Sample records for outer coordination sphere

  1. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.

    PubMed

    Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L

    2013-01-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  3. Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone

    2016-01-01

    Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and watermore » are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.« less

  4. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  5. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  6. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  7. Preparation of Geophysical Fluid Flow Experiments With The Rotating Spherical Gap Flow Model In Space

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.

  8. Preparation of Geophysical Fluid Flow Experiments ( GeoFlow ) in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The ,,GeoFlow" is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluidmechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field similar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment requires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth's liquid core the exp eriment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heating the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number. Results of preparatory experiments and numerical simulation of the space experiment will be presented. Funding from DLR under grant 50 WM 0122 is greatfully ackwnoledged.

  9. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  10. Inhibition and oxygen activation in copper amine oxidases.

    PubMed

    Shepard, Eric M; Dooley, David M

    2015-05-19

    Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.

  11. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    PubMed Central

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  12. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  13. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  14. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE PAGES

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; ...

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (Cp C5F4N)Fe(P EtN (CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary,more » secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  15. A comparative study of the electrostatic potential of fullerene-like structures of Au 32 and Au 42

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lai; Sun, Xiao-Ping; Shen, Hong-Tao; Hou, Dong-Yan; Zhai, Yu-Chun

    2008-05-01

    By using density functional theory calculations, it is found that the most negative MEP inside the gold cage occurs at the center of the sphere. The largest regions with the most negative MEP outside the sphere are localized in the neighborhood of the bridge sites and the vertex regions of the five-coordinated are more positive. The absolute values of the most negative potentials in both the inner and outer cages as well as the vertex regions of the five-coordinated of Au 32 structure are much larger than those of Au 42, which means Au 32 is preferable for electrophilic attack or nucleophilic processes.

  16. Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; Zaballa, María-Eugenia; Sproules, Stephen; Sundararajan, Mahesh; DeBeer, Serena; Richards, John H.; Vila, Alejandro J.; Neese, Frank; Gray, Harry B.

    2016-01-01

    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding. PMID:22563915

  17. Deconvolution of Raman spectroscopic signals for electrostatic, H-bonding, and inner-sphere interactions between ions and dimethyl phosphate in solution

    PubMed Central

    Christian, Eric L; Anderson, Vernon E.; Harris, Michael E

    2011-01-01

    Quantitative analysis of metal ion-phosphodiester interactions is a significant experimental challenge due to the complexities introduced by inner-sphere, outer-sphere (H-bonding with coordinated water), and electrostatic interactions that are difficult to isolate in solution studies. Here, we provide evidence that inner-sphere, H-bonding and electrostatic interactions between ions and dimethyl phosphate can be deconvoluted through peak fitting in the region of the Raman spectrum for the symmetric stretch of non-bridging phosphate oxygens (νsPO 2-). An approximation of the change in vibrational spectra due to different interaction modes is achieved using ions capable of all or a subset of the three forms of metal ion interaction. Contribution of electrostatic interactions to ion-induced changes to the Raman νsPO2- signal could be modeled by monitoring attenuation of νsPO2- in the presence of tetramethylammonium, while contribution of H-bonding and inner-sphere coordination could be approximated from the intensities of altered νsPO2- vibrational modes created by an interaction with ammonia, monovalent or divalent ions. A model is proposed in which discrete spectroscopic signals for inner-sphere, H-bonding, and electrostatic interactions are sufficient to account for the total observed change in νsPO2- signal due to interaction with a specific ion capable of all three modes of interaction. Importantly, the quantitative results are consistent with relative levels of coordination predicted from absolute electronegativity and absolute hardness of alkali and alkaline earth metals. PMID:21334281

  18. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  19. Synthesis, crystal structures and Hirshfeld surface analyses of two new Salen type nickel/sodium heteronuclear complexes

    NASA Astrophysics Data System (ADS)

    Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram

    2016-04-01

    Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2 O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.

  20. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  1. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.

    We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, themore » local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed.« less

  2. Inner and Outer Coordination Shells of Mg(2+) in CorA Selectivity Filter from Molecular Dynamics Simulations.

    PubMed

    Kitjaruwankul, Sunan; Wapeesittipan, Pattama; Boonamnaj, Panisak; Sompornpisut, Pornthep

    2016-01-28

    Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.

  3. Location dependent coordination chemistry and MRI relaxivity, in de novo designed lanthanide coiled coils† †Electronic supplementary information (ESI) available: Methods, peptide characterization data including mass spectrometry and analytical HPLC, sedimentation equilibrium data, circular dichroism, luminescence, and NMR data. See DOI: 10.1039/c5sc04101e

    PubMed Central

    Berwick, Matthew R.; Slope, Louise N.; Smith, Caitlin F.; King, Siobhan M.; Newton, Sarah L.; Gillis, Richard B.; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.; Britton, Melanie M.

    2016-01-01

    Herein, we establish for the first time the design principles for lanthanide coordination within coiled coils, and the important consequences of binding site translation. By interrogating design requirements and by systematically translating binding site residues, one can influence coiled coil stability and more importantly, the lanthanide coordination chemistry. A 10 Å binding site translation along a coiled coil, transforms a coordinatively saturated Tb(Asp)3(Asn)3 site into one in which three exogenous water molecules are coordinated, and in which the Asn layer is no longer essential for binding, Tb(Asp)3(H2O)3. This has a profound impact on the relaxivity of the analogous Gd(iii) coiled coil, with more than a four-fold increase in the transverse relaxivity (21 to 89 mM–1 s–1), by bringing into play, in addition to the outer sphere mechanism present for all Gd(iii) coiled coils, an inner sphere mechanism. Not only do these findings warrant further investigation for possible exploitation as MRI contrast agents, but understanding the impact of binding site translation on coordination chemistry has important repercussions for metal binding site design, taking us an important step closer to the predictable and truly de novo design of metal binding sites, for new functional applications. PMID:29899946

  4. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.

    PubMed

    Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A

    2007-06-01

    Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.

  5. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate.

    PubMed

    Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha

    2015-04-28

    Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.

  6. Self-assembled clusters of spheres related to spherical codes.

    PubMed

    Phillips, Carolyn L; Jankowski, Eric; Marval, Michelle; Glotzer, Sharon C

    2012-10-01

    We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well-defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to the densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology. We present a surprising result for the equilibrium structure of a 5-cluster, for which the square pyramid arrangement is preferred over a more symmetric structure. We show this result using Brownian dynamics, a Monte Carlo simulation, and a free energy approximation. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.

  7. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst.

    PubMed

    Dutta, Arnab; Lense, Sheri; Hou, Jianbo; Engelhard, Mark H; Roberts, John A S; Shaw, Wendy J

    2013-12-11

    Hydrogenase enzymes use first-row transition metals to interconvert H2 with protons and electrons, reactions that are important for the storage and recovery of energy from intermittent sources such as solar, hydroelectric, and wind. Here we present Ni(P(Cy)2N(Gly)2)2, a water-soluble molecular electrocatalyst with the amino acid glycine built into the diphosphine ligand framework. Proton transfer between the outer coordination sphere carboxylates and the second coordination sphere pendant amines is rapid, as observed by cyclic voltammetry and FTIR spectroscopy, indicating that the carboxylate groups may participate in proton transfer during catalysis. This complex oxidizes H2 (1-33 s(-1)) at low overpotentials (150-365 mV) over a range of pH values (0.1-9.0) and produces H2 under identical solution conditions (>2400 s(-1) at pH 0.5). Enzymes employ proton channels for the controlled movement of protons over long distances-the results presented here demonstrate the effects of a simple two-component proton channel in a synthetic molecular electrocatalyst.

  8. (18-Crown-6)potassium [(1,2,5,6-η)-cyclo-octa-1,5-diene][(1,2,3,4-η)-naph-tha-lene]-ferrate(-I).

    PubMed

    Brennessel, William W; Ellis, John E

    2012-10-01

    The title salt, [K(C(12)H(24)O(6))][Fe(C(8)H(12))(C(10)H(8))], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(-I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo-octa-diene, 18-crown-6 = 1,4,7,10,13,16-hexa-oxacyclo-octa-deca-ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra-hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°.

  9. Synthetic vaccines.

    PubMed

    Lerner, R A

    1983-02-01

    Synthetic vaccines are designed with the help of computer-graphics programs. These displays generated by Arthur J. Olson of the Research Institute of Scripps Clinic show a method whereby parts of a viral protein that are on the surface of a virus, and therefore accessible to antibodies, can be identified. The backbone of the surface domain of the protein on the outer shell of the tomato bushy-stunt virus is displayed (1) on the basis of coordinates determined by Stephen C. Harrison of Harvard University and his colleagues. A single peptide of the protein is picked out in yellow, with the side chains of its component amino acids indicated in atomic detail (2). The peptide is enlarged and a sphere representing a water molecule is displayed (3). The sphere is rolled around the peptide to generate a map of the surface accessible to water (4); it does so, following an algorithm developed by Michael L. Connolly, by placing a dot at each point of its closest contact with the peptide, taking account of the sphere's own van der Waals radius (zone of influence, in effect) and that of each atom of the peptide and the rest of the protein. A similar-dot-surface map is generated to show what parts of the peptide are still accessible to water when three copies of the protein are associated in an array on the surface of the virus (5) and when four such arrays (out of 60) are in position on the outer surface of the virus (6).

  10. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  11. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peak, Derek

    2008-06-09

    Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO{sub 4}{sup 2-}) and selenite (SeO{sub 3}{sup 2-}) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum ({alpha}-Al{sub 2}O{sub 3}) was studied to determine if adsorption mechanisms change as the aluminum oxide surfacemore » structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and {alpha}-Me{sub 2}O{sub 3}.« less

  12. Outer-Sphere Direction in Iridium C-H Borylation

    PubMed Central

    Roosen, Philipp C.; Kallepalli, Venkata A.; Chattopadhyay, Buddhadeb; Singleton, Daniel A.; Maleczka, Robert E.; Smith, Milton R.

    2013-01-01

    The NHBoc group affords ortho selective C–H borylations in arenes and alkenes. Experimental and computational studies support an outer sphere mechanism where the N–H proton hydrogen bonds to a boryl ligand oxygen. The regioselectivities are unique and complement those of directed ortho metalations. PMID:22703452

  13. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    USGS Publications Warehouse

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (???5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10-3.45 atm). ?? 2006 Elsevier Inc. All rights reserved.

  14. Electrohydrodynamics of a compound vesicle under an AC electric field

    NASA Astrophysics Data System (ADS)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  15. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer

    PubMed Central

    Petrenko, Alexander; Stein, Matthias

    2017-01-01

    Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774

  16. Porous Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  17. Equatorial symmetry of Boussinesq convective solutions in a rotating spherical shell allowing rotation of the inner and outer spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio

    2014-08-15

    We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outermore » spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.« less

  18. (18-Crown-6)potassium [(1,2,5,6-η)-cyclo­octa-1,5-diene][(1,2,3,4-η)-naph­tha­lene]­ferrate(−I)

    PubMed Central

    Brennessel, William W.; Ellis, John E.

    2012-01-01

    The title salt, [K(C12H24O6)][Fe(C8H12)(C10H8)], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(−I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo­octa­diene, 18-crown-6 = 1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra­hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°. PMID:23125569

  19. PICsar: Particle in cell pulsar magnetosphere simulator

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2016-07-01

    PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with 1000 CPUs.

  20. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene.

    PubMed

    Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun

    2017-09-20

    NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.

  1. Giant Rugby Ball [{CpBnFe(η5-P5)}24Cu96Br96] Derived from Pentaphosphaferrocene and CuBr2

    PubMed Central

    2015-01-01

    The self-assembly of [CpBnFe(η5-P5)] (CpBn = η5-C5(CH2Ph)5) with CuBr2 leads to the formation of an unprecedented rugby ball-shaped supramolecule consisting of 24 units of the pentaphosphaferrocene and an extended CuBr framework, which does not follow the fullerene topology. The resulting scaffold of 312 noncarbon atoms reveals three different coordination modes of the cyclo-P5 ligand including a novel π-coordination. The outer dimensions of 3.7 × 4.6 nm of the sphere approach the range of the size of proteins. With a value of 32.1 nm3, it is 62 times larger in volume than a C60 molecule. Surprisingly, this giant rugby ball is also slightly soluble in CH2Cl2. PMID:26280785

  2. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  3. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  4. The unexpected mechanism underlying the high-valent mono-oxo-rhenium(V) hydride catalyzed hydrosilylation of C=N functionalities: insights from a DFT study.

    PubMed

    Wang, Jiandi; Wang, Wenmin; Huang, Liangfang; Yang, Xiaodi; Wei, Haiyan

    2015-04-07

    In this study, we theoretically investigated the mechanism underlying the high-valent mono-oxo-rhenium(V) hydride Re(O)HCl2(PPh3)2 (1) catalyzed hydrosilylation of C=N functionalities. Our results suggest that an ionic S(N)2-Si outer-sphere pathway involving the heterolytic cleavage of the Si-H bond competes with the hydride pathway involving the C=N bond inserted into the Re-H bond for the rhenium hydride (1) catalyzed hydrosilylation of the less steric C=N functionalities (phenylmethanimine, PhCH=NH, and N-phenylbenzylideneimine, PhCH=NPh). The rate-determining free-energy barriers for the ionic outer-sphere pathway are calculated to be ∼28.1 and 27.6 kcal mol(-1), respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ∼1-3 kcal mol(-1)), whereas for the large steric C=N functionality of N,1,1-tri(phenyl)methanimine (PhCPh=NPh), the ionic outer-sphere pathway (33.1 kcal mol(-1)) is more favorable than the hydride pathway by as much as 11.5 kcal mol(-1). Along the ionic outer-sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si-H bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

    PubMed

    Sheng, Guodong; Yang, Shitong; Sheng, Jiang; Hu, Jun; Tan, Xiaoli; Wang, Xiangke

    2011-09-15

    Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

  6. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  7. Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Stone, D.; Lathrop, D. P.

    2014-12-01

    Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.

  8. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  9. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles.

    PubMed

    Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.

  10. Spectroscopic and structural study of novel interaction product of pyrrolidine-2-thione with molecular iodine. Presumable mechanisms of oxidation

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Burykin, Igor V.; Starikova, Zoya A.; Tereznikov, Alexander Yu.; Kolesnikova, Tatiana S.

    2013-09-01

    Synthesis, spectroscopic and structural characterization of novel interaction product of pyrrolidine-2-thione with molecular iodine is reported. The ability of pyrrolidine-2-thione to form the outer-sphere charge-transfer complex C4H7NS·I2 with iodine molecule in dilute chloroform solution has been studied by UV/vis spectroscopy. Oxidative desulfurization promotes ring fusion of two pyrrolidine-2-thione molecules. The product of iodine induced oxidative desulfurization has been studied by X-ray diffraction method. The crystal structure of the reaction product is formed by 5-(2-thioxopyrrolidine-1-yl)-3,4-dihydro-2H-pyrrolium (C8H13N2S+) cations and pentaiodide anions I5-, which are linked by the intermolecular I⋯Hsbnd C and I⋯C close contacts. The angular pentaiodide anions can be considered as structures formed by coordination of two iodine molecules to the iodide ion (type 1) or by the coordination of iodine molecule to the triiodide ion (type 2).

  11. Comparison of cation adsorption by isostructural rutile and cassiterite.

    PubMed

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more favorable. © 2011 American Chemical Society

  12. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng Y.; Cabelli D.; Stich, T.A.

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantlymore » in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].« less

  13. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    PubMed Central

    Sheng, Yuewei; Stich, Troy A.; Barnese, Kevin; Gralla, Edith B.; Cascio, Duilio; Britt, R. David; Cabelli, Diane E.; Valentine, Joan Selverstone

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O2−). This behavior limits the amount of H2O2 produced at high [O2−]; its desirability can be explained by the multiple roles of H2O2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O2−] the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn3+ species in yeast Mn3+SODs, including the well-characterized 5-coordinate Mn3+ species and a 6-coordinate L-Mn3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O2−]. PMID:22077216

  14. Apparatus and methods for controlling electron microscope stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duden, Thomas

    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a pluralitymore » of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.« less

  15. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOEpatents

    Clifford, Harry J [Los Alamos, NM

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  16. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail

    Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusivelymore » through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.« less

  17. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system.

    PubMed

    Winterhoff, Boris J N; Arlt, Alexander; Duttmann, Angelika; Ungefroren, Hendrik; Schäfer, Heiner; Kalthoff, Holger; Kruse, Marie-Luise

    2012-03-01

    The present study investigated the expression and localisation of FAP-1 (Fas associated phosphatase-1) and CD95 in a 3D differentiation model in comparison to 2D monolayers of the pancreatic adenocarcinoma cell line A818-6. Under non-adherent growth conditions, A818-6 cells differentiate into 3D highly organised polarised epithelial hollow spheres, resembling duct-like structures. A818-6 cells showed a differentiation-dependent FAP-1 localisation. Cells grown as 2D monolayers revealed FAP-1 staining in a juxtanuclear cisternal position, as well as localisation in the nucleus. After differentiation into hollow spheres, FAP-1 was relocated towards the actin cytoskeleton beneath the outer plasma membrane of polarised cells and no further nuclear localisation was observed. CD95 surface staining was found only in a subset of A818-6 monolayer cells, while differentiated hollow spheres appeared to express CD95 in all cells of a given sphere. We rarely observed co-localisation of CD95 and FAP-1 in A818-6 monolayer cells, but strong co-localisation beneath the outer plasma membrane in polarised cells. Analysis of surface expression by flow cytometry revealed that only a subset (36%) of monolayer cells showed CD95 surface expression, and after induction of hollow spheres, CD95 presentation at the outer plasma membrane was reduced to 13% of hollow spheres. Induction of apoptosis by stimulation with agonistic anti-CD95 antibodies, resulted in increased caspase activity in both, monolayer cells and hollow spheres. Knock down of FAP-1 mRNA in A818-6 monolayer cells did not alter resposiveness to CD95 agonistic antibodies. These data suggested that CD95 signal transduction was not affected by FAP-1 expression in A818-6 monolayer cells. In differentiated 3D hollow spheres, we found a polarisation-induced co-localisation of CD95 and FAP-1. A tight control of receptor surface representation and signalling induced apoptosis ensures controlled removal of individual cells instead of a "snowball effect" of apoptotic events. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water.

  19. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H 2 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab

    Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for controlling reactivity and efficiency of Ni(P 2N 2) 2 complexes with the outer coordination sphere.« less

  20. Nuclear spin relaxation in ligands outside of the first coordination sphere in a gadolinium (III) complex: Effects of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Kruk, Danuta; Kowalewski, Jozef

    2002-07-01

    This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.

  1. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  2. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  3. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  4. A Mechanistic Investigation of the Gold(III)-Catalyzed Hydrofurylation of C-C Multiple Bonds.

    PubMed

    Hossein Bagi, Amin; Khaledi, Yousef; Ghari, Hossein; Arndt, Sebastian; Hashmi, A Stephen K; Yates, Brian F; Ariafard, Alireza

    2016-11-09

    The gold-catalyzed direct functionalization of aromatic C-H bonds has attracted interest for constructing organic compounds which have application in pharmaceuticals, agrochemicals, and other important fields. In the literature, two major mechanisms have been proposed for these catalytic reactions: inner-sphere syn-addition and outer-sphere anti-addition (Friedel-Crafts-type mechanism). In this article, the AuCl 3 -catalyzed hydrofurylation of allenyl ketone, vinyl ketone, ketone, and alcohol substrates is investigated with the aid of density functional theory calculations, and it is found that the corresponding functionalizations are best rationalized in terms of a novel mechanism called "concerted electrophilic ipso-substitution" (CEIS) in which the gold(III)-furyl σ-bond produced by furan auration acts as a nucleophile and attacks the protonated substrate via an outer-sphere mechanism. This unprecedented mechanism needs to be considered as an alternative plausible pathway for gold(III)-catalyzed arene functionalization reactions in future studies.

  5. Marcus equation

    DOE R&D Accomplishments Database

    1998-09-21

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  6. Estimation of the outer-sphere contribution to the activation volume for electron exchange reactions using the mean spherical approximation

    NASA Astrophysics Data System (ADS)

    Takagi, Hideo D.; Swaddle, Thomas W.

    1996-01-01

    The outer-sphere contribution to the volume of activation of homogeneous electron exchange reactions is estimated for selected solvents on the basis of the mean spherical approximation (MSA), and the calculated values are compared with those estimated by the Strank-Hush-Marcus (SHM) theory and with activation volumes obtained experimentally for the electron exchange reaction between tris(hexafluoroacetylacetonato)ruthenium(III) and -(II) in acetone, acetonitrile, methanol and chloroform. The MSA treatment, which recognizes the molecular nature of the solvent, does not improve significantly upon the continuous-dielectric SHM theory, which represents the experimental data adequately for the more polar solvents.

  7. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    Concentrations of strontium, which exists primarily in a cationic form (Sr2+), were not significantly correlated with either groundwater age or pH. Strontium concentrations showed a strong positive correlation with total dissolved solids (TDS). Dissolved constituents, such as Sr, that interact with mineral surfaces through outer-sphere complexation become increasingly soluble with increasing TDS concentrations of groundwater. Boron concentrations also showed a significant positive correlation with TDS, indicating the B may interact to a large degree with mineral surfaces through outer-sphere complexation.

  8. New insights into hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds by rhenium(V)-dioxo complexes.

    PubMed

    Huang, Liangfang; Wang, Wenmin; Wei, Xiaoqin; Wei, Haiyan

    2015-04-23

    The hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds catalyzed by high-valent rhenium(V)-dioxo complex ReO2I(PPh3)2 (1) were studied computationally to determine the underlying mechanism. Our calculations revealed that the ionic outer-sphere pathway in which the organic substrate attacks the Si center in an η(1)-silane rhenium adduct to prompt the heterolytic cleavage of the Si-H bond is the most energetically favorable process for rhenium(V)-dioxo complex 1 catalyzed hydrosilylation of imines. The activation energy of the turnover-limiting step was calculated to be 22.8 kcal/mol with phenylmethanimine. This value is energetically more favorable than the [2 + 2] addition pathway by as much as 10.0 kcal/mol. Moreover, the ionic outer-sphere pathway competes with the [2 + 2] addition mechanism for rhenium(V)-dioxo complex 1 catalyzing the hydrosilylation of carbonyl compounds. Furthermore, the electron-donating group on the organic substrates would induce a better activity favoring the ionic outer-sphere mechanistic pathway. These findings highlight the unique features of high-valent transition-metal complexes as Lewis acids in activating the Si-H bond and catalyzing the reduction reactions.

  9. ATR-FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides

    PubMed Central

    Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming

    2014-01-01

    Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

  10. The lanthanide contraction beyond coordination chemistry

    DOE PAGES

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.; ...

    2016-04-06

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  11. The lanthanide contraction beyond coordination chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  12. Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.

    PubMed

    Tiwari, Ambuj; Ensing, Bernd

    2016-12-22

    Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.

  13. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  14. Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin.

    PubMed

    Koenig, S H; Brown, R D; Lindstrom, T R

    1981-06-01

    It is now more than 20 years since Davidson and collaborators (1957, Biochim. Biophys, Acta. 26:370-373; J. Mol. Biol. 1:190-191) applied the theoretical ideas of Bloembergen et al. (1948. Phys. Rev. 73:679-712) on outer sphere magnetic relaxation of solvent protons to studies of solutions of methemoglobin. From then on, there has been debate regarding the relative contributions to paramagnetic solvent proton relaxation by inner sphere (ligand-exchange) effects and by outer sphere (diffusional) effects in methemoglobin solutions. Gupta and Mildvan (1975. J. Biol. Chem 250:146-253) extended the early measurements, attributed the relatively small paramagnetic effects to exchange with solvent of the water ligand of the heme-Fe3+ ion, and interpreted their data to indicate cooperativity and an alkaline Bohr effect in the presence of inositol hexaphosphate. They neglected the earlier discussions entirely, and made no reference to outer sphere effects. We have measured the relaxation rate of solvent protons as a function of magnetic field for solutions of methemoglobin, under a variety of conditions of pH and temperature, and have given careful consideration to the relatively large diamagnetic corrections that are necessary by making analogous measurements on oxyhemoglobin, carbonmonoxyhemoglobin, and cyano- and azide-methemoglobin. (The latter two, because of their short electronic relaxation times, behave as though diamagnetic). We show that the paramagnetic contribution to solvent relaxation can be dominated by outer sphere effects, a result implying that many conclusions, including those of Gupta and Mildvan, require reexamination. Finally, we present data for fluoro-methemoglobin, which relaxes solvent protons an order of magnitude better than does methemoglobin. Here one has a startling breakdown of the dogma that has been the basis for interpreting many ligand-replacement studies; in contrast to the prevailing view that replacement of a water ligand of a protein-bound paramagnetic ion by another ligand should decrease relaxation rates, replacement of H2O by F- increases the relaxation rate drastically. The data can all be reconciled, however, with what is anticipated from knowledge of ligand interactions in the heme region.

  15. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  16. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    PubMed

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multiple scaling power in liquid gallium under pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renfeng; Wang, Luhong; Li, Liangliang

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less

  18. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  19. Calculation of Latitude and Longitude for Points on Perimeter of a Circle on a Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.

    2015-08-14

    This document describes the calculation of the Earth-Centered Earth Fixed (ECEF) coordinates for points lying on the perimeter of a circle. Here, the perimeter of the circle lies on the surface of the sphere and the center of the planar circle is below the surface. These coordinates are converted to latitude and longitude for mapping fields on the surface of the earth.

  20. Artificial hydrogenases based on cobaloximes and heme oxygenase

    DOE PAGES

    Bacchi, Marine; Veinberg, Elias; Field, Martin J.; ...

    2016-06-06

    The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H 2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO-based biohybrids incorporating a {Co(dmgH) 2} (dmgH 2 = dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respectmore » to the cobaloxime alone or to analogous sperm whale myoglobin adducts. Here, this study thus provides a strong basis for further improvement of such biohybrids, using well-designed modifications of the second and outer coordination spheres, through site-directed mutagenesis of the host protein.« less

  1. Artificial hydrogenases based on cobaloximes and heme oxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchi, Marine; Veinberg, Elias; Field, Martin J.

    The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H 2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO-based biohybrids incorporating a {Co(dmgH) 2} (dmgH 2 = dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respectmore » to the cobaloxime alone or to analogous sperm whale myoglobin adducts. Here, this study thus provides a strong basis for further improvement of such biohybrids, using well-designed modifications of the second and outer coordination spheres, through site-directed mutagenesis of the host protein.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (Cp C5F4N)Fe(P EtN (CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary,more » secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  3. Improved method for producing small hollow spheres

    DOEpatents

    Rosencwaig, A.; Koo, J.C.; Dressler, J.L.

    An improved method and apparatus for producing small hollow spheres of glass having an outer diameter ranging from about 100..mu.. to about 500..mu.. with a substantially uniform wall thickness in the range of about 0.5 to 20..mu.. are described. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions.

  4. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  6. Buried chloride stereochemistry in the Protein Data Bank

    PubMed Central

    2014-01-01

    Background Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. Results The analysis of a non-redundant set (pairwise sequence identity?

  7. Buried chloride stereochemistry in the Protein Data Bank.

    PubMed

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity < 30%) of 1739 high resolution (<2 Å) crystal structures that contain at least one chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  8. Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study

    PubMed Central

    Li, Xiong; Li, Hang; Yang, Gang

    2015-01-01

    Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873

  9. Colloidal alloys with preassembled clusters and spheres.

    PubMed

    Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J

    2017-06-01

    Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

  10. Conformal Geometry, Hotine’s Conjecture, and Differential Geodesy.

    DTIC Science & Technology

    1987-07-27

    ellipsoid (Stokes Theorem). Rayleigh and Poincare extensively studied tides. Starting around 1900 the close connection between geodesy and mathematics...locally conformal maps on neighborhoods of M ,.’ P -a ,r r’ " % "% J and M’ For example, consider the 2-sphere S and the plane E It 2 2 is well...coordinates where the coordinate surfaces are respectively planes ; planes and cylinders; and planes , spheres, - and cones. we give one less trivial example

  11. Investigation and application of multiple reactions between molybdoniobium heteropoly acid and di- or trimethylthionines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzoyam, F.B.; Karapetyan, A.A.

    1986-03-01

    This paper presents the results of the study and use of reactions of molybdoniobic acid (MNA) with di- and trimethylthiones (DMT and TMT, respectively). It was found that light absorption of acetone solutions of the products of outer-sphere interaction between MNA and DMT or TMT enabled the determination of optimum acidity for MNA formation. Reaction between TMT and MNA gives two different compounds containing two and five associated dye cations, different in molar extinction coefficient and optimum reaction acidity (pH 0.05-0.25 and 0.35-0.90). Formation of the 6th and 8th molybdenum series with an identical composition of the outer sphere ismore » shown. A highly sensitive photometric method for determining niobium has been developed.« less

  12. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    NASA Astrophysics Data System (ADS)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and about eight water molecules in the first hydration shell within a radius of 3.3 Å at all higher hydration states. Moreover, the MD results show that the complete hydration shells are nearly spherical with an orthogonal coordination sphere. They could only be formed when the basal spacing d001 ≥ 18.7 Å, i.e., approximately, the interlayer separation h ≥ 10 Å. Comparison between DFT and MD simulations shows that DFT failed to reproduce the outer-sphere complexes in the Stern-layer (within ˜5.0 Å from the clay basal-plane), observed in the MD simulations.

  13. Computational study of the electronic structure and magnetic properties of the Ni-C state in [NiFe] hydrogenases including the second coordination sphere.

    PubMed

    Kampa, Mario; Lubitz, Wolfgang; van Gastel, Maurice; Neese, Frank

    2012-12-01

    [NiFe] hydrogenases catalyze the reversible formation of H(2). The [NiFe] heterobimetallic active site is rich in redox states. Here, we investigate the key catalytic state Ni-C of Desulfovibrio vulgaris Miyazaki F hydrogenase using a cluster model that includes the truncated amino acids of the entire second coordination sphere of the enzyme. The optimized geometries, computed g tensors, hyperfine coupling constants, and IR stretching frequencies all agree well with experimental values. For the hydride in the bridging position, only a single minimum on the potential energy surface is found, indicating that the hydride bridges and binds to both nickel and iron. The influence of the second coordination sphere on the electronic structure is investigated by comparing results from the large cluster models with truncated models. The largest interactions of the second coordination sphere with the active site concern the hydrogen bonds with the cyanide ligands, which modulate the bond between iron and these ligands. Secondly, the electronic structure of the active site is found to be sensitive to the protonation state of His88. This residue forms a hydrogen bond with the spin-carrying sulfur atom of Cys549, which in turn tunes the spin density at the nickel and coordinating sulfur atoms. In addition, the unequal distribution of spin density over the equatorial cysteine residues results from different orientations of the cysteine side chains, which are kept in their particular orientation by the secondary structure of the protein.

  14. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean

    NASA Astrophysics Data System (ADS)

    Kashiwabara, Teruhiko; Takahashi, Yoshio; Marcus, Matthew A.; Uruga, Tomoya; Tanida, Hajime; Terada, Yasuko; Usui, Akira

    2013-04-01

    The tungsten (W) species in marine ferromanganese oxides were investigated by wavelength dispersive XAFS method. We found that the W species are in distorted Oh symmetry in natural ferromanganese oxides. The host phase of W is suggested to be Mn oxides by μ-XRF mapping. We also found that the W species forms inner-sphere complexes in hexavalent state and distorted Oh symmetry on synthetic ferrihydrite, goethite, hematite, and δ-MnO2. The molecular-scale information of W indicates that the negatively-charged WO42- ion mainly adsorbs on the negatively-charged Mn oxides phase in natural ferromanganese oxides due to the strong chemical interaction. In addition, preferential adsorption of lighter W isotopes is expected based on the molecular symmetry of the adsorbed species, implying the potential significance of the W isotope systems similar to Mo. Adsorption experiments of W on synthetic ferrihydrite and δ-MnO2 were also conducted. At higher equilibrium concentration, W exhibits behaviors similar to Mo on δ-MnO2 due to their formations of inner-sphere complexes. On the other hand, W shows a much larger adsorption on ferrihydrite than Mo. This is due to the formation of the inner- and outer-sphere complexes for W and Mo on ferrihydrite, respectively. Considering the lower equilibrium concentration such as in oxic seawater, however, the enrichment of W into natural ferromanganese oxides larger than Mo may be controlled by the different stabilities of their inner-sphere complexes on the Mn oxides. These two factors, (i) the stability of inner-sphere complexes on the Mn oxides and (ii) the mode of attachment on ferrihydrite (inner- or outer-sphere complex), are the causes of the different behaviors of W and Mo on the surface of the Fe/Mn (oxyhydr)oxides.

