Sample records for outer continental margin

  1. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    NASA Astrophysics Data System (ADS)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and continuity of the sediment stratigraphy within the basins. The enclosed nature of the Arctic basin and the undersea ridges that transect the width of the basin result in complex geographies for the coastal States. The relevant fact, therefore, is that the five coastal States surrounding the ocean should have a common understanding of the geological and morphological features and the use of these features in determining the outer edge of the continental margin.

  2. Gas hydrates of outer continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvenvolden, K.A.

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf ofmore » Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.« less

  3. Surface current patterns suggested by suspended sediment distribution over the outer continental margin, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1987-01-01

    Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.

  4. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  5. From hyperextended rift to convergent margin types: mapping the outer limit of the extended Continental Shelf of Spain in the Galicia area according UNCLOS Art. 76

    NASA Astrophysics Data System (ADS)

    Somoza, Luis; Medialdea, Teresa; Vázquez, Juan T.; González, Francisco J.; León, Ricardo; Palomino, Desiree; Fernández-Salas, Luis M.; Rengel, Juan

    2017-04-01

    Spain presented on 11 May 2009 a partial submission for delimiting the extended Continental Shelf in respect to the area of Galicia to the Commission on the Limits of the Continental Shelf (CLCS). The Galicia margin represents an example of the transition between two different types of continental margins (CM): a western hyperpextended margin and a northern convergent margin in the Bay of Biscay. The western Galicia Margin (wGM 41° to 43° N) corresponds to a hyper-extended rifted margin as result of the poly-phase development of the Iberian-Newfoundland conjugate margin during the Mesozoic. Otherwise, the north Galicia Margin (nGM) is the western end of the Cenozoic subduction of the Bay of Biscay along the north Iberian Margin (NIM) linked to the Pyrenean-Mediterranean collisional belt Following the procedure established by the CLCS Scientific and Technical Guidelines (CLCS/11), the points of the Foot of Slope (FoS) has to be determined as the points of maximum change in gradient in the region defined as the Base of the continental Slope (BoS). Moreover, the CLCS guidelines specify that the BoS should be contained within the continental margin (CM). In this way, a full-coverage multibeam bathymetry and an extensive dataset of up 4,736 km of multichannel seismic profiles were expressly obtained during two oceanographic surveys (Breogham-2005 and Espor-2008), aboard the Spanish research vessel Hespérides, to map the outer limit of the CM.In order to follow the criteria of the CLCS guidelines, two types of models reported in the CLCS Guidelines were applied to the Galicia Margin. In passive margins, the Commission's guidelines establish that the natural prolongation is based on that "the natural process by which a continent breaks up prior to the separation by seafloor spreading involves thinning, extension and rifting of the continental crust…" (para. 7.3, CLCS/11). The seaward extension of the wGM should include crustal continental blocks and the so-called Peridotite Ridge (PR), composed by serpentinized exhumed continental mantle. Thus, the PR should be regarded as a natural component of the continental margin since these seafloor highs were formed by hyperextension of the margin. Regarding convergent margins, the architecture of the nGM can be classified according the CLCS/11 as a "poor- or non-accretionary convergent continental margin" characterized by a poorly developed accretionary wedge, which is composed of: a large sedimentary apron mainly formed by large slumps and thrust wedges of igneous (ophiolitic/continental) body overlying subducting oceanic crust (Fig. 6.1B, CLCS/11). According to para. 6.3.6. (CLCS/11), the seaward extent of this type of continental convergent margins is defined by the seaward edge of the accretionary wedge. Applying this definition, the seaward extent of the margin is defined by the outer limit of the ophiolitic deformed body that marks the edge of the accretionary wedge. These geological criteria were strictly applied for mapping the BoS region, where the FoS were determinate by using the maximum change in gradient within this mapped region. Acknowledgments: Project for the Extension of the Spanish Continental according UNCLOS (CTM2010-09496-E) and Project CTM2016-75947-R

  6. The Subject of Data in Submissions to the CLCS: Documenting the outer limits of the Northern Continental Shelf of the Faroe Islands

    NASA Astrophysics Data System (ADS)

    Vang Heinesen, Martin; Mørk, Finn

    2017-04-01

    The first partial submissions made by the Kingdom of Denmark, in respect of the continental shelf north of the Faroe Islands (North Faroe Margin, NFM), was submitted to the Commission on the Limits of the Continental Shelf in April 2009 as the result of 7 years of preparation which also included 4 additional continental shelf regions around the Faroe Islands and Greenland, on which individual partial submissions were made subsequently. The NFM covers parts of the NW European continental margin, it continues onto the Faroe-Iceland Ridge and the extinct Ægir (spreading) Ridge and overlaps with the continental margin of Iceland and Norway in the sediment rich Ægir Basin located between the European margin to the south and south-east, and the Jan Mayen Micro-continental margin to the west and north-west. Prior to the onset of the continental shelf project of the Kingdom of Denmark, arrangements had already been made with Norway and Iceland regarding the sharing of existing data and acquisition of new seismic data in the overlapping regions. Before that, the main database in the area included a comprehensive multi-beam bathymetric data set covering large parts of the Ægir Ridge with scattered single beam bathymetric lines in the remaining regions. It also comprised a number of single- and multi-channel seismic lines and a long refraction seismic line transecting the entire eastern part of the basin, from the Norwegian shelf to the Ægir Ridge, in addition to local side scan sonar and regional potential field data. During the project, additional high quality multi-channel seismic data, extensive multi-beam bathymetric data, and a comprehensive high resolution aeromagnetic dataset were acquired, allowing detailed mapping of the morphological and geological nature of the margin, including accurate identification of the base of the continental slope and mapping of the sediment thickness and sediment continuation in the basin. This data proved to be crucial for the documentation to the CLCS of the outer limits of the continental shelf to the north of the Faroe Islands.

  7. Geomorphic characterization of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.

    2013-01-01

    The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.

  8. Coral forests diversity in the outer shelf of the south Sardinian continental margin

    NASA Astrophysics Data System (ADS)

    Cau, Alessandro; Moccia, Davide; Follesa, Maria Cristina; Alvito, Andrea; Canese, Simonepietro; Angiolillo, Michela; Cuccu, Danila; Bo, Marzia; Cannas, Rita

    2017-04-01

    Ecological theory predicts that heterogeneous habitats allow more species to co-exist in a given area, but to date, knowledge on relationships between habitat heterogeneity and biodiversity of coral forests in the outer shelf and upper slope along continental margins is rather limited. We investigated biodiversity of coral forests from 8 sites spread over two different geomorphological settings (namely, pinnacles vs. canyons) in the outer shelf along Sardinian continental margin. Using a combination of multivariate statistical analyses, we show here that differences in the composition of coral assemblages among contrasting geomorphological settings were not statistically significant, whereas significant differences emerged among sites within similar geomorphologies (i.e. among pinnacles and among canyons). Our results reveal that environmental and bathymetric factors such as sediment coverage, slope of the substrate, terrain ruggedness, bathymetric positioning index and aspect were important drivers of the observed patterns of coral biodiversity, in both settings. Spatial variability of coral forests' biodiversity is affected by environmental factors that act at the scale of each geomorphological setting (i.e. within each pinnacle and canyon) rather than by the contrasting geomorphological settings themselves. This result allows us to suggest that simple categorization of benthic communities according topographically defined habitat is unlikely to be sufficient for addressing conservation purposes.

  9. A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence

    NASA Astrophysics Data System (ADS)

    Breivik, Asbjørn Johan; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst R.; Murai, Yoshio

    2017-10-01

    The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5 km thick and ∼50 km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8 km), but is reduced to 6 km after 1 m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5 km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1 Ma, ∼1 m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.

  10. 77 FR 71448 - States' Decisions on Participating in Accounting and Auditing Relief for Federal Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...' Decisions on Participating in Accounting and Auditing Relief for Federal Oil and Gas Marginal Properties... types of accounting and auditing relief for Federal onshore or Outer Continental Shelf lease production... allows States to relieve the lessees of marginal properties from certain reporting, accounting, and...

  11. Tectonic elements of the continental margin of East Antarctica, 38-164ºE

    USGS Publications Warehouse

    O'Brien, P.E.; Stagg, H.M.J.

    2007-01-01

    The East Antarctic continental margin from 38–164ºE is divided into western and eastern provinces that developed during the separation of India from Australia–Antarctica (Early Cretaceous) and Australia from Antarctica (Late Cretaceous). In the overlap between these provinces the geology is complex and bears the imprint of both extension/spreading episodes, with an overprinting of volcanism. The main rift-bounding faults appear to approximately coincide with the outer edge of the continental shelf. Inboard of these faults, the sedimentary cover thins above shallowing basement towards the coast where crystalline basement generally crops out. The continental slope and the landward flanks of the ocean basins, are blanketed by up to 9–10 km of mainly post-rift sediments in margin-parallel basins, except in the Bruce Rise area. Beneath this blanket, extensive rift basins are identified off Enderby and Wilkes Land/Terre Adélie; however, their extent and detailed structures are difficult to determine.

  12. Atlantic continental margin of the United States

    USGS Publications Warehouse

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  13. Volcanic passive margins: another way to break up continents

    PubMed Central

    Geoffroy, L.; Burov, E. B.; Werner, P.

    2015-01-01

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807

  14. Volcanic passive margins: another way to break up continents.

    PubMed

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  15. Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data.

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Murai, Y.; Flueh, E. R.

    2014-12-01

    The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the south around breakup time.

  16. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which gradients and gradient change is a critical metric.

  17. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  18. Crustal structure and inferred extension mode in the northern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.

    2016-12-01

    Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted rift, broad hyper-extended continental crust, locally distributed HVL, and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northern South China Sea margin.

  19. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  20. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.

  1. Geomorphology of the Eastern North American Continental Margin: the role of deep sea sedimentation processes

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.

    2016-12-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap the lowermost drift creating a significant gradient change at this juncture. Understanding the geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping, for example, in which gradient change is a critical metric.

  2. Late Pleistocene sequence architecture on the geostrophic current-dominated southwest margin of the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do

    2018-06-01

    High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.

  3. Late Pleistocene sequence architecture on the geostrophic current-dominated southwest margin of the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Lim; Shin, Dong-Hyeok; Kum, Byung-Cheol; Jang, Seok; Cho, Jin-Hyung; Jou, Hyeong-Tae; Jang, Nam-Do

    2017-11-01

    High-resolution multichannel seismic data were collected to identify depositional sequences on the southwestern shelf of the Ulleung Basin, where a unidirectional ocean current is dominant at water depths exceeding 130 m. Four aggradational stratigraphic sequences with a 100,000-year cycle were recognized since marine isotope stage (MIS) 10. These sequences consist only of lowstand systems tracts (LSTs) and falling-stage systems tracts (FSSTs). Prograding wedge-shaped deposits are present in the LSTs near the shelf break. Oblique progradational clinoforms of forced regressive deposits are present in the FSSTs on the outer continental shelf. Each FSST has non-uniform forced regressional stratal geometries, reflecting that the origins of sediments in each depositional sequence changed when sea level was falling. Slump deposits are characteristically developed in the upper layer of the FSSTs, and this was used as evidence to distinguish the sequence boundaries. The subsidence rates around the shelf break reached as much as 0.6 mm/year since MIS 10, which contributed to the well-preserved depositional sequence. During the Quaternary sea-level change, the water depth in the Korea Strait declined and the intensity of the Tsushima Current flowing near the bottom of the inner continental shelf increased. This resulted in greater erosion of sediments that were delivered to the outer continental shelf, which was the main cause of sediment deposition on the deep, low-angled outer shelf. Therefore, a depositional sequence formation model that consists of only FSSTs and LSTs, excluding highstand systems tracts (HSTs) and transgressive systems tracts (TSTs), best explains the depositional sequence beneath this shelf margin dominated by a geostrophic current.

  4. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  5. Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States South Atlantic Outer Continental Shelf

    USGS Publications Warehouse

    ,

    1975-01-01

    The area designated for possible oil and gas lease sale in Bureau of Land Management memorandum 3310 #43 (722) and referred to therein as part of the United States South Atlantic Outer Continental Shelf (OCS) contains about 98,000 square kilometres of the continental margin seaward of the 3 mile offshore limit and within the 600 metre isobath. The designated area, offshore of North Carolina, South Carolina, Georgia, and Florida, encompasses parts of three physiographic provinces: the Continental Shelf, the Florida-Hatteras Slope, and the Blake Plateau. The structural framework of the U.3. South Atlantic region is dominated by the Southeast Georgia Embayment --an east-plunging depression recessed into the Atlantic Coastal Plain and shelf between Cape Fear, North Carolina and Jacksonville, Florida. The embayment is bounded to the north by the Cape Fear Arch and to southeast by the Peninsular Arch. Refraction data indicate a minor basement(?) ridge beneath the outer shelf between 30? and 32?N at 80?W. Drill hole data also suggest a gentle fold or accretionary structure (reef?) off the east coast of Florida. Several other structural features have been identified by refraction and reflection techniques and drilling. These are the Yamacraw Uplift, Burton High, Stone Arch, and the Suwannee Channel. Gravity and magnetic anomalies within the area probably result from emplacement of magma bodies along linear features representing fundamental crustal boundaries. Of these anomalies, the most prominent, is a segment of the East Coast Magnetic Anomaly which crosses the coast at Brunswick, Georgia. This anomaly has been interpreted as representing an ancient continental boundary where two formerly separate continental plates collided and were welded together. There may be as much as 5,000 m of sedimentary rocks in the Southeast Georgia Embayment out to the 600 m isobath. Basement rocks beneath the Southeast Georgia Embayment are expected to be similar to those exposed in the Appalachian Piedmont province. Triassic deposits are likely to exist beneath the inner Continental Shelf, and probably consist of nonmarine arkosic sandstones, shales, basalt flows, and diabase intrusions deposited in relatively narrow northeast-trending grabens. Jurassic marine carbonates in the Bahamas grade northward to carbonates, shales, sand, and arkose in North Carolina. Salt may be present in the basal Jurassic section in the Southeast Georgia Embayment. Up to 4,000 m of Jurassic-Lower Cretaceous rocks are expected out to the 600 m water depth. Lower Cretaceous rocks in southern Florida are shallow-water marine limestone and dolomites with beds of anhydrite. In coastal North Carolina the Lower Cretaceous is a marine section made up of shales, sand, and sandy limestone. The Upper Cretaceous is composed almost entirely of marine carbonates in southern Florida grading northward to nonmarine to marginal marine, sandstones and shales with minor amounts of carbonates. In general, Upper Cretaceous rocks will probably maintain a fairly constant thickness (600 m) on the Continental Shelf and grade downdip from terrigeneous sands and shales to more marine chalks, limestones, and dolomites. The Cenozoic rocks are predominantly shallow-water marine carbonates in Florida grading northward into a marginal marine to marine clastic facies composed of sands, marls, and limestones. The offshore Cenozoic section is expected to range in thickness from 600 to 1100 m. A reconstruction of the geologic history suggests that the present continental margin is a result of a collision of the North American and African continental plates during late Paleozoic time and later modification during Late Triassic time when the continental plates separated, forming the present Atlantic Ocean. No commercial production of hydrocarbons has been developed on the Atlantic Coastal Plain immediately adjacent to the studied area even though hydrocarbon shows have been encountered in ons

  6. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...: Availability of Revised North American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction... that effective with this publication, the following NAD 83-based Outer Continental Shelf (OCS) Official...

  7. Geology and physiography of the continental margin north of Alaska and implications for the origin of the Canada Basin

    USGS Publications Warehouse

    Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.

    1979-01-01

    The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends northwest from Cape Lisburne. Hope basin, an extensional intracontinental sedimentary basin of Tertiary age, underlies the Chukchi Sea south of Herald arch.

  8. Larval Transport on the Atlantic Continental Shelf of North America: a Review

    NASA Astrophysics Data System (ADS)

    Epifanio, C. E.; Garvine, R. W.

    2001-01-01

    This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.

  9. 76 FR 54787 - Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    .... ACTION: Availability of revised North American Datum of 1927 (NAD 27) Outer Continental Shelf Official...: Notice is hereby given that effective with this publication, the following NAD 27-based Outer Continental...

  10. 77 FR 71612 - Atlantic Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore...), Interior. ACTION: Proposed Sale Notice for commercial leasing for wind power on the Outer Continental Shelf... sale of commercial wind energy leases on the Outer Continental Shelf (OCS) offshore Rhode Island and...

  11. Mapping Mesophotic Reefs Along the Brazilian Continental Margin

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Moura, R.; Amado Filho, G.; Ferreira, L.; Boni, G.; Vedoato, F.; D'Agostini, D.; Lavagnino, A. C.; Leite, M. D.; Quaresma, V.

    2017-12-01

    Submerged or drowned reefs constitute an important geological record of sea level variations, forming the substrate for the colonization of modern benthic mesophotic communities. Although mapping mesophotic reefs has increased in the last years, their spatial distribution is poorly known and the worldwide occurrence of this reef habitat maybe underestimated. The importance in recognizing the distribution of mesophotic reefs is that they can act as a refuge for corals during unsuitable environmental conditions and a repository for shallow water corals. Here we present the result of several acoustic surveys that mapped and discovered new mesophotic reefs along the Eastern and Equatorial Brazilian Continental Margin. Seabed mapping was carried out using multibeam and side scan sonars. Ground truthing was obtained using drop camera or scuba diving. Mesophotic reefs were mapped in water depths varying from 30 to 100m and under distinct oceanographic conditions, especially in terms of river load input and shelf width. Reefs showed distinct morphologies, from low relief banks and paleovalleys to shelf edge ridges. Extensive occurrence of low relief banks were mapped along the most important coralline complex province in the South Atlantic, the Abrolhos Shelf. These 30 to 40m deep banks, have no more than 3 meters in height and may represent fringing reefs formed during sea level stabilization. Paleovalleys mapped along the eastern margin showed the occurrence of coralgal ledges along the channel margins. Paleovalleys are usually deeper than 45m and are associated with outer shelf rhodolith beds. Shelf edge ridges (80 to 120m deep) were mapped along both margins and are related to red algal encrusting irregular surfaces that have more than 3m in height, forming a rigid substrate for coral growth. Along the Equatorial Margin, off the Amazon mouth, shelf edge patch reefs and rhodolith beds forming encrusting surfaces and shelf edge ridges were mapped in water depths greater than 100m. Thus, the occurrence of mesophotic reefs along the Brazilian Margin is influenced by transgressive morphological features, which could be used as a surrogate for mesophotic reef distribution. The extensive occurrence of rhodolith beds on the outer shelf characterizes most of these reefs.

  12. Hydrates of nat­ural gas in continental margins

    USGS Publications Warehouse

    Kvenvolden, K.A.; Barnard, L.A.

    1982-01-01

    Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.

  13. NRC Continental Margins Workshop

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.

  14. 30 CFR 256.0 - Authority for information collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and... part 256, Leasing of Sulphur or Oil and Gas in the Outer Continental Shelf.” (b) MMS collects this...

  15. 76 FR 55090 - Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ...-2011-0039] Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer... renewable energy leases on the Outer Continental Shelf. In the preamble to the April 29, 2009, Final Rule, ``Renewable Energy and Alternate Uses of Existing Facilities on the Outer Continental Shelf,'' BOEMRE stated...

  16. 30 CFR 256.4 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas... for oil and gas, and sulphur, in submerged lands of the outer Continental Shelf (OCS). The Act... major oil and gas producers. [64 FR 72795, Dec. 28, 1999] ...

  17. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  18. Rifting and Subsidence in the Gulf of Mexico: Implications for Syn-rift, Sag, and Salt Sections, and Subsequent Paleogeography

    NASA Astrophysics Data System (ADS)

    Pindell, J. L.; Graham, R.; Horn, B.

    2013-05-01

    Thick (up to 5 km), rapid (<3 Ma), salt deposition is problematic for basin modelling because such accommodation cannot be thermal, yet GoM salt deposits (Late Callovian-Early Oxfordian) appear to be post-rift (most salt overlies planar sub-salt unconformities on syn-rift section). One possible solution is that the pre-drift GoM was a deep (~2 km) air-filled rift depression where basement had already subsided tectonically, and thus could receive up to 5 km of salt, roughly the isostatic maximum on exhumed mantle, hyper-thinned continent, or new ocean crust. ION-GXT and other seismic data along W Florida and NW Yucatán show that (1) mother salt was only 1 km thick in these areas, (2) that these areas were depositionally connected to areas of thicker deposition, and (3) the top of all salt was at global sea level, and hence the sub-salt unconformity along Florida and Yucatán was only 1 km deep by end of salt deposition. These observations fit the air-filled chasm hypothesis; however, two further observations make that mechanism highly improbable: (1) basinward limits of sub-salt unconformities along Florida/Yucatán are deeper than top of adjacent ocean crust emplaced at ~2.7 km subsea (shown by backstripping), and (2) deepest abyssal sediments over ocean crust onlap the top of distal salt, demonstrating that the salt itself was rapidly drowned after deposition. Study of global ION datasets demonstrates the process of "rapid outer marginal collapse" at most margins, which we believe is achieved by low-angle detachment on deep, landward-dipping, Moho-equivalent surfaces such that outer rifted margins are hanging walls of crustal scale half-grabens over mantle. The tectonic accommodation space produced (up to 3 km, < 3 Ma) can be filled by ~5 km of sag/salt sequences with little apparent hanging wall rifting. When salt (or other) deposition lags behind, or ends during, outer marginal collapse, deep-water settings result. We suggest that this newly identified, "outer marginal detachment phase", normally separates the traditional "rift" from "drift" stages during continental margin creation. Importantly, this 2-3 km of subsidence presently is neither treated as tectonic nor as thermal in traditional subsidence analysis; thus, Beta estimates may be excessive at many outer margins. Outer marginal collapse was probably eastwardly diachronous with initiation of spreading in the GoM. Additionally, recent paleo-climate studies suggest humid Early/Middle Jurassic conditions in equatorial GoM, hindering air-filled chasm development, but North America's northward flight into middle latitudes initiated Callovian aridity.

  19. Modelling the bathymetry of the Antarctic continental shelf

    USGS Publications Warehouse

    ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.

    1992-01-01

    Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.

  20. On the gravitational potential and field anomalies due to thin mass layers

    NASA Technical Reports Server (NTRS)

    Ockendon, J. R.; Turcotte, D. L.

    1977-01-01

    The gravitational potential and field anomalies for thin mass layers are derived using the technique of matched asymptotic expansions. An inner solution is obtained using an expansion in powers of the thickness and it is shown that the outer solution is given by a surface distribution of mass sources and dipoles. Coefficients are evaluated by matching the inner expansion of the outer solution with the outer expansion of the inner solution. The leading term in the inner expansion for the normal gravitational field gives the Bouguer formula. The leading term in the expansion for the gravitational potential gives an expression for the perturbation to the geoid. The predictions given by this term are compared with measurements by satellite altimetry. The second-order terms in the expansion for the gravitational field are required to predict the gravity anomaly at a continental margin. The results are compared with observations.

  1. 77 FR 24980 - Notice on Outer Continental Shelf Oil and Gas Lease Sales

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Notice on Outer Continental Shelf Oil... Outer Continental Shelf oil and gas lease sales to be held during the bidding period May 1, 2012... Corporation ExxonMobil Exploration Company Group II. Shell Oil Company Shell Offshore Inc. SWEPI LP Shell...

  2. 30 CFR 256.0 - Authority for information collection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.0 Authority for information collection. (a... information collection is “30 CFR part 256, Leasing of Sulphur or Oil and Gas in the Outer Continental Shelf...

  3. 75 FR 82055 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Massachusetts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... No. BOEM-2010-0063] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore..., Interior. ACTION: RFI in Commercial Wind Energy Leasing Offshore Massachusetts, and Invitation for Comments... the construction of a wind energy project(s) on the Outer Continental Shelf (OCS) offshore...

  4. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  5. 77 FR 5529 - Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Submerged Lands for Renewable Energy Development on the Outer Continental Shelf AGENCY: Bureau of Ocean... use Form 0008 to issue commercial renewable energy leases on the Outer Continental Shelf (OCS). In the preamble to the April 29, 2009, Final Rule, ``Renewable Energy and Alternate Uses of Existing Facilities on...

  6. 77 FR 71621 - Atlantic Wind One (ATLW1) Commercial Leasing for Wind Power on the Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... Wind One (ATLW1) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia... Notice for Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia. SUMMARY... (FONSI) for commercial wind lease issuance and site assessment activities on the Atlantic OCS offshore...

  7. 77 FR 10707 - Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Seas, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...-AA00 Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Seas... Chukchi and Beaufort Seas Outer Continental Shelf, Alaska, from 12:01 a.m. on July 1, 2012 through 11:59 p... order to drill exploratory wells in several prospects located in the Chukchi and Beaufort Seas during...

  8. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    NASA Astrophysics Data System (ADS)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the Gop Rift axis. We propose that the conspicuous buoyant central part of the Gop Rift is likely associated with a continental C-Block as described in a recent paper on conjugated VPMs8, at least in the southern part of the Gop Rift. The crust below the Laxmi basin is probably transitional continental i.e. strongly intruded. West of India and west of the Laxmi Ridge, the transition to the Carlsberg Basin occurs along a clearly-expressed transform fault, not through an extended and thinned continental margin. We reinterpret the whole system based on those observations and propositions, giving some explanations on controversial magnetic anomalies based on similar observations from the southern Atlantic Ocean. 1: Collier et al., 2008. Age of the Seychelles-India break-up. Earth and Planetary Science Letters. 2: Minshull et al., 2008. The relationship between riftingand magmatism in the northeastern Arabian Sea. Nature Geoscience. 3 : Armitage et al., 2010. The importance of rift history for volcanic margin. Nature. 4 : Krishna et al., 2006. Nature of the crust in the Laxmi Basin (14 degrees-20 degrees N), western continental margin of India. Tectonics. 5 : Misra et al., 2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology. 6 : Biswas, 1982. Rift basins in the western margin of India and their hydrocarbon prospects. Bull. Am. Assoc. Pet. Geol. 7 : Chatterjee et al., 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research. 8 : Geoffroy et al., 2015. Volcanic passive margins: anotherway to break up continents. Scientific Reports.

  9. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea.

    PubMed

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jianfang; Burdige, David J

    2016-09-27

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas.

  10. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea

    PubMed Central

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J.

    2016-01-01

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82–94% using the OC mixing model, and 30–80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas. PMID:27670426

  11. 78 FR 47748 - Right-of-Way Grant of Submerged Lands on the Outer Continental Shelf to Support Renewable Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ...-Way Grant of Submerged Lands on the Outer Continental Shelf to Support Renewable Energy Development... will use Form 0009 to issue a renewable energy right-of- way (ROW) grant on the Outer Continental Shelf....gov/Renewable-Energy Program/ Regulatory-Information/Index.aspx. DATES: The ROW grant form will be...

  12. 77 FR 52353 - Right-of-Way Grant of Submerged Lands on the Outer Continental Shelf to Support Renewable Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... of Submerged Lands on the Outer Continental Shelf to Support Renewable Energy Development AGENCY... would be used to issue Outer Continental Shelf (OCS) renewable energy right-of-way (ROW) grants in order... renewable energy, but does not constitute a project easement. The ability of an ROW grantee to install such...

  13. 78 FR 52239 - Oil and Gas and Sulphur Operations on the Outer Continental Shelf-Oil and Gas Production Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... Environmental Enforcement 30 CFR Part 250 Oil and Gas and Sulphur Operations on the Outer Continental Shelf--Oil and Gas Production Safety Systems; Proposed Rule #0;#0;Federal Register / Vol. 78 , No. 163 / Thursday...] RIN 1014-AA10 Oil and Gas and Sulphur Operations on the Outer Continental Shelf--Oil and Gas...

  14. 77 FR 39164 - Safety Zone; KULLUK, Outer Continental Shelf Mobile Offshore Drilling Unit (MODU), Beaufort Sea, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... sensitivity of the environmental and subsistence importance to the indigenous population; (4) the lack of any... Outer Continental Shelf Lands Act and 33 C.F.R 147. Accordingly, State and Local law enforcement... due to the location of the MODU KULLUK on the Outer Continental Shelf and its distance from both land...

  15. Regional geologic framework off northeastern United States

    USGS Publications Warehouse

    Schlee, J.; Behrendt, John C.; Grow, J.A.; Robb, James M.; Mattick, R.; Taylor, P.T.; Lawson, B.J.

    1976-01-01

    Six multichannel seismic-reflection profiles taken across the Atlantic continental margin Previous HitoffTop the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank. Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsided basement. Acoustically, the sedimentary sequence beneath the shelf is divided into three units which are correlated speculatively with the Cenozoic, the Cretaceous, and the Jurassic-Triassic sections. These units thicken offshore, and some have increased seismic velocities farther offshore. The uppermost unit thickens from a fraction of a kilometer to slightly more than a kilometer in a seaward direction, and velocity values range from 1.7 to 2.2 km/sec. The middle unit thickens from a fraction of a kilometer to as much as 5 km (northern Baltimore Canyon trough), and seismic velocity ranges from 2.2 to 5.4 km/sec. The lowest unit thickens to a maximum of 9 km (northern Baltimore Canyon), and velocities span the 3.9 to 5.9-km/sec interval. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile. Because the magnetic-slope-anomaly wavelength is nearly 50 km across, a deep source is likely. In part, the positive free-air gravity anomaly likewise may represent the significant lateral density increase within the sedimentary section to ard the outer edge of the shelf.

  16. 75 FR 55970 - Safety Zone; VERMILION 380A at Block 380 Outer Continental Shelf Fixed Platform in the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ...-AA00 Safety Zone; VERMILION 380A at Block 380 Outer Continental Shelf Fixed Platform in the Gulf of... safety zone around VERMILION 380A, a fixed platform, at Block 380 in the Outer Continental Shelf, approximately 90 miles south of Vermilion Bay, Louisiana. The fixed platform is on fire and the safety zone is...

  17. Upwelling rebound, ephemeral secondary pycnoclines, and the creation of a near-bottom wave guide over the Monterey Bay continental shelf

    USGS Publications Warehouse

    Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Storlazzi, Curt D.; Rosenberger, Kurt J.; Shaw, William J.; Raanan, Ben Y.

    2014-01-01

    Several sequential upwelling events were observed in fall 2012, using measurements from the outer half of the continental shelf in Monterey Bay, during which the infiltration of dense water onto the shelf created a secondary, near-bottom pycnocline. This deep pycnocline existed in concert with the near-surface pycnocline and enabled the propagation of near-bottom, cold, semidiurnal internal tidal bores, as well as energetic, high-frequency, nonlinear internal waves of elevation (IWOE). The IWOE occurred within 20 m of the bottom, had amplitudes of 8–24 m, periods of 6–45 min, and depth-integrated energy fluxes up to 200 W m−1. Iribarren numbers (<0.03) indicate that these IWOE were nonbreaking in this region of the shelf. These observations further demonstrate how regional upwelling dynamics and the resulting bulk, cross-margin hydrography is a first-order control on the ability of internal waves, at tidal and higher frequencies, to propagate through continental shelf waters.

  18. Inorganic geochemistry of surface sediments of the Ebro shelf and slope, northwestern Mediterranean

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Alonso, B.

    1990-01-01

    Distributions of major, minor, and trace elements in surface sediment of the continental shelf and upper slope of the northeastern Spanish continental margin reflect the influences of discharge from the Ebro River and changes in eustatic sea levels. Multivariate factor analysis of sediment geochemistry was used to identify five groupings of samples (factors) on the shelf and slope. The first factor is an aluminosilicate factor that represents detrital clastic material. The second factor is a highly variable amount of excess SiO2 and probably represents a quartz residuum originating from winnowing of relict detrital sediments. A carbonate factor (Factor 3) has no positive correlation with other geochemical parameters but is associated with the sand-size fraction. The carbonate in these sediments consists of a mixture of biogenic calcite and angular to subangular detrital grains. Organic carbon is associated with the aluminosilicate factor (Factor 1) but also factors out by itself (Factor 4); this suggests that there may be two sources of organic matter, terrestrial and marine. The fifth factor comprises upper slope sediments that contain high concentrations of manganese. The most likely explanation for these high manganese concentrations is precipitation of Mn oxyhydroxides at the interface between Mn-rich, oxygen-deficient, intermediate waters and oxygenated surface waters. During eustatic low sea levels of the glacial Pleistocene, the Ebro Delta built across the outer continental shelf and deposited sediment with fairly high contents of organic carbon and continental components. The period of marine transgression from eustatic low (glacial) to eustatic high (interglacial) sea levels was characterized by erosion of the outer shelf delta and surficial shelf sediments and the transport of sediment across the slope within numerous canyons. Once eustatic high sea level was reached, delta progradation resumed on the inner shelf. Today, coarse-grained sediment (silt and sand) is transported to the continental shelf by Ebro River and is distributed along the inner shelf by currents generated by dominant northeasterly winds. Clay-size material is deposited on the mid- and outer-shelf. However, erosion and delta progradation during the last glacial period, and fine-grained Holocene sedimentation, have probably produced a distribution of sediment on a diachronous surface. ?? 1990.

  19. Mass-physical properties of surficial sediments on the Rhoˆne continental margin: implications for the nepheloid benthic layer

    NASA Astrophysics Data System (ADS)

    Chassefiere, Bernard

    1990-09-01

    Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.

  20. Chronobiology of deep-water decapod crustaceans on continental margins.

    PubMed

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the diel rhythm of behaviour. Species evolved in a photically variable environment where intra- and inter-specific interactions change along with the community structure over 24 h. Accordingly, the regulation of their biology through a biological clock may be the major evolutionary constraint that is responsible for their reported bathymetric distributions. In this review, our aim is to propose a series of innovative guidelines for a discussion of the modulation of behavioural rhythms of adult decapod crustaceans, focusing on the deep waters of the continental margin areas of the Mediterranean as a paradigm for other marine zones of the world. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Early to Middle Ordovician back-arc basin in the southern Appalachian Blue Ridge: characteristics, extent, and tectonic significance

    USGS Publications Warehouse

    Tull, James; Holm-Denoma, Christopher S.; Barineau, Clinton I.

    2014-01-01

    Fault-dismembered segments of a distinctive, extensive, highly allochthonous, and tectonically significant Ordovician (ca. 480–460 Ma) basin, which contains suites of bimodal metavolcanic rocks, associated base metal deposits, and thick immature deep-water (turbiditic) metasediments, occur in parts of the southern Appalachian Talladega belt, eastern Blue Ridge, and Inner Piedmont of Alabama, Georgia, and North and South Carolina. The basin's predominantly metasedimentary strata display geochemical and isotopic evidence of a mixed provenance, including an adjacent active volcanic arc and a provenance of mica (clay)-rich sedimentary and felsic plutonic rocks consistent with Laurentian (Grenvillian) upper-crustal continental rocks and their passive-margin cover sequences. Geochemical characteristics of the subordinate intercalated bimodal metavolcanic rocks indicate formation in a suprasubduction environment, most likely a back-arc basin, whereas characteristics of metasedimentary units suggest deposition above Neoproterozoic rift and outer-margin lower Paleozoic slope and rise sediments within a marginal basin along Ordovician Laurentia's Iapetus margin. This tectonic setting indicates that southernmost Appalachian Ordovician orogenesis (Taconic orogeny) began as an extensional accretionary orogen along the outer margin of Laurentia, rather than in an exotic (non-Laurentian) arc collisional setting. B-type subduction polarity requires that the associated arc-trench system formed southeast of the palinspastic position of the back-arc basin. This scenario can explain several unique features of the southern Appalachian Taconic orogen, including: the palinspastic geographic ordering of key tectonic elements (i.e., back-arc, arc, etc.), and a lack of (1) an obducted arc sensu stricto on the Laurentian margin, (2) widespread Ordovician regional metamorphism, and (3) Taconic klippen to supply detritus to the Taconic foreland basin.

  2. Structure and evolution of the NE Atlantic conjugate margins off Norway and Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Faleide, J.; Planke, S.; Theissen-Krah, S.; Abdelmalak, M.; Zastrozhnov, D.; Tsikalas, F.; Breivik, A. J.; Torsvik, T. H.; Gaina, C.; Schmid, D. W.; Myklebust, R.; Mjelde, R.

