Sample records for outer core biosynthesis

  1. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori.

    PubMed

    Li, Hong; Liao, Tingting; Debowski, Aleksandra W; Tang, Hong; Nilsson, Hans-Olof; Stubbs, Keith A; Marshall, Barry J; Benghezal, Mohammed

    2016-12-01

    This review covers the current knowledge and gaps in Helicobacter pylori lipopolysaccharide (LPS) structure and biosynthesis. H. pylori is a Gram-negative bacterium which colonizes the luminal surface of the human gastric epithelium. Both a constitutive alteration of the lipid A preventing TLR4 elicitation and host mimicry of the Lewis antigen decorated O-antigen of H. pylori LPS promote immune escape and chronic infection. To date, the complete structure of H. pylori LPS is not available, and the proposed model is a linear arrangement composed of the inner core defined as the hexa-saccharide (Kdo-LD-Hep-LD-Hep-DD-Hep-Gal-Glc), the outer core composed of a conserved trisaccharide (-GlcNAc-Fuc-DD-Hep-) linked to the third heptose of the inner core, the glucan, the heptan and a variable O-antigen, generally consisting of a poly-LacNAc decorated with Lewis antigens. Although the glycosyltransferases (GTs) responsible for the biosynthesis of the H. pylori O-antigen chains have been identified and characterized, there are many gaps in regard to the biosynthesis of the core LPS. These limitations warrant additional mutagenesis and structural studies to obtain the complete LPS structure and corresponding biosynthetic pathway of this important gastric bacterium. © 2016 John Wiley & Sons Ltd.

  2. The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence

    PubMed Central

    Izquierdo, Luis; Coderch, Núria; Piqué, Nuria; Bedini, Emiliano; Michela Corsaro, Maria; Merino, Susana; Fresno, Sandra; Tomás, Juan M.; Regué, Miguel

    2003-01-01

    To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to α-l-glycero-d-manno-heptopyranose II (l,d-HeppII) at the O-3 position of an α-d-galactopyranosyluronic acid (α-d-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae. PMID:14645282

  3. Structural and Kinetic Characterization of the LPS Biosynthetic Enzyme D-alpha,beta-D-heptose-1,7-bisphosphate Phosphatase (GmhB) from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.; Sugiman-Marangos, S; Zhang, K

    2010-01-01

    Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-{alpha},{beta}-D-Heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis.more » This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting Gram-negative bacterial infection.« less

  4. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  5. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.

  6. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition.

    PubMed

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-11-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. © 2014 American Society of Plant Biologists. All rights reserved.

  7. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    PubMed Central

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  8. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  9. Tryptophan 375 stabilizes the outer-domain core of gp120 for HIV vaccine immunogen design.

    PubMed

    Hu, Duoyi; Bowder, Dane; Wei, Wenzhong; Thompson, Jesse; Wilson, Mark A; Xiang, Shi-Hua

    2017-05-25

    The outer-domain core of gp120 may serve as a better HIV vaccine immunogen than the full-length gp120 because of its greater stability and immunogenicity. In our previous report, we introduced two disulfide bonds to the outer-domain core of gp120 to fix its conformation into a CD4-bound state, which resulted in a significant increase in its immunogenicity when compared to the wild-type outer-domain core. In this report, to further improve the immunogenicity of the outer-domain core based immunogen, we have introduced a Tryptophan residue at gp120 amino acid sequence position 375 (375S/W). Our data from immunized guinea pigs indeed shows a striking increase in the immune response due to this stabilized core outer-domain. Therefore, we conclude that the addition of 375W to the outer-domain core of gp120 further stabilizes the structure of immunogen and increases the immunogenicity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Replacement of Lipopolysaccharide with Free Lipid A Molecules in Escherichia coli Mutants Lacking All Core Sugars

    PubMed Central

    Reynolds, C. Michael; Raetz, Christian R. H.

    2009-01-01

    Escherichia coli mutants deficient in 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis are conditionally lethal, but their phenotypes are bypassed by certain suppressor mutations or by over-expression of MsbA, the inner membrane flippase for core-lipid A. These strains grow on broth with the tetra-acylated precursor lipid IVA replacing lipopolysaccharide (Meredith, T. C. et al. ACS Chem. Biol. 1, 33–42, 2006). Deletion of kdtA, which encodes the Kdo transferase, is possible under these conditions. We now show that lipid IVA reaches the outer surface of the outer membrane in these strains, as judged by its accessibility to the lipase PagL. On the assumption that MsbA is optimized to transport penta- or hexa-acylated lipid A, we over-expressed the lauroyl or the myristoyl transferase of lipid A biosynthesis, encoded by lpxL and lpxM respectively, and demonstrated that kdtA deletion mutants were also viable in this setting. Although E. coli LpxL is stimulated by the presence of the Kdo-disaccharide in its acceptor substrate, LpxL does slowly acylate lipid IVA. Over-expression of LpxL from a plasmid suppressed the lethality of kdtA deletions on nutrient broth at 30 or 37 °C without the need for MsbA over-production. These strains accumulated penta- and hexa-acylated free lipid A containing a secondary laurate chain, or a laurate and a myristate chain, respectively. Deletion of kdtA in strains over-expressing LpxM accumulated penta-acylated lipid A with a secondary myristate moiety. None of the strains lacking kdtA grew in the presence of bile salts at any temperature or on nutrient broth at 42 °C. Our findings show that the main function of Kdo is to provide the right substrates for the acyltransferases LpxL and LpxM, resulting in the synthesis of penta- and hexa-acylated lipid A, which is optimal for the MsbA flippase. PMID:19754149

  11. Sprayed skin turbine component

    DOEpatents

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  12. Liquid Iron Alloys with Hydrogen at Outer Core Conditions by First Principles

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Hirose, K.

    2015-12-01

    Since the density of the outer core deduced from seismic data is about 10% lower than that of pure iron at core pressures and temperatures (P-T), it is widely believed that the outer core includes one or more light elements. Although intensive experimental and theoretical studies have been performed so far, the light element in the core has not yet been identified. Comparison of the density and sound velocity of liquid iron alloys with observations, such as the PREM, is a promising way to determine the species and quantity of light alloying component(s) in the outer core. Here we report the results of a first-principles molecular dynamics study on liquid iron alloyed with hydrogen, one of candidates of the light elements. Hydrogen had been much less studied than other candidates. However, hydrogen has been known to reduce the melting temperature of Fe-H solid [1]. Furthermore, very recently, Nomura et al. argued that the outer core may include 24 at.% H in order to be molten under relatively low temperature (< 3600 K) [2]. Since then hydrogen has attracted strong interests. We clarify the effects of hydrogen on density and sound velocity of liquid iron alloys under outer core P-T conditions. It is shown that ~1 wt% hydrogen can reproduce PREM density and sound velocity simultaneously very well. In addition, we show the presence of hydrogen rather reduces Gruneisen parameters. It indicates that, if hydrogen exists in the outer core, temperature profile of the outer core could be changed considerably from one estimated so far. [1] Sakamaki, K., E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter., 174, 192-201 (2009). [2] Nomura, R., K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, and Y. Ueno, Science 31, 522-525 (2014).

  13. Praying Mantis Bending Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Lindermann, Randel A.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale, yet is robust and versatile enough to be used for a variety of core samples. The new design consists of a set of tubes (a drill tube, an outer tube, and an inner tube) and means of sliding the inner and outer tubes axially relative to each other. Additionally, a sample tube can be housed inside the inner tube for storing the sample. The inner tube fits inside the outer tube, which fits inside the drill tube. The inner and outer tubes can move axially relative to each other. The inner tube presents two lamellae with two opposing grabbing teeth and one pushing tooth. The pushing tooth is offset axially from the grabbing teeth. The teeth can move radially and their motion is controlled by the outer tube. The outer tube presents two lamellae with radial extrusions to control the inner tube lamellae motion. In breaking the core, the mechanism creates two support points (the grabbing teeth and the bit tip) and one push point. The core is broken in bending. The grabbing teeth can also act as a core retention mechanism. The praying mantis that is disclosed herein is an active core breaking/retention mechanism that requires only one additional actuator other than the drilling actuator. It can break cores that are attached to the borehole bottom as

  14. A Deficiency in Arabinogalactan Biosynthesis Affects Corynebacterium glutamicum Mycolate Outer Membrane Stability▿

    PubMed Central

    Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas

    2010-01-01

    Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942

  15. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    PubMed Central

    Piek, Susannah; Kahler, Charlene M.

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440

  16. The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center

    NASA Technical Reports Server (NTRS)

    Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.

  17. The thermal evolution of Mercury's Fe-Si core

    NASA Astrophysics Data System (ADS)

    Knibbe, Jurriën Sebastiaan; van Westrenen, Wim

    2018-01-01

    We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.

  18. Experimental constraints on light elements in the Earth’s outer core

    PubMed Central

    Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian

    2016-01-01

    Earth’s outer core is liquid and dominantly composed of iron and nickel (~5–10 wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in the Fe-Ni-Si system at the outer core conditions by shock-wave experiments. Combining with the previous studies, we found that the best estimate for the outer core’s light elements is ~6 wt% Si, ~2 wt% S, and possible ~1–2.5 wt% O. This composition satisfies the requirements imposed by seismology, geochemistry, and some models of the early core formation. This finding may help us to further constrain the thermal structure of the Earth and the models of Earth’s core formation. PMID:26932596

  19. Comparative RNA-Sequence Transcriptome Analysis of Phenolic Acid Metabolism in Salvia miltiorrhiza, a Traditional Chinese Medicine Model Plant

    PubMed Central

    Song, Zhenqiao; Guo, Linlin; Liu, Tian; Lin, Caicai; Wang, Jianhua

    2017-01-01

    Salvia miltiorrhiza Bunge is an important traditional Chinese medicine (TCM). In this study, two S. miltiorrhiza genotypes (BH18 and ZH23) with different phenolic acid concentrations were used for de novo RNA sequencing (RNA-seq). A total of 170,787 transcripts and 56,216 unigenes were obtained. There were 670 differentially expressed genes (DEGs) identified between BH18 and ZH23, 250 of which were upregulated in ZH23, with genes involved in the phenylpropanoid biosynthesis pathway being the most upregulated genes. Nine genes involved in the lignin biosynthesis pathway were upregulated in BH18 and thus result in higher lignin content in BH18. However, expression profiles of most genes involved in the core common upstream phenylpropanoid biosynthesis pathway were higher in ZH23 than that in BH18. These results indicated that genes involved in the core common upstream phenylpropanoid biosynthesis pathway might play an important role in downstream secondary metabolism and demonstrated that lignin biosynthesis was a putative partially competing pathway with phenolic acid biosynthesis. The results of this study expanded our understanding of the regulation of phenolic acid biosynthesis in S. miltiorrhiza. PMID:28194403

  20. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  1. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction?

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.

    1995-01-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D??? layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  2. Physicochemical properties of kiwifruit starch.

    PubMed

    Li, Dongxing; Zhu, Fan

    2017-04-01

    Three varieties of golden kiwifruit (Actinidia chinensis) (Gold3, Gold9 and Hort16A) were collected at the commercial harvesting time, and physicochemical properties of starches from core and outer pericarp were studied. Starch contents (dry weight basis) in outer pericarp and core tissues ranged from 38.6 to 51.8% and 34.6 to 40.7%, respectively. All the kiwifruit starches showed B-type polymorph. Compared to the outer pericarp starches, amylose content and enzyme susceptibility of core starches were higher, and the degree of crystallinity, granule size and gelatinization parameters of core starches were somewhat lower. This suggests different biosynthetic properties between these two starches. The enthalpy changes of gelatinization of outer pericarp starches were high (∼21J/g). Rheological properties of outer pericarp starches were compared with normal maize and potato starches showed high yield stress of flow properties. This study revealed the unique properties of kiwifruit starch among various types of starches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Si-depleted outer core inferred from sound velocity measurements of liquid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Imada, S.; Hirose, K.; Kuwayama, Y.; Sinmyo, R.; Tateno, S.; Ozawa, H.; Tsutsui, S.; Uchiyama, H.; Baron, A. Q. R.

    2016-12-01

    Recent core formation models [1,2] suggested that a large amount of Si could have been incorporated into the core forming metals in the early stage of the Earth. These studies gave estimates for the Si content in the core, from 2 to 9 wt.%. In order to constrain the Si content of the outer core, we have determined the sound wave velocity of liquid Fe-Si alloys under high pressures and high temperatures. Starting materials of Fe-Si alloys with 6.5 and 9 wt.% Si were melted in a laser-heated diamond-anvil cell. The longitudinal acoustic phonon excitation of a liquid metal was measured up to 52 GPa and 3200 K by using high resolution inelastic X-ray scattering spectroscopy at beamline BL35XU [3] of the SPring-8 synchrotron facility. Our results show that silicon significantly increases the P-wave velocity of liquid Fe. Seismological observation shows that the P-wave velocity in the outer core is 3-4% faster than in pure iron. Comparing the present results with seismological observations, the silicon content of the outer core should be limited to be <2 wt.%, significantly lower than previous estimates based on the element partitioning between core forming mental and silicate magma ocean during core formation processes. This indicates that the present-day core is depleted in Si relative to the ancient core just after core formation, which agrees with the recent proposal [4] that the Si content in the outer core has been diminished by SiO2 crystallization through the core cooling history. [1] Rubie et al. (2011) Earth Planet. Sci. Lett. 301, 31-42. [2] Siebert et al. (2013) Science 339, 1194-1197. [3] Baron et al. (2000) J. Phys. Chem. Solids 61, 461-465 [4] Hirose et al. (2015) Abstract presented at AGU Fall Meeting 2015.

  4. Gravitational Core-Mantle Coupling and the Acceleration of the Earth

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2001-01-01

    Gravitational core-mantle coupling may be the cause of the observed variable acceleration of the Earth's rotation on the 1000 year timescale. The idea is that density inhomogeneities which randomly come and go in the liquid outer core gravitationally attract density inhomogeneities in the mantle and crust, torquing the mantle and changing its rotation state. The corresponding torque by the mantle on the core may also explain the westward drift of the magnetic field of 0.2 deg per year. Gravitational core-mantle coupling would stochastically affect the rate of change of the Earth's obliquity by just a few per cent. Its contribution to polar wander would only be about 0.5% the presently observed rate. Tidal friction is slowing down the rotation of the Earth, overwhelming a smaller positive acceleration from postglacial rebound. Coupling between the liquid outer core of the Earth and the mantle has long been a suspected reason for changes in the length-of-day. The present investigation focuses on the gravitational coupling between the density anomalies in the convecting liquid outer core and those in the mantle and crust as a possible cause for the observed nonsecular acceleration on the millenial timescale. The basic idea is as follows. There are density inhomogeneities caused by blobs circulating in the outer core like the blobs in a lava lamp; thus the outer core's gravitational field is not featureless. Moreover, these blobs will form and dissipate somewhat randomly. Thus there will be a time variability to the fields. These density inhomogeneities will gravitationally attract the density anomalies in the mantle.

  5. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  6. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.

    1995-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.

  7. In vitro assembly of the outer core of the lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium.

    PubMed

    Qian, Jinghua; Garrett, Teresa A; Raetz, Christian R H

    2014-03-04

    There are five distinct core structures in the lipopolysaccharides of Escherichia coli and at least two in Salmonella isolates, which vary principally in the outer core oligosaccharide. Six outer core glycosyltransferases, E. coli K-12 WaaG, WaaB, and WaaO and Salmonella typhimurium WaaI, WaaJ, and WaaK, were cloned, overexpressed, and purified. A novel substrate for WaaG was isolated from ΔwaaG E. coli overexpressing the lipid A phosphatase lpxE and the lipid A late acyltransferase lpxM. The action of lpxE and lpxM in the ΔwaaG background yielded heptose2-1-dephospho Kdo2-lipid A, a 1-dephosphorylated hexa-acylated lipid A with the inner core sugars that is easily isolated by organic extraction. Using this structurally defined acceptor and commercially available sugar nucleotides, each outer core glycosyltransferases was assayed in vitro. We show that WaaG and WaaB add a glucose and galactose sequentially to heptose2-1-dephospho Kdo2-lipid A. E. coli K-12 WaaO and S. typhimurium WaaI add a galactose to the WaaG/WaaB product but can also add a galactose to the WaaG product directly without the branched core sugar added by WaaB. Both WaaI and WaaO require divalent metal ions for optimal activity; however, WaaO, unlike WaaI, can add several glucose residues to its lipid acceptor. Using the product of WaaG, WaaB, and WaaI, we show that S. typhimurium WaaJ and WaaK transfer a glucose and N-acetylglucosamine, respectively, to yield the full outer core. This is the first demonstration of the in vitro assembly of the outer core of the lipopolysaccharide using defined lipid A-oligosaccharide acceptors and sugar donors.

  8. In Vitro Assembly of the Outer Core of the Lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium

    PubMed Central

    2015-01-01

    There are five distinct core structures in the lipopolysaccharides of Escherichia coli and at least two in Salmonella isolates, which vary principally in the outer core oligosaccharide. Six outer core glycosyltransferases, E. coli K-12 WaaG, WaaB, and WaaO and Salmonella typhimurium WaaI, WaaJ, and WaaK, were cloned, overexpressed, and purified. A novel substrate for WaaG was isolated from ΔwaaG E. coli overexpressing the lipid A phosphatase lpxE and the lipid A late acyltransferase lpxM. The action of lpxE and lpxM in the ΔwaaG background yielded heptose2-1-dephospho Kdo2-lipid A, a 1-dephosphorylated hexa-acylated lipid A with the inner core sugars that is easily isolated by organic extraction. Using this structurally defined acceptor and commercially available sugar nucleotides, each outer core glycosyltransferases was assayed in vitro. We show that WaaG and WaaB add a glucose and galactose sequentially to heptose2-1-dephospho Kdo2-lipid A. E. coli K-12 WaaO and S. typhimurium WaaI add a galactose to the WaaG/WaaB product but can also add a galactose to the WaaG product directly without the branched core sugar added by WaaB. Both WaaI and WaaO require divalent metal ions for optimal activity; however, WaaO, unlike WaaI, can add several glucose residues to its lipid acceptor. Using the product of WaaG, WaaB, and WaaI, we show that S. typhimurium WaaJ and WaaK transfer a glucose and N-acetylglucosamine, respectively, to yield the full outer core. This is the first demonstration of the in vitro assembly of the outer core of the lipopolysaccharide using defined lipid A-oligosaccharide acceptors and sugar donors. PMID:24479701

  9. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    USGS Publications Warehouse

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  10. Characterization of polymer chain fractions of kiwifruit starch.

    PubMed

    Li, Dongxing; Zhu, Fan

    2018-02-01

    In this report, the amylose composition and molecular structure of starches from the core and outer pericarp of 3 golden kiwifruit varieties were characterised, using enzymatic and chromatographic techniques. Starches from the core tissues of kiwifruit tend to have higher amylose contents (by ∼3-5%) and longer unit chains of both amylopectins and their φ, β-limit dextrins (LDs) than those of the outer pericarp starches. The contents of short B-chains of the φ, β-LDs of amylopectins from the outer pericarp were higher (by ∼3%) than those of φ, β-LDs of the core amylopectins. Overall, the composition and structure of starches from the outer pericarp and core tissues of a golden kiwifruit were different. This study provides a structural basis to further investigate the starch degradation in kiwifruit, which may be of importance for the storage and eating quality of the fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling central metabolism and energy biosynthesis across microbial life

    DOE PAGES

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less

  12. Modeling central metabolism and energy biosynthesis across microbial life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less

  13. Modeling central metabolism and energy biosynthesis across microbial life.

    PubMed

    Edirisinghe, Janaka N; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L; Henry, Christopher S

    2016-08-08

    Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. To overcome this challenge, we developed methods and tools ( http://coremodels.mcs.anl.gov ) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.

  14. Crystal structure of SgcJ, an NTF2-like superfamily protein involved in biosynthesis of the nine-membered enediyne antitumor antibiotic C-1027

    DOE PAGES

    Huang, Tingting; Chang, Chin -Yuan; Lohman, Jeremy R.; ...

    2016-10-01

    Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us tomore » propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. In conclusion, these findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis.« less

  15. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  16. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  17. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  18. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5-14 TW. In the absence of heat-producing elements in the core, such high heat flow rates require an inner core younger than ~1 Ga and preclude the development of significant 186Os enrichment in the outer core. Experimental studies suggest that potassium may partition into Fe-S-O liquids during core formation. Radioactive decay of potassium in the core could provide an additional heat source and reconcile geophysical evidence for high core/mantle heat flow with apparent geochemical evidence for an ancient inner core. However, high concentrations of chalcophile elements such as Cu in the mantle are inconsistent with significant segregation of a S-rich liquid during core formation, precluding K partitioning into the core by this mechanism. Furthermore, core formation scenarios that would lead to high K content in the core (e.g., core formation prior to terrestrial volatile depletion) also result in high core Pb concentrations. Core/mantle interaction would then produce strong negative correlations between 186Os/188Os and 207Pb/204Pb ratios, but such correlations are not observed. In summary, elevated 186Os/188Os ratios in some plume-derived lavas are unlikely to reflect core/mantle interaction because the inner core is too young for this isotopic signature to have developed in the outer core. Melt generation from pyroxenite or fractionation of PGEs between sulfide melts and monosulfide solid solutions provide alternative mechanisms for generating ancient mantle reservoirs with elevated Pt/Os and 186Os/188Os.

  19. Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan

    Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less

  20. Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis

    DOE PAGES

    Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan; ...

    2017-08-30

    Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less

  1. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE PAGES

    Mitarai, O.; Xiao, C.; McColl, D.; ...

    2015-03-24

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  2. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitarai, O.; Xiao, C.; McColl, D.

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  3. Seismic Velocity Anomalies in the Outer Core: The Final Frontier

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2008-12-01

    Variation in density along outer core geoid surfaces must be very small (of order one part in a billion) since the resulting fluid motions and buoyancy fluxes would otherwise be prohibitively large for any reasonable choice of outer core viscosity. In any situation where seismic velocity variations are proportional to density variations (a generalized Birch's "law") this means that the resulting seismic travel time variations in the outer core would be unobservable. The largest lateral variations in the outer core are thus likely to arise from the distortion of geoid surfaces caused by density anomalies in the mantle or inner core. However, these do not change on decadal timescales and would be very difficult to separate from the inner core or mantle variations that cause them. Nonetheless, a recent study (Dai and Song, GRL, vol. 35, L16311, doi:10.1029/2008GL034895) provides evidence for time-variable outer core seismic velocity at the level of ten parts per million. Assuming this is real, I argue that the best candidate explanation is that all or part of the outer core is a two-phase medium consisting of a small mass fraction of small (ten or 100 micron-sized) particles of exsolving silicate material suspended in the convecting liquid. The seismic velocity of this two phase medium can vary at the desired level should the size distribution of particles vary from place to place (and with time) as one would expect in a convecting system, even though the mean density of the medium is invariant at the level of a part per billion, as required by dynamical considerations (thus invalidating Birch's "law"). The seismic velocity variation depends on the ratio of diffusion times to seismic periods, where the diffusion times are thermal or compositional for the particles or the particle spacing. This idea is not new (cf. Stevenson, JGR, 1983) but gains increased impetus from recent work on the nature of core formation and the desirability of an additional energy source for driving the geodynamo, as would arise if of order 10km of mantle underplating occurred over all of geologic time. The amount of suspended material will be tiny at any one time, illustrating the remarkable sensitivity of seismic waves to the microstructure of the medium. Consequences of this picture include some dissipation (finite Q) in the outer core and a significant frequency dependence of this effect, but precise predictions are difficult because of uncertainties in particle kinetics and convective velocities. The two-phase region may also influence radial seismic velocity profiles, particularly in the layers immediately adjacent to the boundaries (e.g., the layer just below the core-mantle boundary), an effect that has been suggested in the literature on many occasions. Even so, this explanation for lateral variability remains marginal at best, suggesting that the claimed observation is either not real or that some other explanation still awaits discovery.

  4. Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris.

    PubMed

    Bianco, M I; Jacobs, M; Salinas, S R; Salvay, A G; Ielmini, M V; Ielpi, L

    2014-09-01

    This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis. Xanthan is an exopolysaccharide that is thought to be a virulence factor that contributes to bacterial in planta growth. It also is one of the most important industrial biopolymers. The first steps of xanthan biosynthesis are well understood, but the polymerization and export mechanisms remain unclear. For this reason, the key proteins must be characterized to better understand these processes. Here we characterized, by biochemical and biophysical techniques, GumB, the outer membrane polysaccharide export protein, and GumC, the polysaccharide co-polymerase protein of the xanthan biosynthesis system. Our results suggested that recombinant GumB is a tetrameric protein in solution. On the other hand, we observed that both native and recombinant GumC present oligomeric conformation consistent with dimers and higher-order oligomers. The transmembrane segments of GumC are required for GumC expression and/or stability. These initial results provide a starting point for additional studies that will clarify the roles of GumB and GumC in the xanthan polymerization and export processes and further elucidate their functions and mechanisms of action. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    PubMed

    Filippov, Andrey A; Sergueev, Kirill V; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T; Mueller, Allen J; Fernandez-Prada, Carmen M; Nikolich, Mikeljon P

    2011-01-01

    Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  6. Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    PubMed Central

    Filippov, Andrey A.; Sergueev, Kirill V.; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T.; Mueller, Allen J.; Fernandez-Prada, Carmen M.; Nikolich, Mikeljon P.

    2011-01-01

    Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis. PMID:21980477

  7. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  8. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-06

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.

  9. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  10. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  11. Delayed Geodynamo in Hadean

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.

    2014-12-01

    Paleointensity measurements of Archean rocks reveal a strong geodynamo at ~3.45 Ga, while excess nitrogen content of lunar soil samples implies no geodynamo at ~3.9 Ga. Here I propose that initiation of a strong geodynamo is delayed due to accretion style of Earth, involving collision and merging of a few dozen Moon to Mars size planetary embryos. Two accretion scenarios consisting of 25 and 50 embryos are investigated. The collision of an embryo heats the proto-Earth's core differentially and the rotating low-viscosity core stably stratifies, creating a spherically symmetric and radially increasing temperature distribution. Convection starts in the outer core after each impact but is destroyed by the next impact. The iron core of an impacting embryo descends in the mantle and merges to the proto-Earth's core. Both adiabatic and non-adiabatic merging cases are studied. A major part of the gravitational energy released due to core merging is used to lift up the upper portion of the core to emplace the impactor core material at the neutrally buoyant level in the proto-Earth's core. The remaining energy is converted to heat. In the adiabatic case the merging embryo's core retains all of the remaining energy, while in the non-adiabatic merging 50% of the remaining energy is shared with the outer part of the proto-Earth's core where the embryo's core descends. The two merging models result in significantly different temperature distributions in the core at the end of accretion. After the accretion, the convecting shell in the outer core grows monotonically and generates geodynamo gradually. It takes about 50-100 Myr for the convecting shell to generate a strong dipole field at the surface, 50,000 to 100,000 nT, in the presence of a large stably stratified liquid inner core when the convecting outer core thickness exceeds about one half the radius of the Earth's core.

  12. The truth about laser fiber diameters.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2014-12-01

    To measure the various diameters of laser fibers from various manufacturers and compare them with the advertised diameter. Fourteen different unused laser fibers from 6 leading manufacturers with advertised diameters of 200, 270, 272, 273, 365, and 400 μm were measured by light microscopy. The outer diameter (including the fiber coating, cladding, and core), cladding diameter (including the cladding and the fiber core), and core diameter were measured. Industry representatives of the manufacturers were interviewed about the diameter of their fibers. For all fibers, the outer and cladding diameters differed significantly from the advertised diameter (P <.00001). The outer diameter, which is of most practical relevance for urologists, exhibited a median increase of 87.3% (range, 50.7%-116.7%). The outer, cladding, and core diameters of fibers with equivalent advertised diameters differed by up to 180, 100, and 78 μm, respectively. Some 200-μm fibers had larger outer diameters than the 270- to 273-μm fibers. All packaging material and all laser fibers lacked clear and precise fiber diameter information labels. Of 12 representatives interviewed, 8, 3, and 1 considered the advertised diameter to be the outer, the cladding, and the core diameter, respectively. Representatives within the same company frequently gave different answers. This study suggests that, at present, there is a lack of uniformity between laser fiber manufacturers, and most of the information conveyed to urologists regarding laser fiber diameter may be incorrect. Because fibers larger than the advertised laser fibers are known to influence key interventional parameters, this misinformation can have surgical repercussions. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Proteoglycan biosynthesis in chondrocytes: protein A-gold localization of proteoglycan protein core and chondroitin sulfate within Golgi subcompartments

    PubMed Central

    1985-01-01

    The intracellular pathway of cartilage proteoglycan biosynthesis was investigated in isolated chondrocytes using a protein A-gold electron microscopy immunolocalization procedure. Proteoglycans contain a protein core to which chondroitin sulfate and keratan sulfate chains and oligosaccharides are added in posttranslational processing. Specific antibodies have been used in this study to determine separately the distribution of the protein core and chondroitin sulfate components. In normal chondrocytes, proteoglycan protein core was readily localized only in smooth-membraned vesicles which co-labeled with ricin, indicating them to be galactose-rich medial/trans-Golgi cisternae, whereas there was only a low level of labeling in the rough endoplasmic reticulum. Chondroitin sulfate was also localized in medial/trans-Golgi cisternae of control chondrocytes but was not detected in other cellular compartments. In cells treated with monensin (up to 1.0 microM), which strongly inhibits proteoglycan secretion (Burditt, L.J., A. Ratcliffe, P. R. Fryer, and T. Hardingham, 1985, Biochim. Biophys. Acta., 844:247-255), there was greatly increased intracellular localization of proteoglycan protein core in both ricin- positive vesicles, and in ricin-negative vesicles (derived from cis- Golgi stacks) and in the distended rough endoplasmic reticulum. Chondroitin sulfate also increased in abundance after monensin treatment, but continued to be localized only in ricin-positive vesicles. The results suggested that the synthesis of chondroitin sulfate on proteoglycan only occurs in medial/trans-Golgi cisternae as a late event in proteoglycan biosynthesis. This also suggests that glycosaminoglycan synthesis on proteoglycans takes place in a compartment in common with events in the biosynthesis of both O-linked and N-linked oligosaccharides on other secretory glycoproteins. PMID:3934179

  14. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  15. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    PubMed

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  16. Constraints on the Properties of the Moon's Outer Core from High-Pressure Sound Velocity Measurements on Fe-S Liquids

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Wang, Y.; Kono, Y.; Yu, T.; Sakamaki, T.; Park, C.; Rivers, M. L.; Sutton, S. R.; Shen, G.