  15. Heterogeneous Catalysis for Thermochemical Conversion Publications |

    Science.gov Websites

    pentagons is an upside-down Y shape and H2 +with a sideways Y shape with two lines at the base. A gold arrow a photo of woody biomass. In the center is a diamond shape composed of four outer triangle sections blue spheres. In the upper left is a large molecule shape made up of a hexagon of black spheres

  16. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.

    2017-05-01

    Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.

  17. Steric hindrance and the enhanced stability of light rare-earth elements in hydrothermal fluids

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2009-01-01

    A series of X-ray absorption spectroscopy (XAS) experiments were made to determine the structure and stability of aqueous REE (La, Nd, Gd, and Yb) chloride complexes to 500 ??C and 520 MPa. The REE3+ ions exhibit inner-sphere chloroaqua complexation with a steady increase of chloride coordination with increasing temperature in the 150 to 500 ??C range. Furthermore, the degree of chloride coordination of REE3+ inner-sphere chloroaqua complexes decreases significantly from light to heavy REE. These results indicate that steric hindrance drives the reduction of chloride coordination of REE3+ inner-sphere chloroaqua complexes from light to heavy REE. This results in greater stability and preferential transport of light REE3+ over heavy REE3+ ions in saline hydrothermal fluids. Accordingly, the preferential mobility of light REE directly influences the relative abundance of REE in rocks and minerals and thus needs to be considered in geochemical modeling of petrogenetic and ore-forming processes affected by chloride-bearing hydrothermal fluids.

  18. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.

    PubMed

    Akanda, Md Rajibul; Choe, Yu-Lim; Yang, Haesik

    2012-01-17

    This paper reports chemical-chemical (CC) and electrochemical-chemical-chemical (ECC) redox cycling, for use in ultrasensitive biosensor applications. A triple chemical amplification approach using an enzymatic reaction, CC redox cycling, and ECC redox cycling is applied toward electrochemical immunosensors of cardiac troponin I. An enzymatic reaction, in which alkaline phosphatase converts 4-aminophenyl phosphate to 4-aminophenol (AP), triggers CC redox cycling in the presence of an oxidant and a reductant, and electrochemical signals are measured with ECC redox cycling after an incubation period of time in an air-saturated solution. To obtain high, selective, and reproducible redox cycling without using redox enzymes, two redox reactions [the reaction between AP and the oxidant and the reaction between the oxidized form of AP (4-quinone imine, QI) and the reductant] should be fast, but an unwanted reaction between the oxidant and reductant should be very slow. Because species that undergo outer-sphere reactions (OSR-philic species) react slowly with species that undergo inner-sphere reactions (ISR-philic species), highly OSR-philic Ru(NH(3))(6)(3+) and highly ISR-philic tris(2-carboxyethyl)phosphine (TCEP) are chosen as the oxidant and reductant, respectively. The OSR- and ISR-philic QI/AP couple allows fast redox reactions with both the OSR-philic Ru(NH(3))(6)(3+) and the ISR-philic TCEP. Highly OSR-philic indium-tin oxide (ITO) electrodes minimize unwanted electrochemical reactions with highly ISR-philic species. Although the formal potential of the Ru(NH(3))(6)(3+)/Ru(NH(3))(6)(2+) couple is lower than that of the QI/AP couple, the endergonic reaction between Ru(NH(3))(6)(3+) and AP is driven by the highly exergonic reaction between TCEP and QI (via a coupled reaction mechanism). Overall, the "outer-sphere to inner-sphere" redox cycling in the order of highly OSR-philic ITO, highly OSR-philic Ru(NH(3))(6)(3+)/Ru(NH(3))(6)(2+) couple, OSR- and ISR-philic QI/AP couple, and highly ISR-philic TCEP allows high, selective, and reproducible signal amplification. The electrochemical data obtained by chronocoulometry permit a lower detection limits than those obtained by cyclic voltammetry. The detection limit of an immunosensor for troponin I in serum, calculated from the anodic charges in chronocoulometry, is ca. 10 fg/mL.

  19. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.

    PubMed

    Sari, Mutiara Ayu; Chellam, Shankararaman

    2015-11-15

    Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Generalized spherical and simplicial coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Wolf-Dieter

    2007-12-01

    Elementary trigonometric quantities are defined in l2,p analogously to that in l2,2, the sine and cosine functions are generalized for each p>0 as functions sinp and cosp such that they satisfy the basic equation cosp([phi])p+sinp([phi])p=1. The p-generalized radius coordinate of a point [xi][set membership, variant]Rn is defined for each p>0 as . On combining these quantities, ln,p-spherical coordinates are defined. It is shown that these coordinates are nearly related to ln,p-simplicial coordinates. The Jacobians of these generalized coordinate transformations are derived. Applications and interpretations from analysis deal especially with the definition of a generalized surface content on ln,p-spheres which is nearly related to a modified co-area formula and an extension of Cavalieri's and Torricelli's indivisibeln method, and with differential equations. Applications from probability theory deal especially with a geometric interpretation of the uniform probability distribution on the ln,p-sphere and with the derivation of certain generalized statistical distributions.

  1. Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries.

    PubMed

    Finke, K; Tilgner, A

    2012-07-01

    We study numerically the dynamo transition of an incompressible electrically conducting fluid filling the gap between two concentric spheres. In a first series of simulations, the fluid is driven by the rotation of a smooth inner sphere through no-slip boundary conditions, whereas the outer sphere is stationary. In a second series a volume force intended to simulate a rough surface drives the fluid next to the inner sphere within a layer of thickness one-tenth of the gap width. We investigate the effect of the boundary layer thickness on the dynamo threshold in the turbulent regime. The simulations show that the boundary forcing simulating the rough surface lowers the necessary rotation rate, which may help to improve spherical dynamo experiments.

  2. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering.

    PubMed

    Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming

    2017-11-01

    Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Coordinated Hard Sphere Mixture (CHaSM): A simplified model for oxide and silicate melts at mantle pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Wolf, Aaron S.; Asimow, Paul D.; Stevenson, David J.

    2015-08-01

    We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme temperatures and pressures, including deep mantle conditions like those in the early Earth magma ocean. The Coordinated Hard Sphere Mixture (CHaSM) is based on an extension of the hard sphere mixture model, accounting for the range of coordination states available to each cation in the liquid. By utilizing approximate analytic expressions for the hard sphere model, this method is capable of predicting complex liquid structure and thermodynamics while remaining computationally efficient, requiring only minutes of calculation time on standard desktop computers. This modeling framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide range of pressures and temperatures. We find that the typical coordination number of the Mg cation evolves continuously upward from 5.25 at 0 GPa to 8.5 at 250 GPa. The results produced by CHaSM are evaluated by comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHaSM is accurately capturing the dominant physics controlling the behavior of oxide melts at high pressure. Finally, we present a simple quantitative model to explain the universality of the increasing Grüneisen parameter trend for liquids, which directly reflects their progressive evolution toward more compact solid-like structures upon compression. This general behavior is opposite that of solid materials, and produces steep adiabatic thermal profiles for silicate melts, thus playing a crucial role in magma ocean evolution.

  4. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  5. Papers from U.S. Department of Energy Science Undergraduate Laboratory Internship Program (SULI) 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    The solvation sphere of halides in water has been investigated using a combination of extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) analysis techniques. The results have indicated that I{sup -} and Br{sup -} both have an asymmetric, 8 water molecule primary solvation spheres. These spheres are identical, with the Br{sup -} sphere about .3 {angstrom} smaller than the I{sup -} sphere. This study utilized near-edge analysis to supplement EXAFS analysis which suffers from signal dampening/broadening due to thermal noise. This paper has reported on the solvation first sphere of I{sup -} and Br{sup -} inmore » water. Using EXAFS and XANES analysis, strong models which describe the geometric configuration of water molecules coordinated to a central anion have been developed. The combination of these techniques has provided us with a more substantiated argument than relying solely on one or the other. An important finding of this study is that the size of the anion plays a smaller role than previously assumed in determining the number of coordinating water molecules. Further experimental and theoretical investigation is required to understand why the size of the anion plays a minor role in determining the number of water molecules bound.« less

  6. Curious case of gravitational lensing by binary black holes: A tale of two photon spheres, new relativistic images, and caustics

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Mishra, Priti; Narasimha, D.

    2017-01-01

    Binary black holes have been in the limelight of late due to the detection of gravitational waves from coalescing compact binaries in the events GW150914 and GW151226. In this paper we study gravitational lensing by the binary black holes modeled as an equal mass Majumdar-Papapetrou dihole metric and show that this system displays features that are quite unprecedented and absent in any other lensing configuration investigated so far in the literature. We restrict our attention to the light rays which move on the plane midway between the two identical black holes, which allows us to employ various techniques developed for the equatorial lensing in the spherically symmetric spacetimes. If distance between the two black holes is below a certain threshold value, then the system admits two photon spheres. As in the case of a single black hole, infinitely many relativistic images are formed due to the light rays which turn back from the region outside the outer (unstable) photon sphere, all of which lie beyond a critical angular radius with respect to the lens. However, in the presence of the inner (stable) photon sphere, the effective potential after admitting minimum turns upwards and blows up for the smaller values of radii and the light rays that enter the outer photon sphere can turn back, leading to the formation of a new set of infinitely many relativistic images, all of which lie below the critical radius from the lens mentioned above. As the distance between the two black holes is increased, two photon spheres approach one another, merge and eventually disappear. In the absence of the photon sphere, apart from the formation of a finite number of discrete relativistic images, the system remarkably admits a radial caustic, which has never been observed in the context of relativistic lensing before. Thus the system of the binary black hole admits novel features both in the presence and absence of photon spheres. We discuss possible observational signatures and implications of the binary black hole lensing.

  7. Chemodynamics of aquatic metal complexes: from small ligands to colloids.

    PubMed

    Van Leeuwen, Herman P; Buffle, Jacques

    2009-10-01

    Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.

  8. RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.

    PubMed

    Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

  9. RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator

    PubMed Central

    Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740

  10. Reservoir computer predictions for the Three Meter magnetic field time evolution

    NASA Astrophysics Data System (ADS)

    Perevalov, A.; Rojas, R.; Lathrop, D. P.; Shani, I.; Hunt, B. R.

    2017-12-01

    The source of the Earth's magnetic field is the turbulent flow of liquid metal in the outer core. Our experiment's goal is to create Earth-like dynamo, to explore the mechanisms and to understand the dynamics of the magnetic and velocity fields. Since it is a complicated system, predictions of the magnetic field is a challenging problem. We present results of mimicking the three Meter experiment by a reservoir computer deep learning algorithm. The experiment is a three-meter diameter outer sphere and a one-meter diameter inner sphere with the gap filled with liquid sodium. The spheres can rotate up to 4 and 14 Hz respectively, giving a Reynolds number near to 108. Two external electromagnets apply magnetic fields, while an array of 31 external and 2 internal Hall sensors measure the resulting induced fields. We use this magnetic probe data to train a reservoir computer to predict the 3M time evolution and mimic waves in the experiment. Surprisingly accurate predictions can be made for several magnetic dipole time scales. This shows that such a complicated MHD system's behavior can be predicted. We gratefully acknowledge support from NSF EAR-1417148.

  11. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dub, Pavel A.; Gordon, John C.

    2016-03-21

    The catalytic hydrogenation of prochiral ketones with second and third-row transition metal complexes bearing chelating chiral ligands containing at least one N–H functionality has achieved unparalleled performance, delivering, in the best cases, chiral alcohols with up to 99.9% ee using extremely small catalyst loadings (~10 -5 mol%). Hence the efficacy of this reaction has closely approached that of natural enzymatic systems and the reaction itself has become one of the most efficient artificial catalytic reactions developed to date. This paper describes the current level of understanding of the mechanism of enantioselective hydrogenation and transfer hydrogenation of aromatic ketones with pioneeringmore » prototypes of bifunctional catalysts, the Noyori and Noyori–Ikariya complexes. Finally, analysis presented herein expands the concept of “metal–ligand cooperation”, redefines the term “cooperative ligand” and introduces “H –/H + outer-sphere hydrogenation” as a novel paradigm in outer-sphere hydrogenation.« less

  12. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  13. Effective transport properties of composites of spheres

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    1994-06-01

    The effective linear transport properties of composites of spheres may be studied by the methods of statistical physics. The analysis leads to an exact cluster expansion. The resulting expression for the transport coefficients may be evaluated approximately as the sum of a mean field contribution and correction terms, given by cluster integrals over two-sphere and three-sphere correlation functions. Calculations of this nature have been performed for the effective dielectric constant, as well as the effective elastic constants of composites of spheres. Accurate numerical data for the effective properties may be obtained by computer simulation. An efficient formulation uses multiple expansion in Cartesian coordinates and periodic boundary conditions. Extensive numerical results have been obtained for the effective dielectric constant of a suspension of randomly distributed spheres.

  14. Monostatic lidar/radar invisibility using coated spheres.

    PubMed

    Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping

    2008-02-04

    The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.

  15. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  16. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less

  17. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi

    2017-03-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  18. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Technical Reports Server (NTRS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; hide

    2017-01-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  19. Synthesis, structure, spectroscopic and electrochemical properties of (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan

    2007-05-01

    The (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate complex was synthesized and characterized by spectroscopic (IR, UV/Vis, EPR), thermal (TG/DTA) and electrochemical methods. X-ray structural analysis of the title complex revealed that the copper ion can be considered to have two coordination spheres. In the first coordination sphere the copper ion forms distorted square-planar geometry with trans-N 2O 2 donor set, and also the metal ion is weakly bonded to the amino-nitrogen in the layer over and to the carboxylic oxygen in the layer underneath in the second coordination sphere. The second coordination environment on the copper ion is attributed to pseudo octahedron. The powder EPR spectra of Cu(II) complex at room and liquid nitrogen temperature were recorded. The calculated g and A parameters have indicated that the paramagnetic centre is axially symmetric. The molecular orbital bond coefficients of the Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centered electroactivity in the potential range -1.25 to 1.5 V versus Ag/AgCl reference electrode.

  20. ESR, spectroscopic, and quantum-chemical studies on the electronic structures of complexes formed by Cu(I) with radicals (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsan, N.P.; Usov, O.M.; Shokhirev, N.V.

    1986-07-01

    The optical and ESR spectra have been examined for complexes of Cu(I) with various radicals, which contain various numbers of Cl/sup -/ ions in the central-atom coordination sphere. The spin-Hamiltonian parameters have been determined for all these radical complexes, and the observed ESR spectra have been compared with those calculated with allowance for second-order effects. The observed values for the isotropic and anisotropic components of the HFI constant from the central ion have been used to estimate the contributions from the 4s and 3d/sup 2//sub z/ orbitals of the copper ion to the unpaired-electron MO. Quantum-chemical calculations have been performedmore » by the INDO method on the electronic structures and geometries of complexes formed by CH/sub 2/OH with Cu(I) for various Cl/sup -/ contents in the coordination sphere. The radical is coordinated by the ..pi.. orbital on the carbon atom, and the stabilities of the radical complexes decrease as the number of Cl/sup -/ ions in the coordination sphere increases. A geometry close to planar for the CuCl/sub 4//sup 3 -/ fragment in a complex containing four Cl/sup -/ ions.« less

  1. Nanoscale Hollow Spheres: Microemulsion-Based Synthesis, Structural Characterization and Container-Type Functionality

    PubMed Central

    Gröger, Henriette; Kind, Christian; Leidinger, Peter; Roming, Marcus; Feldmann, Claus

    2010-01-01

    A wide variety of nanoscale hollow spheres can be obtained via a microemulsion approach. This includes oxides (e.g., ZnO, TiO2, SnO2, AlO(OH), La(OH)3), sulfides (e.g., Cu2S, CuS) as well as elemental metals (e.g., Ag, Au). All hollow spheres are realized with outer diameters of 10−60 nm, an inner cavity size of 2−30 nm and a wall thickness of 2−15 nm. The microemulsion approach allows modification of the composition of the hollow spheres, fine-tuning their diameter and encapsulation of various ingredients inside the resulting “nanocontainers”. This review summarizes the experimental conditions of synthesis and compares them to other methods of preparing hollow spheres. Moreover, the structural characterization and selected properties of the as-prepared hollow spheres are discussed. The latter is especially focused on container-functionalities with the encapsulation of inorganic salts (e.g., KSCN, K2S2O8, KF), biomolecules/bioactive molecules (e.g., phenylalanine, quercetin, nicotinic acid) and fluorescent dyes (e.g., rhodamine, riboflavin) as representative examples. PMID:28883333

  2. Bending nanofibers into nanospirals: coordination chemistry as a tool for shaping hydrophobic assemblies.

    PubMed

    Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris

    2015-01-02

    In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Method for producing small hollow spheres

    DOEpatents

    Rosencwaig, Allen; Koo, Jackson C.; Dressler, John L.

    1981-01-01

    A method for producing small hollow spheres of glass having an outer diameter ranging from about 100.mu. to about 500.mu. with a substantially uniform wall thickness in the range of about 0.5-20.mu.. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions. In one embodiment, one of the temperature regions is lower than both the preceeding region and the subsequent region. One region utilizes a temperature of at least 200.degree. C. higher than the melting point of the glass-forming material in the solution and, for example, may be at least 3 times higher than the temperature of the preceeding region. In addition, there is a sharp temperature gradient between these regions. As each droplet of solution passes through a first region it forms into a gel membrane having a spherical shape and encapsulates the rest of the drop retained in the elastic outer surface and the water entrapped within diffuses rapidly through the thin gel membrane which causes more of the glass-forming material to go out of solution and is incorporated into the gel membrane causing it to grow in size and become hollow. thus produced hollow glass sphere has a sphericity, concentricity, and wall uniformity of better than 5%. The sphere is capable of retaining material of up to at least 100 atmospheres therein over long periods of time. In one embodiment.

  4. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    NASA Technical Reports Server (NTRS)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  5. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  6. Propagation of a shock wave in a radiating spherically symmetric distribution of matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.; Nunez, L.

    1987-08-01

    A method used to study the evolution of radiating spheres reported by Herrera et al. (1980) is extended to the case in which the sphere is divided in two regions by a shock wave front. The equations of state at both sides of the shock are different, and the solutions are matched on it via the Rankine-Hugoniot conditions. The outer-region metric is matched with a Vaidya solution on the boundary surface of the sphere. As an example of the procedure, two known solutions for radiating systems are considered. The matter distribution is free of singularities everywhere within the sphere andmore » a Gaussian-like pulse is assumed to carry out a fraction of the total mass. Exploding models are then obtained. Finally, the results are discussed in the light of recent work on gravitational collapse and supernovae. 29 references.« less

  7. Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-08-16

    The interaction of iron (hydr)oxides with fatty acids is related to many industrial and natural processes. To resolve current controversies about the adsorption configurations of fatty acids and the conditions of the maximum hydrophobicity of the minerals, we perform a detailed study of the adsorption of sodium laurate (dodecanoate) on 150 nm hematite (α-Fe(2)O(3)) particles as a model system. The methods used include in situ FTIR spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS), measurements of the adsorption isotherm and contact angle, as well as the density functional theory (DFT) calculations. We found that the laurate adlayer is present as a mixture of inner-sphere monodentate mononuclear (ISMM) and outer-sphere (OS) hydration shared complexes independent of the solution pH. Protonation of the OS complexes does not influence the conformational order of the surfactant tails. One monolayer, which is filled through the growth of domains and is reached at the micellization/precipitation edge of laurate, makes the particles superhydrophobic. These results contradict previous models of the fatty acid adsorption and suggest new interpretation of literature data. Finally, we discovered that the fractions of both the OS laurate and its molecular form increase in D(2)O, which can be used for interpreting complex spectra. We discuss shortcomings of vibrational spectroscopy in determining the interfacial coordination of carboxylate groups. This work advances the current understanding of the oxide-carboxylate interactions and the research toward improving performance of fatty acids as surfactants, dispersants, lubricants, and anticorrosion reagents.

  8. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse

    2018-03-01

    It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demonstration of a scalable and practical framework remains elusive. Motivated by recent progress in particle-based methods when applied to convection dominated flows, this work presents a fully Lagrangian method for solving the inviscid shallow water equations on a rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at the poles, the governing equations are solved in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor detection and parallelization. The method is applied to a suite of canonical test cases, and conservation, accuracy, and parallel performance are assessed.

  9. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure that compare well with more time-consuming classical MD calculations. This approach also sheds light on the universality of the increasing Grüneisen parameter trend for liquids (opposite that of solids), which directly reflects their progressive evolution toward more compact solid-like structures upon compression.

  10. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  11. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  12. Synthesis, Structure, and Physical Properties for a Series of Monomeric Iron(III) Hydroxo Complexes with Varying Hydrogen-Bond Networks

    PubMed Central

    Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.

    2013-01-01

    Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155

  13. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  14. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    PubMed

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  15. Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data.

    PubMed

    Vallet, Valérie; Grenthe, Ingmar

    2017-12-18

    The structure, chemical bonding, and thermodynamics of alkali ions in M[12-crown-4] + , M[15-crown-5] + , and M[18-crown-6] + , M[UO 2 (O 2 )(OH 2 ) 2 ] + 4,5 , and M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n (n = 4, 5) complexes have been explored by using quantum chemical (QC) calculations at the ab initio level. The chemical bonding has been studied in the gas phase in order to eliminate solvent effects. QTAIM analysis demonstrates features that are very similar in all complexes and typical for electrostatic M-O bonds, but with the M-O bonds in the uranyl peroxide systems about 20 kJ mol -1 stronger than in the corresponding crown ether complexes. The regular decrease in bond strength with increasing M-O bond distance is consistent with predominantly electrostatic contributions. Energy decomposition of the reaction energies in the gas phase and solvent demonstrates that the predominant component of the total attractive (ΔE elec + ΔE orb ) energy contribution is the electrostatic component. There are no steric constraints for coordination of large cations to small rings, because the M + ions are located outside the ring plane, [O n ], formed by the oxygen donors in the ligands; coordination of ions smaller than the ligand cavity results in longer than normal M-O distances or in a change in the number of bonds, both resulting in weaker complexes. The Gibbs energies, enthalpies, and entropies of reaction calculated using the conductor-like screening model, COSMO, to account for solvent effects deviate significantly from experimental values in water, while those in acetonitrile are in much better agreement. Factors that might affect the selectivity are discussed, but our conclusion is that present QC methods are not accurate enough to describe the rather small differences in selectivity, which only amount to 5-10 kJ mol -1 . We can, however, conclude on the basis of QC and experimental data that M[crown ether] + complexes in the strongly coordinating water solvent are of outer-sphere type, [M(OH 2 ) n + ][crown ether], while those in weakly coordinating acetonitrile are of inner-sphere type, [M-crown ether] + . The observation that the M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n complexes are more stable in solution than those of M[crown ether] + is an effect of the different charges of the rings.

  16. Oil exudation and histological structures of duck egg yolks during brining.

    PubMed

    Lai, K M; Chung, W H; Jao, C L; Hsu, K C

    2010-04-01

    Changes in oil exudation and histological structures of salted duck egg yolks during brining up to 5 wk were investigated. During brining, the salt contents of albumen, exterior yolk (hardened portion), and interior yolk (soft or liquid portion) gradually increased accompanied by slight decreases in moisture content. The hardening ratio of salted egg yolks increased rapidly to about 60% during the first week of brining and then reached 100% at the end of brining. After brining, part of the lipids in salted egg yolk became free due to the structural changes of low-density lipoprotein induced by dehydration and increase of salt content, and more free lipids in salted egg yolk were released after the cooking process. With the brining time increased up to 5 wk, the outer region of the cooked salted yolk gradually changed into dark brown, brown, orange, and then dark brown, whereas the center region changed into light yellow, yellow, dark yellow, and then yellow again. The microstructures of cooked salted egg yolks showed that the yolk spheres in the outer and middle regions retained their original shape, with some shrinking and being packed more loosely when brining time increased, and the exuded oil filled the space between the spheres. Furthermore, the yolk spheres in the center region transformed to a round shape but still showed granulation after 4 wk of brining, whereas they were mostly disrupted after 2 to 5 wk of brining. One of the most important characteristics of cooked salted egg yolks, gritty texture, contributed to oil exudation and granulated yolk spheres were observed at the brining time of 4 wk.

  17. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  18. Consolidation of metallic hollow spheres by electric sintering

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  19. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  20. "Structure-making" ability of Na+ in dilute aqueous solution: an ONIOM-XS MD simulation study.

    PubMed

    Sripa, Pattrawan; Tongraar, Anan; Kerdcharoen, Teerakiat

    2013-02-28

    An ONIOM-XS MD simulation has been performed to characterize the "structure-making" ability of Na(+) in dilute aqueous solution. The region of most interest, i.e., a sphere that includes Na(+) and its surrounding water molecules, was treated at the HF level of accuracy using LANL2DZ and DZP basis sets for the ion and waters, respectively, whereas the rest of the system was described by classical pair potentials. Detailed analyzes of the ONIOM-XS MD trajectories clearly show that Na(+) is able to order the structure of waters in its surroundings, forming two prevalent Na(+)(H(2)O)(5) and Na(+)(H(2)O)(6) species. Interestingly, it is observed that these 5-fold and 6-fold coordinated complexes can convert back and forth with some degrees of flexibility, leading to frequent rearrangements of the Na(+) hydrates as well as numerous attempts of inner-shell water molecules to interchange with waters in the outer region. Such a phenomenon clearly demonstrates the weak "structure-making" ability of Na(+) in aqueous solution.

  1. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  2. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    PubMed

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H 2 /2 H + interconversion from pH 0 to 9, with catalytic preference for H 2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm -2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm -2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with amore » multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.« less

  4. Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.

    2016-08-16

    A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the octahedral sheet) was favored over muscovite (layer charge located in the tetrahedral sheet) due to the increased distance with surface potassium ions.« less

  5. Theoretical Elastic Stress Distributions Arising from Discontinuities and Edge Loads in Several Shell-Type Structures

    NASA Technical Reports Server (NTRS)

    Johns, Robert H.; Orange, Thomas W.

    1961-01-01

    The deformation and complete stress distribution are determined for each of the following edge loaded thin shells of revolution: (1) a right circular cylinder, (2) a frustum of a right circular cone, and (3) a portion of a sphere. The locations of the maximum circumferential and meridional stresses on both the inner and outer surfaces are also found. The basic equations for the above were selected from the published literature on the subject and expanded to produce to resultant-stress equations in closed from where practicable to do so. Equations are also developed for the discontinuity shear force and bending moment at each of the following junction: (1) axial change of thickness in a circular cylinder, (2) axial change of thickness in a cone, (3) change of thickness in a portion of a sphere, (4) a cylinder and a cone, (5) a cylinder and a portion of a sphere(6) a cylinder and a flat head, and (7) a cone and a portion of a sphere.

  6. An isocenter estimation tool for proton gantry alignment

    NASA Astrophysics Data System (ADS)

    Hansen, Peter; Hu, Dongming

    2017-12-01

    A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.

  7. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  8. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  9. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    PubMed

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO 2 and MbO 2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0 , 200-600 mV) and high stability constants, such as [Cu(phen) 2 ] 2+ , [Cu(dmphen) 2 ] 2+ , and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0 ≤ 100-150 mV) react with HbO 2 and MbO 2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO 2 and MbO 2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP i proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO 2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO 2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO 2 and MbO 2 transformation into met-forms in the presence of small amounts of metal ions or complexes (catalysis), which, until recently, had been demonstrated only for copper compounds with intermediate redox potentials. The main contribution to the reaction rate comes from copper binding to the "inner" histidines, His97 (0.66 nm from the heme) that forms a hydrogen bond with the heme propionate COO - group, and the distal His64. The affinity of both histidines for copper is much lower than that of the surface histidines residues, and they are inaccessible for modification with chemical reagents. However, it was found recently that the high-potential Fe(3) complex, potassium ferricyanide (400 mV), at a 5 to 20% of molar protein concentration can be an efficient catalyst of MbO 2 oxidation into metMb. The catalytic process includes binding of ferrocyanide anion in the region of the His119 residue due to the presence there of a large positive local electrostatic potential and existence of a "pocket" formed by Lys16, Ala19, Asp20, and Arg118 that is sufficient to accommodate [Fe(CN) 6 ] 4- . Fast, proton-assisted reoxidation of the bound ferrocyanide by oxygen (which is required for completion of the catalytic cycle), unlike slow [Fe(CN) 6 ] 4- oxidation in solution, is provided by the optimal location of neighboring protonated His113 and His116, as it occurs in the enzyme active site.

  10. A volumetric conformal mapping approach for clustering white matter fibers in the brain

    PubMed Central

    Gupta, Vikash; Prasad, Gautam; Thompson, Paul

    2017-01-01

    The human brain may be considered as a genus-0 shape, topologically equivalent to a sphere. Various methods have been used in the past to transform the brain surface to that of a sphere using harmonic energy minimization methods used for cortical surface matching. However, very few methods have studied volumetric parameterization of the brain using a spherical embedding. Volumetric parameterization is typically used for complicated geometric problems like shape matching, morphing and isogeometric analysis. Using conformal mapping techniques, we can establish a bijective mapping between the brain and the topologically equivalent sphere. Our hypothesis is that shape analysis problems are simplified when the shape is defined in an intrinsic coordinate system. Our goal is to establish such a coordinate system for the brain. The efficacy of the method is demonstrated with a white matter clustering problem. Initial results show promise for future investigation in these parameterization technique and its application to other problems related to computational anatomy like registration and segmentation. PMID:29177252

  11. FAST TRACK COMMUNICATION: Shear coordinate description of the quantized versal unfolding of a D4 singularity

    NASA Astrophysics Data System (ADS)

    Chekhov, Leonid; Mazzocco, Marta

    2010-11-01

    In this communication, by using Teichmüller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson-Lie bracket on \\oplus _{1}^3\\mathfrak {sl}^\\ast (2,{{\\bb C}}) . We realize the action of the mapping class group by the action of the braid group on the geodesic functions. This action coincides with the procedure of analytic continuation of solutions of the sixth Painlevé equation. Finally, we produce the explicit quantization of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.

  12. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  13. The Coulomb problem on a 3-sphere and Heun polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Stefano; Yeghikyan, Vahagn; Yerevan State University, Alex-Manoogian st. 1, 00025 Yerevan

    2013-08-15

    The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.

  14. Effects of Measurement Geometry on Spectral Reflectance and Color

    DTIC Science & Technology

    1998-01-01

    calibration of outdoor color imagery were made using integrating sphere and 45°/0° geometry. The differing results are discussed using CIELAB linear... CIELAB color coordinate results were obtained for different measurement geometries. Such results should affect the digital photographic measurements...measurement geometry on spectral reflectance and CIELAB values using integrating sphere and 45°/0° measurement geometries. An example of the phenomenology

  15. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    PubMed

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental observation that not only compound reactivity, but also ZnF core specificity, can be modulated on the basis of the coordination sphere of Au(III) compounds.