    2013-12-01

    The continental margins off Norway and NE Greenland evolved in response to the Cenozoic opening of the NE Atlantic. The margins exhibit a distinct along-margin segmentation reflecting structural inheritance extending back to a complex pre-breakup geological history. The sedimentary basins at the conjugate margins developed as a result of multiple phases of post-Caledonian rifting from Late Paleozoic time to final NE Atlantic breakup at the Paleocene-Eocene transition. The >200 million years of repeated extension caused comprehensive crustal thinning and formation of deep sedimentary basins. The main rift phases span the following time intervals: Late Permian, late Middle Jurassic-earliest Cretaceous, Early-mid Cretaceous and Late Cretaceous-Paleocene. The late Mesozoic-early Cenozoic rifting was related to the northward propagation of North Atlantic sea floor spreading, but also linked to important tectonic events in the Arctic. The pre-drift extension is quantified based on observed geometries of crustal thinning and stretching factors derived from tectonic modeling. The total (cumulative) pre-drift extension amounts to in the order of 300 km which correlates well with estimates from plate reconstructions based on paleomagnetic data. Final lithospheric breakup at the Paleocene-Eocene transition culminated in a 3-6 m.y. period of massive magmatic activity during breakup and onset of early sea-floor spreading, forming a part of the North Atlantic Volcanic Province. At the outer parts of the conjugate margins, the lavas form characteristic seaward dipping reflector sequences and lava deltas that drilling has demonstrated to be subaerially and/or neritically erupted basalts. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower-crustal levels. Maximum igneous crustal thickness of about 18 km is found across the outer Vøring Plateau on the Norwegian Margin, and lower-crustal P-wave velocities of up to 7.3 km/s are found at the bottom of the igneous crust here. The igneous crust, including the characteristic 7+ km/s lower crustal body, is even thicker on the East Greenland Margin. During the main igneous episode, sills intruded into the thick Cretaceous successions throughout the NE Atlantic margins. Strong crustal reflections can be mapped widespread on both conjugate margins. In some areas they are associated with the top of the high-velocity lower crustal body, in other areas they may represent deeply buried sedimentary sequence boundaries or moho at the base of the crust. Following breakup, the subsiding margins experienced modest sedimentation until the late Pliocene when large wedges of glacial sediments prograded into the deep ocean from uplifted areas along the continental margins. The outbuilding was probably initiated in Miocene time indicating pre-glacial tectonic uplift of Greenland, Fennoscandia and the Barents Shelf. The NE Atlantic margins also reveal evidence of widespread Cenozoic compressional deformation.

  3. Large and giant hydrocarbon accumulations in the transitional continent-ocean zone

    NASA Astrophysics Data System (ADS)

    Khain, V. E.; Polyakova, I. D.

    2008-05-01

    The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.

  4. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM

    NASA Astrophysics Data System (ADS)

    Anderson, John B.; Conway, Howard; Bart, Philip J.; Witus, Alexandra E.; Greenwood, Sarah L.; McKay, Robert M.; Hall, Brenda L.; Ackert, Robert P.; Licht, Kathy; Jakobsson, Martin; Stone, John O.

    2014-09-01

    Onshore and offshore studies show that an expanded, grounded ice sheet occupied the Ross Sea Embayment during the Last Glacial Maximum (LGM). Results from studies of till provenance and the orientation of geomorphic features on the continental shelf show that more than half of the grounded ice sheet consisted of East Antarctic ice flowing through Transantarctic Mountain (TAM) outlet glaciers; the remainder came from West Antarctica. Terrestrial data indicate little or no thickening in the upper catchment regions in both West and East Antarctica during the LGM. In contrast, evidence from the mouths of the southern and central TAM outlet glaciers indicate surface elevations between 1000 m and 1100 m (above present-day sea level). Farther north along the western margin of the Ross Ice Sheet, surface elevations reached 720 m on Ross Island, and 400 m at Terra Nova Bay. Evidence from Marie Byrd Land at the eastern margin of the ice sheet indicates that the elevation near the present-day grounding line was more than 800 m asl, while at Siple Dome in the central Ross Embayment, the surface elevation was about 950 m asl. Farther north, evidence that the ice sheet was grounded on the middle and the outer continental shelf during the LGM implies that surface elevations had to be at least 100 m above the LGM sea level. The apparent low surface profile and implied low basal shear stress in the central and eastern embayment suggests that although the ice streams may have slowed during the LGM, they remained active. Ice-sheet retreat from the western Ross Embayment during the Holocene is constrained by marine and terrestrial data. Ages from marine sediments suggest that the grounding line had retreated from its LGM outer shelf location only a few tens of kilometer to a location south of Coulman Island by ˜13 ka BP. The ice sheet margin was located in the vicinity of the Drygalski Ice Tongue by ˜11 ka BP, just north of Ross Island by ˜7.8 ka BP, and near Hatherton Glacier by ˜6.8 ka BP. Farther south, 10Be exposure ages from glacial erratics on nunataks near the mouths of Reedy, Scott and Beardmore Glaciers indicate thinning during the mid to late Holocene, but the grounding line did not reach its present position until 2 to 3 ka BP. Marine dates, which are almost exclusively Acid Insoluble Organic (AIO) dates, are consistently older than those derived from terrestrial data. However, even these ages indicate that the ice sheet experienced significant retreat after ˜13 ka BP. Geomorphic features indicate that during the final stages of ice sheet retreat ice flowing through the TAM remained grounded on the shallow western margin of Ross Sea. The timing of retreat from the central Ross Sea remains unresolved; the simplest reconstruction is to assume that the grounding line here started to retreat from the continental shelf more or less in step with the retreat from the western and eastern sectors. An alternative hypothesis, which relies on the validity of radiocarbon ages from marine sediments, is that grounded ice had retreated from the outer continental shelf prior to the LGM. More reliable ages from marine sediments in the central Ross Embayment are needed to test and validate this hypothesis.

  5. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  6. Evidence for submarine landslides and continental slope erosion related to fault reactivation during the last glaciation offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Saint-Ange, F.; Campbell, C.; MacKillop, K.; Mosher, D. C.; Piper, D. J.; Roger, J.

    2012-12-01

    Many studies have proposed that reactivation of dormant faults during deglaciation is a source of neotectonic activity in glaciated regions, but few have demonstrated the relationship to submarine landslides. In this study, seabed morphology and shallow geology of the outer continental margin adjacent to the Charlie Gibbs Fracture Zone off Newfoundland, Canada was investigated for evidence of this relationship. The glacial history and morphology of the margin suggest that the entire continental shelf in the area, coincident with major continental crustal lineaments, was ice-covered during the Last glacial cycle, and transverse troughs delineate the paleo-icestream drainage patterns. A recent investigation of Notre Dame Trough revealed the existence of large sediment failures on the shelf. The current study investigates complex seafloor erosion and widespread mass transport deposition (MTD) on the continental slope seaward of Notre Dame Trough, using recently-acquired high resolution seismic reflection data and piston cores. The new data reveal that a trough mouth fan (TMF) is present on the slope seaward of Notre Dame Trough. The Notre Dame TMF is characterized by a succession of stacked debris flows, but does not show a lobate shape in plan view like other classic TMFs. Instead, the Notre Dame TMF has abruptly-truncated margins suggesting post-depositional failure and erosion of the fan deposits. Seismic reflection data show that the locations of the failures along the TMF margin are coincident with a set of shallow faults; however the current dataset does not image the deeper portion of the faults. On the upper slope immediately south of the TMF, a narrow and deeply incised canyon is located along-trend with the Notre Dame Trough. The location of this canyon appears to be controlled by a fault. Downslope from this canyon, along the southern margin of the TMF, a 25 km wide, flat-floored, U-shaped valley was eroded into a succession of stacked MTD-filled channels. Seismic stratigraphic analysis shows that the valley developed around the same time as the adjacent TMF, however, the valley morphology and evidence for repeated slope failure suggests that the processes responsible for its formation were different than the processes that formed the nearby TMF. Age control provided from piston cores suggest that the last major slope failure that contributed to valley formation probably occurred at ~29 ka. Geotechnical measurements from piston cores show slightly underconsolidated sediments. The results indicate that this part of the margin is more unstable than Orphan Basin and Labrador slope regions. Given the low factor of safety and the complex fault system, low energy earthquake from the surrounding area could be enough to potentially trigger landslides.

  7. 76 FR 48861 - Notice of Issuance of Final Outer Continental Shelf Air Permit for Anadarko Petroleum Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Continental Shelf Air Permit for Anadarko Petroleum Corporation AGENCY: Environmental Protection Agency (EPA... final Outer Continental Shelf (OCS) air permit for Anadarko Petroleum Corporation (Anadarko). The permit... Petroleum Corporation regarding the project. EPA carefully reviewed each of the comments submitted and...

  8. Continental margin sedimentation: From sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins.- Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes- Explores timescales ranging from particle transport at one extreme, to deep burial at the other- Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy- Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation- Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  9. Modelling of sea floor spreading initiation and rifted continental margin formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.

  10. Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska

    USGS Publications Warehouse

    Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.

    2000-01-01

    Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.

  11. 76 FR 63654 - Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Protraction Diagram, Lease Maps, and Supplemental Official Outer Continental Shelf Block Diagrams AGENCY... Supplemental Official OCS Block Diagrams (SOBDs); Correction. SUMMARY: BOEM (formerly the Bureau of Ocean... Official OCS Shelf Block Diagrams'' that contained an error. This notice corrects the address of the Web...

  12. 77 FR 4294 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Air Pollution Regulations for Outer... electronic docket, go to www.regulations.gov . Title: Air Pollution Regulations for Outer Continental Shelf... Act gives EPA responsibility for regulating air pollution from outer continental shelf (OCS) sources...

  13. A multi-factor approach for process-based seabed characterization: example from the northeastern continental margin of the Korean peninsula (East Sea)

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Um, In-Kwon; Chun, Jong-Hwa; Kim, So-Ra; Lee, Gwang-Soo; Kim, Yuri; Kong, Gee-Soo; Horozal, Senay; Kim, Seong-Pil

    2018-04-01

    This study investigates sediment transport and depositional processes from a newly collected dataset comprising sub-bottom chirp profiles, multibeam bathymetry, and sediment cores from the northeastern continental margin of Korea in the East Sea (Japan Sea). Twelve echo-types and eleven sedimentary facies have been defined and interpreted as deposits formed by shallow-marine, hemipelagic sedimentation, bottom current, and mass-movement processes. Hemipelagic sedimentation, which is acoustically characterized by undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. The inner and outer continental shelf (<150 m water depth) have been influenced by shallow-marine sedimentary processes. Two slope-parallel canyons, 0.2-2 km wide and up to 30 km long, appear to have acted as possible conduits for turbidity currents from the shallower shelf into the deep basins. Bottom current deposits, expressed as erosional moats immediately below topographic highs, are prevalent on the southern lower slope at water depths of 400-450 m. Mass-movements (i.e., slides/slumps, debris flow deposits) consisting of chaotic facies characterize the lower slope and represent one of the most important sedimentary processes in the study area. Piston cores confirm the presence of mass-transport deposits (MTDs) that are characterized by mud clasts of variable size, shape, and color. Multibeam bathymetry shows that large-scale MTDs are chiefly initiated on the lower slope (400-600 m) with gradients up to 3° and where they produce scarps on the order of 100 m in height. Sandy MTDs also occur on the upper continental slope adjacent to the seaward edge of the shelf terrace. Earthquakes associated with tectonic activity and the development of fluid overpressure is considered as the main conditioning factor for destabilizing the slope sediments. Overall, the sedimentary processes show typical characteristics of a fine-grained clastic slope apron and change down-slope and differ within each physiographic province. Furthermore, the influence of geological inheritance (i.e., structural folds and faults) on geomorphology and sediment facies development is an important additional factor on the lower slopes. Together, these factors provide a rational basis for continental margin seabed characterization.

  14. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.

  15. 75 FR 1076 - Outer Continental Shelf Civil Penalties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ...The Outer Continental Shelf Lands Act requires the MMS to review the maximum daily civil penalty assessment for violations of regulations governing oil and gas operations in the Outer Continental Shelf at least once every 3 years. This review ensures that the maximum penalty assessment reflects any increases in the Consumer Price Index as prepared by the Bureau of Labor Statistics, U.S. Department of Labor. After conducting the required review in August 2009, the MMS determined that no adjustment is necessary at this time.

  16. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.

  17. 33 CFR 106.260 - Security measures for access control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...

  18. 33 CFR 106.260 - Security measures for access control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...

  19. 33 CFR 106.260 - Security measures for access control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...

  20. 33 CFR 106.260 - Security measures for access control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...

  1. 33 CFR 106.260 - Security measures for access control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental... unattended spaces that adjoin areas to which OCS facility personnel and visitors have access; (9) Ensure OCS...

  2. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  3. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, T.F.; Shimmield, G.B.; Price, N.B.

    1992-01-01

    The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance ofmore » sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.« less

  4. 78 FR 1759 - Notice of Approval of Clean Air Act Outer Continental Shelf Minor Source/Title V Minor Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Outer Continental Shelf Minor Source/Title V Minor Permit Modification Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States Environmental Protection Agency (EPA... decision granting Shell Offshore Inc.'s (``Shell'') request for minor modifications of Clean Air Act Outer...

  5. 77 FR 15118 - Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ...-0005; OMB Number 1014-NEW] Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other Than Oil, Gas, and Sulphur; Submitted for Office of Management and Budget (OMB... (ICR) for approval of the paperwork requirements in the regulations under Operations in the Outer...

  6. 78 FR 67326 - Safety and Environmental Management System Requirements for Vessels on the U.S. Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... 1625-AC05 Safety and Environmental Management System Requirements for Vessels on the U.S. Outer... ``Safety and Environmental Management System Requirements for Vessels on the U.S. Outer Continental Shelf... of industry to ensure stakeholders have adequate time to submit complete responses. DATES: Comments...

  7. 30 CFR 256.12 - Supplemental sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.12 Supplemental sales. (a) The Secretary may conduct a...

  8. 30 CFR 256.10 - Information to States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.10 Information to States. (a) The information covered...

  9. 30 CFR 256.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and... administer a leasing program for oil, gas and sulphur. The procedures under which the Secretary will exercise...

  10. The Continental Margins Program in Georgia

    USGS Publications Warehouse

    Cocker, M.D.; Shapiro, E.A.

    1999-01-01

    From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.

  11. 30 CFR 280.80 - Paperwork Reduction Act statement-information collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE PROSPECTING FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR ON THE OUTER CONTINENTAL SHELF... CFR part 280, Prospecting for Minerals other than Oil, Gas, and Sulphur on the Outer Continental Shelf...

  12. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A-type granitoids formed. 4) These dynamics are the result of subduction and extension of the oceanic plates that bordered East Asia. 5) The complex mosaic of geology and geochemistry is the result of compositional variation in the deep lithosphere, as well as variation in the dynamics of oceanic plate movements.

  13. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  14. 30 CFR 256.8 - Leasing maps and diagrams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.8 Leasing maps and diagrams. (a) Any area of the OCS...

  15. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  16. The Effect of Temperature Dependent Rheology on a Kinematic Model of Continental Breakup and Rifted Continental Margin Formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2004-12-01

    The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature dependent rheology and isovisous fluid-flow solutions. The effect of incorporating a lithology dependent continental lithosphere rheology (quartz-feldspar crust, olivine mantle) with temperature dependence is also being investigated. The work forms part of the Integrated Seismic Imaging and Modelling of Margins (iSIMM*) project. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research & Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & D. Healy.

  17. Methods used to identify seafloor spreading magnetic anomalies and to establish their relationship with the top of the basement topography in the Argentine continental margin between 35° S and 48° S

    NASA Astrophysics Data System (ADS)

    Abraham, D. A.; Ghidella, M. E.; Tassone, A.; Paterlini, M.; Ancarola, M.

    2013-05-01

    This paper discusses some methods for better identification of the spreading seafloor magnetic anomalies in the region between 35° S and 48° S at the outer edge of the continental margin of Argentina. In the area of Rio de la Plata craton and Patagonia Argentina, there is an extensional volcanic passive margin. This segment of the Atlantic continental margin is characterized by the existence of seismic reflectors sequences that lean toward the sea (seaward dipping reflectors - SDRs). These sequences of seismic reflectors, located in the transitional-continental basement wedge, are portrayed in seismic profiles as an interference pattern interpreted as basalt flows intercalated with sedimentary layers, and its origin is ascribed to volcanism occurred during the Early Cretaceous. The magnetic response of SDRs is in the area of the magnetic anomaly G (Rabinowitz and LaBrecque, 1979). Magnetic alignments are highlighted on a map by superimposing total field anomaly semitransparent layer of calculated numerical curvature. This method allows a regional identification of the most prominent alignments. It is convenient to calculate the curvature in the direction perpendicular to the magnetic alignments. The identification of seafloor spreading magnetic anomalies located in the eastern margin helps in the knowledge of the history of the Atlantic Ocean opening. M series magnetic alignments: M5n, M3n M0r (between 132 and 120 Ma) were identified in the analyzed area. The roughness of the top of the oceanic basement presents a contrast of amplitudes, in a wavelength range between about 4 km and 6 km, with the corresponding amplitudes in the area of the transitional crust. This contrast of amplitudes can be detected using spectral methods, especially short Fourier transform. The quantitative evaluation of the spectral energy density allowed the identification of wave numbers characterizing oceanic basement area and thus perform subsequent filtering of the signal with wavelengths found with the spectral method. The top of basement roughness was quantified using the root mean square (RMS), in sections of about 2 km, of residues between the depth of the basement top and first-degree polynomial that best fitted the sections. The spreading seafloor magnetic alignments are on oceanic crust area identified by the point of view of the roughness analysis. The combined use of the methods that we have developed on the magnetic surveys in the study area, allowed us to improve the layout of the magnetic alignments and identify the transition between oceanic and continental crust.

  18. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.

  19. New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    NASA Astrophysics Data System (ADS)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter

    2017-04-01

    New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data Krob, F.C.1, Stippich, C. 1, Glasmacher, U.A.1, Hackspacher, P.C.2 (1) Institute of Earth Sciences, Research Group Thermochronology and Archaeometry, Heidelberg University, INF 234, 69120, Heidelberg, Germany (2) Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Av. 24-A, 1515 Rio Claro, SP, 13506-900, Brazil Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic (Cretaceous time). This enables a possible interpretation of the southeastern Brazilian margin being an outer part of the Paraná basin and even the possible source area for the Ordovician to Carboniferous sediments. Further on, we try to research the newly gained exhumation history models for indications on the evolution and movement of the lithosphere of the southeastern Brazilian mantle.

  20. 33 CFR 106.300 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...

  1. 33 CFR 106.300 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...

  2. 33 CFR 106.300 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...

  3. 33 CFR 106.300 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Assessment (FSA) § 106.300 General. (a) The Facility Security Assessment (FSA) is a written document that is...

  4. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  5. Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America

    ERIC Educational Resources Information Center

    Poli, Maria-Serena; Capodivacca, Marco

    2011-01-01

    Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North…

  6. Image of the Moho across the continent-ocean transition, US east coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbrook, W.S.; Purdy, G.M.; Reiter, E.C.

    1992-03-01

    Strong wide-angle reflections from the Moho were recorded by ocean-bottom seismic instruments during the 1988 Carolina Trough multichannel seismic experiment, in an area where the Moho is difficult to detect with vertical-incidence seismic data. Prestack depth migration of these reflections has enabled the construction of a seismic image of the Moho across the continent-ocean transition of a sedimented passive margin. The Moho rises across the margin at a slope of 10{degree}-12{degree}, from a depth of about 33 km beneath the continental shelf to 20 km beneath the outer rise. This zone of crustal thinning defines a distinct, 60-70-km-wide continent-ocean transitionmore » zone. The authors interpret the Moho in the Carolina Trough as a Jurassic feature, formed by magmatic intrusion and underplating during the rifting of Pangea.« less

  7. Global occurrences of gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    2001-01-01

    Natural gas hydrate is found worldwide in sediments of outer continental margins of all oceans and in polar areas with continuous permafrost. There are currently 77 localities identified globally where geophysical, geochemical and/or geological evidence indicates the presence of gas hydrate. Details concerning individual gas-hydrate occurrences are compiled at a new world-wide-web (www) site (http://walrus.wr.usgs.gov/globalhydrate). This site has been created to facilitate global gas-hydrate research by providing information on each of the localities where there is evidence for gas hydrate. Also considered are the implications of gas hydrate as a potential (1) energy resource, (2) factor in global climate change, and (3) geohazard.

  8. Geology of continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    With continued high interest in offshore petroleum exploration, the 1977 AAPG Short Course presents the latest interpretations of new data bearing on the geology and geophysics of continental margins. Seven well-known earth scientists have organized an integrated program covering major topics involved in the development of ocean basins and continental margins with emphasis on the slopes and rises. The discussion of plate tectonics and evolution of continental margins is followed by presentations on the stratigraphy and structure of pull-apart and compressional margins. Prospective petroleum source rocks, their organic content, rate of burial, and distribution on slopes and rises of differentmore » margin types is covered. Prospective reservoir rock patterns are related to depositional processes and to the sedimentary and structural histories for different types of continental margins. Finally, the seismic recognition of depositional facies on slopes and rises for different margin types with varying rates of sediment supply during eustatic sea-level changes are discussed. The course with this syllabus offers an invaluable opportunity for explorationists to refresh their understanding of the geology associated with an important petroleum frontier. In addition, the course sets forth a technical frame of reference for the case-histoy papers to be presented later in the AAPG Research Symposium on the Petroleum Potential of Slopes, Rises, and Plateaus.« less

  9. 30 CFR 250.1405 - When is a case file developed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 250.1405 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf (OCS) Civil... Officer may administer oaths and issue subpoenas requiring witnesses to attend meetings, submit...

  10. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    NASA Astrophysics Data System (ADS)

    Zalan, Pedro

    2014-05-01

    Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.

  11. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    USGS Publications Warehouse

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2014-01-01

    The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  12. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2015-01-01

    The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascle, J.; Blarez, E.

    The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments,more » major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.« less

  14. 30 CFR 256.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.1... Secretary of the Interior (Secretary) will exercise the authority to administer a leasing program for oil...

  15. 30 CFR 256.4 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General... Secretary of the Interior to issue, on a competitive basis, leases for oil and gas, and sulphur, in...

  16. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...

  17. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...

  18. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...

  19. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including computer systems and networks; (vi) Existing agreements with private security companies; (vii) Any... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Facility Security Assessment (FSA... SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental...

  20. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  1. Post-breakup faulting of the outer Vøring Margin

    NASA Astrophysics Data System (ADS)

    Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Hafeez, A.; Abdelmalak, M. M.; Zastrozhnov, D.; Faleide, J. I.

    2017-12-01

    Tectonic activity on passive margins may continue for a long time after the main phase of continental breakup. On the southern Vøring Margin, offshore Norway, new high-quality 3D seismic data reveal the presence of extensive normal faults offsetting the Top basalt horizon, along with overlying lower Eocene age sediments. We have completed a detailed seismic interpretation of the new data using a combination of conventional seismic horizon interpretation and igneous seismic geomorphological techniques. The seismic data have been tied to scientific and industry wells to constrain the age of the interpreted horizons and the age and duration of the faulting. The Top basalt horizon displays a dominantly subaerial lava field, on the Vøring Marginal High, with well-defined lava flow morphologies including inflated flow lobes and surface pressure ridges. The prominent kilometer-high Vøring Escarpment was developed when landward flowing lava met the ocean, developing an extensive foreset bedded hyaloclastite delta. Later, a pitted surface was developed in the west during lava emplacement in a wet environment during subsidence of the central rift valley. Earliest Eocene sediments were subsequently deposited on the marginal high. Well-defined northeast trending faults are imaged on the marginal high, cutting across the escarpment. Spacing of the faults is ca. 400-500 m, and offsets are typically of ca. 30-50 m, often defining graben structures. The faults further offset the overlying earliest Eocene sequences in a number of examples. Based on the well ties, faulting mainly took place 5-10 m.y. after continental breakup near the Paleocene-Eocene boundary. Our hypothesis is that the faulting is related to strain partitioning across the developing Vøring Transform Margin. Plate tectonic constraints show that there was an active continent-continent transform in this region also for 10-15 m.y. after breakup. The transform margin is a linear, northwest trending structure, with a well-developed transform marginal high, the Mimir High, along its central part. The transform margin extends into the southwestern segment of the Jan Mayen Fracture Zone to the northwest. We speculate that the ocean basin separating the Vøring Spur from the Vøring Marginal High was formed by a rift propagation event during the same time period.

  2. Structure of the North American Atlantic Continental Margin

    USGS Publications Warehouse

    Schlee, J.S.; Klitgord, K.K.

    1986-01-01

    Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors

  3. 30 CFR 256.12 - Supplemental sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Supplemental sales. 256.12 Section 256.12 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management...

  4. 30 CFR 256.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Policy. 256.2 Section 256.2 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and...

  5. 76 FR 29156 - Outer Continental Shelf Air Regulations Consistency Update for California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 55 [OAR-2004-0091; FRL-9304-4] Outer Continental Shelf Air Regulations Consistency Update for California AGENCY: Environmental Protection Agency (EPA... ``significant regulatory action'' subject to review by the Office of Management and Budget under Executive Order...

  6. 75 FR 20859 - Outer Continental Shelf (OCS) Policy Committee; Notice and Agenda for Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF THE INTERIOR Minerals Management Service Outer Continental Shelf (OCS) Policy Committee; Notice and Agenda for Meeting AGENCY: Minerals Management Service (MMS), Interior. ACTION: Notice.... Jeryne Bryant at Minerals Management Service, 381 Elden Street, Mail Stop 4001, Herndon, Virginia 20170...

  7. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.

  8. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  9. 75 FR 24966 - Notice on Outer Continental Shelf Oil and Gas Lease Sales

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... DEPARTMENT OF THE INTERIOR Minerals Management Service Notice on Outer Continental Shelf Oil and Gas Lease Sales AGENCY: Minerals Management Service, Interior. ACTION: List of Restricted Joint Bidders. SUMMARY: Pursuant to the authority vested in the Director of the Minerals Management Service by...

  10. 30 CFR 285.101 - What is the purpose of this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF General Provisions...) grants for renewable energy production on the Outer Continental Shelf (OCS) and RUEs for the alternate... obligations when you undertake activities authorized in this part; and (c) Ensure that renewable energy...

  11. 76 FR 13205 - Notice on Outer Continental Shelf Oil and Gas Lease Sales

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Notice on Outer Continental Shelf Oil and Gas Lease Sales AGENCY: Bureau of Ocean Energy Management, Regulation... the name of an oil company listed under Group VIII in that notice. FOR FURTHER INFORMATION CONTACT...

  12. 30 CFR 256.8 - Leasing maps and diagrams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Leasing maps and diagrams. 256.8 Section 256.8 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management...

  13. 30 CFR 256.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Policy. 256.2 Section 256.2 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General § 256.2 Policy...

  14. 30 CFR 256.10 - Information to States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Information to States. 256.10 Section 256.10 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management...

  15. 77 FR 5561 - Information Collection Activities: Oil, Gas, and Sulphur Operations in the Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ...-0006; OMB Control Number 1014-NEW] Information Collection Activities: Oil, Gas, and Sulphur Operations in the Outer Continental Shelf, Subpart A, General; Submitted for Office of Management and Budget... Office of Management and Budget (OMB) for review and approval. The information collection request (ICR...

  16. 75 FR 17155 - Preparation of an Environmental Assessment (EA) for Proposed Outer Continental Shelf (OCS) Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... all requirements of NEPA, the Coastal Zone Management Act, Outer Continental Shelf Lands Act, and... consistent with each affected state's federally approved Coastal Zone Management program. Finally, the MMS...-circulation modeling, ecological effects of oil and gas activities, and hurricane impacts on coastal...

  17. Notices of Intent for Coverage Under the NPDES General Permit for Oil and Gas Exploration Facilities on the Outer Continental Shelf in the Chukchi Sea

    EPA Pesticide Factsheets

    Notices of Intent (NOIs) submitted to EPA for coverage under the NPDES general permit for discharges from oil and gas exploration facilities on the outer continental shelf in the Chukchi Sea off Alaska.

  18. 77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... by BOEM: (1) Oil and gas exploration and development; (2) renewable energy; and (3) marine minerals... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS) AGENCY: Bureau of Ocean Energy Management (BOEM...

  19. 76 FR 7518 - Outer Continental Shelf Air Regulations Consistency Update for Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 55 [EPA-R10-OAR-2011-0045; FRL-9265-3] Outer Continental Shelf Air Regulations Consistency Update for Alaska AGENCY: Environmental Protection Agency (``EPA... Greaves, Federal and Delegated Air Programs Unit, U.S. Environmental Protection Agency, Region 10, 1200...

  20. 30 CFR 250.1401 - Index table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Index table. 250.1401 Section 250.1401 Mineral... OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf (OCS) Civil Penalties § 250.1401 Index table. The following table is an index of the sections in this subpart: § 250.1401Table Definitions...

  1. 75 FR 61511 - Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of Ocean Energy Management, Regulation...

  2. 75 FR 10809 - Outer Continental Shelf (OCS) Scientific Committee-Notice of Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... AGENCY: Minerals Management Service (MMS), Interior. ACTION: Notice of renewal of the Outer Continental... Minerals Management Service. The Committee reviews the relevance of the research and data being produced to meet MMS scientific information needs for decisionmaking and may recommend changes in scope, direction...

  3. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  4. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  5. The Ocean-Continent Transition at the North Atlantic Volcanic Margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Christie, P. A.; Kusznir, N. J.; Roberts, A. M.; Eccles, J.; Lunnon, Z.; Parkin, C. J.; Smith, L. K.; Spitzer, R.; Roberts, A. W.

    2005-05-01

    The continental margins of the northern North Atlantic are the best studied volcanic margins in the world. There is a wealth of integrated wide-angle and deep seismic profiles across the continent-ocean transition and the adjacent oceanic and continental crust, several of which form conjugate margin studies. We show new results from the integrated Seismic Imaging and Modelling of Margins (iSIMM) profiles across the Faroes continental margin which image both the extruded volcanics which generate seaward dipping reflector sequences and the underlying lower-crustal intrusions from which the extruded basalts are fed. This enables estimation of the degree of continental stretching and the total volume of melt generated from the mantle at the time of continental breakup. The new results are set in the context of profiles along the entire northern North Atlantic margins. The pattern of melt generation during continental breakup and the initiation of seafloor spreading allows us to map the pattern of enhanced sub-lithospheric mantle temperatures caused by initiation of the Iceland mantle plume over this period. The initial mantle plume thermal anomalies have the shape of rising hot sheets of mantle up to 2000 km in length, which focus into a more axisymmetric shape under the present location of Iceland. These spatial and temporal variations in the mantle temperature exert important controls on the history of uplift and subsidence and thermal maturation of the sediments near the continental margin and its hinterland. The iSIMM Scientific Team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms, J Eccles and D Healy. The iSIMM project is supported by Liverpool and Cambridge Universities, Schlumberger Cambridge Research, Badley Technology Limited, WesternGeco, Amerada Hess, Anadarko, BP, ConocoPhillips, ENI-UK, Statoil, Shell, the NERC and DTI. We thank WesternGeco for provision of Q-streamer data.

  6. The pre-Atlantic Hf isotope evolution of the east Laurentian continental margin: Insights from zircon in basement rocks and glacial tillites from northern New Jersey and southeastern New York

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. Alex; Setera, Jacob; Mathez, Edmond; Vantongeren, Jill; Fossum, Ryanna

    2017-02-01

    This paper presents laser ablation U-Pb age and Hf isotope data for zircons from basement rocks and glacial deposits in northern New Jersey and southeastern New York. The purpose is to understand the eastern Laurentian continental margin's Hf isotope record in relation to its geologic evolution prior to the opening of the Atlantic Ocean. The basement samples encompass a Meso- to Neoproterozoic continental margin arc, an anatectic magmatic suite, as well as a Late Ordovician alkaline igneous suite emplaced during post-orogenic melting of the lithospheric mantle. Additional samples were collected from terminal moraines of two Quaternary continental ice sheets. Across the entire dataset, zircons with ages corresponding to the timing of continental margin arc magmatism ( 1.4 Ga to 1.2 Ga) have positive εHf(initial) values that define the more radiogenic end of a crustal evolution array. This array progresses towards more unradiogenic εHf(initial) values along a series of low 176Lu/177Hf (0.022 to 0.005) trajectories during subsequent anatectic magmatism ( 1.2 Ga to 1.0 Ga) and later metamorphic and metasomatic re-working ( 1.0 Ga to 0.8 Ga) of the continental margin arc crust. In contrast, nearly chondritic εHf(initial) values from the Late Ordovician alkaline magmas indicate that the Laurentian margin was underlain by a re-fertilized mantle source. Such a source may have developed by subduction enrichment of the mantle wedge beneath the continental margin during the Mesoproterozoic. Additionally, preliminary data from a metasedimentary unit of unknown provenance hints at the possibility that some of the sediments occupying this portion of the Laurentian margin prior to the Ordovician were sourced from crust older than 1.9 Ga.

  7. Environmental geologic studies on the southeastern United States Atlantic Outer Continental Shelf, 1977-1978

    USGS Publications Warehouse

    Popenoe, Peter; Popenoe, Peter

    1981-01-01

    This report is a summary of the second year of marine environmental research activities by the U.S. Geological Survey (USGS) on the southeaster U.S. Atlantic Continental Margin, in accordance with with Memorandum of Understanding (MOU) AA551-MU8-13 between the USGS and the Bureau of Land Management (BLM). The report covers studies whose fieldwork was conducted during the period from 1 October 1977 to 30 September 1978. The results of the first year of study are reported in Popenoe (1978a and b) and as U.S. Department of Commerce NTIS report PB 300-820. The purpose of these investigations is to provide basic geologic and oceanographic data to the BLM Outer Continental Shelf (OCS) Marine Environmental Studies Program in support of management decisions which relate to possible development of oil and gas resources of the continental shelf. The objectives of the USGS-BLM geologic research program for fiscal year 1978 (FY-78) were 1) to determine the sedimentation rates and processes on the upper slope and inner Blake Plateau; 2) to determine the distribution, areal extent, and vertical characteristics of geological features supportive of biological communities; 3) to monitor the transport of bottom sediment across the OCS, evaluate its possible effect on pollutant transfer along the seabed and the potential of sediment as a pollutant sink, determine the implications of erosion/deposition on pipeline emplacement, and aid the interpretation of chemical, biological, and physical data; 4) to determine the concentration levels of chosen trace metals and silica in three chemically defined fractions of the suspended particulate matter (seston); 5) to study the shelf edge and slope near areas of oil and gas interest, and the northern portion of the Blake Plateau for evidence of slope instability and other geologic hazards, and 6) to determine the depth and rate of sediment mixing caused by large storms and/or by benthic organisms and where possible to estimate the rate of active sediment accumulation.

  8. 78 FR 48180 - Consolidation of Officer in Charge, Marine Inspection For Outer Continental Shelf Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... for all Mobile Offshore Drilling Units and Floating Outer Continental Shelf Facilities (as defined in... Commander. Vessels requiring Coast Guard inspection include Mobile Offshore Drilling Units (MODUs), Floating... engage directly in oil and gas exploration or production in the offshore waters of the Eighth Coast Guard...

  9. 77 FR 1019 - Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental Shelf-Acquire a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ...-0045] RIN 1010-AD79 Renewable Energy Alternate Uses of Existing Facilities on the Outer Continental... rule related to acquiring a lease non-competitively for offshore renewable energy projects. DATES... or Timothy Redding, Renewable Energy, BOEM, at (703) 787-1219 or email [email protected

  10. 77 FR 5830 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ...] Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf Offshore... governments, offshore wind energy developers, and the public in the Department of the Interior's (DOI) ``Smart from the Start'' wind energy initiative offshore Massachusetts. The purpose of the ``Smart from the...