    2013-12-01

    Geophysical observations based on lunar seismology and laser ranging strongly suggest that the Moon's iron core is partially molten. Similar to Earth and other terrestrial planets, light elements, such as sulfur, silicon, carbon, and oxygen, are likely present in the lunar core. Determining the light element concentration in the outer core is of vital importance to the understanding of the structure, dynamics, and chemical evolution of the Moon, as well as the enigmatic history of the lunar dynamo. Among the candidate elements, sulfur is the preferred major light element in the lunar outer due to its high abundance in the parent bodies of iron meteorites, its high solubility in liquid Fe at the lunar core pressure (~5 GPa), and its strong effects on reducing the density, velocity, and freezing temperature of the core. In this study, we conducted in-situ sound velocity measurements on liquid samples of four different compositions, including pure Fe, Fe-10wt%S, Fe-20wt%S, and Fe-27wt%S, at pressure and temperature conditions up to 8 GPa and 1973 K (encompassing the entire lunar depth range), using the Kawai-type multi-anvil device at the GSECARS beamline 13-ID-D and the Paris-Edinburgh cell at HPCAT beamline 16-BM-B. Our results show that the velocity of Fe-rich liquids increases upon compression, decreases with increasing sulfur content, and is nearly independent of temperature. Compared to the seismic velocity of the outer core, our velocity data constrain the sulfur content at 4×2 wt%, indicating a significantly denser (6.4×0.4 g/cm3) and hotter (1860×60 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model also suggests a top-down solidification scenario for the evolution of the lunar core. Such an 'iron snow' process may have been an important mechanism for the growth of the inner core.

  17. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  18. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  19. LC and ferromagnetic resonance in soft/hard magnetic microwires

    NASA Astrophysics Data System (ADS)

    Tian, Bin; Vazquez, Manuel

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.

  20. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  1. Transient state kinetic investigation of ferritin iron release

    NASA Astrophysics Data System (ADS)

    Ciasca, G.; Papi, M.; Chiarpotto, M.; Rodio, M.; Campi, G.; Rossi, C.; De Sole, P.; Bianconi, A.

    2012-02-01

    Increased iron concentration in tissues appears to be a factor in the genesis and development of inflammatory and degenerative diseases. By means of real-time small angle x-ray scattering measurements, we studied the kinetics of iron release from the ferritin inorganic core as a function of time and distance from the iron core centre. Accordingly, the iron release process follows a three step model: (i) a defect nucleation in the outer part of the mineral core, (ii) the diffusion of the reducing agent towards the inner part of the core, and (iii) the erosion of the core from the inner to the outer part.

  2. Core break-off mechanism

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor)

    2003-01-01

    A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.

  3. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  4. Seismic structures in the inner and outer core constrained by the PKP observations near the caustic distance range

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2002-05-01

    We have extensively collected PKP waveforms around the PKP caustic distance range (141o - 147o) recorded in several dense regional arrays and the Global Seismic Network covering from 1990 to 2000. PKP observations at this distance range (141o - 147o) are usually purposely avoided in travel time analyses, because of the interference of various PKP branches. The observations there, however, will be extremely useful for constraining the seismic structures at both the top of the inner core and the bottom of the outer core. Moreover, because PKIKP phases sample a depth range of 100 km - 170 km below the inner-core boundary at this distant range, their observations fill the sampling depth gap between the PKiKP-PKIKP observations at the smaller distances and the PKPbc-PKIKP phases at the larger distances. Before the PKP caustics (141o - 145o), the diffracted PKP phases near the B caustics (PKPBdiff) and PKiKP phases are discernible in the long-period seismograms, and their differential travel times and waveforms could be used to constrain seismic structures at the bottom of the outer core and/or at the base of the mantle. The observed long-period PKiKP-PKPBdiff waveforms exhibit a hemispheric difference between those sampling the "eastern" and "western" hemispheres, with those sampling the "western" hemisphere showing larger time separations between the two phases. These observations can be explained by models with P velocity gradients of 0.0806 (km/s)/ 200 km for the "western" hemisphere and 0.114 (km/s)/200 km for the "eastern" hemisphere at the bottom of the outer core. Alternatively, these observations can also be explained by models with different velocity structures at the bottom 200 km of the mantle with P velocity variations in an order of 3 percent with respect to PREM. Broadband PKP observations after the PKP caustics (145o - 147o), on the other hand, provide high-quality constraints on the seismic structures at both the top of the inner core and the bottom of the outer core, as PKPbc phases can be used as excellent reference phases. We explore seismic models in both the bottom of the outer core and the top of the inner core, which can consistently explain the seismic observations at the caustic distance range (141o - 147o) and the PKiKP-PKIKP observations at the closer distances (Niu and Wen, Nature, 410, 1081-1084, 2001, Wen and Niu, JGR, submitted).

  5. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles.

    PubMed

    Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.

  6. Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures

    NASA Astrophysics Data System (ADS)

    Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.

    2016-12-01

    Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current static high-pressure capabilities. The new viscosity data from experiments and computations would provide new insights into the internal dynamics of the outer core.

  7. Overexpression of transcription factor OsWR2 1 regulates wax/cutin biosynthesis and enhances drought tolerance in rice

    USDA-ARS?s Scientific Manuscript database

    Drought is the major abiotic stress limiting crop production. Plant cuticle represents the outer-most layer of the epidermis and previous studies demonstrate its association with plant response to climatological drought. We report here the functional characterization of the rice ((Oryza sativa L.) W...

  8. A fast and simple LC-MS-based characterization of the flavonoid biosynthesis pathway for few seed(ling)s.

    PubMed

    Jaegle, Benjamin; Uroic, Miran Kalle; Holtkotte, Xu; Lucas, Christina; Termath, Andreas Ole; Schmalz, Hans-Günther; Bucher, Marcel; Hoecker, Ute; Hülskamp, Martin; Schrader, Andrea

    2016-09-01

    (Pro)anthocyanidins are synthesized by the flavonoid biosynthesis pathway with multi-layered regulatory control. Methods for the analysis of the flavonoid composition in plants are well established for different purposes. However, they typically compromise either on speed or on depth of analysis. In this work we combined and optimized different protocols to enable the analysis of the flavonoid biosynthesis pathway with as little as possible biological material. We chose core substances of this metabolic pathway that serve as a fingerprint to recognize alterations in the main branches of the pathway. We used a simplified sample preparation, two deuterated internal standards, a short and efficient LC separation, highly sensitive detection with tandem MS in multiple reaction monitoring (MRM) mode and hydrolytic release of the core substances to reduce complexity. The method was optimized for Arabidopsis thaliana seeds and seedlings. We demonstrate that one Col-0 seed/seedling is sufficient to obtain a fingerprint of the core substances of the flavonoid biosynthesis pathway. For comparative analysis of different genotypes, we suggest the use of 10 seed(lings). The analysis of Arabidopsis thaliana mutants affecting steps in the pathway revealed foreseen and unexpected alterations of the pathway. For example, HY5 was found to differentially regulate kaempferol in seeds vs. seedlings. Furthermore, our results suggest that COP1 is a master regulator of flavonoid biosynthesis in seedlings but not of flavonoid deposition in seeds. When sample numbers are high and the plant material is limited, this method effectively facilitates metabolic fingerprinting with one seed(ling), revealing shifts and differences in the pathway. Moreover the combination of extracted non-hydrolysed, extracted hydrolysed and non-extracted hydrolysed samples proved useful to deduce the class of derivative from which the individual flavonoids have been released.

  9. Electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.

    1995-01-17

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.

  10. Electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.; Dahl, Leslie R.

    1995-01-01

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter.

  11. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  12. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and, hence, with the frictional drag acting on the outer sleeve. As the wire cuts toward the center of the core, the inner sleeve rotates farther with respect to the outer sleeve. Once the wire has cut to the center of the core, the tool and the core can be removed from the hole. The proper choice of cutting wire depends on the properties of the core material. For a sufficiently soft core material, a nonmetallic monofilament can be used. For a rubber-like core material, a metal wire can be used. For a harder core material, it is necessary to use an abrasive wire, and the efficiency of the tool can be increased greatly by vacuuming away the particles generated during cutting. For a core material that can readily be melted or otherwise cut by use of heat, it could be preferable to use an electrically heated cutting wire. In such a case, electric current can be supplied to the cutting wire, from an electrically isolated source, via rotating contact rings mounted on the sleeves.

  13. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  14. Mechanical thermal motor

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1976-01-01

    An apparatus is described for converting thermal energy such as solar energy into mechanical motion for driving fluid pumps and similar equipment. The thermal motor comprises an inner concentric cylinder carried by a stationary core member. The core member has a cylindrical disc plate fixed adjacent to a lower portion and extending radially from it. An outer concentric cylinder rotatably carried on the disc plate defining a space between the inner and outer concentric cylinders. A spiral tubular member encircles the inner concentric cylinder and is contained within the space between the inner and outer cylinders. One portion is connected to the inner concentric cylinder and a second portion connected to the outer concentric cylinder. A heated fluid is conveyed through the tubular member and is periodically cooled causing the tubular member to expand and contract. This causes the outer concentric cylinder to reciprocally rotate on the base plate accordingly. The reciprocating motion of the outer concentric cylinder is then utilized to drive a pump member in a pump chamber.

  15. Composition of the low seismic velocity E' layer at the top of Earth's core

    NASA Astrophysics Data System (ADS)

    Badro, J.; Brodholt, J. P.

    2017-12-01

    Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer consistent with seismological observations.

  16. Crystallization and preliminary X-ray diffraction studies of the lipopolysaccharide core biosynthetic enzyme ADP-L-glycero-D-mannoheptose 6-epimerase from Escherichia coli K-12.

    PubMed

    Ding, L; Zhang, Y; Deacon, A M; Ealick, S E; Ni, Y; Sun, P; Coleman, W G

    1999-03-01

    ADP-L-glycero-D-mannoheptose 6-epimerase is a 240 kDa NAD-dependent nucleotide diphosphosugar epimerase from Escherichia coli K12 which catalyzes the interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. ADP-L-glycero-D-mannoheptose is a required intermediate for lipopolysaccharide inner-core and outer-membrane biosynthesis in several genera of pathogenic and non-pathogenic Gram-negative bacteria. ADP-L-glycero-D-mannoheptose 6-epimerase was overexpressed in E. coli and purified to apparent homogeneity by chromatographic methods. Three crystal forms of the epimerase were obtained by a hanging-drop vapor-diffusion method. A native data set for crystal form III was collected in-house on a Rigaku R-AXIS-IIC image plate at 3.0 A resolution. The form III crystals belong to the monoclinic space group P21. The unit-cell parameters are a = 98.94, b = 110.53, c = 180.68 A and beta = 90.94 degrees. Our recent results show that these crystals diffract to 2.0 A resolution at the Cornell High Energy Synchrotron Source. The crystal probably contains six 40 kDa monomers per asymmetric unit, with a corresponding volume per protein mass (Vm) of 4.11 A3 Da-1 and a solvent fraction of 70%.

  17. Compact Hybrid Laser Rod and Laser System

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)

    2017-01-01

    A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.

  18. Study on a New Combination Method and High Efficiency Outer Rotor Type Permanent Magnet Motors

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Kitamura, Masashi; Motegi, Yasuaki; Andoh, Takashi; Ochiai, Makoto; Abukawa, Toshimi

    The segment stator core, high space factor coil, and high efficiency magnet are indispensable technologies in the development of compact and a high efficiency motors. But adoption of the segment stator core and high space factor coil has not progressed in the field of outer rotor type motors, for the reason that the inner components cannot be laser welded together. Therefore, we have examined a segment stator core combination technology for the purposes of getting a large increase in efficiency and realizing miniaturization. We have also developed a characteristic estimation method which provides the most suitable performance for segment stator core motors.

  19. Iron-magnesium alloy in the Earth's Core

    NASA Astrophysics Data System (ADS)

    Dubrovinskaia, N.; Dubrovinsky, L.; Abrikosov, I.

    2005-12-01

    Composition of the Earth's outer core is a geochemical parameter crucial for understanding the evolution and current dynamics of our planet. Since it was recognized that the liquid metallic outer core is about 10% less dense than pure iron, different elements lighter than iron, including Si, S, O, C, and H, were proposed as major or at least significantly abundant in Earth's core. However, combination of experimental results with theoretical and geochemical considerations shows that it is unlikely that any one of these elements can account for the density deficit on its own. In series of experiments in a multianvil apparatus and in electrically- and laser-heated diamond anvil cells, we demonstrate that high pressure promotes solubility of magnesium in iron and at megabar pressure range more than 10 at% of Mg can dissolve in Fe. At pressures above 95 to 100 GPa, molten iron reacts with periclase MgO forming an iron-magnesium alloy and iron oxide. Our observations suggest that magnesium can be an important light element in Earth's outer core, but it cannot account for the seismologically determined density deficit on its own.

  20. Teleseismic Array Studies of Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine

    2011-12-01

    The core mantle boundary (CMB) is an inaccessible and complex region, knowledge of which is vital to our understanding of many Earth processes. Above it is the heterogeneous lower-mantle. Below the boundary is the outer-core, composed of liquid iron, and/or nickel and some lighter elements. Elucidation of how these two distinct layers interact may enable researchers to better understand the geodynamo, global tectonics, and overall Earth history. One parameter that can be used to study structure and limit potential chemical compositions is seismic-wave velocity. Current global-velocity models have significant uncertainties in the 200 km above and below the CMB. In this thesis, these regions are studied using three methods. The upper outer core is studied using two seismic array methods. First, a modified vespa, or slant-stack method is applied to seismic observations at broadband seismic arrays, and at large, dense groups of broadband seismic stations dubbed 'virtual' arrays. Observations of core-refracted teleseismic waves, such as SmKS, are used to extract relative arrivaltimes. As with previous studies, lower -mantle heterogeneities influence the extracted arrivaltimes, giving significant scatter. To remove raypath effects, a new method was developed, called Empirical Transfer Functions (ETFs). When applied to SmKS waves, this method effectively isolates arrivaltime perturbations caused by outer core velocities. By removing raypath effects, the signals can be stacked further reducing scatter. The results of this work were published as a new 1D outer-core model, called AE09. This model describes a well-mixed outer core. Two array methods are used to detect lower mantle heterogeneities, in particular Ultra-Low Velocity Zones (ULVZs). The ETF method and beam forming are used to isolate a weak P-wave that diffracts along the CMB. While neither the ETF method nor beam forming could adequately image the low-amplitude phase, beam forms of two events indicate precursors to the SKS and SKKS phase, which may be ULVZ indicators. Finally, cross-correlated observed and modelled beams indicate a tendency towards a ULVZ-like lower mantle in the study region.

  1. Topography at the inner core boundary

    NASA Astrophysics Data System (ADS)

    Lasbleis, M.; Forquenot, Q.; Deguen, R.

    2017-12-01

    Topography at the inner core boundary has been proposed to explain surprising seismic observations of some regional studies. Such observations are still debatted, and numerical values of possible inner core topography have been proposed ranging from no topography to "inner core mountains" (10km heigth over lengthscales of 20km, as in Dai et al. 2012). The inner core boundary is a peculiar boundary, as it is the place where the iron alloy constituting the core freezes. The existence of a significant topography on such a boundary is possible, but unlikely. At thermodynamic equilibrium, no topography is expected, as any material above the equilibrium radius would have melted and any below would have freezed. However, mechanical forcing may push the system out of equilibrium. Dynamical topography could be forced by convective flows in the inner core or by outer core heterogeneities. A topography induced by outer core convection would be short-lived when compared to geodynamical processes in the bulk of the inner core (τ ≈ 10-100 Myears), but long-lived compared to observations. Here, we would like to give a geodynamical perspective over inner core topography. We constrain plausible amplitude of inner core topography, and discuss the implications for seismic observations. We consider topography created by viscous flows in the bulk of the inner core and by variations of growth rate on regional lengthscale due to outer core convection. This approach allows us to consider both internal and external forcings on the topography. We treat topography forcings as stochastic processes, and calculate the probability of observing a given topography. Based on preliminary results, the high values for observed topography can not be interpreted as a normal behavior of core dynamics. If confirmed, the regions are likely to be anomalous and originated from outliers in the distribution of stochastic processes.

  2. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    PubMed

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.

  4. On the consequences of strong stable stratification at the top of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1990-01-01

    The consequences of strong stable stratification at the top of the earth's fluid outer core are considered, concentrating on the generation of the geomagnetic secular variation. It is assumed that the core near the core-mantle boundary is both strongly stably stratified and free of Lorentz forces: it is found that this set of assumptions severely limits the class of possible motions, none of which is compatible with the geomagnetic secular variation. Relaxing either assumption is adequate: tangentially geostrophic flows are consistent with the secular variation if the assumption that the core is strongly stably stratified is relaxed (while retaining the assumption that Lorentz forces are negligible); purely toroidal flows may explain the secular variation if Lorentz forces are included.

  5. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2012-12-01

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure-temperature properties and behavior of an iron-silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe-16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe-Si alloy, and that the eutectic composition in the Fe-Si system is less than 16 wt% silicon at core-mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe-Ni-Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core-mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.

  6. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many bacteria, adaptation to starvation relies partly on the stringent response. M. tuberculosis's unique outer membrane layer, the mycomembrane, is crucial for its viability and virulence. Despite its being the target of the major antituberculosis drugs, only scattered information exists on how the genes required for biosynthesis of the mycomembrane are expressed and regulated during starvation. This work has addressed this issue as a step toward the identification of new targets in the fight against M. tuberculosis. PMID:26416833

  7. CORE SHAPES AND ORIENTATIONS OF CORE-SÉRSIC GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au

    2015-01-01

    The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii R{sub b} —a measure of the size of their partially depleted core—that are ≳ 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position anglesmore » at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ε{sub med} = 0.13 ± 0.01, rounder than the median ellipticity of the ''outer'' regions ε{sub med} = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2σ significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.« less

  8. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  9. The Effect of Inner Core Translation on Outer Core Flow and the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Mound, J. E.; Davies, C. J.; Silva, L.

    2015-12-01

    Bulk translation of the inner core has been proposed to explain quasi-hemispheric patterns of seismic heterogeneity. Such a translation would result in differential melting and freezing at the inner core boundary (ICB) and hence a heterogeneous pattern of buoyancy flux that could influence convection in the outer core. This heterogeneous flux at the ICB will tend to promote upwelling on the trailing hemisphere, where enhanced inner core growth results in increased latent heat and light element release, and inhibit upwelling on the leading hemisphere, where melting of the inner core occurs. If this difference in convective driving between the two hemispheres propagated across the thickness of the outer core, then flows near the surface of the core could be linked to the ICB heterogeneity and result in a hemispheric imbalance in the geomagnetic field. We have investigated the influence of such ICB boundary conditions on core flows and magnetic field structure in numerical geodynamo models and analysed the resultant hemispheric imbalance relative to the hemispheric structure in models constructed from observations of Earth's field. Inner core translation at rates consistent with estimates for the Earth produce a strong hemispheric bias in the field, one that should be readily apparent in averages of the field over tens of thousands of years. Current models of the field over the Holocene may be able to rule out the most extreme ICB forcing scenarios, but more information on the dynamic structure of the field over these time scales will be needed to adequately test all cases.

  10. The Initial Physical Conditions of Kepler-36 b and c

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Morton, Timothy. D.

    2016-03-01

    The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Tingting; Chang, Chin -Yuan; Lohman, Jeremy R.

    Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us tomore » propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. In conclusion, these findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis.« less

  12. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  13. Lateral restraint assembly for reactor core

    DOEpatents

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  14. Differential Rotation within the Earth's Outer Core

    NASA Technical Reports Server (NTRS)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  15. Stratification of earth's outermost core inferred from SmKS array data

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi; Matsuzawa, Takanori

    2015-12-01

    S mKS arrivals recorded by large-scale broadband seismometer arrays are analyzed to investigate the depth profile of P wave speed ( V p ) in the outermost core. The V p structure of the upper 700 km of the outer core has been determined using S mKS waves of Fiji-Tonga events recorded at stations in Europe. According to a recent outer core model (KHOMC), the V p value is 0.45 % slower at the core mantle boundary (CMB) than produced by the Preliminary Reference Earth Model (PREM), and the slow anomaly gradually diminishes to insignificant values at ˜300 km below the CMB. In this study, after verifying these KHOMC features, we show that the differential travel times measured for S mKS waves that are recorded by other large-scale arrays sampling laterally different regions are well matched by KHOMC. We also show that KHOMC precisely fits the observed relative slowness values between S2KS, S3KS, and S4KS (S mKS waves with m= 2, 3, and 4). Based on these observations, we conclude that S mKS predominantly reflect the outer core structure. Then we evaluate biases of secondary importance which may be caused by mantle heterogeneity. The KHOMC V p profile can be characterized by a significant difference in the radial V p gradient between the shallower 300 km and the deeper part of the upper 700 km of the core. The shallower part has a V p gradient of -0.0018 s -1, which is steeper by 0.0001 s -1 when compared to the deeper core presented by PREM. The steeper V p gradient anomaly of the uppermost core corresponds to a radial variation in the pressure derivative of the bulk modulus, K '= d K/ d P. The K ' value is 3.7, which is larger by about 0.2 than that of the deeper core. The radial variation in K ' is too large to have a purely thermal origin, according to recent ab initio calculations on liquid iron alloys, and thus requires a thick and compositionally stratified layering at the outermost outer core.

  16. Thermal Equation of State of Iron: Constraint on the Density Deficit of Earth's Core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Murphy, C. A.; Shibazaki, Y.; Huang, H.

    2013-12-01

    The seismically inferred densities of Earth's solid inner core and the liquid outer core are smaller than the measured densities of solid hcp-iron and liquid iron, respectively. The inner core density deficit is significantly smaller than the outer core density deficit, implying different amounts and/or identities of light-elements incorporated in the inner and outer cores. Accurate measurements of the thermal equation-of-state of iron over a wide pressure and temperature range are required to precisely quantify the core density deficits, which are essential for developing a quantitative composition model for the core. The challenge has been evaluating the experimental uncertainties related to the choice of pressure scales and the sample environment, such as hydrostaticity at multi-megabar pressures and extreme temperatures. We have conducted high-pressure experiments on iron in MgO, NaCl, and Ne pressure media and obtained in-situ X-ray diffraction data up to 200 GPa at room temperature. Using inter-calibrated pressure scales including the MgO, NaCl, Ne, and Pt scales, we have produced a consistent compression curve of hcp-Fe at room temperature. We have also performed laser-heated diamond-anvil cell experiments on both Fe and Pt in a Ne pressure medium. The experiment was designed to quantitatively compare the thermal expansion of Fe and Pt in the same sample environment using Ne as the pressure medium. The thermal expansion data of hcp-Fe at high pressure were derived based on the thermal equation of state of Pt. Using the 300-K isothermal compression curve of iron derived from our static experiments as a constraint, we have developed a thermal equation of state of hcp-Fe that is consistent with the static P-V-T data of iron and also reproduces the shock wave Hugoniot data for pure iron. The thermodynamic model, based on both static and dynamic data, is further used to calculate the density and bulk sound velocity of liquid iron. Our results define the solid inner core and liquid outer core density deficits, which can serve as the basis for any core composition models.

  17. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  18. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  19. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core.

    PubMed

    Xiong, GuanNan; Zhang, YunHui; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin

    2017-08-01

    Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.

  20. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less

  1. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  2. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  3. The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling.

    PubMed

    May, Kerrie L; Silhavy, Thomas J

    2018-03-20

    The outer membrane (OM) bilayer of Gram-negative bacteria is biologically unique in its asymmetrical organization of lipids, with an inner leaflet composed of glycerophospholipids (PLs) and a surface-exposed outer leaflet composed of lipopolysaccharide (LPS). This lipid organization is integral to the OM's barrier properties. Perturbations of the outer leaflet by antimicrobial peptides or defects in LPS biosynthesis or transport to the OM cause a compensatory flipping of PLs to the outer leaflet. As a result, lipid asymmetry is disrupted and OM integrity is compromised. Recently, we identified an Escherichia coli mutant that exhibits aberrant accumulation of surface PLs accompanied by a cellular increase in LPS production. Remarkably, the observed hyperproduction of LPS is PldA dependent. Here we provide evidence that the fatty acids generated by PldA at the OM are transported into the cytoplasm and simultaneously activated by thioesterification to coenzyme A (CoA) by FadD. The acyl-CoAs produced ultimately inhibit LpxC degradation by FtsH. The increased levels of LpxC, the enzyme that catalyzes the first committed step in LPS biosynthesis, increases the amount of LPS produced. Our data suggest that PldA acts as a sensor for lipid asymmetry in the OM. PldA protects the OM barrier by both degrading mislocalized PLs and generating lipid second messengers that enable long-distance signaling that prompts the cell to restore homeostasis at a distant organelle. IMPORTANCE The outer membrane of Gram-negative bacteria is an effective permeability barrier that protects the cell from toxic agents, including antibiotics. Barrier defects are often manifested by phospholipids present in the outer leaflet of this membrane that take up space normally occupied by lipopolysaccharide. We have discovered a signaling mechanism that operates across the entire cell envelope used by the cell to detect these outer membrane defects. A phospholipase, PldA, that functions to degrade these mislocalized phospholipids has a second, equally important function as a sensor. The fatty acids produced by hydrolysis of the phospholipids act as second messengers to signal the cell that more lipopolysaccharide is needed. These fatty acids diffuse across the periplasm and are transported into the cytoplasm by a process that attaches coenzyme A. The acyl-CoA molecule produces signals to inhibit the degradation of the critical enzyme LpxC by the ATP-dependent protease FtsH, increasing lipopolysaccharide production. Copyright © 2018 May and Silhavy.

  4. Thermal barriers for compartments

    DOEpatents

    Kreutzer, Cory J.; Lustbader, Jason A.

    2017-10-17

    An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.

  5. A seismologically consistent compositional model of Earth's core.

    PubMed

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  6. A seismologically consistent compositional model of Earth’s core

    PubMed Central

    Badro, James; Côté, Alexander S.; Brodholt, John P.

    2014-01-01

    Earth’s core is less dense than iron, and therefore it must contain “light elements,” such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe–Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle. PMID:24821817

  7. Pole-phase modulated toroidal winding for an induction machine

    DOEpatents

    Miller, John Michael; Ostovic, Vlado

    1999-11-02

    A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.

  8. Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning.

    PubMed

    Ursache, Robertas; Miyashima, Shunsuke; Chen, Qingguo; Vatén, Anne; Nakajima, Keiji; Carlsbecker, Annelie; Zhao, Yunde; Helariutta, Ykä; Dettmer, Jan

    2014-03-01

    The development and growth of higher plants is highly dependent on the conduction of water and minerals throughout the plant by xylem vessels. In Arabidopsis roots the xylem is organized as an axis of cell files with two distinct cell fates: the central metaxylem and the peripheral protoxylem. During vascular development, high and low expression levels of the class III HD-ZIP transcription factors promote metaxylem and protoxylem identities, respectively. Protoxylem specification is determined by both mobile, ground tissue-emanating miRNA165/6 species, which downregulate, and auxin concentrated by polar transport, which promotes HD-ZIP III expression. However, the factors promoting high HD-ZIP III expression for metaxylem identity have remained elusive. We show here that auxin biosynthesis promotes HD-ZIP III expression and metaxylem specification. Several auxin biosynthesis genes are expressed in the outer layers surrounding the vascular tissue in Arabidopsis root and downregulation of HD-ZIP III expression accompanied by specific defects in metaxylem development is seen in auxin biosynthesis mutants, such as trp2-12, wei8 tar2 or a quintuple yucca mutant, and in plants treated with L-kynurenine, a pharmacological inhibitor of auxin biosynthesis. Some of the patterning defects can be suppressed by synthetically elevated HD-ZIP III expression. Taken together, our results indicate that polar auxin transport, which was earlier shown to be required for protoxylem formation, is not sufficient to establish a proper xylem axis but that root-based auxin biosynthesis is additionally required.