  16. From Rising Bubble to RNA/DNA and Bacteria

    NASA Astrophysics Data System (ADS)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  17. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOEpatents

    Morrison, Jay Alan; Merrill, Gary Brian; Ludeman, Evan McNeil; Lane, Jay Edgar

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  18. Combining Sequential Extractions and X-ray Absorption Spectroscopy for Quantitative and Qualitative Zinc Speciation in Soil

    NASA Astrophysics Data System (ADS)

    Bauer, Tatiana; Minkina, Tatiana; Batukaev, Abdulmalik; Nevidomskaya, Dina; Burachevskaya, Marina; Tsitsuashvili, Viktoriya; Urazgildieva, Kamilya

    2017-04-01

    The combined use of X-ray absorption spectrometry and extractive fractionation is an effective approach for studying the interaction of metal ions with soil compounds and identifying the phases-carriers of metals in soil and their stable fixation. These studies were carried out using the technique of X-ray absorption spectroscopy and chemical extractive fractionation. In a model experiment the samples taken in Calcic Chernozem were artificially contaminated with higher portion of Zn(NO3)2 (2000 mg/kg). The metal were incubated in soil samples for 2 year. The samples of soil mineral and organic phases (calcite, kaolinite, bentonite, humic acids) were saturated with Zn2+ from a solution of nitrate salts of metal. The total content of Zn in soil and soil various phases was determined using the X-ray fluorescence method. Extended X-ray absorption fine structure (EXAFS) Zn was measured at the Structural Materials Science beamline of the Kurchatov Center for Synchrotron Radiation. Sequential fractionation of Zn in soil conducted by Tessier method (Tessier et al., 1979) which determining 5 fractions of metals in soil: exchangeable, bound to Fe-Mn oxide, bound to carbonate, bound to the organic matter, and bound to silicate (residual). This methodology has so far more than 4000 citations (Web of Science), which demonstrates the popularity of this approach. Much Zn compounds are contained in uncontaminated soils in stable primary and secondary silicates inherited from the parental rocks (67% of the total concentrations in all fractions), which is a regional trait of soils in the fore-Caucasian plain. Extracted fractionation of metal compounds in soil samples, artificially contaminated with Zn salts, indicates the priority holding of Zn2+ ions by silicates, carbonates and Fe-Mn oxides. The Zn content significantly increases in the exchangeable fraction. Atomic structure study of the soil various phases saturated with Zn2+ ion by using (XANES) X-ray absorption spectroscopy allowed the determination of mechanism of metal ions interaction with soil phases and the resulting types of chemical bonds. Interaction with soil components modifies the electron structure of the metal ions themselves. The soil contamination with Zn is accompanied by decreasing the stable connection between metal and soil components. Interacting with humic acids in chernozem, the Zn2+ ion is coordinated by functional groups and ligands and forms unstable outer-sphere complexes. Zinc included into octahedral structures of layered minerals and hydro(oxides) can be inner-and outer-sphere adsorbed. The Zn2+ ions enable to replace Ca2+ ions in octahedral positions being coordinated with carbonate ions as ligands, thus forming absorbed complexes at the surface of mineral calcite. This work was supported by grant of the Russian Scientific Foundation № 16-14-10217.

  19. Methods and considerations to determine sphere center from terrestrial laser scanner point cloud data

    NASA Astrophysics Data System (ADS)

    Rachakonda, Prem; Muralikrishnan, Bala; Cournoyer, Luc; Cheok, Geraldine; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel

    2017-10-01

    The Dimensional Metrology Group at the National Institute of Standards and Technology is performing research to support the development of documentary standards within the ASTM E57 committee. This committee is addressing the point-to-point performance evaluation of a subclass of 3D imaging systems called terrestrial laser scanners (TLSs), which are laser-based and use a spherical coordinate system. This paper discusses the usage of sphere targets for this effort, and methods to minimize the errors due to the determination of their centers. The key contributions of this paper include methods to segment sphere data from a TLS point cloud, and the study of some of the factors that influence the determination of sphere centers.

  20. Implementation of Satellite Formation Flight Algorithms Using SPHERES Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.

    2007-01-01

    The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.

  1. The Problems of Coordination of the International Duties of the Kazakhstan Republic in the Social-Labour Sphere and National Law

    ERIC Educational Resources Information Center

    Buribayev, Yermek A.; Oryntayev, Zhambyl K.; Bekbossynov, Yermek; Mazhinbekov, Saken; Yessenbekova, Patima; Blasheva, Manshuk

    2016-01-01

    Background/Objectives: The research topicality is conditioned by the fact that the labour secure of the social and labour human rights is realized not only by the national law but also by the international law that is usually more progressive and establishes the generally accepted standards and norms of human rights in the social-labour sphere.…

  2. Discrimination of Inner- and Outer-Sphere Electrode Reactions by Cyclic Voltammetry Experiments

    ERIC Educational Resources Information Center

    Tanimoto, Sachiko; Ichimura, Akio

    2013-01-01

    A laboratory experiment for undergraduate students who are studying homogeneous and heterogeneous electron-transfer reactions is described. Heterogeneous or electrode reaction kinetics can be examined by using the electrochemical reduction of three Fe[superscript III]/Fe[superscript II] redox couples at platinum and glassy carbon disk electrodes.…

  3. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.

    PubMed

    Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi

    2016-02-16

    In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.

  4. From GLC to double-null coordinates and illustration with static black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugier, Fabien, E-mail: fnugier@ntu.edu.tw

    We present a system of coordinates deriving directly from the so-called Geodesic Light-Cone (GLC) coordinates and made of two null scalars intersecting on a 2-dimensional sphere parameterized by two constant angles along geodesics. These coordinates are shown to be equivalent to the well-known double-null coordinates. As GLC, they present interesting properties for cosmology and astrophysics. We discuss this latter topic for static black holes, showing simple descriptions for the metric or particles and photons trajectories. We also briefly comment on the time of flight of ultra-relativistic particles.

  5. Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins† †Electronic supplementary information (ESI) available: Procedures for synthetic, spectroscopic, and electrochemical experiments. CCDC 1582750. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04682k

    PubMed Central

    Nichols, Eva M.; Derrick, Jeffrey S.; Nistanaki, Sepand K.; Smith, Peter T.

    2018-01-01

    The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input. Inspired by natural bioinorganic systems that feature precisely positioned hydrogen-bond donors in the secondary coordination sphere to direct chemical transformations occurring at redox-active metal centers, we now report the design, synthesis, and characterization of a series of iron tetraphenylporphyrin (Fe-TPP) derivatives bearing amide pendants at various positions at the periphery of the metal core. Proper positioning of the amide pendants greatly affects the electrocatalytic activity for carbon dioxide reduction to carbon monoxide. In particular, derivatives bearing proximal and distal amide pendants on the ortho position of the phenyl ring exhibit significantly larger turnover frequencies (TOF) compared to the analogous para-functionalized amide isomers or unfunctionalized Fe-TPP. Analysis of TOF as a function of catalyst standard reduction potential enables first-sphere electronic effects to be disentangled from second-sphere through-space interactions, suggesting that the ortho-functionalized porphyrins can utilize the latter second-sphere property to promote CO2 reduction. Indeed, the distally-functionalized ortho-amide isomer shows a significantly larger through-space interaction than its proximal ortho-amide analogue. These data establish that proper positioning of secondary coordination sphere groups is an effective design element for breaking electronic scaling relationships that are often observed in electrochemical CO2 reduction. PMID:29732079

  6. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    PubMed

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  7. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  8. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  9. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  10. Development and validation of a multilateration test bench for particle accelerator pre-alignment

    NASA Astrophysics Data System (ADS)

    Kamugasa, Solomon William; Rothacher, Markus; Gayde, Jean-Christophe; Mainaud Durand, Helene

    2018-03-01

    The development and validation of a portable coordinate measurement solution for fiducialization of compact linear collider (CLIC) components is presented. This new solution addresses two limitations of high-accuracy state-of-the-art coordinate measuring machines, i.e. lack of portability and limited measurement volume. The solution is based on frequency scanning interferometry (FSI) distances and the multilateration coordinate measurement technique. The developments include a reference sphere for localizing the FSI optical fiber tip and a kinematic mount for repositioning the reference sphere with sub-micrometric repeatability. This design enables absolute distance measurements in different directions from the same point, which is essential for multilateration. A multilateration test bench built using these prototypes has been used to fiducialize a CLIC cavity beam position monitor and 420 mm-long main beam quadrupole magnet. The combined fiducialization uncertainty achieved is 3.5 μm (k  =  1), which is better than the CLIC 5 μm (k  =  1) uncertainty specification.

  11. Molecular Dynamics Simulations of the Interfacial Region between Boehmite and Gibbsite Basal Surfaces and High Ionic Strength Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.

    Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less

  12. Brownian self-propelled particles on a sphere

    NASA Astrophysics Data System (ADS)

    Apaza-Pilco, Leonardo Felix; Sandoval, Mario

    We present the dynamics of a Brownian self-propelled particle at low Reynolds number moving on the surface of a sphere. The effects of curvature and self-propulsion on the diffusion of the particle are elucidated by determining (numerically) the mean-square displacement of the particle's angular (azimuthal and polar) coordinates. The results show that the long time behavior of its angular mean-square displacement is linear in time. We also see that the slope of the angular MSD is proportional to the propulsion velocity and inverse to the curvature of the sphere. The angular probability distribution function (PDF) of the particle is also obtained by numerically solving its respective Smoluchowski equation.

  13. DoD Information Assurance and Agile: Challenges and Recommendations Gathered Through Interviews with Agile Program Managers and DoD Accreditation Reviewers

    DTIC Science & Technology

    2012-11-01

    Tradeoff Analysis Method; ATAM, Capability Maturity Model , Capability Maturity Modeling , Carnegie Mellon, CERT, CERT Coordination Center, CMM, CMMI...Hermansen, Product Design, Sphere of Influence (https://www.SphereOfInfluence.com) Joel McAteer, Information Assurance Manager, Modeling ...use of them does introduce some challenges related to delivering software features rapidly and/or in- crementally . • Challenges with respect to

  14. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  15. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division

    PubMed Central

    Gray, Andrew N; Egan, Alexander JF; van't Veer, Inge L; Verheul, Jolanda; Colavin, Alexandre; Koumoutsi, Alexandra; Biboy, Jacob; Altelaar, A F Maarten; Damen, Mirjam J; Huang, Kerwyn Casey; Simorre, Jean-Pierre; Breukink, Eefjan; den Blaauwen, Tanneke; Typas, Athanasios; Gross, Carol A; Vollmer, Waldemar

    2015-01-01

    To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI: http://dx.doi.org/10.7554/eLife.07118.001 PMID:25951518

  16. Enhanced CO2 electroreduction efficiency through secondary coordination effects on a pincer iridium catalyst.

    PubMed

    Ahn, Steven T; Bielinski, Elizabeth A; Lane, Elizabeth M; Chen, Yanqiao; Bernskoetter, Wesley H; Hazari, Nilay; Palmore, G Tayhas R

    2015-04-07

    An iridium(III) trihydride complex supported by a pincer ligand with a hydrogen bond donor in the secondary coordination sphere promotes the electrocatalytic reduction of CO2 to formate in water/acetonitrile with excellent Faradaic efficiency and low overpotential. Preliminary mechanistic experiments indicate formate formation is facile while product release is a kinetically difficult step.

  17. Coordinating the Provision of Health Services in Humanitarian Crises: a Systematic Review of Suggested Models.

    PubMed

    Lotfi, Tamara; Bou-Karroum, Lama; Darzi, Andrea; Hajjar, Rayan; El Rahyel, Ahmed; El Eid, Jamale; Itani, Mira; Brax, Hneine; Akik, Chaza; Osman, Mona; Hassan, Ghayda; El-Jardali, Fadi; Akl, Elie

    2016-08-03

    Our objective was to identify published models of coordination between entities funding or delivering health services in humanitarian crises, whether the coordination took place during or after the crises. We included reports describing models of coordination in sufficient detail to allow reproducibility. We also included reports describing implementation of identified models, as case studies. We searched Medline, PubMed, EMBASE, Cochrane Central Register of Controlled Trials, CINAHL, PsycINFO, and the WHO Global Health Library. We also searched websites of relevant organizations. We followed standard systematic review methodology. Our search captured 14,309 citations. The screening process identified 34 eligible papers describing five models of coordination of delivering health services: the "Cluster Approach" (with 16 case studies), the 4Ws "Who is Where, When, doing What" mapping tool (with four case studies), the "Sphere Project" (with two case studies), the "5x5" model (with one case study), and the "model of information coordination" (with one case study). The 4Ws and the 5x5 focus on coordination of services for mental health, the remaining models do not focus on a specific health topic. The Cluster approach appears to be the most widely used. One case study was a mixed implementation of the Cluster approach and the Sphere model. We identified no model of coordination for funding of health service. This systematic review identified five proposed coordination models that have been implemented by entities funding or delivering health service in humanitarian crises. There is a need to compare the effect of these different models on outcomes such as availability of and access to health services.

  18. Comparison of group transfer, inner sphere and outer sphere electron transfer mechanisms for organometallic complexes

    NASA Astrophysics Data System (ADS)

    Our studies of reactions of metal carbonyl cations and anions have shown that metal carbonyl cations can catalyze CO exchange reactions on metal carbonyl anions. This result provides further evidence for a mechanism involving attack of the metal carbonyl anion on a carbon of the metal carbonyl cation in CO(exp 2+) transfer reactions. Reaction of metal carbonyl anions with metal carbonyl halides is a common approach to formation of metal-metal bonds. We have begun to use kinetic data and product analysis to understand the formation of homobimetallic versus heterobimetallic products in such reactions. Initial data indicate a nucleophilic attack, possibly through a ring-slippage mechanism.

  19. Aerodynamic Characteristics of a Model of an Inflatable-Sphere Launching Vehicle under Simulated Conditions of Mach Number and Altitude

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B.; Morris, Odell A.

    1960-01-01

    An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch of a two-stage-rocket model configuration which simulated the last two stages of the launching vehicle for an inflatable sphere. Tests were made through an angle-of-attack range from -6 deg to 18 deg at dynamic pressures of 102 and 255 pounds per square foot with corresponding Mach numbers of 1.89 and 1.98 for the model both with and without a bumper arrangement designed to protect the rocket casing from the outer shell of the vehicle.

  20. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces

    USGS Publications Warehouse

    Arai, Yuji; Fuller, C.C.

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.

  1. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  2. Development of a bio-magnetic measurement system and sensor configuration analysis for rats

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Eun; Kim, In-Seon; Kim, Kiwoong; Lim, Sanghyun; Kwon, Hyukchan; Kang, Chan Seok; Ahn, San; Yu, Kwon Kyu; Lee, Yong-Ho

    2017-04-01

    Magnetoencephalography (MEG) based on superconducting quantum interference devices enables the measurement of very weak magnetic fields (10-1000 fT) generated from the human or animal brain. In this article, we introduce a small MEG system that we developed specifically for use with rats. Our system has the following characteristics: (1) variable distance between the pick-up coil and outer Dewar bottom (˜5 mm), (2) small pick-up coil (4 mm) for high spatial resolution, (3) good field sensitivity (45 ˜ 80 fT /cm/√{Hz} ) , (4) the sensor interval satisfies the Nyquist spatial sampling theorem, and (5) small source localization error for the region to be investigated. To reduce source localization error, it is necessary to establish an optimal sensor layout. To this end, we simulated confidence volumes at each point on a grid on the surface of a virtual rat head. In this simulation, we used locally fitted spheres as model rat heads. This enabled us to consider more realistic volume currents. We constrained the model such that the dipoles could have only four possible orientations: the x- and y-axes from the original coordinates, and two tangentially layered dipoles (local x- and y-axes) in the locally fitted spheres. We considered the confidence volumes according to the sensor layout and dipole orientation and positions. We then conducted a preliminary test with a 4-channel MEG system prior to manufacturing the multi-channel system. Using the 4-channel MEG system, we measured rat magnetocardiograms. We obtained well defined P-, QRS-, and T-waves in rats with a maximum value of 15 pT/cm. Finally, we measured auditory evoked fields and steady state auditory evoked fields with maximum values 400 fT/cm and 250 fT/cm, respectively.

  3. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    PubMed

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  5. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  6. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    PubMed

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  7. Orthogonality of spherical harmonic coefficients

    NASA Astrophysics Data System (ADS)

    McLeod, M. G.

    1980-08-01

    Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.

  8. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  9. Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Y.; Tappero, R.; Rick, A.R.

    Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understandmore » the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (<16 mg kg{sup -1}). The contamination level of Pb was as high as 67 mg kg{sup -1} near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to {approx}3,600 mg kg{sup -1} via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting field.« less

  10. Torsional Alfvén Waves in a Dipolar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.

    2017-12-01

    The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.

  11. On the Intensity of Radiation of an Electromagnetic Field by a Rotating Ferroelectric Sphere

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.; Bogdanova, S. B.

    2018-05-01

    It is shown that in the case when the spontaneous polarization vector P 0 and the rotational frequency vector ω of a ferroelectric sphere do not coincide, electromagnetic waves will be radiated. The intensity of the radiation is calculated as a function of the coordinates and time, and the anisotropy of this radiation is proven. The distribution of the intensity of radiation is graphically illustrated in the form of a function of the central distance r.

  12. The orbital mechanics of flight mechanics

    NASA Technical Reports Server (NTRS)

    Dunning, R. S.

    1973-01-01

    A reference handbook on modern dynamic orbit theory is presented. Starting from the most basic inverse-square law, the law of gravity for a sphere is developed, and the motion of point masses under the influence of a sphere is considered. The reentry theory and the orbital theory are discussed along with the relative motion between two bodies in orbit about the same planet. Relative-motion equations, rectangular coordinates, and the mechanics of simple rigid bodies under the influence of a gravity gradient field are also discussed.

  13. A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes

    PubMed Central

    Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean

    2008-01-01

    Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475

  14. General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties.

    PubMed

    Mezzavilla, Stefano; Baldizzone, Claudio; Mayrhofer, Karl J J; Schüth, Ferdi

    2015-06-17

    A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis.

  15. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    PubMed

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  17. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  19. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    PubMed Central

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; Sturchio, Neil C.

    2017-01-01

    Ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)–water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface. PMID:28598428

  20. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  1. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  2. Comic ray flux anisotropies caused by astrospheres

    NASA Astrophysics Data System (ADS)

    Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.

    2016-09-01

    Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.

  3. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  4. Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets

    NASA Astrophysics Data System (ADS)

    da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.

    2005-01-01

    This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.

  5. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  6. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  7. Density and Viscosity Measurement of Liquid FeS at High Pressure and High Temperature Using Synchrotron X-ray

    NASA Astrophysics Data System (ADS)

    Yu, T.; Long, H.; Young, C.; Wang, L.; Chen, J.

    2005-12-01

    From previous experimental and theoretical studies, sulfur has been considered one of the possible light elements in the core that might be responsible for the large density deficit when compared with the theoretical pure Fe core (Ganapathy and Anders, 1974; Ahrens and Jeanloz, 1987). Therefore, understanding the physical properties of liquid FeS will help us reveal the details of the Earth?|s core. This study focused on the liquid state of sulfur in iron due to sulfur?|s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5 wt% ~10 wt% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Modern development of the multi-anvil high pressure apparatus limits the pressure range of the experiments (<30 GPa). It is somewhat low if comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (>130 GPa) has to be applied, and may produce results that are far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the liquid-phase FeS at relatively low pressures still provides us a better picture of the physical behavior of the outer core comparing with data derived from solid state FeS experiments. Pervious studies on the viscosity of the Fe-FeS system (LeBlanc and Secco, 1996; Dobson et al., 2000; Urakawa et al., 2001; Secco et al., 2002) have presented different values of viscosity numbers with a maximum difference of two orders of magnitude. We have conducted the density measurements of liquid FeS (~36 wt% of S) up to 5.6 GPa in pressure and 1673K in temperature using the in-situ synchrotron-source x-ray absorption setup at Beamline X17B2, NSLS. The viscosity measurements were conducted by the x-ray radiograph technique combined with the falling sphere method. The falling sphere method applied at the experiment is suitable for liquids with viscosities between 10-3 Pa-s and 105 Pa-s (LeBlanc et al., 1999). We used tungsten spheres in our viscosity measurement experiments. We analyzed the sphere falling motion in the sample chamber at high pressure and high temperature. And by applying our density compression curve of liquid FeS to the Stokes?| viscometry method, we were able to derive the viscosity of liquid FeS.

  8. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    PubMed Central

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction. PMID:25370663

  9. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.« less

  10. Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry

    2018-02-01

    In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692

  11. Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site

    PubMed Central

    2017-01-01

    The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg–His cation−π interaction in the secondary coordination sphere of the outermost, “distal”, iron–sulfur cluster. This rewires the enzyme, enhancing the relative rate of H2 production and the thermodynamic efficiency of H2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe4S4]2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center. PMID:28697596

  12. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  13. Controlling Second Coordination Sphere Effects in Luminescent Ruthenium Complexes by Means of External Pressure.

    PubMed

    Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian

    2018-06-04

    Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  15. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  16. Pleomorphic copper coordination by Alzheimer's disease amyloid-beta peptide.

    PubMed

    Drew, Simon C; Noble, Christopher J; Masters, Colin L; Hanson, Graeme R; Barnham, Kevin J

    2009-01-28

    Numerous conflicting models have been proposed regarding the nature of the Cu(2+) coordination environment of the amyloid beta (Abeta) peptide, the causative agent of Alzheimer's disease. This study used multifrequency CW-EPR spectroscopy to directly resolve the superhyperfine interactions between Cu(2+) and the ligand nuclei of Abeta, thereby avoiding ambiguities associated with introducing point mutations. Using a library of Abeta16 analogues with site-specific (15)N-labeling at Asp1, His6, His13, and His14, numerical simulations of the superhyperfine resonances delineated two independent 3N1O Cu(2+) coordination modes, {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H13)} (component Ia) and {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H14)} (component Ib), between pH 6-7. A third coordination mode (component II) was identified at pH 8.0, and simulation of the superhyperfine resonances indicated a 3N1O coordination sphere involving nitrogen ligation by His6, His13, and His14. No differences were observed upon (17)O-labeling of the phenolic oxygen of Tyr10, confirming it is not a key oxygen ligand in the physiological pH range. Hyperfine sublevel correlation (HYSCORE) spectroscopy, in conjunction with site-specific (15)N-labeling, provided additional support for the common role of His6 in components Ia and Ib, and for the assignment of a {O, N(epsilon)(H6), N(epsilon)(H13), N(epsilon)(H14)} coordination sphere to component II. HYSCORE studies of a peptide analogue with selective (13)C-labeling of Asp1 revealed (13)C cross-peaks characteristic of equatorial coordination by the carboxylate oxygen of Asp1 in component Ia/b coordination. The direct resolution of Cu(2+) ligand interactions, together with the key finding that component I is composed of two distinct coordination modes, provides valuable insight into a range of conflicting ligand assignments and highlights the complexity of Cu(2+)/Abeta interactions.

  17. Controlling Proton Delivery through Catalyst Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj

    The fastest synthetic molecular catalysts for production and oxidation of H2 emulate components of the active site of natural hydrogenases. The role of controlled structural dynamics is recognized as a critical component in the catalytic performance of many enzymes, including hydrogenases, but is largely neglected in the design of synthetic molecular cata-lysts. In this work, the impact of controlling structural dynamics on the rate of production of H2 was studied for a series of [Ni(PPh2NC6H4-R2)2]2+ catalysts including R = n-hexyl, n-decyl, n-tetradecyl, n-octadecyl, phenyl, or cyclohexyl. A strong correlation was observed between the ligand structural dynamics and the rates ofmore » electrocatalytic hydrogen production in acetonitrile, acetonitrile-water, and protic ionic liquid-water mixtures. Specifically, the turnover frequencies correlate inversely with the rates of ring inversion of the amine-containing ligand, as this dynamic process dictates the positioning of the proton relay in the second coordination sphere and therefore governs protonation at either catalytically productive or non-productive sites. This study demonstrates that the dynamic processes involved in proton delivery can be controlled through modifications of the outer coordination sphere of the catalyst, similar to the role of the protein architecture in many enzymes. The present work provides new mechanistic insight into the large rate enhancements observed in aqueous protic ionic liquid media for the [Ni(PPh2NR2)]2+ family of catalysts. The incorporation of controlled structural dynamics as a design parameter to modulate proton delivery in molecular catalysts has enabled H2 production rates that are up to three orders of magnitude faster than the [Ni(PPh2NPh2)]2+complex. The observed turnover frequencies are up to 106 s-1 in acetonitrile-water, and over 107 s-1 in protic ionic liquid-water mixtures, with a minimal increase in overpotential. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less

  18. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    PubMed

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  19. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  20. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  1. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space.

    PubMed

    Glynn, Jonathan M; Froehlich, John E; Osteryoung, Katherine W

    2008-09-01

    Chloroplasts arose from a free-living cyanobacterial endosymbiont and divide by binary fission. Division involves the assembly and constriction of the endosymbiont-derived, tubulin-like FtsZ ring on the stromal surface of the inner envelope membrane and the host-derived, dynamin-like ARC5 ring on the cytosolic surface of the outer envelope membrane. Despite the identification of many proteins required for plastid division, the factors coordinating the internal and external division machineries are unknown. Here, we provide evidence that this coordination is mediated in Arabidopsis thaliana by an interaction between ARC6, an FtsZ assembly factor spanning the inner envelope membrane, and PDV2, an ARC5 recruitment factor spanning the outer envelope membrane. ARC6 and PDV2 interact via their C-terminal domains in the intermembrane space, consistent with their in vivo topologies. ARC6 acts upstream of PDV2 to localize PDV2 (and hence ARC5) to the division site. We present a model whereby ARC6 relays information on stromal FtsZ ring positioning through PDV2 to the chloroplast surface to specify the site of ARC5 recruitment. Because orthologs of ARC6 occur in land plants, green algae, and cyanobacteria but PDV2 occurs only in land plants, the connection between ARC6 and PDV2 represents the evolution of a plant-specific adaptation to coordinate the assembly and activity of the endosymbiont- and host-derived plastid division components.

  2. Measurement of the translation and rotation of a sphere in fluid flow

    NASA Astrophysics Data System (ADS)

    Barros, Diogo; Hiltbrand, Ben; Longmire, Ellen K.

    2018-06-01

    The problem of determining the translation and rotation of a spherical particle moving in fluid flow is considered. Lagrangian tracking of markers printed over the surface of a sphere is employed to compute the center motion and the angular velocity of the solid body. The method initially calculates the sphere center from the 3D coordinates of the reconstructed markers, then finds the optimal rotation matrix that aligns a set of markers tracked at sequential time steps. The parameters involved in the experimental implementation of this procedure are discussed, and the associated uncertainty is estimated from numerical analysis. Finally, the proposed methodology is applied to characterize the motion of a large spherical particle released in a turbulent boundary layer developing in a water channel.

  3. Tunable Porosities and Shapes of Fullerene-Like Spheres

    PubMed Central

    Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred

    2015-01-01

    The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976

  4. Cation-Dependent Gold Recovery with α-Cyclodextrin Facilitated by Second-Sphere Coordination.

    PubMed

    Liu, Zhichang; Samanta, Avik; Lei, Juying; Sun, Junling; Wang, Yuping; Stoddart, J Fraser

    2016-09-14

    Herein, we report an alkali metal cation-dependent approach to gold recovery, facilitated by second-sphere coordination with eco-friendly α-cyclodextrin (α-CD). Upon mixing eight salts composed of Na(+), K(+), Rb(+), or Cs(+) cations and [AuX4](-) (X = Cl/Br) anions with α-, β-, or γ-CD in water, co-precipitates form selectively from the three (out of 24) aqueous solutions containing α-CD with KAuBr4, RbAuBr4, and CsAuBr4, from which the combination of α-CD and KAuBr4 affords the highest yield. Single-crystal X-ray analyses reveal that in 20 of the 24 adducts CD and [AuX4](-) anions form 2:1 sandwich-type second-sphere adducts driven partially by [C-H···X-Au] interactions between [AuX4](-) anions and the primary faces of two neighboring CDs. In the adduct formed between α-CD and KAuBr4, a [K(OH2)6](+) cation is encapsulated inside the cavity between the secondary faces of two α-CDs, leading to highly efficient precipitation owing to the formation of a cation/anion alternating ion wire residing inside a continuous α-CD nanotube. By contrast, in the other 19 adducts, the cations are coordinated by OH groups and glucopyranosyl ring O atoms in CDs. The strong coordination of Rb(+) and Cs(+) cations by these ligands, in conjunction with the stereoelectronically favorable binding of [AuBr4](-) anions with two α-CDs, facilitates the co-precipitation of the two adducts formed between α-CD with RbAuBr4 and CsAuBr4. In order to develop an efficient process for green gold recovery, the co-precipitation yield of α-CD and KAuBr4 has been optimized regarding both the temperature and the molar ratio of α-CD to KAuBr4.

  5. Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes

    DOE PAGES

    Carter, Tyler J.; Wilson, Richard E.

    2015-09-10

    Here, the synthesis, X-ray crystal structure, vibrational and optical spectroscopy for the eight-coordinate thiocyanate compounds, [Et 4N] 4[Pu IV(NCS) 8], [Et 4N] 4[Th IV(NCS) 8], and [Et 4N] 4[Ce III(NCS) 7(H 2O)] are reported. Thiocyanate was found to rapidly reduce plutonium to Pu III in acidic solutions (pH<1) in the presence of NCS –. The optical spectrum of [Et 4N][SCN] containing Pu III solution was indistinguishable from that of aquated Pu III suggesting that inner-sphere complexation with [Et 4N][SCN] does not occur in water. However, upon concentration, the homoleptic thiocyanate complex [Et 4N] 4[Pu IV(NCS) 8] was crystallized when amore » large excess of [Et 4N][NCS] was present. This compound, along with its U IV analogue, maintains inner-sphere thiocyanate coordination in acetonitrile based on the observation of intense ligand-to-metal charge-transfer bands. Spectroscopic and crystallographic data do not support the interaction of the metal orbitals with the ligand π system, but support an enhanced An IV–NCS interaction, as the Lewis acidity of the metal ion increases from Th to Pu.« less

  6. Spectroscopic Characterization of YedY: The Role of Sulfur Coordination in a Mo(V) Sulfite Oxidase Family Enzyme Form

    PubMed Central

    Yang, Jing; Rothery, Richard; Sempombe, Joseph

    2011-01-01

    Electronic paramagnetic resonance, electronic absorption, and magnetic circular dichroism spectroscopies have been performed on YedY, a SUOX fold protein with a Mo domain that is remarkably similar to that found in chicken sulfite oxidase, A. thaliana plant sulfite oxidase, and the bacterial sulfite dehydrogenase from S. novella. Low-energy dithiolene→Mo and cysteine thiolate→Mo charge transfer bands have been assigned for the first time in a Mo(V) form of a SUOX fold protein, and the spectroscopic data have been used to interpret the results of bonding calculations. The analysis shows that second coordination sphere effects modulate dithiolene and cysteine sulfur covalency contributions to the Mo bonding scheme. Namely, a more acute Ooxo-Mo-SCys-C dihedral angle results in increased cysteine thiolate S→Mo charge transfer and a high g1 in the EPR spectrum. The spectrosocopic results, coupled with the available structural data, indicate that these second coordination sphere effects may play key roles in modulating the active site redox potential, facilitating hole superexchange pathways for electron transfer regeneration, and affecting the type of reactions catalyzed by sulfite oxidase family enzymes. PMID:19860477

  7. Ligand-Sensitive But Not Ligand-Diagnostic: Evaluating Cr Valence-to-Core X-ray Emission Spectroscopy as a Probe of Inner-Sphere Coordination

    PubMed Central

    2015-01-01

    This paper explores the strengths and limitations of valence-to-core X-ray emission spectroscopy (V2C XES) as a probe of coordination environments. A library was assembled from spectra obtained for 12 diverse Cr complexes and used to calibrate density functional theory (DFT) calculations of V2C XES band energies. A functional dependence study was undertaken to benchmark predictive accuracy. All 7 functionals tested reproduce experimental V2C XES energies with an accuracy of 0.5 eV. Experimentally calibrated, DFT calculated V2C XES spectra of 90 Cr compounds were used to produce a quantitative spectrochemical series showing the V2C XES band energy ranges for ligands comprising 18 distinct classes. Substantial overlaps are detected in these ranges, which complicates the use of V2C XES to identify ligands in the coordination spheres of unknown Cr compounds. The ligand-dependent origins of V2C intensity are explored for a homologous series of [CrIII(NH3)5X]2+ (X = F, Cl, Br, and I) to rationalize the variable intensity contributions of these ligand classes. PMID:25496512

  8. Density functional theory studies on the solvent effects in Al(H2O)63+ water-exchange reactions: the number and arrangement of outer-sphere water molecules.