  11. 76 FR 5189 - BOEMRE Information Collection Activities: 1010-0081, Operations in the Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement [Docket ID No. BOEM-2010-0069] BOEMRE Information Collection Activities: 1010-0081, Operations in the Outer Continental Shelf for Minerals Other Than Oil, Gas, and Sulphur, Submitted for Office of Management and Budget...

  12. 76 FR 11079 - Oil and Gas and Sulphur Operations in the Outer Continental Shelf-Safety and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement 30 CFR Part 250 [Docket ID: BOEM-2010-0076] Oil and Gas and Sulphur Operations in the Outer Continental Shelf--Safety and Environmental Management Systems; Public Workshop AGENCY: Bureau of Ocean Energy Management...

  13. 76 FR 79705 - Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    .... BSEE-2011-0005; OMB Control Number 1014-NEW] Information Collection Activities: Operations in the Outer Continental Shelf for Minerals Other than Oil, Gas, and Sulphur; Submitted for Office of Management and Budget... Office of Management and Budget (OMB) for review and approval. The information collection request (ICR...

  14. 77 FR 68147 - Gulf of Mexico, Outer Continental Shelf (OCS), Western Planning Area (WPA), Oil and Gas Lease...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Environmental Impact Statement (Multisale FEIS). Authority: This NOA is published pursuant to the regulations... NEPA process. The Multisale FEIS evaluated the environmental and socioeconomic impacts for WPA Lease... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Gulf of Mexico, Outer Continental...

  15. 76 FR 50245 - Gulf of Mexico (GOM), Outer Continental Shelf (OCS), Western Planning Area (WPA), Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... (BOEMRE), Interior. ACTION: Notice of Availability (NOA) of a Final Supplemental Environmental Impact... sale's incremental contribution to the cumulative impacts on environmental and socioeconomic resources... Mexico (GOM), Outer Continental Shelf (OCS), Western Planning Area (WPA), Oil and Gas Lease Sale for the...

  16. 78 FR 9731 - Gulf of Mexico, Outer Continental Shelf (OCS), Central Planning Area (CPA) Oil and Gas Lease Sale...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Environmental Impact Statement (Multisale FEIS). Authority: This NOA is published pursuant to the regulations... the NEPA process. The Multisale FEIS evaluated the environmental and socioeconomic impacts for CPA... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Gulf of Mexico, Outer Continental...

  17. 78 FR 45965 - Research Lease on the Outer Continental Shelf (OCS) Offshore Virginia, Request for Competitive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ...; MMAA104000] Research Lease on the Outer Continental Shelf (OCS) Offshore Virginia, Request for Competitive... Unsolicited Request for an OCS Research Lease; Request for Competitive Interest (RFCI); and Request for Public... for wind energy research activities; (2) solicit indications of interest in a renewable energy lease...

  18. 78 FR 33859 - Outer Continental Shelf (OCS) Geological and Geophysical Exploration Activities in the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] Outer Continental Shelf...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of Intent; Notice of Scoping Meetings... 70123-2394, telephone (504) 736-3233. For information on the National Marine Fisheries Service (NMFS...

  19. 77 FR 44232 - Delegation of Authority To Implement and Enforce Outer Continental Shelf Air Regulations to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Outer Continental Shelf Air Regulations to the Delaware Department of Natural Resources and.... SUMMARY: On July 21, 2010, EPA sent the Delaware Department of Natural Resources and Environmental Control... of Natural Resources and Environmental Control, 89 Kings Highway, P.O. Box 1401, Dover, Delaware. FOR...

  20. 78 FR 36571 - North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official Protraction Diagram (OPDs) AGENCY... OPDs. SUMMARY: Notice is hereby given that effective with this publication two NAD 83-based OCS...

  1. 33 CFR 106.415 - Amendment and audit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amendment and audit. 106.415 Section 106.415 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL SHELF (OCS) FACILITIES Outer Continental Shelf (OCS) Facility Security Plan (FSP) § 106.415 Amendment and...

  2. 76 FR 14681 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Massachusetts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... No. BOEM-2010-0063] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore..., Regulation and Enforcement (BOEMRE), Interior. ACTION: Request for Interest (RFI) in Commercial Wind Energy... (BOEMRE) is reopening the comment period on the RFI in Commercial Wind Energy Leasing Offshore...

  3. A New Species of Hyperbenthic Cyclopoid Copepod from Japan: First Record of the Genus Cyclopicina in the Indo-Pacific Region.

    PubMed

    Ohtsuka, Susumu; Tanaka, Hayato; Boxshall, Geoffrey A

    2016-12-01

    A new species of the cyclopinid genus Cyclopicina, C. toyoshioae sp. nov., was collected from the hyperbenthic layer off northern Kyushu Island, Japan; its description is based on two adult female specimens. This is the first record of the genus from the Indo-Pacific region. The new species can be distinguished from its two known congeners in: (1) the relatively short antennules which do not reach the posterior margin of the dorsal cephalothoracic shield; (2) the shape of seminal receptacles; (3) the segmentation and armature of the cephalothoracic appendages; (4) the shape of the basal protrusion between the rami of legs 1-4; (5) the presence of three outer spines on the third exopodal segment of leg 4; and (6) the presence or absence of outer setae on the free exopodal segment of leg 5. The genus Cyclopicina shows a wide but scattered distribution in hyperbenthic layers, from the continental shelves to deep-sea basins, in the northern hemisphere.

  4. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  5. Nurture Versus Nature: Accounting for the Differences Between the Taiwan and Timor active arc-continent collisions

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.

  6. A model study of sediment transport across the shelf break

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2017-04-01

    A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.

  7. Preface - 'Biogeochemistry-ecosystem interaction on changing continental margins in the Anthropocene'

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Emeis, Kay-Christian; Levin, Lisa A.; Naqvi, Wajih; Roman, Michael

    2015-01-01

    This special issue is a product of Workshop 1 of IMBIZO III held in Goa, India in January 2013 (Bundy et al., 2013). This IMBIZO (a Zulu word for gathering) has been organized by IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) biannually since 2008. It employs a format of three concurrent but interacting workshops designed to synthesize information on topical research areas in marine science. Workshop 1 addressed the issue, "Biogeochemistry-ecosystem interaction in changing continental margins," which belongs to the purview of the Continental Margins Working Group (CMWG), co-sponsored by IMBER and LOICZ (Land-Ocean Interaction in the Coastal Zone). As a way to explore the emerging issues that concern the CMWG, the workshop had attracted 25 talks and 18 posters that explored the following topics: Human impacts on continental margins

  8. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  9. Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization

    USGS Publications Warehouse

    Slack, John F.; Falck, Hendrik; Kelley, Karen D.; Xue, Gabriel G.

    2017-01-01

    Detailed lithogeochemical data are reported here on early Paleozoic sedimentary rocks that host the large Howards Pass stratiform Zn-Pb deposits in Yukon-Northwest Territories. Redox-sensitive trace elements (Mo, Re, V, U) and Ce anomalies in members of the Duo Lake Formation record significant environmental changes. During the deposition of lower footwall units (Pyritic siliceous and Calcareous mudstone members), bottom waters were anoxic and sulphidic, respectively; these members formed in a marginal basin that may have become increasingly restricted with time. Relative to lower members, a major environmental change is proposed for deposition of the overlying Lower cherty mudstone member, which contains phosphorite beds up to ∼0.8 m thick in the upper part, near the base of the Zn-Pb deposits. The presence of these beds, together with models for modern phosphorite formation, suggests P input from an upwelling system and phosphorite deposition in an upper slope or outer shelf setting. The overlying Active mudstone member contains stratabound to stratiform Zn-Pb deposits within black mudstone and gray calcareous mudstone. Data for unmineralized black mudstone in this member indicate deposition under diverse redox conditions from suboxic to sulphidic. Especially distinctive in this member are uniformly low ratios of light to heavy rare earth elements that are unique within the Duo Lake Formation, attributed here to the dissolution of sedimentary apatite by downward-percolating acidic metalliferous brines. Strata that overlie the Active member (Upper siliceous mudstone member) consist mainly of black mudstone with thin (0.5–1.5 cm) laminae of fine-grained apatite, recording continued deposition on an upper slope or outer shelf under predominantly suboxic bottom waters. Results of this study suggest that exploration for similar stratiform sediment-hosted Zn-Pb deposits should include the outer parts of ancient continental margins, especially at and near stratigraphic transitions from marginal basin facies to overlying slope or shelf facies.

  10. Modelling of Continental Lithosphere Breakup and Rifted Margin Formation in Response to an Upwelling Divergent Flow Field Incorporating a Temperature Dependent Rheology

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2005-05-01

    We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is more plausible than a constant corner flow type solution and predicts levels of depth dependent stretching and continent ocean transitions consistent with observation. Depth dependent lithosphere stretching, which is observed at rifted continental margins, is predicted to occur before continental breakup and sea-floor spreading initiation. The model may be used to predict surface heat flow and bathymetry, and to provide estimates of melt production rates and cumulative thickness. We compare model predictions with observed margin structure for four diverse rifted margins: the Lofoten Margin (a mature volcanic margin), Goban Spur (a mature non-volcanic margin), the Woodlark Basin (a neotectonic young ocean basin) and the Faroe-Shetland Basin (a failed attempt at continental breakup). This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco¬Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  11. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  12. Distinct iron isotopic signatures and supply from marine sediment dissolution

    PubMed Central

    Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399

  13. 77 FR 7148 - Notice of Approval of Clean Air Act Outer Continental Shelf Permits Issued to Shell Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Shelf Permits Issued to Shell Gulf of Mexico, Inc., and Shell Offshore, Inc. for the Discoverer... Clean Air Act Outer Continental Shelf (OCS) permit applications, one from Shell Gulf of Mexico, Inc., for operation of the Discoverer drillship in the Chukchi Sea and one from Shell Offshore, Inc...

  14. 78 FR 8190 - Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...] Commercial Wind Leasing and Site Assessment Activities on the Atlantic Outer Continental Shelf (OCS) Offshore... Assessment (EA) for Commercial Wind Leasing and Site Assessment Activities on the OCS Offshore North Carolina... INFORMATION: Background: On December 13, 2012, BOEM published the Notice in the Federal Register (77 FR 74218...

  15. 77 FR 10711 - Safety Zone; KULLUK, Outer Continental Shelf Mobile Offshore Drilling Unit (MODU), Beaufort Sea, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...-AA00 Safety Zone; KULLUK, Outer Continental Shelf Mobile Offshore Drilling Unit (MODU), Beaufort Sea... on location in order to drill exploratory wells at various prospects located in the Beaufort Sea... in order to drill exploratory wells in several prospects located in the Beaufort Sea during the 2012...

  16. Managing the visual effects of outer continental shelf and other petroleum-related coastal development

    Treesearch

    Philip A. Marcus; Ethan T. Smith

    1979-01-01

    Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...

  17. 75 FR 18404 - Safety Zone; FRONTIER DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... on location in order to drill exploratory wells at various prospects located in the Chukchi and Beaufort Sea Outer Continental Shelf, Alaska, during the 2010 drilling season. The purpose of the temporary... allisions, oil spills, and releases of natural gas, and thereby protect the safety of life, property, and...

  18. 75 FR 80717 - Increased Safety Measures for Energy Development on the Outer Continental Shelf; Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... 211111, Crude Petroleum and Natural Gas Extraction and 213111, Drilling Oil and Gas Wells. For these... identify measures necessary to improve the safety of oil and gas exploration and development on the Outer Continental Shelf in light of the Deepwater Horizon event on April 20, 2010, and resulting oil spill. To...

  19. 30 CFR 250.1497 - When will BOEMRE monitor my financial solvency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When will BOEMRE monitor my financial solvency? 250.1497 Section 250.1497 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Civil Penaltie...

  20. 75 FR 68824 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Maryland-Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... will use responses to this RFI to enable BOEMRE to gauge specific interest in commercial development of... BOEMRE Maryland Renewable Energy Task Force. A detailed description of the RFI area is found later in... Energy and Alternate Uses of Existing Facilities on the Outer Continental Shelf (REAU) rule. If...

  1. DESIGNING AND CONDUCTING WORKSHOPS: LESSONS FROM A TWO-YEAR PROJECT (ONSHORE IMPACTS OF OUTER CONTINENTAL SHELF OIL AND GAS DEVELOPMENT: A TRAINING PROJECT)

    EPA Science Inventory

    The report describes the process of developing and conducting two series of workshops on 'Onshore Impact of Outer Continental Shelf Oil and Gas Development'. The purpose of this report is to evaluate the workshops from the standpoint of their objectives, content, teaching methods...

  2. 77 FR 47877 - Potential Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Maine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Maine; Request for Interest... Request for a Commercial OCS Wind Lease, Request for Interest, and Request for Public Comment SUMMARY: The... (Statoil NA) to acquire an OCS wind lease; (2) solicit public input regarding the proposal, its potential...

  3. 77 FR 74512 - Interim Policy Leasing for Renewable Energy Data Collection Facility on the Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... Policy Leasing for Renewable Energy Data Collection Facility on the Outer Continental Shelf off the Coast..., tribes, local governments, and the public in the preparation of an EA. The EA will consider the environmental consequences associated with issuing a lease for an offshore data collection facility located on...

  4. 76 FR 20367 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off Delaware...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... No. BOEM-2011-0008] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off... determination that no competitive interest exists in acquiring a commercial wind lease in the area offshore... a Request for Interest (RFI) in the Federal Register on April 26, 2010 (75 FR 21653). Bluewater Wind...

  5. 76 FR 4716 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off Delaware, Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... No. BOEM-2010-0075] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Off... commercial wind development on the OCS off Delaware and requests submission of indications of competitive... received two nominations of proposed lease areas: One from Bluewater Wind Delaware LLC (Bluewater) and...

  6. 78 FR 8190 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore North Carolina...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore North Carolina--Call for... Commercial Leasing for Wind Power Offshore North Carolina (Call), published on December 13, 2012 (77 FR 7204). DATES: BOEM must receive your nomination describing your interest in obtaining a commercial wind lease...

  7. Marginally outer trapped surfaces and symmetries

    NASA Astrophysics Data System (ADS)

    Carrasco, Alberto; Mars, Marc

    2009-05-01

    We study properties of outermost marginally outer trapped surfaces in slices of space-times possessing certain symmetries, like isometries, homotheties or conformal Killings. In particular, we find restrictions on these surfaces for the vector field generating the symmetry. As an application we give a result of non-existence of outermost marginally outer trapped surfaces in accelerated Friedmann-Lemaître-Roberson-Walker spacetimes.

  8. Geomorphology of the Southern Gulf of California Seafloor

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.

    2004-12-01

    A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.

  9. Effective elastic thickness along the conjugate passive margins of India, Madagascar and Antarctica: A re-evaluation using the Hermite multitaper Bouguer coherence application

    NASA Astrophysics Data System (ADS)

    Ratheesh-Kumar, R. T.; Xiao, Wenjiao

    2018-05-01

    Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te estimate.

  10. Holistic Approach Offers Potential to Quantify Mass Fluxes Across Continental Margins

    NASA Astrophysics Data System (ADS)

    Kuehl, Steven; Carter, Lionel; Gomez, Basil; Trustrum, Noel

    Most humans live on and utilize the continental margin, the surface of which changes continually in response to environmental perturbations such as weather, climate change, tectonism, earthquakes, volcanism, sea level, and human settlement and land use. Part of the margin is above sea level and the rest is submarine, but these land and seascape components are contiguous, and material transport from source to sink occurs as a seamless cascade. The margin responds to environmental perturbations by changing the nature and magnitude of a variety of important functions, including the distribution of soil formation and erosion; biogeochemical functioning (especially the storage and release of water, limiting nutrients and contaminants); and the form and behavior of geomorphic components from hill slopes and floodplains through the coastal zone to the continental rise. While some areas of the margin are eroding-for example, hill slopes-others accumulate sediment, such as tectonic basins and continental slope and rise. These areas record the history of surface changes. A major goal of the Earth science community is to provide quantitative explanations and predictions of the effects of environmental perturbations on surface changes and preserved sedimentary strata of continental margins. In past decades, margins have been investigated piecemeal by researchers who have tended to focus on a particular segment from one disciplinary perspective while eschewing the broader perspective of the margin as an interconnected whole. Recognizing this shortcoming, the U.S. National Science Foundation (NSF) has initiated the MARGINS Source-to-Sink (S2S) program, which, for the first time, will attempt to understand the functioning of entire margin systems through dedicated observational and community modeling studies. Following input from the Earth science community, the Waipaoa Sedimentary System (WSS) of the North Island, New Zealand, was chosen as one of the focus sites for possible study (see MARGINS Source-to-Sink science plan for selection criteria and rationale: http://www.ldeo.columbia.edu/margins/S2S/S2Ssciplan02.html).

  11. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.

  12. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  13. Seafloor Morphology And Sediment Discharge Of The Storfjorden And Kveithola Palaeo-Ice Streams (NW Barents Sea) During The Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica

    2010-05-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.

  14. Geology and biology of the "Sticky Grounds", shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane

    2016-08-01

    Shelf-margin carbonate mounds in water depths of 116-135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the "Sticky Grounds", trend along slope, are 5-15 m in relief with base diameters of 5-30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.

  15. A statistical overview of mass movement characteristics on the North American Atlantic outer continental margin

    USGS Publications Warehouse

    Booth, James S.; O'Leary, Dennis W.

    1992-01-01

    An analysis of 179 mass movements on the North American Atlantic continental slope and upper rise shows that slope failures have occurred throughout the geographic extent of the outer margin. Although the slope failures show no striking affinity for a particular depth as an origination level, there is a broad, primary mode centered at about 900 m. The resulting slides terminate at almost all depths and have a primary mode at 1100 m, but the slope/rise boundary (at 2200 m) also is an important mode. Slope failures have occurred at declivities ranging from 1° to 30° (typically, 4°); the resultant mass movement deposits vary in width from 0.2 to 50 km (typically, 1-2 km) and in length from 0.3 to 380 km (typically, 2–4 km), and they have been reported to be as thick as 650 m. On a numeric basis, mass movements are slightly more prevalent on open slopes than in other physiographic settings, and both translational and rotational failure surfaces are common. The typical mass movement is disintegrative in nature. Open slope slides tend to occur at lower slope angles and are larger than canyon slides. Further, large‐scale slides rather than small‐scale slides tend to originate on gentle slopes (≍ 3-4°). Rotational slope failures appear to have a slightly greater chance of occurring in canyons, but there is no analogous bias associated with translational failures. Similarly, disintegrative slides seem more likely to be associated with rotational slope failures than translational ones and are longer than their nondisintegrative counterparts. The occurrence of such a variety of mass movements at low declivities implies that a regional failure mechanism has prevailed. We suggest that earthquakes or, perhaps in some areas, gas hydrates are the most likely cause of the slope failures.

  16. Geology and biology of the "Sticky Grounds," shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

    USGS Publications Warehouse

    Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane

    2016-01-01

    Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.

  17. Continental transform margins : state of art and future milestones

    NASA Astrophysics Data System (ADS)

    Basile, Christophe

    2010-05-01

    Transform faults were defined 45 years ago as ‘a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Côte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.

  18. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  19. Very large dune formation along the Ebro outer continental shelf (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan

    2010-05-01

    Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes observed along the studied region are amongst the largest ever recognized on an outer shelf setting. Morphologic characters and the orientation towards SW and W directions suggest the Liguro-Provenzal-Catalan geostrophic current as the primary forcing factor in their formation. Contemporary hydrodynamic measurement at the Ebro continental shelf-edge show that near-bottom wave action is negligible in this area, whereas maximum shear stresses induced by currents are able to resuspend fine sand particles and prevent the relict transgressive deposits from being covered by mud. However, recorded nearbottom currents generate shear stresses below the critical value for transport the relict coarse sands found in the study area and form large bedforms. The comparison of successive bathymetric images and the relation wavelength/height suggest that the described very large dunes are inactive features over long periods, as observed in similar environments along several continental margins. Thus, the morphological configuration of the Columbretes outer shelf must have played a crucial role in enhancing the southward flowing bottom currents during energetic hydrodynamic events, giving them the potential to generate such bedforms.

  20. 76 FR 70748 - Outer Continental Shelf (OCS), Central and Western Gulf of Mexico, Oil and Gas Lease Sales for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Outer Continental Shelf (OCS), Central and Western Gulf of Mexico, Oil and Gas Lease Sales for Years 2012-2017 AGENCY: Bureau of Ocean... 229, Western GOM 2012 Sale 227, Central GOM 2013 Sale 233, Western GOM 2013 Sale 231, Central GOM 2014...

  1. 75 FR 17156 - Gulf of Mexico, Outer Continental Shelf, Western Planning Area, Oil and Gas Lease Sale 215 (2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... environmental assessment (EA) for proposed Gulf of Mexico Outer Continental Shelf (OCS) oil and gas Lease Sale... Environmental Impact Statement; Volumes I and II (Multisale EIS, OCS EIS/EA MMS 2007-018) and in the Gulf of...; Western Planning Area Sales 210, 215, and 218--Final Supplemental Environmental Impact Statement...

  2. 78 FR 76643 - Atlantic Wind Lease Sale 3 (ATLW3) Commercial Leasing for Wind Power on the Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ...: Nameplate capacity is the maximum rated electric output, expressed in MW, which the turbines of the wind facility under commercial operations can produce at their rated wind speed as designated by the turbine's...; MMAA104000] Atlantic Wind Lease Sale 3 (ATLW3) Commercial Leasing for Wind Power on the Outer Continental...

  3. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was thrusted onto the edge of the rifted continental block of the Dangerous Grounds. The subducted oceanic crust of the proto South China Sea must today be located below the Eastern part of Sabah and not along the present NW Sabah Trough.

  4. Multidisciplinary scientific program of investigation of the structure and evolution of the Demerara marginal plateau

    NASA Astrophysics Data System (ADS)

    Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus

    2017-04-01

    Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its Northern and Eastern border (2) DRADEM (2016) (see poster session) that better mapped the continental slope domain of the transform margin north of the Demerara plateau and was dedicated to the dredging of rocks outcropping on the continental slope, suspected to be Cretaceous in age and older, (3) MARGATS (2016) (see poster session) that was dedicated to the better understanding of the internal structure of the plateau and its different margins using multi-channels seismic and refraction methods. The combination of all those experiments allow us to paint an integrated portrait of the Demerara marginal plateau - that may be very useful in understanding the processes involved (1) in the individualization of such plateaus (volcanism, heritages, kinematics, …) (2) in their evolution (subsidence, mass-wasting processes, domains of deep-sea current acceleration). In the future, those scientific advances may allow to better define the natural resources associated with such marginal domains.

  5. Continental underplating after slab break-off

    NASA Astrophysics Data System (ADS)

    Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.

    2017-09-01

    We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.

  6. Geophysical evidence for a transform margin in Northwestern Algeria: possible vestige of a Subduction-Transform Edge Propagator

    NASA Astrophysics Data System (ADS)

    Badji, R.; Charvis, P.; Bracene, R.; Galve, A.; Badsi, M.; Ribodetti, A.; Benaissa, Z.; Klingelhoefer, F.; Medaouri, M.; Beslier, M.

    2013-12-01

    This work is part of the Algerian-French SPIRAL program (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) which provides unprecedented images of the deep structure of the western Algerian Margin based on several wide-angle and multichannel seismic data shot across the Algerian Margin. One of the different hypotheses for the opening of the western Mediterranean Sea, we are testing is that the western part of the Algerian margin was possibly part of the southern edge of the Alboran continental block during its westward migration related to the rollback of the Betic-Rif-Alboran subduction zone. A tomographic inversion of the first arrival traveltimes along a 100-km long wide-angle seismic profile shot over 40 Ocean Bottom Seismometers, across the Margin offshore Mostaganem (Northwestern Algerian Margin) was conducted. The final model reveals striking feature in the deep structure of the margin from north to south: 1- the oceanic crust is as thin as 4-km, with velocities ranging from 5.0 to 7.1 km/s, covered by a 3.3 km thick sedimentary pile (seismic velocities from 1.5 to 5.0 km/s) characterized by an intense diapiric activity of the Messinian salt layer. 2- a sharp transition zone, less than 10 km wide, with seismic velocities intermediate between oceanic seismic velocities (observed northward) and continental seismic velocities (observed southward). This zone coincides with narrow and elongated pull apart basins imaged by multichannel seismic data. No evidence of volcanism nor of exhumed serpentinized upper mantle as described along many extensional continental margins are observed along this segment of the margin. 3- a thinned continental crust coincident with a rapid variation of the Moho depth imaged from 12 to ~20 km with a dip up to 50%. The seafloor bathymetry is showing a steep continental slope (>20%). Either normal or inverse faults are observed along MCS lines shot in the dip direction but they do not present large vertical displacement and could be related primarily to strike slip motion. These results support the hypothesis, that the margin offshore Mostaganem is not an extensional margin but rather a transform margin. There is little evidence of tectonic inversion as described eastward along the Kabylian Margin. Possibly strike slip motion affected the thinned continental crust and the transition zone suggesting that this margin is a vestige of the Subduction-Transform Edge Propagator (STEP) related to the westward migration of the Alboran block.

  7. Natural gas hydrate occurrence and issues

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1994-01-01

    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  8. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material therefore accumulates in the proximal rift and rift margin, thickening them and lifting them by isostatic response to the thickening. Flow into the rift margin is opposed by uplift and folding of the upper, strong crust, which imposes an additional normal stress, until crust thickens no more. However, flow continues through this thickened crust, thickening and uplifting the area "downstream", so widening the thickened area. Flow and uplift can continue until a reduction in imposed far-field compressive stress causes a consequent large reduction in inflow, thereby 'freezing' the thickened crust in place. Erosion of the uplifted area will lead to further uplift of the uneroded material because of the isostatic response to the erosion. Reference Cloetingh, S. & Burov, E. 2010: Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research 22, 1365-2117. doi:10.1111/j.1365-2117.2010.00490.x.

  9. Impacts of Outer Continental Shelf (OCS) development on recreation and tourism. Volume 5. Program logic manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final report for the project is presented in five volumes. This volume is the Programmer's Manual. It covers: a system overview, attractiveness component of gravity model, trip-distribution component of gravity model, economic-effects model, and the consumer-surplus model. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism.

  10. Revised oil-spill risk analysis: Beaufort Sea outer continental shelf lease sale 170. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.; Johnson, W.; Marshall, C.

    1997-11-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Beaufort Sea for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. This report summarizes results of oil-spill risk analysis conducted for the proposed Beaufort Sea lease sale.

  11. 75 FR 17159 - Notice of Availability of the Proposed Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 215 in the Western Planning... matter of information to the public. With regard to oil and gas leasing on the OCS, the Secretary of the... NOS for Sale 215 and a ``Proposed Notice of Sale Package'' containing information essential to...

  12. 76 FR 52344 - Notice of Availability of the Proposed Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Availability of the Proposed Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 218... matter of information to the public. With regard to oil and gas leasing on the OCS, the Secretary of the... NOS for Sale 218 and a ``Proposed Notice of Sale Package'' containing information essential to...

  13. 77 FR 43355 - Notice of Availability of the Proposed Notice of Sale for Outer Continental Shelf (OCS) Oil and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Proposed Notice of Sale for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 229 in the Western...: Notice of Availability of the Proposed Notice of Sale for Proposed Sale 229. SUMMARY: BOEM announces the availability of the Proposed Notice of Sale (NOS) for proposed Sale 229 in the WPA. This sale will be the first...

  14. 77 FR 4360 - Notice of Availability of the Proposed Notice of Sale for Outer Continental Shelf (OCS) Oil and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Proposed Notice of Sale for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 216/222 in the Central...: Notice of Availability of the Proposed Notice of Sale for Proposed Sale 216/222. SUMMARY: BOEM announces the availability of the proposed Notice of Sale (NOS) for proposed Sale 216/222 in the CPA. This...

  15. Tectonics of the Western Gulf of Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.S.; Ross, D.A.

    1979-07-10

    The Oman line, running northward from the Strait of Hormuz separates a continent-continent plate boundary to the northwest (Persian Gulf region) from an ocean-continent plate boundary to the southeast (Gulf of Oman region). A large basement ridge detected on multichannel seismic reflection and gravity profiles to the west of the Oman line is probably a subsurface continuation of the Musandam peninsula beneath the Strait of Hormuz. Collision and underthrusting beneath Iran of the Arabian plate on which this ridge lies has caused many of the large earthquakes that have occurred in this region. Convergence between the oceanic crust of themore » Arabian plate beneath the Gulf of Oman and the continental Eurasian plate beneath Iran to the north is accommodated by northward dipping subduction. A deformed sediment prism which forms the offshore Makran continental margin and which extends onto land in the Iranian Makran has accumulated above the descending plate. In the western part of the Gulf of Oman, continued convergence has brought the opposing continental margin of Oman into contact with the Makran continental margin. This is an example of the initial stages of a continent-continent type collision. A model of imbricate thrusting is proposed to explain the development of the fold ridges and basins on the Makran continental margin. Sediments from the subducting plate are buckled and incorporated into the edge of the Makran continental margin in deformed wedges and subsequently uplifted along major faults that penetrate the accretionary prism further to the north.« less

  16. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Cuthbert, Simon

    2017-04-01

    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.

  17. Role of local to regional-scale collisions in the closure history of the Southern Neotethys, exemplified by tectonic development of the Kyrenia Range active margin/collisional lineament, N Cyprus

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui

    2016-04-01

    Active margin processes including subduction, accretion, arc magmatism and back-arc extension play a key role in the diachronous, and still incomplete closure of the S Neotethys. The S Neotethys rifted along the present-day Africa-Eurasia continental margin during the Late Triassic and, after sea-floor spreading, began to close related to northward subduction during the Late Cretaceous. The northern, active continental margin of the S Neotethys was bordered by several of the originally rifted continental fragments (e.g. Taurides). The present-day convergent lineament ranges from subaqueous (e.g. Mediterranean Ridge), to subaerial (e.g. SE Turkey). The active margin development is partially obscured by microcontinent-continent collision and post-collisional strike-slip deformation (e.g. Tauride-Arabian suture). However, the Kyrenia Range, N Cyprus provides an outstanding record of convergent margin to early stage collisional processes. It owes its existence to strong localised uplift during the Pleistocene, which probably resulted from the collision of a continental promontory of N Africa (Eratosthenes Seamount) with the long-lived S Neotethyan active margin to the north. A multi-stage convergence history is revealed, mainly from a combination of field structural, sedimentological and igneous geochemical studies. Initial Late Cretaceous convergence resulted in greenschist facies burial metamorphism that is likely to have been related to the collision, then rapid exhumation, of a continental fragment (stage 1). During the latest Cretaceous-Palaeogene, the Kyrenia lineament was characterised by subduction-influenced magmatism and syn-tectonic sediment deposition. Early to Mid-Eocene, S-directed thrusting and folding (stage 2) is likely to have been influenced by the suturing of the Izmir-Ankara-Erzincan ocean to the north ('N Neotethys'). Convergence continued during the Neogene, dominated by deep-water terrigenous gravity-flow accumulation in a foredeep setting. Further S-directed compression took place during Late Miocene-earliest Pliocene (stage 3) in an oblique left-lateral stress regime, probably influenced by the collision of the Tauride and Arabian continents to the east. Strong uplift of the active margin lineament then took place during the Pleistocene, related to incipient continental collision (stage 4). The uplift is documented by a downward-younging flight of marine and continental terrace deposits on both flanks of the Kyrenia Range. The geological record of the S Neotethyan active continental margin, based on regional to global plate kinematic reconstructions, appears to have been dominated by on-going convergence (with possible temporal changes), punctuated by the effects of relatively local to regional-scale collisional events. Similar processes are likely to have affected other S Neotethyan segments and other convergent margins.

  18. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.

  19. The Sunda-Banda Arc Transition: New Insights From Marine Wide-Angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Planert, L.; Shulgin, A.; Kopp, H.; Mueller, C.; Flueh, E.; Lueschen, E.; Engels, M.; Dayuf Jusuf, M.

    2007-12-01

    End of 2006, RV SONNE cruise SO190 SINDBAD (Seismic and Geoacoustic Investigations along the Sunda- Banda Arc Transition) went south of the Indonesian archipelago to acquire various geophysical datasets between 112 °E and 122 °E. The main goal of the project is to investigate the modifications of the lower plate (variability in the plate roughness, transition from oceanic to continental lower plate) and their effects on the tectonics of the upper plate (development of an outer high and forearc basin, accretionary and erosive processes). The tectonic style changes in neighboring margin segments from an oceanic plate-island arc subduction along the eastern Sunda margin to a continental plate-island arc collision along the Banda margin. Moreover, the character of the incoming oceanic plate varies from the rough topography in the area where the Roo Rise is subducting off eastern Java, to the smooth oceanic seafloor of the Argo- Abyssal Plain subducting off Bali, Lombok, and Sumbawa. In order to cover the entire variations of the lower plate, seven seismic refraction profiles were conducted along four major north-south oriented corridors of the margin, at 113 °E, 116 °E, 119 °E, and 121 °E, as well as three profiles running perpendicular to the major corridors. A total of 239 ocean bottom hydrophone and seismometer deployments were successfully recovered. Shooting was conducted along 1020 nm of seismic profiles using a G-gun cluster of 64 l. Here, we present velocity models obtained by applying a tomographic approach which jointly inverts for refracted and reflected phases. Additional geometry and velocity information for the uppermost layers, obtained by prestack depth migration of multichannel seismic reflection data (see poster of Mueller et al. in this session), is incorporated into our models and held fixed during the iterations. geomar.de/index.php?id=sindbad

  20. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.

  1. Mineral resource management of the Outer Continental Shelf : leasing procedures, evaluation of resources, and supervision of production operations on leased lands of the Outer Continental Shelf

    USGS Publications Warehouse

    Adams, Maurice V.; John, C.B.; Kelly, R.F.; LaPointe, A.E.; Meurer, R.W.

    1975-01-01

    An important function of the Geological Survey is the evaluation and management of the mineral resources of the Outer Continental Shelf, particularly with respect to oil and gas, salt, and sulfur. Production of oil and gas from the Outer Continental Shelf of the United States has increased substantially over the past 20 years and represents an increasing percentage of total United States production. As discovery of major onshore production of oil and gas has become more difficult, the search has moved into the surrounding waters where submerged sedimentary formations are conducive to the accumulation of oil and gas. Increased energy demands of recent years have accelerated the pace of offshore operations with a corresponding improvement in technology as exploration and development have proceeded farther from shore and into deeper water. While improved technology and enforcement of more stringent regulations have made offshore operations safer, it is unrealistic to believe that completely accident-free operations can ever be achieved. Only slightly more than six percent of the world's continental terrace is adjacent to the United States, but less than one percent has been explored for oil and gas. Since the lead time for the development of offshore oil and gas resources can be as much as a decade, they do not provide an immediate energy supply but should be viewed in the light of a near-term source with a potential of becoming a medium-range source of supply pending the development of alternative energy sources. Revenues from the Outer Continental Shelf are deposited to the general fund of the United States Treasury. A major portion of these funds is allocated to the Land and Water Conservation Fund, the largest Federal grant-in-aid program of assistance to States, counties, and cities for the acquisition and development of public parks, open space, and recreation lands and water.

  2. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  3. Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments

    USGS Publications Warehouse

    Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.

    2000-01-01

    The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.

  4. Multiple outer-reef tracts along the south Florida bank margin: Outlier reefs, a new windward-margin model

    USGS Publications Warehouse

    Lidz, Barbara H.; Hine, A.C.; Shinn, Eugene A.; Kindinger, Jack G.

    1991-01-01

    High-resolution seismic-reflection profiles off the lower Florida Keys reveal a multiple outlier-reef tract system ~0.5 to 1.5 km sea-ward of the bank margin. The system is characterized by a massive, outer main reef tract of high (28 m) unburied relief that parallels the margin and at least two narrower, discontinuous reef tracts of lower relief between the main tract and the shallow bank-margin reefs. The outer tract is ~0.5 to 1 km wide and extends a distance of ~57 km. A single pass divides the outer tract into two main reefs. The outlier reefs developed on antecedent, low-gradient to horizontal offbank surfaces, interpreted to be Pleistocene beaches that formed terracelike features. Radiocarbon dates of a coral core from the outer tract confirm a pre-Holocene age. These multiple outlier reefs represent a new windward-margin model that presents a significant, unique mechanism for progradation of carbonate platforms during periods of sea-level fluctuation. Infilling of the back-reef terrace basins would create new terraced promontories and would extend or "step" the platform seaward for hundreds of metres. Subsequent outlier-reef development would produce laterally accumulating sequences.