  9. COMPOSITE NEUTRONIC REACTOR

    DOEpatents

    Menke, J.R.

    1963-06-11

    This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)

  10. Physical and Electronic Isolation of Carbon Nanotube Conductors

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.

  11. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis[W][OA

    PubMed Central

    Duncan, Owen; Taylor, Nicolas L.; Carrie, Chris; Eubel, Holger; Kubiszewski-Jakubiak, Szymon; Zhang, Botao; Narsai, Reena; Millar, A. Harvey; Whelan, James

    2011-01-01

    The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction. PMID:21896887

  12. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis[OPEN

    PubMed Central

    Chen, Lih-Jen; Herrfurth, Cornelia

    2016-01-01

    DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA. PMID:26721860

  13. Changes in divertor conditions in response to changing core density with RMPs

    DOE PAGES

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...

    2017-06-07

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  14. Changes in divertor conditions in response to changing core density with RMPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  15. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Rebecca A; Campbell, Andrew J; Caracas, Razvan

    2016-07-29

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D0 3 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, ifmore » it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe 3Si with the D0 3 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.« less

  16. Earth's Fiercely Cooling Core - 24 TW

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.; Vannucchi, Paola

    2014-05-01

    Earth's mantle and core are convecting planetary heat engines. The mantle convects to lose heat from slow cooling, internal radioactivity, and core heatflow across its base. Its convection generates plate tectonics, volcanism, and the loss of ~35 TW of mantle heat through Earth's surface. The core convects to lose heat from slow cooling, small amounts of internal radioactivity, and the freezing-induced growth of a compositionally denser inner core. Core convection produces the geodynamo generating Earth's geomagnetic field. The geodynamo was thought to be powered by ~4 TW of heatloss across the core-mantle boundary, a rate sustainable (cf. Gubbins et al., 2003; Nimmo, 2007) by freezing a compositionally denser inner core over the ~3 Ga that Earth is known to have had a strong geomagnetic field (cf. Tarduno, 2007). However, recent determinations of the outer core's thermal conductivity(Pozzo et al., 2012; Gomi et al., 2013) indicate that >15 TW of power should conduct down its adiabat. Conducted power is unavailable to drive thermal convection, implying that the geodynamo needs a long-lived >17 TW power source. Core cooling was thought too weak for this, based on estimates for the Clapeyron Slope for high-pressure freezing of an idealized pure-iron core. Here we show that the ~500-1000 kg/m3 seismically-inferred jump in density between the liquid outer core and solid inner core allows us to directly infer the core-freezing Clapeyron Slope for the outer core's actual composition which contains ~8±2% lighter elements (S,Si,O,Al, H,…) mixed into a Fe-Ni alloy. A PREM-like 600 kg/m3 - based Clapeyron Slope implies there has been ~774K of core cooling during the freezing and growth of the inner core, releasing ~24 TW of power during the past ~3 Ga. If so, core cooling can easily power Earth's long-lived geodynamo. Another major implication of ~24 TW heatflow across the core-mantle boundary is that the present-day mantle is strongly 'bottom-heated', and diapiric mantle plumes should dominate deep mantle upwelling.

  17. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.

    PubMed

    Pruyn, Michele L; Gartner, Barbara L; Harmon, Mark E

    2002-02-01

    Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four vertical positions in boles of +200-, +50- and +15-year-old Pinus ponderosa Dougl. ex Laws. trees. Cores were divided into five segments corresponding to radial depths of inner bark; outer, middle and inner sapwood; and heartwood. Data suggested that core segment CO2 production was an indicator of its respiratory activity, and that potential artifacts caused by wounding and extraction were minimal. On a dry mass basis, respiratory potential of inner bark was 3-15 times greater than that of sapwood at all heights for all ages (P < 0.0001). Within sapwood at all heights and in all ages of trees, outer sapwood had a 30-60% higher respiratory potential than middle or inner sapwood (P < 0.005). Heartwood had only 2-10% of the respiratory potential of outer sapwood. For all ages of trees, sapwood rings produced in the same calendar year released over 50% more CO2 at treetops than at bases (P < 0.0001). When scaled to the whole-tree level on a sapwood volume basis, sapwood of younger trees had higher respiratory potential than sapwood of older trees. In contrast, the trend was reversed when using the outer-bark surface area of stems as a basis for comparing respiratory potential. The differences observed in respiratory potential calculated on a core dry mass, sapwood volume, or outer-bark surface area basis clearly demonstrate that the resulting trends within and among trees are determined by the way in which the data are expressed. Although these data are based on core segments rather than in vivo measurements, we conclude that the relative differences are probably valid even if the absolute differences are not.

  18. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  19. Observation of core sensitive phases: Constraints on the velocity and attenuation profile in the vicinity of the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Adam, J. M.-C.; Ibourichène, A.; Romanowicz, B.

    2018-02-01

    We measured more than three thousand differential travel-times and amplitude ratios of PKPBC , PKPBC-diff , PKPAB and PKPDF phases in the epicentral distance range [149°-171°], from high quality records of globally distributed broadband stations. In particular, this is the largest collection of differential measurements of PKPBC-diff compared to PKPDF , extending by ∼ 10 ° the epicentral distance range in which the diffracted PKPBC phase has been observed globally. We used forward modelling of waveforms using the Direct Solution Method combined with a grid-search approach to explore attenuation and P-velocity structure in the vicinity of the inner core boundary (ICB) that can explain our observations. We find that, in order to simultaneously explain differential travel times and amplitude ratios of PKPBC , PKPBC-diff with respect to PKPDF out to distances of 165 ° , while fitting PKPAB /PKPDF within measurement errors, it is necessary to introduce a ∼ 450km zone of reduced bulk quality factor (Qκ ∼ 600) at the base of the outer core, while Qκ is close to 200 in a layer ∼ 150km thick at the top of the inner core. Concurrently, the P-velocity in the last 100 km of the outer-core is on average about 0.5 % slower than in the reference model AK 135 , while it is about 0.5 % faster in the top 150 km of the inner-core, resulting in a P-velocity jump at the inner core boundary slightly higher than in model AK 135 . However, this model underpredicts PKPBC-diff /PKPDF amplitude ratios at distances larger than 165 ° . Reducing Qκ even further in the last 100 km of the outer-core (down to Qκ = 50) provides a good fit to these data but it is not compatible with measurements of PKiKP/PKPDF amplitude ratios in the distance range 120-140°. We also considered a previously assembled global collection of "M phase" data. The M phase is a large energy in the coda of the PKPBC and PKPBC-diff that is not predicted by current 1 D reference seismic models, but most likely originates at the base of the outer-core. Our preferred model predicts the presence of an M phase, but significantly underestimates its amplitude. In order to explain the large amplitude of the M-phase and that of PKPBC-diff at distances larger than 165 ° without significantly affecting PKiKP amplitudes, it seems necessary to invoke a process that would produce strong scattering for diffracted phases in the immediate vicinity of the ICB, on the outer core side. Clusters of solid particles suspended in the fluid core or topography of the ICB are possible candidates that should be explored further.

  20. A laboratory model for solidification of Earth's core

    NASA Astrophysics Data System (ADS)

    Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan

    2005-11-01

    To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the complexity in the seismically inferred pattern of anisotropy in the Earth's inner core.

  1. Equation of state fits to the lower mantle and outer core

    NASA Technical Reports Server (NTRS)

    Butler, R.; Anderson, D. L.

    1978-01-01

    The lower mantle and outer core are subjected to tests for homogeneity and adiabaticity. An earth model is used which is based on the inversion of body waves and Q-corrected normal-mode data. Homogeneous regions are found at radii between 5125 and 4825 km, 4600 and 3850 km, and 3200 and 2200 km. The lower mantle and outer core are inhomogeneous on the whole and are only homogeneous in the above local regions. Finite-strain and atomistic equations of state are fit to the homogeneous regions. The apparent convergence of the finite-strain relations is examined to judge their applicability to a given region. In some cases the observed pressure derivatives of the elastic moduli are used as additional constraints. The effect of minor deviations from adiabaticity on the extrapolations is also considered. An ensemble of zero-pressure values of the density and seismic velocities are found for these regions. The range of extrapolated values from these several approaches provides a measure of uncertainties involved.

  2. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  3. 186Os- 187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core

    NASA Astrophysics Data System (ADS)

    Brandon, Alan D.; Walker, Richard J.; Puchtel, Igor S.; Becker, Harry; Humayun, Munir; Revillon, Sidonie

    2003-02-01

    The presence of coupled enrichments in 186Os/ 188Os and 187Os/ 188Os in some mantle-derived materials reflects long-term elevation of Pt/Os and Re/Os relative to the primitive upper mantle. New Os data for the 89 Ma Gorgona Island, Colombia komatiites indicate that these lavas are also variably enriched in 186Os and 187Os, with 186Os/ 188Os ranging between 0.1198397±22 and 0.1198470±38, and with γOs correspondingly ranging from +0.15 to +4.4. These data define a linear trend that converges with the previously reported linear trend generated from data for modern Hawaiian picritic lavas and a sample from the ca. 251 Ma Siberian plume, to a common component with a 186Os/ 188Os of approximately 0.119870 and γOs of +17.5. The convergence of these data to this Os isotopic composition may imply a single ubiquitous source in the Earth's interior that mixes with a variety of different mantle compositions distinguished by variations in γOs. The 187Os- and 186Os-enriched component may have been generated via early crystallization of the solid inner core and consequent increases in Pt/Os and Re/Os in the liquid outer core, with time leading to suprachondritic 186Os/ 188Os and γOs in the outer core. The presence of Os from the outer core in certain portions of the mantle would require a mechanism that could transfer Os from the outer core to the lower mantle, and thence to the surface. If this is the process that generated the isotopic enrichments in the mantle sources of these plume-derived systems, then the current understanding of solid metal-liquid metal partitioning of Pt, Re and Os requires that crystallization of the inner core began prior to 3.5 Ga. Thus, the Os isotopic data reported here provide a new source of data to better constrain the timing of inner core formation, complementing magnetic field paleo-intensity measurements as data sources that constrain models based on secular cooling of the Earth.

  4. Constraints on the coupled thermal evolution of the Earth's core and mantle, the age of the inner core, and the origin of the 186Os/188Os “core signal” in plume-derived lavas

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2006-10-01

    The possibility that some mantle plumes may carry a geochemical signature of core/mantle interaction has rightly generated considerable interest and attention in recent years. Correlated 186Os- 187Os enrichments in some plume-derived lavas (Hawaii, Gorgona, Kostomuksha) have been interpreted as deriving from an outer core with elevated Pt/Os and Re/Os ratios due to the solidification of the Earth's inner core (c.f., [A.D. Brandon, R.J. Walker, The debate over core-mantle interaction, Earth Planet. Sci. Lett. 232 (2005) 211-225.] and references therein). Conclusive identification of a "core signal" in plume-derived lavas would profoundly influence our understanding of mantle convection and evolution. This paper reevaluates the Os-isotope evidence for core/mantle interaction by examining other geochemical constraints on core/mantle interaction, geophysical constraints on the thermal evolution of the outer core, and geochemical and cosmochemical constraints on the abundance of heat-producing elements in the core. Additional study of metal/silicate and sulfide/silicate partitioning of K, Pb, and other trace elements is needed to more tightly constrain the likely starting composition of the Earth's core. However, available data suggest that the observed 186Os enrichments in Hawaiian and other plume-derived lavas are unlikely to derive from core/mantle interaction. 1) Core/mantle interaction sufficient to produce the observed 186Os enrichments would likely have significant effects on other tracers such as Pb- and W-isotopes that are not observed. 2) Significant partitioning of K or other heat-producing elements into the core would produce a "core depletion" pattern in the Silicate Earth very different from that observed. 3) In the absence of heat-producing elements in the core, core/mantle heat flow of ˜ 6-15 TW estimated from several independent geophysical constraints suggests an inner core age (< ˜ 2.5 Ga) too young for the outer core to have developed a significant 186Os enrichment. Core/mantle thermal and chemical interaction remains an important problem that warrants future research. However, Os-isotopes may have only limited utility in this area due to the relatively young age of the Earth's inner core.

  5. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests.

    PubMed

    Sasarman, Florin; Maftei, Catalina; Campeau, Philippe M; Brunel-Guitton, Catherine; Mitchell, Grant A; Allard, Pierre

    2016-03-01

    Glycosaminoglycans (GAG) are long, unbranched heteropolymers with repeating disaccharide units that make up the carbohydrate moiety of proteoglycans. Six distinct classes of GAGs are recognized. Their synthesis follows one of three biosynthetic pathways, depending on the type of oligosaccharide linker they contain. Chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin sulfate contain a common tetrasaccharide linker that is O-linked to specific serine residues in core proteins. Keratan sulfate can contain three different linkers, either N-linked to asparagine or O-linked to serine/threonine residues in core proteins. Finally, hyaluronic acid does not contain a linker and is not covalently attached to a core protein. Most inborn errors of GAG biosynthesis are reported in small numbers of patients. To date, in 20 diseases, convincing evidence for pathogenicity has been presented for mutations in a total of 16 genes encoding glycosyltransferases, sulfotransferases, epimerases or transporters. GAG synthesis defects should be suspected in patients with a combination of characteristic clinical features in more than one connective tissue compartment: bone and cartilage (short long bones with or without scoliosis), ligaments (joint laxity/dislocations), and subepithelial (skin, sclerae). Some produce distinct clinical syndromes. The commonest laboratory tests used for this group of diseases are analysis of GAGs, enzyme assays, and molecular testing. In principle, GAG analysis has potential as a general first-line diagnostic test for GAG biosynthesis disorders.

  6. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  7. Seismological evidence for a localized mushy zone at the Earth's inner core boundary.

    PubMed

    Tian, Dongdong; Wen, Lianxing

    2017-08-01

    Although existence of a mushy zone in the Earth's inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth's inner core boundary, here we present seismic evidence for a localized 4-8 km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a localized mushy zone is found to be surrounded by a sharp inner core boundary nearby. These seismic results suggest that, in the current thermo-compositional state of the Earth's core, the outer core composition is close to eutectic in most regions resulting in a sharp inner core boundary, but deviation from the eutectic composition exists in some localized regions resulting in a mushy zone with a thickness of 4-8 km.The existence of a mushy zone in the Earth's inner core has been suggested, but has remained unproven. Here, the authors have discovered a 4-8 km thick mushy zone at the inner core boundary beneath the Okhotsk Sea, indicating that there may be more localized mushy zones at the inner core boundary.

  8. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination

    PubMed Central

    Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-01-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322

  9. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    PubMed

    De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-12-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  10. Chemical Convention in the Lunar Core from Melting Experiments on the Ironsulfur System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Liu, J.; Chen, B.

    2012-03-26

    By reanalyzing Apollo lunar seismograms using array-processing methods, a recent study suggests that the Moon has a solid inner core and a fluid outer core, much like the Earth. The volume fraction of the lunar inner core is 38%, compared with 4% for the Earth. The pressure at the Moon's core-mantle boundary is 4.8 GPa, and that at the ICB is 5.2 GPa. The partially molten state of the lunar core provides constraints on the thermal and chemical states of the Moon: The temperature at the inner core boundary (ICB) corresponds to the liquidus of the outer core composition, andmore » the mass fraction of the solid core allows us to infer the bulk composition of the core from an estimated thermal profile. Moreover, knowledge on the extent of core solidification can be used to evaluate the role of chemical convection in the origin of early lunar core dynamo. Sulfur is considered an antifreeze component in the lunar core. Here we investigate the melting behavior of the Fe-S system at the pressure conditions of the lunar core, using the multi-anvil apparatus and synchrotron and laboratory-based analytical methods. Our goal is to understand compositionally driven convection in the lunar core and assess its role in generating an internal magnetic field in the early history of the Moon.« less

  11. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss.

    PubMed

    Kulichikhin, Konstantin; Yamauchi, Takaki; Watanabe, Kohtaro; Nakazono, Mikio

    2014-10-01

    The formation of a barrier to radial oxygen (O2 ) loss (ROL) in the root is an important adaptation of plants to root flooding, but the biochemical changes in plant roots where the barrier is formed are unclear. In this study, we analysed metabolic profiles and gene expression profiles in roots of rice (Oryza sativa L.) plants grown under stagnant deoxygenated conditions, which induce suberization in the outer cell layers of the roots and formation of barrier to ROL. Under these conditions, two distinctive biochemical features of the roots were the accumulations of malic acid and very long chain fatty acids (VLCFAs). We also showed that the expressions of some genes encoding plastid-localized enzymes, which convert malic acid to acetyl coenzyme A (AcCoA), were simultaneously up-regulated under stagnant conditions. The expression levels of these genes in specific root tissues isolated by laser microdissection suggested that malic acid is converted to AcCoA predominantly in the plastids in the outer cell layers of rice roots. We propose that the physiological role of malic acid accumulation in rice roots grown under stagnant conditions is to provide a substrate for the biosynthesis of fatty acids, which, in turn, are used in the biosynthesis of suberin. © 2014 John Wiley & Sons Ltd.

  12. The ab initio simulation of the Earth's core.

    PubMed

    Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D

    2002-06-15

    The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.

  13. Fluid flow near the surface of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  14. Array analyses of SmKS waves and the stratification of Earth's outermost core

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi

    2018-03-01

    We perform array analyses of SmKS waves in order to investigate the Vp structure of the Earth's outermost core. For earthquakes recorded by broadband seismometer networks in the world, we measure differential travel times between S3KS and S2KS, between S4KS and S3KS, and between S5KS and S3KS by array techniques. The differential times are well fit by a Vp model of the Earth's outermost core, KHOMC (Kaneshima and Helffrich, 2013). Differential slownesses of S4KS and S2KS relative to S2KS are also measured for the highest quality data. The measured slownesses, with unique sensitivity to the outer core 200-400 km below the CMB, are matched by KHOMC. These observations consolidate the evidence for the presence at the top of the outer core of a layer that has a distinctively steeper Vp gradient than the bulk of the outer core. We invert new SmKS differential time data set by a tau-p method and attempt to refine the Vp profile of KHOMC. The essential features of KHOMC are preserved after the model refinement. However, the newly estimated layer thickness is nearly 450 km, which is thicker than that of KHOMC. The Vp anomalies relative to PREM for the depths 400-800 km below the CMB are less than 0.03 km/s, consistent with the degree of agreement between different Vp models for the depth range.

  15. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.

    PubMed

    Manya, Hiroshi; Endo, Tamao

    2017-10-01

    O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analysis of the core genome and pangenome of Pseudomonas putida.

    PubMed

    Udaondo, Zulema; Molina, Lázaro; Segura, Ana; Duque, Estrella; Ramos, Juan L

    2016-10-01

    Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Has Earth's Plate Tectonics Led to Rapid Core Cooling?

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Vannucchi, P.; Connolly, J. A.

    2016-12-01

    Earth's mantle and core are convecting planetary heat engines. The mantle convects to lose heat from secular cooling, internal radioactivity, and core heatflow across its base. Its convection generates plate tectonics, volcanism, and the loss of 35 TW of mantle heat through Earth's surface. The core convects to lose heat from secular cooling, small amounts of internal radioactivity, and the freezing-induced growth of a compositionally denser inner core. Until recently, the geodynamo was thought to be powered by 4 TW of heatloss across the core-mantle boundary. More recent determinations of the outer core's thermal conductivity (Pozzo et al., 2012; Gomi et al., 2013) would imply that >15 TW of power should conduct down its adiabat. Secular core cooling has been previously thought to be too slow for this, based on estimates for the Clapeyron Slope for high-pressure freezing of an idealized pure-iron core (cf. Nimmo, 2007). The 500-1000 kg m-3 seismically-inferred jump in density between the liquid outer core and solid inner core allows a direct estimate of the Clapeyron Slope for the outer core's actual composition which contains 0.08±0.02 lighter elements (S,Si,O,Al, H,…) mixed into a Fe-Ni alloy. A PREM-like 600 kg m-3 density jump yields a Clapeyron Slope for which there has been 774K of core cooling during the freezing and growth of the inner core, cooling that has been releasing an average of 21 TW of power during the past 3 Ga. If so, core cooling could easily have powered Earth's long-lived geodynamo. Another implication is that the present-day mantle is strongly `bottom-heated', and diapiric mantle plumes should dominate deep mantle upwelling. This mode of core and mantle convection is consistent with slow, 37.5K/Ga secular cooling of Earth's mantle linked to more rapid secular cooling of the core (cf. Morgan, Rüpke, and White, 2016). Efficient plate subduction, hence plate tectonics, is a key ingredient for such rapid secular core cooling.We also show how a more complete thermodynamic version of Birch's accretional energy calculation predicts that accretion with FeNi-sinking-linked differentiation between an Earth-like mantle and core would naturally generate a core that, post-accretion, was both hotter than overlying mantle and 1000K hotter than today.

  18. Method of Fault Detection and Rerouting

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)

    2013-01-01

    A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.

  19. Comparison of secondary flows and boundary-layer accumulations in several turbine nozzles

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z

    1953-01-01

    An investigation was made of losses and secondary flows in three different turbine nozzle configurations in annular cascade. Appreciable outer shroud loss cores (passage vortices) were found to exist at the discharge of blades which had thickened suction surface boundary layers near the outer shroud. Blade designs having thinner boundary layers did not show such outer shroud loss cores, but indicated greater inward radial flow of low momentum air, in the wake loss is to this extent an indication of the presence or absence of radial flow. The blade wake was a combination of profile loss and low momentum air from the outer shroud, and the magnitude of the wake loss is to this extent an indication of the presence or absence of radial flow. At a high Mach number, shock-boundary-layer thickening on the blade suction surfaces provided an additional radial flow path for low momentum air, which resulted in large inner shroud loss regions accompanied by large deviations from design values of discharge angle. (author)

  20. Light absorption and plasmon – exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D

    2015-12-31

    Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on themore » type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)« less

  1. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    PubMed

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  2. Coring device with a improved core sleeve and anti-gripping collar with a collective core catcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Story, A.L.; Filshtinsky, M.

    1986-01-28

    This patent describes an improved coring apparatus used in combination with a coring bit and drill string. This device consists of: an outer driving structure adapted to be connected at one end to the coring bit for cutting a core in a borehole, and at the other end to the lower end of the drill string in telescoping and co-rotatable manner therewith; an inner barrel disposed within the outer driving structure and including a lower end portion adjacent to the bit; first means supporting the inner barrel in spaced relationship to the outer driving structure while permitting rotation of themore » driving structure with respect to the inner barrel; a woven metal mesh sleeve mounted in surrounding relation on at least a portion of the exterior surface of the inner barrel; second means, connected to a free end of the sleeve opposite the leading portion of the sleeve, for maintaining the portion of the sleeve which surrounds the inner barrel in compression and to maintain an inside diameter greater than the outside diameter of the inner barrel of the portion of the sleeve surrounding the inner barrel while the portion of the sleeve positioned inside the inner barrel being in tension to grip and compress a core received within the sleeve and having an outside diameter less than the inside diameter of the inner barrel when in tension, wherein the second means is also for engaging the core when the means is drawn into the inner barrel, and third means positioned within the inner barrel and connected to the leading portion of the sleeve to draw the sleeve within the inner barrel and to apply tension to the portion of the sleeve within the barrel to encase and grip the core as it is cut.« less

  3. The chemical composition of the cores of the terrestrial planets and the moon

    NASA Technical Reports Server (NTRS)

    Kuskov, O. L.; Khitarov, N. I.

    1977-01-01

    Using models of the quasi-chemical theory of solutions, the activity coefficients of silicon are calculated in the melts Fe-Si, Ni-Si, and Fe-Ni-Si. The calculated free energies of solution of liquid nickel and silicon in liquid iron in the interval 0 to 1400 kbar and 1500 to 4000 K, shows that Fe-Ni-Si alloy is stable under the conditions of the outer core of the earth and the cores of the terrestrial planets. The oxidation-reduction conditions are studied, and the fugacity of oxygen in the mantles of the planets and at the core-mantle boundary are calculated. The mechanism of reduction of silicon is analyzed over a broad interval of p and T. The interaction between the matter of the core and mantle is studied, resulting in the extraction of silicon from the mantle and its solution in the material of the core. It is concluded that silicon can enter into the composition of the outer core of the earth and Venus, but probably does not enter into the composition of the cores of Mercury, Mars, and the moon, if in fact the latter possesses one.

  4. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis ( Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberinmore » but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  5. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE PAGES

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun; ...

    2016-12-13

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis ( Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberinmore » but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  6. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis1[OPEN

    PubMed Central

    Yang, Huijun; Cai, Yuanheng; Kai, Guoyin

    2017-01-01

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature. PMID:27965303

  7. Electrically operated magnetic switch designed to display reduced leakage inductance

    DOEpatents

    Cook, Edward G.

    1994-01-01

    An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.

  8. Preparation of Geophysical Fluid Flow Experiments With The Rotating Spherical Gap Flow Model In Space

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.

  9. Geochemistry and magnetic sediment distribution at the western boundary upwelling system of southwest Atlantic

    NASA Astrophysics Data System (ADS)

    Cruz, Anna P. S.; Barbosa, Catia F.; Ayres-Neto, Arthur; Munayco, Pablo; Scorzelli, Rosa B.; Amorim, Nívea Santos; Albuquerque, Ana L. S.; Seoane, José C. S.

    2018-02-01

    In order to investigate the chemical and magnetic characteristics of sediments of the western boundary upwelling system of Southwest Atlantic we analyzed magnetic susceptibility, grain size distribution, total organic carbon, heavy mineral abundance, Fe associated with Mössbauer spectra, and Fe and Mn of pore water to evaluate the deposition patterns of sediments. Four box-cores were collected along a cross-shelf transect. Brazil Current and coastal plume exert a primary control at the inner and outer shelf cores, which exhibited similar depositional patterns characterized by a high abundance of heavy minerals (mean 0.21% and 0.08%, respectively) and very fine sand, whereas middle shelf cores presented low abundances of heavy minerals (mean 0.03%) and medium silt. The inner shelf was dominated by sub-angular grains, while in middle and outer shelf cores well-rounded grains were found. The increasing Fe3+:Fe2+ ratio from the inner to the outer shelf reflects farther distance to the sediment source. The outer shelf presented well-rounded minerals, indicating abrasive processes as a result of transport by the Brazil Current from the source areas. In the middle shelf, cold-water intrusion of the South Atlantic Central Water contributes to the primary productivity, resulting in higher deposition of fine sediment and organic carbon accumulation. The high input of organic carbon and the decreased grain size are indicative of changes in the hydrodynamics and primary productivity fueled by the western boundary upwelling system, which promotes loss of magnetization due to the induction of diagenesis of iron oxide minerals.

  10. Torsional Oscillations of the Earths's Core

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.

    1997-01-01

    Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.

  11. The Effects of Earth's Outer Core's Viscosity on Geodynamo Models

    NASA Astrophysics Data System (ADS)

    Dong, C.; Jiao, L.; Zhang, H.

    2017-12-01

    Geodynamo process is controlled by mathematic equations and input parameters. To study effects of parameters on geodynamo system, MoSST model has been used to simulate geodynamo outputs under different outer core's viscosity ν. With spanning ν for nearly three orders when other parameters fixed, we studied the variation of each physical field and its typical length scale. We find that variation of ν affects the velocity field intensely. The magnetic field almost decreases monotonically with increasing of ν, while the variation is no larger than 30%. The temperature perturbation increases monotonically with ν, but by a very small magnitude (6%). The averaged velocity field (u) of the liquid core increases with ν as a simple fitted scaling relation: u∝ν0.49. The phenomenon that u increases with ν is essentially that increasing of ν breaks the Taylor-Proudman constraint and drops the critical Rayleigh number, and thus u increases under the same thermal driving force. Forces balance is analyzed and balance mode shifts with variation of ν. When compared with former studies of scaling laws, this study supports the conclusion that in a certain parameter range, the magnetic field strength doesn't vary much with the viscosity, but opposes to the assumption that the velocity field has nothing to do with the outer core viscosity.

  12. Complementary high performance sensing of gases and liquids using silver nanotube

    NASA Astrophysics Data System (ADS)

    Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On

    2017-11-01

    A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.

  13. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  14. Probing the Structure near the Top of the Earth's Outer Core Using SmKS Traveltimes

    NASA Astrophysics Data System (ADS)

    Tang, V. C.; Zhao, L.; Hung, S.