    PubMed

    Liu, Li; Zhang, Jing; Dong, Shaonan; Zhang, Fuping; Wang, Ye; Bi, Shuping

    2018-03-07

    Density functional theory (DFT) calculations combined with cluster models are performed at the B3LYP/6-311+G(d,p) level for investigating the solvent effects in Al(H 2 O) 6 3+ water-exchange reactions. A "One-by-one" method is proposed to obtain the most representative number and arrangement of explicit H 2 Os in the second hydration sphere. First, all the possible ways to locate one explicit H 2 O in second sphere (N m ' = 1) based on the gas phase structure (N m ' = 0) are examined, and the optimal pathway (with the lowest energy barrier) for N m ' = 1 is determined. Next, more explicit H 2 Os are added one by one until the inner-sphere is fully hydrogen bonded. Finally, the optimal pathways with N m ' = 0-7 are obtained. The structural and energetic parameters as well as the lifetimes of the transition states are compared with the results obtained with the "Independent-minimum" method and the "Independent-average" method, and all three methods show that the pathway with N m ' = 6 may be representative. Our results give a new idea for finding the representative pathway for water-exchange reactions in other hydrated metal ion systems.

  9. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  10. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang, E-mail: liaozhang2003@163.com

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucosemore » is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.« less

  11. [Topical issues of biological safety under current conditions. Part 3. Scientific provision for the national regulation of the biological safety framework in its broad interpretation].

    PubMed

    Onishchenko, G G; Smolensky, V Yu; Ezhlova, E B; Demina, Yu V; Toporkov, V P; Toporkov, A V; Lyapin, M N; Kutyrev, V V

    2014-01-01

    Consequent of investigation concerned with biological safety (BS) framework development in its broad interpretation, reflected in the Russian Federation State Acts, identified have been conceptual entity parameters of the up-to-date broad interpretation of BS, which have formed a part of the developed by the authors system for surveillance (prophylaxis, localization, indication, identification, and diagnostics) and control (prophylaxis, localization, and response/elimination) over the emergency situations of biological (sanitary-epidemiological) character. The System functionality is activated through supplying the content with information data which are concerned with monitoring and control of specific internal and external threats in the sphere of BS provision fixed in the Supplement 2 of the International Health Regulations (IHR, 2005), and with the previously characterized nomenclature of hazardous biological factors. The system is designed as a network-based research-and-practice tool for evaluation of the situation in the sphere of BS provision, as well as assessment of efficacy of management decision making as regards BS control and proper State policy implementation. Most of the system elements either directly or indirectly relate to the scope of activities conducted by Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare, being substantial argument for allocating coordination functions in the sphere of BS provision to this government agency and consistent with its function as the State Coordinator on IHR (2005). The data collected serve as materials to Draft Federal Law "Concerning biological safety provision of the population".

  12. Spectroscopic and structural investigation of interaction of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt with molecular iodine

    NASA Astrophysics Data System (ADS)

    Ivolgina, Victoria A.; Chernov'yants, Margarita S.

    2018-06-01

    The interest in the study of heteroaromatic thioamides which are known to exhibit antithyroid activity is stimulated by the variety and an unusual structure their complexes with molecular iodine. The directions of dithiones investigation are diversity enough, however a few works are devoted to the study them as the potential thyreostatics. The ability of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thion potassium salt to form the outer-sphere charge-transfer complex in dilute chloroform solution, coordinating 2 iodine molecules has been studied by UV-vis spectroscopy (lgβ = 7.91). The compound of the 5,5‧-disulfanediylbis(3-phenyl-1,3,4-thiadiazole-2(3H)-thione) - product of irreversible oxidation of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt has been isolated and characterized by X-ray diffraction. Intermolecular interactions between sulfur atoms are observed with very short interatomic distance, shorter than sum of van der Waals radii. The contact between heterocyclic sulfur and heterocyclic nitrogen is also slightly short - 3.169 Å (0.053 Å less than vdW radii sum). This investigation constitutes a starting point for study of novel antithyroid drugs in future.

  13. Spectroscopic and structural investigation of interaction of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt with molecular iodine.

    PubMed

    Ivolgina, Victoria A; Chernov'yants, Margarita S

    2018-06-15

    The interest in the study of heteroaromatic thioamides which are known to exhibit antithyroid activity is stimulated by the variety and an unusual structure their complexes with molecular iodine. The directions of dithiones investigation are diversity enough, however a few works are devoted to the study them as the potential thyreostatics. The ability of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thion potassium salt to form the outer-sphere charge-transfer complex in dilute chloroform solution, coordinating 2 iodine molecules has been studied by UV-vis spectroscopy (lgβ=7.91). The compound of the 5,5'-disulfanediylbis(3-phenyl-1,3,4-thiadiazole-2(3H)-thione) - product of irreversible oxidation of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt has been isolated and characterized by X-ray diffraction. Intermolecular interactions between sulfur atoms are observed with very short interatomic distance, shorter than sum of van der Waals radii. The contact between heterocyclic sulfur and heterocyclic nitrogen is also slightly short - 3.169Å (0.053Å less than vdW radii sum). This investigation constitutes a starting point for study of novel antithyroid drugs in future. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A description of the "event manager" role in resuscitations: A qualitative study of interviews and focus groups of resuscitation participants.

    PubMed

    Taylor, Katherine L; Parshuram, Christopher S; Ferri, Susan; Mema, Briseida

    2017-06-01

    Communication during resuscitation is essential for the provision of coordinated, effective care. Previously, we observed 44% of resuscitation communication originated from participants other than the physician team leader; 65% of which was directed to the team, exclusive of the team leader. We called this outer-loop communication. This institutional review board-approved qualitative study used grounded theory analysis of focus groups and interviews to describe and define outer-loop communication and the role of "event manager" as an additional "leader." Participants were health care staff involved in the medical management of resuscitations in a quaternary pediatric academic hospital. The following 3 domains were identified: the existence and rationale of outer-loop communication; the functions fulfilled by outer-loop communication; and the leadership and learning of event manager skills. The role was recognized by all team members and evolved organically as resuscitation complexity increased. A "good" manager has similar qualities to a "good team leader" with strong nontechnical skills. Event managers were not formally identified and no specific training had occurred. "Outer-loop" communication supports resuscitation activities. An event manager gives direction to the team, coordinates activities, and supports the team leader. We describe a new role in resuscitation in light of structural organizational theory and cognitive load with a view to incorporating this structure into resuscitation training. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.

    PubMed

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-12-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.

  16. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems

    PubMed Central

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111

  17. Review on the Celestial Sphere Positioning of FITS Format Image Based on WCS and Research on General Visualization

    NASA Astrophysics Data System (ADS)

    Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.

    2017-11-01

    Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.

  18. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    DOE PAGES

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; ...

    2017-06-09

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  19. Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity

    NASA Astrophysics Data System (ADS)

    Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen

    2016-05-01

    To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.

  20. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  1. Acoustical Scattering from an Elastic Sphere in Water: Surface Wave Glory, Resonances, and the Sommerfeld-Watson Transformation for Amplitudes

    DTIC Science & Technology

    1985-08-01

    travels around the sphere (indicated by the dotted rays in Fig. 3). At the point• 2 energy is reradiated into the liquid in the direction of the receiver P...loaded elastic cylinder. 3 58 Using the coordinate system shown in Fig. 1 and au~uing a unit amplitude plane wave traveling in the +t direction the...reflection measured relative to a wave traveling in liquid alon1- the path (r ’ ’., e = 7) (r 0) -0 (r = 9, a ir--y). We have previously obtained results

  2. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination.

    PubMed

    Abdelhamid, Rehab F; Obara, Yuji; Kohzuma, Takamitsu

    2008-01-01

    Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.

  3. Results of the NIST National Ball Plate Round Robin.

    PubMed

    Caskey, G W; Phillips, S D; Borchardt, B R

    1997-01-01

    This report examines the results of the ball plate round robin administered by NIST. The round robin was part of an effort to assess the current state of industry practices for measurements made using coordinate measuring machines. Measurements of a two-dimensional ball plate (240 mm by 240 mm) on 41 coordinate measuring machines were collected and analyzed. Typically, the deviations of the reported X and Y coordinates from the calibrated values were within ± 5 μm, with some coordinate deviations exceeding 20.0 μm. One of the most significant observations from these data was that over 75 % of the participants failed to correctly estimate their measurement error on one or more of the ball plate spheres.

  4. The reduction, verification and interpretation of MAGSAT magnetic data over Canada

    NASA Technical Reports Server (NTRS)

    Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.

    1982-01-01

    Consideration is being given to representing the magnetic field in the area 40 deg N to 83 deg N by means of functions in spherical coordinates. A solution to Laplace's equation for the magnetic potential over a restricted area was found, and programming and testing are currently being carried out. Magnetic anomaly modelling is proceeding. The program SPHERE, which was adapted to function correctly on the Cyber computer, is now operational, for deriving gravity and magnetic models in a spherical coordinate system.

  5. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Yendrembam Chaoba, E-mail: chaoba@bose.res.in; Chakraborty, Biswajit, E-mail: biswajit@bose.res.in; Prajapat, Shivraj, E-mail: shraprajapat@gmail.com

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which ismore » shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2.« less

  6. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Treesearch

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  7. It All Depends on Your Attitude.

    ERIC Educational Resources Information Center

    Kastner, Bernice

    1992-01-01

    Presents six learning exercises that introduce students to the mathematics used to control and track spacecraft attitude. Describes the geocentric system used for Earthbound location and navigation, the celestial sphere, the spacecraft-based celestial system, time-dependent angles, observer-fixed coordinate axes, and spacecraft rotational axes.…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Shiliang; Liu, Jing; Cowley, Ryan E.

    Here, S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper–thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but alsomore » shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)–S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo 3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.« less

  9. Geometric interpretation of four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ott, J. R.; Steffensen, H.; Rottwitt, K.; McKinstrie, C. J.

    2013-10-01

    The nonlinear phenomenon of four-wave mixing (FWM) is investigated using a method, where, without the need of calculus, both phase and amplitudes of the mixing fields are visualized simultaneously, giving a complete overview of the FWM dynamics. This is done by introducing a set of Stokes-like coordinates of the electric fields, which reduce the FWM dynamics to a closed two-dimensional surface, similar to the Bloch sphere of quantum electrodynamics or the Pointcaré sphere in polarization dynamics. The coordinates are chosen so as to use the gauge invariance symmetries of the FWM equations which also give the conservation of action flux known as the Manley-Rowe relations. This reduces the dynamics of FWM to the one-dimensional intersection between the closed two-dimensional surface and the phase-plane given by the conserved Hamiltonian. The analysis is advantageous for visualizing phase-dependent FWM phenomena which are found in a large variety of nonlinear systems and even in various optical communication schemes.

  10. Reversible S-nitrosylation in an engineered azurin

    DOE PAGES

    Tian, Shiliang; Liu, Jing; Cowley, Ryan E.; ...

    2016-04-25

    Here, S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper–thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but alsomore » shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)–S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo 3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.« less

  11. Heat insulating device for low temperature liquefied gas storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-02

    Hitachi Shipbuilding and Engineering Co., Ltd.'s insulation method for spherical LNG containers solves various problems associated with insulating a sphere's three-dimensional curved surface; equalizing the thickness of the insulation, insulating the junctions between insulation blocks, and preventing seawater or LNG from penetrating the insulation barrier in the event of a rupture in the tank and ship's hull. The design incorporates a number of blocks or plates of rigid foam-insulating material bonded to the outer wall; seats for receiving pressing jigs for the bonding operation are secured to the outer wall in the joints between the insulating blocks. The joints aremore » filled with soft synthetic foam (embedding the seats), a moistureproof layer covers the insulating blocks and joints, and a waterproof material covers the moistureproof layer.« less

  12. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  13. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape and charge of [ReBr(6)](2-) allowed the dianion to induce large upfield paramagnetic shifts of the exo-NH signal of fac-[Re(CO)(3)(dipn)]PF(6). This dianion shows promise as an outer-sphere hydrogen-bonding paramagnetic shift reagent.

  14. Contact and Impact Dynamic Modeling Capabilities of LS-DYNA for Fluid-Structure Interaction Problems

    DTIC Science & Technology

    2010-12-02

    rigid sphere in a vertical water entry,” Applied Ocean Research, 13(1), pp. 43-48. Monaghan, J.J., 1994. “ Simulating free surface flows with SPH ...The kinematic free surface condition was used to determine the intersection between the free surface and the body in the outer flow domain...and the results were compared with analytical and numerical predictions. The predictive capability of ALE and SPH features of LS-DYNA for simulation

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand andmore » replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.« less

  16. Flipping of the coordinated triazine moiety in Cu(I)-L2 and the small electronic factor, κel, for direct outer-sphere cross reactions: syntheses, crystal structures and redox behaviour of copper(II)/(I)-L2 complexes (L = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine).

    PubMed

    Yamada, Atsutoshi; Mabe, Takuya; Yamane, Ryohei; Noda, Kyoko; Wasada, Yuko; Inamo, Masahiko; Ishihara, Koji; Suzuki, Takayoshi; Takagi, Hideo D

    2015-08-21

    Six-coordinate [Cu(pdt)2(H2O)2](2+) and four-coordinate [Cu(pdt)2](+) complexes were synthesized and the cross redox reactions were studied in acetonitrile (pdt = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). Single crystal analyses revealed that [Cu(pdt)2(H2O)2](BF4)2 was of pseudo-D2h symmetry with two axial water molecules and two symmetrically coordinated equatorial pdt ligands, while the coordination structure of [Cu(pdt)2]BF4 was a squashed tetrahedron (dihedral angle = 54.87°) with an asymmetric coordination by two pdt ligands: one pdt ligand was coordinated to Cu(i) through pyridine-N and triazine-N2 while another pdt ligand was coordinated through pyridine-N and triazine-N4, and a stacking interaction between the phenyl ring on one pdt ligand and the triazine ring on another pdt ligand caused the squashed structure and non-equivalent Cu-N bond lengths. The cyclic voltammograms for [Cu(pdt)2(H2O)2](2+) and [Cu(pdt)2](+) in acetonitrile were identical to each other and quasi-reversible. The reduction of [Cu(pdt)2(H2O)2](2+) by decamethylferrocene and the oxidation of [Cu(pdt)2](+) by [Co(2,2'-bipyridine)3](3+) in acetonitrile revealed that both cross reactions were sluggish through a gated process (the structural change took place prior to the electron transfer) accompanied by slow direct electron transfer processes. It was found that the triazine ring of the coordinated pdt ligand rotates around the C-C bond between the triazine and pyridine rings with the kinetic parameters k = 51 ± 5 s(-1) (297.8 K), ΔH(‡) = 6.2 ± 1.1 kJ mol(-1) and ΔS(‡) = -192 ± 4 J mol(-1) K(-1). The electron self-exchange process was directly measured using the line-broadening method: kex = (9.9 ± 0.5) × 10(4) kg mol(-1) s(-1) (297.8 K) with ΔH(‡) = 44 ± 7 kJ mol(-1) and ΔS(‡) = 0.2 ± 2.6 J mol(-1) K(-1). By comparing this rate constant with the self-exchange rate constants estimated from the cross reactions using the Marcus cross relation, the non-adiabaticity (electronic) factors, κel, for the direct electron transfer processes between [Cu(pdt)2](+/2+) and non-copper metal (Fe(2+) and Co(3+)) complexes were estimated as ca. 10(-7), indicating that the electronic coupling between the d orbitals of copper and of non-copper metals is very small.

  17. From sticky-hard-sphere to Lennard-Jones-type clusters

    NASA Astrophysics Data System (ADS)

    Trombach, Lukas; Hoy, Robert S.; Wales, David J.; Schwerdtfeger, Peter

    2018-04-01

    A relation MSHS →LJ between the set of nonisomorphic sticky-hard-sphere clusters MSHS and the sets of local energy minima ML J of the (m ,n ) -Lennard-Jones potential Vmn LJ(r ) =ɛ/n -m [m r-n-n r-m] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N ≳10 . While the map from MSHS→MSHS →LJ is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N =13 , and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m ,n ) . Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  18. From sticky-hard-sphere to Lennard-Jones-type clusters.

    PubMed

    Trombach, Lukas; Hoy, Robert S; Wales, David J; Schwerdtfeger, Peter

    2018-04-01

    A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.

  19. Synchronized Position Hold, Engage, Reorient, Experimental Satellites

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Wilson, Edward; How, Jonathan; Sanenz-Otero, Alvar; Chamitoff, Gregory

    2009-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized spherical satellites. They will be used inside the space station to test a set of well-defined instructions for spacecraft performing autonomous rendezvous and docking maneuvers. Three free-flying spheres will fly within the cabin of the station, performing flight formations. Each satellite is self-contained with power, propulsion, computers and navigation equipment. The results are important for satellite servicing, vehicle assembly and formation flying spacecraft configurations. SPHERES is a testbed for formation flying by satellites, the theories and calculations that coordinate the motion of multiple bodies maneuvering in microgravity. To achieve this inside the ISS cabin, bowling-ball-sized spheres perform various maneuvers (or protocols), with one to three spheres operating simultaneously . The Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) experiment will test relative attitude control and station-keeping between satellites, re-targeting and image plane filling maneuvers, collision avoidance and fuel balancing algorithms, and an array of geometry estimators used in various missions. SPHERES consists of three self-contained satellites, which are 18 sided polyhedrons that are 0.2 meter in diameter and weigh 3.5 kilograms. Each satellite contains an internal propulsion system, power, avionics, software, communications, and metrology subsystems. The propulsion system uses CO2, which is expelled through the thrusters. SPHERES satellites are powered by AA batteries. The metrology subsystem provides real-time position and attitude information. To simulate ground station-keeping, a laptop will be used to transmit navigational data and formation flying algorithms. Once these data are uploaded, the satellites will perform autonomously and hold the formation until a new command is given.

  20. Hypersonic merged layer blunt body flows with wakes

    NASA Technical Reports Server (NTRS)

    Jain, Amolak C.; Dahm, Werner K.

    1991-01-01

    An attempt is made here to understand the basic physics of the flowfield with wake on a blunt body of revolution under hypersonic rarefied conditions. A merged layer model of flow is envisioned. Full steady-state Navier-Stokes equations in spherical polar coordinate system are computed from the surface with slip and temperature jump conditions to the free stream by the Accelerated Successive Replacement method of numerical integration. Analysis is developed for bodies of arbitrary shape, but actual computations have been carried out for a sphere and sphere-cone body. Particular attention is paid to set the limit of the onset of separation, wake closure, shear-layer impingement, formation and dissipation of the shocks in the flowfield. Validity of the results is established by comparing the present results for sphere with the corresponding results of the SOFIA code in the common region of their validity and with the experimental data.

  1. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1992-01-01

    A feature set of two dimensional curves is obtained after intersecting symmetric objects like spheres, cones, cylinders, ellipsoids, paraboloids, and parallelepipeds with two planes. After determining the location and orientation of the objects in space, these objects are aligned so as to lie on a plane parallel to a suitable coordinate system. These objects are then intersected with a horizontal and a vertical plane. Experiments were carried out with range images of sphere and cylinder. The 3-D discriminant approach was used to recognize quadric surfaces made up of simulated data. Its application to real data was also studied.

  2. Synthesis, crystal structures and luminescence properties of new multi-component co-crystals of isostructural Co(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Tella, Adedibu C.; Owalude, Samson O.; Omotoso, Mary F.; Olatunji, Sunday J.; Ogunlaja, Adeniyi S.; Alimi, Lukman O.; Popoola, Olugbenga K.; Bourne, Susan A.

    2018-04-01

    Two novel isostructural compounds containing multi-component co-crystals [M(C6H4NO2)2(H2O)2](C9H6O6)2 (M = Co (1), Zn (2), C6H4NO2 = Picolinic acid, C9H6O6 = Trimesic acid) have been synthesized. The compounds were characterized by elemental analysis, FT-IR, UV-Visible and 1H NMR spectroscopies as well as thermal and single crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis reveals that 1 and 2 are isostructural. Compound 1 crystallizes in triclinic space group (P-1, with a = 5.154 (10) Å, b = 11.125 (2) Å, c = 14.113 (3) Å, α = 91.01 (3)°, β = 100.54 (3)°, and γ = 102.71 (3)°). In a similar fashion, compound 2 crystallizes in triclinic space group (P-1, with a = 5.1735 (3) Å, b = 11.0930 (10) Å, c = 14.1554 (8) Å, α = 91.70 (3)°, β = 100.26 (3)°, γ = 102.90 (3)°). The metal (II) cation presents distorted MN2O4 octahedral geometry with H2O molecules coordinated to the metal in equatorial position while the picolinic acid molecules are axially coordinated through the pyridine N atom. The two trimesic acid molecules are not part of the first coordination sphere. Compounds 1 and 2 constitute an example of a class of coordination compound of multicomponent crystals having trimesic acid outside the coordination sphere where it is neither protonated or deprotonated. The two compounds were investigated for luminiscence properties.

  3. Crystal structures of three lead(II) acetate-bridged di-amino-benzene coordination polymers.

    PubMed

    Geiger, David K; Parsons, Dylan E; Zick, Patricia L

    2014-12-01

    Poly[tris-(acetato-κ(2) O,O')(μ2-acetato-κ(3) O,O':O)tetra-kis-(μ3-acetato-κ(4) O,O':O:O')bis-(benzene-1,2-di-amine-κN)tetra-lead(II)], [Pb4(CH3COO)8(C6H8N2)2] n , (I), poly[(acetato-κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(4-chloro-benzene-1,2-diamine-κN)lead(II)], [Pb(CH3COO)2(C6H7ClN2)] n , (II), and poly[(κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(3,4-di-amino-benzo-nitrile-κN)lead(II)], [Pb(CH3COO)2(C7H7N3)] n , (III), have polymeric structures in which monomeric units are joined by bridging acetate ligands. All of the Pb(II) ions exhibit hemidirected coordination. The repeating unit in (I) is composed of four Pb(II) ions having O6, O6N, O7 and O6N coordination spheres, respectively, where N represents a monodentate benzene-1,2-di-amine ligand and O acetate O atoms. Chains along [010] are joined by bridging acetate ligands to form planes parallel to (10-1). (II) and (III) are isotypic and have one Pb(II) ion in the asymmetric unit that has an O6N coordination sphere. Pb2O2 units result from a symmetry-imposed inversion center. Polymeric chains parallel to [100] exhibit hydrogen bonding between the amine and acetate ligands. In (III), additional hydrogen bonds between cyano groups and non-coordinating amines join the chains by forming R 2 (2)(14) rings.

  4. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  5. On the anomalous adsorption of [Pd(edta)]2- at the water/Goethite interface: spectroscopic evidence for two types of surface complexes.

    PubMed

    Kaplun, Marina; Nordin, Agneta; Persson, Per

    2008-01-15

    The structure of palladium(II) ethylenediaminetetraacetate (edta) in aqueous solutions and its adsorption on the surface of goethite (alpha-FeOOH) were studied using extended X-ray absorption fine structure spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The obtained results show that in aqueous solutions, Pd-edta exists as a 1:1 complex, [Pd(edta)]2-, with edta acting as a quadridentate ligand. On the surface of goethite, [Pd(edta)]2- forms two different types of complexes over a pH range of 3.40-8.12. At pH < 5, [Pd(edta)]2- adsorbs as an outer-sphere species with possible hydrogen bonding. At higher pH values, the formation of inner-sphere complexes of the cation-type sets in after a cleavage of one glycinate ring and the formation of an (edta)Pd-O-Fe linkage.

  6. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  7. Selenium adsorption to aluminum-based water treatment residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR inmore » an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.« less

  8. A Study for the Restoration of Hong Dae-Yong Honsangui - Focusing on the structure and operating mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Park, Je Hoon

    2013-09-01

    Honsangui (celestial globe) which is a water-hammering method astronomical clock is recorded in "Juhaesuyong" which is Volume VI of supplement from "Damheonseo", written by Hong Dae-Yong (1731~1783). We made out the conceptual design of Hong Dae-Yong's Honsangui through the study on its structure and working mechanism. Honsangui consist of three rings and two layers, the structure of rings which correspond to outer layer is similar to his own Tongcheonui (armillary sphere) which is a kind of armillary sphere. Honsang sphere which correspond to inner layer depicts constellations and milky way and two beads hang on it as Sun and Moon respectively for realize the celestial motion. Tongcheonui is operated by the pendulum power but Honsangui is operated by water-hammering method mechanism. This Honsangui's working mechanism is the traditional way of Joseon and it was simplified the working mechanism of Shui y'n i hsiang t'ai which is a representative astronomical clock of China. This record of Honsangui is the only historical record about the water-hammering method working mechanism of Joseon Era and it provide the study of water-hammering method mechanism with a vital clue.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versino, Daniele; Brock, Jerry Steven

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r i = 10mm, r o = 20mm and p = 1000Kg/m 3 respectively.

  10. A likely planet-induced gap in the disc around T Cha

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David

    2018-03-01

    We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.

  11. Theoretical understanding on the v(1)-SO4(2-) band perturbed by the formation of magnesium sulfate ion pairs.

    PubMed

    Zhang, Hao; Zhang, Yun-Hong; Wang, Feng

    2009-02-01

    The factors determining the spectroscopic characteristics of the v(1)-SO4(2-) band of the MgSO4 ion pairs are discussed via ab initio calculation, including coupling effect, hydrogen bonding effect, and direct contact effect of Mg2+ with SO4(2-). With the calculation of the heavy water hydrated contact ion pairs (CIP), the overlap between the librations of water and the v(1)-SO4(2-) band can be separated, and thus the coupling effect is abstracted, and this coupling effect leads to a blue shift for the v(1)-SO4(2-) band of 5.6 cm(-1) in the monodentate CIP and 3.6 cm(-1) in the bidentate CIP. The hydrogen bonding between each water molecule without relation to Mg2+ and the sulfate ion makes the v(1)-SO4(2-) band blue shift of 3.7 cm(-1). When the outer-sphere water around Mg2+ are hydrogen bonded between SO4(2-) and Mg2+, it will make the largest disturbance to the v(1)-SO4(2-) band. Moreover, the inner-sphere water can affect the v(1)-SO4(2-) band conjunct with the direct contact of Mg2+ with SO4(2-), showing a blue shift of 14.4 cm(-1) in the solvent-shared ion pair, 22.6 cm(-1) in the monodentate CIP, 4.3 cm(-1) in the bidentate CIP, and 21.4 cm(-1) in the tridentate CIP. At last, the Raman spectral evolution in the efflorescence production process is tried to be rationalized. The shoulder at 995 cm(-1) is attributed to the monodentate CIP with 2-3 outer-sphere water molecules, whereas the new peak at 1021 cm(-1) at high concentration is assigned to the formation of aqueous triple ion.

  12. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    PubMed Central

    Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L

    2009-01-01

    Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800

  13. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts.

    PubMed

    Francke, Robert; Schille, Benjamin; Roemelt, Michael

    2018-05-09

    The utilization of CO 2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO 2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO 2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.

  14. Effect of humic acid on nickel(II) sorption to Ca-montmorillonite by batch and EXAFS techniques study.

    PubMed

    Hu, Jun; Tan, Xiaoli; Ren, Xuemei; Wang, Xiangke

    2012-09-21

    The influence of humic acid (HA) on Ni(II) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(II) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(II) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(II) consists of ∼6 O atoms at the interatomic distances of ∼2.04 Å in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(II) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(II), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(II) in the natural environment.

  15. Adsorption of MCPA on goethite and humic acid-coated goethite.

    PubMed

    Iglesias, A; López, R; Gondar, D; Antelo, J; Fiol, S; Arce, F

    2010-03-01

    Anionic pesticides are adsorbed on the mineral oxide fraction of the soil surface but considerably less on the organic fraction, so that the presence of organic matter causes a decrease in the amount of pesticide adsorbed, and may affect the mechanism of adsorption. In the present study we investigated the adsorption of the weak acid pesticide MCPA on the surface of goethite and of humic acid-coated goethite, selected as models of the mineral oxide fraction and organic components present in soil systems. Adsorption of the anionic form of the pesticide on goethite fitted an S-type isotherm and the amount adsorbed increased as the ionic strength decreased and the pH of the medium decreased. Application of the charge distribution multi site complexation model (CD-MUSIC model) enabled interpretation of the results, which suggested the formation of inner and outer sphere complexes between the pesticide and the singly-coordinated surface sites of goethite. Less pesticide was adsorbed on the humic acid-coated goethite than on the bare goethite and the pattern fitted an L-type isotherm, which indicates a change in the mechanism of adsorption. Simplified calculations with the CD-MUSIC model enabled interpretation of the results, which suggested that the pesticide molecules form the same type of surface complexes as in the previous case. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Interactions of diamines with adenosine-5'-triphosphate (ATP) in the systems including copper(II) ions.

    PubMed

    Bregier-Jarzebowska, R; Gasowska, A; Hoffmann, S K; Lomozik, L

    2016-09-01

    Interactions were studied in the systems ATP/tn and ATP/Put (tn=1,3-diaminopropane, Put=putrescine) whereas the complexation reactions in ternary systems Cu(II)/ATP/tn and Cu(II)/ATP/Put. Results of the potentiometric and spectroscopic studies evidenced the formation of adducts of the type (ATP)H x (PA), where PA=diamine. The thermodynamic stability of the complexes and the mode of interactions were determined. On the basis of analysis of changes in the positions of NMR signals, in the pH range of (ATP)H 3 (Put) formation, the preferred centres of the interaction between ATP and Put are the endocyclic nitrogen atoms from the nucleotide. On the other hand, the shorter diamine tn in the entire pH range reacts with the phosphate groups from ATP. The positive centres of noncovalent interactions are the protonated NH x + groups from amines. In both complexes Cu(ATP)H 2 (tn) and Cu(ATP)H 3 (Put) formed in ternary systems at pH<6.5, the amines are in the outer sphere of coordination with the noncovalent interaction with anchoring Cu(ATP). Only the phosphate groups from the nucleotide take part in metalation. At higher pH in the range of Cu(ATP)(PA) complex formation, significant differences in the reactions of the two amines appear. The shorter one (tn) binds Cu(II) ions with two nitrogen atoms, while putrescine coordinates in the monofunctional mode, which is undoubtedly related to the differences in lengths of methylene chain. This explains the considerable differences in the stability of Cu(ATP)(tn) and Cu(ATP)(Put). In both complexes the nucleotide is coordinated through phosphate groups. As a result of noncovalent interactions ATP forms molecular complexes with 1,3-diaminopropane and 1,4-diaminobutane (putrescine). Significant differences in the mode of interactions between the two diamines were observed in ATP/diamine binary systems and in ternary systems Cu(II)/ATP/diamine, at high pH. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

    PubMed

    Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred

    2014-02-01

    The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Touch, M; Bowsher, J

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator andmore » a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.« less

  19. Light-triggered self-assembly of triarylamine-based nanospheres

    NASA Astrophysics Data System (ADS)

    Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas

    2012-10-01

    Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h

  20. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  1. Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin.

    PubMed

    Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C; Botros, Youssry Y; Farha, Omar K; Hupp, Joseph T; Mirkin, Chad A; Fraser Stoddart, J

    2013-01-01

    Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH₂)₆][AuBr₄](α-cyclodextrin)₂}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr₄ in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr₄ and KAuCl₄, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr₄](-) leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr₄](-) and [K(OH₂)₆](+) and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host-guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin-an inexpensive and environmentally benign carbohydrate.

  2. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  3. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    PubMed

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  4. Coordination of XeF2 to calcium and cadmium hexafluorophosphates(V).

    PubMed

    Bunic, Tina; Tavcar, Gasper; Tramsek, Melita; Zemva, Boris

    2006-02-06

    [M(XeF2)5](PF6)2 (M = Ca, Cd) complexes were prepared by the reaction of MF2 and XeF2 under pressure of gaseous PF5 in anhydrous HF as solvent. The coordination sphere of the Ca atom consists of nine fluorine atoms: three from two PF6(-) units (one bidentate and one monodentate) and one from each of six XeF2 molecules. The coordination sphere of the Cd atom consists of eight fluorine atoms: one from each of two PF6(-) units and one from each of six XeF2 molecules. Two of the XeF2 ligands about M in each compound are bridging ligands and are each linked to two M, generating infinite (-M-F-Xe-F-M-F-Xe-F-) chains along the b-axis in the Ca salt and along the c-axis in the Cd compound. The Cd2+ cation is smaller and more electronegative than the Ca2+ cation. These differences account for the higher F ligand coordination in the Ca2+ salt and for other structural features that distinguish them. The different stoichiometry of the PF6(-) salts when compared with their AsF6(-) analogues, which have the composition [M(XeF2)4](AsF6)2 (M = Ca, Cd), is in accord with the lower F ligand charge in the AsF6(-) when compared with that in the PF6(-) compound. Indeed, the AsF6(-) ligand charges appear to be similar to those in the XeF2-bridged species.