  5. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  6. Expanded U.S. mid-Atlantic Margin Deep-Water Allostratigraphy; Bottom-Current Controls on Margin Evolution

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Miller, N. C.; Hutchinson, D. R.; Ten Brink, U. S.; Mountain, G. S.; Chaytor, J. D.; Shillington, D. J.

    2017-12-01

    There is a long history of seismic stratigraphic interpretation/analysis of the sedimentary sequence along the U.S. mid-Atlantic Margin (MAM). Here we expand the allostratigraphic (unconformity-bound) framework from the outer continental shelf to the Hatteras Abyssal Plain by correlating recently acquired 2D multi-channel seismic reflection data with existing drill sites and legacy 2D seismic data collected over the past 42 yrs. The new 2D post-stack Kirchhoff time migrated seismic data were acquired using R/V Marcus G. Langseth in 2014-2015 during USGS ECS surveys MGL1407 & MGL1506 and NSF-funded ENAM-CSE survey MGL1408. We map six seismic horizons along 1.5x104 km of 2D data and tie each to stratigraphic unconformities sampled at DSDP site 603 (lower rise). From shallow to deep they are: (1) M2, latest Miocene; (2) X, middle Miocene; (3) Au, late Oligocene; (4) A*, Late Cretaceous; (5) Km, early Late Cretaceous; and (6) Beta, middle Early Cretaceous. The horizons were converted to depth (mbsl) using high-resolution interval velocity models generated for each 2D survey line and isopachs were produced using the depth-converted stratigraphic framework for each allostratigraphic unit. The time-to-depth function was confirmed to be within 5% of drilling results at DSDP Sites 603 and nearby 105. Additionally, we tie horizon Au to upper-slope ODP Sites 902 & 1073, and trace it to the outer shelf. Interpretation of the framework and resulting isopachs show total sediment thickness uniformly decreasing seaward from the shelf edge, and overall thickening to the south. Regional depositional trends display a combination of both down slope and along slope processes (e.g. mass wasting, submarine fan formation, contourite and sediment drift deposits). The unit bound by horizons Au & Beta confirms pervasive excavation from the mid-slope to the continental rise and across the central and southern MAM (from New Jersey to North Carolina). How the excavated sediments were redistributed is unknown, but the magnitude and spatial extent of the bottom-current erosion are well constrained by our study. The southern MAM has experienced a number of significant mass wasting events spanning the Miocene-Pleistocene, suggesting that bottom-current erosion may have played a role in undercutting, and therefore over-steepening the slope.

  7. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.

  8. Rollback of an intraoceanic subduction system and termination against a continental margin

    NASA Astrophysics Data System (ADS)

    Campbell, S. M.; Simmons, N. A.; Moucha, R.

    2017-12-01

    The Southeast Indian Slab (SEIS) seismic anomaly has been suggested to represent a Tethyan intraoceanic subduction system which operated during the Jurassic until its termination at or near the margin of East Gondwana (Simmons et al., 2015). As plate reconstructions suggest the downgoing plate remained coupled to the continental margin, this long-lived system likely experienced a significant amount of slab rollback and trench migration (up to 6000 km). Using a 2D thermomechanical numerical code that includes the effects of phase transitions, we test this interpretation by modeling the long-term subduction, transition zone stagnation, and rollback of an intraoceanic subduction system in which the downgoing plate remains coupled to a continental margin. In addition, we also investigate the termination style of such a system, with a particular focus on the potential for some continental subduction beneath an overriding oceanic plate. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-735738

  9. Extension of the Narmada — Son lineament on the continental margin off Saurashtra, Western India as obtained from magnetic measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharya, G. C.; Subrahmanyam, V.

    1986-12-01

    Magnetic total intensity values and bathymetric data collected on the continental margin off Saurashtra were, used to prepare magnetic anomalies and bathymetric contour maps. The magnetic anomalies are considered to have been caused by the Deccan Trap flood basalts which underlie the Tertiary sediments. Interpretation of the magnetic data using two-dimensional modelling method suggests that the magnetic basement is block faulted and deepens in steps from less than 1.0 km in the north to about 8.0 km towards the southern portion of the study area. The WNW-ESE trending faults identified in the present study extend across the Saurashtra continental margin between Porbandar and Veraval and appear to represent a major linear tectonic feature. The relationship of these fault lineaments with the regional tectonic framework have been discussed to indicate that they conform better as the northern boundary faults of the Narmada rift graben on the continental margin off Saurashtra.

  10. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  11. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  12. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves

    NASA Astrophysics Data System (ADS)

    Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.

    2011-07-01

    Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.

  13. Impacts of Outer Continental Shelf (OCS) development on recreation and tourism. Volume 4. User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final report for the project is presented in five volumes. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism in California. This volume is the User's Guide. It includes the following topics: Introduction and Summary Guide; Input Data Files; Gravity Model Programs; Economic Effects Model Programs; Consumer Surplus Model Programs; References; and Appendices.

  14. Style of extensional tectonism during rifting, Red Sea and Gulf of Aden

    USGS Publications Warehouse

    Bohannon, R.G.

    1989-01-01

    Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author

  15. A quantitative analysis of transtensional margin width

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Buiter, Susanne J. H.

    2018-06-01

    Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).

  16. Illustrations of the importance of mass wasting in the evolution of continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Ryan, W.; Twichell, D.

    1990-05-01

    Side-looking sonar imagery and swath bathymetry from a variety of contemporary continental slopes all display erosional scars and debris aprons, illustrating the importance of mass wasting in the evolution of continental margins. The continental slopes examined include slopes fed directly from the fronts of ice sheets, slopes adjacent to continental shelves that were the sites of glacial outwash, slopes supplied exclusively by fluvial drainage, slopes at carbonate platforms, and slopes on accretionary prisms. Examples are drawn from the Atlantic Ocean, the Gulf of Mexico, and the Mediterranean Sea in both passive and active continental margin settings. The sonar imagery andmore » bathymetry used in this study indicate that continental slopes in different tectonic and climatic environments show similar forms of mass wasting. However, in some cases the dominant mode of erosion and/or the overall degree of mass wasting appears to be distinct to particular sedimentary environments. Timing of both recent and older exhumed erosional surfaces identified in the imagery and in seismic reflection profiles is obtained by ground truth observations using submersibles, towed camera sleds, drilling, and coring. These observations suggest that eustatic fluctuations common to all the margins examined do not explain the range in magnitude and areal density of the observed mass wasting. More localized factors such as lithology, diagenesis, pore fluid conditions, sediment supply rates, and seismic ground motion appear to have a major influence in the evolution of erosional scars and their corresponding unconformities.« less

  17. Passive recording of an active transform, an example from the Levant continental margin and the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Lang, Guy; Lazar, Michael; Schattner, Uri

    2017-04-01

    Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.

  18. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  19. Polar continental margins: Studies off East Greenland

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.

    The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.

  20. Toroidal marginally outer trapped surfaces in closed Friedmann-Lemaître-Robertson-Walker spacetimes: Stability and isoperimetric inequalities

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Xie, Naqing

    2017-10-01

    We investigate toroidal marginally outer trapped surfaces (MOTS) and marginally outer trapped tubes (MOTT) in closed Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. They are constructed by embedding constant mean curvature (CMC) Clifford tori in a FLRW spacetime. This construction is used to assess the quality of certain isoperimetric inequalities, recently proved in axial symmetry. Similarly to spherically symmetric MOTS existing in FLRW spacetimes, the toroidal ones are also unstable.

  1. Influence of margin segmentation and anomalous volcanism upon the break-up of the Hatton Bank rifted margin, west of the UK

    NASA Astrophysics Data System (ADS)

    Elliott, G. M.; Parson, L. M.

    2007-12-01

    The Hatton Bank margin, flanking the Iceland Basin is a widely cited example of a volcanic rifted margin. Prior to this study insights into the break-up history of the margin have been limited to profiles in the north and south, yet whilst valuable, the along margin tectono-magmatic variability has not been revealed. Over 5660 line km of high quality reflection seismic profiles with supplementary multibeam bathymetry were collected to support the UK's claim to Hatton region under the United Nations Convention on Law of the Sea (UNCLOS). Integration of this new data with existing profiles, allowed the margin to be divided into three segments, each of which are flanked by oceanic crust with a smooth upper surface and internal dipping reflectors. The southernmost segment is characterised by a series of inner and outer seaward dipping reflector (SDR) packages, which are separated by an outer high feature. The outer SDR are truncated by Endymion Spur, a chain of steep sided, late stage volcanic cones linked with necks. The central sector has no inner SDR package and is characterised by the presence of a highly intruded continental block, the Hatton Bank Block (HBB). The northern sector is adjacent to Lousy Bank, with a wider region of SDR recognised than to the south and a high amount of volcanic cones imaged. The variations in the distribution of the SDR's along the margin, the presence of the HBB and Endymion Spur all suggest that the break-up process was not uniform alongstrike. The division of the margin into three sectors reveals that structural segmentation played an important role in producing the variations along the margin. Break- up initiated in the south and progressed north producing the SDR packages witnessed, when the HBB was encountered the focus of break-up moved seaward of the block. The northern sector was closer to the Iceland Hotspot and hence a greater amount of volcanism is encountered. The smooth oceanic basement also indicates a high thermal flux leading to high melt production and subsidence rates forming the dipping reflectors. Shortly after break-up the eruption of Endymion Spur occurred. The nature of the magma erupted is unknown but from the steepness of the cones, it is inferred to be viscous and considering the setting, mostly likely a tholeiitic cumulate. A possible trigger for the Endymion Spur is the passage of a pulse of hotter than normal asthenospheric material along the margin, which interacted with lower crustal material to produce melt to feed the volcanic centres. Enhanced asthenospheric heat flow has been invoked to explain the V-shaped ridges along the present day Reykjanes Ridge and it is probable that the Endymion Spur represents previous such pulses along the margin/spreading axis. The location of the enhanced volcanism is itself controlled by crustal segmentation, with the Endymion Spur limited to the southern sector. The crustal thickness in this sector is approx. 2 to 3 km thinner than that found in the central segment, in which Endymion Spur is absent. The role of the segmentation along the margin has influenced the break-up style (presence or absence of SDR) and also the location and nature of post break-up volcanism.

  2. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  3. Outer continental shelf, Beaufort Sea, oil and gas lease sale 170 (proposed notice of sale)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The Minerals Management Service (MMS) is issuing this proposed Notice of Sale under the Outer Continental Shelf (OCS) Lands Act (43 U.S.C. 1331-1356, as amended) and the regulations issued thereunder (30 CFR Part 256). A `Sale Notice Package,` containing this Notice and several supporting and essential documents referenced in the Notice, is available from the MMS Alaska OCS Regional Office Public Information Unit.

  4. An oilspill risk analysis for the North Atlantic outer continental shelf lease area

    USGS Publications Warehouse

    Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.

    1976-01-01

    The Federal Government has proposed to lease 1,172,795 acres of Outer Continental Shelf (OCS) lands on Georges Bank off the New England Coast for oil and gas development. Estimated recoverable petroleum resources for the proposed 206 tract sale area range from 180 to 650 million barrels. Contingent upon actual discovery of this quantity of oil, production is expected to span a period of about 20 years. An oilspill risk analysis was conducted to determine relative environmental hazards of developing oil in the North Atlantic Outer Continental Shelf lease area. The study analyzed probability of spill occurrence, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)

  5. Depositional history, nannofossil biostratigraphy, and correlation of Argo Abyssal Plain Sites 765 and 261

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bown, Paul R.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites.Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features.Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765 's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765.AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the continental margin that lay below the photic zone, but above the CCD. The Jurassic-Lower Cretaceous section is about the same thickness across the AAP; turbidites in this interval appear to have had multiple sources along the Australian margin. The Upper Cretaceous-Cenozoic section, however, is three times thicker at Site 765 than at Site 261; turbidites in this interval were derived predominantly from the south.Patterns of sedimentation across the AAP have been influenced by shifts in sea level, the CCD, and configuration of the continental margin. Major pulses of calcareous turbidite deposition occurred during Valanginian, Aptian, and Neogene time—all periods of eustatic lowstands and depressed CCD levels. Sediment redeposited on the AAP has come largely from the Australian outer shelf, continental slope, or rise, rather than the continent itself. Most terrigenous detritus was trapped in epicontinental basins that have flanked northwestern Australia since the early Mesozoic.

  6. Study of crustal structure and stretch mechanism of central continental shelf of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.

    2017-12-01

    Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.

  7. First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific

    2013-04-01

    The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.

  8. Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data

    NASA Astrophysics Data System (ADS)

    d'Acremont, Elia; Leroy, Sylvie; Beslier, Marie-Odile; Bellahsen, Nicolas; Fournier, Marc; Robin, Cécile; Maia, Marcia; Gente, Pascal

    2005-03-01

    The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. Its mean orientation, N75°E, strikes obliquely (50°) to the N25°E opening direction. The western conjugate margins are masked by Oligo-Miocene lavas from the Afar Plume. This paper concerns the eastern margins, where the 19-35 Ma breakup structures are well exposed onshore and within the sediment-starved marine shelf. Those passive margins, about 200 km distant, are non-volcanic. Offshore, during the Encens-Sheba cruise we gathered swath bathymetry, single-channel seismic reflection, gravity and magnetism data, in order to compare the structure of the two conjugate margins and to reconstruct the evolution of the thinned continental crust from rifting to the onset of oceanic spreading. Between the Alula-Fartak and Socotra major fracture zones, two accommodation zones trending N25°E separate the margins into three N110°E-trending segments. The margins are asymmetric: offshore, the northern margin is narrower and steeper than the southern one. Including the onshore domain, the southern rifted margin is about twice the breadth of the northern one. We relate this asymmetry to inherited Jurassic/Cretaceous rifts. The rifting obliquity also influenced the syn-rift structural pattern responsible for the normal faults trending from N70°E to N110°E. The N110°E fault pattern could be explained by the decrease of the influence of rift obliquity towards the central rift, and/or by structural inheritance. The transition between the thinned continental crust and the oceanic crust is characterized by a 40 km wide zone. Our data suggest that its basement is made up of thinned continental crust along the southern margin and of thinned continental crust or exhumed mantle, more or less intruded by magmatic rocks, along the northern margin.

  9. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    NASA Astrophysics Data System (ADS)

    Kováč, Michal; Márton, Emő; Oszczypko, Nestor; Vojtko, Rastislav; Hók, Jozef; Králiková, Silvia; Plašienka, Dušan; Klučiar, Tomáš; Hudáčková, Natália; Oszczypko-Clowes, Marta

    2017-08-01

    The data on the Neogene geodynamics, palaeogeography, and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (ALCAPA Mega-unit) are summarized, re-evaluated, supplemented, and newly interpreted. The proposed concept is illustrated by a series of palinspastic and palaeotopographic maps. The Miocene development of the Outer Carpathians reflects the vanishing subduction of the residual oceanic and/or thinned continental crust. A compression perpendicular to the front of the orogenic system led to the closing of residual flysch troughs and to accretionary wedge growth, as well as to the development of a foredeep on the margin of the European Platform. Docking of the Outer Western Carpathians accretionary wedge, together with the Central Western Carpathians and Northern Pannonian domain, was accompanied by stretching of the overriding microplate. An orogen parallel and perpendicular extension was associated with the opening and subsidence of the Early and Middle Miocene hinterland (back-arc) basin system that compensated counter-clockwise rotations of the individual crustal fragments of ALCAPA. The Late Miocene development relates to the opening of the Pannonian Basin System. This process was coupled with common stretching of both ALCAPA and Tisza-Dacia Mega-units due to the pull exerted by subduction rollback in front of the Eastern Carpathians. The filling up of the hinterland basin system was associated with thermal subsidence and was followed by the Pliocene tectonic inversion and consequent erosion of the basin system margins, as well as part of the interior.

  10. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California

    NASA Astrophysics Data System (ADS)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  11. The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin

    USGS Publications Warehouse

    Storlazzi, Curt D.; Reid, Jane A.

    2010-01-01

    Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.

  12. IODP drilling in the South China Sea in 2017 will address the mechanism of continental breakup

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Larsen, H. C.; Lin, J.; Pang, X.; McIntosh, K. D.; Stock, J. M.; Jian, Z.; Wang, P.; Li, C.

    2016-12-01

    Geophysical exploration and scientific drilling along the North Atlantic rifted continental margins suggested that passive continental margins can be classified into two end members: magma-rich and magma-poor. Bearing seaward-dipping reflector sequences (SDRS) and highly mafic underplated high velocity lower crust (HVLC), the magma-rich margin is thought to be related to large igneous provinces (LIP) or mantle plume activity. Magma-poor margins have been drilled offshore Iberia and Newfoundland, where brittle faults cut through the whole crust and reach the upper mantle. Following seawater infiltration, the mantle was serpentinized and exhumed in the continent-ocean transition zone (COT). Later geophysical exploration and modeling suggested that in magma-poor margins lithosphere may break up in different styles, including uniform breakup, lower crust exhumation, or upper mantle exhumed at the COT, etc. The northern continental margin of the South China Sea (SCS) between longitude 114.5º and 116.5º hosts features that might be similar to both of the two end-members defined in the North Atlantic. Wide-angle seismic studies suggest that below the inner margin, crustal underplating of high velocity material is present, while syn-rift as well as post-rift intrusive features are visible and have in places been verified by industry drilling. However, the profound volcanism and associated SDRS formation are entirely lacking, and thus classification as a volcanic rifted margin can be ruled out. Instead, the COT exhibits a profound thinning of the continental crust towards the ocean crust of the SCS, showing some similarity to the Iberia type margin. The crustal thinning is caused by low-angle faults that have stretched the upper continental crust. There are indications of lower crustal flow toward the SCS. Alternatively, these extensional faults may have reached the lithospheric mantle and generated serpentinized material in a similar fashion as seen off Iberia. It will require deep drilling and sampling of characteristic basement units within the COT to distinguish. Four months of drilling by IODP to address this question is scheduled for February to June in 2017. The IODP drilling has the potential to support a third breakup mechanism theorized by modelling in addition to the two types drilled.

  13. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  14. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.

  15. Rift migration explains continental margin asymmetry and crustal hyper-extension

    PubMed Central

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  16. A primer on the geological occurrence of gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert).Natural gas hydrates occur world-wide in polar regions, usually associated with onshore and offshore permafrost, and in sediment of outer continental and insular margins. The total amount of methane in gas hydrates probably exceeds 1019 g of methane carbon. Three aspects of gas hydrates are important: their fossil fuel resource potential; their role as a submarine geohazard; and their effects on global climate change. Because gas hydrates represent a large amount of methane within 2000 m of the Earth's surface, they are considered to be an unconventional, unproven source of fossil fuel. Because gas hydrates are metastable, changes of pressure and temperature affect their stability. Destabilized gas hydrates beneath the sea floor lead to geological hazards such as submarine slumps and slides, examples of which are found world-wide. Destabilized gas hydrates may also affect climate through the release of methane, a 'greenhouse' gas, which may enhance global warming and be a factor in global climate change.

  17. An oilspill risk analysis for the Mid-Atlantic Outer Continental Shelf lease area

    USGS Publications Warehouse

    Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.

    1976-01-01

    An oilspill risk analysis was conducted to determine relative environmental impacts of developing oil in different regions of the Mid-Atlantic Outer Continental Shelf lease area. The study analyzed probability of spills, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)

  18. Stability of marginally outer trapped surfaces and symmetries

    NASA Astrophysics Data System (ADS)

    Carrasco, Alberto; Mars, Marc

    2009-09-01

    We study the properties of stable, strictly stable and locally outermost marginally outer trapped surfaces in spacelike hypersurfaces of spacetimes possessing certain symmetries such as isometries, homotheties and conformal Killings. We first obtain results for general diffeomorphisms in terms of the so-called metric deformation tensor and then particularize to different types of symmetries. In particular, we find restrictions at the surfaces on the vector field generating the symmetry. Some consequences are discussed. As an application, we present a result on non-existence of stable marginally outer trapped surfaces in slices of FLRW.

  19. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental Terrane is interpreted to have been attached to the South China margin from the Cretaceous until the Oligocene oceanization of the South China Sea. In our preferred paleogeographic scenario, the sediment provenance in the northeastern South China Sea region changed from dominantly nearby Cretaceous continental arcs of the South China margin to more distal southeastern South China in the Eocene.

  20. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.

  1. Tectonic Evolution of Mozambique Ridge in East African continental margin

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2017-04-01

    Tectonic Evolution of Mozambique Ridge in East African continental margin Yong Tang He Li ES.Mahanjane Second Institute of Oceanography,SOA,Hangzhou The East Africa passive continental margin is a depression area, with widely distributed sedimentary wedges from southern Mozambique to northern Somali (>6500km in length, and about 6km in thickness). It was resulted from the separation of East Gondwana, and was developed by three stages: (1) rifting in Early-Middle Jurassic; (2) spreading from Late Jurassic to Early Cretaceous; (3) drifting since the Cretaceous period. Tectonic evolution of the Mozambique continental margin is distinguished by two main settings separated by a fossil transform, the Davie Fracture Zone; (i) rifting and transform setting in the northern margin related to opening of the Somali and Rovuma basins, and (ii) rifting and volcanism setting during the opening of the Mozambique basin in the southern margin. 2D reflection seismic investigation of the crustal structure in the Zambezi Delta Depression, provided key piece of evidence for two rifting phases between Africa and Antarctica. The magma-rich Rift I phase evolved from rift-rift-rift style with remarkable emplacement of dyke swarms (between 182 and 170 Ma). Related onshore outcrops are extensively studied, the Karoo volcanics in Mozambique, Zimbabwe and South Africa, all part of the Karoo "triple-junction". These igneous bodies flow and thicken eastwards and are now covered by up to 5 km of Cretaceous and Tertiary sediments and recorded by seismic and oil exploration wells. Geophysical and geological data recorded during oceanographic cruises provide very controversial results regarding the nature of the Mozambique Ridge. Two conflicting opinions remains open, since the early expeditions to the Indian Ocean, postulating that its character is either magmatic (oceanic) or continental origin. We have carried out an China-Mozambique Joint Cruise(CMJC) on southern Mozambique Basin on 1st June to 23rd June,2017. The CMJC used multi-beam bathymetric, sub-bottom profiling, multi-channel reflection seismic, wide-angle refraction and Gravity to collect data. The preliminary new findings include: (1) the thick-layer sediments during Tertiary and Cretaceous; (2) the southern continental margin mainly affected by the rifting and volcanism during the stages of the Mozambique Basin formation; (3) the Cretaceous sediments located along the Mozambique Basin in both marine and continental environment.

  2. The George V Land Continental Margin (East Antarctica): new Insights Into Bottom Water Production and Quaternary Glacial Processes from the WEGA project

    NASA Astrophysics Data System (ADS)

    Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.

    2004-12-01

    The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary to what happens on the Antarctic Peninsula margin, the relation between the Quaternary sedimentation and the glacial - interglacial cycles are less evident in the lithofacies observed on the continental rise area. This characteristic suggests a different glacial dynamic along the Wilkes Land continental margin that is less sensitive to the small climatic changes, with respect to the western (Antarctic Peninsula) margin.

  3. Shallow structure and stratigraphy of the carbonate West Florida continental slope and their implications to sedimentation and geohazards

    USGS Publications Warehouse

    Doyle, Larry J.

    1983-01-01

    An 1800-joule sparker survey of the West Florida continental slope between about 26?N and 29?15?N showed a top bed of Pleistocene age forming an irregular drape over a surface that is probably Pliocene. The contact between the top two layers is unconformable in the south and, in some places, shows karst collapse and solution features. Karst topography grades into a more hummocky erosional surface to the north, which in turn smoothes out; the contact become conformable still further north. A period of folding, which is widespread over the outer portion of the study area and which may be related to large scale mass wasting, occurred at about the same time represented by the unconformity. Significant subsidence has occurred as late as Pleistocene. The surface layer thins to a minimum (0 in the south) at about 525-meters water depth and then thickens again dramatically to the west, downslope. This thinning is interpreted to be due to the Loop Current, which flows from north to south in the area and which acts to block deposition and scour the bottom. Despite the fact that the margin is dominated by carbonates, usually associated with low sedimentation rates, there is widespread evidence of mass wasting affecting ancient and surficial deposits on the outer part of the upper slope. Three potential groups of geohazards identified are: 1. Potential bottom failure in areas where a thin top layer overlies the karst surface. 2. Potential for sliding and slumping. 3. Scour due to currents which could also affect drilling and engineering activities.

  4. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  5. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration. Particle tracking is used to predict P-T-t histories for both Iberia-Newfoundland and the Alpine Tethys conjugate margin transects. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. Initial continental crust thickness and lithosphere temperature structure are important in controlling initial elevation and subsequent subsidence and depositional histories. Numerical models are used to examine the possible isostatic responses of the present-day and fossil analogue rifted margins.

  6. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development and use of resources; (3) to design governance regimes to stem unsustainable practices; (4) to investigate how to enable equitable sharing of costs and benefits from sustainable use of resources; and (5) to evaluate alternative research approaches and partnerships that address the challenges faced on the Margin.

  7. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper slope is inferred as the source of gravity flows driving canyon evolution. Canyon morphology is shown to be maintained over the course of more than one fall and rise in sea-level. Our model of canyon evolution is applicable to other passive margins (e.g. Argentine continental margin).

  8. The Flemish Cap - Goban Spur conjugate margins: New evidence of asymmetry

    NASA Astrophysics Data System (ADS)

    Gerlings, J.; Louden, K. E.; Minshull, T. A.; Nedimović, M. R.

    2011-12-01

    The combined results of deep multichannel seismic (MCS) and refraction/wide-angle reflection seismic (R/WAR) profiles across the Flemish Cap-Goban Spur conjugate margin pair will be presented to help constrain rifting and breakup processes. Both profiles cross magnetic anomaly 34 and extend into oceanic crust, which makes it possible to observe the complete extensional history from continental rifting through the formation of initial oceanic crust. Kirchhoff poststack time and prestack time and depth migration images of the Flemish Cap MCS data are produced using a velocity model constructed from the MCS and R/WAR data. These new images show improved continuity of the Moho under the thick continental crust of Flemish Cap. The basement morphology image is sharper and reflections observed in the thin crust of the transition zone are more coherent. A basement high at the seaward-most end of the transition zone now displays clear diapiric features. To compare the two margins, the existing migrated MCS data across Goban Spur has been time-to-depth converted using the R/WAR velocity model of the margin. These reimaged seismic profiles demonstrate asymmetries in continental rifting and breakup with a complex transition to oceanic spreading: (1) During initial phases of rifting, the Flemish Cap margin displays a sharper necking profile than that of the Goban Spur margin. (2) Within the ocean-continent-transition zone, constraints from S-wave velocities on both margins indentifies previously interpreted oceanic crust as thinned continental crust offshore Flemish Cap in contrast with primarily serpentinized mantle offshore Goban Spur. (3) Continental breakup and initial seafloor spreading occur in a complex, asymmetric manner where the initial ~50 km of oceanic crust appears different on the two margins. Offshore Flemish Cap, both R/WAR and MCS results indicate a sharp boundary immediately seaward of a ridge feature, where the basement morphology becomes typical of slow seafloor spreading. There are no significant changes in either reflectivity or velocity seaward toward magnetic anomaly 34. On the Goban Spur margin in marked contrast, the basement morphology landward of magnetic anomaly 34 is shallower and has lower relief, and the velocity model indicates a diffuse change between the transitional crust and seafloor spreading. The results from these two very different conjugate margins emphasize the importance of having both types of seismic data from both conjugate margins when interpreting the geodynamic processes.

  9. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the progressive change in location of depocenters and amount of sediment supply, but Pleistocene climatic change and deforestation alone can be observed to double river sediment discharge. The latter observation helps explain the anomalously high deposition rates in Pleistocene turbidite systems compared with older systems that may be controlled more by tectonic and sea-level changes alone. During the past 2000 years, in contrast, man has controlled deposition in the Ebro margin system, first by deforestation that more than doubled river sediment discharge and shelf deposition rates to equal those of Pleistocene time; and second by dam contruction that reduced sediment discharge to less than 5% of the normal Holocene discharge. Similar recent discharge reductions from the Nile and Rhone Rivers suggest that loss of the majority of the river sediment supply in the Mediterranean Sea may result in significant erosion of biologically and agriculturally important lobate delta areas. ?? 1990.

  10. Thickening the outer margins of the Tibetan Plateau: The role of crustal shortening

    NASA Astrophysics Data System (ADS)

    Lease, R. O.; Burbank, D. W.

    2012-12-01

    One of the most direct consequences of the collision of two buoyant continents is large-scale crustal thickening that results in the upward and outward growth of high terrain. As the stronger Indian continent has collided with weaker Asia over at least the past 50 Myr, widespread crustal thickening has occurred over an area that is approximately 2.5 million km^2 at present. The resultant Tibetan crust is the thickest observed on Earth today with an average thickness of 65 km and a maximum that may reach 90 km in places. The mechanisms by which Tibetan crust has thickened, however, as well as the timing and distribution of these mechanisms across the plateau, remain debatable. Two of the most popular mechanisms for thickening the crust beneath the margins of the Tibetan Plateau are: 1) pure shear with faulting and folding in the upper crust and horizontal shortening below; and 2) flow and inflation of lower or middle crust without significant shortening of the upper crust. To help discriminate between the relative contributions of these two mechanisms, well-constrained estimates of upper crustal shortening are needed. Here we document the Cenozoic shortening budget across the northeastern Tibetan Plateau margin near 36°N 102.5°E with several 100- to 145-km-long balanced cross sections. Thermochronological and magnetostratigraphic data indicate that modest NNE-SSW shortening began in middle Eocene time, shortly after initial India-Asia collision. Accelerated east-west shortening, however, did not commence until ~35 Myr later. A five-fold acceleration in shortening rates in middle Miocene-to-Recent time accounts for more than half of the total Cenozoic crustal shortening and thickening in this region. Overall, the balanced cross sections indicate 11 ± 2 % east-west shortening since middle Miocene time, and ~9 ± 2 % NNE-SSW shortening between middle Eocene and middle Miocene times. Given the present-day crustal thickness of 56 ± 4 km in northeastern Tibet, crustal restorations that remove Cenozoic shortening suggest that the northeastern Tibetan crust was 45 ± 5 km thick prior to India-Asia continental collision. This pre-collision thickness estimate is equivalent to average continental crustal thicknesses both adjacent to the Tibetan plateau (44 ± 4 km) and globally (41 ± 6 km) and suggests that pure shear alone may account for Cenozoic crustal thickening in northeastern Tibet, obviating the need for lower crustal flow. Furthermore, a growing number of balanced cross sections across the margins of the Tibetan Plateau document Cenozoic shortening sufficient to generate modern crustal thicknesses: in northern Tibet [Yin et al., 2007; 2008a; 2008b], eastern Tibet [Hubbard et al., 2009; 2010], and northeastern Tibet [this work]. Collectively, these similar findings suggest that lower crustal flow is either unnecessary to account for Cenozoic crustal thickening beneath the outer margins of the Tibetan Plateau or, alternatively, has a more restricted role than originally proposed.

  11. Oil-Spill Analysis: Gulf of Mexico Outer Continental Shelf (OCS) Lease Sales, Eastern Planning Area, 2003-2007 and Gulfwide OCS Program, 2003-2042

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The Federal Government plans to offer U.S. Outer Continental Shelf (OCS) lands in the Eastern Planning Area of the Gulf of Mexico (GOM) for oil and gas leasing. This report summarizes results of that analysis, the objective of which was to estimate the risk of oil-spill contact to sensitive offshore and onshore environmental resources and socioeconomic features from oil spills accidentally occurring from the OCS activities.

  12. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic

    NASA Astrophysics Data System (ADS)

    Golonka, J.

    2004-03-01

    Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic-Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic-Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus-proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian-Penninic-Pieniny-Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic-Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western-central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous-Cenomanian. The latest Cretaceous-Paleogene was the time of the closure of the Ligurian-Pieniny Ocean. Adria-Alcapa terranes continued their northward movement during Eocene-Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians. During the Late Cretaceous, the Lesser Caucasus, Sanandaj-Sirjan and Makran plates were sutured to the Iranian-Afghanistan plates in the Caucasus-Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian-Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene-Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW-SE wrench faults. The remnants of Jurassic-Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.

  13. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  14. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  15. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Xia; Berne, Serge; Saito, Yoshiki; Lericolais, G.; Marsset, T.

    2000-08-01

    Paleoenvironments and stratigraphy have been interpreted from 4380 km of seismic profiling collected during a geological and geophysical cruise on the continental shelf of the East China Sea (ECS) undertaken in 1996. The geophysical data are correlated with a borehole situated on the outer shelf obtained by Shanghai Marine Geology Bureau, indicating that six seismic units have been preserved since oxygen-isotope stage 6, including four regressive-transgressive cycles. Seismic units U2, U3+U4+U5, U6, and U7 are interpreted to correspond respectively to oxygen-isotope stages 1, 3, 5, and 6, implying that sediment partitioning and sequence architecture in the ECS have been controlled by glacio-eustasy and global climate changes. Alternating continental and marine strata corresponding to glaciation and interglaciation are well preserved on the outer shelf of the ECS. Most of the cold environment strata, which formed on the outer shelf during oxygen-isotope stages 2 and 4, are too thin to be recognized on SIG 600J because of resolution, but corresponding erosion surfaces exist. Seismic unit U7 is widespread over the shelf, extending to the continental edge and showing little variation in thickness, as the regression was pronounced and lasted a long time. Thus, U7 can be used as a marker layer for correlation of Quaternary strata on the shelf of the ECS. Post-glacial transgression is obvious in the ECS. Marine strata with varied thickness were developed in the shallow sea of the inner shelf, thinning toward the outer shelf. The continental shelf of the ECS has been influenced by Pacific tide-wave systems for a long time, forming tidal sand-ridge sequences, developed during transgressions, corresponding to oxygen-isotope stages 7 (or 9), 5, 3 and 1.

  16. Sedimentological fingerprint of modern and ancient meltwater outbursts across Antarctic continental shelves and slopes

    NASA Astrophysics Data System (ADS)

    Anderson, J. B.; Simkins, L. M.; Prothro, L. O.

    2016-12-01

    On formerly glaciated Antarctic continental shelves, the crystalline inner shelf is commonly dissected by linked subglacial lake and channel systems; however, signatures of meltwater are rare within subglacial and glacial-marine deposits on the middle to outer continental shelf. Recent observations of ice-marginal landforms incised by meltwater channels in the western Ross Sea indicate pulses of meltwater outbursts at marine-based grounding lines during deglaciation of the continental shelf. Here we present sedimentological evidence of meltwater outbursts and associated plumes from new and legacy cores collected on the continental shelf and slope within the Ross Sea, Amundsen Sea, and Marguerite Bay. Discrete fine-grained silt deposits are found overlying till and within proximal grounding line deposits and open-marine diatomaceous sediments. The deposits are massive to laminated, contain little to no coarser material, moderately sorted and dominated by a 10 μm grain-size mode. Grain-size measurements show no indication of winnowing; therefore, we interpret these deposits as meltwater deposits, transported by subglacial meltwater drainage systems to the grounding line and dispersed further seaward by meltwater plumes. The similarity of the deposits down-core and between shelf and slope sites within the Ross Sea, Amundsen Sea, and Marguerite Bay indicate that sorting and/or production of the fine silts occurs due to subglacial hydrodynamic processes. These distinctive meltwater deposits within the stratigraphic record provide an accessible proxy for identifying meltwater discharge from the Antarctic Ice Sheet and potentially be used to correlate cores on and off the continental shelf. Dating events on the continental shelf is notoriously difficult; therefore, deeper ocean records offer an easier means of bracketing the timing of meltwater discharge events. Longer records of ice dynamics from off the continental shelf are commonly used to reconstruct IRD records, and now can be used to reconstruct meltwater discharge histories, perhaps even extending back to warmer periods when the Antarctic Ice Sheet was a more temperate system that experienced seasonal surface melt, similar to the modern Greenland Ice Sheet.