    2013-12-01

    The Earth's solid inner core is composed of heavy Fe and Ni with a fraction of light elements such as O, S, Si. These light elements were expelled from the inner core during its formation and rise up through the outer core as the result of buoyancy, but their existence is still a mystery. Some authors have presented seismological evidence for lowered wave speed beneath the core-mantle boundary (CMB) relative to PREM, suggesting light elements there, but counter argument also exists. In this study, we use traveltime measurements from recorded and modeled SmKS waves to investigate the effect of the velocity under the CMB on the differential traveltimes between SKKS and S3KS waves (TS3KS-TSKKS). Due to the long propagation distance and interference with neighboring phases, the arrival times of SKKS and S3KS waves are difficult to define accurately in the records. Therefore in our analysis we measure both the observed and model-predicted differential traveltime TS3KS-TSKKS by cross-correlating the waveform of Hilbert-transformed S3KS with that of SKKS. We use synthetic seismograms calculated by the Direct-Solution Method (DSM) in a suite of 1D models with different structural profiles under the CMB to examine the existence of a zone of lowered velocity at the top of the outer core. We are conducting a systematic investigation using waveforms available at IRIS from globally distributed large deep earthquakes. Results from events we have processed so far indicate that the velocity under the CMB is slightly slower than that in PREM.

  15. Electrophoretic manipulation of multiple-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick

    2014-02-01

    Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.

  16. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  17. Nosiheptide Biosynthesis Featuring a Unique Indole Side Ring Formation on the Characteristic Thiopeptide Framework

    PubMed Central

    Yu, Yi; Duan, Lian; Zhang, Qi; Liao, Rijing; Ding, Ying; Pan, Haixue; Wendt-Pienkowski, Evelyn; Tang, Gongli; Shen, Ben; Liu, Wen

    2009-01-01

    Nosiheptide (NOS), belonging to the e series of thiopeptide antibiotics that exhibit potent activity against various bacterial pathogens, bears a unique indole side ring system and regiospecific hydroxyl groups on the characteristic macrocyclic core. Here, cloning, sequencing and characterization of the nos gene cluster from Streptomyces actuosus ATCC 25421 as a model for this series of thiopeptides has unveiled new insights into their biosynthesis. Bioinformatics-based sequence analysis and in vivo investigation into the gene functions show that NOS biosynthesis shares a common strategy with recently characterized b or c series thiopeptides for forming the characteristic macrocyclic core, which features a ribosomally synthesized precursor peptide with conserved posttranslational modifications. However, it apparently proceeds via a different route for tailoring the thiopeptide framework, allowing the final product to exhibit the distinct structural characteristics of e series thiopeptides, such as the indole side ring system. Chemical complementation supports the notion that the S-adenosylmethionine (AdoMet)-dependent protein NosL may play a central role in converting Trp to the key 3-methylindole moiety by an unusual carbon side chain rearrangement, most likely via a radical-initiated mechanism. Characterization of the indole side ring-opened analog of NOS from the nosN mutant strain is consistent with the proposed methyltransferase activity of its encoded protein, shedding light into the timing of the individual steps for indole side ring biosynthesis. These results also suggest the feasibility of engineering novel thiopeptides for drug discovery by manipulating the NOS biosynthetic machinery. PMID:19678698

  18. Multi-modality nanoparticles having optically responsive shape

    DOEpatents

    Chen, Fanqing; Bouchard, Louis-Serge

    2015-05-19

    In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.

  19. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  20. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  1. Permanent-magnet switched-flux machine

    DOEpatents

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  2. The rotational shear in pre-collapse cores of massive stars

    NASA Astrophysics Data System (ADS)

    Zilberman, Noa; Gilkis, Avishai; Soker, Noam

    2018-02-01

    We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.

  3. Melting-induced stratification above the Earth's inner core due to convective translation.

    PubMed

    Alboussière, Thierry; Deguen, Renaud; Melzani, Mickaël

    2010-08-05

    In addition to its global North-South anisotropy, there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres and the presence of a layer of reduced seismic velocity at the base of the outer core. This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements. Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo.

  4. Rapid-quench axially staged combustor

    DOEpatents

    Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George

    1999-01-01

    A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.

  5. Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results

    NASA Technical Reports Server (NTRS)

    Ober, Daniel M.; Horwitz, J. L.

    1998-01-01

    We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.

  6. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  7. Ultra high performance connectors for power transmission applications

    DOEpatents

    Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao

    2014-03-04

    Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.

  8. A Large Solid Inner Core at Mercury

    NASA Astrophysics Data System (ADS)

    Genova, A.; Goossens, S.; Mazarico, E.; Lemoine, F. G.; Neumann, G. A.; Kuang, W.; Sabaka, T. J.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    New measurements of the polar moments of inertia of the whole planet and of the outer layers (crust+mantle), and simulations of Mercury’s magnetic field dynamo suggest the presence of a solid inner core with a Ric 0.3-0.5 Roc.

  9. Chemical Reaction at the Core-Mantle Boundary from Experimental Study with a Diamond-Anvil Cell (Invited)

    NASA Astrophysics Data System (ADS)

    Ozawa, H.; Hirose, K.

    2010-12-01

    Element partitioning between molten iron and mantle minerals was investigated to 146 GPa by a combination of laser-heated diamond-anvil cell and analytical transmission electron microscope. The chemical compositions of co-existing quenched molten iron and (Mg,Fe)SiO3 perovskite/ferropericlase were determined quantitatively with energy-dispersive X-ray spectrometry and electron energy loss spectroscopy. The results demonstrate that the oxygen solubility in liquid iron co-existing with ferropericlase decreases with pressure to 38 GPa and, whereas the pressure effect is small at higher pressures. It was also revealed that the quenched liquid iron in contact with perovskite contained substantial amounts of oxygen and silicon at the core-mantle boundary (CMB) pressure. The chemical equilibrium between perovskite, ferropericlase, and molten iron at the P-T conditions of the CMB was calculated in Mg-Fe-Si-O system from these experimental results. Note that perovskite is a predominant phase instead of post-perovskite above 3500 K at the CMB pressure. We found that molten iron should include oxygen and silicon more than required to account for the core density deficit of below 10% when co-existing with both perovskite and ferropericlase at the CMB. This suggests that the bulk outer core liquid with <10% density deficit is not in direct contact with the mantle. Dissolutions of light elements from the mantle can produce a gravitationally stratified liquid layer at the topmost outer core, which can be responsible for the low-P wave velocity layer observed there. Such layer physically separates the mantle from the bulk outer core liquid, hindering the chemical reaction between them.

  10. Electrically operated magnetic switch designed to display reduced leakage inductance

    DOEpatents

    Cook, E.G.

    1994-05-10

    An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.

  11. Melting relations in the iron-sulfur system at ultra-high pressures - Implications for the thermal state of the earth

    NASA Technical Reports Server (NTRS)

    Williams, Quentin; Jeanloz, Raymond

    1990-01-01

    The melting temperatures of FeS-troilite and of a 10-wt-pct sulfur iron alloy have been measured to pressures of 120 and 90 GPa, respectively. The results document that FeS melts at a temperature of 4100 (+ or - 300) K at the pressure of the core-mantle boundary. Eutecticlike behavior persists in the iron-sulfur system to the highest pressures of measurements, in marked contrast to the solid-solutionlike behavior observed at high pressures in the iron-iron oxide system. Iron with 10-wt-pct sulfur melts at a similar temperature as FeS at core-mantle boundary conditions. If the sole alloying elements of iron within the core are sulfur and oxygen and the outer core is entirely liquid, the minimum temperature at the top of the outer core is 4900 (+ or - 400) K. Calculations of mantle geotherms dictate that there must be a temperature increase of between 1000 and 2000 K across thermal boundary layers within the mantle. If D-double-prime is compositionally stratified, it could accommodate the bulk of this temperature jump.

  12. The Density Jump at the Inner Core Boundary in the Eastern and Western Hemispheres

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D. N.; Ovtchinnikov, V. M.

    2018-02-01

    The results of analysis of more than 1300 new PKiKP/PcP amplitude ratios measured in Southeast Asia and South America at the epicentral distances of 3.2°-35.2° are presented. The density jump in the Eastern Hemisphere of the Earth's inner core (IC) is 0.3 g/cm3, and it is 0.9 g/cm3 in the Western one. Taking the large discrepancy in the obtained estimates into consideration, maintenance of such large lateral variations in the mosaic properties of the IC reflecting surface requires considerable variations in the thermodynamic parameters (mostly temperature) of the inner-outer core transition. However, if the observed asymmetry in the density jump distribution is of a global character, the data presented support the translation model of the IC dynamics. This model implies IC crystallization in the Western Hemisphere and melting in the Eastern one, not vice versa, as suggested by another geodynamic model based on thermochemical convection in the outer core and the thermal balance of the core-mantle system.

  13. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan

    2017-11-01

    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  14. Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios

    NASA Astrophysics Data System (ADS)

    Humayun, M.; Qin, L.

    2003-12-01

    The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This high-resolution study of the Fe/Mn of mantle-derived samples offers a new set of chemical constraints on the rates of inner core differentiation and the viability of Os isotope interpretations.

  15. High rates of recombination in otitis media isolates of non-typeable Haemophilus influenzae✩

    PubMed Central

    Cody, Alison J.; Field, Dawn; Feil, Edward J.; Stringer, Suzanna; Deadman, Mary E.; Tsolaki, Anthony G.; Gratz, Brett; Bouchet, Valérie; Goldstein, Richard; Hood, Derek W.; Moxon, E. Richard

    2008-01-01

    Non-typeable (NT) or capsule-deficient, Haemophilus influenzae (Hi) is a common commensal of the upper respiratory tract of humans and can be pathogenic resulting in diseases such as otitis media, sinusitis and pneumonia. The lipopolysaccharide (LPS) of NTHi is a major virulence factor that displays substantial intra-strain and inter-strain variation of its oligosaccharide structures. To investigate the genetic basis of LPS variation we sequenced internal regions of each of seven genes required for the biosynthesis of either the inner or the outer core oligosaccharide structures. These sequences were obtained from 25 representative NTHi isolates from episodes of otitis media. We found abundant evidence of recombination among LPS genes of NTHi, a finding in marked contrast to previous analyses of biosynthetic genes for capsular polysaccharide, a well-documented virulence factor of Hi. We found mosaic sequences, linkage equilibrium between loci and a lack of congruence between gene trees. These high rates were not confined to LPS genes since evidence for similar amounts of recombination was also found in eight housekeeping genes in a subset of the same 25 isolates. These findings provide a population based foundation for a better understanding of the role of NTHi LPS as a virulence factor and its potential as a candidate vaccine. PMID:12797973

  16. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  17. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  18. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  19. Synthesis of the trisaccharide outer core fragment of Burkholderia cepacia pv. vietnamiensis lipooligosaccharide.

    PubMed

    Bedini, Emiliano; Cirillo, Luigi; Parrilli, Michelangelo

    2012-02-15

    The synthesis of β-Gal-(1→3)-α-GalNAc-(1→3)-β-GalNAc allyl trisaccharide as the outer core fragment of Burkholderia cepacia pv. vietnamiensis lipooligosaccharide was accomplished through a concise, optimized, multi-step synthesis, having as key steps three glycosylations, that were in-depth studied performing them under several conditions. The target trisaccharide was designed with an allyl aglycone in order to open a future access to the conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against this Burkholderia pathogen. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    PubMed

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  1. High-Pressure Geophysical Properties of Fcc Phase FeHX

    NASA Astrophysics Data System (ADS)

    Thompson, E. C.; Davis, A. H.; Bi, W.; Zhao, J.; Alp, E. E.; Zhang, D.; Greenberg, E.; Prakapenka, V. B.; Campbell, A. J.

    2018-01-01

    Face centered cubic (fcc) FeHX was synthesized at pressures of 18-68 GPa and temperatures exceeding 1,500 K. Thermally quenched samples were evaluated using synchrotron X-ray diffraction (XRD) and nuclear resonant inelastic X-ray scattering (NRIXS) to determine sample composition and sound velocities to 82 GPa. To aid in the interpretation of nonideal (X ≠ 1) stoichiometries, two equations of state for fcc FeHX were developed, combining an empirical equation of state for iron with two distinct synthetic compression curves for interstitial hydrogen. Matching the density deficit of the Earth's core using these equations of state requires 0.8-1.1 wt % hydrogen at the core-mantle boundary and 0.2-0.3 wt % hydrogen at the interface of the inner and outer cores. Furthermore, a comparison of Preliminary Reference Earth Model (PREM) to a Birch's law extrapolation of our experimental results suggests that an iron alloy containing ˜0.8-1.3 wt % hydrogen could reproduce both the density and compressional velocity (VP) of the Earth's outer core.

  2. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  3. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  4. ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang

    2007-09-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.« less

  5. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.

    PubMed

    Rozé, Mathieu; Ung, Bora; Mazhorova, Anna; Walther, Markus; Skorobogatiy, Maksim

    2011-05-09

    In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 µm suspended solid core and a 900 µm suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the subwavelength imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effectively single-mode behavior of such waveguides. The suspended core fibers exhibit transmission from 0.10 THz to 0.27 THz (larger core), and from 0.25 THz to 0.51 THz (smaller core). Due to the large fraction of power that is guided in the holey cladding, fiber propagation losses as low as 0.02 cm(-1) are demonstrated specifically for the small core fiber. Low-loss guidance combined with the core isolated from environmental perturbations make these all-dielectric fibers suitable for practical terahertz imaging and sensing applications. © 2011 Optical Society of America

  6. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    NASA Technical Reports Server (NTRS)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  7. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  8. A core handling device for the Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1989-01-01

    A core handling device for use on Mars is being designed. To provide a context for the design study, it was assumed that a Mars Rover/Sample Return (MRSR) Mission would have the following characteristics: a year or more in length; visits by the rover to 50 or more sites; 100 or more meter-long cores being drilled by the rover; and the capability of returning about 5 kg of Mars regolith to Earth. These characteristics lead to the belief that in order to bring back a variegated set of samples that can address the range of scientific objetives for a MRSR mission to Mars there needs to be considerable analysis done on board the rover. Furthermore, the discrepancy between the amount of sample gathered and the amount to be returned suggests that there needs to be some method of choosing the optimal set of samples. This type of analysis will require pristine material-unaltered by the drilling process. Since the core drill thermally and mechanically alters the outer diameter (about 10 pct) of the core sample, this outer area cannot be used. The primary function of the core handling device is to extract subsamples from the core and to position these subsamples, and the core itself if needed, with respect to the various analytical instruments that can be used to perform these analyses.

  9. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of both Os isotope correlations, Os-W isotope systematics, and Fe/Mn evidence for core-mantle interaction over the entire Hawaiian source.

  10. Axial flow positive displacement worm gas generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor); Murrow, Kurt David (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  11. Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Stone, D.; Lathrop, D. P.

    2014-12-01

    Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.

  12. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method.

    PubMed

    Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen

    2010-01-01

    A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.

  13. Convective overshooting in the evolution of very massive stars

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1981-01-01

    Possible convective overshooting in stars of 30-120 solar masses are considered, including a merger between the convective core and the intermediate zone, and penetration by the outer convection zone into the hydrogen-shell region when the star is a supergiant. Convective mixing between the core and inner envelopes is found to lead to a brief renewal of hydrogen burning in the core, and a moderate widening of the main sequence bond in the H-R diagram. Deep penetration by the outer convection zone is found to force the star out of the red supergiant configuration and into a configuration near the main sequence. This would account for the apparent spread of the uppermost part of the main sequence and the concentration of luminous supergiants towards earlier spectral types. In addition, heavy mass loss need not be assumed to achieve the points of agreement, and are tentatively considered unimportant from an evolutionary point of view.

  14. Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material

    DOE PAGES

    Izzo, Valerie A.; Parks, Paul B.

    2017-06-22

    MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less

  15. Motion of the Mantle in the Translational Modes of the Earth and Mercury

    NASA Technical Reports Server (NTRS)

    Grinfeld, Pavel; Wisdom, Jack

    2005-01-01

    Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle. The polar Slichter mode is the motion of the inner core along the axis of rotation. Busse presented an analysis of the polar mode which yielded an expression for its period. Busse's analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury's core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect. We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative and is based on a linearization of Euler's equations for the motion of the fluid and Newton's second law for the motion of the inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse's in the limiting case of small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly change the period of oscillation.

  16. Preparation of Geophysical Fluid Flow Experiments ( GeoFlow ) in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The ,,GeoFlow" is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluidmechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field similar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment requires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth's liquid core the exp eriment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heating the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number. Results of preparatory experiments and numerical simulation of the space experiment will be presented. Funding from DLR under grant 50 WM 0122 is greatfully ackwnoledged.

  17. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  18. Europa's differentiated internal structure: inferences from four Galileo encounters.

    PubMed

    Anderson, J D; Schubert, G; Jacobson, R A; Lau, E L; Moore, W B; Sjogren, W L

    1998-09-25

    Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.

  19. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  20. Secular changes of LOD associated with a growth of the inner core

    NASA Astrophysics Data System (ADS)

    Denis, C.; Rybicki, K. R.; Varga, P.

    2006-05-01

    From recent estimates of the age of the inner core based on the theory of thermal evolution of the core, we estimate that nowadays the growth of the inner core may perhaps contribute to the observed overall secular increase of LOD caused mainly by tidal friction (i.e., 1.72 ms per century) by a relative decrease of 2 to 7 μs per century. Another, albeit much less plausible, hypothesis is that crystallization of the inner core does not produce any change of LOD, but makes the inner core rotate differentially with respect to the outer core and mantle.

  1. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  2. Hubble Space Telescope survey of the Perseus cluster - III. The effect of local environment on dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Conselice, Christopher J.; de Rijcke, Sven; Held, Enrico V.; Gallagher, John S.; O'Connell, Robert W.

    2011-01-01

    We present the results of a Hubble Space Telescope (HST) study of dwarf galaxies in the outer regions of the nearby rich Perseus cluster, down to MV=-12, and compare these with the dwarf population in the cluster core from our previous HST imaging. In this paper, we examine how properties such as the colour-magnitude relation, structure and morphology are affected by environment for the lowest mass galaxies. Dwarf galaxies are excellent tracers of the effects of environment due to their low masses, allowing us to derive their environmentally based evolution, which is more subtle in more massive galaxies. We identify 11 dwarf elliptical (dE) and dwarf spheroidal (dSph) galaxies in the outer regions of Perseus, all of which are previously unstudied. We measure the (V-I)0 colours of our newly discovered dEs, and find that these dwarfs lie on the same red sequence as those in the cluster core. The morphologies of these dwarfs are examined by quantifying their light distributions using concentration, asymmetry and clumpiness (CAS) parameters, and we find that dEs in the cluster outskirts are on average more disturbed than those in the core, with = 0.13 ± 0.09 and = 0.18 ± 0.08, compared to = 0.02 ± 0.04, = 0.01 ± 0.07 for those in the core. Based on these results, we infer that these objects are `transition dwarfs', likely in the process of transforming from late-type to early-type galaxies as they infall into the cluster, with their colours transforming before their structures. When we compare the number counts for both the core and outer regions of the cluster, we find that below MV=-12, the counts in the outer regions of the cluster exceed those in the core. This is evidence that in the very dense region of the cluster, dwarfs are unable to survive unless they are sufficiently massive to prevent their disruption by the cluster potential and interactions with other galaxies. Based on observations made with the NASA/ESA HST, obtained (from the Data Archive) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10201 and GO-10789

  3. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells.

    PubMed Central

    Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.

    2015-01-01

    The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478

  4. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach.

    PubMed

    Alvarez, Angel H; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-10-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD.

  5. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach

    PubMed Central

    Alvarez, Angel H.; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-01-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD. PMID:26424916

  6. Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates

    NASA Astrophysics Data System (ADS)

    Wyszynski, Filip J.; Lee, Seung Seo; Yabe, Tomoaki; Wang, Hua; Gomez-Escribano, Juan Pablo; Bibb, Mervyn J.; Lee, Soo Jae; Davies, Gideon J.; Davis, Benjamin G.

    2012-07-01

    The tunicamycins are archetypal nucleoside antibiotics targeting bacterial peptidoglycan biosynthesis and eukaryotic protein N-glycosylation. Understanding the biosynthesis of their unusual carbon framework may lead to variants with improved selectivity. Here, we demonstrate in vitro recapitulation of key sugar-manipulating enzymes from this pathway. TunA is found to exhibit unusual regioselectivity in the reduction of a key α,β-unsaturated ketone. The product of this reaction is shown to be the preferred substrate for TunF—an epimerase that converts the glucose derivative to a galactose. In Streptomyces strains in which another gene (tunB) is deleted, the biosynthesis is shown to stall at this exo-glycal product. These investigations confirm the combined TunA/F activity and delineate the ordering of events in the metabolic pathway. This is the first time these surprising exo-glycal intermediates have been seen in biology. They suggest that construction of the aminodialdose core of tunicamycin exploits their enol ether motif in a mode of C-C bond formation not previously observed in nature, to create an 11-carbon chain.

  7. A study of the required Rayleigh number to sustain dynamo with various inner core radius

    NASA Astrophysics Data System (ADS)

    Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.

    2017-12-01

    It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.

  8. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    NASA Astrophysics Data System (ADS)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  9. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B [Greensburg, PA; Singleton, Norman R [Murrysville, PA

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  10. A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis

    NASA Astrophysics Data System (ADS)

    Cohen, Douglas R.; Townsend, Craig A.

    2018-02-01

    Dynemicin A is a member of a subfamily of enediyne antitumour antibiotics characterized by a 10-membered carbocycle fused to an anthraquinone, both of polyketide origin. Sequencing of the dynemicin biosynthetic gene cluster in Micromonospora chersina previously identified an enediyne polyketide synthase (PKS), but no anthraquinone PKS, suggesting gene(s) for biosynthesis of the latter were distant from the core dynemicin cluster. To identify these gene(s), we sequenced and analysed the genome of M. chersina. Sequencing produced a short list of putative PKS candidates, yet CRISPR-Cas9 mutants of each locus retained dynemicin production. Subsequently, deletion of two cytochromes P450 in the dynemicin cluster suggested that the dynemicin enediyne PKS, DynE8, may biosynthesize the anthraquinone. Together with 18O-labelling studies, we now present evidence that DynE8 produces the core scaffolds of both the enediyne and anthraquinone, and provide a working model to account for their formation from the programmed octaketide of the enediyne PKS.

  11. Genetic Insights Into Pyralomicin Biosynthesis in Nonomuraea spiralis IMC A-0156

    PubMed Central

    Flatt, Patricia M.; Wu, Xiumei; Perry, Steven; Mahmud, Taifo

    2013-01-01

    The biosynthetic gene cluster for the pyralomicin antibiotics has been cloned and sequenced from Nonomuraea spiralis IMC A-0156. The 41-kb gene cluster contains 27 ORFs predicted to encode all of the functions for pyralomicin biosynthesis. This includes non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) required for the formation of the benzopyranopyrrole core unit, as well as a suite of tailoring enzymes (e.g., four halogenases, an O-methyltransferase, and an N-glycosyltransferase) necessary for further modifications of the core structure. The N-glycosyltransferase is predicted to transfer either glucose or a pseudosugar (cyclitol) to the aglycone. A gene cassette encoding C7-cyclitol biosynthetic enzymes was identified upstream of the benzopyranopyrrole-specific ORFs. Targeted disruption of the gene encoding the N-glycosyltransferase, prlH, abolished pyralomicin production and recombinant expression of PrlA confirms the activity of this enzyme as a sugar phosphate cyclase (SPC) involved in the formation of the C7-cyclitol moiety. PMID:23607523

  12. ATR LEU fuel and burnable absorber neutronics performance optimization by fuel meat thickness variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, G.S.

    2008-07-15

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores. (author)« less

  13. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to those observed on the Earth's surface and are mimicked by lows under the oceans and highs under the altiplanos. Careful and area selective S wave core mantle ellipsometry might be able to discern these core-mantle topographic variations. As such this process demonstrates the validity of the Gaia hypothesis enunciated by Baas Becking(1931) that no ecological niche on our planet is closed off from other niches "nothing in the world is single".

  14. Shock compression of Fe-Ni-Si system to 280 GPa: Implications for the composition of the Earth's outer core

    NASA Astrophysics Data System (ADS)

    Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian

    2014-07-01

    The shock Hugoniot of an Fe-9 wt %Ni-10 wt %Si system as a model of the Earth's core has been measured up to ~280 GPa using a two-stage light-gas gun. The samples had an average density of 6.853 (±0.036) g/cm3. The relationship between shock velocity (Us) and particle velocity (up) can be described by Us (km/s) = 3.95 (±0.15) + 1.53 (±0.05) up (km/s). The calculated Hugoniot temperatures and the melting curve indicate that the model composition melts above a shock pressure of ~168 GPa, which is significantly lower than the shock-melting pressure of iron (~225 GPa). A comparison of the pressure-density (P-ρ) profiles between the model composition and the preliminary reference Earth model gives a silicon content close to 10 wt %, necessary to compensate the density deficit in the Earth's outer core from seismological observations, if silicon is present as a major light element in the Fe-Ni core system.

  15. Some anticipated contributions to core fluid dynamics from the GRM

    NASA Technical Reports Server (NTRS)

    Vanvorhies, C.

    1985-01-01

    It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.

  16. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.

  17. Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album.

    PubMed

    Jones, Christopher G; Ghisalberti, Emilio L; Plummer, Julie A; Barbour, Elizabeth L

    2006-11-01

    A chemotaxonomic approach was used to investigate biosynthetic relationships between heartwood sesquiterpenes in Indian sandalwood, Santalum album L. Strong, linear relationships exist between four structural classes of sesquiterpenes; alpha- and beta-santalenes and bergamotene; gamma- and beta-curcumene; beta-bisabolene and alpha-bisabolol and four unidentified sesquiterpenes. All samples within the heartwood yielded the same co-occurrence patterns, however wood from young trees tended to be more variable. It is proposed that the biosynthesis of each structural class of sesquiterpene in sandalwood oil is linked through common carbocation intermediates. Lack of co-occurrence between each structural class suggests that four separate cyclase enzymes may be operative. The biosynthesis of sandalwood oil sesquiterpenes is discussed with respect to these co-occurrence patterns. Extractable oil yield was correlated to heartwood content of each wood core and the oil composition did not vary significantly throughout the tree.

  18. Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase*

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2013-01-01

    The iron-molybdenum cofactor (the M-cluster) serves as the active site of molybdenum nitrogenase. Arguably one of the most complex metal cofactors in biological systems, the M-cluster is assembled through the formation of an 8Fe core prior to the insertion of molybdenum and homocitrate into this core. Here, we review the recent progress in the research area of M-cluster assembly, with an emphasis on our work that provides useful insights into the mechanistic details of this process. PMID:23539617

  19. Polyketide synthase chemistry does not direct biosynthetic divergence between 9- and 10-membered enediynes

    PubMed Central

    Horsman, Geoff P.; Chen, Yihua; Thorson, Jon S.; Shen, Ben

    2010-01-01

    Enediynes are potent antitumor antibiotics that are classified as 9- or 10-membered according to the size of the enediyne core structure. However, almost nothing is known about enediyne core biosynthesis, and the determinants of 9- versus 10-membered enediyne core biosynthetic divergence remain elusive. Previous work identified enediyne-specific polyketide synthases (PKSEs) that can be phylogenetically distinguished as being involved in 9- versus 10-membered enediyne biosynthesis, suggesting that biosynthetic divergence might originate from differing PKSE chemistries. Recent in vitro studies have identified several compounds produced by the PKSE and associated thioesterase (TE), but condition-dependent product profiles make it difficult to ascertain a true catalytic difference between 9- and 10-membered PKSE-TE systems. Here we report that PKSE chemistry does not direct 9- versus 10-membered enediyne core biosynthetic divergence as revealed by comparing the products from three 9-membered and two 10-membered PKSE-TE systems under identical conditions using robust in vivo assays. Three independent experiments support a common catalytic function for 9- and 10-membered PKSEs by the production of a heptaene metabolite from: (i) all five cognate PKSE-TE pairs in Escherichia coli; (ii) the C-1027 and calicheamicin cognate PKSE-TEs in Streptomyces lividans K4-114; and (iii) selected native producers of both 9- and 10-membered enediynes. Furthermore, PKSEs and TEs from different 9- and 10-membered enediyne biosynthetic machineries are freely interchangeable, revealing that 9- versus 10-membered enediyne core biosynthetic divergence occurs beyond the PKSE-TE level. These findings establish a starting point for determining the origins of this biosynthetic divergence. PMID:20534556

  20. Viscosity of the earth's core.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  1. Core Composition and the Magnetic Field of Mercury

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Breuer, D.