  5. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, JF; Luo, C; Gao, T

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less

  6. On the Concentration Gradient across a Spherical Source Washed by Slow Flow

    PubMed Central

    Jaffe, Lionel

    1965-01-01

    A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954

  7. Interaction of NaOH solutions with silica surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.

    Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na + ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m 2 (0.01 M NaOH) and –0.76 C/m 2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate,more » and tridentate configurations and two additional structures, with Na + ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na + ions by bridging oxygen atoms indicates partial or complete incorporation of Na + ions into the silica surface. Residence time analysis identified that Na + ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na + ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na + adsorption and lifetimes have implications for the stability of silica surfaces.« less

  8. Interaction of NaOH solutions with silica surfaces

    DOE PAGES

    Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.

    2018-01-16

    Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na + ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m 2 (0.01 M NaOH) and –0.76 C/m 2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate,more » and tridentate configurations and two additional structures, with Na + ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na + ions by bridging oxygen atoms indicates partial or complete incorporation of Na + ions into the silica surface. Residence time analysis identified that Na + ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na + ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na + adsorption and lifetimes have implications for the stability of silica surfaces.« less

  9. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Richter, Gerald; Huber, Robert; Bacher, Adelbert; Fischer, Markus

    2003-10-24

    Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal-dependent reactions. Here, we present the crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal center presumably consisting of non-catalytic zinc and calcium ions at 1.7-A resolution. The carbonyl group (O2) and two out of three free hydroxyl groups (OH3 and OH4) of the substrate are metal-coordinated. We correlate previous mutational studies on this enzyme with the present structural results. Residues of the first coordination sphere involved in metal binding are indispensable for catalytic activity. Only Glu-185 of the second coordination sphere cannot be replaced without complete loss of activity. It contacts the C3 hydrogen atom directly and probably initiates enediol formation in concert with both metal ions to start the reaction sequence. Mechanistic similarities to Rubisco acting on the similar substrate ribulose 1,5-diphosphate in carbon dioxide fixation as well as other carbohydrate (reducto-) isomerases are discussed.

  10. Long-range Coulomb forces and localized bonds.

    PubMed

    Preiser; Lösel; Brown; Kunz; Skowron

    1999-10-01

    The ionic model is shown to be applicable to all compounds in which the atoms carry a net charge and their electron density is spherically symmetric regardless of the covalent character of the bonding. By examining the electric field generated by an array of point charges placed at the positions of the ions in over 40 inorganic compounds, we show that the Coulomb field naturally partitions itself into localized regions (bonds) which are characterized by the electric flux that links neighbouring ions of opposite charge. This flux is identified with the bond valence, and Gauss' law with the valence-sum rule, providing a secure theoretical foundation for the bond-valence model. The localization of the Coulomb field provides an unambiguous definition of coordination number and our calculations show that, in addition to the expected primary coordination sphere, there are a number of weak bonds between cations and the anions in the second coordination sphere. Long-range Coulomb interactions are transmitted through the crystal by the application of Gauss' law at each of the intermediate atoms. Bond fluxes have also been calculated for compounds containing ions with non-spherical electron densities (e.g. cations with stereoactive lone electron pairs). In these cases the point-charge model continues to describe the distant field, but multipoles must be added to the point charges to give the correct local field.

  11. Structural properties of liquid lanthanides using charge hard sphere reference system

    NASA Astrophysics Data System (ADS)

    Thakora, P. B.; Sonvane, Y. A.; Patel, H. P.; Gajjar, P. N.; Jani, A. R.

    2012-06-01

    In the present paper Charge Hard Sphere (CHS) system is employed to investigate the structural properties like long wavelength limit S(0), isothermal compressibility (χT) and coordination number n for some liquid lanthanides viz.: La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Our well established parameter free model potential is used to describe the electron-ion interaction alongwith sarkar et al. dielectric function. From the present results, it is seen that good agreement between present results and available experimental data have been achieved. At last, we establish the applicability of our parameter free model potential and CHS method to account such structural properties.

  12. Predicting Reduction Rates of Energetic Nitroaromatic Compounds Using Calculated One-Electron Reduction Potentials

    DOE PAGES

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Johnston, Hayley; ...

    2015-02-11

    The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. The susceptibility of energetic NACs to nitro reduction might be predicted from correlations between rate constants (k) for this reaction and one-electron reduction potentials (E1NAC) / 0.059 V, but the mechanistic implications of such correlations are inconsistent with evidence from other methods. To address this inconsistency, we have reevaluated existing kinetic data using a (non-linear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with rate limitation bymore » an initial, outer-sphere electron transfer, suggesting that the strong correlation between k and E1NAC is justified only as an empirical model. This empirical correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of k for non-energetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the B3LYP/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to energetic NACs.« less

  13. Densest local sphere-packing diversity. II. Application to three dimensions

    NASA Astrophysics Data System (ADS)

    Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore

    2011-01-01

    The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius Rmin(N) of a fixed central sphere of the same size are obtained for selected values of N up to N=1054. In the predecessor to this paper [A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.81.041305 81, 041305 (2010)], we described our method for finding the putative densest packings of N spheres in d-dimensional Euclidean space Rd and presented those packings in R2 for values of N up to N=348. Here we analyze the properties and characteristics of the densest local packings in R3 and employ knowledge of the Rmin(N), using methods applicable in any d, to construct both a realizability condition for pair correlation functions of sphere packings and an upper bound on the maximal density of infinite sphere packings. In R3, we find wide variability in the densest local packings, including a multitude of packing symmetries such as perfect tetrahedral and imperfect icosahedral symmetry. We compare the densest local packings of N spheres near a central sphere to minimal-energy configurations of N+1 points interacting with short-range repulsive and long-range attractive pair potentials, e.g., 12-6 Lennard-Jones, and find that they are in general completely different, a result that has possible implications for nucleation theory. We also compare the densest local packings to finite subsets of stacking variants of the densest infinite packings in R3 (the Barlow packings) and find that the densest local packings are almost always most similar as measured by a similarity metric, to the subsets of Barlow packings with the smallest number of coordination shells measured about a single central sphere, e.g., a subset of the fcc Barlow packing. Additionally, we observe that the densest local packings are dominated by the dense arrangement of spheres with centers at distance Rmin(N). In particular, we find two “maracas” packings at N=77 and N=93, each consisting of a few unjammed spheres free to rattle within a “husk” composed of the maximal number of spheres that can be packed with centers at respective Rmin(N).

  14. Outer Continental Shelf Permit Processing Coordination Act

    THOMAS, 112th Congress

    Sen. Begich, Mark [D-AK

    2011-04-14

    Senate - 05/17/2011 Committee on Energy and Natural Resources. Hearings held. Hearings printed: S.Hrg. 112-51. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  16. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  17. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  18. Redetermination of dicerium(III) tris-(sulfate) tetra-hydrate.

    PubMed

    Xu, Xin

    2007-12-06

    Ce(2)(SO(4))(3)(H(2)O)(4) was obtained hydro-thermally from an aqueous solution of cerium(III) oxide, trimethyl-amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr.95, 269-280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S-O-Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  19. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow andmore » heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.« less

  20. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.

    PubMed

    Rakowski DuBois, M; DuBois, Daniel L

    2009-12-21

    The conversion of solar energy to fuels in both natural and artificial photosynthesis requires components for both light-harvesting and catalysis. The light-harvesting component generates the electrochemical potentials required to drive fuel-generating reactions that would otherwise be thermodynamically uphill. This Account focuses on work from our laboratories on developing molecular electrocatalysts for CO(2) reduction and for hydrogen production. A true analog of natural photosynthesis will require the ability to capture CO(2) from the atmosphere and reduce it to a useful fuel. Work in our laboratories has focused on both aspects of this problem. Organic compounds such as quinones and inorganic metal complexes can serve as redox-active CO(2) carriers for concentrating CO(2). We have developed catalysts for CO(2) reduction to form CO based on a [Pd(triphosphine)(solvent)](2+) platform. Catalytic activity requires the presence of a weakly coordinating solvent molecule that can dissociate during the catalytic cycle and provide a vacant coordination site for binding water and assisting C-O bond cleavage. Structures of [NiFe] CO dehydrogenase enzymes and the results of studies on complexes containing two [Pd(triphosphine)(solvent)](2+) units suggest that participation of a second metal in CO(2) binding may also be required for achieving very active catalysts. We also describe molecular electrocatalysts for H(2) production and oxidation based on [Ni(diphosphine)(2)](2+) complexes. Similar to palladium CO(2) reduction catalysts, these species require the optimization of both first and second coordination spheres. In this case, we use structural features of the first coordination sphere to optimize the hydride acceptor ability of nickel needed to achieve heterolytic cleavage of H(2). We use the second coordination sphere to incorporate pendant bases that assist in a number of important functions including H(2) binding, H(2) cleavage, and the transfer of protons between nickel and solution. These pendant bases, or proton relays, are likely to be important in the design of catalysts for a wide range of fuel production and fuel utilization reactions involving multiple electron and proton transfer steps. The generation of fuels from abundant substrates such as CO(2) and water remains a daunting research challenge, requiring significant advances in new inexpensive materials for light harvesting and the development of fast, stable, and efficient electrocatalysts. Although we describe progress in the development of redox-active carriers capable of concentrating CO(2) and molecular electrocatalysts for CO(2) reduction, hydrogen production, and hydrogen oxidation, much more remains to be done.

  1. How should spin-weighted spherical functions be defined?

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2016-09-01

    Spin-weighted spherical functions provide a useful tool for analyzing tensor-valued functions on the sphere. A tensor field can be decomposed into complex-valued functions by taking contractions with tangent vectors on the sphere and the normal to the sphere. These component functions are usually presented as functions on the sphere itself, but this requires an implicit choice of distinguished tangent vectors with which to contract. Thus, we may more accurately say that spin-weighted spherical functions are functions of both a point on the sphere and a choice of frame in the tangent space at that point. The distinction becomes extremely important when transforming the coordinates in which these functions are expressed, because the implicit choice of frame will also transform. Here, it is proposed that spin-weighted spherical functions should be treated as functions on the spin or rotation groups, which simultaneously tracks the point on the sphere and the choice of tangent frame by rotating elements of an orthonormal basis. In practice, the functions simply take a quaternion argument and produce a complex value. This approach more cleanly reflects the geometry involved, and allows for a more elegant description of the behavior of spin-weighted functions. In this form, the spin-weighted spherical harmonics have simple expressions as elements of the Wigner 𝔇 representations, and transformations under rotation are simple. Two variants of the angular-momentum operator are defined directly in terms of the spin group; one is the standard angular-momentum operator L, while the other is shown to be related to the spin-raising operator ð.

  2. Moments of Inertia of Disks and Spheres without Integration

    ERIC Educational Resources Information Center

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  3. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

    PubMed

    Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Helm, Lothar; Platas-Iglesias, Carlos

    2012-11-12

    Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti–O–(C, Si, Ge) Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Guillo, Pascal; Tilley, T. Don

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti–O–(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique featuresmore » for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O–X (X = C, Si, or Ge) antibonding orbitals.« less

  5. Forebody and afterbody solutions of the Navier-Stokes equations for supersonic flow over blunt bodies in a generalized orthogonal coordinate system

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1978-01-01

    A coordinate transformation, which can approximate many different two-dimensional and axisymmetric body shapes with an analytic function, is used as a basis for solving the Navier-Stokes equations for the purpose of predicting 0 deg angle of attack supersonic flow fields. The transformation defines a curvilinear, orthogonal coordinate system in which coordinate lines are perpendicular to the body and the body is defined by one coordinate line. This system is mapped in to a rectangular computational domain in which the governing flow field equations are solved numerically. Advantages of this technique are that the specification of boundary conditions are simplified and, most importantly, the entire flow field can be obtained, including flow in the wake. Good agreement has been obtained with experimental data for pressure distributions, density distributions, and heat transfer over spheres and cylinders in supersonic flow. Approximations to the Viking aeroshell and to a candidate Jupiter probe are presented and flow fields over these shapes are calculated.

  6. 30 CFR 281.13 - Joint State/Federal coordination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER... associated with the offering of OCS minerals other than oil, gas, or sulphur for lease. (d) With respect to...

  7. 30 CFR 550.200 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information General Information § 550.200 Definitions... of Safety and Environmental Enforcement. CID means Conservation Information Document. CZMA means Coastal Zone Management Act. DOCD means Development Operations Coordination Document. DPP means...

  8. Outer-sphere interaction of aluminum and gallium solvates with competitive anions in 1,2-propanediol solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosyants, S.P.; Buslaeva, E.R.

    1986-04-01

    The interaction of aluminum and gallium solvates with ..pi..-acid ligand in 1,2-propanediol solutions has been investigated. The formation of associates of hexacoordinate aluminum solvates depends on the solvation of the anions in the bulk of the solution or on the faces of the solvento complexes. In the case of gallium the association of the solvates with the anions is determined by two factors: the existence of a configurational equilibrium for the solvento complexes and the preferential solvation of the competitive ..pi..-acid ligands.

  9. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap?

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.

    2017-12-01

    Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region <500 mas (<55 au at 109 pc) from the central star, at an angular resolution of 20 mas. Results: Our data show an asymmetry: the SE and NW regions of the outer disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate <10-8 M⊙ yr-1 for a substellar mass of 15 MJup. Finally, we report the first detection (>3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.

  10. The nylon scintillator containment vessels for the Borexino solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cadonati, L.; Calaprice, F.; Galbiati, C.; Pocar, A.; Shutt, T.

    2014-06-01

    The neutrino event rate in the Borexino scintillator is very low ( 0.5 events per day per ton) and concentrated in an energy region well below the 2.6 MeV threshold of natural radioactivity. The intrinsic radioactive contaminants in the photomultipliers (PMTs), in the Stainless Steel Sphere, and in other detector components, play special requirements on the system required to contain the scintillator. The liquid scintillator must be shielded from the Stainless Steel Sphere and from the PMTs by a thick barrier of buffer fluid. The fluid barrier, in addition, needs to be segmented in order to contain migration of radon and daughters emanated by the Stainless Steel Sphere and by the PMTs. These requirements were met by designing and building two spherical vessel made of thin nylon film. The inner vessel contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by the second, outer nylon vessel. In addition, the two nylon vessels must satisfy stringent requirements for radioactivity and for mechanical, optical and chemical properties. This paper describes the requirements of the the nylon vessels for the Borexino experiment and offers a brief overview of the construction methods adopted to meet those requirements.

  11. The Whole Heliosphere Interval: Campaign Summaries and Early Results

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gibson, Sarah E.; Kozyra, Janet U.

    2008-01-01

    The Whole Heliosphere Interval (WHI) is an internationally coordinated observing and modeling effort to characterize the 3-dimensional interconnected solar-heliospheric-planetary system - a.k.a. the "heliophysical" system. The heart of the WHI campaign is the study of the interconnected 3-D heliophysical domain, from the interior of the Sun, to the Earth, outer planets, and into interstellar space. WHI observing campaigns began with the 3-0 solar structure from solar Carrington Rotation 2068, which ran from March 20 - April 16, 2008. Observations and models of the outer heliosphere and planetary impacts extended beyond those dates as necessary; for example, the solar wind transit time to outer planets can take months. WHI occurs during solar minimum, which optimizes our ability to characterize the 3-D heliosphere and trace the structure to the outer limits of the heliosphere. A summary of some of the key results from the WHI first workshop in August 2008 will be given.

  12. Error reduction in three-dimensional metrology combining optical and touch probe data

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2010-08-01

    Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.

  13. Cadmium-1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2'-bipyridines: syntheses, crystal structures and photoluminescence studies.

    PubMed

    Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio

    2017-09-26

    Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 μmol L -1 .

  14. Calcium environment in silicate and aluminosilicate glasses probed by ⁴³Ca MQMAS NMR experiments and MD-GIPAW calculations.

    PubMed

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Florian, Pierre; Charpentier, Thibault

    2015-01-01

    ⁴³Ca MQMAS NMR spectra of three silica-based glasses in which Ca²⁺ ions play different structural roles have been collected and processed in order to extract the underlying NMR parameter distributions. The NMR parameters have been interpreted with the help of molecular dynamics simulations and DFT-GIPAW calculations. This synergetic experimental-computational approach has allowed us to investigate the Ca environment, to estimate Ca coordination numbers from MD-derived models, and to push further the discussion about ⁴³Ca NMR sensitivity to the first and second coordination spheres: ⁴³Ca δiso and Ca-O distance can be successfully correlated as a function of Ca coordination number. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Astronomical Instrument, So-Gahui Invented During King Sejong Period

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Sam Lee; Kim, Sang-Hyuk

    2002-09-01

    So-ganui, namely small simplified armillary sphere, was invented as an astronomical instrument by Lee Cheon, Jeong Cho, Jung In-Ji under 16 years' rule of King Sejong. We collect records and observed data on So-ganui. It is designed to measure position of celestial sphere and to determine time. It also can be transformed equatorial to horizontal, and horizontal to equatorial coordinate. It can measure the right ascension, declination, altitude and azimuth. It is composed of Sayu-hwan (Four displacements), Jeokdo-hwan (Equatorial dial), Baekgak-hwan (Ring with one hundred-interval quarters), Gyuhyeong (Sighting aliadade), Yongju (Dragon-pillar) and Bu (Stand). So-ganui was used conveniently portable surveying as well as astronomical instrument and possible to determine time during day and night.

  16. Temperature effect on the structure and conformational fluctuations in two zinc knuckles from the mouse mammary tumor virus.

    PubMed

    Nedjoua, Drici; Krallafa, Abdelghani Mohamed

    2018-06-01

    Zinc fingers are small protein domains in which zinc plays a structural role, contributing to the stability of the zinc-peptide complex. Zinc fingers are structurally diverse and are present in proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation, and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins, and small molecules. In this study, we investigated the structural properties, in solution, of the proximal and distal zinc knuckles of the nucleocapsid (NC) protein from the mouse mammary tumor virus (MMTV) (MMTV NC). For this purpose, we performed a series of molecular dynamics simulations in aqueous solution at 300 K, 333 K, and 348 K. The temperature effect was evaluated in terms of root mean square deviation of the backbone atoms and root mean square fluctuation of the coordinating residue atoms. The stability of the zinc coordination sphere was analyzed based upon the time profile of the interatomic distances between the zinc ions and the chelator atoms. The results indicate that the hydrophobic character of the proximal zinc finger is dominant at 333 K. The low mobility of the coordinating residues suggests that the strong electrostatic effect exerted by the zinc ion on its coordinating residues is not influenced by the increase in temperature. The evolution of the structural parameters of the coordination sphere of the distal zinc finger at 300 K gives us a reasonable picture of the unfolding pathway, as proposed by Bombarda and coworkers (Bombarda et al., 2005), which can predict the binding order of the four conserved ligand-binding residues. Our results support the conclusion that the structural features can vary significantly between the two zinc knuckles of MMTV NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Wave number selection in the presence of noise: Experimental results

    NASA Astrophysics Data System (ADS)

    Zhilenko, Dmitry; Krivonosova, Olga; Gritsevich, Maria; Read, Peter

    2018-05-01

    In this study, we consider how the wave number selection in spherical Couette flow, in the transition to azimuthal waves after the first instability, occurs in the presence of noise. The outer sphere was held stationary, while the inner sphere rotational speed was increased linearly from a subcritical flow to a supercritical one. In a supercritical flow, one of two possible flow states, each with different azimuthal wave numbers, can appear depending upon the initial and final Reynolds numbers and the acceleration value. Noise perturbations were added by introducing small disturbances into the rotational speed signal. With an increasing noise amplitude, a change in the dominant wave number from m to m ± 1 was found to occur at the same initial and final Reynolds numbers and acceleration values. The flow velocity measurements were conducted by using laser Doppler anemometry. Using these results, the role of noise as well as the behaviour of the amplitudes of the competing modes in their stages of damping and growth were determined.

  18. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    PubMed

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  19. Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin

    PubMed Central

    Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J.; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C.; Botros, Youssry Y.; Farha, Omar K.; Hupp, Joseph T.; Mirkin, Chad A.; Fraser Stoddart, J.

    2013-01-01

    Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate. PMID:23673640

  20. Airfoil shape for a turbine nozzle

    DOEpatents

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  1. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. Copyright © 2016 John Wiley & Sons, Ltd.

  2. a Numerical Investigation of the Jamming Transition in Traffic Flow on Diluted Planar Networks

    NASA Astrophysics Data System (ADS)

    Achler, Gabriele; Barra, Adriano

    In order to develop a toy model for car's traffic in cities, in this paper we analyze, by means of numerical simulations, the transition among fluid regimes and a congested jammed phase of the flow of kinetically constrained hard spheres in planar random networks similar to urban roads. In order to explore as timescales as possible, at a microscopic level we implement an event driven dynamics as the infinite time limit of a class of already existing model (Follow the Leader) on an Erdos-Renyi two-dimensional graph, the crossroads being accounted by standard Kirchoff density conservations. We define a dynamical order parameter as the ratio among the moving spheres versus the total number and by varying two control parameters (density of the spheres and coordination number of the network) we study the phase transition. At a mesoscopic level it respects an, again suitable, adapted version of the Lighthill-Whitham model, which belongs to the fluid-dynamical approach to the problem. At a macroscopic level, the model seems to display a continuous transition from a fluid phase to a jammed phase when varying the density of the spheres (the amount of cars in a city-like scenario) and a discontinuous jump when varying the connectivity of the underlying network.

  3. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  4. Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation.

    PubMed

    Heckel, Benjamin; Cretnik, Stefan; Kliegman, Sarah; Shouakar-Stash, Orfan; McNeill, Kristopher; Elsner, Martin

    2017-09-05

    Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B 12 -dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect ( 13 C/ 12 C, 37 Cl/ 35 Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO 2 radical anions, S 2- -doped graphene oxide in water) caused strong carbon (ε C = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (ε Cl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl 3 (ε C = -7.7‰, ε Cl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ* orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π* orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.

  5. Eccentricity in planetary systems and the role of binarity. Sample definition, initial results, and the system of HD 211847

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.

    2017-06-01

    We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).

  6. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  7. Difference method to search for the anisotropy of primary cosmic radiation

    NASA Astrophysics Data System (ADS)

    Pavlyuchenko, V. P.; Martirosov, R. M.; Nikolskaya, N. M.; Erlykin, A. D.

    2018-01-01

    The original difference method used in the search for an anisotropy of primary cosmic radiation at the knee region of its energy spectrum is considered. Its methodical features and properties are analyzed. It is shown that this method, in which properties of particle fluxes (rather than an intensity) are investigated, is stable against random experimental errors and allows one to separate anomalies connected with the laboratory coordinate system from anomalies in the celestial coordinate system. The method uses the multiple scattering of charged particles in the magnetic fields of the Galaxy to study the whole celestial sphere, including the regions outside the line of sight of the installation.

  8. Structural study of Cu(II) complexes with benzo[b]furancarboxylic acids

    NASA Astrophysics Data System (ADS)

    Kalinowska, Diana; Klepka, Marcin T.; Wolska, Anna; Drzewiecka-Antonik, Aleksandra; Ostrowska, Kinga; Struga, Marta

    2017-11-01

    Four Cu(II) complexes with 2- and 3-benzo[b]furancarboxylic acids have been synthesized and characterized using combination of two spectroscopic techniques. These techniques were: (i) FTIR and (ii) XAFS. FTIR analysis confirmed that complexes were formed and gave insight into identification of possible coordinating groups to the metallic center. XANES analysis indicated that the oxidation state of Cu is +2. EXAFS analysis allowed to identify that the first coordination sphere is formed by 4-5 oxygen atoms with the Cu-O distances around 2 Å. Combining these techniques it was possible to structurally describe novel Cu(II) complexes with benzo[b]furancarboxylic acids.

  9. Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

    PubMed Central

    Xu, Xin

    2008-01-01

    Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands. PMID:21200451

  10. Applications of the hybrid coordinate method to the TOPS autopilot

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1978-01-01

    Preliminary results are presented from the application of the hybrid coordinate method to modeling TOPS (thermoelectric outer planet spacecraft) structural dynamics. Computer simulated responses of the vehicle are included which illustrate the interaction of relatively flexible appendages with an autopilot control system. Comparisons were made between simplified single-axis models of the control loop, with spacecraft flexibility represented by hinged rigid bodies, and a very detailed three-axis spacecraft model whose flexible portions are described by modal coordinates. While single-axis system, root loci provided reasonable qualitative indications of stability margins in this case, they were quantitatively optimistic when matched against responses of the detailed model.

  11. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  12. Investigating the role of chain and linker length on the catalytic activity of an H 2 production catalyst containing a β-hairpin peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reback, Matthew L.; Ginovska, Bojana; Buchko, Garry W.

    Building on our recent report of an active H2 production catalyst [Ni(PPh2NProp-peptide)2]2+ (Prop=para-phenylpropionic acid, peptide (R10)=WIpPRWTGPR-NH2, p=D-proline, and P2N=1-aza-3,6-diphosphacycloheptane) that contains structured -hairpin peptides, here we investigate how H2 production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: para-phenylpropionic acid (three carbons) or para-benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H2 production for all complexes, suggesting a non-productive steric interaction atmore » longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity. Molecular dynamics simulations demonstrate that complexes with a one-carbon linker have the desired effect of restricting the motion of the hairpin relative to the complex; however, the catalytic currents are significantly reduced compared to complexes containing a three-carbon linker as a result of the electron withdrawing nature of the -COOH group. These results demonstrate the complexity and interrelated nature of the outer coordination sphere on catalysis.« less

  13. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  14. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  15. A Qualitative Analysis of the Spontaneous Volunteer Response to the 2013 Sudan Floods: Changing the Paradigm.

    PubMed

    Albahari, Amin; Schultz, Carl H

    2017-06-01

    Introduction While the concept of community resilience is gaining traction, the role of spontaneous volunteers during the initial response to disasters remains controversial. In an attempt to resolve some of the debate, investigators examined the activities of a spontaneous volunteer group called Nafeer after the Sudan floods around the city of Khartoum in August of 2013. Hypothesis Can spontaneous volunteers successfully initiate, coordinate, and deliver sustained assistance immediately after a disaster? This retrospective, descriptive case study involved: (1) interviews with Nafeer members that participated in the disaster response to the Khartoum floods; (2) examination of documents generated during the event; and (3) subsequent benchmarking of their efforts with the Sphere Handbook. Members who agreed to participate were requested to provide all documents in their possession relating to Nafeer. The response by Nafeer was then benchmarked to the Sphere Handbook's six core standards, as well as the 11 minimum standards in essential health services. A total of 11 individuals were interviewed (six from leadership and five from active members). Nafeer's activities included: food provision; delivery of basic health care; environmental sanitation campaigns; efforts to raise awareness; and construction and strengthening of flood barricades. Its use of electronic platforms and social media to collect data and coordinate the organization's response was effective. Nafeer adopted a flat-management structure, dividing itself into 14 committees. A Coordination Committee was in charge of liaising between all committees. The Health and Sanitation Committee supervised two health days which included mobile medical and dentistry clinics supported by a mobile laboratory and pharmacy. The Engineering Committee managed to construct and maintain flood barricades. Nafeer used crowd-sourcing to fund its activities, receiving donations locally and internationally using supporters outside Sudan. Nafeer completely fulfilled three of Sphere's core standards and partially fulfilled the other three, but none of the essential health services standards were fulfilled. Even though the Sphere Handbook was chosen as the best available "gold standard" to benchmark Nafeer's efforts, it showed significant limitations in effectively measuring this group. It appears that independent spontaneous volunteer initiatives, like Nafeer, potentially can improve community resilience and play a significant role in the humanitarian response. Such organizations should be the subject of increased research activity. Relevant bodies should consider issuing separate guidelines supporting spontaneous volunteer organizations. Albahari A , Schultz CH . A qualitative analysis of the spontaneous volunteer response to the 2013 Sudan floods: changing the paradigm. Prehosp Disaster Med. 2017;32(3):240-248.

  16. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

  17. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.

    1998-01-01

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  18. Mechanisms and Rates of U(VI) Reduction by Fe(II) in Homogeneous Aqueous Solution and the Role of U(V) Disproportionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Richard N.; Rosso, Kevin M.

    Molecular-level pathways in the aqueous redox transformation of uranium by iron remain unclear, despite the importance of this knowledge for predicting uranium transport and distribution in natural and engineered environments. As the relative importance of homogeneous versus heterogeneous pathways is difficult to probe experimentally, here we apply computational molecular simulation to isolate rates of key one electron transfer reactions in the homogeneous pathway. By comparison to experimental observations the role of the heterogeneous pathway also becomes clear. Density functional theory (DFT) and Marcus theory calculations for all primary monomeric species at pH values ≤7 show for UO22+ and its hydrolysismore » species UO2OH+ and UO2(OH)20 that reduction by Fe2+ is thermodynamically favorable, though kinetically limited for UO22+. An inner-sphere encounter complex between UO2OH+ and Fe2+ was the most stable for the first hydrolysis species and displayed an electron transfer rate constant ket = 4.3 × 103 s-1. Three stable inner- and outer-sphere encounter complexes between UO2(OH)20 and Fe2+ were found, with electron transfer rate constants ranging from ket = 7.6 × 102 to 7.2 × 104 s-1. Homogeneous reduction of these U(VI) hydrolysis species to U(V) is, therefore, predicted to be facile. In contrast, homogeneous reduction of UO2+ by Fe2+ was found to be thermodynamically unfavorable, suggesting the possible importance of U(V)-U(V) disproportionation as a route to U(IV). Calculations on homogeneous disproportionation, however, while yielding a stable outer-sphere U(V)-U(V) encounter complex, indicate that this electron transfer reaction is not feasible at circumneutral pH. Protonation of both axial O atoms of acceptor U(V) (i.e., by H3O+) was found to be a prerequisite to stabilize U(IV), consistent with the experimental observation that the rate of this reaction is inversely correlated with pH. Thus, despite prevailing notions that U(V) is rapidly eliminated by homogeneous disproportionation, this pathway is irrelevant at environmental conditions.« less

  19. Movable Cameras And Monitors For Viewing Telemanipulator

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Venema, Steven C.

    1993-01-01

    Three methods proposed to assist operator viewing telemanipulator on video monitor in control station when video image generated by movable video camera in remote workspace of telemanipulator. Monitors rotated or shifted and/or images in them transformed to adjust coordinate systems of scenes visible to operator according to motions of cameras and/or operator's preferences. Reduces operator's workload and probability of error by obviating need for mental transformations of coordinates during operation. Methods applied in outer space, undersea, in nuclear industry, in surgery, in entertainment, and in manufacturing.

  20. 30 CFR 250.200 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Information Document CZMA means Coastal Zone Management Act DOCD means Development Operations Coordination... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information General Information § 250.200 Definitions. Acronyms and terms used in this subpart have the following meanings: (a...

  1. 15 CFR 923.53 - Federal consistency procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Coordination, Public Involvement and National Interest...); (3) For States anticipating coastal zone effects from Outer Continental Shelf (OCS) activities, the..., which in the opinion of the State agency are likely to significantly affect the coastal zone and thereby...

  2. 15 CFR 923.53 - Federal consistency procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Coordination, Public Involvement and National Interest...); (3) For States anticipating coastal zone effects from Outer Continental Shelf (OCS) activities, the..., which in the opinion of the State agency are likely to significantly affect the coastal zone and thereby...

  3. Effect of pressure on viscosity of liquid Fe-alloys up to 16 GPa

    NASA Astrophysics Data System (ADS)

    Terasaki, H.; Ohtani, E.; Suzuki, A.; Nishida, K.; Sakamaki, T.; Shindo, S.; Funakoshi, K.