  17. Crustal structure and extension mode in the northwestern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George

    2016-06-01

    Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.

  18. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    USGS Publications Warehouse

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle

  19. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end-members of dynamic topography evolution along passive margins and their hinterlands, differentiating topographic stability, long-term pronounced subsidence, initial stability over a dynamic high followed by moderate subsidence and regions that are relatively proximal to subduction zones with varied dynamic topography histories. Along passive continental margins the most commonly observed process is a gradual move from dynamic highs towards lows during the fragmentation of Pangea, reflecting that many passive margins now overly slabs sinking in the lower mantle. Our best-fit model results in up to 500 ±150 m of total dynamic subsidence of continental interiors while along passive margins the maximum predicted dynamic topographic change over 140 million years is about 350 ±150 m of subsidence. Models with plumes exhibit clusters of transient passive margin uplift of about 200 ±200m. The good overall match between predicted dynamic topography and geologically mapped paleo-coastlines makes a convincing case that mantle-driven topographic change is a critical component of relative sea level change, and one of the main driving forces generating the observed geometries and timings of large-scale shifts in paleo-coastlines.

  20. 30 CFR 291.1 - What is MMS's authority to collect information?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR APPEALS OPEN AND NONDISCRIMINATORY ACCESS TO OIL AND GAS PIPELINES UNDER THE OUTER... been denied open and nondiscriminatory access to Outer Continental Shelf (OCS) pipelines as sections of...

  1. 77 FR 61633 - Information Collection: Renewable Energy and Alternate Uses of Existing Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...] Information Collection: Renewable Energy and Alternate Uses of Existing Facilities on the Outer Continental... requirements in the regulations under ``Renewable Energy and Alternate Uses of Existing Facilities on the Outer..., transportation, or transmission of energy from sources other than oil and gas (renewable energy). Specifically...

  2. Upper mantle structure at Walvis Ridge from Pn tomography

    NASA Astrophysics Data System (ADS)

    Ryberg, Trond; Braeuer, Benjamin; Weber, Michael

    2017-10-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.

  3. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin

    USGS Publications Warehouse

    England, Philip; Wells, Ray E.

    1991-01-01

    Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.

  4. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and also resulted in the formation of the overlying Maitai continental margin fore-arc basin (possibly related to rollback or a decrease in dip of the remaining subduction zone).Very coarse clastic material (up to ca. 700 m thick) including detached blocks of basaltic and gabbroic rocks, up to tens or metres in size (or more), was shed down fault scarps from relatively shallow water into a deeper water setting by gravity flow processes, ranging from rock fall, to debris flow, to turbidity currents. In addition, relatively fine-grained volcaniclastic-terrigenous sediment was input from an E Gondwana continental margin arc in the form of distal gravity flows, as indicated by geochemical data (e.g. Rare Earth Element analysis of sandstones and shales). The lowest part of the overlying Maitai fore-arc sequence in some areas is represented by hundreds of metres-thick sequences of mixed carbonate-volcaniclastic-terrigenous gravity flows (Wooded Peak Fm.), which are interpreted to have been derived from the E Gondwana continental margin and which finally accumulated in fault-controlled depocentres. Input of shallow-water carbonate material later waned and the Late Permian-Triassic Maitai fore-arc basin was dominated by gravity flows that were largely derived from a contemporaneous continental margin arc (partially preserved in present SE Australia). Subsequent tectonic deformation included on-going subduction, strike-slip and terrane accretion. The sedimentary covers of comparable accreted ophiolites elsewhere (e.g. Coast Range ophiolite, California) may reveal complementary evidence of fundamental terrane accretion processes. Acknowledgements: Hamish Campbell, Dave Craw, Mike Johnson, Chuck Landis, Nick Mortimer, Dhana Pillai and other members of the South Island geological research community

  5. Numerical models for continental break-up: Implications for the South Atlantic

    NASA Astrophysics Data System (ADS)

    Beniest, A.; Koptev, A.; Burov, E.

    2017-03-01

    We propose a mechanism that explains in one unified framework the presence of continental break-up features such as failed rift arms and high-velocity and high-density bodies that occur along the South Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and break-up processes. 2D experiments show that break-up can be 1) "central", mantle plume-induced and directly located above the centre of the mantle anomaly, 2) "shifted", mantle plume-induced and 50 to 200 km shifted from the initial plume location or 3) "distant", self-induced due to convection and/or slab-subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly symmetrical and laterally homogeneous setup, the location of continental break-up can be shifted hundreds of kilometres from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant continental break-up with respect to the original plume location, multiple features can be explained. Its deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography variations that are located just above this initial anomaly impingement. This can be interpreted as aborted rift features that are also observed along the rifted margins. When extension continues after continental break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up.

  6. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    USGS Publications Warehouse

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  7. Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong

    1994-07-01

    A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.

  8. Geodynamic settings of microcontinents, non-volcanic islands and submerged continental marginal plateau formation

    NASA Astrophysics Data System (ADS)

    Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna

    2016-04-01

    Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage, and the transitional zone between Mohns and Gakkel Ridges. The research funded by RFBR, project № 15-05-03486.

  9. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar regime during the Pliocene-Pleistocene, when most sediment delivered to the margin is trapped in the outer shelf and slope-forming steep prograding wedges. During the warmer but still polar, Holocene, biogenic sediment accumulates quickly in deep inner-shelf basins during the high-stand intervals. These sediments contain an ultrahigh resolution (annual to millennial) record of climate variability. Validation of our inferences about the nature and timing of Wilkes Land glacial sequences can be achieved by deep sampling (i.e., using IODP-type techniques). The most complete record of the long-term history of glaciation in this margin can be obtained by sampling both (1) the shelf, which contains the direct (presence or no presence of ice) but low-resolution record of glaciation, and (2) the rise, which contains the distal (cold vs. warm) but more complete record of glaciation. The Wilkes Land margin is the only known Antarctic margin where the presumed "onset" of glaciation unconformity (WL-U3) can be traced from shelf to the abyssal plain, allowing links between the proximal and the distal records of glaciation to be established. Additionally, the eastern segment of the Wilkes Land margin may be more sensitive to climate change because the East Antarctic Ice Sheet (EAIS) is grounded below sea level. Therefore, the Wilkes Land margin is not only an ideal location to obtain the long-term EAIS history but also to obtain the shorter-term record of ice sheet fluctuations at times that the East Antarctic Ice Sheet is thought to have been more stable (after 15 Ma-recent). ?? 2004 Elsevier B.V. All rights reserved.

  10. MARGINS: Toward a novel science plan

    NASA Astrophysics Data System (ADS)

    Mutter, John C.

    A science plan to study continental margins has been in the works for the past 3 years, with almost 200 Earth scientists from a wide variety of disciplines gathering at meetings and workshops. Most geological hazards and resources are found at continental margins, yet our understanding of the processes that shape the margins is meager.In formulating this MARGINS research initiative, fundamental issues concerning our understanding of basic Earth-forming processes have arisen. It is clear that a business-as-usual approach will not solve the class of problems defined by the MARGINS program; the solutions demand approaches different from those used in the past. In many cases, a different class of experiment will be required, one that is well beyond the capability of individual principle investigators to undertake on their own. In most cases, broadly based interdisciplinary studies will be needed.

  11. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  12. Numerical modelling of edge-driven convection during rift-to-drift transition: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.

    2017-04-01

    We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.

  13. Principles of Geological Mapping of Marine Sediments (with Special Reference to the African Continental Margin). Unesco Reports in Marine Science No. 37.

    ERIC Educational Resources Information Center

    Lisitzin, Alexandre P.

    Designed to serve as a complement to the Unesco Technical Papers in Marine Science, this report concentrates on theoretical and practical problems of geological mapping of the sea floor. An introduction is given to geological mapping procedures at continental margins as well as some practical recommendations taking as an example the African region…

  14. The continent-ocean transition on the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo

    2015-04-01

    Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding how rift characteristics vary along strike in the same system and what processes control the final transition to seafloor spreading is the continent-ocean transition (COT). We use four regional multichannel seismic profiles and published magnetic lineations to study the structure and variability of COT on the northwest subbasin (NWSB) of the South China Sea and to discern continental from oceanic domains. The continental domain is characterized by tilted fault blocks overlaid by thick syn-rift sedimentary units and fairly continuous Moho reflections typically at 8-10 s twtt. Thickness of the continental crust changes from ~20-25 km under the uppermost slope to ~9-6 km under the lower slope. The oceanic domain is interpreted where a highly reflective top of basement, little faulting, no syntectonic strata, and fairly constant thickness basement (4-8 km) occur. The COT is imaged as a ~5-10 km wide zone where oceanic-type features abut continental-type structures. The South China margin is deformed by abundant normal faults dissecting the continental crust, whereas the conjugate Macclesfield Bank margin displays comparatively abrupt thinning and little faulting. Seismic profiles show an along-strike variation in the tectonic structure of the continental margin. The NE-most lines display ~20-40 km wide segments of intense faulting under the slope and associated continental-crust thinning. Towards the SW, faulting and thinning of the continental crust occurs across a ~100-110 km wide segment. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading center. We suggest that breakup occurred by spreading center propagation to a larger degree than by lithospheric thinning during continental rifting. Based on the sedimentary successions overlying the oceanic crust, we propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading center propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SW into the east subbasin.

  15. Oil-spill risk analysis: Outer continental shelf lease sale 158, Gulf of Alaska/Yakutat. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; Johnson, W.R.; Marshall, C.F.

    1995-01-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Alaska/Yakutat for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. The report summarizes results of an oil-spill risk analysis conducted for OCS Lease Sale 158, Gulf of Alaska/Yakutat. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sale.

  16. The South China sea margins: Implications for rifting contrasts

    USGS Publications Warehouse

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the thermal structure of the pre-rift lithosphere. The calculated widths of rifted continental crust for the northern and southern margins, when combined with the differential widths of seafloor generated during the seafloor spreading phase, indicate the total crustal extension that occurred is about 1100 km and is remarkably consistent to within ???10% for all three (eastern, central, western) segments examined. ?? 2005 Elsevier B.V. All rights reserved.

  17. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  18. New Insight Into The Crustal Structure of The Continental Margin Off NW Sabah/borneo

    NASA Astrophysics Data System (ADS)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere. We found evidence that the continental crust also underlies the continental slope land- ward of the Trough, a fact that raises many questions about the tectonic history and development of this margin. The characteristic pattern of rotated fault blocks and half grabens and the carbon- ates which are observed all over the Dangerous Grounds can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anoma- lies. We suspect that the volcanic activity coincided with the collision of Borneo and the Dangerous Grounds in middle or late Miocene time. The emplacement of an al- lochtonous terrane on top of the extended continental lithosphere could be explained by overthrusting as a result of the collision or it could be related to gravity sliding following a broad uplift of NW Borneo at the same time.

  19. Assessment of the U. S. outer continental shelf environmental studies program. 1. Physical oceanography. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Federal responsibility for oil and gas development on the U.S. outer continental shelf (OCS) resides with the Minerals Management Service (MMS) of the U.S. Department of the Interior (DOI). The DOI's Environmental Studies Program (ESP) is the program through which MMS conducts environmental studies on the OCS and collects information to prepare environmental impact statements (EISs). It appeared to MMS in 1986 that the time was ripe to assess the status of the present program and to explore the needs for future studies. MMS requested an evaluation of the adequacy and applicability of ESP studies, a review of the generalmore » state of knowledge in the appropriate disciplines, and recommendations for future studies. Three panels were established, one of which, the Physical Oceanography Panel, investigated the physical oceanographic aspects of the ESP, the subject of the report, which is the first of three in a series. In reviewing the ESP's physical oceanography program, the panel evaluated the quality and relevance of studies carried out in waters under federal control, which extend from the limits of state jurisdictions (3-12 miles offshore) and include the central and outer continental shelf waters and the continental slope.« less

  20. Determining OCT structure and COB Location of the Omani Gulf of Aden Continental Margin from Gravity Inversion, Residual Depth Anomaly and Subsidence Analysis.

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto

    2013-04-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.

  1. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    USGS Publications Warehouse

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  2. Tracing the thermal evolution of continental lithosphere through depth-dependent extension

    NASA Astrophysics Data System (ADS)

    Smye, A.; Lavier, L. L.; Stockli, D. F.; Zack, T.

    2015-12-01

    Rifting of continental lithosphere requires a mechanism to reduce lithospheric thickness from 100-150 kilometers to close to zero kilometers at the point of rupture. At magma-poor continental margins, this has long-thought to be caused by uniform stretching and thinning of the lithosphere accompanied by passive upwelling of the asthenosphere [1]. For the last thirty years depth-dependent thinning has been proposed as an alternative to this model to explain the anomalously shallow environment of deposition along many continental margins [2, 3]. A critical prediction of this modification is that the lower crust and sub-continental lithospheric mantle undergo a phase of increased heat flow, potentially accompanied by heating, during thinning of the lithospheric mantle. Here, we test this prediction by applying recently developed U-Pb age depth profiling techniques [4] to lower crustal accessory minerals from the exhumed Alpine Tethys and Pyrenean margins. Inversion of diffusion-controlled U-Pb age profiles in rutile affords the opportunity to trace the thermal evolution of the lower crust through the rifting process. Resultant thermal histories are used to calculate thinning factors of the crust and lithospheric mantle by 2D thermo-kinematic models of extending lithosphere. Combined, we use the measured and modeled thermal histories to propose a mechanism to explain the initiation and growth of lithospheric instabilities that lead to depth-dependent thinning at magma-poor continental margins. [1] McKenzie, D. (1978) EPSL 40, 25-32; [2] Royden, L. & Keen, C. (1980) EPSL 51, 343-361; [3] Huismans, R. & Beaumont, C. (2014) EPSL, 407, 148-162; [4] Smye, A. and Stockli, D. (2014) EPSL, 408, 171-182.

  3. Geoacoustic models of the Donghae-to-Gangneung region in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2016-04-01

    Geoacoustic model is to provide a model of the real seafloor with measured, extrapolated, and predicted values of geoacoustic environmental parameters. It controls acoustic propagation in underwater acoustics. In the Korean continental margin of the East Sea, this study reconstructed geoacoustic models using geoacoustic and marine geologic data of the Donghae-to-Gangneung region (37.4° to 37.8° in latitude). The models were based on the data of the high-resolution subbottom and air-gun seismic profiles with sediment cores. The Donghae region comprised measured P-wave velocities and attenuations of the cores, whereas the Gangneung region comprised regression values using measured values of the adjacent areas. Geoacoustic data of the cores were extrapolated down to a depth of the geoacoustic models. For actual modeling, the P-wave speed of the models was compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of this region probably contribute for geoacoustic and underwater acoustic modelling reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: geoacoustic model, environmental parameter, East Sea, continental margin Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  4. A comparison of the South China Sea and Canada Basin: two small marginal ocean basins with hyper-extended margins and central zones of sea-floor spreading.

    NASA Astrophysics Data System (ADS)

    Li, L.

    2015-12-01

    Both the South China Sea and Canada Basin preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated the nature of strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the South China Sea but our results for the Beaufort Sea are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow is suggested for both basins. Extension in the COT may continue even after sea-floor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  5. Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica

    USGS Publications Warehouse

    Bohannon, R.G.; Eittreim, S.L.

    1991-01-01

    The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.

  6. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexicomore » shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.« less

  7. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94°W. West of 102°W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.

  8. Origin of narrow terranes and adjacent major terranes occurring along the denali fault in the eastern and central alaska range, alaska

    USGS Publications Warehouse

    Nokleberg, W.J.; Richter, D.H.

    2007-01-01

    Several narrow terranes occur along the Denali fault in the Eastern and Central Alaska Range in Southern Alaska. These terranes are the Aurora Peak, Cottonwood Creek, Maclaren, Pingston, and Windy terranes, and a terrane of ultramafic and associated rocks. Exterior to the narrow terranes to the south is the majorWrangellia island arc composite terrane, and to the north is the major Yukon Tanana metamorphosed continental margin terrane. Overlying mainly the northern margin of the Wrangellia composite terrane are the Kahiltna overlap assemblage to the west, and the Gravina- Nutzotin-Gambier volcanic-plutonic- sedimentary belt to the east and southeast. The various narrow terranes are interpreted as the result of translation of fragments of larger terranes during two major tectonic events: (1) Late Jurassic to mid-Cretaceous accretion of the Wrangellia island arc composite terrane (or superterrane composed of the Wrangellia, Peninsular, and Alexander terranes) and associated subduction zone complexes; and (2) starting in about the Late Cretaceous, dextral transport of the Wrangellia composite terrane along the Denali fault. These two major tectonic events caused: (1) entrapment of a lens of oceanic lithosphere along the suture belt between the Wrangellia composite terrane and the North American Craton Margin and outboard accreted terranes to form the ultramafic and mafic part of the terrane of ultramafic and associated rocks, (2) subsequent dextral translation along the Denali fault of the terrane of ultramafic and associated rocks, (3) dextral translation along the Denali fault of the Aurora Peak, Cottonwood Creek, and Maclaren and continental margin arc terranes from part of the Coast plutonic-metamorphic complex (Coast-North Cascade plutonic belt) in the southwest Yukon Territory or Southeastern Alaska, (4) dextral translation along the Denali fault of the Pingston passive continental margin from a locus along the North American Continental Margin, and (5) formation and dextral transport along the Denali fault of the m??lange of the Windy terrane from fragments of the Gravina-Nutzotin-Gambier volcanic-plutonic-sedimentary belt and from the North American Continental Margin. Copyright ?? 2007 The Geological Society of America.

  9. Preface

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster; Talwani, Manik

    In compiling this volume, we have aimed to develop and enhance our current understanding of the structural evolution and sedimentation processes along divergent continental margins. To counteract the unfortunate situation of a lack of modem seismic and potential fields data on circum-Atlantic passive margins in the literature, we have linked new data from oil companies with that of research institutions. To update the data offered in most volumes used as reference works for the study of continental margins, now upwards of 20 years old, and to remedy the dispersal of important, more recent contributions in specialized journals, we present a current synthesis of materials in one volume focused on the deeper geology of the sedimentary basins along continental margins. In the early 1990s, as oil companies and other institutions developed tools to probe deeper into the architecture of passive margin sedimentary basins, a great amount of data based on regional deep seismic profiles evolved rapidly from its specialized niche as geophysical interpretation of the Earth's interior to widespread use by those same companies and institutions. At the same time, these findings demonstrated that some breakthroughs in data acquisition, processing and interpretation initially achieved by research institutions could almost instantaneously be globalized throughout different research groups, thereby influencing the thinking of geoscientists worldwide.

  10. Mantle dynamics following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are explored in over 600 2D and over 20 3D numerical simulations to better understand how modelling method affects conclusions on mantle convection studies. The results from this thesis show that the failure to model tectonic plates, a high vigour of convection, and a (pseudo) temperature-dependent viscosity would distort the role of mantle plumes, continent insulation, and subduction in the thermal evolution of mantle dynamics.

  11. Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina

    2014-05-01

    New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388-392. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.

  12. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    NASA Astrophysics Data System (ADS)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.

  13. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  14. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  15. The Edges of the Ocean: An Introduction.

    ERIC Educational Resources Information Center

    Burke, Kevin

    1979-01-01

    Introduces a series of related articles on the study of ocean/continent boundaries (margins) within the framework of plate tectonics. Topics discussed include: early attempts to interpret ocean/continent boundaries, Atlantic-type margins, Pacific-type margins, the edges of ancient oceans, and future challenges in the study of continental margins.…

  16. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  17. Sediment accumulation on the Southern California Bight continental margin during the twentieth century

    USGS Publications Warehouse

    Alexander, C.R.; Lee, H.J.

    2009-01-01

    Sediment discharged into the portion of the Southern California Bight extending from Santa Barbara to Dana Point enters a complex system of semi-isolated coastal cells, narrow continental shelves, submarine canyons, and offshore basins. On both the Santa Monica and San Pedro margins, 210Pb accumulation rates decrease in an offshore direction (from ??0.5 g cm-2yr-1 to 0.02 g cm-2yr -1), in concert with a fining in sediment grain size (from 4.5?? to 8.5??), suggesting that offshore transport of wave-resuspended material occurs as relatively dilute nepheloid layers and that hemiplegic sedimentation dominates the supply of sediment to the outer shelf, slope, and basins. Together, these areas are effectively sequestering up to 100% of the annual fluvial input. In contrast to the Santa Monica margin, which does not display evidence of mass wasting as an important process of sediment delivery and redistribution, the San Pedro margin does provide numerous examples of failures and mass wasting, suggesting that intraslope sediment redistribution may play a more important role there. Basin deposits in both areas exhibit evidence of turbidites tentatively associated with both major floods and earthquakes, sourced from either the Redondo Canyon (San Pedro Basin) or Dume Canyon (Santa Monica Basin). On the Palos Verdes shelf, sediment-accumulation rates decrease along and across the shelf away from the White's Point outfall, which has been a major source of contaminants to the shelf deposits. Accumulation rates prior to the construction of the outfall were ??0.2 g cm-2yr-1 and increased 1.5-3.7 times during peak discharges from the outfall in 1971. The distal rate of accumulation has decreased by ??50%, from 0.63 g cm -2yr-1 during the period 1971-1992 to 0.29 g cm -2yr-1 during the period 1992-2003. The proximal rate of accumulation, however, has only decreased ??10%, from 0.83 g cm -2yr-1 during the period 1971-1992 to 0.73 g cm -2yr-1 during the period 1992-2003. Effluent-affected sediment layers on the Palos Verdes shelf can be identified in seabed profiles of naturally occurring 238U, which is sequestered in reducing sediments. The Santa Clara River shelf, just north and west of the Santa Monica and San Pedro margins, is fine-grained and flood-dominated. Core profiles of excess 210Pb from sites covering the extent of documented major flood deposition exhibit evidence of rapidly deposited sediment up to 25 cm thick. These beds are developing in an active depocenter in water depths of 30-50 m at an average rate of 0.72 g cm-2yr-1. Budget calculations for annual and 50-yr timescale sediment storage on this shelf shows that 20%-30% of the sediment discharge is retained on the shelf, leaving 70%-80% to be redistributed to the outer shelf, slope, Santa Barbara Basin, and Santa Monica Basin. ?? 2009 The Geological Society of America.

  18. Linking the tectonic evolution with fluid history in magma-poor rifted margins: tracking mantle- and continental crust-related fluids

    NASA Astrophysics Data System (ADS)

    Pinto, V. H. G.; Manatschal, G.; Karpoff, A. M.

    2014-12-01

    The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks. Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids. Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, "polluted" the seawater and were absorbed by post-tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids might have modified the chemical composition of the sediments and seawater. We propose that the chemical signature of serpentinization that occurs during the mantle exhumation is recorded in the sediments and may serve as a proxy to date serpentinization and mantle exhumation in present day magma-poor rifted margins.

  19. Cenozoic tectonic subsidence in the Southern Continental Margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Fang, Penggao; Ding, Weiwei; Fang, Yinxia; Zhao, Zhongxian; Feng, Zhibing

    2017-06-01

    We analyzed two recently acquired multichannel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continental margin can be divided into three stages with variable subsidence rate. A delay of tectonic subsidence existed in both areas after a break-up, which was likely related to the major mantle convection during seafloor spreading, that was triggered by the secondary mantle convection below the continental margin, in addition to the variation in lithospheric thickness. Meanwhile, the stage with delayed subsidence rate differed along strikes. In the Reed Bank area, this stage is between 32-23.8 Ma, while in the Dangerous Grounds, it was much later (between 19-15.5 Ma). We believe the propagated rifting in the South China Sea dominated the changes of this delayed subsidence rate stage.

  20. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  1. Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie

    2013-04-01

    It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.

  2. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  3. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  4. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  5. Natural-gas hydrates: Resource of the twenty-first century?

    USGS Publications Warehouse

    Collett, T.S.

    2001-01-01

    Although considerable uncertainty and disagreement prevail concerning the world's gas-hydrate resources, the estimated amount of gas in those gas-hydrate accumulations greatly exceeds the volume of known conventional gas reserves. However, the role that gas hydrates will play in contributing to the world's energy requirements will ultimately depend less on the volume of gas-hydrate resources than on the cost to extract them. Gas hydrates occur in sedimentary deposits under conditions of pressure and temperature present in permafrost regions and beneath the sea in outer continental margins. The combined information from arctic gas-hydrate studies shows that in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 m to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors (known as bottom-simulating reflectors) that have been mapped at depths below the seafloor ranging from approximately 100 m to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas-hydrate accumulations are in rough accord at about 20,000 trillion m3. Gas hydrate as an energy commodity is often grouped with other unconventional hydrocarbon resources. In most cases, the evolution of a nonproducible unconventional resource to a producible energy resource has relied on significant capital investment and technology development. To evaluate the energy-resource potential of gas hydrates will also require the support of sustained research and development programs. Despite the fact that relatively little is known about the ultimate resource potential of gas hydrates, it is certain that they are a vast storehouse of natural gas, and significant technical challenges will need to be met before this enormous resource can be considered an economically producible reserve.

  6. The geomorphic signature of past ice sheets in the marine record

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.

    2016-12-01

    The deglaciation of high-latitude continental shelves since the Last Glacial Maximum has revealed suites of subglacial and ice-contact landforms that have remained well-preserved beneath tens to hundreds of metres of water. Once ice has retreated, sedimentation is generally low on polar shelves during interglacials and the submarine landforms have not, therefore, been buried by subsequent sedimentation. By contrast, the beds of modern ice sheets are hidden by several thousand metres of ice, which is much more difficult than water to penetrate using geophysical methods. These submarine glacial landforms provide insights into past ice-sheet form and flow, and information on the processes that have taken place beneath former ice sheets. Examples will be shown of streamlined subglacial landforms that indicate the distribution and dimensions of former ice streams on high-latitde continental margins. Distinctive landform assemblages characterise ice stream and inter-ice stream areas. Landforms, including subglacially formed channel systems in inner- and mid-shelf areas, and the lack of them on sedimentary outer shelves, allow inferences to be made about subglacial hydrology. The distribution of grounding-zone wedges and other transverse moraine ridges also provides evidence on the nature of ice-sheet retreat - whether by rapid collapse, episodic retreat or by the slow retreat of grounded ice. Such information can be used to test the predictive capability of ice-sheet numerical models. These marine geophysical and geological observations of submarine glacial landforms enhance our understanding of the form and flow of past ice masses at scales ranging from ice sheets (1000s of km in flow-line and margin length), through ice streams (100s of km long), to surge-type glaciers (10s of km long).

  7. Paleomagnetism of Cretaceous Oceanic Red Beds (CORBs) from Gyangze, northern Tethys Himalaya: Evidence for Intra-oceanic Subduction System and Southern Paleolatitute Limit for the Lhasa Block

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong

    2016-04-01

    In the northern Tethys Himalaya, sporadically distributed Cretaceous oceanic red beds (CORBs, the Chuangde Formation) have been described. The sequence was interpreted to be firstly deposited in the outer continental shelf and upper slope, and later slumped into deep basin. Based on this model, and paleomagnetic data of shallow water deposits from the southern Tethys Himalaya, the CORBs were derived from the northern tip of the passive margin of the greater India. If so, the CORBs would provide more accurate record of the northern extent of the greater India, which is an important parameter for estimating the initial time of India-Asia continental collision and the amount of crustal shortening. The well studied and most accessible section is located in the Chuangde village, about 40km east from the Gyangze city. The formation is about 25m thick, ranging from 84 to 75Ma in age according to fossil records of planktonic foraminiferal species. The lower and upper parts are 2 and 5 meter thick marlstones, respectively, and the middle section is dominated by shale with a few layers of centimeter scale marlstones. Fifty cores were collected from the marlstones of the section, and for the purpose of fold test, 30 more cores were collected from the upper part of the formation from a second section located in the Pulong village, ~3km to the northeast of the Chuangde village. All samples were subject to stepwise thermal demagnetization. About 60% of the samples yielded interpretable demagnetization results. The bottom of the upper part of the formation show reversed high temperature component, and the rest of the upper part and the lower part show normal polarity. The Chuangde section data failed reversal test, because the normal polarity direction is likely not fully resolved from overprint component. However, the well resolved reversal direction from the Chuangde village and the normal direction from Pulong pass both reversal and fold tests. The mean paleomagnetic data indicate a paleolatitude of 10±2 degree north, ~2000 km distance from the southern Tethys Himalaya. Therefore, the formation is not deposited near the greater Indian continental margins. Based on recent plate tectonic reconstruction, the CORBs are very likely formed within a back-arc basin between the equatorial intra-oceanic subduction system and the Asian continental margin. Due to coeval development of abundant red beds in the Lhasa block, the characteristic pigments of hematite born in the CORBs are likely of terrestrial origin. In addition, the new data indicate that the Lhasa block is unlikely to be at low paleolatitude in the Late Cretaceous and Tertiary as some of the paleomagnetic results show.

  8. Crustal Thickness Mapping of the Rifted Margin Ocean-Continent Transition using Satellite Gravity Inversion Incorporating a Lithosphere Thermal Correction

    NASA Astrophysics Data System (ADS)

    Hurst, N. W.; Kusznir, N. J.

    2005-05-01

    A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  9. Electrochemical cell design

    DOEpatents

    Arntzen, John D.

    1978-01-01

    An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.

  10. Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.

  11. Extensional fault geometry and its flexural isostatic response during the formation of the Iberia - Newfoundland conjugate rifted margins

    NASA Astrophysics Data System (ADS)

    Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan

    2017-04-01

    Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we constrain using target data from the SCREECH 2 seismic profile. We also show that for the successful modelling and quantitative validation of the lithosphere hyper-extension stage it is necessary to first have a good calibrated model of the necking phase. Not surprisingly the evolution of a rifted continental margin cannot be modelled without modelling and calibration of its conjugate margin.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, L.R.

    There are three distinct but not mutually exclusive areas of research in this contract, studies of intrusions of the west wall of the Gulf Stream onto the outer continental shelf, studies of the flux of materials across nearshore density fronts, and advances in understanding of the planktonic food web of the continental shelf. Studies of frontal events on the outer and inner continental shelf involve distinctive physical and chemical regimes and have proven to require distinctive biological approaches. The studies of the food web run through our work on both of the frontal regimes, but certain aspects have become subjectsmore » in their own right. We have developed a simulation model of the flux of energy through the continental shelf food web which we believe to be more realistic than previous ones of its type. We have examined several of the many roles of dissolved organic compounds in sea water which originate either from release by phytoplankton, digestive processes or metabolites of zooplankton, or extracellular digestion of microorganisms. Methods have been developed under this contract to measure both the chelating capacity of naturally occurring organic materials and the copper concentration in the water. It has been possible to characterize the effects, both toxic and stimulatory, of copper on photosynthesis of naturally occurring phytoplankton populations. It is possible to characterize in considerable detail the course of biological events associated with meanders of the Gulf Stream. We are now in a position to explain the limits to biological productivity of the outer continental shelf of the southeastern US and the reasons why that biological production moves through the food web in the characteristic way that it does.« less

  13. A preliminary assessment of geologic framework and sediment thickness studies relevant to prospective US submission on extended continental shelf

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Childs, Jonathan R.; Hammar-Klose, Erika; Dadisman, Shawn; Edgar, N. Terrence; Barth, Ginger A.

    2004-01-01

    Under the provisions of Articles 76 and 77 of the United Nations Convention on the Law of the Sea (UNCLOS), coastal States have sovereign rights over the continental shelf territory beyond 200-nautical mile (nm) from the baseline from which the territorial sea is measured if certain conditions are met regarding the geologic and physiographic character of the legal continental shelf as defined in those articles. These claims to an extended continental shelf must be supported by relevant bathymetric, geophysical and geological data according to guidelines established by the Commission on the Limits of the Continental Shelf (CLCS, 1999). In anticipation of the United States becoming party to UNCLOS, Congress in 2001 directed the Joint Hydrographic Center/Center for Coastal and Ocean Mapping at the University of New Hampshire to conduct a study to evaluate data relevant to establishing the outer limit of the juridical continental shelf beyond 200 nm and to recommend what additional data might be needed to substantiate such an outer limit (Mayer and others, 2002). The resulting report produced an impressive and sophisticated GIS database of data sources. Because of the short time allowed to complete the report, all seismic reflection data were classified together; the authors therefore recommended that USGS perform additional analysis on seismic and related data holdings. The results of this additional analysis are the substance of this report, including the status of geologic framework, sediment isopach research, and resource potential in the eight regions1 identified by Mayer and others (2002) where analysis of seismic data might be crucial for establishing an outer limit . Seismic reflection and refraction data are essential in determining sediment thickness, one of the criteria used in establishing the outer limits of the juridical continental shelf. Accordingly, the initial task has been to inventory public-domain seismic data sources, primarily those regionally extensive data held within the Department of the Interior (DOI). The numerous seismic reflection and refraction surveys collected prior to 1970 by academic and governmental institutions are generally not included in this compilation, except where they provide unique data in a region. These data sources were omitted from this report because they were deemed to be of insufficient quality (poorly navigated or low resolution) to meet the CLCS standards for a submission, or they were redundant with higher-quality, more modern data. Hence, this report attempts to identify those data sets of highest utility for establishing the outer limits of the juridical continental shelf. If there was any ambiguity or uncertainty about the relevance of a data set to a continental shelf submission, either by its quality, location, or other parameter, it was included in this compilation. This report does not summarize other geophysical data (such as marine magnetics or gravity) that might be relevant to understanding crustal provenance and geological continuity. Detailed metadata tables and maps are included to facilitate the location and utilization of these sources when a comprehensive assessment (?desktop study?) is undertaken.

  14. The Brahmaputra delta and its merger into an accretion wedge in advance of the progressive suturing between India and Asia

    NASA Astrophysics Data System (ADS)

    Seeber, L.; Ferguson, E. K.; Akhter, S. H.; Steckler, M. S.; Mondal, D. R.; Gale, J.; McHugh, C. M.; Paola, C.; Goodbred, S. L.

    2013-12-01

    The Tsangpo-Brahmaputra River is coupled with the progressive suturing of continental India with continental Asia. Since the Eocene onset of this ongoing collision, the delta of this river has advanced along the Indian margin in front of the suture. As the collision lifts the suture above sea level, progradation has kept the delta ahead of it, at sea level. The delta itself is confined between the still passive Indian continental margin and the advancing subduction boundary. Within this transition zone, the accretion prismof the active margin advanced progressively onto the delta and transformed it from a subsiding sediment sink to a rising and folding sediment source. The faster the accretionary prism grows, the faster the delta progrades to find new accommodation space; on the other hand, the prism advances faster upstream of the delta front where it finds more sediment to accrete. The strong mutual dependency of these processes represents a delicately balanced feedback between tectonics and sedimentation. The shape of the margin of India before and after the birth of the Dauki-Shillong structure modulates this interaction. We highlight this coupling between tectonics and sedimentation by examining structure and stratigraphy in the active foldbelt close to the current delta in Bangladesh and eastern India using field and published subsurface data. Insights include: 1) The shift of the Dauki boundary from a passive margin to a south-verging blind-thrust front is marked by a Quaternary foredeep. Foredeep growth buried along its axis formerly breached and eroded anticlines. Progressive growth of the buried Dauki fault has exposed this unconformity along the northern flank of the foredeep. 2) The rise and northward tilt of the Shillong/Dauki thrust-anticline during Quaternary is probably the cause of the Brahmaputra River avulsing from east of the massif to north and west of it. The Naga collision and the differential growth of the foldbelt south of the Dauki Fault predate the rise of the massif and the avulsion. 3) The foldbelt widens forming a 'promontory' into the active delta, about 100 km north of the coastline. The outer few anticlines have low amplitudes and no or partial surface expressions, yet they root below several km of sediment. Fault-bend models also require much more shortening than the folding can account for. These properties suggest substantial layer-parallel shortening ahead of the folding. 4) Rhythmic sandstone-shale beds characterize a particularly competent part of the stratigraphy of eroding anticlines in different parts of the foldbelt. We interpret them as seasonal facies changes in foreset sequences of the delta. The position of these ridge-forming beds would thus mark the southwestward advance of the delta preceding the folds and can be used to guide research into the role of structure and stratigraphy in the severe landslide hazard affecting development in the foldbelt (e.g., Aizawl, Mizoram State).