    2005-05-01

    The density of Mercury suggests a core of approximately 1800 km radius and a mantle of approximately 600 km thickness. Convection in the mantle is often claimed to be capable of freezing the core over the lifetime of the solar system if the core is nearly pure iron. The thermal history calculations of Stevenson et al. (1983) and Schubert et al. (1988) suggest that about 5 weight-% sulphur are required to lower the core liquidus sufficiently to prevent complete freezing of the core and maintain a significant fluid outer core shell. Other candidates for a light alloying element require similarly large concentrations. The requirement of a significant concentration of volatile elements in the core is likely to be at variance with cosmochemical arguments for a mostly refractory, volatile poor composition of the planet. We have re-addressed the question of the freezing of Mercury's core using parameterized convection models based on the stagnant lid theory of planetary mantle convection. We have compared these results to earlier calculations (Conzelmann and Spohn, 1999) of Hermian mantle convection using a finite-amplitude convection code. We find consistently that the stagnant lid tends to thermally insulate the deep interior and we find mantle and core temperatures significantly larger than those calculated by Stevenson et al. (1983) and Schubert et al. (1988). As a consequence we find fluid outer core shells for reasonable mantle rheology parameters even for compositions with as little as 0.1 weight-% sulphur. Stevenson, D.J., T. Spohn, and G. Schubert. Icarus, 54, 466, 1983. Schubert, G. M.N. Ross, D.J. Stevenson, and T. Spohn, in Mercury, F. Vilas, C.R. Chapman and M.S. Matthews, eds., p.429, 1988. Conzelmann, V. and T. Spohn, Bull. Am. Astr. Soc., 31, 1102, 1999.

  2. Constraints on Mercury's Core-Mantle Boundary Region

    NASA Astrophysics Data System (ADS)

    Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.

  3. DETERMINATION OF CENTRAL ENGINE POSITION AND ACCRETION DISK STRUCTURE IN NGC 4261 BY CORE SHIFT MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro

    2015-07-01

    We report multifrequency phase-referenced observations of the nearby radio galaxy NGC 4261, which has prominent two-sided jets, using the Very Long Baseline Array at 1.4–43 GHz. We measured radio core positions showing observing frequency dependences (known as “core shift”) in both approaching jets and counterjets. The limit of the core position as the frequency approaches infinity, which suggests a jet base, is separated by 82 ± 16 μas upstream in projection, corresponding to (310 ± 60)R{sub s} (R{sub s}: Schwarzschild radius) as a deprojected distance, from the 43 GHz core in the approaching jet. In addition, the innermost component atmore » the counterjet side appeared to approach the same position at infinity of the frequency, indicating that cores on both sides are approaching the same position, suggesting a spatial coincidence with the central engine. Applying a phase-referencing technique, we also obtained spectral index maps, which indicate that emission from the counterjet is affected by free–free absorption (FFA). The result of the core shift profile on the counterjet also requires FFA because the core positions at 5–15 GHz cannot be explained by a simple core shift model based on synchrotron self-absorption (SSA). Our result is apparently consistent with the SSA core shift with an additional disk-like absorber over the counterjet side. Core shift and opacity profiles at the counterjet side suggest a two-component accretion: a radiatively inefficient accretion flow at the inner region and a truncated thin disk in the outer region. We proposed a possible solution about density and temperature profiles in the outer disk on the basis of the radio observation.« less

  4. Proton gradients produced by glucose oxidase microcapsules containing motor F0F1-ATPase for continuous ATP biosynthesis.

    PubMed

    Duan, Li; Qi, Wei; Yan, Xuehai; He, Qiang; Cui, Yue; Wang, Kewei; Li, Dongxiang; Li, Junbai

    2009-01-15

    Glucose oxidase (GOD) microcapsules held together by cross-linker, glutaraldehyde (GA), are fabricated by the layer-by-layer (LbL) assembly technique. The lipid bilayer containing CF(0)F(1)-ATPase was coated on the outer shell of GOD microcapsules. Driven under the proton gradients produced by catalysis of GOD microcapsules for glucose, ATP is synthesized from ADP and inorganic phosphate catalyzed by the ATPase rotary catalysis. The results show here that ATPase reconstituted on the GOD microcapsules retains its catalytic activity.

  5. Regiospecific cytochrome P450-catalyzed nitration of L-tryptophan in thaxtomin phytotoxin biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Thaxtomins, phytotoxins produced by plant pathogenic Streptomyces species, contain a rare nitro group that is essential for phytotoxicity. The N,N'-dimethyldiketopiperazine core of thaxtomins is assembled from L-phenylalanine and L-4-nitrotryptophan by a nonribosomal peptide synthetase. Nitric oxide...

  6. Biosynthesis of 4-aminoheptose 2-epimers, core structural components of the septacidins and spicamycins

    USDA-ARS?s Scientific Manuscript database

    Septacidins and spicamycins are acylated 4-aminoheptosyl-ß-N-glycosides produced by Streptomyces fimbriatus and S. alanosinicus, respectively. Their structures are highly conserved, but differ in the stereochemistry of the 4-aminoheptosyl residues. The origin of this stereochemistry is unknown, but ...

  7. Multiple Experimental Efforts to Understand the Structure and Dynamics of Earth's Core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Han, L.; Bennett, N.; Hou, M.; Kuwayama, Y.; Huang, H.

    2014-12-01

    It requires integration of data from different types of high-pressure experiments to understand the structure and dynamics of Earth's core. In particular, measurements of physical properties and element partitioning in systems relevant to the core provide complementary data to narrow down the range of possible core compositions. We have performed both static and dynamic compression experiments and combined results from these with literature data to establish a reliable thermal equation of state of iron. This allows us to precisely determine the density deficit in the solid inner core. The combination of density and sound velocity measurements for both solid and liquid iron and its alloys provide tight constraints on the density deficit in the liquid outer core and the amount of sulphur required to match the geophysical observations. We then conducted element-partitioning experiments between solid and liquid iron in both multi-anvil apparatus and the laser-heated diamond-anvil cell to determine the sulphur, silicon, and oxygen partitioning between the liquid outer core and solid inner core. We present newly developed high-pressure experimental and nano-scale analytical techniques that allow us to simulate the conditions of the inner core boundary (ICB) and analyze the chemical compositions of coexisting phases in the recovered samples. We have established protocols to obtain high-quality partitioning data in the laser-heating diamond-anvil cell combined with FIB/SEM crossbeam technology. The partitioning data obtained up to at least 200 GPa provide additional criteria to explain the observed density and velocity jumps at the ICB.

  8. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

  9. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts

    PubMed Central

    Misra, Rajeev

    2012-01-01

    In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts. PMID:27335668

  10. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  11. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  12. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  13. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.

    PubMed

    Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen

    2013-05-21

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.

  14. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  15. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  16. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    PubMed Central

    2014-01-01

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  17. Biosynthesis and maturation of cellular membrane glycoproteins.

    PubMed

    Hunt, L A

    1979-01-01

    The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse- and pulse-chase labeling with [2-3H]mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5-9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).

  18. Evolutionary status of the pre-protostellar core L1498

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B.; Langer, W. D.; Velusamy, T.; Levin, S. M. (Principal Investigator)

    1996-01-01

    L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.

  19. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    USGS Publications Warehouse

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  20. Numerical study on the thermo-chemically driven Geodynamo

    NASA Astrophysics Data System (ADS)

    Trümper, Tobias; Hansen, Ulrich

    2014-05-01

    In our numerical study we consider magneto-convection in the Earth's outer core driven by buoyancy induced by heterogeneities both in the thermal and the chemical field. The outer core is thus treated as a self-gravitating, rotating, spherical shell with unstable thermal and chemical gradients across its radius. The thermal gradient is maintained by secular cooling of the core and the release of latent heat at the inner core freezing front. Simultaneously, the concentration of the light constituents of the liquid phase increases at the inner core boundary since only a smaller fraction of the light elements can be incorporated during solidification. Thus, the inner core boundary constitutes a source of compositional buoyancy. The molecular diffusivities of the driving agents differ by some orders of magnitude so that a double-diffusive model is employed in order to study the flow dynamics of this system. We investigate the influence of different thermo-chemical driving scenarios on the structure of the flow and the internal magnetic field. A constant ratio of the diffusivities (Le=10) and a constant Ekman number (Ek=10-4) are adopted. Apart from testing different driving scenarios, the double-diffusive approach also allows to implement distinct boundary conditions on temperature and composition. Isochemical and fixed chemical flux boundary conditions are implemented in order to investigate their respective influence on the flow and magnetic field generation.

  1. An investigation of reactivity effect due to inadvertent filling of the irradiation channels with water in NIRR-1 Nigeria Research Reactor-1.

    PubMed

    Iliyasu, U; Ibrahim, Y V; Umar, Sadiq; Agbo, S A; Jibrin, Y

    2017-05-01

    Investigation of reactivity variation due to flooding of the irradiation channels of Nigeria Research Reactor (NIRR-1) a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria using the MCNP code for High Enrich Uranium (HEU) and Low Enrich Uranium (LEU) core has been simulated in this present study. In this work, the excess reactivity worth of flooding HEU core for 1 inner, 2 inner, 3 inner, 4 inner and all inner are 0.318mk, 0.577mk, 0.318mk, 1.204mk and 1.503mk respectively, and outer irradiation channels are 0.119mk, 0.169mk, 0.348mk, 0.438mk and 0.418mk respectively, the highest excess reactivity result from flooding both inner and outer irradiation channels is 2.04mk (±1.72×10 -7 ), the excess reactivity for LEU core was 0.299mk, 0.568mk, 0.896mk, 1.195mk and 1.524mk in the inner irradiation channels, and the outer irradiation channels are 0.129mk, 0.189mk, 0.219mk, 0.269mk and 0.548mk where the highest excess reactivity was 1.942mk (±1.64×10 -7 ) resulting from flooding inner and outer irradiation channels. The reactivity induced by flooding of the irradiation channels of NIRR-1 with water is within design safety limit enshrined in Safety Analysis Report of NIRR-1. The results also compare well with literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structural, evolutionary and genetic analysis of the histidine biosynthetic "core" in the genus Burkholderia.

    PubMed

    Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato

    2009-12-01

    In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.

  3. Magnetic braking of stellar cores in red giants and supergiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less

  4. Sound velocity of Fe-S liquids at high pressure: Implications for the Moon's molten outer core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Zhicheng; Wang, Yanbin; Kono, Yoshio

    2014-07-21

    Sound velocities of Fe and Fe–S liquids were determined by combining the ultrasonic measurements and synchrotron X-ray techniques under high pressure–temperature conditions from 1 to 8 GPa and 1573 K to 1973 K. Four different liquid compositions were studied including Fe, Fe–10 wt% S, Fe–20 wt% S, and Fe–27 wt% S. Our data show that the velocity of Fe-rich liquids increases upon compression and decreases with increasing sulfur content, whereas temperature has negligible effect on the velocity of Fe–S liquids. The sound velocity data were combined with ambient-pressure densities to fit the Murnaghan equation of state (EOS). Compared to themore » lunar seismic model, our velocity data constrain the sulfur content at 4±3 wt%, indicating a significantly denser (6.5±0.5 g/cm 3) and hotter (1870-70+100 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model suggests a top–down solidification scenario for the evolution of the lunar core. Such “iron snow” process may have been an important mechanism for the growth of the inner core.« less

  5. Uranus and Neptune: Refugees from the Jupiter-Saturn zone?

    NASA Astrophysics Data System (ADS)

    Thommes, E. W.; Duncan, M. J.; Levison, H. F.

    1999-09-01

    Plantesimal accretion models of planet formation have been quite successful at reproducing the terrestrial region of the Solar System. However, in the outer Solar System these models run into problems, and it becomes very difficult to grow bodies to the current mass of the ``ice giants," Uranus and Neptune. Here we present an alternative scenario to in-situ formation of the ice giants. In addition to the Jupiter and Saturn solid cores, several more bodies of mass ~ 10 MEarth or more are likely to have formed in the region between 4 and 10 AU. As Jupiter's core, and perhaps Saturn's, accreted nebular gas, the other nearby bodies must have been scattered outward. Dynamical friction with the trans-Saturnian part of the planetesimal disk would have acted to decouple these ``failed cores" from their scatterer, and to circularize their orbits. Numerical simulations presented here show that systems very similar to our outer Solar System (including Uranus, Neptune, the Kuiper belt, and the scattered disk) are a natural product of this process.

  6. A preliminary examination of differential decomposition patterns in mass graves.

    PubMed

    Troutman, Lauren; Moffatt, Colin; Simmons, Tal

    2014-05-01

    Five pairs of mass graves, each containing carcasses of 21 rabbits, were used to examine differential decomposition at four locations within the burial: surface, deep, mid-outer, and core. Every 100 accumulated degree days (ADD), a pair of graves was exhumed, and total body score (TBS) and internal carcass temperature of each rabbit were recorded. Decomposition did not differ for core- and deep-positioned carcasses (p = 0.13); differences were significant (p < 0.001) for all other location comparisons. Decomposition occurred fastest in shallow carcasses, followed by mid-outer carcasses; deep and core carcasses decomposed slowest and at rates not significantly different from one another. Adipocere formation was minimal and confined to deep carcasses. Carcass location within the mass grave significantly influenced internal carcass temperature (p < 0.001); a mean internal temperature difference of ca. 1°C existed between deep and shallow carcasses (30 cm apart). Effects of mass compactness and oxygenation require further investigation. © 2013 American Academy of Forensic Sciences.

  7. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkylmore » beta-diol, phthiocerol, with branched-chain fatty acids know as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinase PknB modifies PapA5 on three Thr residues, including two (T196, T198) located on an unresolved loop. These results clarify the DIM biosynthetic pathway and suggest possible mechanisms by which DIM biosynthesis may be regulated by the post-translational modification of PapA5.« less

  8. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    PubMed Central

    Gouré, Julien; Findlay, Wendy A; Deslandes, Vincent; Bouevitch, Anne; Foote, Simon J; MacInnes, Janet I; Coulton, James W; Nash, John HE; Jacques, Mario

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology. PMID:19239696

  9. Development of a novel drug release system, time-controlled explosion system (TES). I. Concept and design.

    PubMed

    Ueda, S; Hata, T; Asakura, S; Yamaguchi, H; Kotani, M; Ueda, Y

    1994-01-01

    A novel controlled drug release system. Time-Controlled Explosion System (TES) has been developed. TES has a four-layered spherical structure, which consists of core, drug, swelling agent and water insoluble polymer membrane. TES is characterized by a rapid drug release with a precisely programmed lag time; i.e. expansion of the swelling agent by water penetrating through the outer membrane, destruction of the membrane by stress due to swelling force and subsequent rapid drug release. For establishing the concept and development strategy, TES was designed using metoprolol and polystyrene balls (size: 3.2 mm in diameter) as a model drug and core particles. Among the polymers screened, low-substituted hydroxypropylcellulose (L-HPC) and ethylcellulose (EC) were selected for a swelling agent and an outer water insoluble membrane, respectively. The release profiles of metoprolol from the system were not affected by the pH of the dissolution media. Lag time was controlled by the thickness of the outer EC membrane; thus, a combination of TES particles possessing different lag times could offer any desired release profile of the model compound, metoprolol.

  10. The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U-Pb ages: an example from high-grade basement in Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Fornelli, A.; Langone, A.; Micheletti, F.; Pascazio, A.; Piccarreta, G.

    2014-03-01

    The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U-Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U-Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core-overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327-320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core, and (2) D opx/grt values define positive trends reaching values considered as suggestive of equilibrium from Er to Lu only with respect to the outer core of garnet. The presence of a zircon core dated 320 Ma in the inner rim of garnet suggests that it, as well as those dated at 325-320 Ma in the other textural sites and, probably, those dated at 339-336 Ma showing depletion of HREE, grew after the garnet core, which sequestered a lot of HREE and earlier than the HREE rich margin of garnet. The quite uniform REE contents in orthopyroxene from matrix and corona and the low and uniform contents of HREE in the zircon overgrowths dated at about 300 Ma allow to think that homogenisation occurred during or after the corona formation around this age. The domains dated around 325-320 Ma would approximate the stages of decompression, whereas the metamorphic peak probably occurred earlier than 339 Ma.

  11. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  12. Properties of iron alloys under the Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann

    2014-05-01

    The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.

  13. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    PubMed

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.

  14. Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis

    DOE PAGES

    Winter, Jaclyn M.; Cascio, Duilio; Dietrich, David; ...

    2015-07-14

    Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here in this study, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM’s SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that ismore » also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. Finally, the crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.« less

  15. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra.

    PubMed

    Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F

    2017-11-07

    The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  16. Sound Speed of Liquid Iron Along the Outer Core Isentrope: New Pre-heated Ramp Compression Experiments

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Nguyen, J.; Akin, M. C.; Fatýanov, O. V.

    2015-12-01

    Detailed elasticity data on liquid Fe and candidate molten core alloys should offer new constraints on the under-constrained problem of Earth's core composition. Density, sound speed, and the gradient in sound speed with pressure are each potentially distinct experimental constraints and are each well-known for Earth. The gradient in sound speed, though, has not been used because sound speed depends on both T and P, such that data must be collected or reconstructed along the correct, nearly adiabatic, thermal profile. Reconstruction requires the Grüneisen γ, which is composition-dependent, and data over a large P-T space to allow extrapolation. Both static and dynamic compression methods could be used, but the conditions (140 - 330 GPa and 4000 - 6000 K) are very challenging for static methods and standard shock compression only samples the outer core P-T profile at a single P. Instead we are applying quasi-isentropic dynamic ramp compression, using pre-heating of the target and impedance of the leading edge of a graded-density impactor (GDI) to select a probable outer core isentrope. The target material is melted and raised to a point on the outer core isentrope by the initial shock, then quasi-isentropically ramped to a maximum P by increasing shock impedance of trailing GDI layers. Particle velocity is monitored by photonic doppler velocimetry (PDV) at two step thicknesses at the interface of Fe or Fe-alloy target and MgO windows. The difference in arrival time of each particle velocity at the two steps directly gives the Lagrangian sound speed vs. particle velocity, which is integrated to obtain Pand density. At the writing of this abstract, we have completed one shot of this type. We successfully heated a two-step Fe target in a Mo capsule with MgO windows to 1350 °C, maintaining sufficient alignment and reflectivity to collect PDV signal returns. We characterized the velocity correction factor for PDV observation through MgO windows, and have confirmed that MgO remains sufficiently transparent on this loading path to act as a window. Our shot used a Mg-Ta graded density impactor launched at 5.6 km/s by the Caltech two-stage light gas gun, providing continuous sampling of the sound speed of liquid Fe from 70 GPa and ~2800 K up the isentrope to 243 GPa. Analysis continues. Prepared by LLNL under Contract DE-AC52-07NA27344

  17. Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide.

    PubMed

    Ziaco, Marcello; De Castro, Cristina; Silipo, Alba; Corsaro, Maria Michela; Molinaro, Antonio; Iadonisi, Alfonso; Lanzetta, Rosa; Parrilli, Michelangelo; Bedini, Emiliano

    2015-02-11

    The first synthesis of the outer core fragment of Burkholderia multivorans lipooligosaccharide [β-D-Glc-(1→3)-α-D-GalNAc-(1→3)-β-D-GalNAc-(1→3)-L-Rha] as α-allyl tetrasaccharide was accomplished. The glycosylations involving GalNAc units were studied in depth testing them under several conditions. This allowed the building of both the α- and the β-configured glycosidic bonds by employing the same GalNAc glycosyl donor, thus considerably shortening the total number of synthetic steps. The target tetrasaccharide was synthesized with an allyl aglycone to allow its future conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against the Burkholderia cepacia pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1981-03-01

    slides and core pins which formed the outer diameter and the hollow struts. Inner inserts were used to form the inside surface of the nose cone...ceramic component development. Figure 1 illustrates this by showing, in turn, ready removal in the test cell of a ceramic regenerator core , combusior...objective. This Executive Summary briefly reviews the highlights of the program. VII ■■■ *»W*w»«»^il»^.3«£*a;-^ -,Al^».t, „ . Regenerator Core Removal

  19. Biosynthesis of small proteoglycan II (decorin) by chondrocytes and evidence for a procore protein.

    PubMed

    Sawhney, R S; Hering, T M; Sandell, L J

    1991-05-15

    We have studied the biosynthesis of cartilage dermatan sulfate proteoglycan II (DS-PGII) (decorin) using in vitro translation of mRNA to determine the size of the primary gene product and by radiolabeling the protein in the presence of tunicamycin to inhibit the addition of Asn-linked oligosaccharides. Pulse-chase experiments were performed to examine post-translational processing and secretion. Inhibitors of oligosaccharide processing were used to determine whether DS-PGII molecules containing partially processed oligosaccharides could become proteoglycans and be secreted. Cell-free translation of sucrose gradient-fractionated RNA and subsequent immunoprecipitation of the core protein confirmed that the functional translated mRNA is in the size range of the two mRNA species observed by hybridization of chondrocyte RNA with a bone PGII cloned probe and that the translation product is a single protein with an apparent molecular mass of 42 kDa. Digestion of the intact proteoglycan (average molecular mass = 103 kDa) with chondroitinase ABC or AC results in an approximately 48-49-kDa product. Chondrocytes treated with tunicamycin to inhibit Asn-linked oligosaccharide addition synthesize and secrete a glycosaminoglycan (GAG)-substituted proteoglycan (average molecular mass = 86 kDa), yielding a 42-kDa core protein after chondroitinase ABC digestion, showing that Asn-linked oligosaccharides are not required for the addition of GAG chains or secretion. Following a short pulse (10 min) of [3H]leucine, three glycosylated forms of the DS-PGII core protein were observed, one of which is likely to be the precursor form of PGII predicted by the implied protein sequence of both bovine and human cDNA clones. Following the apparent cleavage of the propeptide, GAG-substituted intracellular core protein is detectable. Susceptibility to endoglycosidase H indicates that approximately one-third of the secreted core protein contains exclusively complex-type Asn-linked oligosaccharides and approximately two-thirds contain high mannose as well as complex-type oligosaccharides. Secreted DS-PGII appears to be fully substituted with three Asn-linked oligosaccharide chains. Inhibitors of oligosaccharide processing, however, permitted secretion of GAG-substituted DS-PGII that was fully (three chains) or incompletely (one or two chains) substituted with partially processed Asn-linked carbohydrate chains. By comparison of chondrocyte DS-PGII with fibroblast DS-PGII, we conclude that the addition and processing of Asn-linked carbohydrate chains are directed by the amino acid sequence of the core protein. The results reported here also suggest that the addition of xylose, the initial step in GAG chain synthesis, occurs early in biosynthesis and is determined by the primary amino acid sequence of the core protein.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.

    2011-03-01

    Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth's outer core is undersaturated in oxygen with respect to plausible mantle FeO contents, which will result in either the depletion of FeO from the base of the mantle or cause the development of an outer core layer that is enriched in oxygen. The oxygen content of the more sulphur-rich Martian core would be in the range 2-4 wt.% if it is in equilibrium with the FeO-rich Martian mantle.

  1. Lunar internal structure modeling using Apollo seismic travel time data and the latest selenodetic data from GRAIL and LLR

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Yamada, R.; Kikuchi, F.; Kamata, S.; Ishihara, Y.; Iwata, T.; Hanada, H.; Sasaki, S.

    2014-12-01

    We tried to constrain lunar internal structure by combining the Apollo seismic travel time data and selenodetic data including those from GRAIL and LLR. We used a seven-layer model consisting of crust, upper mantle, middle mantle, lower mantle, low-velocity layer (LVL), fluid outer core and solid inner core. The model is constrained by the following observations; three selenodetic data of mass, mean moment of inertia, tidal Love number k2 from [1], and Apollo seismic travel time data from [2]. Markov Chain Monte Carlo method is used to infer the model parameters. We collected 140 million samples from 10 chains. Viscosity is not taken into account in this calculation. Mean crustal thickness of 46 ± 4 km is estimated by fitting a normal distribution curve to the posterior distribution, which is to be compared with the previous estimate of 34 - 43 km [3]. Major part of crustal densities is sampled between 2500 and 2600 kg/m3, which is consistent with the value of 2550 kg/m3 reported by [3]. In general, seismic wave velocities in the mantle are consistent with the previous estimates [4][5]. The ranges of size and density of the outer core which satisfy the observation are relatively wide and it is difficult to tightly constrain them. Strong correlation between outer core size and LVL thickness is observed. The smaller outer core should be accompanied by thick LVL and vice versa. When we take into account the upper bound of the fluid core size of 400 km which is predicted by magnetic observation [6], the thickness of the LVL is at least about 100 km. The S-wave velocity within this low-velocity layer is estimated to be less than about 3 km/s. The effect of low viscosity [7] may change the estimate of the S-wave velocity in the LVL. The inner core radius is expected to be smaller than 280 km. The lunar displacement Love number is predicted to be h2= 0.0423 ± 0.0004. References [1] Williams et al. (2014), JGR, doi:10.1002/2013JE004559 [2] Lognonne et al. (2003), EPSL, 211, 27-44 [3] Wieczorek et al. (2012), Science, doi:10.1126/science.1231530 [4] Weber et al. (2011), Science, 331, 309-312, doi:10.1126/science.1199375 [5] Garcia et al. (2011), PEPI, doi:10.1016/j.pepi.2011.06.015 [6] Shimizu et al. (2013), Icarus, doi:10.1016/j.icarus.2012.10.029 [7] Harada et al. (2014), Nature geoscience, doi:10.1038/NGEO2211

  2. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis

    PubMed Central

    Zhang, Bipei

    2017-01-01

    The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway’s core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thaliana ttg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted. PMID:29261137

  3. Structural and Functional Analyses of the Proteins Involved in the Iron-Sulfur Cluster Biosynthesis

    NASA Astrophysics Data System (ADS)

    Wada, Kei

    The iron-sulfur (Fe-S) clusters are ubiquitous prosthetic groups that are required to maintain such fundamental life processes as respiratory chain, photosynthesis and the regulation of gene expression. Assembly of intracellular Fe-S cluster requires the sophisticated biosynthetic systems called ISC and SUF machineries. To shed light on the molecular mechanism of Fe-S cluster assembly mediated by SUF machinery, several structures of the SUF components and their sub-complex were determined. The structural findings together with biochemical characterization of the core-complex (SufB-SufC-SufD complex) have led me to propose a working model for the cluster biosynthesis in the SUF machinery.

  4. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057; Jin, Wa

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  5. Neutronics and Thermal Hydraulics Study for Using a Low-Enriched Uranium Core in the Advanced Test Reactor -- 2008 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang; M. A. Lillo; R. G. Ambrosek

    2008-06-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis was performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff versus effective full power days (EFPDs) between the HEU and the LEU cores. The MCNP ATR 1/8th core model was used to optimize the U 235 loading in the LEU core, such that the differences in K-eff and heat flux profiles between the HEU and LEU cores were minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the ATR reference HEU case study. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, the proposed LEU (U-10Mo) core conversion case with nominal fuel meat thickness of 0.330 mm (13 mil) and U-235 enrichment of 19.7 wt% is used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.0 mil) to 0.330 mm (13.0 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). A 0.8g of Boron-10, a burnable absorber, was added in the inner and outer plates to reduce the initial excess reactivity, and the peak to average ratio of the inner/outer heat flux more effectively. Because the B-10 (n,a) reaction will produce Helium-4 (He-4), which might degrade the LEU foil type fuel performance, an alternative absorber option is proposed. The proposed LEU case study will have 6.918 g of Cadmium (Cd) mixed with the LEU at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19) as a burnable absorber to achieve peak to average ratios similar to those for the ATR reference HEU case study.« less

  6. The Effect of Surface Topography on the Nonlinear Dynamics of Rossby Waves

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Desjardins, O.; Pitsch, H.

    2003-01-01

    Boussinesq convection in rotating systems attracts a sustained attention of the fluid dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg 1993) and plays an important role in geophysical and astrophysical applications, such as the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and astrophysical problems and the idealized laboratory studies is that natural systems are inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The effect of modulations on pattern formation and transition to turbulence in Boussinesq convection is far from being completely understood (Cross & Hohenberg 1993; Aranson & Kramer 2002). It is generally accepted that in the liquid outer core of the Earth the transport of the angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al. 2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang & Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or 1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or & Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the core might be influenced significantly by so-called bumps, which are heterogeneities on the mantle-core boundary. To model the effect of surface topography on the transport of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996), Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated height.

  7. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  8. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant

    PubMed Central

    Ma, Bing; Reynolds, C. Michael; Raetz, Christian R. H.

    2008-01-01

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42°C. 32Pi and [35S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42°C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42°C, consistent with a role for LptA in shuttling LPS across the periplasm. PMID:18768814

  9. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant.

    PubMed

    Ma, Bing; Reynolds, C Michael; Raetz, Christian R H

    2008-09-16

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42 degrees C. (32)P(i) and [(35)S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42 degrees C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42 degrees C, consistent with a role for LptA in shuttling LPS across the periplasm.

  10. Spatiotemporal exposome dynamics of soil lead and children's blood lead pre- and ten years post-Hurricane Katrina: Lead and other metals on public and private properties in the city of New Orleans, Louisiana, U.S.A.