    2005-12-01

    Viscosity of liquid Fe-alloy is closely related to a convection behavior of the Earth's liquid outer core and also time scale of planetary core formation. In previous studies, viscosity of liquid Fe-S has been measured up to 7 GPa using X-ray radiography falling sphere method [Terasaki et al. 2001]. However, some technical problems, such as chemical reaction between the metal marker sphere and the Fe-alloy sample and insufficient image recording time for less viscous material, have been suggested. In this study, we have measured the viscosity of Fe-S and Fe-C liquids without those problems by using novel techniques combined with in situ X-ray radiography falling sphere method and extended the pressure range to 16 GPa. Falling sphere viscometry was carried out under high pressure and temperature using high speed CCD camera with 1500 ton Kawai-type multi-anvil device at BL04B1, SPring-8 in Japan. Starting compositions of Fe-alloy were Fe78S22 and Fe86C14 which correspond to near eutectic compositions at the experimental pressures. Viscosity marker sphere, which was made of Re or Pt, was coated by alumina in order to prevent the reaction between the sphere and the Fe-alloy sample. Falling sphere images were obtained with recording rate of 50 - 125 frame/second. Viscosity of liquid Fe-S was measured up to 16.1 GPa and 1763 K. Measured viscosity coefficients were in the range of 8.8 - 9.2 mPa-s which indicates that the activation volume of viscous flow is approximately a half of the previous estimations (1.5 cm3/mol). Viscosity of liquid Fe-C was measured up to 5 GPa and 1843 K. Viscosity coefficients are 4.7 - 4.9 mPa-s. Activation volume of Fe-C liquid is estimated to be 0.8 cm3/mol. This pressure dependence is consistent with the result of Lucas (1964) measured at ambient pressure. Consequently, viscosity of Fe-alloy liquids are likely to stay small in the Earth's interior and there is no large difference in viscosity coefficient and activation volume between Fe-S and Fe-C eutectic liquids in the range of measurements.

  4. Identification and onset of inertial modes in the wide-gap spherical Couette system

    NASA Astrophysics Data System (ADS)

    Barik, A.; Wicht, J.; Triana, S. A.; Hoff, M.

    2016-12-01

    The spherical Couette system consists of two concentric rotating spheres with a fluid filling the shell in between. The system has been studied for a long time by fluid dynamicists and is ideal for studying flow instabilities due to differential rotation and the interaction of the same with magnetic fields - important for understanding dynamics of planetary and stellar interiors. The system is also a basis for a new generation of dynamo experiments because of its closer geometrical resemblance to real astrophysical objects as compared to past experiments. We simulate this system using the two different pseudo-spectral codes MagIC and XSHELLS. We focus here on a very interesting and general instability in this system - inertial modes. A rotating body of fluid is known to sustain oscillatory waves due to the restoring action of the Coriolis force. In a bounded container, these form a discrete spectrum called inertial modes. These modes have been analytically known for a rotating full sphere for over a century now. In a spherical shell, they cannot be formulated analytically. However, many of these inertial modes are observed in spherical Couette experiments as well as in simulations. Past studies have tried to explain the onset of these modes invoking wave over-reflection or critical layer instabilities on the cylinder tangent to the inner sphere. In this study, we present the inertial modes found in our simulations and try to explain their onset as secondary instabilities due to the destabilization of the fundamental non-axisymmetric instability, forming a triadic resonance with the fundamental instability. We run various simulations varying the rotation rate of the inner sphere, while keeping the rotation rate of the outer sphere constant. We track velocities and induced magnetic field and produce spectrograms similar to those of the experiments. Our results match very well the experimental data from spherical Couette set-ups at BTU Cottbus and the University of Maryland.

  5. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    PubMed

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables advanced strategies for threating bone-related diseases, e.g. osteoporosis and multiple myeloma. Copyright © 2016. Published by Elsevier Ltd.

  6. A study on adsorption mechanism of organoarsenic compounds on ferrihydrite by XAFS

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Takahashi, Y.; Yamaguchi, N.

    2013-04-01

    Anthropogenic organoarsenic compounds which were used such as agrochemicals, pesticides, and herbicides can have a potential as a source of arsenic pollution in water. In the process, the adsorption of arsenic onto mineral surface in soil may play an important role to affect arsenic distribution in solid-water interface. However, adsorption structures of organoarsenic compounds on the iron-(oxyhydr)oxides are not well known. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to know the adsorption structure of methyl- and phenyl-substituted organoarsenic compounds (methylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), and diphenylarsinic acid (DPAA) onto ferrihydrite which can be a strong adsorbent of arsenic. EXAFS analysis suggests that the formation of inner-sphere surface complex for all organoarsenic compounds with ferrihydrite regardless of the organic functional groups and the number of substitution. The As-Fe distances are around 3.27 , which suggests both mono-and bi-dentate inner-sphere complexes by DFT calculations. The corresponding coordination numbers (CNs) are less than two, suggesting that coexistence of both structures of inner-sphere complexes.

  7. Percolation of disordered jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.; Torquato, Salvatore

    2017-02-01

    We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato-Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.

  8. In situ spectroscopic identification of neptunium(V) inner-sphere complexes on the hematite-water interface.

    PubMed

    Müller, Katharina; Gröschel, Annett; Rossberg, André; Bok, Frank; Franzen, Carola; Brendler, Vinzenz; Foerstendorf, Harald

    2015-02-17

    Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.

  9. A Computer Program for Mapping Satellite-borne Narrow-Beam Antenna Footprints on Earth. Memorandum Number 72/3.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; Singh, Jai P.

    Written primarily to define the area of the earth covered by a narrow-beam antenna carried on a synchronous satellite in circular, near equatorial orbits, a computer program has been developed that computes the locus of intersection of a quadric cone and a sphere. The program, which outputs a list of the longitude and latitude coordinates of the…

  10. The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role.

    PubMed

    Bandeira, Nuno A G; Garai, Somenath; Müller, Achim; Bo, Carles

    2015-11-04

    The mechanism for the hydration of CO2 within a Keplerate nanocapsule is presented. A network of hydrogen bonds across the water layers in the first metal coordination sphere facilitates the proton abstraction and nucleophilic addition of water. The highly acidic properties of the polyoxometalate cluster are crucial for explaining the catalysed hydration.

  11. IO Sphere: The Professional Journal of Joint Information Operations. Special Edition 2008

    DTIC Science & Technology

    2008-01-01

    members, disseminate propaganda, videos , brochures, and training materials, as well as to coordinate terrorist acts in an anonymous and...collaboration among larger communities of cyber Porn versus Terror Years ago, authorities noticed that child pornography websites, though often...stepping foot on them. Moreover, video information can be analyzed by computer vision algorithms. Based on technology available today, it’s not

  12. STS (Space Transportation System) Task Simulator.

    DTIC Science & Technology

    1985-08-15

    3 Clohessy - Wiltshire Coordinate System • • -1 1- .M 1°... "p ’. -. .’- 0 . _ -~:Q ~. ... . .o. ., 1. INTRODUCTION The Space Transportation System...motion is obtained by applying the Clohessy - Wiltshire equations for terminal rendezvous/docking with the earth modeled as a uni- form sphere...rotational accelerations to the present quaternions. The Clohessy - Wiltshire equations for terminal rendezvous/dockinq are used to model orbital drift

  13. Anomalously large effects of pressure on electron transfer kinetics in solution: The aqueous manganate(VI)-permanganate(VII) system

    NASA Astrophysics Data System (ADS)

    Swaddle, T. W.; Spiccia, L.

    1986-05-01

    The classical Stranks-Hush-Marcus theory of pressure effects on the rates of outer-sphere electron transfer reaction rates in solution underestimates |ΔV ∗| specifically, for the MnO 4/MnO 42- (aq) exchange, ΔV ∗=-21.2 (observed) vs. -6.6 cm3mol-1 (calculated). This discrepancy can best be resolved by conceding that the Mn-Mn separation σ in the transition state is variable and pressure-sensitive in the context of non-adiabatic electron transfer within an ellipsoidal cavity with σ ∼ 550 pm.

  14. Beyond Pluto: The Search for the Edge of the Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funsten, Herb

    In July, we finally visited the last major body of our solar system, Pluto. But what lies beyond? The stellar wind from our Sun forms an enormous bubble in interstellar space. This “sphere of our Sun,” or heliosphere, extends far beyond Pluto and forms a protective cocoon that shields us from cosmic radiation. In this talk, we will travel to the edge of the solar system, peer into the structure and dynamics of the outer heliosphere as it interacts with the interstellar medium and anticipate the future of the solar system as it moves through our galactic neighborhood.

  15. Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo.

    PubMed

    Miyagoshi, Takehiro; Hamano, Yozo

    2013-09-20

    We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.

  16. Neutron field characterization at the independent spent fuel storage installation of the Trillo nuclear power plant.

    PubMed

    Campo, Xandra; Méndez, Roberto; Embid, Miguel; Ortego, Alberto; Novo, Manuel; Sanz, Javier

    2018-05-01

    Neutron fields inside and outside the independent spent fuel storage installation of Trillo Nuclear Power Plant are characterized exhaustively in terms of neutron spectra and ambient dose equivalent, measured by Bonner sphere system and LB6411 monitor. Measurements are consistent with storage casks and building shield characteristics, and also with casks distribution inside the building. Outer values at least five times lower than dose limit for free access area are found. Measurements with LB6411 and spectrometer are consistent with each other. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Coordinated HArd Sphere Model (CHASM): A Simplified Model for Silicate and Oxide Liquids at Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2013-12-01

    Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic map of the wide compositional space relevant to early Earth evolution. As a first step on this path, we apply the CHASM formalism to the MgO system. We first demonstrate that the model parameters can be obtained by training on equation of state data for a variety of crystal polymorphs, which discretely sample the continuous range of coordination states available to the liquid; training only on solid data, CHASM thus provides a fully predictive model for oxide liquids. Using the best-fit parameter values, the coordination evolution and equation of state of MgO liquid is determined by free-energy minimization over a wide P-T range. These results are evaluated by favorable comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHASM is accurately capturing the dominant physical mechanism controlling the behavior of high pressure oxide liquids. By combining the CHASM description of MgO liquid with a thermodynamic model for solid MgO periclase, we also compare the MgO melting curve with both first principles computations and shock wave measurements. Future development of the CHASM model will incorporate SiO2, FeO, and Al2O3, providing a simple physical framework that enables both interpretation of experiments and prediction of behavior currently outside our technical or computational capabilities.

  18. Martians R Us.

    ERIC Educational Resources Information Center

    West, Rose

    1988-01-01

    Describes a science activity done with sixth graders during a unit on outer space. Uses the "Discovery Lab" software program to introduce controlled and experimental variables to the children. Discusses the coordination of library research, computer time, and creative drawing to study planetary environments by designing representative aliens. (CW)

  19. Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material.

    PubMed

    Wang, LiLi; Lou, Zheng; Deng, Jianan; Zhang, Rui; Zhang, Tong

    2015-06-17

    Three-dimensional (3D) nanostructures of α-Fe2O3 materials, including both hollow sphere-shaped and yolk-shell (core-shell)-shaped, have been successfully synthesized via an environmentally friendly hydrothermal approach. By expertly adjusting the reaction time, the solid, hollow, and yolk-shell shaped α-Fe2O3 can be selectively synthesized. Yolk-shell α-Fe2O3 nanospheres display outer diameters of 350 nm, and the interstitial hollow spaces layer is intimately sandwiched between the inner and outer shell of α-Fe2O3 nanostructures. The possible growth mechanism of the yolk-shell nanostructure is proposed. The results showed that the well-defined bilayer interface effectively enhanced the sensing performance of the α-Fe2O3 nanostructures (i.e., yolk-shell α-Fe2O3@α-Fe2O3), owing predominantly to the unique nanostructure, thus facilitated the transport rate and augmented the adsorption quantity of the target gas molecule under gas detection.

  20. Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution

    NASA Astrophysics Data System (ADS)

    McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn

    2002-06-01

    Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.

  1. Spherical EUV and Plasma Spectrometer (seps) -a Monitor to Measure the Plasma and EUV Environment in Space

    NASA Astrophysics Data System (ADS)

    Brunner, Raimund; Schmidtke, Gerhard; Konz, Werner; Pfeffer, Wilfried

    A low-cost monitor to measure the EUV and plasma environment in space is presented. The device consists of three (or more) isolated spheres, a metallic sphere, one or more highly trans-parent Inner Grids and Outer Grids. Each one is being connected to a sensitive floating elec-trometer. By setting different potentials to the grids as well as to the sphere and varying one or more of their voltages, measurements of spectral solar EUV irradiance (15-200 nm), of local plasma parameters such as electron and ion densities, electron energies and temperatures as well as ion compositions and debris events can be derived from the current recordings. This detector does not require any (solar) pointing device. The primary goal is to study the impact of solar activity events (e.g. CMEs) as well as subsequent reactions of the ionospheric/thermospheric systems (including space weather occurences). The capability of SEPS for measuring EUV pho-ton fluxes as well as plasma parameters in the energy range from 0 to +/-70 eV is demonstrated by laboratory measurements as performed in the IPM laboratory, at BESSY-PTB electron syn-chrotron in Berlin and at ESA/ESTEC plasma chamber. Based on the laboratory recording of plasma recombination EUV emission the sensor is suitable to detect also auroral and airglow radiations. -The state of the art in the development of this device is reported.

  2. Structures of M2(SO2)6B12F12 (M = Ag or K) and Ag2(H2O)4B12F12: Comparison of the Coordination of SO2 versus H2O and of B12F122- versus Other Weakly Coordinating Anions to Metal Ions in the Solid State.

    PubMed

    Malischewski, Moritz; Peryshkov, Dmitry V; Bukovsky, Eric V; Seppelt, Konrad; Strauss, Steven H

    2016-12-05

    The structures of three solvated monovalent cation salts of the superweak anion B 12 F 12 2- (Y 2- ), K 2 (SO 2 ) 6 Y, Ag 2 (SO 2 ) 6 Y, and Ag 2 (H 2 O) 4 Y, are reported and discussed with respect to previously reported structures of Ag + and K + with other weakly coordinating anions. The structures of K 2 (SO 2 ) 6 Y and Ag 2 (SO 2 ) 6 Y are isomorphous and are based on expanded cubic close-packed arrays of Y 2- anions with M(OSO) 6 + complexes centered in the trigonal holes of one expanded close-packed layer of B 12 centroids (⊙). The K + and Ag + ions have virtually identical bicapped trigonal prism MO 6 F 2 coordination spheres, with M-O distances of 2.735(1)-3.032(2) Å for the potassium salt and 2.526(5)-2.790(5) Å for the silver salt. Each M(OSO) 6 + complex is connected to three other cationic complexes through their six μ-SO 2 -κ 1 O,κ 2 O' ligands. The structure of Ag 2 (H 2 O) 4 Y is unique [different from that of K 2 (H 2 O) 4 Y]. Planes of close-packed arrays of anions are offset from neighboring planes along only one of the linear ⊙···⊙···⊙ directions of the close-packed arrays, with [Ag(μ-H 2 O) 2 Ag(μ-H 2 O) 2 )] ∞ infinite chains between the planes of anions. There are two nearly identical AgO 4 F 2 coordination spheres, with Ag-O distances of 2.371(5)-2.524(5) Å and Ag-F distances of 2.734(4)-2.751(4) Å. This is only the second structurally characterized compound with four H 2 O molecules coordinated to a Ag + ion in the solid state. Comparisons with crystalline H 2 O and SO 2 solvates of other Ag + and K + salts of weakly coordinating anions show that (i) N[(SO 2 ) 2 (1,2-C 6 H 4 )] - , BF 4 - , SbF 6 - , and Al(OC(CF 3 ) 3 ) 4 - coordinate much more strongly to Ag + than does Y 2- , (ii) SnF 6 2- coordinates somewhat more strongly to K + than does Y 2- , and (iii) B 12 Cl 12 2- coordinates to K + about the same as, if not slightly weaker than, Y 2- .

  3. Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues with Continuous Fiber Distributions

    PubMed Central

    Hou, Chieh; Ateshian, Gerard A.

    2015-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  4. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    PubMed

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  5. Investigation into aerodynamic and heat transfer of annular channel with inner and outer surface of the shape truncated cone and swirling fluid flow

    NASA Astrophysics Data System (ADS)

    Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.

    2017-11-01

    We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.

  6. Bis(dicyclo-hexyl-ammonium) μ-oxalato-κO,O:O,O-bis-[aqua-(oxalato-κO,O)diphenyl-stannate(IV)].

    PubMed

    Gueye, Ndongo; Diop, Libasse; Molloy, K C Kieran; Kociok-Köhn, Gabrielle

    2010-11-24

    The structure of the title compound, (C(12)H(24)N)(2)[Sn(2)(C(6)H(5))(4)(C(2)O(4))(3)(H(2)O)(2)], consists of a bischelating oxalate ion, located on an inversion center, which is linked to two SnPh(2) groups. The coordination sphere of the Sn(IV) ion is completed by a monochelating oxalate anion and a water mol-ecule. The Sn(IV) atoms are thus seven-coordinated. The discrete binuclear units are further connected by hydrogen bonds, leading to a supra-molecular crystal structure. The asymmetric unit contains one half dianion and one (Cy(2)NH(2))(+) cation.

  7. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir20, 4954-4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl - which was common to all solutions, but also for Rb + and K +. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na + ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb +, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

  8. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise,more » molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.« less

  9. A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent.

    PubMed

    Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A

    2004-01-01

    A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.

  10. The impact of whole human blood on the kinetic inertness of platinum(iv) prodrugs - an HPLC-ICP-MS study.

    PubMed

    Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda

    2018-04-17

    The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.

  11. Role of second-sphere coordination in anion binding: Synthesis, characterization and X-ray structure of hexaamminecobalt(III) chloride hydrogen phthalate trihydrate and sodium hexaamminecobalt(III) benzoate monohydrate

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Bala, Ritu; Sharma, Rajni; Kariuki, B. M.; Rychlewska, Urszula; Warżajtis, Beata

    2005-06-01

    In an effort to utilize [Co(NH 3) 6] 3+cation as a new host for carboxylate ions, orange coloured crystalline solids of composition [Co(NH 3) 6]Cl(C 8H 5O 4) 2·3H 2O ( 1) and Na[Co(NH 3) 6](C 7H 5O 2) 4·H 2O ( 2) were obtained by reacting hot aqueous solutions of hexaamminecobalt(III) chloride with potassium hydrogen phthalate and sodium benzoate in 1:3 molar ratio, respectively. The title complex salts were characterized by elemental analyses and spectroscopic studies (IR, UV/Visible and NMR). Single crystal X-ray structure determinations revealed the formation of second-sphere coordination complexes based on hydrogen bond interactions. In complex salt 1 only two out of three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced by two CHO4- ions whereas in complex salt 2 all the three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced and the final product was an adduct with another mole of sodium benzoate in solid state. The crystal lattice is stabilized by electrostatic forces of attraction and predominantly N-H⋯O interactions.

  12. Geometric Calibration of Full Spherical Panoramic Ricoh-Theta Camera

    NASA Astrophysics Data System (ADS)

    Aghayari, S.; Saadatseresht, M.; Omidalizarandi, M.; Neumann, I.

    2017-05-01

    A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.

  13. Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite.

    PubMed

    Gückel, Katharina; Rossberg, André; Müller, Katharina; Brendler, Vinzenz; Bernhard, Gert; Foerstendorf, Harald

    2013-12-17

    For the first time, detailed molecular information on the Np(V) sorption species on amorphous Al(OH)3 and crystalline gibbsite was obtained by in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The results consistently demonstrate the formation of mononuclear inner sphere complexes of the NpO2(+) ion irrespective of the prevailing atmospheric condition. The impact of the presence of atmospheric equivalent added carbonate on the speciation in solution and on the surfaces becomes evident from vibrational data. While the 1:1 aqueous carbonato species (NpO2CO3(-)) was found to become predominant in the circumneutral pH range, it is most likely that this species is sorbed onto the gibbsite surface as a ternary inner sphere surface complex where the NpO2(+) moiety is directly coordinated to the functional groups of the gibbsite's surface. These findings are corroborated by results obtained from EXAFS spectroscopy providing further evidence for a bidentate coordination of the Np(V) ion on amorphous Al(OH)3. The identification of the Np(V) surface species on gibbsite constitutes a basic finding for a comprehensive description of the dissemination of neptunium in groundwater systems.

  14. A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.

    2017-11-01

    Improving our capability to interpret observations of cometary dust is necessary to deepen our understanding of the role of dust in the formation of comets and in altering the cometary environments. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on the BATS-R-US code. This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is run in the rotating comet reference frame, the centrifugal and Coriolis forces are included. The boundary conditions on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real-shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the mesh is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. Our model achieved comparable results to the Direct Simulation Monte Carlo method and the Rosetta/OSIRIS observations. It is also applied to study the effects of the rotating nucleus and the cometary activity and offers interpretations of some dust observations of comet 67P/Churyumov-Gerasimenko.

  15. A new 3D multi-fluid dust model: a study of the effects of activity and nucleus rotation on the dust grains' behavior in the cometary environment

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Toth, G.; Fougere, N.; Tenishev, V.; Huang, Z.; Jia, X.; Hansen, K. C.; Gombosi, T. I.; Bieler, A. M.; Rubin, M.

    2016-12-01

    Cometary dust observations may deepen our understanding of the role of dust in the formation of comets and in altering the cometary environment. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on BATS-R-US in the University of Michigan's Space Weather Modeling Framework (SWMF). This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is running in the rotating comet reference frame with a real shaped nucleus in the computational domain, the fictitious centrifugal and Coriolis forces are included. The boundary condition on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun, which drives sublimation and the radiation pressure force, revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the grid is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. The effects of the rotating nucleus and the activity region on the surface are discussed and preliminary results are presented. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  16. Crystal structure of tetra­aqua­bis­(pyrimidin-1-ium-4,6-diolato-κO 4)manganese(II)

    PubMed Central

    Shennara, Khaled A.

    2017-01-01

    The MnII ion in the structure of the mononuclear title compound, [Mn(C4H3N2O2)2(H2O)4], is situated on an inversion center and is coordinated by two O atoms from two deprotonated 4,6-di­hydroxy­pyrimidine ligands and by four O atoms from water mol­ecules giving rise to a slightly distorted octa­hedral coordination sphere. The complex includes an intra­molecular hydrogen bond between an aqua ligand and the non-protonated N ring atom. The extended structure is stabilized by inter­molecular hydrogen bonds between aqua ligands, by hydrogen bonds between N and O atoms of the ligands of adjacent mol­ecules, and by hydrogen bonds between aqua ligands and the non-coordinating O atom of an adjacent mol­ecule. PMID:28435734

  17. Linked exploratory visualizations for uncertain MR spectroscopy data

    NASA Astrophysics Data System (ADS)

    Feng, David; Kwock, Lester; Lee, Yueh; Taylor, Russell M., II

    2010-01-01

    We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations.

  18. Linked Exploratory Visualizations for Uncertain MR Spectroscopy Data

    PubMed Central

    Feng, David; Kwock, Lester; Lee, Yueh; Taylor, Russell M.

    2010-01-01

    We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations. PMID:21152337

  19. Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).

    PubMed

    Reiss, Guido J

    2013-05-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

  20. A new class of sonic composites

    NASA Astrophysics Data System (ADS)

    Munteanu, Ligia; Chiroiu, Veturia; Donescu, Ştefania; Brişan, Cornel

    2014-03-01

    Transformation acoustics opens a new avenue towards the architecture, modeling and simulation of a new class of sonic composites with scatterers made of various materials and having various shapes embedded in an epoxy matrix. The design of acoustic scatterers is based on the property of Helmholtz equations to be invariant under a coordinate transformation, i.e., a specific spatial compression is equivalent to a new material in a new space. In this paper, the noise suppression for a wide full band-gap of frequencies is discussed for spherical shell scatterers made of auxetic materials (materials with negative Poisson's ratio). The original domain consists of spheres made from conventional foams with positive Poisson's ratio. The spatial compression is controlled by the coordinate transformation, and leads to an equivalent domain filled with an auxetic material. The coordinate transformation is strongly supported by the manufacturing of auxetics which is based on the pore size reduction through radial compression molds.

  1. Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts.

    PubMed

    Wurster, Benjamin; Grumelli, Doris; Hötger, Diana; Gutzler, Rico; Kern, Klaus

    2016-03-23

    Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins.

  2. 30 CFR 250.286 - What is a DWOP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Development Operations Coordination Documents. BSEE will use the information in your DWOP to determine whether... AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Deepwater Operations Plan (dwop) § 250.286 What is a DWOP? (a) A DWOP is a plan that provides sufficient information for BSEE to...

  3. 30 CFR 250.286 - What is a DWOP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Development Operations Coordination Documents. BSEE will use the information in your DWOP to determine whether... AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Deepwater Operations Plan (dwop) § 250.286 What is a DWOP? (a) A DWOP is a plan that provides sufficient information for BSEE to...

  4. 30 CFR 250.286 - What is a DWOP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Development Operations Coordination Documents. BSEE will use the information in your DWOP to determine whether... AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Deepwater Operations Plan (dwop) § 250.286 What is a DWOP? (a) A DWOP is a plan that provides sufficient information for BSEE to...

  5. 30 CFR 250.246 - What mineral resource conservation information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans (dpp) and Development Operations Coordination Documents (docd) § 250.246 What mineral resource... information, as applicable, must accompany your DPP or DOCD: (a) Technology and reservoir engineering...

  6. Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.

    2000-04-06

    The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamicsmore » trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.« less

  7. Tunable porosities and shapes of fullerene-like spheres.

    PubMed

    Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred

    2015-04-13

    The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with Cu(I) halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih -C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

  8. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    PubMed

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  9. Carbonaceous structures in the Tissint Martian Meteorite: evidence of a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    We report for the first time in situ observations of 5-50μm spherical carbonaceous structures in the Tissint Martian meteorite comprising of pyrite (FeS2) cores and carbonaceous outer coatings. The structures are characterized as smooth immiscible spheres with curved boundaries occasionally following the contours of the pyrite inclusion. The structures bear striking resemblance to similar-sized immiscible carbonaceous spheres found in hydrothermal calcite vein deposits in the Mullaghwornia Quarry in central Ireland. Similar structures have been reported in Proterozoic and Ordovician sandstones from Canada as well as in a variety of astronomical sources including carbonaceous chondrites, chondritic IDPs and primitive chondritic meteorites. SEM and X-Ray elemental mapping confirmed the presence of organic carbon filling the crack and cleavage space in the pyroxene substrate, with further evidence of pyrite acting as an attractive substrate for the collection of organic matter. The detection of precipitated carbon collecting around pyrite grains is at variance with an igneous origin as proposed for the reduced organic component in Tissint, and is more consistent with a biogenetic origin.

  10. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO2 composite.

    PubMed

    Anđelković, I; Amaizah, N R R; Marković, S B; Stanković, D; Marković, M; Kuzmanović, D; Roglić, G

    2017-09-01

    Using the microwave-hydrothermal method for the synthesis of composite, high surface density of hydroxyl groups, as an active adsorption sites for arsenic, was obtained. Adsorption mechanisms of As(III) and As(V) onto zirconium-doped titanium dioxide (Zr-TiO 2 ) were investigated and proposed using macroscopic and microscopic methods. Obtained results are suggesting inner-sphere and outer-sphere adsorption mechanisms for As(III) and As(V), respectively. This allowed us to identify parameters that are critical for the successful removal of arsenic from water, which is essential information for further optimization of the removal process. The composite was further applied for the removal of As(III) and As(V) from water in a dynamic flow through the reactor. Column study proved that the removal of both arsenic species below the value recommended by WHO can be achieved. Elution of As(III) and As(V) from the composite can be done by using small amounts of 0.01 M NaOH solution resulting in preconcentration of arsenic species and possible multiple usage of composite.

  11. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    PubMed

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  12. Dynamique socio-économique et crise familiale et éducative en côte-d'ivoire de 1960 a 1990

    NASA Astrophysics Data System (ADS)

    Assy, Edmond Paul

    2003-09-01

    This article reflects on the crisis affecting the sphere of the family and education in Côte d'Ivoire between 1960 and 1990. The country's family structure has been shaken by the market economy, by the conventional school system and by the modern legal code. This has in turn engendered a crisis of parental authority and a variety of problems connected with the instability of marriages in Côte d'Ivoire. How, then, is it possible to redress the situation and establish a partnership between the family, the educational system and society? The author advances a series of propositions for creating a better coordination between the family and the educational sphere and for reinforcing the educative capacity of the family and of society as a whole.

  13. The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering

    PubMed Central

    Szala‐Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T.

    2017-01-01

    Abstract Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. PMID:28672104

  14. Mechanical Characterization of Partially Crystallized Sphere Packings

    NASA Astrophysics Data System (ADS)

    Hanifpour, M.; Francois, N.; Vaez Allaei, S. M.; Senden, T.; Saadatfar, M.

    2014-10-01

    We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Zm is a key parameter characterizing the crystallization onset. The high fluctuation level of Zm and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.

  15. orbis (sphaera), circulus, via, iter, orbita -- on the terminological identification of the essential paradigm change in astronomy by Johannes Kepler. (German Title: orbis (sphaera), circulus, via, iter, orbita} -- zur terminologischen Kennzeichnung des wesentlichsten Paradigmawechsels in der Astronomie durch Johannes Kepler)

    NASA Astrophysics Data System (ADS)

    Krafft, Fritz

    2011-08-01

    The use of modern terminology hinders to understand historical astronomical texts and often misleads the reader. Therefore, this study tries to reconstruct the ideas of the way the planets seem to move against the sphere of fixed stars in a non-teleological manner, that means in the original view and with original terms. The study proceeds historically and explains: (1) Aristotle's system of homocentric spheres being hollow spheres of ether turning equally round the earth in the centre of the world, a number of which makes the apparatus of the movement of a planet which produces its apparently unequal motion. (2) Ptolemy's reductionistic system of geometric circles (eccentric deferents, epicycles etc.), which are indeed great circles on non-concentric hollow spheres, whereupon they turn around equally. The space which they take up in all is surrounded by an inner and an outer concentric spherical surface and makes the sphere of the planet. (3) John's of Sacrobosco transferring of the geometric astronomy to the Latin of Middle Ages and the commentators' precision of the Greek-Latin terms. (4) The tradition of the "Theorica planetarum" which makes this geometry physics by allotting every partial moving to a partial material hollow sphere (with spherical surfaces of different centricity) or full sphere of an epicycle (orbes particulares or partialis), a number of which makes the entire sphere of each planet (orbis totalis or totus). - Copernicus also stood within this tradition, except that his entire spheres differ from the earlier ones in size or thickness (because he eliminated the partly very big synodic epicycles and allocated their effect as a mere parallactic one to the yearly moving of the earth) and in the great intervening spaces between each other (a result of measuring the true distances of the planets on the basis of these parallactic effects). (5) Tycho Brahe's refutation of the unchangingness and unpermeableness and therefore solidity of all etherial spheres, what had been the fundamental condition for creating the indirect ways of the planets in all astronomical systems with partial or entire spheres engaging one another. It was particularly Kepler who recognizes that as a result celestial physics requires a complete change. (6) Kepler's replacement of celestial physics. He did not think any more that the apparent (unequal) way of a planet indirectly results from the combination of several equal movements of etherial partial and entire spheres. His planets move their true and real way caused directly by the joint effect of two corporal forces moving the planets both around the sun and to and from it, which latter makes the planet's speed indeed naturally unequal. For this "real way" he coins in late 1604 the specific term "orbita" (the modern "orbit", the German "Bahn". This term then little by little replaced the former non-specific, general description of the apparent or real way (as "via, iter, ambitus, circulus, circuitus" etc.), and Kepler used it increasingly from its introduction (initially frequently joined to a describing definition of this "way") up to the exclusive use in the fifth book of the "Epitome", after this "orbita" had changed its shape from a perfect eccentric circle to an oval and finally an elliptic form. This way Kepler marks the paradigm change of astronomy caused by himself also terminologically.

  16. Silver(I) complexes with hydantoins and allantoin: synthesis, crystal and molecular structure, cytotoxicity and pharmacokinetics.