  15. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    NASA Technical Reports Server (NTRS)

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  16. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  17. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra

    NASA Astrophysics Data System (ADS)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo

    2017-04-01

    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early Cretaceous Andean margin above a NE dipping subduction zone. We sampled limestones of the Woyla Group, and sediments of the West Sumatra margin for paleomagnetic analyses. Here we present new paleomagnetic data from Upper Jurassic-Lower Cretaceous limestones of the Woyla Arc. Preliminary results suggest that the Woyla Arc was formed near equatorial latitudes. This precludes interpretations that the Woyla arc was derived from Gondwana, near the northern Indian margin. To account for (1) synchronous magmatism at the Woyla Arc and the West Sumatra continental margin, and (2) the juxtaposition of unmetamorphosed units of the Woyla Arc to highly metamorphosed units of the West Sumatra margin, we interpret the Woyla Group to be intra-oceanic arc formed above a SW dipping subduction zone in the Early Cretaceous, which was subsequently thrusted over the West Sumatra margin during the mid-Cretaceous.

  18. 77 FR 24734 - Outer Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology Testing Offshore... found online at: http://www.boem.gov/Renewable-Energy-Program/State-Activities/Florida.aspx . [[Page.... FOR FURTHER INFORMATION CONTACT: Michelle Morin, BOEM Office of Renewable Energy Programs, 381 Elden...

  19. 75 FR 51968 - Outer Continental Shelf Air Regulations Consistency Update for Massachusetts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... comments to: Ida McDonnell, Air Permits, Toxics and Indoor Air Unit, Office of Ecosystem Protection, U.S... INFORMATION CONTACT: Ida E. McDonnell, Air Permits, Toxics and Indoor Air Unit, U.S. Environmental Protection... Continental Shelf Air Regulations Consistency Update for Massachusetts AGENCY: Environmental Protection Agency...

  20. Cruise report; RV Coastal Surveyor Cruise C1-99; multibeam mapping of the Long Beach, California continental shelf; April 12 through May 19, 1999

    USGS Publications Warehouse

    Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.

    1999-01-01

    The greater Los Angeles area of California is home to more than 10 million people. This large population puts increased pressure on the adjacent offshore continental shelf and margin with activities such as ocean disposal for dredged spoils, explosive disposal, waste-water outfall, and commercial fishing. The increased utilization of the shelf and margin in this area has generated accelerated multi-disciplinary research efforts in all aspects of the environment of the coastal zone. Prior to 1996 there were no highly accurate base maps of the continental shelf and slope upon which the research activities could be located and monitored. In 1996, the United States Geological Survey (USGS) Pacific Seafloor Mapping Project began to address this problem by mapping the Santa Monica shelf and margin (Fig. 1) using a state-of-the-art, high-resolution multibeam sonar system (Gardner, et al., 1996; 1999). Additional seafloor mapping in 1998 provided coverage of the continental margin from south of Newport to the proximal San Pedro Basin northwest of Palos Verdes Peninsula (Gardner, et al., 1998) (Fig. 1). The mapping of the seafloor in the greater Los Angeles continental shelf and margin was completed with a 30-day mapping of the Long Beach shelf in April and May 1999, the subject of this report. The objective of Cruise C-1-99-SC was to completely map the broad continental shelf from the eastern end of the Palos Verdes Peninsula to the narrow shelf south of Newport Beach, from the break in slope at about 120-m isobath to the inner shelf at about the 10-m isobath. Mapping the Long Beach shelf was jointly funded by the U.S. Geological Survey and the County of Orange (CA) Sanitation District and was conducted under a Cooperative Agreement with the Ocean Mapping Group from the University of New Brunswick (OMG/UNB). The OMG/UNB contracted with C&C Technologies, Inc. of Lafayette, LA for use of the RV Coastal Surveyor and the latest evolution of high-resolution multibeam sonars, a dual Kongsberg Simrad EM3000D.

  1. Lower crustal strength controls on melting and type of oceanization at magma-poor margins

    NASA Astrophysics Data System (ADS)

    Ros, E.; Perez-Gussinye, M.; Araujo, M. N.; Thoaldo Romeiro, M.; Andres-Martinez, M.; Morgan, J. P.

    2017-12-01

    Geodynamical models have been widely used to explain the variability in the architectonical style of conjugate rifted margins as a combination of lithospheric deformation modes, which are strongly influenced by lower crustal strength. We use 2D numerical models to show that the lower crustal strength also plays a key role on the onset and amount of melting and serpentinization during continental rifting. The relative timing between melting and serpentinization onsets controls whether the continent-ocean transition (COT) of margins will be predominantly magmatic or will mainly consist of exhumed and serpentinized mantle. Based on our results for magma-poor continental rifting, we propose a genetic link between margin architecture and COT styles that can be used as an additional tool to help interpret and understand the processes leading to margin formation. Our results show that strong lower crusts and very slow extension velocities (<5 mm/yr) lead to either symmetric or asymmetric margins with large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins are characterized by a COT consisting of exhumed and serpentinized mantle and some magmatic products. Weak lower crusts at ultra-slow velocities lead also to either symmetric or asymmetric margins with small faults dipping both ocean- and landward, small syn-rift subsidence and gentle crustal tapering, and present a predominantly magmatic COT, perhaps underlain by some serpentinized mantle. When conjugate margins are asymmetric, if the rheology is relatively strong, serpentinite predominantly underlays the wide margin, whereas if the lower crustal strength is weak, melt preferentially migrates towards the wide margin. Based on the onshore lithospheric structure, extension velocity and margin architecture of the magma-poor section of the South Atlantic, we suggest that the COT of the northern sector, Camamu-Gabon basins, is more likely to consist of exhumed mantle with intruded magmatism, while to the South, the Camamu-Kwanza and North Santos-South Kwanza conjugates, may be better characterized by a predominantly magmatic COT.

  2. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study area includes three stages,that is Eogene,middle stage of lately Oligocene to early Miocene and middle Miocene to Present.Result shows that there are a good association of petroleum source rocks,reservoir rocks and seal rocks and structural traps in the Cenozoic and Mesozoic strata,as well as good conditions for the generation-migration-accumulation-preservation of petroleum in the lower continatal slope of Southern Chaoshan Sag.So the region has good petroleum prospect. Key words:Northern South China Sea;Chaoshan Sag; lower continental slope; deposition.

  3. Elastic thickness estimates at northeast passive margin of North America and its implications

    NASA Astrophysics Data System (ADS)

    Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  4. Automatic detection of Floating Ice at Antarctic Continental Margin from Remotely Sensed Image with Object-oriented Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.

    2011-12-01

    Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080. The results show that the object-based information extraction algorithm can obtain more precise details of a single object, while the change detection method based on similarity matching can effectively tracking the change of floating ice.

  5. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  6. Velocity Model for CO2 Sequestration in the Southeastern United States Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Ollmann, J.; Knapp, C. C.; Almutairi, K.; Almayahi, D.; Knapp, J. H.

    2017-12-01

    The sequestration of carbon dioxide (CO2) is emerging as a major player in offsetting anthropogenic greenhouse gas emissions. With 40% of the United States' anthropogenic CO2 emissions originating in the southeast, characterizing potential CO2 sequestration sites is vital to reducing the United States' emissions. The goal of this research project, funded by the Department of Energy (DOE), is to estimate the CO2 storage potential for the Southeastern United States Atlantic Continental Margin. Previous studies find storage potential in the Atlantic continental margin. Up to 16 Gt and 175 Gt of storage potential are estimated for the Upper Cretaceous and Lower Cretaceous formations, respectively. Considering 2.12 Mt of CO2 are emitted per year by the United States, substantial storage potential is present in the Southeastern United States Atlantic Continental Margin. In order to produce a time-depth relationship, a velocity model must be constructed. This velocity model is created using previously collected seismic reflection, refraction, and well data in the study area. Seismic reflection horizons were extrapolated using well log data from the COST GE-1 well. An interpolated seismic section was created using these seismic horizons. A velocity model will be made using P-wave velocities from seismic reflection data. Once the time-depth conversion is complete, the depths of stratigraphic units in the seismic refraction data will be compared to the newly assigned depths of the seismic horizons. With a lack of well control in the study area, the addition of stratigraphic unit depths from 171 seismic refraction recording stations provides adequate data to tie to the depths of picked seismic horizons. Using this velocity model, the seismic reflection data can be presented in depth in order to estimate the thickness and storage potential of CO2 reservoirs in the Southeastern United States Atlantic Continental Margin.

  7. Oceanic-type accretion may begin before complete continental break-up

    NASA Astrophysics Data System (ADS)

    Geoffroy, L.; Zalan, P. V.; Viana, A. R.

    2011-12-01

    Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.

  8. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  9. 78 FR 14116 - Gulf of Mexico (GOM), Outer Continental Shelf (OCS), Eastern Planning Area (EPA) Lease Sale 225...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Gulf of Mexico (GOM), Outer...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of availability (NOA) of the draft... experts surveyed scientific journals and available scientific data, gathered information, and interviewed...

  10. 76 FR 53481 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Outer... Ocean Energy Management, Regulation and Enforcement, Interior. ACTION: Notice of Availability of a Final Supplemental Environmental Impact Statement SUMMARY: The Bureau of Ocean Energy Management, Regulation and...

  11. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    NASA Astrophysics Data System (ADS)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  12. Gas hydrate potential of the mid Atlantic outer continental shelf

    USGS Publications Warehouse

    Shedd, William W.; Hutchinson, Deborah R.

    2006-01-01

    For the last two years, the Minerals Management Service (MMS) has been studying the resource potential of gas hydrates in federal offshore lands of the Outer Continental Shelf (OCS) off the Atlantic, Gulf of Mexico, Pacific, and Alaska in collaboration with the U.S. Geological Survey (USGS), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration (NOAA), the Naval Research Lab (NRL) and academia. Utilizing its extensive seismic, well, and geochemical databases, the MMS will be reporting the in-place resource numbers within the next few months. Though the methodology of the study was not prospect oriented, discrete prospects have been recognized.

  13. Nutrient Distributions, Transports, and Budgets on the Inner Margin of a River-Dominated Continental Shelf

    DTIC Science & Technology

    2013-10-02

    and budgets on the inner margin of a river-dominated continental shelf, J. Geophys. Res. Oceans , 118, 4822–4838, doi:10.1002/jgrc.20362. 1...13/10.1002/jgrc.20362 4822 JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS , VOL. 118, 4822–4838, doi:10.1002/jgrc.20362, 2013 Report Documentation Page Form...shelf, and current velocities obtained from a three-dimensional (3-D) hydro- dynamic model (the Navy Coastal Ocean Model). The budget terms were used to

  14. The crustal structure of the continental margin east of the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Schimschal, Claudia Monika; Jokat, Wilfried

    2018-01-01

    The 1500 km long Falkland Plateau is the most prominent morphological structure in the southern South Atlantic Ocean, which crustal composition and development is mainly unknown. At the westernmost boundary of the plateau, the Falkland Islands' Precambrian geology provides the only insight into basement structure and age. The question of whether continental basement of a similar age and origin underlies the Falkland Plateau further east is strongly disputed. We present new high quality constraints on the crustal fabric of the plateau east of the Falkland Islands, based on wide-angle seismic and potential field data acquired in 2013. The P-wave velocity model, supported by amplitude and density modelling, shows that the Falkland Plateau Basin is filled with 8 km of sediments. Continental crust of 34 km thickness underlies the Falkland Islands. The eastern continental margin of the Falkland Islands can be classified as a volcanic rifted margin. The Falkland Plateau Basin is floored by up to 20 km thick oceanic crust. The exceptionally thick igneous crust and its high lower crustal velocities (up to 7.4 km/s) indicate the influence of a regional thermal mantle anomaly during its formation, which provided extra melt material. The wide-angle model revises published crustal models, which predicted thin oceanic or thick extended continental crust below the Falkland Plateau Basin. Our results provide a sound basis for future tectonic interpretations of the area.

  15. The wide-angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup

    NASA Astrophysics Data System (ADS)

    Planert, Lars; Behrmann, Jan; Jokat, Wilfried; Fromm, Tanja; Ryberg, Trond; Weber, Michael; Haberland, Christian

    2017-10-01

    Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW-SSE, following the continent-ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW-SE from the Angola Basin into continental Namibia. At the continent-ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20-25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4-6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.

  16. Mesozoic Continental Sediment-dispersal Systems of Mexico Linked to Development of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.

    2013-05-01

    Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the continental-margin arc blocked westward drainage and detritus was captured in rift basins. Latest Middle Jurassic fluvial systems formed as the Yucatan block rotated counterclockwise and the Gulf of Mexico began to open. Sediment dispersal, partly equivalent to salt deposition in the Gulf, was largely southward in southern Oaxaquia, but large-volume braided river systems on the Maya (Yucatan) block, represented by the Todos Santos Formation in Chiapas, evidently flowed northward along graben axes toward the western part of the Gulf of Mexico Basin. River systems of nuclear Mexico, or Oaxaquia, occupied a broad sedimentary basin west and south of a divide formed adjacent to the translating Maya block. Despite their big-river characteristics, these deposits contain mainly Grenville and Permo-Triassic grains derived from Oaxaquia basement and subordinate Early and Middle Jurassic grains derived from volcanic rocks and plutons of the arc. Early Late Jurassic (Oxfordian) marine flooding of the entire Gulf rim and nuclear Mexico, evidently resulting in part from marginal subsidence adjoining newly-formed oceanic crust, terminated fluvial deposition adjacent to the young Gulf of Mexico.

  17. Quantitative calculation and numerical modeling of the conjugate margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, D.; Pérez-Gussinyé, M.; Wang, W.; Bai, Y.

    2017-12-01

    South China margin rifted on the tectonic setting of the early active continental margin since Cenozoic. The present South China Sea (SCS) opened at 32 Ma and showed propagation from east to west, with different crustal and sedimentary structures at the conjugate continental margins. Based on the latest high-quality multi-channel seismic data, bathymetric data, and other obtained seismic profiles, the asymmetric characteristics between the conjugate margins of the SCS are revealed. Spatial variation of morphology, basement structure and marginal faults are discovered among the SCS margin profiles. We calculate the lithospheric stretching factors and analyze the anomalous post-rift subsidence from two typical seismic profiles in the conjugate margins of the SCS, with integrated method of 2D forward and inversion based on flexural-cantilever model. We propose a differential extension model to explain the spatial differences in the SCS margins and emphasize the role of detachment fault in evolutionary process. Numerical modeling has a great advantage in studying the rifted margin formation mechanism. Dynamic modeling for the formation of asymmetric conjugate margins of the SCS is carried out by solving the thermal-mechanical equation, based on the viscoelastic-plastic model. The results show that the width and symmetry of the margin are controlled by the crustal rheological structure and sedimentation rate. Crust with lower strength is prone to distributed and persistent faulting instead of strain localization, which results in the wider margin. On the contrary, the stronger crust would generate large faults and lead to strain localization in a small amount of them, easier to form narrow continental margin. Large sediment loading is favorable for the development of large faults, meanwhile, the subsequent thermal effect reduces the crustal viscosity. A sudden transition zone of sedimentation rate is prone to strain localization and accelerates the crust rift, which may affect the future break-up. The numerical modeling with full dynamics in SCS needs a further investigation. Acknowledge: This study was supported by the National Natural Science Foundation of China (No. 41476042, 41506055 )

  18. Thermal history and evolution of the Rio de Janeiro - Barbacena section of the southeastern Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Neri Gezatt, Julia; Stephenson, Randell; Macdonald, David

    2015-04-01

    The transect between the Brazilian cities of Rio de Janeiro and Barbacena (22°54'S, 43°12'W and 21°13'S, 43°46'W, respectively) runs through a segment of a complex range of N-NE/S-SW trending basement units of the Ribeira Belt and southern Sao Francisco Craton, intensely reworked during the Brasiliano-Pan-African orogenic cycle. The ortho- and paragneisses in the area have metamorphic ages between 650 and 540 Ma and are intruded by pre-, syn- and post-tectonic granitic bodies. The transect, perpendicular to the strike direction of the continental margin, crosses the Serra do Mar escarpment, where the sample density is higher in order to better constrain occasional significant age changes. For logistical reasons, the 40 samples collected were processed in two separate batches for apatite fission track (AFT) analysis. The first batch comprised 19 samples, from which 15 produced fission track ages. Analyses were carried out at University College London (UCL), following standard procedures. Preliminary results for the study show AFT ages between 85.9±6.3 and 54.1±4.2 Ma, generally with younger ages close to the coast and progressively older ages towards the continental interior. The highest area sampled, around the city of Teresopolis, ranges from 740 to 1216 m above sea level and shows ages between 85.9±6.3 and 71.3±5.3 Ma. There is no evident lithological or structural distribution control. Medium track length values range from 12.57 to 13.89 µm and distributions are unimodal. Thermal history modelling was done using software QTQt. Individual sample model cooling curves can be divided into two groups: a dominant one, showing a single, slower cooling trend, and a second one with a rapid initial cooling curve, which becomes less steep around 65 Ma. In both groups the maximum paleotemperatures are around 110 Ma. The thermal history model for the first batch of samples is compatible with a single cooling event for the area following continental rifting and formation of the Atlantic Ocean. The preliminary results add to the growing thermochronological data base for the southeastern Brazilian continental margin and to deciphering the complex evolution of the region, as well as to the knowledge about the development and evolution of divergent continental margins in general. In a regional setting, AFT ages from this study, though not broadly variant locally, are distinct from basement rock AFT ages for adjacent areas produced by other authors along the southeastern continental margin. Similar ages are found at the southern Bocaina Plateau, for example, where structural control of age distribution is evident. Such regional thermal age difference has been previously attributed to continental scale structural compartmentalization throughout the continental passive margin, related to Late Cretaceous and Cenozoic reactivation of the E-W fracture zones linked to rifting of the South Atlantic. The present AFT results are compatible with Late Cretaceous reactivation but show no relation with younger events.

  19. Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains

    NASA Astrophysics Data System (ADS)

    Cadenas, P.; Fernández-Viejo, G.; Pulgar, J. A.; Tugend, J.; Manatschal, G.; Minshull, T. A.

    2018-03-01

    The Alpine Pyrenean-Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill-hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first-order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift-related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.

  20. Towards Biogeochemical Modeling of Anaerobic Oxidation of Methane: Characterization of Microbial Communities in Methane-bearing North American Continental Margin Sediments

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.

    2015-12-01

    Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.

  1. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  2. First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins

    PubMed Central

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A.; Coleman, Dwight F.; Goodman-Tchernov, Beverly N.; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010–2011 E/V Nautilus exploration of the Levantine basin’s sediments at the depth of 300–1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp. – like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column. PMID:24614177

  3. International year of planet earth 7. Oceans, submarine land-slides and consequent tsunamis in Canada

    USGS Publications Warehouse

    Mosher, D.C.

    2009-01-01

    Canada has the longest coastline and largest continental margin of any nation in the World. As a result, it is more likely than other nations to experience marine geohazards such as submarine landslides and consequent tsunamis. Coastal landslides represent a specific threat because of their possible proximity to societal infrastructure and high tsunami potential; they occur without warning and with little time lag between failure and tsunami impact. Continental margin landslides are common in the geologic record but rare on human timescales. Some ancient submarine landslides are massive but more recent events indicate that even relatively small slides on continental margins can generate devastating tsunamis. Tsunami impact can occur hundreds of km away from the source event, and with less than 2 hours warning. Identification of high-potential submarine landslide regions, combined with an understanding of landslide and tsunami processes and sophisticated tsunami propagation models, are required to identify areas at high risk of impact.

  4. Observations of seismicity and ground motion in the northeast U.S. Atlantic margin from ocean bottom seismometer data

    USGS Publications Warehouse

    Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.

    2017-01-01

    Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.

  5. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region

    NASA Astrophysics Data System (ADS)

    Steckler, Michael S.; ten Brink, Uri S.

    1986-08-01

    The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.

  6. Overcoming Multidimensional Marginality: The Significance of Higher Education for Traditionally Reared Single Mothers Living in the Outer Periphery

    ERIC Educational Resources Information Center

    Greenberg, Zeev; Shenaar-Golan, Vered

    2017-01-01

    The current study gives voice to a group of remarkable returning college students whose lives are defined by multidimensional marginality. These students are single mothers who grew up in traditional families in the outer periphery of Northern Israel, where they still lived at the time of this study. Drawing on the women's life stories gathered…

  7. Coincidence or not? Interconnected gas/fluid migration and ocean-atmosphere oscillations in the Levant Basin

    NASA Astrophysics Data System (ADS)

    Lazar, Michael; Lang, Guy; Schattner, Uri

    2016-08-01

    A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.

  8. On the existence of black holes in distorted Schwarzschild spacetime using marginally trapped surfaces

    NASA Astrophysics Data System (ADS)

    Pilkington, Terry

    The classical definition of a black hole in terms of an event horizon relies on global properties of the spacetime. Realistic black holes have matter distributions surrounding them, which negates the asymptotic flatness needed for an event horizon. Using the (quasi-)local concept of marginally trapped surfaces, we investigate the Schwarzschild spacetime distorted by an axisymmetric matter distribution. We determine that it is possible to locate a future outer trapping horizon for a given foliation within certain value ranges of multipole moments. Furthermore, we show that there are no marginally trapped surfaces for arbitrary values of the multipole moment magnitudes. KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARGINALLY TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON

  9. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    NASA Astrophysics Data System (ADS)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases are present in the Faroe-Shetland Basin, but are not recognisable in the Vøring Basin. (iv) Based on seismic data only, a Permian/Triassic rift phase can be suggested for the Vøring Basin, but the evidence for an equivalent rift phase in the Faroe-Shetland Basin is inconclusive. The present study demonstrates that basins developing above a complex mosaic of basement terrains accreted during orogenic phases can exhibit significant differences in their architecture. The origin of these differences may be considered to be a result of inherited pre-existing large-scale structures (e.g. pre-existing fault blocks) and/or a non-uniform crustal thickness prior to rifting.

  10. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  11. The Project for the Extension of the Continental Shelf - the Portuguese experience

    NASA Astrophysics Data System (ADS)

    Madureira, Pedro; Ribeiro, Luísa P.; Roque, Cristina; Henriques, Guida; Brandão, Filipe; Dias, Frederico; Simões, Maria; Neves, Mariana; Conceição, Patricia; Botelho Leal, Isabel; Emepc, Equipa

    2017-04-01

    Under the United Nations Convention on the Law of the Sea (UNCLOS), the continental shelf is a juridical term used to define a submarine area that extends throughout the natural prolongation of a land territory, where the coastal State exercises sovereign rights for the purpose of exploring it and exploiting its natural resources. Article 76 provides a methodology for determining the outer edge of the continental margin and to delineate the outer limits of the continental shelf. The task of preparing the Portuguese submission to the Commission on the Limits of the Continental Shelf was committed to the Task Group for the Extension of the Continental Shelf (EMEPC), which formally began its activity in January 2005. At that time, the existing national capacity to conduct such a task was very limited in its hydrographic, geological and geophysical components. A great effort has been made by Portugal to overcome these weaknesses and develop a strategy to submit the proposal for the extension of the continental shelf beyond 200 nautical miles on 11th May of 2009. The execution of the project involved the implementation of several complementary strategies including: 1) intensive bathymetric, geophysical and, locally, geological data acquisition; 2) acquisition/development of new stand-alone and ship mounted equipment; 3) interactions with universities and research institutes, with emphasis in R&D initiatives; 4) creation of critical mass in deep-sea research by promoting advanced studies on: International Law, Geophysics, Geology, Hydrography, Biology, amongst others; 5) promotion of the sea as a major national goal, coupled with an outreach strategy. Until now, more than 1050 days of surveying have resulted in a large scale seafloor mapping using two EM120 and one EM710 multibeam echosounders from Kongsberg mounted on two hydrographic vessels. The surveys follow IHO Order 2 Standard (SP44, 5th Edition) and cover an area over 2.6 million km2. A multichannel reflection and wide angle refraction seismic survey provided 2600 km of high quality MCS data, allowing an accurate imaging of the sediment cover. Also, the data collected under the project has been used to foster the collaboration with universities and research institutes and to support research projects and post graduate studies on the deep-sea. An educational strategy has been emplaced in order to promote Ocean Literacy among children and youngsters. Since 2008, EMEPC is responsible for the operation and maintenance of Luso, a work class ROV rated to 6,000 metres depth. More than 170 ROV dives allowed the direct observation of the deep-sea for almost 800 hours of video footages, which also provided key information on biodiversity and deep sea ecosystems, which stand as the base for the creation of a database on biological data and to develop a strategy to protect the marine environment. Portugal has now the capacity to access its entire maritime areas, reinforcing the knowledge on the natural processes that shape the deep-sea. Some views on the Portuguese interpretation and application of article 76 will be discussed based on the data gathered within the scope of the project, which is still ongoing.

  12. New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset

    NASA Astrophysics Data System (ADS)

    Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian

    2014-05-01

    The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.

  13. 77 FR 57581 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of the availability of environmental...

  14. 77 FR 34405 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of the availability of environmental...

  15. 77 FR 74213 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of the availability of environmental...

  16. 75 FR 803 - Safety Zone; FRONTIER DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... order to drill exploratory wells at various prospects located in the Chukchi and Beaufort Sea Outer... reduce the threat of allisions, oil spills, and releases of natural gas, and thereby protect the safety... FRONTIER DISCOVERER while anchored on location in order to drill exploratory wells in several prospects...

  17. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    NASA Astrophysics Data System (ADS)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  18. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  19. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2007-02-01

    Dismembered late Mesozoic ophiolites occur in two parallel belts along the eastern margin of the Indian Plate. The Eastern Belt, closely following the magmatic arc of the Central Burma Basin, coincides with a zone of high gravity. It is considered to mark a zone of steeply dipping mafic-ultramafic rocks and continental metamorphic rocks, which are the locus of two closely juxtaposed sutures. In contrast, the Western Belt, which follows the eastern margin of the Indo-Burma Range and the Andaman outer-island-arc, broadly follows a zone of negative gravity anomalies. Here the ophiolites occur mainly as rootless subhorizontal bodies overlying Eocene-Oligocene flyschoid sediments. Two sets of ophiolites that were accreted during the Early Cretaceous and mid-Eocene are juxtaposed in this belt. These are inferred to be westward propagated nappes from the Eastern Belt, emplaced during the late Oligocene collision between the Burmese and Indo-Burma-Andaman microcontinents. Ophiolite occurrences in the Andaman Islands belong to the Western Belt and are generally interpreted as upthrust oceanic crust, accreted due to prolonged subduction activity to the west of the island arc. This phase of subduction began only in the late Miocene and thus could not have produced the ophiolitic rocks, which were accreted in the late Early Eocene.

  20. Wilson study cycles: Research relative to ocean geodynamic cycles

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.

    1985-01-01

    The effects of conversion of Atlantic (rifted) margins to convergent plate boundaries; oceanic plateaus at subduction zones; continental collision and tectonic escape; southern Africa rifts; and global hot spot distribution on long term development of the continental lithosphere were studied.

  1. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.

  2. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry exists between these conjugate margins. The main implications from this work are that different processes may have operated during and after rifting on these conjugate margins. This concept should be carried forward when conducting conjugate margin studies elsewhere, particularly when exploring for hydrocarbons as prospectivity on one margin may not be predictive for its conjugate as different thermal and structural regimes may have been in operation during conjugate basin evolution.

  3. Oil-spill risk analysis: Outer continental shelf lease sale 144, Beaufort Sea. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; Johnson, W.R.; Marshall, C.F.

    1995-08-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Beaufort Sea for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. This report summarizes results of an oil-spill risk analysis conducted for OCS Lease Sale 144, Beaufort Sea. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed leasemore » sale.« less

  4. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    NASA Astrophysics Data System (ADS)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  5. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  6. Sediment deposition rates on the continental margins of the eastern Arabian Sea using 210Pb, 137Cs and 14C.

    PubMed

    Somayajulu, B L; Bhushan, R; Sarkar, A; Burr, G S; Jull, A J

    1999-09-30

    Eight gravity cores from the active eastern continental margins of the Arabian Sea were dated using 210Pbxs, 137Cs and 14C. The short-term (< or = 100 years) sedimentation rates range from 0.06 to 0.66 cm/year where as the long-term (> or = 1000 years) ones using AMS 14C on planktonic foraminifera varied from 0.004 to 0.13 cm/year. For long-term chronology (< or = 50,000 years) AMS dating of well-cleaned planktonic foraminifera is most suited.

  7. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.

  8. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  9. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  10. Continental Scientific Drilling Program.

    DTIC Science & Technology

    1979-01-01

    Institute of Technology ALBERT W. BALLY, Shell Oil Company, Houston HUBERT L. BARNES, Pennsylvania State University ARTHUR L. BOETTCHER, University of...San Marcos arch near Victoria, Texas. Information from a hole would answer fundamental questions about ancient continental margins and would complement...did the uplift begin in this area? Is the crust continental or oceanic? Area 3 (Figure A-7), positioned upon the San Marcos arch to avoid the thick

  11. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former continental margin. The mafic cumulates and restites, owing to their high densities, eventually foundered into the mantle, leaving behind a more felsic crust. Our grid-based sampling allows us to estimate an unbiased average upper crustal composition for the Peninsular Ranges Batholith. Major and trace-element compositions are very similar to global continental crust averaged over space and time, but in detail, the Peninsular Ranges are slightly lower in compatible to mildly incompatible elements, MgO, Mg#, V, Sc, Co, and Cr. The compositional similarities suggest a strong arc component in global continental crust, but the slight discrepancies suggest that additional crust formation processes are also important in continent formation as a whole. Finally, the delaminated Sierran garnet pyroxenites have some of the lowest U/Pb ratios ever measured for silicate rocks. Such material, if recycled and stored in the deep mantle, would generate a reservoir with very unradiogenic Pb, providing one solution to the global Pb isotope paradox. ?? 2007 Elsevier B.V. All rights reserved.

  12. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2007-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated temperature and excess flux, and magmatism dies off as this rift-restricted material is spent. The buoyancy of the plume-material also elevates the plate boundaries and enhances plate spreading forces initially. The rapid drop in magma productivity to the north correlates with the northern boundary of the wide and deep Cretaceous Vøring Basin, thus less plume material was accommodated off Lofoten. This model predicts that the magma segmentation will show little variation in the geochemical signature.

  13. The Continent-Ocean Transition in the Mid-Norwegian Margin: Insight From Seismic Data and the Onshore Caledonian Analogue in the Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Mansour M.; Planke, Sverre; Andersen, Torgeir B.; Faleide, Jan Inge; Corfu, Fernando; Tegner, Christian; Myklebust, Reidun

    2015-04-01

    The continental breakup and initial seafloor spreading in the NE Atlantic was accompanied by widespread intrusive and extrusive magmatism and the formation of conjugate volcanic passive margins. These margins are characterized by the presence of seaward dipping reflectors (SDR), an intense network of mafic sheet intrusions of the continental crust and adjacent sedimentary basins and a high-velocity lower crustal body. Nevertheless many issues remain unclear regarding the structure of volcanic passive margins; in particular the transitional crust located beneath the SDR.New and reprocessed seismic reflection data on the Mid-Norwegian margin allow a better sub-basalt imaging of the transitional crust located beneath the SDR. Different high-amplitude reflections with abrupt termination and saucer shaped geometries are identified and interpreted as sill intrusions. Other near vertical and inclined reflections are interpreted as dykes or dyke swarms. We have mapped the extent of the dyke reflections along the volcanic margin. The mapping suggests that the dykes represent the main feeder system for the SDR. The identification of saucer shaped sills implies the presence of sediments in the transitional zone beneath the volcanic sequences. Onshore exposures of Precambrian basement of the eroded volcanic margin in East Greenland show that, locally, the transitional crust is highly intruded by dykes and intrusive complexes with an increasing intensity of the plumbing and dilatation of the continental crust ocean-ward. Another well exposed analogue for a continent-ocean transitional crust is located within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides. The best-preserved parts of SNC in the Pårte, Sarek, Kebnekaise, Abisko, and Indre Troms mountains are composed mainly of meta-sandstones and shales (now hornfelses) truncated typically by mafic dykes. At Sarek and Pårte, the dykes intrude the sedimentary rocks of the Favoritkammen Group, with a dyke density up to 70-80%. This complex was photographed in a regional helicopter survey and sampled for the study of the different dyke generations, their geochemistry and ages in 2014. Extending for at least 800 km within the SNC, the mafic igneous rocks most probably belonged to a volcanic system with the size of a large igneous province (LIP). This volcanic margin is suggested to have formed along the Caledonian margin of Baltica or within hyperextended continental slivers outboard of Baltica during the breakup of Rodinia. The intensity of the pre-Caledonian LIP-magmatism is comparable to that of the NE Atlantic volcanic margins. The SNC-LIP is considered to represent a potential onshore analogue to the deeper level of the Mid-Norwegian margin transitional crust, and permits direct observation, sampling and better understanding of deeper levels of magma-rich margins.

  14. 75 FR 51943 - Safety Zone; DEEPWATER HORIZON at Mississippi Canyon 252 Outer Continental Shelf MODU in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), at Mississippi Canyon 252, in the Outer... the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), which is currently set to expire on... response to the sinking of the DEEPWATER HORIZON, a Mobile Offshore Drilling Unit (MODU), near Mississippi...

  15. 75 FR 54369 - BOEMRE Information Collection Activity: 1010-NEW, Upcoming Projects Considering the Use of Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... shore protection and beach and coastal restoration, or for use in construction projects funded in whole... Considering the Use of Outer Continental Shelf Sand, Gravel, and Shell Resources for Coastal Restoration and... will submit to BOEMRE to obtain OCS sand, gravel, and shell resources for use in shore protection and...

  16. 78 FR 72096 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... environmental documents prepared for OCS mineral proposals by the Gulf of Mexico OCS Region. SUMMARY: BOEM, in... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region...

  17. 78 FR 47746 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Environmental Documents Prepared for OCS Mineral Proposals by the Gulf of Mexico OCS Region. SUMMARY: BOEM, in... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region...

  18. 78 FR 27422 - Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Environmental Documents Prepared for OCS Mineral Proposals by the Gulf of Mexico OCS Region. SUMMARY: BOEM, in... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management MMAA104000 Environmental Documents Prepared for Oil, Gas, and Mineral Operations by the Gulf of Mexico Outer Continental Shelf (OCS) Region...

  19. 77 FR 65547 - Reissuance of the NPDES General Permits for Oil and Gas Exploration Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9747-5] Reissuance of the NPDES General Permits for Oil and... Sea and on the Outer Continental Shelf in the Chukchi Sea, AK AGENCY: Environmental Protection Agency... draft general permits were also published in the Anchorage Daily News, the Arctic Sounder, and Petroleum...

  20. 75 FR 3915 - Environmental Documents Prepared in Support of Sand and Gravel Activities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... of Sand and Gravel Activities on the Outer Continental Shelf AGENCY: Minerals Management Service... Environmental Policy Act (NEPA), the Council on Environmental Quality regulations (40 CFR parts 1500-1508), and... Impact (FONSI) prepared and/or adopted by the MMS for three sand and gravel activities proposed on the...

  1. 77 FR 38718 - Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and/or Beaufort Seas, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Beaufort Seas, Alaska (See Table 1). Table 1--Prospect Locations Prospect Well Area Block Lease No... requirements. The planned exploration drilling in the identified lease blocks will be conducted with the NOBLE... outer boundaries of the safety zone to include the anchor chain extending from the OCS facilities; one...

  2. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion

    2013-04-01

    The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.

  3. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.

  4. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.

  5. Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective

    NASA Astrophysics Data System (ADS)

    England, R. W.; Cornwell, D. G.; Ramsden, A. M.