    PubMed

    Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Mielke, Paul W

    2017-05-01

    Anthropogenic re-distribution of lead (Pb) principally through its use in gasoline additives and lead-based paints have transformed the urban exposome. This unique study tracks urban-scale soil Pb (SPb) and blood Pb (BPb) responses of children living in public and private communities in New Orleans before and ten years after Hurricane Katrina (29 August 2005). To compare and evaluate associations of pre- and ten years post-Katrina SPb and children's BPb on public and private residential census tracts in the core and outer areas of New Orleans, and to examine correlations between SPb and nine other soil metals. The Louisiana Healthy Housing and Childhood Lead Poisoning Prevention Program BPb (µg/dL) data from pre- (2000-2005) and post-Katrina (2010-2015) for ≤6-year-old children. Data from public and adjacent private residential census tracts within core and outer areas are stratified from a database that includes 916 and 922 SPb and 13,379 and 4830 BPb results, respectively, from pre- and post-Katrina New Orleans. Statistical analyses utilize Multi-Response Permutation Procedure and Spearman's Rho Correlation. Pre- to Post-Katrina median SPb decreases in public and private core census tracts were from 285 to 55mg/kg and 710-291mg/kg, respectively. In public and private outer census tracts the median SPb decreased from 109 to 56mg/kg and 88-55mg/kg. Children's BPb percent ≥5µg/dL on public and private core areas pre-Katrina was 63.2% and 67.5%, and declined post-Katrina to 7.6% and 20.2%, respectively. BPb decreases also occurred in outer areas. Soil Pb is strongly correlated with other metals. Post-Katrina re-building of public housing plus landscaping amends the exposome and reduces children's BPb. Most importantly, Hurricane Katrina revealed that decreasing the toxicants in the soil exposome is an effective intervention for decreasing children's BPb. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Recreating the synthesis of starch granules in yeast

    PubMed Central

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  12. Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana.

    PubMed

    Krueger, Stephan; Benstein, Ruben M; Wulfert, Sabine; Anoman, Armand D; Flores-Tornero, María; Ros, Roc

    2017-01-01

    Photorespiration is an essential pathway in photosynthetic organisms and is particularly important to detoxify and recycle 2-phosphoglycolate (2-PG), a by-product of oxygenic photosynthesis. The enzymes that catalyze the reactions in the photorespiratory core cycle and closely associated pathways have been identified; however, open questions remain concerning the metabolic network in which photorespiration is embedded. The amino acid serine represents one of the major intermediates in the photorespiratory pathway and photorespiration is thought to be the major source of serine in plants. The restriction of photorespiration to autotrophic cells raises questions concerning the source of serine in heterotrophic tissues. Recently, the phosphorylated pathway of serine biosynthesis has been found to be extremely important for plant development and metabolism. In this protocol, we describe a detailed methodological workflow to analyze the generative and vegetative phenotypes of plants deficient in the phosphorylated pathway of serine biosynthesis, which together allow a better understanding of its function in plants.

  13. Method of manufacturing lightweight thermo-barrier material

    NASA Technical Reports Server (NTRS)

    Blair, Winford (Inventor)

    1987-01-01

    A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.

  14. High temperature, flexible, fiber-preform seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)

    1992-01-01

    A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.

  15. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  16. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  17. Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion.

    PubMed

    Vaghefi, Ehsan; Walker, Kerry; Pontre, Beau P; Jacobs, Marc D; Donaldson, Paul J

    2012-06-01

    It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a narrowing of the extracellular space restricts solute diffusion and acts to direct fluxes into the lens core via the sutures.

  18. Mercury's Interior from MESSENGER Radio Science Data

    NASA Astrophysics Data System (ADS)

    Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental information on the status of the outer core and the presence of a solid inner core. We also present the latest solution of the tidal Love number k2 that enables us to constrain the basal temperature and rigidity of the outer molten core.

  19. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms.

    PubMed

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-12-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.

  20. The Rice Dwarf Virus P2 Protein Interacts with ent-Kaurene Oxidases in Vivo, Leading to Reduced Biosynthesis of Gibberellins and Rice Dwarf Symptoms1

    PubMed Central

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-01-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development. PMID:16299167

  1. Properties of iron under core conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.

    2003-04-01

    Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and temperature.

  2. Presumption of large-scale heterogeneity at the top of the outer core basal layer

    NASA Astrophysics Data System (ADS)

    Souriau, Annie

    2015-04-01

    A layer of reduced P-velocity gradient with thickness of about 100-200 km has been identified at the base of the liquid core from seismological methods. It has been interpreted as a dense layer resulting from partial re-melting of the inner core, which is depleted in light elements with respect to the liquid core during freezing. In an attempt to specify where freezing and re-melting occur, the structure of this basal layer is investigated with the seismological core phase PKPbc which has its turning point in the lower third of the outer core. The large PKPbc data set of the EHB catalog distributed by the International Seismological Centre is analyzed. In order to compensate for the uneven distribution of the data and to minimize the influence of mantle heterogeneities, the travel time anomalies are binned inside equal area and equal azimuth sectors sampling the base of the liquid core at different depths. Most of the observed variations in the binned travel time residuals are not significant according to their confidence level. The only features which could be significant are a large patch with a velocity increase of about 0.5% located at the top of the basal layer beneath the eastern hemisphere, and the complementary velocity decrease beneath the western hemisphere and the South pole. This observation suggests that some freezing or re-melting processes occur at the top of the basal layer with a hemispherical dissymmetry. If confirmed, it may give strong constraints on the fate of the light elements during the freezing and re-melting process and on their interaction with the basal layer and the overlying liquid core.

  3. Numerical simulation of axisymmetric valve operation for different outer cone angle

    NASA Astrophysics Data System (ADS)

    Smyk, Emil

    One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.

  4. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    NASA Technical Reports Server (NTRS)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  5. Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species.

    PubMed

    Takeda, Itaru; Umemura, Myco; Koike, Hideaki; Asai, Kiyoshi; Machida, Masayuki

    2014-08-01

    Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli

    PubMed Central

    Ruiz, Natividad; Gronenberg, Luisa S.; Kahne, Daniel; Silhavy, Thomas J.

    2008-01-01

    The outer membrane (OM) of most Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet. LPS, or endotoxin, is a molecule of important biological activities. In the host, LPS elicits a potent immune response, while in the bacterium, it plays a crucial role by establishing a barrier to limit entry of hydrophobic molecules. Before LPS is assembled at the OM, it must be synthesized at the inner membrane (IM) and transported across the aqueous periplasmic compartment. Much is known about the biosynthesis of LPS but, until recently, little was known about its transport and assembly. We applied a reductionist bioinformatic approach that takes advantage of the small size of the proteome of the Gram-negative endosymbiont Blochmannia floridanus to search for novel factors involved in OM biogenesis. This led to the discovery of two essential Escherichia coli IM proteins of unknown function, YjgP and YjgQ, which are required for the transport of LPS to the cell surface. We propose that these two proteins, which we have renamed LptF and LptG, respectively, are the missing transmembrane components of the ABC transporter that, together with LptB, functions to extract LPS from the IM en route to the OM. PMID:18375759

  7. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli.

    PubMed

    Ruiz, Natividad; Gronenberg, Luisa S; Kahne, Daniel; Silhavy, Thomas J

    2008-04-08

    The outer membrane (OM) of most Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet. LPS, or endotoxin, is a molecule of important biological activities. In the host, LPS elicits a potent immune response, while in the bacterium, it plays a crucial role by establishing a barrier to limit entry of hydrophobic molecules. Before LPS is assembled at the OM, it must be synthesized at the inner membrane (IM) and transported across the aqueous periplasmic compartment. Much is known about the biosynthesis of LPS but, until recently, little was known about its transport and assembly. We applied a reductionist bioinformatic approach that takes advantage of the small size of the proteome of the Gram-negative endosymbiont Blochmannia floridanus to search for novel factors involved in OM biogenesis. This led to the discovery of two essential Escherichia coli IM proteins of unknown function, YjgP and YjgQ, which are required for the transport of LPS to the cell surface. We propose that these two proteins, which we have renamed LptF and LptG, respectively, are the missing transmembrane components of the ABC transporter that, together with LptB, functions to extract LPS from the IM en route to the OM.

  8. Glacigenic landforms and sediments of the Western Irish Shelf

    NASA Astrophysics Data System (ADS)

    McCarron, Stephen; Monteys, Xavier; Toms, Lee

    2013-04-01

    Vibrocoring of possible glacigenic landforms identified from high resolution bathymetric coverage of the Irish Shelf by the Irish National Seabed Survey (INSS) has provided several clusters of short (<3m) cores that, due to a regional post-glacial erosional event, comprise last glacial age stratigraphies. In addition, new shallow seismic data and sedimentological information from across the Western Irish Shelf provide new insights into aspects of the nature, timing and pattern of shelf occupation by grounded lobate extensions of the last Irish Ice Sheet. Restricted chronological control of deglacial sequences in several cores indicates that northern parts of the western mid-shelf (south of a prominent outer Donegal Bay ridge) were ice free by ~24 ka B.P., and that ice had also probably retreated from outer shelf positions (as far west as the Porcupine Bank) at or before this time.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less

  10. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Gregori, G.; ...

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  11. Impact and hardness optimisation of composite materials inspired by the babassu nut (Orbignya speciosa).

    PubMed

    Staufenberg, Gerrit; Graupner, Nina; Müssig, Jörg

    2015-08-20

    The babassu nut is the fruit of the babassu palm Orbignya speciosa. The combination of hardness and impact strength is difficult to acquire for artificial materials, making the babassu nut a promising source for biomimetic inspiration. Unnotched Charpy impact tests, Shore D hardness tests and scanning electron microscopy were used for mechanical and microscopical analysis of the pericarp. Four major principles were found for a biomimetic approach: a hard core ((1); endocarp) is embedded in a soft outer layer of high impact strength ((2); epicarp) and is reinforced with fibres of variable fineness (3), some of which are oriented radial to the core (4). Biomimetic fibre-reinforced composites were produced using abstracted mechanisms of the babassu nut based on regenerated cellulose fibres (lyocell, L) with two different fineness values as reinforcement embedded in a polylactide (PLA) core matrix and polypropylene (PP) based outer layers. The biomimetic fibre composite reaches a significantly higher impact strength that is 1.6 times higher than the reference sample produced from a PLA/PP/L-blend. At the same time the hardness is slightly increased compared to PP/L.

  12. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, J.; Wan, Weigang; Chen, Yang

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error.more » Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.« less

  13. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  14. Fast torsional waves and strong magnetic field within the Earth's core.

    PubMed

    Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre

    2010-05-06

    The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n

  15. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  16. X-33 Tank Failure During Autoclave Fabrication

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The composite liquid hydrogen tank (tank #1 of 2) for the X-33 flight vehicle is made up of four lobes that have a sandwich construction, bonded to a frame of longerons. Lobes 1 and 4 showed local disbonds to the longerons they were bonded to. The 'bad' areas were cut away and patched with new material. The new material was cured by placing the entire tank in a heated autoclave with no pressure. Upon removal from the autoclave, it was noted that lobe 1 had severe skin/core disbonds on the inner and outer skins. The skins on this lobe were cracked as well. The core was disbonded from the inner skin across the entire acreage, except for spots around the lobe perimeter. The outer skin was separated from the core in a region near the center of the lobe. Lobe 1 was removed from the tank on January 13, 1999. Bolts were placed through the lobe to hold it together and the cuts on the inner skin were not continuous, but 'tabs' were left for final cutting and removal. Upon closer inspection of the disbonded basesheet, it was noted that there was a lack of filleting into the honeycomb core. Good fillets are critical to bond strength.

  17. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  18. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    PubMed Central

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524

  19. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res

  20. Interaction of Environmental Moisture, Rainbands, and Inner-Core Dynamics in Hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Ortt, D.; Chen, S. S.

    2007-12-01

    The interaction of the environmental water vapor distribution around a tropical cyclone (TC), rainbands, and inner- core dynamics can affect hurricane structure and intensity change, which is not well understood. Although previous studies have addressed various aspects of this problem, a full three way interaction and its implications for hurricane intensity change has not been documented. Using data collected during the Hurricane Rainband and Intensity Experiment (RAINEX) in Hurricanes Katrina and Rita, the three way interaction of the environment moisture, rainbands, and inner-core dynamics can be evaluated. The TRMM TMI total precipitable water (PW) data with 1/4 degree horizontal resolution, TRMM TMI rainrate data with a 4 km horizontal resolution and the GPS dropsondes with a ½ second temporal resolution are used to characterize the environmental moisture. The high resolution model output from the real-time MM5 forecasts of Hurricanes Katrina and Rita are used to investigate the complex interactions in both storms. The model forecasts were made using a vortex-following nested grid with horizontal resolutions of 15, 5, and 1.67km, respectively. There were 28 vertical sigma levels. The Goddard microphysics scheme was used. The TRMM PW and the GPS dropsonde data show strong moisture gradients in the outer rainband region in Rita with a dry outer environment, which may contribute to the development of outer rainbands with a high circularity. It created a secondary ring of potential vorticity (PV). In addition, the vortex Rossby waves (VRW) propagating radialy outward from the eyewall were unable to propagate beyond the secondary ring of PV. The combination of these VRW and the environmental water vapor distribution may play a role in enhancing the rainbands that developed into a secondary eyewall, which leads to a temporary weakening of the hurricane. In contrast, Katrina had a relative weak moisture gradient surrounding the storm. There were not persistent outer rainbands with high circularity, which may explain the different evolution in Katrina compared with Rita.

  1. Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core

    NASA Astrophysics Data System (ADS)

    Arveson, S. M.; Lee, K. K. M.

    2017-12-01

    The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.

  2. Pre-Melting in Iron and Iron Alloys at Earth's Core Conditions: Results from Ab Initio Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Vocadlo, L.; Martorell, B.; Brodholt, J. P.; Wood, I. G.

    2014-12-01

    Seismically determined S-wave velocities in the Earth's inner core are observed to be much lower (10-30%) than those generally inferred from mineral physics. This is a remarkably large discrepancy - mineralogical models for the mantle and the outer core match the observed velocities to around 1%. In no other large volume of the Earth does such a difference exist. There have been a number of arguments put forward over the years to account for the difference, but none have been universally accepted and our inability to explain the seismic velocities of the inner core remains an uncomfortable truth. Here, we present results from ab initio molecular dynamics calculations performed at 360 GPa and core temperatures on hcp and fcc iron, and on fcc-Fe alloyed with nickel and hcp-Fe alloyed with silicon. The calculated shear modulus, and therefore seismic velocities, of pure hcp-Fe reduces dramatically just prior to melting, providing an elegant explanation for the observed velocities. Calculations on fcc-Fe show no such strong reduction in VS, with a transformation to an hcp-type structure prior to melting; addition of 6.5 atm% and 13 atm% Ni to fcc-Fe raises the temperature of this transition. When silicon is added to hcp-Fe, the pre-melting behaviour is found to be very similar to that of pure hcp-Fe with a strong nonlinear shear weakening just before melting and a corresponding reduction in VS. Because temperatures range from T/Tm = 1 at the inner-outer core boundary to T/Tm ≈ 0.99 at the centre, this strong nonlinear effect on VS should occur in the inner core, providing a compelling explanation for the low VS observed.

  3. Osmium Isotope Compositions of Komatiite Sources Through Time

    NASA Astrophysics Data System (ADS)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.

  4. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  5. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  6. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  7. Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules

    DOE PAGES

    Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...

    2016-06-30

    For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less

  8. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function.

    PubMed

    Steeghs, Liana; van Vliet, Sandra J; Uronen-Hansson, Heli; van Mourik, Andries; Engering, Anneke; Sanchez-Hernandez, Martha; Klein, Nigel; Callard, Robin; van Putten, Jos P M; van der Ley, Peter; van Kooyk, Yvette; van de Winkel, Jan G J

    2006-02-01

    Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.

  9. Gravity Field and Internal Structure of Mercury from MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; hide

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  10. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  11. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    NASA Astrophysics Data System (ADS)

    Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad

    2011-03-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.

  12. Gravity field and internal structure of Mercury from MESSENGER.

    PubMed

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  13. Structure, biosynthesis and function of unusual lipids A from nodule-inducing and N2-fixing bacteria.

    PubMed

    Choma, Adam; Komaniecka, Iwona; Zebracki, Kamil

    2017-02-01

    This review focuses on the chemistry and structures of (Brady)rhizobium lipids A, indispensable parts of lipopolysaccharides. These lipids contain unusual (ω-1) hydroxylated very long chain fatty acids, which are synthesized by a very limited group of bacteria, besides rhizobia. The significance and requirement of the very long chain fatty acids for outer membrane stability as well as the genetics of the synthesis pathway are discussed. The biological role of these fatty acids for bacterial life in extremely different environments (soil and intracellular space within nodules) is also considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Studies on preparation of sustained-release Shuxiong formulation, a traditional Chinese medicine compound recipe, using time-controlled release techniques].

    PubMed

    Song, Hong-Tao; Zhang, Qian; Jiang, Peng; Guo, Tao; Chen, Da-Wei; He, Zhong-Gui

    2006-09-01

    To prepare a sustained-release formulation of traditional Chinese medicine compound recipe by adopting time-controlled release techniques. Shuxiong tablets were chosen as model drug. The prescription and technique of core tablets were formulated with selecting disintegrating time and swelling volume of core tablets in water as index. The time-controlled release tablets were prepared by adopting press-coated techniques, using PEG6000, HCO and EVA as coating materials. The influences of compositions, preparation process and dissolution conditions in vitro on the lag time (T(lag)) of drug release were investigated. The composition of core tablets was as follow: 30% of drug, 50% MCC and 20% CMS-Na. The T(lag) of time-controlled release tablets was altered remarkably by PEG6000 content of the outer layer, the amount of outer layer and hardness of tablet. The viscosity of dissolution media and basket rotation had less influence on the T(lag) but more on rate of drug release. The core tablets pressed with the optimized composition had preferable swelling and disintegrating properties. The shuxiong sustained-release formulations which contained core tablet and two kinds of time-controlled release tablets with 3 h and 6 h of T(lag) could release drug successively at 0 h, 3 h and 6 h in vitro. The technique made it possible that various components with extremely different physicochemical properties in these preparations could release synchronously.

  15. Compositional and mineralogical zoning by inward crystallization of mafic magma: evidence from the Guwoon hornblende gabbro-diorite Complex, Hwacheon, Korea.

    NASA Astrophysics Data System (ADS)

    Park, Y.-R.; Kim, G.-Y.

    2009-04-01

    The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.

  16. The inner core thermodynamics of the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  17. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.

    PubMed

    Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-20

    Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.

  18. An informative solution to a seismological inverse problem.

    PubMed

    Gilbert, F; Dziewonski, A; Brune, J

    1973-05-01

    Preliminary results are presented that infer that 2 sec should be added to the tabular values for P phases and 4 sec to the tabular values for S phases of seismic travel times. From seismic evidence, the radius of the inner core of the Earth is 1229-1250 km; the radius of the outer core is 3482-3485 km. Data are presented relating resolving power with error of measurement for the Earth's mantle.

  19. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  20. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  1. Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays

    USDA-ARS?s Scientific Manuscript database

    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in a variety of insects. An active core analog containing an (E)-alkene, transPro isosteric component was evaluated in four disparate PK/PBAN b...

  2. Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Salmonella enterica Serovar Typhimurium

    PubMed Central

    2018-01-01

    ABSTRACT Flagellum-driven motility of Salmonella enterica serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of Salmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2 with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of rflP and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Salmonella Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24 (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2 via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response. PMID:29717015

  3. Lignification in Sugarcane: Biochemical Characterization, Gene Discovery, and Expression Analysis in Two Genotypes Contrasting for Lignin Content1[W

    PubMed Central

    Bottcher, Alexandra; Cesarino, Igor; Brombini dos Santos, Adriana; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Antonio dos Anjos, Ivan; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo

    2013-01-01

    Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790

  4. HOTHEAD-Like HTH1 is Involved in Anther Cutin Biosynthesis and is Required for Pollen Fertility in Rice.

    PubMed

    Xu, Ya; Liu, Shasha; Liu, Yaqin; Ling, Sheng; Chen, Caisheng; Yao, Jialing

    2017-07-01

    The cuticle covering the outer surface of anthers is essential for male reproductive development in plants. However, the mechanism underlying the synthesis of these lipidic polymers remains unclear. HOTHEAD (HTH) in Arabidopsis thaliana is a presumptive glucose-methanol-choline (GMC) oxidoreductase involved in the biosynthesis of long-chain α-,ω-dicarboxylic fatty acids. In this study, we characterized the function of an anther-specific gene HTH1 in rice. HTH1 contains a conserved GMC oxidoreductase-like domain, and the sequence of HTH1 was highly similar to that of HTH in A. thaliana. Quantitative real-time PCR (qRT-PCR) and in situ hybridization analyses showed that HTH1 was highly expressed in epidermal cells of anthers. Rice plants with HTH1 suppression through CRISPR (clustered regularly interspaced short palindromic repeats) and RNA interference (RNAi) displayed defective anther wall and aborted pollen. Disorganized cuticle layers in anthers and shriveled pollen grains were observed in HTH1-RNAi lines. The total amounts of long-chain fatty acids and cutin monomers in anthers of HTH1-RNAi lines were significantly reduced compared with the wild type. Our results suggested that HTH1 is involved in cutin biosynthesis and is required for anther development and pollen fertility in rice. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes

    PubMed Central

    Hernáez, Bruno; Guerra, Milagros; Salas, María L.

    2016-01-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  6. Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine

    NASA Astrophysics Data System (ADS)

    de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis

    2013-08-01

    This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.

  7. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  8. METHOD AND APPARATUS FOR PRODUCING POWER

    DOEpatents

    Wollan, E.O.

    1961-06-27

    A neutronic reactor comprising two discrete zones; namely, an inner zone containing fissionable material and an outer zone containing fertile material is described. The inner zone is operated at a low temperature and is cooled by pressurized water. The outer zone is operated at a substantially higher temperature and is cooled by steam flashed from the inner zone. The reactor is particularly advantageous in that it produces high temperature steam; yet the materials of construction in the core (inner zone) are not restricted to materials capable of withstanding high temperature operation.

  9. Internal loading of an inhomogeneous compressible Earth with phase boundaries

    NASA Technical Reports Server (NTRS)

    Defraigne, P.; Dehant, V.; Wahr, J. M.

    1996-01-01

    The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.

  10. Transcriptome Analysis Reveals the Mechanism Underlying the Production of a High Quantity of Chlorogenic Acid in Young Leaves of Lonicera macranthoides Hand.-Mazz

    PubMed Central

    Chen, Zexiong; Tang, Ning; You, Yuming; Lan, Jianbin; Liu, Yiqing; Li, Zhengguo

    2015-01-01

    Lonicera macranthoides Hand.-Mazz (L. macranthoides) is a medicinal herb that is widely distributed in southern China. The biosynthetic and metabolic pathways for a core secondary metabolite in L. macranthoides, chlorogenic acid (CGA), have been elucidated in many species. However, the mechanisms of CGA biosynthesis and the related gene regulatory network in L. macranthoides are still not well understood. In this study, CGA content was quantified by high performance liquid chromatography (HPLC), and CGA levels differed significantly among three tissues; specifically, the CGA content in young leaves (YL) was greater than that in young stems (YS), which was greater than that in mature flowers (MF). Transcriptome analysis of L. macranthoides yielded a total of 53,533,014 clean reads (average length 90 bp) and 76,453 unigenes (average length 703 bp). A total of 3,767 unigenes were involved in biosynthesis pathways of secondary metabolites. Of these unigenes, 80 were possibly related to CGA biosynthesis. Furthermore, differentially expressed genes (DEGs) were screened in different tissues including YL, MF and YS. In these tissues, 24 DEGs were found to be associated with CGA biosynthesis, including six phenylalanine ammonia lyase (PAL) genes, six 4-coumarate coenzyme A ligase (4CL) genes, four cinnamate 4-Hydroxylase (C4H) genes, seven hydroxycinnamoyl transferase/hydroxycinnamoyl-CoA quinate transferase HCT/HQT genes and one coumarate 3-hydroxylase (C3H) gene.These results further the understanding of CGA biosynthesis and the related regulatory network in L. macranthoides. PMID:26381882

  11. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  12. Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Jones, G. M.

    1977-01-01

    The effects of temperature changes at the earth's core-mantle boundary on the velocity field of the core are analyzed. It is assumed that the geomagnetic field is maintained by thermal convection in the outer core. A model for the thermal interaction of the core and the mantle is presented which is consistent with current views on the presence of heat sources in the core and the properties of the lower mantle. Significant long-term variations in the frequency of geomagnetic reversals may be the result of fluctuating temperatures at the core-mantle boundary, caused by intermittent convection in the lower mantle. The thermal structure of the lower mantle region D double prime, extending from 2700 to 2900 km in depth, constitutes an important test of this hypothesis and offers a means of deciding whether the geomagnetic dynamo is thermally driven.

  13. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less

  14. Theoretical surface core-level shifts for Be(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feibelman, P.J.

    1994-05-15

    Core-ionization potentials (CIP's) are computed for Be(0001). Three core features are observed in corresponding photoelectron spectra, with CIP's shifted relative to the bulk core level by [minus]0.825, [minus]0.570, and [minus]0.265 eV. The computed CIP shifts for the outer and subsurface layers, [minus]0.60 and [minus]0.29 eV, respectively, agree with the latter two of these. It is surmised that the [minus]0.825-eV shift is associated with a surface defect. The negative signs of the Be(0001) surface core-level shifts do not fit into the thermochemical picture widely used to explain CIP shifts. The reason is that a core-ionized Be atom is too small tomore » bond effectively to the remainder of the unrelaxed Be lattice.« less

  15. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  16. Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli.

    PubMed

    Sutterlin, Holly A; Zhang, Sisi; Silhavy, Thomas J

    2014-09-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Sean Campbell; Ao, Tommy; Davis, Jean-Paul

    The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of themore » core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Antonio; Oweis, Salah; Chagnon, Guy

    An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow coremore » also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.« less

  19. Effect of Ni on Fe FeS phase relations at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fei, Yingwei

    2008-04-01

    A series of melting experiments in the Fe-rich portion of the Fe-Ni-S system have been conducted at 19-23 GPa and 800-1100 °C. The solubility of S in the Fe-Ni solid alloy and the eutectic melting in the Fe-Ni-S system were determined as a function of Ni content. The maximum S solubility in the Fe-Ni alloy is 2.7 wt.% at 20 GPa and the eutectic temperature. The eutectic melting temperature in the Fe-Ni(5wt.%)-S system is ~ 1000 °C lower than the melting point of pure Fe at 20 GPa. We also found that Ni can substitute Fe in the Fe 3S structure to form (Fe,Ni) 3S solid solutions up to at least a Fe/Ni atomic ratio of 0.5. Similar to melting behavior in the Fe-FeS system, the eutectic melting relations in the Fe-Ni-S system could produce inner and outer cores with the right light element balance to account for the density difference between the solid inner core and the liquid outer core.

  20. Results from core-edge experiments in high Power, high performance plasmas on DIII-D

    DOE PAGES

    Petrie, T. W.; Fenstermacher, M. E.; Holcomb, C. T.; ...

    2016-12-24

    Here, significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND) hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q ⊥ P) ∝ [P SOL x I P] 0.92 for P SOL = 8-19 MW and I P = 1.0–1.4 MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-Dmore » plasmas may be problematical at high power and H98 (≥ 1.5) due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q ⊥ P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot”) but also that heating near the slot opening is a significant source for impurity contamination of the core.« less

  1. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  2. Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element

    DTIC Science & Technology

    1990-06-01

    long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a

  3. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  4. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  5. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  6. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    NASA Astrophysics Data System (ADS)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  7. Outer magnetospheric fluctuations and pulsar timing noise

    NASA Technical Reports Server (NTRS)

    Cheng, K. S.

    1987-01-01

    The Cheng, Ho, and Ruderman (1986) outer-magnetosphere gap model was used to investigate the stability of Crab-type outer magnetosphere gaps for pulsars having the parameter (Omega-square B) similar to that of the Crab pulsar. The Lamb, Pines, and Shaham (1978) fluctuating magnetosphere noise model was applied to the Crab pulsar to examine the type of the equation of state that best describes the structure of the neutron star. The noise model was also applied to other pulsars, and the theoretical results were compared with observational data. The results of the comparison are consistent with the stiff equation of state, as suggested by the vortex creep model of the neutron star interior. The timing-noise observations also contribute to the evidence for the existence of superfluid in the core of the neutron star.

  8. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.

    PubMed

    Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-03-07

    The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.

  9. Experimental study and thermodynamic modeling of the phase relation in the Fe-S-Si system with implications for the distribution of S and Si in a partially solidified core

    NASA Astrophysics Data System (ADS)

    Tao, R.; Fei, Y.

    2017-12-01

    Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.

  10. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG.