    PubMed

    Puszyńska-Tuszkanow, Mariola; Grabowski, Tomasz; Daszkiewicz, Marek; Wietrzyk, Joanna; Filip, Beata; Maciejewska, Gabriela; Cieślak-Golonka, Maria

    2011-01-01

    Coordination polymers [Ag(L(1,3))](n) (L(1)=hydantoin, L(3)=5,5-dimethylhydantoin), {[Ag(L(2))](.)0.5H(2)O}(n) (L(2)=1-methylhydantoin) and [Ag(NH(3))(L(4))](n) (L(4)=allantoin) were prepared and characterized by elemental analysis, spectroscopic (IR, FTIR and NMR), thermal and mass spectrometry methods. The crystal structure of {[Ag(1-methylhydantoin)]·0,5H(2)O}(n) was determined and analyzed. Three 1-methylhydantoinate ligands create a T-shape (CN=3) coordination sphere around the Ag(+) ion. Additionally, a short Ag⋯Ag distance of 2.997Å was found in the structure resulting in the expanded [3+2] environment of a distorted square shape. The [Ag(L(2))] entities are bound to each other by the bridging organic ligands. Thus a two-dimensional coordination polymer is created with water molecules located between the layers. In contrast to hydantoins, the allantoin complex contains an additional ammonia molecule in the coordination sphere. Moreover, in the Ag-alla complex the M-organic ligand binding site is shifted to the N-atom of the ureid chain. Free ligands are cytotoxically inactive against human MCF-7 and A549 cancer cell lines and mouse fibroblasts Balb/3T3. The silver hydantoin complexes exhibit a very strong activity against these lines. (The introduction of the methyl groups to the ring slightly increases resistance only against the A549 cell line.) In contrast, the silver complex of allantoin shows only a weak activity which may be related to the presence of the cytotoxic ammonia group in the composition of the compound and/or the different binding site of the ligand. Calculated in silico physiochemical parameters are promising for the future application of the complexes as drugs. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Alkaline-earth metal carboxylates characterized by 43Ca and 87Sr solid-state NMR: impact of metal-amine bonding.

    PubMed

    Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L

    2014-01-06

    A series of calcium and strontium complexes featuring aryl carboxylate ligands has been prepared and characterized by alkaline-earth ((43)Ca and (87)Sr) solid-state NMR experiments in a magnetic field of 21.1 T. In the 11 compounds studied as part of this work, a range of coordination motifs are observed including nitrogen atom binding to Ca(2+) and Sr(2+), a binding mode which has not been investigated previously by (43)Ca or (87)Sr solid-state NMR. (43)Ca isotopic enrichment has enabled the full characterization of the (43)Ca electric field gradient (EFG) and chemical shift tensors of the two calcium sites in calcium p-aminosalicylate (Ca(pams)), where both NMR interactions are affected by the presence of a nitrogen atom in the first coordination sphere of one of the metal sites. The (43)Ca isotropic chemical shift is sensitive to the Ca-N distance as exemplified by the NMR parameters of a second form of Ca(pams) and density functional theory (DFT) calculations. Studies of the strontium analogue, Sr(pams), confirm a similar sensitivity of the (87)Sr EFG tensor to the presence or absence of nitrogen in the first coordination sphere. To our knowledge, this is the first systematic (87)Sr NMR study of strontium complexes featuring organic ligands. The |CQ((87)Sr)| values are found to be sensitive to the coordination number about Sr(2+). In general, this work has also established a larger data set of reliable experimental |CQ((43)Ca)| values which correlate well with those obtained using gauge-including projector-augmented-wave (GIPAW) DFT calculations. It is found that the use of a recently recommended quadrupole moment for (43)Ca, -44.4 mbarn, improves the agreement with experimental values. This contribution lays the groundwork for the interpretation of (43)Ca and (87)Sr NMR spectra of more challenging systems, particularly where nitrogen-alkaline earth metal bonding is occurring.

  18. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late transition metals. Although coordinated to a metal, the antimony centers in these complexes retain residual Lewis acidity, as evidenced by their ability to participate in anion binding. Anion binding events at the antimony center have been shown by structural, spectroscopic, and theoretical studies to perturb the antimony-transition metal interaction and in some cases to trigger reactivity at the metal center. Coordinated Sb(III) centers in polydentate ligands have also been found to readily undergo two-electron oxidation, generating strongly Lewis acidic Sb(V) centers in the coordination sphere of the metal. Theoretical studies suggest that oxidation of the coordinated antimony center induces an umpolung of the antimony-metal bond, resulting in depletion of electron density at the metal center. In addition to elucidating the fundamental coordination and redox chemistry of antimony-containing ambiphilic ligands, our work has demonstrated that these unusual behaviors show promise for use in a variety of applications. The ability of coordinated antimony centers to bind anions has been exploited for sensing applications, in which anion coordination at antimony leads to a colorimetric response via a change in the geometry about the metal center. In addition, the capacity of antimony Lewis acids to modulate the electron density of coordinated metals has proved to be key in facilitating photochemical activation of M-X bonds as well as antimony-centered redox-controlled catalysis.

  19. Numerical relativity in spherical coordinates with the Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-04-01

    Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.

  20. Mechanism of protein import across the chloroplast envelope.

    PubMed

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  1. Compaction of granular materials: numerical simulation of "elastic" compression and pressure solution creep

    NASA Astrophysics Data System (ADS)

    Bernabe, Y.; Evans, J.

    2012-12-01

    In a previous work we investigated stress transfer in a pair of grain contacts undergoing pressure solution (PS) creep, showed that stress transfer resulted in a significant decrease in overall strain rate, and concluded that PS creep rates of a randomly packed granular aggregate should be affected by packing evolution and the formation of new contacts during creep. To test these conclusions further, we are numerically simulating the "elastic" hydrostatic compression of a random pack of spheres, using a numerical method similar to that of Cundall and Strack [1979]. We assumed that the spheres were frictionless (i.e., spheres in contact only interacted through normal forces) and that the contact forces obeyed the non-linear Digby [1981] model. In order to determine the PS creep compression of the sphere pack subjected to a constant confining pressure pc, we calculated the thicknesses of the dissolved layers at each individual grain contact during a small time increment and, from these, the overall deformation of the sphere pack. We used an analytical expression discussed in our previous paper and originating from Lehner and Leroy [2004]. During these simulations, we also computed the mean coordination number of the grain contact z, the effective bulk modulus K of the sphere pack and others parameters characterizing the topological and mechanical properties of the sphere assembly. Our results show strong non-linear increase of z and K with pc during "elastic" compression and, with time, during PS creep. The packing rearrangements associated with PS creep produce complex time dependence of the overall deformation ɛ(t). We observed a regular transition from ɛ∝t^3/4 at early times (i.e., less than 0.1 years) and ɛ∝t^1/3 at late times (i.e., more than 1000 years). Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotech., 29, 47-65. Digby, P.J. (1981), The effective elastic moduli of porous rocks, J. Appl. Mech., 48, 803-808. Lehner, F.K., and Y. Leroy (2004), Sandstone compaction by intergranular pressure solution, In Mech. Fluid Saturated Rocks (eds. Y. Guéguen and M. Boutéca), Elsevier.

  2. Determination of the Avogadro constant by the XRCD method using a 28Si-enriched sphere

    NASA Astrophysics Data System (ADS)

    Kuramoto, Naoki; Mizushima, Shigeki; Zhang, Lulu; Fujita, Kazuaki; Azuma, Yasushi; Kurokawa, Akira; Okubo, Sho; Inaba, Hajime; Fujii, Kenichi

    2017-10-01

    To determine the Avogadro constant N A by the x-ray crystal density method, the density of a 28Si-enriched crystal was determined by absolute measurements of the mass and volume of a 1 kg sphere manufactured from the crystal. The mass and volume were determined by an optical interferometer and a vacuum mass comparator, respectively. The sphere surface was characterized by x-ray photoelectron spectroscopy and spectroscopic ellipsometry to derive the mass and volume of the Si core of the sphere excluding the surface layers. From the mass and volume, the density of the Si core was determined with a relative standard uncertainty of 2.3  ×  10-8. By combining the Si core density with the lattice constant and the molar mass of the sphere reported by the International Avogadro Coordination (IAC) project in 2015, a new value of 6.022 140 84(15)  ×  1023 mol-1 was obtained for N A with a relative standard uncertainty of 2.4  ×  10-8. To make the N A value determined in this work usable for a future adjustment of the fundamental constants by the CODATA Task Group on Fundamental Constants, the correlation of the new N A value with the N A values determined in our previous works was examined. The correlation coefficients with the values of N A determined by IAC in 2011 and 2015 were estimated to be 0.07 and 0.28, respectively. The correlation of the new N A value with the N A value determined by IAC in 2017 using a different 28Si-enriched crystal was also examined, and the correlation coefficient was estimated to be 0.21.

  3. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  4. Beyond Pluto: The Search for the Edge of the Solar System

    ScienceCinema

    Funsten, Herb

    2018-01-16

    In July, we finally visited the last major body of our solar system, Pluto. But what lies beyond? The stellar wind from our Sun forms an enormous bubble in interstellar space. This “sphere of our Sun,” or heliosphere, extends far beyond Pluto and forms a protective cocoon that shields us from cosmic radiation. In this talk, we will travel to the edge of the solar system, peer into the structure and dynamics of the outer heliosphere as it interacts with the interstellar medium and anticipate the future of the solar system as it moves through our galactic neighborhood.

  5. Potentiometric and DFT studies of Cu(II) complexes with glycylglycine and methionine of interest for the brain chemistry

    NASA Astrophysics Data System (ADS)

    Vilhena, Felipe S.; Felcman, Judith; Szpoganicz, Bruno; Miranda, Fabio S.

    2017-01-01

    A large number of copper (II) complexes have been used as mimetic models for metalloproteins and metalloenzymes. Due to the lack of structural information about copper (II) complexes in aqueous solution, the coordination environment of this metal is not well established. In this work, pKa values of the complexes in the Cu:GlyGly, Cu:Met and Cu:GlyGly:Met systems were calculated by potentiometric titration at 25 °C and ionic strength of 0.1 mol L-1. The coordination modes of the ligands were explored for the main hydrolytic species throught RI-PBE/def2-SVP/COSMO level. In the Cu:GlyGly system, DFT results indicated that the NamineNpept coordination of dipeptide is 2.1 kcal mol-1 more stable than the tridentate NamineNpeptOcarboxy coordination moiety. The deprotonation of the peptide nitrogen is 13.7 kcal mol-1 more favorable than the hydrolysis of the water molecule coordinated to the metal. In the Cu:GlyGly:Met system, the sulfur atom does not belong to the copper (II) coordination sphere. Once the copper ion is incorporated into peptides, another ligand as methionine could bind to this system and carry an antioxidant site to different brain regions.

  6. Wigner functions for nonclassical states of a collection of two-level atoms

    NASA Technical Reports Server (NTRS)

    Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.

    1993-01-01

    The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.

  7. Empirical Analysis of the Effectiveness of Teacher Distance Education (TDE) in Ghana: The Perception of Student Teachers, Tutors and Coordinators of the University of Education, Winneba (UEW)

    ERIC Educational Resources Information Center

    Attah-Mensah, Godwin; Acheampong, Alex Opoku; Nti- Adarkwah, Samuel

    2016-01-01

    Education has proven to be an effective means of developing the human resource base of most nations and could advance the development of nations. In other to upgrade and train more professionals and non-professionals in the sphere of education, the concept of teacher distance education has gained more attention globally. Therefore, more and new…

  8. Statistics of Stokes variables for correlated Gaussian fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.

    1994-09-01

    The joint and marginal probability distribution functions of the Stokes variables are derived for correlated Gaussian fields [an extension of D. Eliyahu, Phys. Rev. E 47, 2881 (1993)]. The statistics depend only on the first moment (averaged) Stokes variables and have a universal form for [ital S][sub 1], [ital S][sub 2], and [ital S][sub 3]. The statistics of the variables describing the Cartesian coordinates of the Poincare sphere are given also.

  9. Mechanism of Cd2+-coordination during Slow Inactivation in Potassium Channels

    PubMed Central

    Raghuraman, H.; Cordero-Morales, Julio F.; Jogini, Vishwanath; Pan, Albert C.; Kollewe, Astrid; Roux, Benoît; Perozo, Eduardo

    2013-01-01

    Summary In K+ channels, rearrangements of the pore outer-vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggest these movements to be modest in magnitude. Here, we show that under physiological conditions, the KcsA outer-vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an outer-vestibule cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+-bound Y82C-KcsA in the closed state, together with EPR distance measurements in the KcsA outer-vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation. PMID:22771214

  10. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  11. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  12. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    PubMed

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  13. Correlation processing of polarization inhomogenous images in laser diagnostics of biological tissues

    NASA Astrophysics Data System (ADS)

    Trifonyuk, L.

    2012-10-01

    The model of interaction of laser radiation with biological tissue as a two-component amorphous-crystalline matrix was proposed. The processes of formation of polarization of laser radiation are considered, taking into account birefringence network protein fibrils. Measurement of the coordinate distribution of polarization states in the location of the laser micropolarimetr was conducted .The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of polarization azimuth of laser images of histological sections of women's reproductive sphere tissues and pathological changes in human organism. The diagnostic criteria of the prolapse of the vaginal tissue arising are determined.

  14. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    PubMed

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  15. Post-Flight Estimation of Motion of Space Structures: Part 2

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    A computer program related to the one described in the immediately preceding article estimates the relative position of two space structures that are hinged to each other. The input to the program consists of time-series data on distances, measured by two range finders at different positions on one structure, to a corner-cube retroreflector on the other structure. Given a Cartesian (x,y,z) coordinate system and the known x coordinate of the retroreflector relative to the y,z plane that contains the range finders, the program estimates the y and z coordinates of the retroreflector. The estimation process involves solving for the y,z coordinates of the intersection between (1) the y,z plane that contains the retroreflector and (2) spheres, centered on the range finders, having radii equal to the measured distances. In general, there are two such solutions and the program chooses the one consistent with the design of the structures. The program implements a Kalman filter. The output of the program is a time series of estimates of the relative position of the structures.

  16. Designing a Dy2 Single-Molecule Magnet with Two Well-Differentiated Relaxation Processes by Using a Nonsymmetric Bis-bidentate Bipyrimidine- N-Oxide Ligand: A Comparison with Mononuclear Counterparts.

    PubMed

    Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique

    2018-06-04

    Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.

  17. Cavity method for force transmission in jammed disordered packings of hard particles.

    PubMed

    Bo, Lin; Mari, Romain; Song, Chaoming; Makse, Hernán A

    2014-10-07

    The force distribution of jammed disordered packings has always been considered a central object in the physics of granular materials. However, many of its features are poorly understood. In particular, analytic relations to other key macroscopic properties of jammed matter, such as the contact network and its coordination number, are still lacking. Here we develop a mean-field theory for this problem, based on the consideration of the contact network as a random graph where the force transmission becomes a constraint satisfaction problem. We can thus use the cavity method developed in the past few decades within the statistical physics of spin glasses and hard computer science problems. This method allows us to compute the force distribution P(f) for random packings of hard particles of any shape, with or without friction. We find a new signature of jamming in the small force behavior P(f) ∼ f(θ), whose exponent has attracted recent active interest: we find a finite value for P(f = 0), along with θ = 0. Furthermore, we relate the force distribution to a lower bound of the average coordination number z[combining macron](μ) of jammed packings of frictional spheres with coefficient μ. This bridges the gap between the two known isostatic limits z[combining macron]c (μ = 0) = 2D (in dimension D) and z[combining macron]c(μ → ∞) = D + 1 by extending the naive Maxwell's counting argument to frictional spheres. The theoretical framework describes different types of systems, such as non-spherical objects in arbitrary dimensions, providing a common mean-field scenario to investigate force transmission, contact networks and coordination numbers of jammed disordered packings.

  18. Drastic Effect of the Peptide Sequence on the Copper-Binding Properties of Tripeptides and the Electrochemical Behaviour of Their Copper(II) Complexes.

    PubMed

    Mena, Silvia; Mirats, Andrea; Caballero, Ana B; Guirado, Gonzalo; Barrios, Leoní A; Teat, Simon J; Rodriguez-Santiago, Luis; Sodupe, Mariona; Gamez, Patrick

    2018-04-06

    The binding and electrochemical properties of the complexes Cu II -HAH, Cu II -HWH, Cu II -Ac-HWH, Cu II -HHW, and Cu II -WHH have been studied by using NMR and UV/Vis spectroscopies, CV, and density functional calculations. The results obtained highlight the importance of the peptidic sequence on the coordination properties and, consequently, on the redox properties of their Cu II complexes. For Cu II -HAH and Cu II -HWH, no cathodic processes are observed up to -1.2 V; that is, the complexes exhibit very high stability towards copper reduction. This behaviour is associated with the formation of very stable square-planar (5,5,6)-membered chelate rings (ATCUN motif), which enclose two deprotonated amides. In contrast, for non-ATCUN Cu II -Ac-HWH, Cu II -HHW complexes, simulations seem to indicate that only one deprotonated amide is enclosed in the coordination sphere. In these cases, the main electrochemical feature is a reductive irreversible one electron-transfer process from Cu II to Cu I , accompanied with structural changes of the metal coordination sphere and reprotonation of the amide. Finally, for Cu II -WHH, two major species have been detected: one at low pH (<5), with no deprotonated amides, and another one at high pH (>10) with an ATCUN motif, both species coexisting at intermediate pH. The present study shows that the use of CV, using glassy carbon as a working electrode, is an ideal and rapid tool for the determination of the redox properties of Cu II metallopeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Carpenter, Margaret C; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; Wilcox, Dean E; Schenk, Gerhard

    2017-07-05

    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its β site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the β site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the β site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the β site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.

  20. Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1980-01-01

    A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).

  1. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    PubMed Central

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  2. Developing of 10-year EEZ seafloor mapping and research program

    USGS Publications Warehouse

    Lockwood, M.; Hill, G.W.

    1988-01-01

    The intent of expanding the exploration already begun on the outer continental shelf to the frontier of the EEZ (Exclusive Economic Zone) is to determine the "characteristics' and resource potential of this region. To coordinate this exploration, a Joint Office for Mapping and Research (JOMAR) has been established by the US Geological Survey (in the Department of the Interior) and the National Oceanic and Atmospheric Administration (in the Department of Commerce). JOMAR's main purpose is to help direct and coordinate ongoing and planned seafloor related activities in the EEZ and prepare a 10-year plan for mapping and research. -from Authors

  3. Heat capacity of a self-gravitating spherical shell of radiations

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2017-10-01

    We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity δ Srad=β δ Mrad additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one β-1.

  4. Le contenu astronomique des Sphériques de Ménélaos

    NASA Astrophysics Data System (ADS)

    Nadal, Robert; Taha, Abdelkaddous; Pinel, Pierre

    2004-07-01

    The Spherics were written by Menelaos in the form of a purely mathematical treatise. However, the material developed in the second and third book is closely linked to problems met in astronomy: computation of equatorial coordinates of the Sun, setting up of rising-time tables, study of the motion of the Sun in the sphaera obliqua, simultaneous risings. This link, which remains implicit in the text, was clearly displayed by two arabo-islamic mathematicians and astronomers, who expounded the astronomical meaning of some theorems of the Spherics. We describe, comment and complement their explanations, by classifying the implications of the theorems in three groups: direction of variation of some quantities on the sphere, spherical trigonometry and applications, direction of variation of ratios of some quantities on the sphere. An erratum to this article can be found at http://dx.doi.org/10.1007/s00407-004-0084-7

  5. Design and Implementation of High Precision Temperature Measurement Unit

    NASA Astrophysics Data System (ADS)

    Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng

    2018-03-01

    Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.

  6. The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering.

    PubMed

    Szala-Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T; Hardacre, Christopher; Youngs, Tristan G A

    2017-09-20

    Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Anomalous enhancement of proton conductivity for water molecular clusters stabilized in interstitial spaces of porous molecular crystals.

    PubMed

    Tadokoro, Makoto; Ohhata, Yuki; Shimazaki, Yuriko; Ishimaru, Shin'ichi; Yamada, Teppei; Nagao, Yuki; Sugaya, Tomoaki; Isoda, Kyosuke; Suzuki, Yuta; Kitagawa, Hiroshi; Matsui, Hiroshi

    2014-10-13

    In an investigation into the proton conductivity of crystallized water clusters confined within low-dimensional nanoporous materials, we have found that water-stable nanoporous crystals are formed by complementary hydrogen bonding between [Co(III) (H2 bim)3 ](3+) (H2 bim: 2,2'-biimidazole) and TATC(3-) (1,3,5- tricarboxyl-2,4,6-triazinate); the O atoms in the -COO(-) groups of TATC(3-) in the porous outer wall are strongly hydrogen bonded with H2 O, forming two types of WMCs (water molecular clusters): a spirocyclic tetramer chain (SCTC) that forms infinite open 1D channels, and an isolated cyclic tetramer (ICT) present in the void space. The ICT is constructed from four H2 O molecules as a novel C2 -type WMC, which are hydrogen bonded with four-, three-, and two-coordination spheres, respectively. The largest structural fluctuation is observed at elevated temperatures from the two-coordinated H2 O molecules, which begin to rapidly and isotropically fluctuate on heating. This behavior can be rationalized by a simple model for the elucidation of pre-melting phenomena, similar to those in ice surfaces as the temperature increases. Moreover, high proton conductivity of SCTCs (ca. 10(-5) S cm(-1) at 300 K with an activation energy of 0.30 eV) through a proton-hole mechanism was observed for pellet samples using the alternating impedance method. The proton conductivity exhibits a slight enhancement of about 0.1×10(-5) S cm(-1) at 274 K due to a structural transition upon approaching this temperature that elongates the unit cell along the b-axis. The proton-transfer route can be predicted in WMCs, as O(4) of an H2 O molecule at the center of an SCTC shows a motion that rotates the dipole in the b-axis direction, but not the c-axis; the thermal ellipsoids of O(4) based on anisotropic temperature factors obtained by X-ray crystallography reflect a structural fluctuation along the b-axis direction induced by [Co(III) (H2 bim)3 ](3+) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  9. Benthic Foraminifers identify the source of displaced sediment from a sediment density flow at 1840 m near the Seafloor Instrument Node of the Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    McGann, M.; Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Barry, J.; Carvajal, C.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Parsons, D. R.; O'Reilly, T. C.; Rosenberger, K. J.; Wolfson-Schwehr, M.; Simmons, S.; Sumner, E.; Talling, P.; Xu, J.

    2017-12-01

    Submarine canyons are found along the slopes of most continental margins and turbidity currents are thought to be the primary mechanism responsible for transporting sediment through them to deep-sea fans. The initiation sites of these flows are difficult to locate with any degree of precision from lithology alone. Fortunately, the presence of allochthonous microscopic remains, such as benthic foraminifers, can aid in the identification of the source of the displaced sediments. In Monterey Canyon, offshore California, a Seafloor Instrument Node (SIN) and adjacent mooring in the Coordinated Canyon Experiment indicate that a February 2017 turbidity current reached 1840 m water depth. In April 2017, one push core was obtained on each of four sides of the SIN just outside its frame and six others from 30-100 m away. Each was cut into 1 cm slices, stained with rose Bengal, washed, and analyzed for their microscopic constituents. Material recovered included terrestrial debris (wood, leaves, seeds, highway safety spheres, and volcanic glass) as well as foraminiferal tests. Dead benthic foraminifers from the estuarine (0-10 m), inner shelf (0-50 m), outer shelf (50-150 m), slope break (150 m), upper bathyal (150-500 m), and middle bathyal (500-2000 m) biofacies were present, suggesting a staged progression of sediment downslope from the continental shelf and slope. Living (rose Bengal stained) foraminifers recovered represent estuarine (Ammonia tepida, Elphidium excavatum), inner shelf (Buccella frigida, B. tenerrima, Buliminella elegantissima, Cibicides fletcheri, Nonionella spp., Rotorbinella turbinata), and upper bathyal (Bolivina pacifica, B. spissa, Epistominella exigua, Uvigerina peregrina) species as well as an in-situ middle bathyal biofacies (Bolivina argentea, B. spissa, Buliminella tenuata, Epistominella pacifica, Globobulimina spp., Uvigerina peregrina, U. hispida). The presence of living allochthonous benthic foraminifers from these shallower biofacies suggests the flow that covered portions of the SIN frame and the surrounding area originated in the estuarine to shallow shelf environment. Because the shallow water species were still alive when deposited at 1840 m water depth, the sediment gravity flow was a rapid event that transported sediment down canyon to this deep-marine site.

  10. Reactivity of molecular dioxygen towards a series of isostructural dichloroiron(III) complexes with tripodal tetraamine ligands: general access to mu-oxodiiron(III) complexes and effect of alpha-fluorination on the reaction kinetics.

    PubMed

    Thallaj, Nasser K; Rotthaus, Olaf; Benhamou, Leila; Humbert, Nicolas; Elhabiri, Mourad; Lachkar, Mohammed; Welter, Richard; Albrecht-Gary, Anne-Marie; Mandon, Dominique

    2008-01-01

    We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2). All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable mu-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three mu-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the kappa(4)N coordination mode. With FTPA, the compound is a neutral mu-oxodiiron(III) complex with a kappa(3)N coordination mode of the ligand. Oxygenation of the F(2)TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all mu-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of mu-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90 % conversion over 40 h, the monofluorinated ligand provides a complex that has fully reacted after 30 h, whereas the reaction time for the complex with the difluorinated ligand is only 10 h. Analysis of the spectroscopic data reveals that formation of the mu-oxo complexes proceeds in two distinct reversible kinetic steps with k(1) approximately 10 k(2). For TPAFeCl(2) and FTPAFeCl(2) only small variations in the k(1) and k(2) values are observed. By contrast, F(2)TPAFeCl(2) exhibits k(1) and k(2) values that are ten times higher. These differences in kinetics are interpreted in the light of structural and electronic effects, especially the Lewis acidity at the metal center. Our results suggest coordination of dioxygen as an initial step in the process leading to formation of mu-oxodiiron(III) compounds, by contrast with an unlikely outer-sphere reduction of dioxygen, which generally occurs at negative potentials.

  11. Superspace models for S-3

    NASA Astrophysics Data System (ADS)

    McKeon, D. G. C.

    2003-11-01

    The simplest supersymmetric extension of the group SO(4) is discussed. The superalgebra is realized in a superspace whose Bosonic subspace is the surface of a sphere S-3 embedded in four-dimensional Euclidean space. By using Fermionic coordinates in this superspace, which are chiral symplectic Majorana spinors, it proves possible to devise superfield models involving a complex scalar, a pair of chiral symplectic Majorana spinors, and a complex auxiliary scalar. Kinetic terms involve operators that are isometry generators on S-3.

  12. Augmentation of heat and mass transfer in laminar flow of suspensions: A correlation of data

    NASA Astrophysics Data System (ADS)

    Ahuja, Avtar S.

    1980-01-01

    The experimental data from literature on the augmentation of heat and gas transport in the laminar flow of suspensions of polystyrene spheres have been correlated on common coordinates. The correlation includes the influences of particle size, tube diameter and length, shear rate of flow, transport properties of diffusing species (heat or gas) in suspending liquids, and of the particle interactions on the augmentation of heat or gas transfer in flowing suspensions.

  13. Alternative Way of Shifting Mass to Move a Spherical Robot

    NASA Technical Reports Server (NTRS)

    Lux, James

    2005-01-01

    The method proposed calls for suspending a payload by use of four or more cables that would be anchored to the inner surface of the sphere. In this method, the anchor points would not be diametrically opposite points defining Cartesian axes. The payload, which includes the functional analog of the aforementioned control box, would contain winches that would shorten or lengthen the cables in a coordinated manner to shift the position of the payload within the shell.

  14. A molecular view of cisplatin's mode of action: interplay with DNA bases and acquired resistance.

    PubMed

    Marques, M Paula M; Gianolio, Diego; Cibin, Giannantonio; Tomkinson, John; Parker, Stewart F; Valero, Rosendo; Pedro Lopes, R; Batista de Carvalho, Luis A E

    2015-02-21

    The interaction of the widely used anticancer drug cisplatin with DNA bases was studied by EXAFS and vibrational spectroscopy (FTIR, Raman and INS), coupled with DFT/plane-wave calculations. Detailed information was obtained on the local atomic structure around the Pt(ii) centre, both in the cisplatin-purine (adenine and guanine) and cisplatin-glutathione adducts. Simultaneous neutron and Raman scattering experiments allowed us to obtain a reliable and definite picture of this cisplatin interplay with its main pharmacological target (DNA), at the molecular level. The vibrational experimental spectra were fully assigned in the light of the calculated pattern for the most favoured geometry of each drug-purine adduct, and cisplatin's preference for guanine (G) relative to adenine (A) within the DNA double helix was experimentally verified: a complete N by S substitution in the metal coordination sphere was only observed for [cDDP-A2], reflecting a somewhat weaker Pt-A binding relative to Pt-G. The role of glutathione on the drug's pharmacokinetics, as well as on the stability of platinated DNA adducts, was evaluated as this is the basis for glutathione-mediated intracellular drug scavenging and in vivo resistance to Pt-based anticancer drugs. Spectroscopic evidence of the metal's preference for glutathione's sulfur over purine's nitrogen binding sites was gathered, at least two sulfur atoms being detected in platinum's first coordination sphere.

  15. New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.

    2017-09-01

    Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).

  16. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.

    PubMed

    Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E

    2006-07-28

    A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.

  17. Pseudosymmetric fac-di­aqua­trichlorido[(di­methyl­phosphor­yl)methanaminium-κO]manganese(II)

    PubMed Central

    Reiss, Guido J.

    2013-01-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted o­cta­hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol­ecules and the O-coordinated dpmaH cation [dpmaH = (di­methyl­phosphor­yl)methanaminium] complete the coordination sphere. Each complex mol­ecule is connected to its neighbours by O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)]. PMID:23723764

  18. Synthesis and decomposition of a novel carboxylate precursor to indium oxide

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.

    1994-01-01

    Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.

  19. Dolan Grady relations and noncommutative quasi-exactly solvable systems

    NASA Astrophysics Data System (ADS)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2003-11-01

    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.

  20. Crystal structure of iron(III) perchlorate nona­hydrate

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    Since the discovery of perchlorate salts on Mars and the known occurrence of ferric salts in the regolith, there is a distinct possibility that the title compound could form on the surface of Mars. [Fe(H2O)6](ClO4)3·3H2O was crystallized from aqueous solutions at low temperatures according to the solid–liquid phase diagram. It consists of Fe(H2O)6 octa­hedra (point group symmetry -3.) and perchlorate anions (point group symmetry .2) as well as non-coordinating water mol­ecules, as part of a second hydrogen-bonded coordination sphere around the cation. The perchlorate appears to be slightly disordered, with major–minor component occupancies of 0.773 (9):0.227 (9). PMID:25552970

  1. The implementation of aerial object recognition algorithm based on contour descriptor in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Babayan, Pavel; Smirnov, Sergey; Strotov, Valery

    2017-10-01

    This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  2. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    PubMed

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cs

  3. Reaction of Hydroquinone with Hematite I. Study of Adsorption by Electrochemical-Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H

    2004-06-15

    The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate ofreductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5–3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with ~1.1 H₂/nm², but can be fairly disordered (especiallymore » when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate–surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less

  4. Reaction of hydroquinone with hematite I. Study of asdsorption by electrochemical-scanning tunneling microscopy and X-ray photoelectron spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H

    2003-12-01

    The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with {approx}1.1 QH{sub 2}/nm{sup 2}, but can bemore » fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less

  5. Characterization of the organic ligand shell of semiconductor quantum dots by fluorescence quenching experiments.

    PubMed

    Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst

    2011-10-25

    We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.

  6. Heterobimetallic Catalysis: Platinum-Gold-Catalyzed Tandem Cyclization/C-X Coupling Reaction of (Hetero)Arylallenes with Nucleophiles.

    PubMed

    Alonso, José Miguel; Muñoz, María Paz

    2018-04-16

    Heterobimetallic catalysis offers new opportunities for reactivity and selectivity but still presents challenges, and only a few metal combinations have been explored so far. Reported here is a Pt-Au heterobimetallic catalyst system for the synthesis of a family of multi-heteroaromatic structures through tandem cyclization/C-X coupling reaction. Au-catalyzed 6-endo-cyclization takes place as the first fast step. Pt-Au clusters are proposed to be responsible for the increased reactivity in the second step, that is, the intermolecular nucleophilic addition which occurs through an outer-sphere mechanism by hybrid homogeneous-heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 1H NMR study of inclusion compounds of phenylurea derivatives in β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Dupuy, N.; Barbry, D.; Bria, M.; Marquis, S.; Vrielynck, L.; Kister, J.