    2014-12-01

    One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.

  6. 75 FR 16833 - Preliminary Revised 5-Year Outer Continental Shelf (OCS) Oil and Gas Leasing Program for 2007-2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Continental Shelf (OCS) Oil and Gas Leasing Program for 2007-2012 AGENCY: Minerals Management Service... (MMS) requests comments on the Preliminary Revised 5-Year OCS Oil and Gas Leasing Program for 2007... Elden Street, MS-4010; Herndon, Virginia 20170-4817. Please reference ``Remand of the 2007-2012 OCS Oil...

  7. Preliminary report on geology along Atlantic Continental Margin of northeastern United States

    USGS Publications Warehouse

    Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.

    1974-01-01

    The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.

  8. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  9. Geophysical evidence for the intersection of the St Paul, Cape Palmas and Grand Cess fracture zones with the continental margin of Liberia, West Africa

    USGS Publications Warehouse

    Behrendt, John C.; Schlee, J.; Robb, James M.

    1974-01-01

    PUBLISHED reconstructions of Gondwana continent1 (Fig. la) show a gap in fit near the junction of the Americas and Africa. To study this critical area, the Unitedgeo I made geophysical measurements and collected rock samples across the continental margin of Liberia (USGS-IDOE cruise leg 5) in November 1971. Figure Ib indicates the location of the 5,400 km of ship track on a generalised bathymetric map2. We shall discuss the data in detail elsewhere. Here we present the evidence for the existence of three fracture zones, two of which have not been reported previously, intersecting the continental margin at the north end of the South Atlantic, which remained closed probably until Cretaceous time. We suggest that Precambrian structures on the African continent controlled the location of these fracture zones. Figure Ic compares gravity and magnetic profiles and interpretations of the seismic profiles for three selected lines (27, 30 and 34) crossing the Grand Cess, Cape Palmas and St Paul fracture zones, respectively. ?? 1974 Nature Publishing Group.

  10. Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Canals, Miquel; Sanz, José Luis; Lastras, Galderic; Amblas, David; Micallef, Aaron

    2014-01-01

    The northern Catalan continental shelf, in the northwestern Mediterranean Sea, extends along 200 km from the Cap de Creus submarine canyon to the Llobregat Delta, in the vicinity of the city of Barcelona. In this paper we present the results of a systematic investigation of this area by means of very high-resolution multibeam bathymetry to fully assess its morphological variability. The causative factors and processes determining such variability are subsequently interpreted. The shelf is divided in three segments by two prominent submarine canyons: the northernmost Roses Shelf is separated from the intermediate La Planassa Shelf by the La Fonera Canyon, while the boundary between the La Planassa Shelf and the southernmost Barcelona Shelf is marked by the Blanes Canyon. These two canyons are deeply incised in the continental margin, with their heads located at only 0.8 and 5 km from the shore, respectively. The seafloor character reflects the influence of external controlling factors on the geomorphology and sediment dynamics of the northern continental shelf of Catalonia. These factors are the geological setting, the volume and nature of sediment input, and the type and characteristics of processes leading to sediment redistribution, such as dense shelf water cascading (DSWC) and eastern storms. The interaction of all these factors determines sediment dynamics and allows subdividing the northern Catalan continental shelf into three segments: the erosional-depositional Roses Shelf to the north, the non-depositional La Planassa Shelf in the middle, and the depositional Barcelona Shelf to the south. Erosional features off the Cap de Creus Peninsula and an along-shelf subdued channel in the outer shelf illustrate prevailing sediment dynamics in the Roses segment, which is dominated by erosional processes, local sediment accumulations and the southward bypass of sediment. The rocky character of the seafloor immediately north of the Blanes Canyon head demonstrates that neither significant sediment inputs from the Tordera River nor from the northern sources reach the southern part of the La Planassa Shelf. Palaeo-shorelines depict a number of paleodeltas with steep delta fronts on the drowned Barcelona Shelf.

  11. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite element analysis (~35,000 elements for a spatial resolution of approximately 50 km) for the North American plate, where previous lower resolution modeling has shown the importance of the lithospheric cooling (ridge push) force to model the broad scale stress patterns observed from the middle of the continent to the Mid-Atlantic ridge.

  12. Age & reproduction in three reef - dwelling serranid fishes of the northeastern Gulf of Mexico outer continental shelf: Pronotogrammus martinicensis, Hemanthias vivanus & Serranus phoebe (with preliminary observations on the Pomacentrid fish, Chromis enchrysurus)

    USGS Publications Warehouse

    Thurman, Paul E.; McBride, Richard S.; Sulak, Kenneth J.; Dennis, George D.

    2004-01-01

    Specimens of the four study species were collected during cruises to outer-continental shelf reefs of the northeastern Gulf of Mexico. Age was estimated for all serranid species using whole otoliths and C. enchrysurus ages were determined from transverse sections of sagittal otoliths. Ring structure observed on otoliths was validated as having an annual periodicity for P. martinicensis using marginal increment analysis. Ring structure on remaining species was assumed to correspond to age (years). Pronotogrammus martinicensis, H. vivanus, S. phoebe, and C. enchrysurus exhibited maximum ages of 9, 8, 5, and 11, respectively. Spatial variations in size-at-age were observed in P. martinicensis populations. Individuals inhabiting reefs in the Madison-Swanson Reserve area on the West Florida Shelf edge exhibited the fastest growth rates, while the slowest growing P. martinicensis were collected from the Alabama Alps Reef, the farthest west study reef. Pronotogrammus martinicensis and H. vivanus are both protogynous hermaphrodites. Evidence of active spawning was observed in the months from February through July for P. martinicensis, and March and May for H. vivanus. Serranus phoebe was observed to be a simultaneous hermaphroditic capable of spawning year-round. Batch fecundity estimates for P. martinicensis ranged from 149-394 oocytes per fish. Size selectivity was evident in our primary sampling method, hook and line using small tandem bait hooks. Smaller size-classes of all species examined were under-represented in our samples, hindering accurate growth modeling. Due to the protogynous nature of P. martinicensis and H. vivanus, hook and line sampling also tended to select for males. Future descriptions of the reproductive biology of both protogynous species would be more complete if less selective sampling methods could be successfully employed. The data presented here contribute to a better assessment of the fish community of the northeastern Gulf of Mexico. Little information on age and reproduction was previously available for the serranid and pomacentrid species investigated in the present study. These species are important links between both planktonic or benthic food resources and economically-valuable groupers, snappers, and amberjacks. If a catastrophic natural or anthropogenic event occurred in these outer continental shelf reef habitats, the resultant loss of these forage species would immediately impact regional fish production via the food chain. This would be particularly true for reef-resident commercial and recreational fish species that depend extensively upon a diet of small forage fish species. Recovery to a stable community, fully repopulated with small forage fish species, would require at least a decade, possibly longer if the habitat had been substantially degraded during the initial disturbance.

  13. Submarine mass wasting on the Ionian Calabrian margin

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Forlin, E.; Coste, M.; Cova, A.; Praeg, D.; Fanucci, F.; Critelli, S.

    2010-12-01

    Mass wasting processes on continental margins have strong relevance both for geohazards of coastal areas and for the emplacement and monitoring of offshore infrastructures. The seabed dynamics of the Ionian Calabrian Margin (ICM) are currently being examined in the context of the project MAGIC (Marine Geohazard along the Italian Coasts). The objective of this project is the definition of elements that may constitute geological risk for coastal areas. The ICM is a tectonically-active margin, the structures of which reflect two main processes: frontal compression and fore-arc extension during the SE advance of the Calabrian accretionary prism since the late Miocene; and a rapid uplift (up to 1mm/yr) of onshore and shallow shelf areas since the mid-Pleistocene. These processes are reflected in different tectonic settings at seabed, which is characterized by a narrow continental shelf above a slope of irregular morphology in water depths of 150-2000 m. In the north, a broad slope is dominated by ridges and intervening basins that are the morphological expression of the southern Apennine fold-and-thrust belt; in the south, the continental slope descends steeply towards the deep-water Crotone and Spartivento fore-arc basins. The overall objective of this study is to map major features of mass wasting on the slopes of the ICM, investigate possible triggering mechanisms and consider the geohazards these features may represent for coastal areas. The study is based on an integrated analysis of multibeam morpho-bathymetric data and subbottom profiles, which together allow the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins - these are identified in the northern area, within the piggy-back basins: seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, while Chirp profiles show the adjacent basins to contain unstratified bodies indicative of debris flows buried beneath stratified sediments; multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) slope slide scars - these are identified in two locations along the relatively steep southern Calabrian slope; the slide scars record several episodes of failure, linked to deposits within the deep-water basins that are yet to be identified. 3) possible gravity sliding - in one area of the southern Calabrian slope, elongate seabed features oriented subparallel to contours are observed, associated with diapiric structures that have been linked to Messinian salt observed on seismic profiles (Rossi & Sartori 1981); we suggest that the elongate seabed features may record a form of downslope sediment sliding above salt, resulting in features analogous to the cobblestone topography of the outer Calabrian Arc; 4) canyon headwalls - in the upper parts of all canyons, numerous headwall scarps are consistent with retrogressive activity of the canyons.

  14. Significance of anoxic slope basins to occurrence of hydrocarbons along flexure trend, Gulf of Mexico: a reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinkelman, M.G.; Curry, D.J.

    1987-05-01

    Recently, Tertiary anoxic slope basins have been proposed as the sources for much of the oil occurring along the Flexure Trend in the Gulf of Mexico. The intraslope basins are thought to have been formed in response to salt diapirism and concomitant salt withdrawal resulting from differential sediment loading between the basins and the diapirs, as well as due to associated faulting. Of the modern intraslope basins, the black, organic-rich muds accumulating in the Orca basin have especially attracted and are suggested to be modern analogs to late Tertiary source rocks accumulated and buried across the continental slope. Although themore » organic carbon content of the anoxic sediments in the Orca basin is generally high (2 to 3%), the concentration of preserved oil-generative organic matter in these sediments is low. Rock-Eval P2 yields are usually in the range of 340 to 1620 ppm, and hydrogen indices are generally less than 100. Pyrolysis-GC and 13C-NMR data show that up to 30 + % of the organic carbon is contained in carboxyl and other oxygenated groups, which are lost during diagenesis and early catagenesis of the sediments, and that much of the remainder is aromatized and degraded. The degradation was probably by oxidation during settling through the oxic water column. The geochemical data indicate, therefore, that the bulk of the organic carbon in the Orca basin is not capable of forming oil during catagenesis. Published regional cross sections across the Texas-Louisiana continental margin commonly show a thick (0.5-4 km), continuous salt sequence, sourcing salt diapirs and ridges, to underlie the Oligocene(.)/Miocene to Pleistocene sedimentary section of the outer continental shelf and slope.« less

  15. Structure and development of the Southeast Georgia Embayment and northern Blake Plateau: Preliminary analysis

    USGS Publications Warehouse

    Dillon, William P.; Paull, Charles K.; Buffler, Richard T.; Fail, Jean-Pierre

    1979-01-01

    Multichannel seismic reflection profiles from the Southeast Georgia Embayment and northern Blake Plateau show reflectors that have been correlated tentatively with horizons of known age. The top of the Cretaceous extends smoothly seaward beneath the continental shelf and Blake Plateau, unaffected at the present shelf edge. A reflector inferred to correspond approximately to the top of the Jurassic section onlaps and pinches out against rocks below. A widespread smooth reflector probably represents a volcanic layer of Early Jurassic age that underlies only the northwestern part of the research area. A major unconformity beneath the inferred volcanic layer is probably of Late Triassic or Early Jurassic age. This unconformity dips rather smoothly seaward beneath the northern Blake Plateau, but south of a geological boundary near 31°N, it has subsided much more rapidly, and reaches depths of more than 12 km. Development of the continental margin north of the boundary began with rifting and subsidence of continental basement in the Triassic. An episode of volcanism may have been due to stresses associated with a spreading center jump at about 175 million years ago. Jurassic and Cretaceous deposits form an onlapping wedge above the inferred early Jurassic volcanics and Triassic sedimentary rocks. During Cenozoic times, development of Gulf Stream flow caused a radical decrease in sedimentation rates so that a shelf that was much narrower than the Mesozoic shelf was formed by progradation against the inner edge of the stream. South of the 31°N geological boundary, the basement probably is semi-oceanic and reef growth, unlike that in the area to the north, has been very active at the outer edge of the plateau.

  16. Uncovering the glacial history of the Irish continental shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Dunlop, P.; Benetti, S.; OCofaigh, C.

    2013-12-01

    In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.

  17. Geologic evolution and sequence stratigraphy of the offshore Pelotas Basin, southeast Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, V.S.

    1996-01-01

    The Brazilian marginal basins have been studied since the beginning of the 70s. At least nine large basins are distributed along the entire Eastern continental margin. The sedimentary infill of these basins consists of lower Cretaceous (continental/lacustrine) rift section underlying marine upper Cretaceous (carbonate platforms) and marine upper Cretaceous/Tertiary sections, corresponding to the drift phase. The sedimentary deposits are a direct result of the Jurassic to lower Cretaceous break-up of the Pangea. This study will focus on the geologic evolution and sequence stratigraphic analysis of the Pelotas basin (offshore), located in the Southeast portion of the Brazilian continental margin betweenmore » 28[degrees] and 34[degrees] S, covering approximately 50,000 Km[sup 2]. During the early Cretaceous, when the break-up of the continent began in the south, thick basaltic layers were deposited in the Pelotas basin. These basalts form a thick and broad wedge of dipping seaward reflections interpreted as a transitional crust. During Albian to Turonian times, due to thermal subsidence, an extensive clastic/carbonate platform was developed, in an early drift stage. The sedimentation from the upper Cretaceous to Tertiary was characterized by a predominance of siliciclastics in the southeast margin, marking an accentuate deepening of the basin, showing several cycles related to eustatic fluctuations. Studies have addressed the problems of hydrocarbon exploration in deep water setting within a sequence stratigraphic framework. Thus Pelotas basin can provide a useful analogue for exploration efforts worldwide in offshore passive margins.« less

  18. Geologic evolution and sequence stratigraphy of the offshore Pelotas Basin, southeast Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, V.S.

    1996-12-31

    The Brazilian marginal basins have been studied since the beginning of the 70s. At least nine large basins are distributed along the entire Eastern continental margin. The sedimentary infill of these basins consists of lower Cretaceous (continental/lacustrine) rift section underlying marine upper Cretaceous (carbonate platforms) and marine upper Cretaceous/Tertiary sections, corresponding to the drift phase. The sedimentary deposits are a direct result of the Jurassic to lower Cretaceous break-up of the Pangea. This study will focus on the geologic evolution and sequence stratigraphic analysis of the Pelotas basin (offshore), located in the Southeast portion of the Brazilian continental margin betweenmore » 28{degrees} and 34{degrees} S, covering approximately 50,000 Km{sup 2}. During the early Cretaceous, when the break-up of the continent began in the south, thick basaltic layers were deposited in the Pelotas basin. These basalts form a thick and broad wedge of dipping seaward reflections interpreted as a transitional crust. During Albian to Turonian times, due to thermal subsidence, an extensive clastic/carbonate platform was developed, in an early drift stage. The sedimentation from the upper Cretaceous to Tertiary was characterized by a predominance of siliciclastics in the southeast margin, marking an accentuate deepening of the basin, showing several cycles related to eustatic fluctuations. Studies have addressed the problems of hydrocarbon exploration in deep water setting within a sequence stratigraphic framework. Thus Pelotas basin can provide a useful analogue for exploration efforts worldwide in offshore passive margins.« less

  19. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and Huayacocotla formations). The Middle to Upper Jurassic La Joya Formation overlies unconformable all continental and marine-marginal successions and older rocks, and records the transgressive basal deposits of the Gulf series, changing upsection to the evaporites and limestone of the Oxfordian Zuloaga Group. Successive intraoceanic subduction zones to the West sparked magmatic arcs whose accretion in the continental margin produced the consolidation of much of the Mexican territory up to the current Pacific margin. Scattered isolated outcrops from the Early Mesozoic succession in central- and northeastern Mexico allow interpretation of tectonic setting and paleogeography associated to each stratigraphic unit, revealing a strongly different geologic evolution than the previously established models, opening a range of new possibilities and areas of opportunity for mining and fossil fuels exploration. However, most of the Triassic-Jurassic rocks or stratigraphic units in northern Mexico lie under many hundreds of meters of a Cretaceous-Cenozoic cover. Their recognition and preliminary evaluation implies the use of indirect techniques like geophysical methods, before drilling or subsurface mining.

  20. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan

    2017-04-01

    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.

  1. An oilspill risk analysis for the eastern Gulf of Mexico (proposed sale 65) Outer Continental Shelf lease area

    USGS Publications Warehouse

    Wyant, Timothy; Slack, James R.

    1978-01-01

    An oilspill risk analysis was conducted to determine the relative environmental hazards of developing oil in different regions of the Eastern Gulf of Mexico Outer Continental Shelf lease area. The study analyzed the probability of spill occurrence, likely paths of the spills, and locations in space and time of such objects as recreational and biological resources likely to be vulnerable. These results combined to yield estimates of the overall oilspill risk associated with development of the proposed lease area. This risk is compared to the existing oilspill risk from existing leases in the area. The analysis implicitly includes estimates of weathering rates and slick dispersion and an indication of the possible mitigating effects of cleanups.

  2. The Blake Plateau Basin and Carolina Trough

    USGS Publications Warehouse

    Dillon, William P.; Popenoe, Peter; Sheridan, R.E.; Grow, John A.

    1988-01-01

    Presently, the continental margin of the southeastern United States (Fig. 1) forms a zone of transition between the actively building, steep-fronted carbonate platform of the Bahamas and the typical eastern North American terrigenous clastic-dominated, drowned, shelf-slope-rise configuration. This region of the continental margin is underlain by two major sedimentary basins—the Blake Plateau Basin and the Carolina Trough (Fig. 2)—which are different in shape, basement structure, and history. Indeed, the two southern basins show some of the greatest contrasts of any basins of eastern North America, especially in their early response to rifting and in the change from rifting to drifting. The region has experienced abrupt major changes in geological conditions, most notably the onset of Gulf Stream flow in the early Tertiary.Morphologically, the area is dominated by the broad, flat Blake Plateau at about 800-1,000 m water depth (Fig. 1). The plateau is bounded to the east by the extremely steep Blake Escarpment, descending to 5,000 m water depths. To the west, a short continental slope rises to a continental shelf. This Blake Plateau morphology characterizes the margin east of Florida and north of the Bahamas. North of Florida the margin merges into the typical shelf-slope-rise morphology. Just north of the Blake Escarpment and its northern projection, the Blake Spur, the Blake Ridge extends away from the continental slope at water depths exceeding 2,000 m (Fig. 1). This broad ridge is a Cenozoic, sedimentary drift deposit controlled by bottom currents. (For the reader who is beginning to wonder why half of the features of this region seem to be named "Blake", the Blake was a Coast Survey steamer from which investigations off the southeastern U.S. were carried out in 1877 to 1880. Ferromanganese nodules were discovered on the Blake Plateau at that time [Murray, 1885].)

  3. Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes

    USGS Publications Warehouse

    ten Brink, Uri S.; Lee, H.J.; Geist, E.L.; Twichell, D.

    2009-01-01

    Submarine landslides along the continental slope of the U.S. Atlantic margin are potential sources for tsunamis along the U.S. East coast. The magnitude of potential tsunamis depends on the volume and location of the landslides, and tsunami frequency depends on their recurrence interval. However, the size and recurrence interval of submarine landslides along the U.S. Atlantic margin is poorly known. Well-studied landslide-generated tsunamis in other parts of the world have been shown to be associated with earthquakes. Because the size distribution and recurrence interval of earthquakes is generally better known than those for submarine landslides, we propose here to estimate the size and recurrence interval of submarine landslides from the size and recurrence interval of earthquakes in the near vicinity of the said landslides. To do so, we calculate maximum expected landslide size for a given earthquake magnitude, use recurrence interval of earthquakes to estimate recurrence interval of landslide, and assume a threshold landslide size that can generate a destructive tsunami. The maximum expected landslide size for a given earthquake magnitude is calculated in 3 ways: by slope stability analysis for catastrophic slope failure on the Atlantic continental margin, by using land-based compilation of maximum observed distance from earthquake to liquefaction, and by using land-based compilation of maximum observed area of earthquake-induced landslides. We find that the calculated distances and failure areas from the slope stability analysis is similar or slightly smaller than the maximum triggering distances and failure areas in subaerial observations. The results from all three methods compare well with the slope failure observations of the Mw = 7.2, 1929 Grand Banks earthquake, the only historical tsunamigenic earthquake along the North American Atlantic margin. The results further suggest that a Mw = 7.5 earthquake (the largest expected earthquake in the eastern U.S.) must be located offshore and within 100??km of the continental slope to induce a catastrophic slope failure. Thus, a repeat of the 1755 Cape Anne and 1881 Charleston earthquakes are not expected to cause landslides on the continental slope. The observed rate of seismicity offshore the U.S. Atlantic coast is very low with the exception of New England, where some microseismicity is observed. An extrapolation of annual strain rates from the Canadian Atlantic continental margin suggests that the New England margin may experience the equivalent of a magnitude 7 earthquake on average every 600-3000??yr. A minimum triggering earthquake magnitude of 5.5 is suggested for a sufficiently large submarine failure to generate a devastating tsunami and only if the epicenter is located within the continental slope.

  4. 78 FR 4167 - Commercial Wind Lease Issuance on the Atlantic Outer Continental Shelf Offshore Delaware

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... issued a commercial wind energy lease to Bluewater Wind Delaware LLC (Bluewater) for an area of the Outer... availability of the executed lease. The total acreage of the lease area is approximately 96,430 acres. The lease area comprises 11 full OCS blocks and 95 sub-blocks and lies within Official Protraction Diagram...

  5. Regional magnetic anomaly constraints on continental breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Frese, R.R.B.; Hinze, W.J.; Olivier, R.

    1986-01-01

    Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.

  6. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    PubMed

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  7. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    PubMed Central

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  8. Retrodeforming the Arabia-Eurasia collision zone : Age of collision and magnitude of continental subduction

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; van Hinsbergen, D. J. J.

    2012-04-01

    When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental crust since 35 Ma; for a 25 Ma collision this would be between 190-450 km. The ophiolitic fragments preserved along the suture zone allow us to test the magnitude of possible continental subduction. The Oman Ophiolite preserves the geometry and distance over which ophiolites obduced over the northern margin of Arabia in the late Cretaceous. The distance from the southwestern edge of the ophiolite to the northeastern edge of the continent is 180 km, suggesting that the Arabian continental margin plus overlying ophiolites may have extended ~200 km beyond the Main Zagros fault. Assuming that 200 km of Arabian continental margin and overlying ophiolites subducted entirely, except the few remnant ophiolite slivers remaining in the suture zone, would reconstruct ~ 400-500 km of post-collisional Arabia-Eurasia convergence, consistent with a ~25 Ma collision age. As much as 500-800 km of continental subduction required by an earlier (~35 Ma) collision age seems unlikely.

  9. Deep structure of the continental margin and basin off Greater Kabylia, Algeria - New insights from wide-angle seismic data modeling and multichannel seismic interpretation

    NASA Astrophysics Data System (ADS)

    Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques

    2018-03-01

    During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus be a characteristic feature of inverted rifted margins.

  10. 30 CFR 285.630 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information Requirements Contents of the Construction and Operations Plan § 285.630 [Reserved] Activities Under an Approved COP ...

  11. 33 CFR 142.21 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.21 Purpose and applicability. This subpart prescribes requirements concerning personal protection on OCS...

  12. 33 CFR 142.21 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.21 Purpose and applicability. This subpart prescribes requirements concerning personal protection on OCS...

  13. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-01-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  14. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the presence of the ancient rifts themselves. The St. Lawrence depression, Canada, besides being an ancient rift, is also the site of a major collisional suture. Thus only at the Reelfoot rift (New Madrid seismic zone, NMSZ, USA), is the presence of features associated with rifting itself the sole candidate for causing seismicity. Our results suggest that on a global scale, the correlation of seismicity within SCRs and ancient rifts has been overestimated in the past. Because the majority of models used to explain intraplate seismicity have focused on seismicity within rifts, we conclude that a shift in attention more towards non-rifted as well as rifted crust is in order. ?? 2005 RAS.

  15. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated.

  16. 75 FR 63504 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of... development; (2) determine whether missing information identified by BOEMRE in the 193 FEIS was essential or... in the FEIS for Chukchi Sea Lease Sale 193 was essential or relevant under 40 CFR 1502.22; and (3...

  17. 76 FR 30956 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of...: BOEMRE announces the availability of a Revised Draft SEIS, OCS Oil and Gas Lease Sale 193, Chukchi Sea.... The Revised Draft SEIS augments the analysis of the Final EIS, Oil and Gas Lease Sale 193, Chukchi Sea...

  18. 76 FR 82319 - Gulf of Mexico (GOM), Outer Continental Shelf (OCS), Western Planning Area (WPA) and Central...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Continental Shelf (OCS), Western Planning Area (WPA) and Central Planning Area (CPA), Oil and Gas Lease Sales... prepared a Draft EIS on oil and gas lease sales tentatively scheduled in 2012-2017 in the WPA and CPA... scheduled for the WPA and five annual areawide lease sales are scheduled for the CPA. The proposed WPA lease...

  19. Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf

    EPA Science Inventory

    Physical and biogeochemical processes determining the distribution and fate of nutrients delivered by the Mississippi and Atchafalaya rivers to the inner (<50 m depth) Louisiana continental shelf (LCS) were examined using a three-dimensional hydrodynamic model of the LCS and obse...

  20. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  1. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  2. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  4. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    NASA Astrophysics Data System (ADS)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed and inverted rifts without upwelling mantle and positive gravity anomalies.

  5. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2003-03-18

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  6. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  7. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2002-03-05

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  8. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  9. Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.

    Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western margins, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these ice-influenced seas. The dynamics of the glaciers and ice sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental margins of the Norwegian and Greenland seas over the Late Cenozoic. The western margin is influenced by the cold East Greenland Current and the Svalbard margin by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland Ice Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing ice streams, which drain huge basins within the parent ice sheet. Large prograding fans located on the continental slope offshore of these ice streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the margins and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea ice. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.

  10. Cretaceous plate interaction during the formation of the Colombian plateau, Northandean margin

    NASA Astrophysics Data System (ADS)

    Kammer, Andreas; Piraquive, Alejandro; Díaz, Sebastián

    2015-04-01

    The Cretaceous subduction cycle at the Northandean margin ends with an accretionary event that welds the plateau rocks of the present Western Cordillera to the continental margin. A suture between plateau and rock associations of the continental margin is well exposed at the western border of the Central Cordillera, but overprinted by intense block tectonics. Analyzed in detail, its evolution tracks an increased coupling between lower and upper plate, as may be accounted for by the following stages: 1) The Cretaceous plateau suite records at its onset passive margin conditions, as it encroaches on the continental margin and accounts for an extensional event that triggered the emplacement of ultramafic and mafic igneous rock suites along major faults. 2) An early subduction stage of a still moderate plate coupling is documented by the formation of a magmatic arc in an extensional setting that may have been prompted by slab retreat. Convergence direction was oblique, as attested the transfer of strike-slip displacements to the forearc region. 3) A phase of strong plate interaction entailed the delamination of narrow crustal flakes and their entrainment to depths below the petrologic Moho, as evidenced by their present association to serpentinites in a setting that bears characteristics of a subduction channel. 4) During the final collisional stage deformation is transferred to the lower plate, where the stacking of imbricate sheets, combined with their erosional unloading, led to the formation of an antiformal bulge that fed a foreland basin. - The life time of this Cretaceous subduction cycle was strictly synchronous to the construction of the Colombian plateau. With the final collisional stage magmatic activity vanished. This coincidence incites to explore a relationship between plume activity and subduction.

  11. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    USGS Publications Warehouse

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  12. The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain)

    NASA Astrophysics Data System (ADS)

    Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.

    2018-06-01

    The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.

  13. 33 CFR 142.81 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH General Workplace Conditions § 142.81 Purpose and applicability. This subpart prescribes requirements relating to general working conditions on...

  14. Interplay between climatic and tectonic processes in the St. Elias foreland, southern Alaska: Evolution of a glaciated convergent margin since the mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Gulick, S. P.; Ridgway, K. R.; Jaeger, J. M.; Cowan, E. A.; Slagle, A. L.; Forwick, M.

    2013-12-01

    The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Ongoing collision of the Yakutat (YAK) microplate with North America (NA) has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. The sub-seafloor architecture of the Bering Trough region is defined by a regional unconformity that marks the first glacial advance to the shelf edge. Below the unconformity, the shelf is constructed by multiple aggradational packages that are likely a series of pro-glacial outer shelf/slope fans. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), all of which is younger than 0.781 Ma. Preliminary age models for the Bering Trough region indicate that the entire outer shelf and shelf edge environment have been built since the Mid-Pleistocene Transition (MPT), and is possibly even younger. In stark contrast to previous interpretations, the shelf environment, in addition to the proximal deep-sea fan system, appears to be a primary glacial depocenter since the MPT, with an average accumulation rate >1.3 mm/yr. Additionally, initiation of active deformation away from the Bering Trough depocenter likely occurred since ~1 Ma. These observations suggest that possible tectonic reorganization due to mass redistribution by glacial processes occurs at time scales on the order of 100kyr-1Myr. It follows that the St. Elias orogenic system may be more sensitive to glacial-interglacial cycles than previously recognized.

  15. Allostratigraphy of the U.S. middle Atlantic continental margin; characteristics, distribution, and depositional history of principal unconformity-bounded upper Cretaceous and Cenozoic sedimentary units

    USGS Publications Warehouse

    Poag, C. Wylie; Ward, Lauck W.

    1993-01-01

    Publication of Volumes 93 and 95 ('The New Jersey Transect') of the Deep Sea Drilling Project's Initial Reports completed a major phase of geological and geophysical research along the middle segment of the U. S. Atlantic continental margin. Relying heavily on data from these and related published records, we have integrated outcrop, borehole, and seismic-reflection data from this large area (500,000 km^2 ) to define the regional allostratigraphic framework for Upper Cretaceous and Cenozoic sedimentary rocks. The framework consists of 12 alloformations, which record the Late Cretaceous and Cenozoic depositional history of the contiguous Baltimore Canyon trough (including its onshore margin) and Hatteras basin (northern part). We propose stratotype sections for each alloformation and present a regional allostratigraphic reference section, which crosses these basins from the inner edge of the coastal plain to the inner edge of the abyssal plain. Selected supplementary reference sections on the coastal plain allow observation of the alloformations and their bounding unconformities in outcrop. Our analyses show that sediment supply and its initial dispersal on the middle segment of the U. S. Atlantic margin have been governed, in large part, by hinterland tectonism and subsequently have been modified by paleoclimate, sea-level changes, and oceanic current systems. Notable events in the Late Cretaceous to Holocene sedimentary evolution of this margin include (1) development of continental-rise depocenters in the northern part of the Hatteras basin during the Late Cretaceous; (2) the appear ance of a dual shelf-edge system, a marked decline in siliciclastic sediment accumulation rates, and widespread acceleration of carbonate production during high sea levels of the Paleogene; (3) rapid deposition and progradation of thick terrigenous delta complexes and development of abyssal depocenters during the middle Miocene to Quaternary interval; and (4) deep incision of the shelf edge by submarine canyons, especially during the Pleistocene. Massive downslope gravity flows have dominated both the depositional and erosional history of the middle segment of the U. S. Atlantic Continental Slope and Rise during most of the last 84 million years. The importance of periodic widespread erosion is recorded by well-documented unconformities, many of which can be traced from coastal-plain outcrops to coreholes on the continental slope and lower continental rise. These unconformities form the boundaries of the 12 allostratigraphic units we formally propose herein. Seven of the unconformities correlate with supercycle boundaries (sequence boundaries) that characterize the Exxon sequence-stratigraphy model.

  16. Sedimentation patterns in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia: Evidence for Archean rifted continental margins

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth A.

    1982-01-01

    Archean supracrustal sequences in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia, consist of lower volcanic and upper dominantly terrigenous clastic intervals. As evidenced by the paleoenvironments of intercalated sedimentary horizons, volcanism occurred mainly in shallow waters. The overlying ca 3.3 Ga sedimentary intervals contain various common as well as unique paleoenvironments, the understanding of which places significant constraints on Archean crustal models. Lateral and vertical associations of inferred paleoenvironments are used to interpret the geotectonic history of the Archean depositories. The early sedimentary history of the greenstone belts is characterized by terrestrial and subaqueous graben-fill associations of facies related to the initial rift stage of basin development. Continued rifting and initial spreading produced submarine grabens within which ironformations accumulated in response to waning volcanism. Source area uplift resulted in progradation of submarine fans across the basinal chemical sediments. The turbidites are gradational directly into braided alluvial sediments, in part of fan delta origin, suggesting that the continental to marine transition occurred along a narrow continental shelf. In the Barberton Mountain Land the steep-rift margin was succeeded by the development of a stable continental shelf or shelf rise margin through progradation of the turbidite wedge possibly in association with a eustatic rise in sea-level related to continued spreading. On this shelf extensive tidal, deltaic and barrier beach sediments accumulated. Sedimentation was terminated by closure of the passive margin oceans. The late-Archean Pongola Supergroup in South Africa is considered to be the late-orogenic molasse response to this closure and represents the completion of the Wilson cycle.

  17. Variability of interleaving structure of Atlantic Water during its propagation along the Eurasian basin (Arctic Ocean) continental margin

    NASA Astrophysics Data System (ADS)

    Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Ostapchuk, Alexey

    2017-04-01

    In order to give detailed description of the interleaving structure in the Eurasian basin results of observations carried out during NABOS 2008 and Polarstern cruise in 1996 were analyzed. The study was focused on interleaving parameters (structure and vertical scale of intrusions) variability in the upper (150-300 meters) and intermediate (300-700 meters) layers of the ocean. Based on θ,S/θ,σ-diagrams (θ, S and σ are the potential temperature, salinity and potential density, correspondingly) analysis two main results were obtained. First of all it was shown that intrusive layers carried by the mean current along the Eurasian Basin continental margin become deeper relatively isopycnals and thus stimulate ventilation of pycnocline. Second, the area in Eurasian Basin thermocline was found where intrusive layers of large and small scale were absent. This distinctive feature can be explained by intensive mixing between two branches of Atlantic Water, one of which propagates along Eurasian basin continental margin and the other spreads across the basin due to large scale interleaving processes. Among others, one of the possible methods of integral estimation of Atlantic water masses heat and salt contents variations during their expansion along basin continental margin was proposed. Thus it is reasonable to assess variation of square under the θ(S)-diagrams, which illustrate the data obtained from two CTD-stations located on diametrically opposite sides of Eurasian Basin, taking 0.5°C isotherm as a reference value. For verification of the introduced approach the estimates of heat and salt contents variations were made by different methods. Detailed discussion of the results is presented. Work was supported by the Russian Foundation for Basic Research (Grant No 15-05-01479-a).

  18. Alpine inversion of the North African margin and delamination of its continental lithosphere

    NASA Astrophysics Data System (ADS)

    Roure, FrançOis; Casero, Piero; Addoum, Belkacem

    2012-06-01

    This paper aims at summarizing the current extent and architecture of the former Mesozoic passive margin of North Africa from North Algeria in the west up to the Ionian-Calabrian arc and adjacent Mediterranean Ridge in the east. Despite that most paleogeographic models consider that the Eastern Mediterranean Basin as a whole is still underlain by remnants of the Permo-Triassic or a younger Cretaceous Tethyan-Mesogean ocean, the strong similarities documented here in structural styles and timing of inversion between the Saharan Atlas, Sicilian Channel and the Ionian abyssal plain evidence that this portion of the Eastern Mediterranean Basin still belongs to the distal portion of the North African continental margin. A rim of Tethyan ophiolitic units can be also traced more or less continuously from Turkey and Cyprus in the east, in onshore Crete, in the Pindos in Greece and Mirdita in Albania, as well as in the Western Alps, Corsica and the Southern Apennines in the west, supporting the hypothesis that both the Apulia/Adriatic domain and the Eastern Mediterranean Basin still belong to the former southern continental margin of the Tethys. Because there is no clear evidence of crustal-scale fault offsetting the Moho, but more likely a continuous yet folded Moho extending between the foreland and the hinterland beneath the Mediterranean arcs, we propose here a new model of delamination of the continental lithosphere for the Apennines and the Aegean arcs. In this model, only the mantle lithosphere of Apulia and the Eastern Mediterranean is still locally subducted and recycled in the asthenosphere, most if not all the northern portion of the African crust and coeval Moho being currently decoupled from its former, currently delaminated and subducted mantle lithosphere.