    PubMed

    Luo, Qingshan; Yang, Xu; Yu, Shan; Shi, Huigang; Wang, Kun; Xiao, Le; Zhu, Guangyu; Sun, Chuanqi; Li, Tingting; Li, Dianfan; Zhang, Xinzheng; Zhou, Min; Huang, Yihua

    2017-05-01

    After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptB 2 FG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptB 2 FG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptB 2 FG that is distinct from those of classical ABC transporters that transport substrates across the IM.

  11. Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis

    PubMed Central

    Nguyen, Bidong D.; Cunningham, Doreen; Liang, Xiaofei; Chen, Xin; Toone, Eric J.; Raetz, Christian R. H.; Zhou, Pei; Valdivia, Raphael H.

    2011-01-01

    Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole (“inclusion”) that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents. PMID:21628561

  12. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N., E-mail: cockcroft@physics.mcmaster.ca, E-mail: harris@physics.mcmaster.ca, E-mail: ferguson@roe.ac.uk

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color,more » and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.« less

  13. The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?

    NASA Astrophysics Data System (ADS)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  14. Density and Viscosity Measurement of Liquid FeS at High Pressure and High Temperature Using Synchrotron X-ray

    NASA Astrophysics Data System (ADS)

    Yu, T.; Long, H.; Young, C.; Wang, L.; Chen, J.

    2005-12-01

    From previous experimental and theoretical studies, sulfur has been considered one of the possible light elements in the core that might be responsible for the large density deficit when compared with the theoretical pure Fe core (Ganapathy and Anders, 1974; Ahrens and Jeanloz, 1987). Therefore, understanding the physical properties of liquid FeS will help us reveal the details of the Earth?|s core. This study focused on the liquid state of sulfur in iron due to sulfur?|s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5 wt% ~10 wt% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Modern development of the multi-anvil high pressure apparatus limits the pressure range of the experiments (<30 GPa). It is somewhat low if comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (>130 GPa) has to be applied, and may produce results that are far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the liquid-phase FeS at relatively low pressures still provides us a better picture of the physical behavior of the outer core comparing with data derived from solid state FeS experiments. Pervious studies on the viscosity of the Fe-FeS system (LeBlanc and Secco, 1996; Dobson et al., 2000; Urakawa et al., 2001; Secco et al., 2002) have presented different values of viscosity numbers with a maximum difference of two orders of magnitude. We have conducted the density measurements of liquid FeS (~36 wt% of S) up to 5.6 GPa in pressure and 1673K in temperature using the in-situ synchrotron-source x-ray absorption setup at Beamline X17B2, NSLS. The viscosity measurements were conducted by the x-ray radiograph technique combined with the falling sphere method. The falling sphere method applied at the experiment is suitable for liquids with viscosities between 10-3 Pa-s and 105 Pa-s (LeBlanc et al., 1999). We used tungsten spheres in our viscosity measurement experiments. We analyzed the sphere falling motion in the sample chamber at high pressure and high temperature. And by applying our density compression curve of liquid FeS to the Stokes?| viscometry method, we were able to derive the viscosity of liquid FeS.

  15. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    PubMed

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  16. Evolution of the Lian River coastal basin in response to Quaternary marine transgressions in Southeast China

    NASA Astrophysics Data System (ADS)

    Tang, Yongjie; Zheng, Zhuo; Chen, Cong; Wang, Mengyuan; Chen, Bishan

    2018-04-01

    The coastal basin deposit in the Lian River plain is among the thickest Quaternary sequences along the southeastern coast of China. The clastic sediment accumulated in a variety of environmental settings including fluvial, channel, estuary/coastal and marine conditions. Detailed investigation of lithofacies, grain-size distributions, magnetic susceptibility, microfossils and chronology of marine core CN01, compared with regional cores, and combined with offshore seismic reflection profiles, has allowed us to correlate the spatial stratigraphy in the inner and outer plain and the seismic units. Grain size distribution analysis of core CN-01 through compositional data analysis and multivariate statistics were applied to clastic sedimentary facies and sedimentary cycles. Results show that these methods are able to derive a robust proxy information for the depositional environment of the Lian River plain. We have also been able to reconstruct deltaic evolution in response to marine transgressions. On the basis of dating results and chronostratigraphy, the estimated age of the onset of deposition in the Lian River coastal plain was more than 260 kyr BP. Three transgressive sedimentary cycles revealed in many regional cores support this age model. Detailed lithological and microfossil studies confirm that three marine (M3, M2 and M1) and three terrestrial (T3, T2 and T1) units can be distinguished. Spatial correlation between the inner plain, outer plain (typical cores characterized by marine transgression cycles) and offshore seismic reflectors reveals coherent sedimentary sequences. Two major boundaries (unconformity and erosion surfaces) can be recognized in the seismic profiles, and these correspond to weathered reddish and/or variegated clay in the study core, suggesting that Quaternary sediment changes on the Lian River plain were largely controlled by sea-level variations and coastline shift during glacial/interglacial cycles.

  17. Impact and Blast Resistance of Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

    Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

  18. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10-Megawatt electric (MWe) OTV power level and a 200-metric ton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  19. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  20. 3-cyanoindole-based inhibitors of inosine monophosphate dehydrogenase: synthesis and initial structure-activity relationships.

    PubMed

    Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Chen, Ping; Norris, Derek; Watterson, Scott H; Ballentine, Shelley K; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-10-20

    A series of novel small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH), based upon a 3-cyanoindole core, were explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SAR), derived from in vitro studies, for this new series of inhibitors is given.

  1. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species.

    PubMed

    Frölich, Cordula; Ober, Dietrich; Hartmann, Thomas

    2007-04-01

    Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either before or after this modification are converted into their O(9)-esters by esterification with one of the stereoisomers of 2,3-dihydroxy-2-isopropylbutyric acid, the unique necic acid of PAs of the lycopsamine type. Secondly, the necine O(9)-esters may be further diversified by O(7)- and/or O(3')-acylation.

  2. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage.

    PubMed

    Garmiri, Penelope; Coles, Karen E; Humphrey, Tom J; Cogan, Tristan A

    2008-04-01

    The ability to survive desiccation between hosts is often essential to the success of pathogenic bacteria. The bacterial outer membrane is both the cellular interface with hostile environments and the focus of much of the drying-induced damage. This study examined the contribution of outer membrane-associated polysaccharides to the survival of Salmonella enterica serovar Typhimurium in air-dried blood droplets following growth in high and low osmolarity medium and under conditions known to induce expression of these polysaccharides. Strains lacking the O polysaccharide (OPS) element of the outer membrane lipopolysaccharide were more sensitive to desiccation. Lipopolysaccharide core mutation further to OPS loss did not result in increased susceptibility to drying. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed lipopolysaccharide profiles that supported the hypothesis that OPS expression is required for optimal drying resistance in S. Typhimurium. The role of O antigen in Salmonella spp. in maintaining a hydrated layer around the dried cell or in slowing the rate of dehydration and rehydration is discussed.

  3. The presence of OMP inclusion bodies in a Escherichia coli K-12 mutated strain is not related to lipopolysaccharide structure.

    PubMed

    Corsaro, M Michela; Parrilli, Ermenegilda; Lanzetta, Rosa; Naldi, Teresa; Pieretti, Giuseppina; Lindner, Buko; Carpentieri, Andrea; Parrilli, Michelangelo; Tutino, M Luisa

    2009-08-01

    The role of lipopolysaccharides (LPSs) in the biogenesis of outer membrane proteins have been investigated in several studies. Some of these analyses showed that LPS is required for correct and efficient folding of outer membrane proteins; other studies support the idea of independence of outer membrane proteins biogenesis from LPS structure. In this article, we investigated the involvement of LPS structure in the anomalous aggregation of outer membrane proteins in a E. coli mutant strain (S17-1(lambdapir)). To achieve this aim, the LPS structure of the mutant strain was carefully determined and compared with the E. coli K-12 one. It turned out that LPS of these two strains differs in the inner core for the absence of a heptose residue (HepIII). We demonstrated that this difference is due to a mutation in waaQ, a gene encoding the transferase for the branch heptose HepIII residue. The mutation was complemented to find out if the restoration of LPS structure influenced the observed outer membrane proteins aggregation. Data reported in this work demonstrated that, in E. coli S17-1(lambdapir) there is no influence of LPS structure on the outer membrane proteins inclusion bodies formation.

  4. The Colorful Demise of a Sun-like Star

    NASA Image and Video Library

    2007-02-13

    This image, taken by NASA Hubble Space Telescope, shows the colorful last hurrah of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star remaining core.

  5. The Helix Nebula: Unraveling at the Seams

    NASA Image and Video Library

    2012-10-03

    This image from NASA Spitzer and GALEX shows the Helix nebula, a dying star throwing a cosmic tantrum. In death, the star dusty outer layers are unraveling into space, glowing from the intense UV radiation being pumped out by the hot stellar core.

  6. Experiments pertaining to the formation and equilibration of planetary cores

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond; Knittle, Elise; Williams, Quentin

    1987-01-01

    The phase diagram of FeO was experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock wave and diamond-cell techniques. Researchers discovered a metallic phase of FeO at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the Earth's outer core, in accord with the geochemical predictions of Ringwood. The high pressures necessry for this metallization suggest that the core has acquired its composition well after the initial stages of the Earth's accretion. The core forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  7. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  8. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  9. METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR

    DOEpatents

    Koch, L.J.

    1959-01-20

    A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.

  10. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  11. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    PubMed

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  12. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness

    NASA Astrophysics Data System (ADS)

    Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.

    2016-04-01

    Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01192f

  13. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    NASA Astrophysics Data System (ADS)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.

  14. Optimization of Time Controlled 6-mercaptopurine Delivery for Site- Specific Targeting to Colon Diseases.

    PubMed

    Hude, Rahul U; Jagdale, Swati C

    2016-01-01

    6-MP has short elimination time (<2 h) and low bioavailability (~ 50%). Present study was aimed to develop time controlled and site targeted delivery of 6-Mercaptopurine (6-MP) for treatment of colon diseases. Compression coating technique was used. 32 full factorial design was designed for optimization of the outer coat for the core tablet. For outer coat amount of Eudragit RS 100 and hydroxypropyl methylcellulose (HPMC K100) were employed as independent variables each at three levels while responses evaluated were swelling index and bursting time. Direct compression method was used for tablets formulation. 80% w/w of microcrystalline cellulose and 20% w/w of croscarmellose sodium were found to be optimum concentration for the core tablet. The outer coat of optimized batch (ED) contains 21.05% w/w Eudragit RS 100 and 78.95% w/w HPMC K100 of total polymer weight. In-vitro dissolution study indicated that combination of polymer retards the drug release in gastric region and releases ≥95% of drug in colonic region after ≥7 h. Whereas in case of in-vivo placebo x-ray imaging study had shown that the tablet reaches colonic part after 5±0.5 h providing the proof of arrival in the colon. Stability study indicated that the optimized formulation were physically and chemically stable. Present research work concluded that compression coating by Eudragit RS 100 and HPMC K100 to 6-MP core provides potential colon targeted system with advantages of reduced gastric exposure and enhanced bioavailability. Formulation can be considered as potential and promising candidate for the treatment of colon diseases.

  15. Density fluctuation correlation measurements in ASDEX Upgrade using poloidal and radial correlation reflectometry

    NASA Astrophysics Data System (ADS)

    Prisiazhniuk, D.; Conway, G. D.; Krämer-Flecken, A.; Stroth, U.; the ASDEX Upgrade Team

    2018-07-01

    The poloidal correlation reflectometry diagnostic operated in ordinary mode with additional radial correlation channel is applied in this paper to investigate the correlation of the turbulent density fluctuations. The perpendicular and radial correlation lengths, l ⊥ and l r , the perpendicular velocity v⊥ and the dissipation (mutation) time τ d are measured simultaneously from the outer core to edge in the L-mode plasmas of ASDEX Upgrade. It is shown that in the outer core region (0.6 < ρ pol < 0.9) the measured correlation lengths scale with the drift wave length, l ⊥ ≈ 5ρ s and l r ≈ 10ρ s , while the dissipation time is inversely correlated with the velocity τ d ≈ 40/v ⊥(τ d is in μs and v ⊥ in km s–1). In the pedestal region (0.925 < ρ pol < 0.98), where the E × B shear flows are present, a loss of measured correlation is observed which can be explained by a combination of small propagation velocity and an additional reduction of τ d . In the E r well region (ρ pol ≈ 0.99), the measured perpendicular correlation length increases {l}\\perp ≈ 13{ρ }s and the radial correlation length decreases l r ≈ 4ρ s compared to the outer core values. The correlation measurements are interpreted in the frame of the linear regime of reflectometry (applied only to ρ pol < 0.9). Using the Born approximation we show that the finite wavenumber sensitivity of the reflectometer increases the measured l ⊥and l r , but does not affect the measured τ d . By the including diagnostic correction the real correlation lengths l ⊥ ≈ l r ≈ 3ρ s are estimated.

  16. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  17. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  18. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  19. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    DTIC Science & Technology

    2014-06-01

    to the shape of the liquid jet core, elliptical EPL is what would be expected from a cylinder of liquid and has previously been observed in diesel...rely on the shear between an outer lower-density high velocity annulus and a higher- density low-velocity inner jet to atomize and mix a liquid and a...of combustion devices (turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been studied for over sixty

  20. Development of Modified Titanium Nitride Nanoparticles as Potential Contrast Material for Photoacoustic Imaging

    DTIC Science & Technology

    2014-05-10

    based on modified fullerenes , carbon nanotubes and gold nanoparticles (including nanocages and nanorods) were very recently reported.4 Nevertheless, this...ratios of 1:1.6 and 1:16, in order to form an onion- like core-shell structure, containing TiN core and shells of TPP (inner shell) and chitosan (outer...These results nicely correlate with the cells viability results and the formation of the ROS is most likely the cause of the cells death (Figure 24

  1. Noise Budget for the X-Ray Microcalorimeter Spectrometer (XMS) Core Array

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline Anne

    2010-01-01

    The purpose of this document is to present and archive the noise budget for the XMS detector, in order, at this stage in mission planning, to learn the scale of the requirements placed on the other instrument subsystems. This document mainly concerns the core array, specifically the baseline version that emerged from the trade studies associated with the ESA Phase A study report. Qualitative extension to the Hydra approach to the outer array is included at the end.

  2. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  3. Cable for prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebouc, L.; Marmignon, J.

    1983-03-29

    A cable for prospecting, said cable including a core of conductor wires surrounded by insulating material and by armour formed by at least one layer of helically wound steel wires. It includes, from its center to its periphery, inside the armour, an axial monofilament made of a polymer that withstands high temperatures, said monofilament forming the insulation of an inner conductor, an outer conductor and a sheath made of a thermoplastic substance that withstands high temperatures, said inner conductor serving a different electrical function than said core of conductor wires.

  4. Synthesis and properties of nickel cobalt boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  5. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.

  6. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.

  7. Fluid core size of Mars from detection of the solar tide

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2003-01-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.

  8. Fluid Core Size of Mars from Detection of the Solar Tide

    NASA Astrophysics Data System (ADS)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2003-04-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.

  9. On the recovery of electric currents in the liquid core of the Earth

    NASA Astrophysics Data System (ADS)

    Kuslits, Lukács; Prácser, Ernő; Lemperger, István

    2017-04-01

    Inverse geodynamo modelling has become a standard method to get a more accurate image of the processes within the outer core. In this poster excerpts from the preliminary results of an other approach are presented. This comes around the possibility of recovering the currents within the liquid core directly, using Main Magnetic Field data. The approximation of different systems of the flow of charge is possible with various geometries. Based on previous geodynamo simulations, current coils can furnish a good initial geometry for such an estimation. The presentation introduces our preliminary test results and the study of reliability of the applied inversion algorithm for different numbers of coils, distributed in a grid simbolysing the domain between the inner-core and core-mantle boundaries. We shall also present inverted current structures using Main Field model data.

  10. Multiple outer-reef tracts along the south Florida bank margin: Outlier reefs, a new windward-margin model

    USGS Publications Warehouse

    Lidz, Barbara H.; Hine, A.C.; Shinn, Eugene A.; Kindinger, Jack G.

    1991-01-01

    High-resolution seismic-reflection profiles off the lower Florida Keys reveal a multiple outlier-reef tract system ~0.5 to 1.5 km sea-ward of the bank margin. The system is characterized by a massive, outer main reef tract of high (28 m) unburied relief that parallels the margin and at least two narrower, discontinuous reef tracts of lower relief between the main tract and the shallow bank-margin reefs. The outer tract is ~0.5 to 1 km wide and extends a distance of ~57 km. A single pass divides the outer tract into two main reefs. The outlier reefs developed on antecedent, low-gradient to horizontal offbank surfaces, interpreted to be Pleistocene beaches that formed terracelike features. Radiocarbon dates of a coral core from the outer tract confirm a pre-Holocene age. These multiple outlier reefs represent a new windward-margin model that presents a significant, unique mechanism for progradation of carbonate platforms during periods of sea-level fluctuation. Infilling of the back-reef terrace basins would create new terraced promontories and would extend or "step" the platform seaward for hundreds of metres. Subsequent outlier-reef development would produce laterally accumulating sequences.

  11. Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium

    PubMed Central

    Kumar, Roshan; Verma, Helianthous; Haider, Shazia; Bajaj, Abhay; Sood, Utkarsh; Ponnusamy, Kalaiarasan; Nagar, Shekhar; Shakarad, Mallikarjun N.; Negi, Ram Krishan; Singh, Yogendra; Khurana, J. P.; Gilbert, Jack A.

    2017-01-01

    ABSTRACT Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species. IMPORTANCE This study highlights the significant role of a microorganism’s genetic repertoire in structuring the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits in Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium. PMID:28567447

  12. Elevated land runoff after European settlement perturbs persistent foraminiferal assemblages on the Great Barrier Reef.

    PubMed

    Uthicke, S; Patel, F; Ditchburn, R

    2012-01-01

    Coral reefs are under pressure from a variety of human-induced disturbances, but demonstration of ecosystem changes and identification of stressors are often difficult. We tested whether global change or increased agricultural runoff after European settlement of Northeast Australia (ca. 1860) has affected inshore reefs of the Great Barrier Reef. Eleven sediment cores were retrieved from inner reefs, intermediate reefs, and outer-island reefs, and benthic foraminiferal assemblages were analyzed in dated (14C, 210Pb, 137Cs) core sections (N = 82 samples). Data were grouped into six age bands (< 55, 55-150, 150-500, 500-1000, 1000-1500, and > 1500 yr). Principal component analysis and two-factor (Zone and Age) permutational analysis of variance (PERMANOVA) suggested that assemblages from the three zones were significantly different from each other over several millennia, with symbiont-bearing (mixotrophic) species dominating the outer reefs. A significant interaction term indicated that within-zone patterns varied. Assemblages in outer reefs unaffected from increased land runoff were persistent until present times. In both other zones, assemblages were also persistent until 150 yr ago, suggesting that benthic foraminiferal assemblages are naturally highly persistent over long (> 2000 yr) timescales. Assemblages in core sections < 55 yr old from inner reefs were significantly (post hoc t test) different from those older than 150 yr. Similarly, assemblages < 55 yr old from intermediate reefs were significantly different compared to older assemblages. A multivariate regression tree (environmental variables: Zone and Age) explained 56.8% of the variance in foraminiferal assemblages and confirmed patterns identified by PERMANOVA. With some exceptions, changes on the inner and intermediate reefs were consistent with a model predicting that increased nutrients and higher turbidity enhance relative abundance of heterotrophic species. Given that assemblages did not change in outer-island reefs (not impacted by runoff) we argue that changes in assemblages due to global change can be rejected as an explanation. Thus, the findings are more consistent with the hypothesis that agricultural runoff since European settlement altered foraminiferal assemblages than with the hypothesis that global forcing caused changes.

  13. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  14. Fluctuation Dynamics Analysis of gp120 Envelope Protein Reveals a Topologically Based Communication Network

    PubMed Central

    Shrivastava, Indira; LaLonde, Judith M.

    2012-01-01

    HIV infection is initiated by binding of the viral glycoprotein gp120, to the cellular receptor CD4. Upon CD4 binding, gp120 undergoes conformational change, permitting binding to the chemokine receptor. Crystal structures of gp120 ternary complex reveal the CD4 bound conformation of gp120. We report here the application of Gaussian Network Model (GNM) to the crystal structures of gp120 bound to CD4 or CD4 mimic and 17b, to study the collective motions of the gp120 core and determine the communication propensities of the residue network. The GNM fluctuation profiles identify residues in the inner domain and outer domain that may facilitate conformational change or stability, respectively. Communication propensities delineate a residue network that is topologically suited for signal propagation from the Phe43 cavity throughout the gp120 outer domain. . These results provide a new context for interpreting gp120 core envelope structure-function relationships. PMID:20718047

  15. Growth Mechanism of a Unique Hierarchical Vaterite Structure

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2013-03-01

    Calcium carbonate is one of the most significant minerals in nature as well as in biogenic sources. Calcium carbonate occurs naturally in three crystalline polymorphs, i.e., calcite, aragonite, and vaterite. Although it has been attracted much research attention to understanding of the formation mechanisms of the material, the properties of the vaterite polymorph is not well known. Here we report synthesis and formation mechanism of a unique hierarchical structure of vaterite. The material is grown by a controlled diffusion method. The structure possesses a core and an outer part. The core is convex lens-like and is formed by vaterite nanocrystals that have small misorientations. The outer part is separated into six garlic clove-like segments. Each segment possesses piles of plate-like vaterite crystals, and the orientations of the plates continuously change from pile to pile. Based on real-time experimental results and the structural analysis, a growth mechanism is presented. Work supported by NSFC (Grant No. 51172104) and MOST of China (Grant No. 2101CB630705)

  16. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor

    PubMed Central

    Lei, Yu; Huang, Zheng-Hong; Yang, Ying; Shen, Wanci; Zheng, Yongping; Sun, Hongyu; Kang, Feiyu

    2013-01-01

    Li4Ti5O12/activated carbon hybrid supercapacitor can combine the advantages of both lithium-ion battery and supercapacitor, which may meet the requirements for developing high-performance hybrid electric vehicles. Here we proposed a novel “core-shell” porous graphitic carbon (PGC) to replace conventional activated carbon for achieving excellent cell performance. In this PGC structure made from mesocarbon microbead (MCMB), the inner core is composed of porous amorphous carbon, while the outer shell is graphitic carbon. The abundant porosity and the high surface area not only offer sufficient reaction sites to store electrical charge physically, but also can accelerate the liquid electrolyte to penetrate the electrode and the ions to reach the reacting sites. Meanwhile, the outer graphitic shells of the porous carbon microbeads contribute to a conductive network which will remarkably facilitate the electron transportation, and thus can be used to construct a high-rate, high-capacity cathode for hybrid supercapacitor, especially at high current densities. PMID:23963328

  17. Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material.

    PubMed

    Wang, LiLi; Lou, Zheng; Deng, Jianan; Zhang, Rui; Zhang, Tong

    2015-06-17

    Three-dimensional (3D) nanostructures of α-Fe2O3 materials, including both hollow sphere-shaped and yolk-shell (core-shell)-shaped, have been successfully synthesized via an environmentally friendly hydrothermal approach. By expertly adjusting the reaction time, the solid, hollow, and yolk-shell shaped α-Fe2O3 can be selectively synthesized. Yolk-shell α-Fe2O3 nanospheres display outer diameters of 350 nm, and the interstitial hollow spaces layer is intimately sandwiched between the inner and outer shell of α-Fe2O3 nanostructures. The possible growth mechanism of the yolk-shell nanostructure is proposed. The results showed that the well-defined bilayer interface effectively enhanced the sensing performance of the α-Fe2O3 nanostructures (i.e., yolk-shell α-Fe2O3@α-Fe2O3), owing predominantly to the unique nanostructure, thus facilitated the transport rate and augmented the adsorption quantity of the target gas molecule under gas detection.

  18. Spectrometry of the Earth using Neutrino Oscillations

    PubMed Central

    Rott, C.; Taketa, A.; Bose, D.

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447

  19. Unstructured Grids for Sonic Boom Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Nayani, Sudheer N.

    2015-01-01

    An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.

  20. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    NASA Technical Reports Server (NTRS)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  1. Evolution of the Kdo2-lipid A Biosynthesis in Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Opiyo; R Pardy; H Moriyama

    BACKGROUND: Lipid A is the highly immunoreactive endotoxic center of lipopolysaccharide (LPS). It anchors the LPS into the outer membrane of most Gram-negative bacteria. Lipid A can be recognized by animal cells, triggers defense-related responses, and causes Gram-negative sepsis. The biosynthesis of Kdo2-lipid A, the LPS substructure, involves with nine enzymatic steps. RESULTS: In order to elucidate the evolutionary pathway of Kdo2-lipid A biosynthesis, we examined the distribution of genes encoding the nine enzymes across bacteria. We found that not all Gram-negative bacteria have all nine enzymes. Some Gram-negative bacteria have no genes encoding these enzymes and others have genesmore » only for the first four enzymes (LpxA, LpxC, LpxD, and LpxB). Among the nine enzymes, five appeared to have arisen from three independent gene duplication events. Two of such events happened within the Proteobacteria lineage, followed by functional specialization of the duplicated genes and pathway optimization in these bacteria. CONCLUSIONS: The nine-enzyme pathway, which was established based on the studies mainly in Escherichia coli K12, appears to be the most derived and optimized form. It is found only in E. coli and related Proteobacteria. Simpler and probably less efficient pathways are found in other bacterial groups, with Kdo2-lipid A variants as the likely end products. The Kdo2-lipid A biosynthetic pathway exemplifies extremely plastic evolution of bacterial genomes, especially those of Proteobacteria, and how these mainly pathogenic bacteria have adapted to their environment.« less

  2. Identification of an unusual type II thioesterase in the dithiolopyrrolone antibiotics biosynthetic pathway.

    PubMed

    Zhai, Ying; Bai, Silei; Liu, Jingjing; Yang, Liyuan; Han, Li; Huang, Xueshi; He, Jing

    2016-04-22

    Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-frame gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cloning and functional characterization of a p-coumaroyl quinate/shikimate 3'-hydroxylase from potato (Solanum tuberosum).

    PubMed

    Knollenberg, Benjamin J; Liu, Jingjing; Yu, Shu; Lin, Hong; Tian, Li

    2018-02-05

    Chlorogenic acid (CGA) plays an important role in protecting plants against pathogens and promoting human health. Although CGA accumulates to high levels in potato tubers, the key enzyme p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) for CGA biosynthesis has not been isolated and functionally characterized in potato. In this work, we cloned StC3'H from potato and showed that it catalyzed the formation of caffeoylshikimate and CGA (caffeoylquinate) from p-coumaroyl shikimate and p-coumaroyl quinate, respectively, but was inactive towards p-coumaric acid in in vitro enzyme assays. When the expression of StC3'H proteins was blocked through antisense (AS) inhibition under the control of a tuber-specific patatin promoter, moderate changes in tuber yield as well as phenolic metabolites in the core tuber tissue were observed for several AS lines. On the other hand, the AS and control potato lines exhibited similar responses to a bacterial pathogen Pectobacterium carotovorum. These results suggest that StC3'H is implicated in phenolic metabolism in potato. They also suggest that CGA accumulation in the core tissue of potato tubers is an intricately controlled process and that additional C3'H activity may also be involved in CGA biosynthesis in potato. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Inner core boundary topography explored with reflected and diffracted P waves

    NASA Astrophysics Data System (ADS)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  5. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan; Hu, Michael Y.; Toellner, Thomas S.; Murphy, Caitlin A.; Prakapenka, Vitali B.

    2016-08-01

    The melting points of fcc- and hcp-structured Fe0.9Ni0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mössbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time-integrated synchrotron Mössbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe0.9Ni0.1 fall within the wide region bounded by previous studies. We are able to derive the γ-ɛ-l triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5GPa, 3345 ± 120K and 116 ± 5GPa, 3260 ± 120K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe0.9Ni0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe0.9Ni0.1 using our (quasi) triple points as anchors. The extrapolated Fe0.9Ni0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core-mantle boundary to be 4000 ± 200K. We discuss a potential melting point depression caused by light elements and the implications of the presented core-mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.

  6. Coupled thermo-chemical boundary conditions in double-diffusive geodynamo models at arbitrary Lewis numbers.

    NASA Astrophysics Data System (ADS)

    Bouffard, M.

