE. The first 1-2 s of the neutrino burst are equally compatible with CITE and with the neutrino mechanism. However, the data points toward a luminosity drop at t = 2-3 s, which is in some tension with the neutrino mechanism but can be naturally attributed to BH formation in CITE. The occurrence of neutrino signal events at 5 s suggests that, within CITE, the accretion disk formed by that time. We perform two-dimensional numerical simulations showing that CITE may be able to accommodate this disk formation time while reproducing the ejected 56Ni mass and ejecta kinetic energy within factors of 2-3 of observations. We estimate the accretion disk neutrino luminosity, finding it to be on the low side but compatible with the data to a factor of 10. Given comparable uncertainties in the disk luminosity simulation, we conclude that direct BH formation may have occurred in SN 1987A.
Dust Coagulation in Protoplanetary Accretion Disks
NASA Technical Reports Server (NTRS)
Schmitt, W.; Henning, Th.; Mucha, R.
1996-01-01
The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.
Stratified Simulations of Collisionless Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale,more » stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.« less
An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO
NASA Astrophysics Data System (ADS)
Rameau, Julien; Follette, Katherine B.; Pueyo, Laurent; Marois, Christian; Macintosh, Bruce; Millar-Blanchaer, Maxwell; Wang, Jason J.; Vega, David; Doyon, René; Lafrenière, David; Nielsen, Eric L.; Bailey, Vanessa; Chilcote, Jeffrey K.; Close, Laird M.; Esposito, Thomas M.; Males, Jared R.; Metchev, Stanimir; Morzinski, Katie M.; Ruffio, Jean-Baptiste; Wolff, Schuyler G.; Ammons, S. M.; Barman, Travis S.; Bulger, Joanna; Cotten, Tara; De Rosa, Robert J.; Duchene, Gaspard; Fitzgerald, Michael P.; Goodsell, Stephen; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall D.; Poyneer, Lisa; Rajan, Abhijith; Rantakyrö, Fredrik T.; Marley, Mark S.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane
2017-06-01
We present H band spectroscopic and Hα photometric observations of HD 100546 obtained with the Gemini Planet Imager and the Magellan Visible AO camera. We detect H band emission at the location of the protoplanet HD 100546 b, but show that the choice of data processing parameters strongly affects the morphology of this source. It appears point-like in some aggressive reductions, but rejoins an extended disk structure in the majority of the others. Furthermore, we demonstrate that this emission appears stationary on a timescale of 4.6 years, inconsistent at the 2σ level with a Keplerian clockwise orbit at 59 au in the disk plane. The H band spectrum of the emission is inconsistent with any type of low effective temperature object or accreting protoplanetary disk. It strongly suggests a scattered-light origin, as this is consistent with the spectrum of the star and the spectra extracted at other locations in the disk. A non-detection at the 5σ level of HD 100546 b in differential Hα imaging places an upper limit, assuming the protoplanet lies in a gap free of extinction, on the accretion luminosity of 1.7 × 10-4 L ⊙ and M\\dot{M}< 6.3× {10}-7 {M}{Jup}2 {{yr}}-1 for 1 R Jup. These limits are comparable to the accretion luminosity and accretion rate of T-Tauri stars or LkCa 15 b. Taken together, these lines of evidence suggest that the H band source at the location of HD 100546 b is not emitted by a planetary photosphere or an accreting circumplanetary disk but is a disk feature enhanced by the point-spread function subtraction process. This non-detection is consistent with the non-detection in the K band reported in an earlier study but does not exclude the possibility that HD 100546 b is deeply embedded.
Effects of Planetesimal Accretion on the Structural Evolution of Sub-Neptunes
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Chen, Howard
2018-01-01
A remarkable discovery of NASA's Kepler mission is the wide diversity in the average densities of planets even when they are of similar mass. After gas disk dissipation, fully formed planets could accrete nearby planetesimals from a remnant planetesimal disk. We present calculations using the open-source stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) modified to include the deposition of planetesimals into the H/He envelopes of sub-Neptunes. We show that planetesimal accretion can alter the mass-radius isochrones for these planets. The additional energy deposited via planetesimal accretion puffs up the envelopes leading to enhanced gas loss during the phase of rapid accretion. As a result, the same initial planet can evolve to contain very different final envelope-mass fractions. This manifest as differences in the average planet densities long after accretion stops. Differences in the accretion history, total accreted mass, and the inherent stochasticity of the accretion process can bring wide diversity in final average densities even when the initial planets are very similar. These effects are particularly important for planets initially less massive than ~10 MEarth and with envelope mass fraction less than ~10%, thought to be the most common type of planets discovered by Kepler.
NASA Astrophysics Data System (ADS)
Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.
2017-02-01
A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.