  19. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  20. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.

  1. The role of ocean circulation on methane hydrate stability and margin evolution

    NASA Astrophysics Data System (ADS)

    Hornbach, M. J.; Phrampus, B. J.; Ruppel, C. D.; Hart, P. E.

    2012-12-01

    For more than three decades, researchers have suggested a link between submarine gas hydrates and large (km-scale) continental margin slope failures (e.g. Carpenter 1980). Although several large submarine slope failures are co-located with methane hydrate deposits, a clear link between hydrates and slumping remains tenuous today (e.g. Maslin et al., 2003). Some studies suggest slope failures on continental margins are triggered by eustatic sea level lowering that destabilizes methane hydrates (e.g. Kayen and Lee, 1991; Paull et al, 1996). More recent studies by Dickens et al. (1995; 2001) postulate that a ~5 degree C increase in deep or intermediate ocean water temperature can, in theory, provide enough seafloor warming at continental margins to dissociate thousands of gigatons of methane hydrate into methane gas and water. This process, by elevating pore-fluid pressure, can lead to faulting, hydrofracture, and widespread slope failure (Dickens et al., 1995; Flemings et al., 2003; Hornbach et al., 2004). Similar ocean warming theories suggest methane hydrate dissociation as a probable cause of past and perhaps future ocean acidification events (Biastoch et al., 2011; Archer et al., 2004; Zachos et al., 1995). Here, using recently reprocessed 2D seismic data and 2D heat flow models, we suggest that recent (Holocene) shifts in ocean current flow directions along the edge of the Atlantic and Arctic margins are increasing ocean bottom temperatures by as much 8 degrees C, and in the process, destabilizing huge quantities (gigatons) of methane hydrate. Importantly, this mechanism for destabilizing methane hydrate requires no significant change in sea-level or average ocean temperature. We suggest the areas of active hydrate destabilization cover more than 10,000 km ^2, and occur, perhaps not coincidentally, in regions where some of the largest submarine slope failures exist. Forward models indicate we may be observing only the onset of large-scale contemporary methane hydrate destabilization at these sites and that this destabilization could continue for centuries. The results have significant implications for the global carbon budget, ocean acidification, ocean circulation, and the evolution of continental margins. The analysis presented here also provides a new method for constraining Holocene changes in intermediate ocean temperatures and demonstrates that only slight shifts in ocean current flow direction have a profound impact on both margin stability and the ocean carbon budget.

  2. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea, and West Africa Margin) world-wide by using the substantial archive of satellite synthetic aperture radar (SAR) images. An automated system for satellite image interpretation will make it possible to process hundreds of SAR images to increase the geographic and temporal coverage. Field programs will quantify the flux and fate of hydrate methane in sediments and the water column.

  3. 33 CFR 135.3 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OFFSHORE OIL POLLUTION COMPENSATION FUND General § 135.3...) Sustains an economic loss as a consequence of oil pollution arising from Outer Continental Shelf activities...

  4. 30 CFR 250.903 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Platforms and Structures General Requirements for... platform safety, structural reliability, or operating capabilities. Items such as steel brackets, deck...

  5. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  6. Magmatism evolution on the last Neoproterozoic development stage of the western Siberian active continental margin

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.

    2017-04-01

    Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.

  7. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin

    NASA Astrophysics Data System (ADS)

    Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.

    2008-12-01

    Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.

  8. Structure, mechanical properties and evolution of the lithosphere below the northwest continental margin of India

    NASA Astrophysics Data System (ADS)

    Rao, G. Srinivasa; Kumar, Manish; Radhakrishna, M.

    2018-02-01

    The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly identifications and the presence of several enigmatic structural/basement features whose structure was partly obscured by the Late Cretaceous Deccan magmatic event. In this study, a detailed analysis of the existing seismic and seismological data covering both onshore and offshore areas of the northwest Indian margin along with 3-D/2-D constrained potential field (gravity, magnetic and geoid) modeling has been carried out. The crustal structure and lithosphere-asthenosphere boundary (LAB) delineated across the margin provided valuable insights on the mechanism of continental extension. An analysis of the residual geoid anomaly (degree-10) map and the modeled LAB below Deccan volcanic province (DVP) revealed significant variation in upper mantle characteristics between the northwest (NW) and south central (SC) parts of DVP having thinner lithosphere in the NW part. The depth to LAB ranges 80-130 km at the margin with gradual thinning towards the western offshore having sharp gradient in the south (SC part of DVP) and gentle gradient in the north (NW part of DVP). The Moho configuration obtained from seismically constrained 3-D gravity inversion reveals that Moho depths vary 34-42 km below DVP and gradually thins to 16-20 km in the western offshore. The effective elastic thickness (Te) map computed through 3-D flexural modeling indicates that the Te values are in general lower in the region and range 12-25 km. Such lower Te values could be ascribed to the combined effect of the lithosphere stretching during Gondwana fragmentation in the Mesozoic and subsequent thermal influence of the Reunion plume. Based on the crustal stretching factors (β), Te estimates and the modeled lithosphere geometry at the margin in this study, we propose that the lithosphere below Laxmi-Gop basin region (β > 3.0) had undergone continuous stretching since India-Madagascar rifting ( 88 Ma) /much prior to this event. However, this continuous stretching did not lead to breakup. Due to syn-rift cooling, the developed necking zone (brittle-ductile deformation) got ceased and led to the development of a new necking zone between Seychelles and Laxmi Ridge. Subsequent stretching between Seychelles and the Laxmi Ridge contemporaneous with the Deccan flood basalts eruption led to the seafloor spreading in the Western Basin (anomaly C28n). Thus, the Laxmi Ridge became a continental sliver.

  9. Identification of third-order (approx. 10{sup 6} yrs) and fourth-order (approx. 10{sup 5}/10{sup 4} yrs) stratigraphic cycles in the South Addition, West Cameron Lease Area, Louisiana offshore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrie, A.; Meeks, P.; Hoffman, K.

    In the highly explored South Addition of the West Cameron Lease Area, Louisiana offshore, interpretation of a six-mile ({approx}10 km) seismic section across a single intraslope basin yielded 20 sediment packages. Several interpretive tools were necessary. Seismic stratigraphy indicated that the shallower zone was an outer shelf marked by 8 major sea level oscillations. In the portion between 1 and 3 seconds, seismic stratigraphy and paleontology led to the interpretation of depositional environments such as upper slope, and paleobathymetrically deeper intervals with descent through the section. The intraslope basin, while small, may be viewed as a micro-continental margin. Each seamore » level oscillation cycle apparently made a distinct progradational unit, decipherable in the seismic data. Fourth order cycles have been provisionally interpreted, throughout most of the entire 3.7 second section. Such precision is possible only in explored basins with excellent seismic data. The sequence thickness showed a seven-fold variability, from 0.08 to 0.58 seconds. The shallower section, deposited along an outer shelf, has an average individual sequence thickness of 0.13 seconds. Individual seismic sequences in the deeper section, interpreted to have been deposited on an upper slope, have average thicknesses of 0.25 seconds. The thinner sequences of the shallower section are compatible with the notion that the outer shelf was a bypass zone during a glacial epoch. The thicker sequences of the deeper section are the result of deposition onto an aggrading upper slope within an intraslope basin during a highstand.« less

  10. U-Pb isotopic evidence for the accretion of a continental microplate in the Zalm region of the Saudi Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Agar, R.A.

    1985-01-01

    This area includes three of the main tectonic units of the Arabian Shield: the Afif continental terrain, the Nabitah suture with its associated mobile belt, and the Asir ensimatic arc terrain. U/Pb zircon data from a pelitic garnet-sillimanite gneiss show that the Kabib formation in the S of the Afif terrain may be as old as 1770 m.y. Pb and Rb/Sr isotopic data in the Zalm region reveal a change in the nature of the underlying crust, from continental basement in the NE to less radiogenic marginal arc rocks in the SW. Miogeosynclinal continental shelf facies of the Siham group lie unconformably over the Kabid formation. U/Pb zircon age determinations show that this 'Andean' continental margin developed before approx 720 m.y. and the emplacement of calc-alkaline plutonic rocks continued until approx 690 m.y. During the period 685-640 m.y. the continental Afif microplate collided with the Asir terrain as part of the Nabitah orogeny. At approx 640 m.y. age the Najd strike-slip faulting commenced, with a dextral phase that controlled emplacement of granite plutons as well as the development of large pull-apart grabens. Some of the latter were floored by new oceanic crust and filled with volcanosedimentary rocks of the Bani Ghayy group.-R.A.H.

  11. 30 CFR 285.817-285.819 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Failure and Adverse Environmental Effects §§ 285.817-285.819 [Reserved] Inspections and... ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and Safety...

  12. Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina

    USGS Publications Warehouse

    Valentine, Page C.

    1982-01-01

    Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina is based on the study of 24 wells along two transects, one extending across the seaward-dipping sedimentary basin termed the 'Southeast Georgia Embayment' northeastward to the crest of the Cape Fear Arch, and the other alined east-west, parallel to the basin axis and including the COST GE-l well on the Outer Continental Shelf. A new biostratigraphic analysis, using calcareous nannofossils, of the Fripp Island, S.C., well and reinterpretations of the Clubhouse Crossroads corehole 1, South Carolina, and other wells in South Carolina, Georgia, and northernmost Florida have made possible the comparison and reevaluation of stratigraphic interpretations of the region made by G. S. Gohn and others in 1978 and 1980 and by P. M. Brown and others in 1979. The present study indicates that within the Upper Cretaceous section the stratigraphic units formerly assigned a Cenomanian (Eaglefordian and Woodbinian) age are Coniacian (Austinian) and Turonian (Eaglefordian) in age. A previously described hiatus encompassing Coniacian and Turonian time is not present. More likely, a hiatus is probably present in the upper Turonian, and major gaps in the record are present within the Cenomanian and between the Upper Cretaceous and the pre-Cretaceous basement. After an erosional episode in Cenomanian time that affected the section beneath eastern Georgia and South Carolina, Upper Cretaceous marine clastic and carbonate rocks were deposited on a regionally subsiding margin that extended to the present Blake Escarpment. In contrast, during Cenozoic time, especially in the Eocene, subsidence and sedimentation rates were uneven across the margin. A thick progradational sequence of carbonate rocks accumulated in the Southeast Georgia Embayment and also built the present Continental Shelf, whereas farther offshore a much thinner layer of sediments was deposited on the Blake Plateau. There is no general agreement on the exact placement of the Cenomanian-Turonian boundary in Europe or the United States Western Interior, and the widespread Sciponoceras gracile ammonite zone represents an interval of equivocal age between accepted Cenomanian and Turonian strata. The extinction of the foraminifer genus Rotalipora took place within the Sciporwceras gracile zone; it is used here to identify the Cenomanian-Turonian boundary. Pollen zone IV (Complexiopollis-Atlantopollis assemblage zone) is an important and widespread biostratigraphic unit characterized by a distinctive spore and pollen flora. It is consistently associated with lower Turonian calcareous nannofossils on the Atlantic continental margin; these nannofossil assemblages are also present in pollen zone IV, in strata that encompass the Sciponoceras gracile zone and the lower part of the Mytiloides labiatus zone in the Gulf Coastal Plain at Dallas, Tex.

  13. The extent of ocean acidification on aragonite saturation state along the Washington-Oregon continental shelf margin in late summer 2012

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.

    2012-12-01

    The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.

  14. The three scales of submarine groundwater flow and discharge across passive continental margins

    USGS Publications Warehouse

    Bratton, John F.

    2010-01-01

    Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0–10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacio-eustatic change in sea level.

  15. Moroccan crustal response to continental drift.

    PubMed

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A

    1973-06-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  16. The North Sakhalin Neogene total petroleum system of eastern Russia

    USGS Publications Warehouse

    Lindquist, S.J.

    2000-01-01

    The North Sakhalin Basin Province of eastern Russia contains one Total Petroleum System (TPS) ? North Sakhalin Neogene ? with more than 6 BBOE known, ultimately recoverable petroleum (61% gas, 36% oil, 3% condensate). Tertiary rocks in the basin were deposited by the prograding paleo-Amur River system. Marine to continental, Middle to Upper Miocene shale to coaly shale source rocks charged marine to continental Middle Miocene to Pliocene sandstone reservoir rocks in Late Miocene to Pliocene time. Fractured, self-sourced, Upper Oligocene to Lower Miocene siliceous shales also produce hydrocarbons. Geologic history is that of a Mesozoic Asian passive continental margin that was transformed into an active accretionary Tertiary margin and Cenozoic fold belt by the collision of India with Eurasia and by the subduction of Pacific Ocean crustal plates under the Asian continent. The area is characterized by extensional, compressional and wrench structural features that comprise most known traps.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.J.; Bishop, J.K.B

    Here we show that labile particulate iron and manganese concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100-200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source ofmore » Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.« less

  18. Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S)

    USGS Publications Warehouse

    Bourgois, J.; Pautot, G.; Bandy, W.; Boinet, T.; Chotin, P.; Huchon, P.; Mercier de Lepinay, B.; Monge, F.; Monlau, J.; Pelletier, B.; Sosson, M.; von Huene, Roland E.

    1988-01-01

    The Andean margin off Peru is an “extensional active margin” or a “collapsing active margin” developing a subordinated accretionary complex induced by massive collapse of the middle slope area.

  19. Geomorphic response of a continental margin to tectonic and eustatic variations, the Levant margin during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Ben Moshe, Liran; Ben-Avraham, Zvi; Enzel, Yehouda; Uri, Schattner

    2017-04-01

    During the Messinian Salinity Crisis (MSC, 5.97±0.01-5.33 Ma) the Mediterranean Levant margin experienced major eustatic and sedimentary cycles as well as tectonic motion along the nearby Dead Sea fault plate boundary. New structures formed along this margin with morphology responding to these changes. Our study focuses on changes in this morphology across the margin. It is based on interpretation of three 3D seismic reflection volumes from offshore Israel. Multi-attribute analysis aided the extraction of key reflectors. Morphologic analysis of these data quantified interacting eustasy, sedimentation, and tectonics. Late Messinian morphologic domains include: (a) continental shelf; (b) 'Delta' anticline, forming a ridge diagonal to the strike of the margin; (c) southward dipping 'Hadera' valley, separating between (a) and (b); (d) 'Delta Gap' - a water gap crossing perpendicular to the anticline axis, exhibiting a sinuous thalweg; (e) continental slope. Drainage across the margin developed in several stages. Remains of turbidite flows crossing the margin down-slope were spotted across the 'Delta' anticline. These flows accumulated with the MSC evaporate sequence and prior to the anticline folding. Rising of the anticline, above the then bathymetry, either blocked or diverted the turbidites. That rising also defined the Hadera valley. In-situ evaporates, covering the valley floor, are, in turn covered by a fan-delta at the distal end of the valley. The fan-delta complex contains eroded evaporites and Lago-Mare fauna. Its top is truncated by dendritic fluvial channels that drained towards the Delta Gap. The Delta Gap was carved through the Delta ridge in a morphological and structural transition zone. We propose that during the first stages of the MSC (5.97±0.01-5.59 ma) destabilization of the continental slope due to oscillating sea level produced gravity currents that flowed through the pre-existing Delta anticline. Subsequent folding of the Delta anticline diverted several flows towards the Delta Gap during peak MSC desiccation phase (5.59-5.5 ma). This resulted in sub-aerial incision of a canyon across the gap that outpaced the tectonic uplift of the anticline. During the Lago-Mare regression (5.5-5.33 ma) a fluvio-marine sequence was deposited in the already formed Hadera valley. Another regression before the Zanclean flood (5.33 ma) eroded the top of this sequence and rejuvenated the Delta Gap canyon.

  20. Potential role of gas hydrate decomposition in generating submarine slope failures: Chapter 12

    USGS Publications Warehouse

    Pauli, Charles K.; Ussler, William III; Dillon, William P.; Max, Michael D.

    2003-01-01

    Gas hydrate decomposition is hypothesized to be a factor in generating weakness in continental margin sediments that may help explain some of the observed patterns of continental margin sediment instability. The processes associated with formation and decomposition of gas hydrate can cause the strengthening of sediments in which gas hydrate grow and the weakening of sediments in which gas hydrate decomposes. The weakened sediments may form horizons along which the potential for sediment failure is increased. While a causal relationship between slope failures and gas hydrate decomposition has not been proven, a number of empirical observations support their potential connection.

  1. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, L. Santschi, P.H.

    2000-02-01

    Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in themore » water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.« less

  2. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  3. Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; McCulloch, M. T.; Maynard, J. B.

    1990-07-01

    Petrographic, geochemical, and isotopic data for turbidites from a variety of tectonic settings exhibit considerable variability that is related to tectonic association. Passive margin turbidites (Trailing Edge, Continental Collision) display high framework quartz (Q) content in sands, evolved major element compositions (high Si/Al, K/Na), incompatible element enrichments (high Th/Sc, La/Sc, La/Yb), negative Eu-anomalies and variable Th/U ratios. They have low 143Nd /144Nd and high 87Sr /86Sr ( ɛNd = -26 to -10; 87Sr /86Sr = 0.709 to 0.734 ), indicating a dominance of old upper crustal sources. Active margin settings (Fore Arc, Continental Arc, Back Arc, Strike Slip) commonly exhibit quite different compositions. Th/Sc varies from <0.01 to 1.8, and ɛNd varies from -13.8 to +8.3. Eu-anomalies range from no anomaly ( Eu/Eu ∗ = 1.0 ) to Eu-depletions typical of post-Archean shales ( Eu/Eu ∗ = 0.65 ). Active margin data are explained by mixtures of young arc-derived material, with variable composition and old upper crustal sources. Major element data indicate that passive margin turbidites have experienced more severe weathering histories than those from active settings. Most trace elements are enriched in muds relative to associated sands because of dilution effects from quartz and calcite and concentration of trace elements in clays. Exceptions include Zr, Hf (heavy mineral influence) and Tl (enriched in feldspar) which display enrichments in sands. Active margin sands commonly exhibit higher Eu/Eu ∗ than associated muds, resulting from concentration of plagioclase during sorting. Some associated sands and muds, especially from active settings, have systematic differences in Th/Sc ratios and Nd-isotopic composition, indicating that various provenance components may separate into different grain-size fractions during sedimentary sorting processes. Trace element abundances of modern turbidites, from both active and passive settings, differ from Archean turbidites in several important ways. Modern turbidites have less uniformity, for example, in Th/Sc ratios. On average, modern turbidites have greater depletions in Eu (lower Eu/Eu ∗) than do Archean turbidites, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) are of greater importance for crustal evolution at modern continental margins than they were during the Archean. Modern turbidites do not display HREE depletion, a feature commonly seen in Archean data. HREE depletion ( Gd N/Yb N > 2.0 ) in Archean sediments results from incorporation of felsic igneous rocks that were in equilibrium (or their sources were in equilibrium) with garnet sometime in their history. Absence of HREE depletion at modern continental margins suggests that processes of crust formation (or mantle source compositions) may have differed. Differences in trace element abundances for Archean and modern turbidites add support to suggestions that upper continental crust compositions and major processes responsible for continental crust differentiation differed during the Archean. Neodymium model ages, thought to approximate average provenance age, are highly variable ( TDMND = 0-2.6 Ga) in modern turbidites, in contrast with studies that indicate Nd-model ages of lithified Phanerozoic sediment are fairly constant at about 1.5-2.0 Ga. This variability indicates that continental margin sediments incorporate new mantle-derived components, as well as continental crust of widely varying age, during recycling. The apparent dearth of ancient sediments with Nd-model age similar to stratigraphic age supports the suggestion that preservation potential of sediments is related to tectonic setting. Many samples from active settings have isotopic compositions similar to or only slightly evolved from mantle-derived igneous rocks. Subduction of active margin turbidites should be considered in models of crust-mantle recycling. For short-term recycling, such as that postulated for island arc petrogenesis, arc-derived turbidites cannot be easily recognized as a source component because of the lack of time available for isotopic evolution. If turbidites were incorporated into the sources of ocean island volcanics, the isotopic signatures would be considerably more evolved since most models call for long mantle storage times (1.0-2.0 Ga), prior to incorporation. Four provenance components are recognized on the basis of geochemistry and Nd-isotopic composition: (1) Old Upper Continental Crust (old igneous/metamorphic terranes, recycled sediment); (2) Young Undifferentiated Arc (young volcanic/plutonic source that has not experienced plagioclase fractionation); (3) Young Differentiated Arc (young volcanic/plutonic source that has experienced plagioclase fractionation); (4) MORB (minor). Relative proportions of these components are influenced by the plate tectonic association of the provenance and are typically (but not necessarily) reflected in the depositional basin. Provenance of quartzose (mainly passive settings) and non-quartzose (mainly active settings) turbidites can be characterized by bulk composition (e.g., Th/Sc) and Nd-isotopic composition (reflecting age).

  4. 30 CFR 250.1614 - Mud program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1614... shall comply with requirements concerning mud control, mud test and monitoring equipment, mud quantities...

  5. 30 CFR 285.1008-285.1009 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS Facilities Requesting An Alternate Use...

  6. Western Continental Margin of India - Re-look using potential field data

    NASA Astrophysics Data System (ADS)

    Rajaram, M.; S P, A.

    2008-05-01

    The Western Continental Margin of India (WCMI) evolved as a result of rifting between India and Madagascar that took place during mid Cretaceous (~88Ma).The WCMI is equally important in terms of natural resources as well as research point of view. The major tectonic elements in the western offshore includes the Laxmi and Chagos- Laccadive ridge dividing the WCMI and the adjoining Arabian sea into two basins, Pratap Ridge, Alleppey platform etc. Different theories have been proposed for the evolution of each of these tectonic elements. In the current paper we look at geopotential data on the west coast of India and the western off-shore. The data sets utilized include Satellite derived High Resolution Free Air Gravity data over the off-shore, Bouguer data onland, Champ Satellite Magnetic data, published Marine Magnetic data collected by ONGC, NIO, ground magnetic data over west cost collected by IIG and available aeromagnetic data. From the free air gravity anomaly the structural details of the western offshore can be delineated. The Euler depths of FAG depict deep solutions associated with Pratap Ridge, Comorin Ridge, the west coast fault and the Laxmi Ridge. These may be associated with continental margin and continental fragments. From the aeromagnetic and marine magnetic data it is evident that the West Coast Fault is dissected at several places. The shallow circular feature associated with Bombay High is evident both on the FAG and the analytic signal derived from satellite Magnetic data. The crustal magnetic thickness from MF5 lithospheric model of the Champ appears to suggest that the continental crust extends up to the Chagos- Laccadive ridge. Based on the analysis of these geopotential data sets the various theories for the evolution of the WCMI will be evaluated and these results will be presented.

  7. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the mechanisms of methane biotransformation.

  8. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  9. Andean analogue for Late Carboniferous volcanic arc and arc flank environments of the western New England Orogen, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    McPhei, J.

    1987-07-01

    Late Carboniferous continental conglomerates interbedded with silicic ignimbrite sheets outcrop along more than 400 km of the western margin of the southern portion of the New England Orogen. Farther east, the coeval sedimentary facies are volcanogenic shallow marine and turbidite deposits. The volcanic source terrain, no longer exposed, was located to the west of the existing conglomerate-ignimbrite sequences and was underlain by continental crust which is, in part, represented by the northern Lachlan Fold Belt. The regional Late Carboniferous palaeogeography was similar to that of the present-day western continental margin of South America. The geology of the oceanward-flank of the Andean arc in northern Chile and a section of the Late Carboniferous continental sequence near Currabubula are comparable in detail. The Andean stratovolcanoes and ignimbrite centres thus provide the means of reconstruction of the Late Carboniferous volcanic source terrain. The geological record of both of these continental margin volcanic arcs, preserved in deposits of the arc flanks, is shaped by volcanism, especially the eruption of voluminous ignimbrites, and by uplift, deformation and glaciation centered on the arc. For the arc sections considered, diversity in the flank sequences arises because these controls vary in importance spatially and during the life of the arc (20-30 Ma). For the entire Andean arc, arc-parallel variations in the sites of active volcanism and its character appear to be related to differences in the continental crust thickness and the circumstances of subduction of oceanic crust, particularly the dip of the Benioff Zone. By analogy, variation in the age, duration and style of volcanic activity along the late Palaeozoic magmatic arc of the western New England Orogen perhaps reflects the former existence of significant differences in crust thickness and in the angle of subduction.

  10. Summary of environmental geologic studies in the Mid-Atlantic outer continental shelf area; results of 1978-1979 field seasons

    USGS Publications Warehouse

    Robb, James M.

    1983-01-01

    Because of the need for knowledge of an offshore area that is undergoing exploration for oil and gas resources, since 1975 the U.S. Bureau of Land Management (BLM) has funded studies of the environmental characteristics of the Mid-Atlantic Outer Continental Shelf. This volume briefly summarizes a final report to the BLM on the results of U.S. Geological Survey investigations stemming from data acquired during 1978 and 1979. The parent final report contains complete accounts of those investigations. The subjects of the studies range from the geologic effects of water currents and their capabilities of erosion and transportation, to delineation of potentially hazardous geologic characteristics of the area. Nine specific studies address the complexities of water currents, the nature of materials suspended in the sea waters, rates of mixing-in of material deposited on the bottom, and the sites of probable deposition of such materials, as well as sites and mechanisms of possible submarine landsliding or unstable bottom (engineering characteristics) of the Continental Slope and shelf.

  11. --No Title--

    Science.gov Websites

    family:arial;width:100%;background-color:#fff;margin:0}form{margin:0;padding:0 %);background:-webkit-gradient(linear,left top,left bottom,color-stop(0%,#00527f),color-stop(100%,#00324d :16px;line-height:36px;color:white;font-weight:bold}#outer{width:100%;background-color:#eee;margin:0

  12. Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Amerasia Basin Petroleum Province encompasses the Canada Basin and the sediment prisms along the Alaska and Canada margins, outboard from basinward margins (hingelines) of the rift shoulders that formed during extensional opening of the Canada Basin. The province includes the Mackenzie delta and slope, the outer shelves and marine slopes along the Arctic margins of Alaska and Canada, and the deep Canada Basin. The province is divided into four assessment units (AUs): (1) The Canning-Mackenzie deformed margin AU is that part of the rifted margin where the Brooks Range orogenic belt has overridden the rift shoulder and is deforming the rifted-margin prism of sediment outboard of the hingeline. This is the only part of the Amerasia Basin Province that has been explored and—even though more than 3 billion barrels of oil equivalent (BBOE) of oil, gas, and condensate have been discovered—none has been commercially produced. (2) The Alaska passive margin AU is the rifted-margin prism of sediment lying beneath the Beaufort outer shelf and slope that has not been deformed by tectonism. (3) The Canada passive margin AU is the rifted-margin prism of sediment lying beneath the Arctic outer shelf and slope (also known as the polar margin) of Canada that has not been deformed by tectonism. (4) The Canada Basin AU includes the sediment wedge that lies beneath the deep Canada Basin, north of the marine slope developed along the Alaska and Canada margins. Mean estimates of risked, undiscovered, technically recoverable resources include more than 6 billion barrels of oil (BBO), more than 19 trillion cubic feet (TCF) of associated gas, and more than 16 TCF of nonassociated gas in the Canning-Mackenzie deformed margin AU; about 1 BBO, about 3 TCF of associated gas, and about 3 TCF of nonassociated gas in the Alaska passive margin AU; and more than 2 BBO, about 7 TCF of associated gas, and about 8 TCF of nonassociated gas in the Canada passive margin AU. Quantities of natural gas liquids also are assessed in each AU. The Canada Basin AU was not quantitatively assessed because it is judged to hold less than 10 percent probability of containing at least one accumulation of 50 million barrels of oil equivalent.

  13. 78 FR 73882 - Notice of Determination of No Competitive Interest, Offshore Virginia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... energy research activities, including wind turbine installation and operational testing and installation... a Proposed Outer Continental Shelf (OCS) Wind Energy Research Lease Offshore Virginia. SUMMARY: This...

  14. 30 CFR 285.1001-285.1003 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Rights of Use and Easement for Energy- and Marine-Related Activities Using Existing OCS Facilities Regulated Activities §§ 285...

  15. 75 FR 71734 - Outer Continental Shelf (OCS), Scientific Committee (SC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... program covers a wide range of field and laboratory studies in biology, chemistry, and physical... SC has 15 vacancies in the following disciplines: Biological oceanography/marine biology; social...

  16. Origin of Volcanic Seamounts Offshore California Related to Interaction of Abandoned Spreading Centers with the Continental Margin

    NASA Astrophysics Data System (ADS)

    Davis, A. S.; Clague, D. A.; Paduan, J. B.; Cousens, B. L.; Huard, J.

    2007-12-01

    The numerous NE-SW trending volcanic seamounts at the continental margin offshore central to Southern California owe their existence to the complex tectonics that resulted when small spreading ridge segments intersected and partly subducted beneath the continental margin during the Miocene plate reorganization. A limited number of dredged samples had indicated multiple episodes of coeval, alkalic volcanism at geographically widely separated sites (Davis et al., 2002, GSA Bull. 114, 316-333). 450 new samples were collected from 8 seamounts from 37. 5°N to 32.3°N with MBARI's ROV Tiburon. Ar-Ar ages for 50 of these samples extend the ages of volcanism from 18 Ma to 2.8 Ma. The dominant whole rock compositions are differentiated alkalic basalt, hawaiite, and mugearite, but include minor benmoreite, trachyte, and rare tholeiitic basalt. This entire range of compositions is also present in glassy margins or in volcaniclastic breccias, except for the trachyte, which had no glassy margins. Trace element abundances and ratios (e.g. REE, Zr, Nb, Ta, Th, Ba, etc.) are typical for ocean island basalt, whether the seamount is located on the Pacific plate (e.g. Pioneer, Gumdrop, Guide, Davidson, San Juan, San Marcos) or on the continental slope (Rodriguez) or within the Southern Continental Borderland (Northeast Bank). Nine samples, predominantly from Rodriguez Seamount, show a calc-alkaline trend with lower Nb, Ta, and higher Th. These samples may be erratics (Paduan et al., 2007, Marine Geology, in press). Sr, Nd, and Pb isotopic compositions plot within the Pacific N-MORB field for the northern seamounts (Pioneer, Gumdrop, Guide) but suggest progressively more radiogenic sources southward. There is considerable scatter at each site, especially with regard to 87Sr/86Sr, despite severe acid-leaching of the samples. Isotopic and trace element compositions indicate sources that are heterogeneous at a small scale. Chondrite-normalized Ce/Yb suggest smaller degree of melting and more alkalic compositions with decreasing age, although there is again considerable scatter. Chondrite-normalized La/Sm versus Zr/Nb form a continuum from the seamount lavas to depleted N-MORB and E-MORB suggesting a common origin by decompression melting of a mantle source with randomly distributed enriched heterogeneities, which are incorporated to a greater degree with decreasing degree of melting. Based on symmetric magnetic anomalies, only Davidson Seamount has been identified as straddling a fossil spreading center (Lonsdale, 1991, AAPG Mem. 47, 87-125). However, the other seamounts along the continental margin with the same NE-SW orientation and similar geochemical characteristics probably originated in a similar setting, erupting lavas along zones of weakness in the ocean floor fabric related to past seafloor spreading. Small volumes of magma can apparently rise long after spreading ceases if there is enough enriched source component to facilitate melting combined with zones of weakness in the underlying ocean crust fabric and/or extensional tectonics.

  17. Textures of water-rich mud sediments from the continental margin offshore Costa Rica (IODP expeditions 334 and 344)

    NASA Astrophysics Data System (ADS)

    Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd

    2017-04-01

    During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.

  18. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic

    NASA Astrophysics Data System (ADS)

    Ros, Elena; Pérez-Gussinyé, Marta; Araújo, Mario; Thoaldo Romeiro, Marco; Andrés-Martínez, Miguel; Morgan, Jason P.

    2017-12-01

    Rifted continental margins may present a predominantly magmatic continent-ocean transition (COT), or one characterized by large exposures of serpentinized mantle. In this study we use numerical modeling to show the importance of the lower crustal strength in controlling the amount and onset of melting and serpentinization during rifting. We propose that the relative timing between both events controls the nature of the COT. Numerical experiments for half-extension velocities <=10 mm/yr suggest there is a genetic link between margin tectonic style and COT nature that strongly depends on the lower crustal strength. Our results imply that very slow extension velocities (< 5 mm/yr) and a strong lower crust lead to margins characterized by large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins can be either narrow symmetric or asymmetric and present a COT with exhumed serpentinized mantle underlain by some magmatic products. In contrast, a weak lower crust promotes margins with a gentle crustal tapering, small faults dipping both ocean- and landward and small syn-rift subsidence. Their COT is predominantly magmatic at any ultra-slow extension velocity and perhaps underlain by some serpentinized mantle. These margins can also be either symmetric or asymmetric. Our models predict that magmatic underplating mostly underlies the wide margin at weak asymmetric conjugates, whereas the wide margin is mainly underlain by serpentinized mantle at strong asymmetric margins. Based on this conceptual template, we propose different natures for the COTs in the South Atlantic.

  19. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Santos, Jose F.; Stern, Robert J.; Griffin, William L.; Ghorbani, Ghasem; Sarebani, Nazila

    2017-09-01

    Magmatic ;flare-ups; are common in continental arcs. The best-studied examples of such flare-ups are from Cretaceous and younger continental arcs, but a more ancient example is preserved in Late Ediacaran-Cambrian or Cadomian arcs that formed along the northern margin of Gondwana. In this paper, we report new trace-element, isotopic and geochronological data on ∼550 Ma magmatic rocks from the Taknar complex, NE Iran, and use this information to better understand episodes of flare-up, crustal thickening and magmatic periodicity in the Cadomian arcs of Iran and Anatolia. Igneous rocks in the Taknar complex include gabbros, diorites, and granitoids, which grade upward into a sequence of metamorphosed volcano-sedimentary rocks with interlayered rhyolites. Granodioritic dikes crosscut the Taknar gabbros and diorites. Gabbros are the oldest units and have zircon U-Pb ages of ca 556 Ma. Granites are younger and have U-Pb zircon ages of ca 552-547 Ma. Rhyolites are coeval with the granites, with U-Pb zircon ages of ∼551 Ma. Granodioritic dikes show two U-Pb zircon ages; ca 531 and 548 Ma. Geochemically, the Taknar igneous rocks have calc-alkaline signatures typical of continental arcs. Whole-rock Nd and zircon O-Hf isotopic data show that from Taknar igneous rocks were generated via mixing of juvenile magmas with older continental crust components at an active continental margin. Compiled geochronological and geochemical data from Iran and Anatolia allow identification of a Cadomian flare-up along northern Gondwana. The compiled U-Pb results from both magmatic and detrital zircons indicate the flare-up started ∼572 Ma and ended ∼528 Ma. The Cadomian flare-up was linked to strong crustal extension above a S-dipping subduction zone beneath northern Gondwana. The Iran-Anatolian Cadomian arc represents a site of crustal differentiation and stratification and involved older (Archean?) continental lower-middle crust, which has yet to be identified in situ, to form the continental nuclei of Anatolia and Iran. The Cadomian crust of Anatolia and Iran formed a single block ;Cimmeria; that rifted away from northern Gondwana and was accreted to southern Eurasia in late Paleozoic time.

  20. The Afar-Red Sea-Gulf of Aden volcanic margins system : early syn-rift segmentation and tectono-magmatic evolution

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled

    2017-04-01

    The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.

Top