    2005-04-01

    Proton nuclear magnetic resonance spectroscopy ( 1H NMR), which has become an important tool for the study "in situ" of β-cyclodextrin (β-CD) complexes, was used to study and structurally characterize the inclusion complexes formed between β-CD and isoproturon, fenuron, monuron and diuron. The high variation of the chemical shifts from the proton located inside the cavity (H-3, H-5 and H-6) coupled with the non variation of the one located outer sphere of the β-CD (H-1, H-2 and H-4) provided clear evidence of the inclusion phenomena. Two-dimensional rotating frame Overhauser effect spectroscopy (ROESY) experiments were carried out to further support the proposed inclusion mode.

  8. Existence of frozen-in coordinate systems

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.

  9. Polarization Utilization in Radar Target Reconstruction: C-Wide (Multi-Frequency) Band Relationship of a Target’s Characteristic Operators with Its Unique Set of Natural Eigenfrequencies.

    DTIC Science & Technology

    1983-12-14

    the left half of the s- plane . These are representation independent. We shall be interested in these poles only. These poles are the complex...on the Left Half Plane Asymptotic Behavior of the SEM Expansion of Surface Currents, Published in Special Issue on the Singularity Expansion Method...precisely, the polarization chart is an orthogonal projection of the Poincare Sphere on a plane , having polar coordinates p= cos (2-) and

  10. Reactivity pathways for nitric oxide and nitrosonium with iron complexes in biologically relevant sulfur coordination spheres.

    PubMed

    Harrop, Todd C; Song, Datong; Lippard, Stephen J

    2007-11-01

    The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental sulfur generates higher nuclearity Fe/S clusters.

  11. Hierarchical NiCo2O4 Hollow Sphere as a Peroxidase Mimetic for Colorimetric Detection of H2O2 and Glucose

    PubMed Central

    Huang, Wei; Lin, Tianye; Cao, Yang; Lai, Xiaoyong; Peng, Juan; Tu, Jinchun

    2017-01-01

    In this work, the hierarchical NiCo2O4 hollow sphere synthesized via a “coordinating etching and precipitating” process was demonstrated to exhibit intrinsic peroxidase-like activity. The peroxidase-like activity of NiCo2O4, NiO, and Co3O4 hollow spheres were comparatively studied by the catalytic oxidation reaction of 3,3,5,5-tetramethylbenzidine (TMB) in presence of H2O2, and a superior peroxidase-like activity of NiCo2O4 was confirmed by stronger absorbance at 652 nm. Furthermore, the proposed sensing platform showed commendable response to H2O2 with a linear range from 10 μM to 400 μM, and a detection limit of 0.21 μM. Cooperated with GOx, the developed novel colorimetric and visual glucose-sensing platform exhibited high selectivity, favorable reproducibility, satisfactory applicability, wide linear range (from 0.1 mM to 4.5 mM), and a low detection limit of 5.31 μM. In addition, the concentration-dependent color change would offer a better and handier way for detection of H2O2 and glucose by naked eye. PMID:28124997

  12. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  13. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa

    USGS Publications Warehouse

    Degens, E.T.; Okada, H.; Honjo, S.; Hathaway, J.C.

    1972-01-01

    The origin and chemical nature of micron-sized spheres found as suspended particles in Lake Kivu are examined. It can be shown that the hollow spheres, with a wall thickness of 500 A??, consist of a complex polymeric resinous material which has little functionality, except for hydroxyl groups. The spheres arise in the process of degassing of water samples at depth. Tiny gas bubbles, about 1 micron in size, act as scavengers of dissolved resinous material. The newly created resinous membrane promotes the selective coordination of zinc dissolved in the water column. In the prevailing H2S regime, formation of sphalerite crystals in induced. The size range of the crystals, 5 to 50 A??, corresponds to 1 to 10 unit cells and suggests that the resinous membrane also acts as a template in sphalerite growth processes. The sources of the zinc and dissolved gases (CO2, CH4, H2S) are hydrothermal springs seeping from the lake bottom into the basin. Water discharge is substantial; about 100 years are required to fill the lake to its present level (ca. 550 km3 water). The average Kivu water contains 2 ppm zinc. Thus, 1 million tons of zinc are contained in Lake Kivu in the form of sphalerite. ?? 1972 Springer-Verlag.

  14. Acoustic radiation force of a Bessel beam on a porous sphere.

    PubMed

    Azarpeyvand, Mahdi

    2012-06-01

    The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.

  15. PVOL: The Planetary Virtual Observatory & Laboratory. An online database of the Outer Planets images.

    NASA Astrophysics Data System (ADS)

    Morgado, A.; Sánchez-Lavega, A.; Rojas, J. F.; Hueso, R.

    2005-08-01

    The collaboration between amateurs astronomers and the professional community has been fruitful on many areas of astronomy. The development of the Internet has allowed a better than ever capability of sharing information worldwide and access to other observers data. For many years now the International Jupiter Watch (IJW) Atmospheric discipline has coordinated observational efforts for long-term studies of the atmosphere of Jupiter. The International Outer Planets Watch (IOPW) has extended its labours to the four Outer Planets. Here we present the Planetary Virtual Observatory & Laboratory (PVOL), a website database where we integer IJW and IOPW images. At PVOL observers can submit their data and professionals can search for images under a wide variety of useful criteria such as date and time, filters used, observer, or central meridian longitude. PVOL is aimed to grow as an organized easy to use database of amateur images of the Outer Planets. The PVOL web address is located at http://www.pvol.ehu.es/ and coexists with the traditional IOPW site: http://www.ehu.es/iopw/ Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  16. Synthesis and Characterization of a Series of Structurally and Electronically Diverse Fe(II) Complexes Featuring a Family of Triphenylamido-Amine Ligands

    PubMed Central

    Paraskevopoulou, Patrina; Ai, Lin; Wang, Qiuwen; Pinnapareddy, Devender; Acharyya, Rama; Dinda, Rupam; Das, Purak; Çelenligil-Çetin, Remle; Floros, Georgios; Sanakis, Yiannis; Choudhury, Amitava; Rath, Nigam P.; Stavropoulos, Pericles

    2009-01-01

    A family of triphenylamido-amine ligands of the general stoichiometry LxH3 = [R-NH-(2-C6H4)]3N (R = 4-t-BuPh (L1H3), 3,5-t-Bu2Ph (L2H3), 3,5-(CF3)2Ph (L3H3), CO-t-Bu (L4H3) 3,5-Cl2Ph (L5H3), COPh (L6H3), CO-i-Pr (L7H3), COCF3 (L8H3), i-Pr (L9H3)) has been synthesized and characterized, featuring a rigid triphenylamido-amine scaffold and an array of stereoelectronically diverse aryl, acyl and alkyl substituents (R). These ligands are deprotonated by potassium hydride in THF or DMA and reacted with anhydrous FeCl2 to afford a series of ferrous complexes, exhibiting stoichiometric variation and structural complexity. The prevalent [(Lx)Fe(II)–solv]− structures (Lx = L1, L2, L3, L5, solv = THF; Lx = L8, solv = DMA; Lx = L6, L8, solv = MeCN), reveal a distorted trigonal bipyramidal geometry, featuring ligand-derived [N3,amidoNamine] coordination and solvent attachment trans to the Namine atom. Specifically for [(L8)Fe(II)–DMA]−, an Namido residue is coordinated as the corresponding Nimino moiety (Fe–N(Ar)=C(CF3)–O−). In contrast, compounds [(L4)Fe(II)] −, [(L6)2Fe(II)2]2−, [K(L7)2Fe(II)2]22− and [K(L9)Fe]2 are all solvent-free in their coordination sphere and exhibit four-coordinate geometries of significant diversity. In particular, [(L4)Fe(II)]− demonstrates coordination of one amidato residue via the O-atom end (Fe–O–C(t-Bu)=N(Ar)). Furthermore, [(L6)2Fe(II)2]2− and [K(L7)2Fe(II)2]22− are similar structures exhibiting bridging amidato residues (Fe–N(Ar)–C(R)=O–Fe) in dimeric structural units. Finally the structure of [K(L9)Fe]2 is the only example featuring a minimal [N3,amidoNamine] coordination sphere around each Fe(II) site. All compounds have been characterized by a variety of physicochemical techniques, including Mössbauer spectroscopy and electrochemistry, to reveal electronic attributes that are responsible for a range of Fe(II)/Fe(III) redox potentials exceeding 1.0 V. PMID:19950956

  17. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    PubMed Central

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  18. Casimir interaction between spheres in ( D + 1)-dimensional Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2014-05-01

    We consider the Casimir interaction between two spheres in ( D + 1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [39]. The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3 j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L -2 D+3, L -2 D+1 and L -2 D-1 respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order , where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration. When D=3, we also recover previously known results. We find that when D is large, the ratio of the next-to-leading order term to the leading order term is linear in D, indicating a larger correction at higher dimensions. The methodologies employed in this work and the results obtained can be used to study the one-loop effective action of the system of two spherical objects in the universe.

  19. A Comparative Study of [CaEDTA](2-) and [MgEDTA](2-): Structural and Dynamical Insights from Quantum Mechanical Charge Field Molecular Dynamics.

    PubMed

    Tirler, Andreas O; Hofer, Thomas S

    2015-07-09

    Structure and dynamics of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution have been investigated via quantum mechanical/molecular mechanical (QM/MM) simulations. While for the first a 6-fold octahedral complex has been observed, the presence of an additional coordinating water ligand has been observed in the latter case. Because of rapidly exchanging water molecules, this 7-fold coordination complex was found to form pentagonal bipyramidal as well as capped trigonal prismatic configurations along the simulation interchanging on the picosecond time scale. Also in the case of [MgEDTA](2-) a trigonal prismatic configuration has been observed for a very short time period of approximately 1 ps. This work reports for the first time the presence of trigonal prismatic structures observed in the coordination sphere of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution. In addition to the detailed characterization of structure and dynamics of the systems, the prediction of the associated infrared spectra indicates that the ion-water vibrational mode found at approximately 250 cm(-1) provides a distinctive measure to experimentally detect the presence of the coordinating water molecule via low-frequency IR setups.

  20. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations.

    PubMed

    Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G

    2007-06-11

    The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.

  1. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    NASA Astrophysics Data System (ADS)

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-05-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible.

  2. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    PubMed Central

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-01-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible. PMID:28485392

  3. A Shape and Spin Axis Model for 607 Jenny

    NASA Astrophysics Data System (ADS)

    Stephens, Robert D.; Warner, Brian D.

    2018-04-01

    A combination of dense lightcurves obtained by the authors over several apparitions and sparse data was used to model the outer main-belt asteroid 607 Jenny. A reasonably reliable spin axis with ecliptic coordinates of (220°, –40°, 8.52234 h) was found, although one of (35°, –17°, 8.52234 h) cannot be formally excluded.

  4. 33 CFR 147.841 - Atlantis Semi-Submersible safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safety zone. (a) Description. Atlantis Semi-Submersible, Green Canyon 787 (GC 787), located at position 27°11′44″ N, 90°01′37″ W. The area within 500 meters (1640.4 feet) from each point on the structure's outer edge is a safety zone. These coordinates are based upon [NAD 83]. (b) Regulation. No vessel may...

  5. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystalmore » structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.« less

  6. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    PubMed

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  7. Interaction of ribonucleotides with oxide and silicate minerals under varying environmental conditions

    NASA Astrophysics Data System (ADS)

    Feuillie, C.; Sverjensky, D. A.; Hazen, R. M.

    2013-12-01

    Large quantities of nucleic acids are found in natural environments, released after the death of an organism and subsequent cell lysis [1]. Nucleic acids are known to adsorb on mineral surfaces [2, 3, 4], which protect them from degradation, whether enzymatic [5, 6] or UV-mediated [7]. It may then contribute to the extracellular genetic pool available in soils to microorganisms for horizontal gene transfers [8]. In order to better understand the behaviour of extracellular nucleic acids in soils, we have investigated the interactions between nucleotides, 5'-GMP, 5'-CMP, 5'-AMP and 5'-UMP, and α-alumina as a model compound for Al in six-fold coordination in soil minerals. We carried out batch adsorption experiments over a wide range of pH, ionic strength and surface loading. Alumina adsorbs high amounts of nucleotides > 2 μmol/m2. In similar environmental conditions, swelling clays such as nontronite and montmorillonite adsorb less than 0.1 μmol/m2 if the total surface area is taken under consideration. However, if only the edges of clay particles are considered, the amount of nucleotides adsorbed reaches values between 1.2 and 2 μmol/m2 [9], similar to the alumina and consistent with ';oxide-like' surface sites on the edges of the clay particles. Surface complexation modeling enabled us to predict the speciation of the surface species on the alumina, as well as the stoichiometry and thermodynamic equilibrium constants for the adsorption of nucleotides. We used the extended triple-layer model (ETLM), that takes into account the electrical work linked to the desorption of chemisorbed water molecules during the formation of inner-sphere complexes. Two surface species are thought to form on the surface of corundum: a monodentate inner-sphere complex, dominant at pH < 7.5, and a bidentate outer-sphere complex, dominant at higher pH. Both complexes involve interactions between the negatively charged phosphate group and the positively charged surface of alumina. Our results provide a better understanding of how nucleic acids attach to mineral surfaces under varying environmental conditions in soil environments. Moreover, the predicted configuration of nucleotide surface species, bound via the phosphate group, could have implications for the abiotic formation and concentration of nucleic acids in the context of the origin of life. References : [1] Lorenz and Wackernagel (1987), Applied and environmental microbial., 2948-2952 [2] Ferris (2005), Reviews in mineralogy & geochemistry 59, 187-210 [3] Cleaves H.J. et al. (2011), Chemosphere 83, 1560-1567 [4] Arora & Kamaluddin (2009), Astrobiology 9, 165-171 [5] Cai et al. (2006), Environ. Sci. Technol. 40 (9), 2971-2976 [6] Franchi and Gallori (2005),Gene 346, 205-214 [7] Scappini et al. (2004), International Journal of Astrobiology 3(1), 17-19 [8] Levy-Booth et al. (2007), Soil Biol. Biochem. 39, 2977-2991. [9] Feuillie et al. (2013), Geochimica et Cosmochimica Acta (in press)

  8. Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

    NASA Astrophysics Data System (ADS)

    Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.

    2018-03-01

    Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.

  9. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  10. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, C.; Garufi, A.; Quanz, S. P.

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures inmore » the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.« less

  11. Molecular Treatment of Nano-Kaolinite Generations.

    PubMed

    Táborosi, Attila; Szilagyi, Robert K; Zsirka, Balázs; Fónagy, Orsolya; Horváth, Erzsébet; Kristóf, János

    2018-06-18

    A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.

  12. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model

    NASA Astrophysics Data System (ADS)

    Sun, Weitao; Ba, Jing; Carcione, José M.

    2016-04-01

    Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.

  13. Achieving Reversible H2/H+ Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyadarshani, Nilusha; Dutta, Arnab; Ginovska-Pangovska, Bojana

    Inspired by the contribution of the protein scaffold to the efficiency with which enzymes function, we report the first molecular complex that is reversible for electrocatalytic H2 production/oxidation at room temperature in methanol. [Ni(PCy2NPhe2)2]2+ (CyPhe; PR2NR’2 = 1,5-diaza-3,7-diphosphacyclooctane, Cy=cyclohexyl, Phe=phenylalanine), shows reversible behavior in acidic methanol with peripheral phenylalanine groups providing key contributions to the catalytic behavior. The importance of the aromatic rings is implicated in achieving reversibility, based on the lack of reversibility of similar complexes, [Ni(PCy2NAmino Acid2)2]2+, containing arginine (CyArg) or glycine (CyGly). A complex with an added OH group on the ring, (CyTyr; Tyr=Tyrosine), also shows similarmore » behavior. NMR studies reveal a significantly slower rate of chair-boat isomerization for the CyPhe relative to other derivatives, suggesting that the aromatic groups provide structural control by interacting with each other, an observation supported by molecular dynamics studies. NMR studies also show extremely fast proton movement, with a proton pathway from the Ni-H through the pendant amine to the –COOH group. Further, studies of acomplex without the –COOH group, [Ni(PCy2NTym2)2]2+ (CyTym; Tym=Tyramine), are not reversible and have slow proton movement from the pendant amine, demonstrating the essential nature of the –COOH group in achieving reversibility. Finally, methanol is demonstrated to play a critical contributing role. The influence of multiple factors on reversibility for this synthetic catalyst is a demonstration of the intricate interplay between the first, second, and outer coordination spheres and resembles the complexity observed in metalloenzymes.« less

  14. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation parameters, and demonstrate the ability of this approach to optimize MQC-IVR simulations.

  15. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  16. Kinetics and mechanism of electron transfer reaction of single and double chain surfactant cobalt(III) complex by Fe2+ ions in liposome (dipalmitoylphosphotidylcholine) vesicles: effects of phase transition

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi

    2015-05-01

    In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.

  17. Re-accumulation Scenarios Governing Final Global Shapes of Rubble-Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Comito, C.; Paolicchi, P.; Walsh, K.; Richardson, D. C.; Cellino, A.

    2009-05-01

    Asteroids, since the formation of the solar system, are known to have experienced catastrophic collisions, which---depending on the impact energy---can produce a major disruption of the parent body and possibly give birth to asteroid families or binaries [1]. We present a general study of the final shape and dynamical state of asteroids produced by the re-accumulation process following a catastrophic disruption. Starting from a cloud of massive particles (mono-disperse spheres) with given density and velocity distributions, we analyse the final shape, spin state, and angular momentum of the system from numerical integration of a N-body gravitational system (code pkdgrav [2]). The re-accumulation process itself is relatively fast, with a dynamical time corresponding to the spin-period of the final body (several hours). The final global shapes---which are described as tri-axial ellipsoids---exhibit slopes consistent with a degree of shear stress sustained by interlocking particles. We point out a few results: -the final shapes are close to those of hydrostatic equilibrium for incompressible fluids, preferably Maclaurin spheroid rather than Jacobi ellipsoids -for bodies closest to the sequence of hydrostatic equilibrium, there is a direct relation between spin, density and outer shape, suggesting that the outer surface is nearly equipotential -the evolution of the shape during the process follows a track along a gradient of potential energy, without necessarily reaching its minimum -the loose random packing of the particles implies low friction angle and hence fluid-like behaviour, which extends the results of [3]. Future steps of our analysis will include feature refinements of the model initial conditions and re-accumulation process, including impact shakings, realistic velocity distributions, and non equal-sized elementary spheres. References [1] Michel P. et al. 2001. Science 294, 1696 [2] Leinhardt Z.M. et al. 2000. Icarus 146, 133 [3] Richardson D.C. et al. 2005. Icarus 173, 349

  18. A Large Program to derive the shape, cratering history and density of the largest main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Vernazza, Pierre; Marsset, Michael; Hanus, Josef; Carry, Benoit; Birlan, Mirel; Santana-Ros, Toni; Yang, Bin; and the Large Asteroid Survey with SPHERE (LASS)

    2017-10-01

    Asteroids in our solar system are metallic, rocky and/or icy objects, ranging in size from a few meters to a few hundreds of kilometers. Whereas we now possess constraints for the surface composition, albedo and rotation rate for all D≥100 km main-belt asteroids, the 3-D shape, the crater distribution, and the density have only been measured for a very limited number of these bodies (N≤10 for the first two). Characterizing these physical properties would allow us to address entirely new questions regarding the earliest stages of planetesimal formation and their subsequent collisional and dynamical evolution.ESO allocated to our program 152 hours of observations over 4 semesters to carry out disk-resolved observations of 38 large (D≥100 km) main-belt asteroids (sampling the four main compositional classes) at high angular-resolution with VLT/SPHERE throughout their rotation in order to derive their 3-D shape, the size distribution of the largest craters, and their density (PI: P. Vernazza). These measurements will allow investigating for the first time and for a modest amount of observing time the following fundamental questions: (A) Does the asteroid belt effectively hosts a large population of small bodies formed in the outer solar system? (B) Was the collisional environment in the inner solar system (at 2-3 AU) more intense than in the outer solar system (≥5AU)? (C) What was the shape of planetesimals at the end of the accretion process?We will present the goals and objectives of our program in the context of NASA 2014 Strategic Plan and the NSF decadal survey "Vision and Voyages" as well as the first observations and results collected with the SPHERE Extreme AO system. A detailed analysis of the shape modeling will be presented by Hanuš et al. in this session.

  19. Second-sphere coordination in anion binding: Synthesis, characterization and X-ray structures of bis(diethylenetriamine)cobalt(III) complexes containing benzoates

    NASA Astrophysics Data System (ADS)

    Bala, Ritu; Kaur, Amrinder; Kashyap, Monika; Janzen, Daron E.

    2014-04-01

    New complexes of composition s-fac-[Co(dien)2]Cl2(Bz)·H2O (1), s-fac-[Co(dien)2]Cl(p-CBz)2·4.5H2O (2) and mer-[Co(dien)2](p-NBz)3·3H2O (3) were obtained by reacting aqueous solutions of bis(diethylenetriamine)cobalt(III) chloride and sodium salts of benzoates ((Bz = benzoate, CBz = p-chlorobenzoate, NBz = p-nitrobenzoate)) in 1:3 molar ratio. These complexes were characterized by TG analysis and spectroscopic studies (IR, NMR and UV-vis). IR and NMR studies were used for the isomeric identification of [Co(dien)2]3+ in new complexes. This cation, contains ligand diethylenetriamine (dien) bearing H-bond donors, capable of forming hydrogen bonds and its binding properties with benzoates have been studied using standard UV-vis spectroscopic titrations in aqueous medium (log k for Bz = 2.11, p-CBz = 3.64 and p-NBz = 3.66). Single crystal X-ray study of complex 2 and 3 reveals that both the structures are dominantly stabilized by second-sphere coordination through H-bonding interactions of type-NH (dien)⋯O (benzoates) and H (water)⋯O (benzoates) in addition to the electrostatic forces of attractions. Further, the NH (dien)⋯Cl- (counter ion) and NH (dien)⋯O (water) types of interactions are also playing a dominant role to stabilize the crystal lattice in complex 2 and 3 respectively.

  20. Models for the Immediate Environment of Ions in Aqueous Solutions of Neodymium Chloride

    NASA Astrophysics Data System (ADS)

    Smirnov, P. R.; Grechin, O. V.

    2018-01-01

    Radial distribution functions of neodymium chloride aqueous solutions in a wide range of concentrations under ambient conditions are calculated from experimental data obtained earlier via X-ray diffraction analysis. Different models of the structural organization of the system are developed. The optimum versions are determined by calculating theoretical functions for each model and comparing their fit to the experimental functions. Such quantitative characteristics of the immediate environment of Nd3+ and Cl- ions as coordination numbers, interparticle distances, and varieties of ion pairs are determined. It is shown that the average number of water molecules in the first coordination sphere of the cation falls from 9 to 6.2 as the concentration rises. The structure of the systems over the whole range of concentrations is determined by ion associates of the noncontact type.

  1. Bis(dicyclo­hexyl­ammonium) μ-oxalato-κ4 O 1,O 2:O 1′,O 2′-bis­[aqua­(oxalato-κ2 O 1,O 2)diphenyl­stannate(IV)

    PubMed Central

    Gueye, Ndongo; Diop, Libasse; Molloy, K. C. Kieran; Kociok-Köhn, Gabrielle

    2010-01-01

    The structure of the title compound, (C12H24N)2[Sn2(C6H5)4(C2O4)3(H2O)2], consists of a bischelating oxalate ion, located on an inversion center, which is linked to two SnPh2 groups. The coordination sphere of the Sn(IV) ion is completed by a monochelating oxalate anion and a water mol­ecule. The Sn(IV) atoms are thus seven-coordinated. The discrete binuclear units are further connected by hydrogen bonds, leading to a supra­molecular crystal structure. The asymmetric unit contains one half dianion and one (Cy2NH2)+ cation. PMID:21589314

  2. Tuning structure and mobility of solvation shells surrounding tracer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmer, James; Jain, Avni; Bollinger, Jonathan A.

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less

  3. Tuning structure and mobility of solvation shells surrounding tracer additives.

    PubMed

    Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.

  4. A new method for registration of heterogeneous sensors in a dimensional measurement system

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie

    2017-10-01

    Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.

  5. Scaling laws for the mechanics of loose and cohesive granular materials based on Baxter's sticky hard spheres

    NASA Astrophysics Data System (ADS)

    Gaume, Johan; Löwe, Henning; Tan, Shurun; Tsang, Leung

    2017-09-01

    We have conducted discrete element simulations (pfc3d) of very loose, cohesive, granular assemblies with initial configurations which are drawn from Baxter's sticky hard sphere (SHS) ensemble. The SHS model is employed as a promising auxiliary means to independently control the coordination number zc of cohesive contacts and particle volume fraction ϕ of the initial states. We focus on discerning the role of zc and ϕ for the elastic modulus, failure strength, and the plastic consolidation line under quasistatic, uniaxial compression. We find scaling behavior of the modulus and the strength, which both scale with the cohesive contact density νc=zcϕ of the initial state according to a power law. In contrast, the behavior of the plastic consolidation curve is shown to be independent of the initial conditions. Our results show the primary control of the initial contact density on the mechanics of cohesive granular materials for small deformations, which can be conveniently, but not exclusively explored within the SHS-based assembling procedure.

  6. Accuracy of digital models generated by conventional impression/plaster-model methods and intraoral scanning.

    PubMed

    Tomita, Yuki; Uechi, Jun; Konno, Masahiro; Sasamoto, Saera; Iijima, Masahiro; Mizoguchi, Itaru

    2018-04-17

    We compared the accuracy of digital models generated by desktop-scanning of conventional impression/plaster models versus intraoral scanning. Eight ceramic spheres were attached to the buccal molar regions of dental epoxy models, and reference linear-distance measurement were determined using a contact-type coordinate measuring instrument. Alginate (AI group) and silicone (SI group) impressions were taken and converted into cast models using dental stone; the models were scanned using desktop scanner. As an alternative, intraoral scans were taken using an intraoral scanner, and digital models were generated from these scans (IOS group). Twelve linear-distance measurement combinations were calculated between different sphere-centers for all digital models. There were no significant differences among the three groups using total of six linear-distance measurements. When limited to five lineardistance measurement, the IOS group showed significantly higher accuracy compared to the AI and SI groups. Intraoral scans may be more accurate compared to scans of conventional impression/plaster models.

  7. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation, final phase

    NASA Technical Reports Server (NTRS)

    Mielke, Roland; Dcunha, Ivan; Alvertos, Nicolas

    1994-01-01

    In the final phase of the proposed research a complete top to down three dimensional object recognition scheme has been proposed. The various three dimensional objects included spheres, cones, cylinders, ellipsoids, paraboloids, and hyperboloids. Utilizing a newly developed blob determination technique, a given range scene with several non-cluttered quadric surfaces is segmented. Next, using the earlier (phase 1) developed alignment scheme, each of the segmented objects are then aligned in a desired coordinate system. For each of the quadric surfaces based upon their intersections with certain pre-determined planes, a set of distinct features (curves) are obtained. A database with entities such as the equations of the planes and angular bounds of these planes has been created for each of the quadric surfaces. Real range data of spheres, cones, cylinders, and parallelpipeds have been utilized for the recognition process. The developed algorithm gave excellent results for the real data as well as for several sets of simulated range data.

  8. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.

    1990-01-01

    A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.

  9. Local sensory control of a dexterous end effector

    NASA Technical Reports Server (NTRS)

    Pinto, Victor H.; Everett, Louis J.; Driels, Morris

    1990-01-01

    A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented.

  10. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapinski, Jacek, E-mail: gapinski@amu.edu.pl; Patkowski, Adam; NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań

    Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shownmore » to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.« less

  11. Biologically-compatible gadolinium(at)(carbon nanostructures) as advanced contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sitharaman, Balaji

    2005-11-01

    Paramagnetic gadolinium-based carbon nanostructures are introduced as a new paradigm in high-performance magnetic resonance imaging (MRI) contrast agent (CA) design. Two Gd C60-based nanomaterials, Gd C60 [C(COOH)2]10 and Gd C60(OH)x are shown to have MRI efficacies (relaxivities) 5 to 20 times larger than any current Gd3+-based CA in clinical use. The first detailed and systematic physicochemical characterization was performed on these materials using the same experimental techniques usually applied to traditional Gd 3+-based CAs. Water-proton relaxivities were measured for the first time on these materials, as a function of magnetic field (5 x 10-4--9.4 T) to elucidate the different interaction mechanisms and dynamic processes influencing the relaxation behavior. These studies attribute the observed enhanced relaxivities completely to the "outer sphere" proton relaxation mechanism. These "outer sphere" relaxation effects are the largest reported for any Gd3+-based agent without inner-sphere water molecules. The proton relaxivities displayed a remarkable pH-dependency, increasing dramatically with decreasing pH (pH: 3--12). The increase in relaxivity resulted mainly from aggregation and subsequent three-order-of-magnitude increase in tauR, the rotational correlation time. Water-soluble fullerene materials (such as the neuroprotective fullerene drug, C3) readily cross cell membranes, suggesting an application for these gadofullerenes as the first intracellular, as well as pH-responsive MRI CAs. Studies performed at 60 MHz in the presence of phosphate-buffered saline (PBS, mice serum pH: 7.4) to mimic physiological conditions demonstrated that the aggregates can be disrupted by addition of salts, leading to a decrease in relaxivity. Biological fluids present a high salt concentration and should strongly modify the behavior of any fullerenes/metallofullerene-based drug in vivo. Gd C60[C(COOH)2]10 also showed enhanced relaxivity (23% increase) in the presence of the blood protein, human serum albumin (HSA). This result suggests a strong non-covalent interaction between Gd C60[C(COOH)2]10 and HSA leading to slower rotation and a subsequent increase in relaxivity. This also suggests Gd C 60[C(COOH)2]10 as a promising candidate for non-invasive MR angiographic applications to image the "blood pool." Finally, the various important factors or parameters discussed in this work provide valuable insight that can, in general, be used not only for the development of other carbon nanostructure-based MRI contrast agents, but also for any fullerene-based biomedical application.

  12. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  13. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  14. Lanthanide co-ordination frameworks: Opportunities and diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter

    2005-08-15

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly moremore » difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials.« less

  15. The 2015 National Security Strategy: Authorities, Changes, Issues for Congress

    DTIC Science & Technology

    2016-02-26

    climate change ;  ensure access to shared spaces (expanding cyberspace and including outer space and air and maritime security); and  increase global...hand, one could conclude that these, along with confronting climate change , convey both a wider range of national security challenges in terms of...The 2015 National Security Strategy: Authorities, Changes , Issues for Congress Nathan J. Lucas, Coordinator Section Research Manager Kathleen

  16. 33 CFR 147.837 - Marco Polo Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Platform safety zone. (a) Description. Marco Polo Tension Leg Platform, Green Canyon 608 (GC 608), located at position 27°21′43.32″ N, 90°10′53.01″ W. The area within 500 meters (1640.4 feet) from each point on the structure's outer edge is a safety zone. These coordinates are based upon [NAD 83]. (b...

  17. A Block Coordinate Descent Method for Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

    DTIC Science & Technology

    2012-08-01

    model appears in cosmic microwave background analysis [10] which solves min A,Y λ 2 trace ( (ABY − X)>C−1(ABY − X) ) + r(Y), subject to A ∈ D (1.5...and “×n” represent outer product and tensor-matrix multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most

  18. Translation of the assembling trajectory by preorganisation: a study of the magnetic properties of 1D polymeric unpaired electrons immobilised on a discrete nanoscopic scaffold.

    PubMed

    Praveen, Vakayil K; Yamamoto, Yohei; Fukushima, Takanori; Tsunobuchi, Yoshihide; Nakabayashi, Koji; Ohkoshi, Shin-ichi; Kato, Kenichi; Takata, Masaki; Aida, Takuzo

    2015-01-25

    A nitronyl nitroxide (NN)-appended hexabenzocoronene (HBC(NN)), when allowed to coassemble with bis(hexafluoroacetylacetonato)cobalt(II), forms a coaxial nanotubular architecture featuring NN-Co(II) coordinated copolymer chains immobilised on the outer and inner nanotube surfaces. Upon lowering the temperature, this nanotube has enhanced magnetic susceptibility below 10 K.

  19. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    PubMed

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.

  20. Applications of liquid state physics to the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

Top