    2016-12-01

    Convection in the Earth's outer core is driven by the combination of two buoyancy sources: a thermal source directly related to the Earth's secular cooling, the release of latent heat and possibly the heat generated by radioactive decay, and a compositional source due to the crystallization of the growing inner core which releases light elements into the liquid outer core. The dynamics of fusion/crystallization being dependent on the heat flux distribution, the thermochemical boundary conditions are coupled at the inner core boundary which may affect the dynamo in various ways, particularly if heterogeneous conditions are imposed at one boundary. In addition, the thermal and compositional molecular diffusivities differ by three orders of magnitude. This can produce significant differences in the convective dynamics compared to pure thermal or compositional convection due to the potential occurence of double-diffusive phenomena. Traditionally, temperature and composition have been combined into one single variable called codensity under the assumption that turbulence mixes all physical properties at an "eddy-diffusion" rate. This description does not allow for a proper treatment of the thermochemical coupling and is certainly incorrect within stratified layers in which double-diffusive phenomena can be expected. For a more general and rigorous approach, two distinct transport equations should therefore be solved for temperature and composition. However, the weak compositional diffusivity is technically difficult to handle in current geodynamo codes and requires the use of a semi-Lagrangian description to minimize numerical diffusion. We implemented a "particle-in-cell" method into a geodynamo code to properly describe the compositional field. The code is suitable for High Parallel Computing architectures and was successfully tested on two benchmarks. Following the work by Aubert et al. (2008) we use this new tool to perform dynamo simulations including thermochemical coupling at the inner core boundary as well as exploration of the infinite Lewis number limit to study the effect of a heterogeneous core mantle boundary heat flow on the inner core growth.

  7. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    PubMed

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  8. Temperature of Earth's core constrained from melting of Fe and Fe 0.9Ni 0.1 at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong

    The melting points of fcc- and hcp-structured Fe 0.9Ni 0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mossbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time integrated synchrotron Mfissbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe 0.9Ni 0.1 fall within the wide region bounded by previous studies. We are ablemore » to derive the gamma-is an element of-1 triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5 GPa, 3345 ± 120 K and 116 ± 5 GPa, 3260 ± 120 K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe 0.9Ni 0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe 0.9Ni 0.1 using our (quasi) triple points as anchors. The extrapolated Fe 0.9Ni 0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200 K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core -mantle boundary to be 4000 ± 200 K. We discuss a potential melting point depression caused by light elements and the implications of the presented core -mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.« less

  9. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis.

    PubMed

    Siméone, Roxane; Constant, Patricia; Guilhot, Christophe; Daffé, Mamadou; Chalut, Christian

    2007-07-01

    Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.

  10. Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis.

    PubMed

    Bridwell-Rabb, Jennifer; Iannuzzi, Clara; Pastore, Annalisa; Barondeau, David P

    2012-03-27

    Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich's ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homologue CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homologue is determined by which cysteine desulfurase is present and not by the identity of the frataxin homologue. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologues. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule.

  11. The steady part of the secular variation of the Earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1992-01-01

    The secular variation of the Earth's magnetic field results from the effects of magnetic induction in the fluid outer core and from the effects of magnetic diffusion in the core and the mantle. Adequate observations to map the magnetic field at the core-mantle boundary extend back over three centuries, providing a model of the secular variation at the core-mantle boundary. Here we consider how best to analyze this time-dependent part of the field. To calculate steady core flow over long time periods, we introduce an adaptation of our earlier method of calculating the flow in order to achieve greater numerical stability. We perform this procedure for the periods 1840-1990 and 1690-1840 and find that well over 90 percent of the variance of the time-dependent field can be explained by simple steady core flow. The core flows obtained for the two intervals are broadly similar to each other and to flows determined over much shorter recent intervals.

  12. Equation of State of Fe3C and Implications for the Carbon Content of Earth's Core

    NASA Astrophysics Data System (ADS)

    Davis, A.; Brauser, N.; Thompson, E. C.; Chidester, B.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Carbon is a common component in protoplanetary cores, as represented by iron meteorites. Therefore, along with silicon, oxygen, and other light elements, it is likely to be an alloying component with iron in Earth's core. Previous studies of the densities of iron carbides have not reached the combined pressure and temperature conditions relevant to Earth's core. To better understand the geophysical implications of carbon addition to Earth's core, we report P-V-T measurements of Fe3C to pressures and temperatures exceeding 110 GPa and 2500 K, using synchrotron X-ray diffraction in a laser heated diamond anvil cell. Fitting these measurements to an equation of state and assuming 1.5% density change upon melting and a 4000 K core-mantle boundary temperature, we report a value of 6 wt% carbon necessary to match the PREM density in the outer core. This value should be considered an upper bound due to the likely presence of other light elements.

  13. Heterogeneity and Anisotropy of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Deuss, Arwen

    2014-05-01

    Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60-80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to alignment of hcp (hexagonal close-packed) iron crystals, aligned either during solidification or by deformation afterward. The existence of hemispherical variations used to be controversial, but there is now strong evidence from both seismic body wave and normal mode observations, showing stronger anisotropy, less attenuation, and a lower isotropic velocity in the western hemisphere. Two mechanisms have been proposed to explain the hemispherical pattern: either (a) inner core translation, wherein one hemisphere is melting and the other is solidifying, or (b) thermochemical convection in the outer core, leading to different solidification conditions at the inner core boundary. Neither is (yet) able to explain all seismically observed features, and a combination of different mechanisms is probably required.

  14. Density Anomalies in the Mantle and the Gravitational Core-Mantle Interaction

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Liu, Lanbo

    2003-01-01

    Seismic studies suggest that the bulk of the mantle is heterogeneous, with density variations in depth as well as in horizontal directions (latitude and longitude). This density variation produces a three- dimensional gravity field throughout the Earth. On the other hand, the core density also varies in both time and space, due to convective core flow. Consequently, the fluid outer core and the solid mantle interact gravitationally due to the mass anomalies in both regions. This gravitational core-mantle interaction could play a significant role in exchange of angular momentum between the core and the mantle, and thus the change in Earth's rotation on time scales of decades and longer. Aiming at estimating the significance of the gravitational core-mantle interaction on Earth's rotation variation, we introduce in our MoSST core dynamics model a heterogeneous mantle, with a density distribution derived from seismic results. In this model, the core convection is driven by the buoyancy forces. And the density variation is determined dynamically with the convection. Numerical simulation is carried out with different parameter values, intending to extrapolate numerical results for geophysical implications.

  15. Characterization of a Messer – The late-Medieval single-edged sword of Central Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajfar, Peter; Medved, Jožef; Klančnik, Grega

    2013-12-15

    Metallurgical characterization of a sword blade fragments dating from the second half of the 15th century found in central Slovenia was performed in order to determine its chemical composition, microstructure, microhardness, and to obtain insight into the methods of manufacture of a late-medieval Messer sword. As the artefact was broken, examinations were limited to six very small fragments that were allowed to be removed from the cutting edge, core and the back of the blade. Light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence spectrometry, differential scanning calorimetry, thermodynamics approach and Vickers micro-hardness tests weremore » employed to analyze the microstructure and mechanical properties. The results show that the sword was manufactured from a single wrought iron billet. The surface of the sword was carburized. No evidence of quenching was found. The ferritic microstructure is concentrated in the core, and the pearlitic in the outer layer of the blade. All metal fragments contained non-metallic inclusions that were derived mostly from slag and some from hammer scale. - Highlights: • A metallurgical characterization of a medieval sword blade has been performed. • The carbon content decreased from the surface to the core of the blade. • The dominant microstructure in the outer layer is pearlite and in the core is ferrite. • The presence of lump shaped and elongated non-metallic inclusions was observed. • The sword was manufactured from a single wrought iron billet.« less

  16. ICTV Virus taxonomy profile: Asfarviridae

    USDA-ARS?s Scientific Manuscript database

    The family Asfarviridae includes the single species African swine fever virus, isolates of which have linear dsDNA genomes of 170-194 kbp. Virons have an internal core, an internal lipid membrane, an icosahedral capsid and an outer lipid envelope. Infection of domestic pigs and wild boar results i...

  17. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    PubMed Central

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  18. Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.

  19. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  20. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes.

    PubMed

    Vasiljev, Andreja; Ahting, Uwe; Nargang, Frank E; Go, Nancy E; Habib, Shukry J; Kozany, Christian; Panneels, Valérie; Sinning, Irmgard; Prokisch, Holger; Neupert, Walter; Nussberger, Stephan; Rapaport, Doron

    2004-03-01

    Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu

    New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less

  2. Experimental evaluation of outer planets probe thermal insulation concepts

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Mezines, S. A.

    1976-01-01

    An experimental program was conducted to evaluate various thermal insulation concepts for use in the Outer Planets Probe (OPP) during entry and descent into the atmospheres of Jupiter, Saturn, and Uranus. Phenolic fiberglass honeycomb specimens representative of the OPP structure were packed and tested with various fillers: Thermal conductivity measurements were made over a temperature range of 300 K to 483 K and pressures from vacuum up to 10 atmospheres in helium and nitrogen gas environments. The conductivity results could not be fully explained so new test specimens were designed with improved venting characteristics, and tested to determine the validity of the original data. All of the conductivity data showed results that were substantially higher than expected. The original test data in helium were lower than the data from the redesigned specimens, probably due to inadequate venting of nitrogen gas from the original specimens. The thermal conductivity test results show only a marginal improvement in probe thermal protection performance for a filled honeycomb core compared to an unfilled core. In addition, flatwise tension tests showed a severe bond strength degradation due to the inclusion of either the powder or foam fillers. In view of these results, it is recommended that the baseline OPP design utilize an unfilled core.

  3. Numerical prediction of an axisymmetric turbulent mixing layer using two turbulence models

    NASA Astrophysics Data System (ADS)

    Johnson, Richard W.

    1992-01-01

    Nuclear power, once considered and then rejected (in the U. S.) for application to space vehicle propulsion, is being reconsidered for powering space rockets, especially for interplanetary travel. The gas core reactor, a high risk, high payoff nuclear engine concept, is one that was considered in the 1960s and 70s. As envisioned then, the gas core reactor would consist of a heavy, slow moving core of fissioning uranium vapor surrounded by a fast moving outer stream of hydrogen propellant. Satisfactory operation of such a configuration would require stable nuclear reaction kinetics to occur simultaneously with a stable, coflowing, probably turbulent fluid system having a dense inner stream and a light outer stream. The present study examines the behavior of two turbulence models in numerically simulating an idealized version of the above coflowing fluid system. The two models are the standard k˜ɛ model and a thin shear algebraic stress model (ASM). The idealized flow system can be described as an axisymmetric mixing layer of constant density. Predictions for the radial distribution of the mean streamwise velocity and shear stress for several axial stations are compared with experiment. Results for the k˜ɛe predictions are broadly satisfactory while those for the ASM are distinctly poorer.

  4. A volatile-rich Earth's core inferred from melting temperature of core materials

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. McDonough, W. F. Treatise in Geochemistry 2, 547-568 (2003). 7. Anzellini, S., et al Science 340, 464-6 (2013). 8. Morard, G. et al. Phys. Chem. Miner. 38, 767-776 (2011). 9. Badro, J., et al Proc. Natl. Acad. Sci. U. S. A. 111, 7542-5 (2014).

  5. Partial Melting in the Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2014-12-01

    The inner core boundary (ICB) is often considered to be permeable to flow, because solid iron could melt as it upwells across the ICB. Such a mechanism has been proposed to accompany inner core convective processes (including translation from a freezing to melting hemisphere), and has also been invoked to explain the formation of a dense Fe-rich liquid F-layer above the ICB. However, the conceptions of ICB melting invoked thus far are extremely simplistic, and neglect the many lessons learned from melting in other geological contexts. Owing to some degree of solid solution in relatively incompatible light alloys in solid iron, the onset of melting in the inner core will likely occur as a partial melt, with the liquid being enriched in these light alloys relative to the co-existing solid. Such a partial melt is then subject to upward migration/percolation out of the solid matrix owing to the buoyancy of melt relative to solid. Removal of melt and viscous compaction of the pore space results in an iron-enriched dense solid, whose negative buoyancy will oppose whatever buoyancy forces initially gave rise to upwelling. Either the negative buoyancy will balance these other forces and cause upwelling to cease, or else the solid will become so depleted in light alloys that it is unable to undergo further melting. Thus a proper accounting of partial melting results in a very different melting regime in the inner core, and suppression of upwelling across the ICB. Any fluid that is able to escape into the outer core from inner core partial melting will likely be buoyant because in order to be a melt it should be enriched in incompatiable alloys relative to whatever is freezing at the ICB. Therefore inner core melting is unlikely to contribute to the formation of an F-layer, but instead will tend to de-stabilize it. I will present models that illustrate these processes, and propose that the F-layer is a relic of incomplete mixing of the core during Earth's final stages of formation. Such models imply that the inner core may be somewhat older than models in which it crystallizes from a homogeneous outer core, although without any significant benefits for driving the geodynamo.

  6. Properties of the Lunar Interior: Preliminary Results from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; hide

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k(sub 2). Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.

  7. Response of Metal Core Piezoelectric Fibers to Unsteady Airflows

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Ji, H. L.; Zhu, K. J.; Park, M. J.

    In the previous study, possible applications of metal core piezoelectric fibers with a diameter of 200 to 250 µm as bionic airflow sensors mimicking the flow sensitive receptor hairs of crickets have been proposed. This study aims to investigate the dynamic responses of the metal core piezoelectric fibers to unsteady airflow. The metal core piezoelectric fiber is half coated on the outer surface and is used in the bending mode. Wind tunnel tests were carried out and the output voltage of the fiber under the excitation of the unsteady aerodynamic force during flow acceleration and deceleration was measured when the wind tunnel was suddenly closed or opened by a shutter. The relationship between the maximum voltage and the steady-state velocity and that between the voltage and the acceleration of flow were also obtained.

  8. Effect of the fluid core on changes in the length of day due to long period tides

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Smith, M. L.; Sasao, T.

    1981-01-01

    The long period luni-solar tidal potential is known to cause periodic changes in the earth's rotation rate. It is found that the effect of a dissipationless fluid outer core is to reduce the amplitudes of these tidal perturbations by about 11 percent. When the fluid core effect is added to Agnew and Farrell's (1978) estimate of the effect of an equilibrium ocean, the result is in accord with observation. The effects of dissipative processes within the fluid core are also examined. Out-of-phase perturbations are found which could be as large as about 10 ms at 18.6 yr. It is concluded, however, that the poorly understood decade fluctuations in the earth's rotation rate will prohibit observation of this effect.

  9. Methods of producing armor systems, and armor systems produced using such methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-02-19

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  10. Translation and convection of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Monnereau, M.; Calvet, M.; Margerin, L.; Mizzon, H.; Souriau, A.

    2012-12-01

    The image of the inner core growing slowly at the center of the Earth by gradual cooling and solidification of the surrounding liquid outer core is being replaced by the more vigorous image of a ``deep foundry'', where melting and crystallization rates exceed by many times the net growth rate. Recently, a particular mode of convection, called translation, has been put forward as an important mode of inner core dynamics because this mechanism is able to explain the observed East-West asymmetry of P-wave velocity and attenuation (Monnereau et al. 2010). Translation is a pure solid displacement of the inner core material (solid iron) within its envelop, implying crystallization of entering iron on one side of the inner core and melting on the opposite side. Translation is consistent with multiple scattering models of wave propagation. If they do not experience deformation, iron crystals grow as they transit from one hemisphere to the other. Larger crystals constituting a faster and more attenuating medium, a translation velocity of some cm/yr (about ten times the growth rate) is enough to account for the superficial asymmetry observed for P-wave velocity and attenuation, with grains of a few hundred meters on the crystallizing side (West) growing up to a few kilometers before melting on the East side, and a drift direction located in the equatorial plane. Among all hypotheses that have been proposed to account for the seismic asymmetry, translation is the only one based on a demonstrated link between the seismic data and the proposed dynamics, notably through a model of seismic wave propagation. This mechanism was also proposed to be responsible for the formation of a dense layer at the bottom of the outer core, since the high rate of melting and crystallization would release a liquid depleted in light elements at the surface of the inner core (Alboussiere et al 2010). This would explain the anomalously low gradient of P wave velocity in the lowermost 200 km of the outer core. Translation is a particular solution of Navier-Stokes equation with permeable boundary conditions, but depending on the viscosity of the solid core, modes with higher spherical harmonics degree can develop. At low viscosity, these modes can be dominant and dissipate the degree l=1 of thermal heterogeneities. Hence, a viscosity threshold may be expected below which translation cannot take place, thereby constraining the viscosity of iron at inner core conditions. Using a hybrid finite-difference spherical harmonics Navier-Stokes solver, we investigate the interplay between translation and convection in a 3D spherical model with permeable boundary conditions. Our numerical simulations show the dominance of pure translation for viscosities of the inner core higher than 5 x 1018 Pas. Translation is almost completely hampered by convective motions for viscosities lower than 1017 Pas and the phase change becomes an almost impermeable boundary. Between these values, a well developed circulation at the harmonic degree l=1 persists, but composed of localized cold downwellings, a passive upward flow taking place on the opposite side (the melting side). Such a convective structure remains compatible with the seismic asymmetry. Alboussiere, T., Deguen, R., Melzani, M., 2010. Nature 466 (7307), 744-U9. Monnereau, M., Calvet, M., Margerin, L., Souriau, A., 2010. Science 328 (5981), 1014-1017.

  11. Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells.

    PubMed

    Storti, Federica; Raphael, Gabriele; Griesser, Vera; Klee, Katrin; Drawnel, Faye; Willburger, Carolin; Scholz, Rebecca; Langmann, Thomas; von Eckardstein, Arnold; Fingerle, Jürgen; Grimm, Christian; Maugeais, Cyrille

    2017-12-01

    Genetic studies have linked age-related macular degeneration (AMD) to genes involved in high-density lipoprotein (HDL) metabolism, including ATP-binding cassette transporter A1 (ABCA1). The retinal pigment epithelium (RPE) handles large amounts of lipids, among others cholesterol, partially derived from internalized photoreceptor outer segments (OS) and lipids physiologically accumulate in the aging eye. To analyze the potential function of ABCA1 in the eye, we measured cholesterol efflux, the first step of HDL generation, in RPE cells. We show the expression of selected genes related to HDL metabolism in mouse and human eyecups as well as in ARPE-19 and human primary RPE cells. Immunofluorescence staining revealed localization of ABCA1 on both sides of polarized RPE cells. This was functionally confirmed by directional efflux to apolipoprotein AI (ApoA-I) of 3 H-labeled cholesterol given to the cells via serum or via OS. ABCA1 expression and activity was modulated using a liver-X-receptor (LXR) agonist and an ABCA1 neutralizing antibody, demonstrating that the efflux was ABCA1-dependent. We concluded that the ABCA1-mediated lipid efflux pathway, and hence HDL biosynthesis, is functional in RPE cells towards both the basal (choroidal) and apical (subretinal) space. Impaired activity of the pathway might cause age-related perturbations of lipid homeostasis in the outer retina and thus may contribute to disease development and/or progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transition from the adiabatic to the sudden limit in core-level photoemission: A model study of a localized system

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Gunnarsson, O.; Hedin, L.

    1999-09-01

    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. Examples are transition metal and rare earth compounds, chemisorption systems, and high-Tc compounds. The system is modeled by three electron levels, one core level, and two outer levels. In the initital state the core level and one outer level is filled (a spinless two-electron problem). This model system is embedded in a solid state environment, and the implications of our model system results for solid state photoemission are discussed. When the core hole is created, the more localized outer level (d) is pulled below the less localized level (L). The spectrum has a leading peak corresponding to a charge transfer between L and d (``shakedown''), and a satellite corresponding to no charge transfer. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. Analytic results are also obtained in lowest order perturbation theory, and in the high-energy limit of the semiclassical approximation. We calculate the ratio r(ω) between the weights of the satellite and the main peak as a function of the photon energy ω. The transition from the adiabatic to the sudden limit is found to take place for quite small kinetic energies of the photoelectron. For such small energies, the variation of the dipole matrix elements is substantial and described by the energy scale E~d. Without the coupling to the photoelectron, the corresponding ratio r0(ω) shows a smooth turn-on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic energy scales are E~d and the satellite excitation energy δE. When the interaction potential with the continuum states is introduced an energy scale E~s=1/(2R~2s) enters, where R~s is a length scale of the interaction (scattering) potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(ω)/r0(ω) is larger than its limiting value for large ω. The interference becomes small or weakly destructive for photoelectron energies of the order E~s. For larger photoelectron energies r(ω)/r0(ω) therefore typically has a weak undershoot. If this undershoot is neglected, r(ω)/r0(ω) reaches its limiting value on the energy scale E~s for the parameter range considered here. In a ``shake-up'' scenario, where the two outer levels do not cross as the core hole is created, we instead find that r(ω)/r0(ω) is typically reduced for small ω by interference effects, as in the case of plasmon excitation. Even for this shake-down case, however, the results are very different from those for a simple metal, where plasmons dominate the picture. In particular, the adiabatic to sudden transition takes place at much lower energies in the case of a localized excitation. The reasons for the differences are briefly discussed.

  13. The high-pressure phase diagram of Fe(0.94)O - A possible constituent of the earth's core

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Electrical resistivity measurements to pressures of 83 GPa and temperatures ranging from 300 K to 4300 K confirm the presence of both crystalline and liquid metallic phases of FeO at pressures above 60-70 GPa and temperatures above 1000 K. By experimentally determinig the melting temperature of FeO to 100 GPa and of a model-core composition at 83 GPa, it is found that the solid-melt equilibria can be described by complete solid solution across the Fe-FeO system at pressures above 70 GPa. The results indicate that oxygen is a viable and likely candidate for the major light alloying element of the earth's liquid outer core. The data suggest that the temperature at the core-mantle boundary is close to 4800 K and that heat lost out of the core accounts for more than 20 percent of the heat flux observed at the surface.

  14. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A.

    PubMed

    Agrawal, Anurag; Weisshaar, James C

    2018-04-22

    The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characteristics and possible formation mechanisms of severe storms in the outer rainbands of Typhoon Mujiga (1522)

    NASA Astrophysics Data System (ADS)

    Wang, Bingyun; Wei, Ming; Hua, Wei; Zhang, Yongli; Wen, Xiaohang; Zheng, Jiafeng; Li, Nan; Li, Han; Wu, Yu; Zhu, Jie; Zhang, Mingjun

    2017-06-01

    To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we investigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (distance of approximately 70-800 km), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands developed into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.

  16. Comparative analysis of linear motor geometries for Stirling coolers

    NASA Astrophysics Data System (ADS)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  17. Detection of Interstellar Ortho-D2H+ with SOFIA

    NASA Astrophysics Data System (ADS)

    Harju, Jorma; Sipilä, Olli; Brünken, Sandra; Schlemmer, Stephan; Caselli, Paola; Juvela, Mika; Menten, Karl M.; Stutzki, Jürgen; Asvany, Oskar; Kamiński, Tomasz; Okada, Yoko; Higgins, Ronan

    2017-05-01

    We report on the detection of the ground-state rotational line of ortho-D2H+ at 1.477 THz (203 μm) using the German REceiver for Astronomy at Terahertz frequencies (GREAT) on board the Stratospheric Observatory For Infrared Astronomy (SOFIA). The line is seen in absorption against far-infrared continuum from the protostellar binary IRAS 16293-2422 in Ophiuchus. The para-D2H+ line at 691.7 GHz was not detected with the APEX telescope toward this position. These D2H+ observations complement our previous detections of para-H2D+ and ortho-H2D+ using SOFIA and APEX. By modeling chemistry and radiative transfer in the dense core surrounding the protostars, we find that the ortho-D2H+ and para-H2D+ absorption features mainly originate in the cool (T < 18 K) outer envelope of the core. In contrast, the ortho-H2D+ emission from the core is significantly absorbed by the ambient molecular cloud. Analyses of the combined D2H+ and H2D+ data result in an age estimate of ˜5 × 105 yr for the core, with an uncertainty of ˜2 × 105 yr. The core material has probably been pre-processed for another 5 × 105 years in conditions corresponding to those in the ambient molecular cloud. The inferred timescale is more than 10 times the age of the embedded protobinary. The D2H+ and H2D+ ions have large and nearly equal total (ortho+para) fractional abundances of ˜10-9 in the outer envelope. This confirms the central role of {{{H}}}3+ in the deuterium chemistry in cool, dense gas, and adds support to the prediction of chemistry models that also {{{D}}}3+ should be abundant in these conditions.

  18. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  19. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria

    PubMed Central

    Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron

    2004-01-01

    Insertion of β-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38–Tob55 core complex binds precursors of β-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of β-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of β-barrel proteins of mitochondria. PMID:15205677

  20. A simple 3-D numerical model of thermal convection in Earth's growing inner core: on the possibility of the formation of the degree-one structure with lateral viscosity variations

    NASA Astrophysics Data System (ADS)

    Yoshida, M.

    2015-12-01

    An east-west hemispherically asymmetric structure for Earth's inner core has been suggested by various seismological evidence, but its origin is not clearly understood. Here, to investigate the possibility of an "endogenic origin" for the degree-one thermal/mechanical structure of the inner core, I performed new numerical simulations of thermal convection in the growing inner core. A setup value that controls the viscosity contrast between the inner core boundary and the interior of the inner core, ΔηT, was taken as a free parameter. Results show that the degree-one structure only appeared for a limited range of ΔηT; such a scenario may be possible but is not considered probable for the real Earth. The degree-one structure may have been realized by an "exogenous factor" due to the planetary-scale thermal coupling among the lower mantle, the outer core, and the inner core, not by an endogenic factor due to the internal rheological heterogeneity.

  1. CMC vane assembly apparatus and method

    DOEpatents

    Schiavo, Anthony L; Gonzalez, Malberto F; Huang, Kuangwei; Radonovich, David C

    2012-10-23

    A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.

  2. Method and apparatus for wind turbine air gap control

    DOEpatents

    Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

    2007-02-20

    Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

  3. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    PubMed

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  4. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF.

    PubMed

    Sova, Matej; Kovac, Andreja; Turk, Samo; Hrast, Martina; Blanot, Didier; Gobec, Stanislav

    2009-12-01

    Enzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases. We show that the phosphate group attached to the hydroxyl moiety of the hydroxyethylamine core is essential for good inhibitory activity. The IC(50) values of these inhibitors were in the micromolar range, which makes them a promising starting point for the development of multiple inhibitors of Mur ligases as potential antibacterial agents. In addition, 1-(4-methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate 7a was discovered as one of the best inhibitors of MurE described so far.

  5. An overview of rapamycin: from discovery to future perspectives.

    PubMed

    Yoo, Young Ji; Kim, Hanseong; Park, Sung Ryeol; Yoon, Yeo Joon

    2017-05-01

    Rapamycin is an immunosuppressive metabolite produced from several actinomycete species. Besides its immunosuppressive activity, rapamycin and its analogs have additional therapeutic potentials, including antifungal, antitumor, neuroprotective/neuroregenerative, and lifespan extension activities. The core structure of rapamycin is derived from (4R,5R)-4,5-dihydrocyclohex-1-ene-carboxylic acid that is extended by polyketide synthase. The resulting linear polyketide chain is cyclized by incorporating pipecolate and further decorated by post-PKS modification enzymes. Herein, we review the discovery and biological activities of rapamycin as well as its mechanism of action, mechanistic target, biosynthesis, and regulation. In addition, we introduce the many efforts directed at enhancing the production of rapamycin and generating diverse analogs and also explore future perspectives in rapamycin research. This review will also emphasize the remarkable pilot studies on the biosynthesis and production improvement of rapamycin by Dr. Demain, one of the world's distinguished scientists in industrial microbiology and biotechnology.

  6. The effect of oxygen on density of liquid iron at high pressure

    NASA Astrophysics Data System (ADS)

    Takubo, Y.; Terasaki, H.; Shimoyama, Y.; Urakawa, S.; Suzuki, A.; Nishida, K.; Kamuro, R.; Kishimoto, S.; Kondo, T.; Ohtani, E.; Yoshinori, K.

    2012-12-01

    The Earth's outer core has been thought to be composed of liquid iron alloys with 10 % of light elements, such as sulfur, carbon, silicon and oxygen. Density of liquid iron alloy is one of the key parameters to understand the composition and structure of the Earth's outer core. The effect of various light elements (e.g., S, Si, and C) on the density of liquid iron at high pressure and high temperature has been studied (Nishida et al., 2011; Tateyama et al., 2011 Sanloup et al., 2011; Terasaki et al., 2010). It was revealed that the density depression is quite different depending on dissolving light element. However the effect of oxygen on the density of liquid iron has not been investigated due to high liquidus temperature of Fe-O system, although oxygen is one of the major candidates of the light elements in the Earth's outer core (e.g., Ringwood, 1977). Oxygen could be incorporated into the core during early terrestrial evolution (Corgne et al., 2009). In this study, we have measured the density of liquid Fe-O in the pressure and temperature ranges of 2.3-3.0 GPa and 2000-2250 K using X-ray absorption method. High pressure experiment was performed using a cubic-type multi-anvil press installed at BL22XU of the SPring-8 synchrotron radiation facility in Japan. Monochromatic X-ray of 35 keV was used. Mixture of Fe and FeO powders with 0.5 wt% oxygen, which corresponds to the eutectic composition at 3 GPa (Ohtani et al., 1984) was used as a sample. The sample was inserted in a single crystal sapphire capsule. The obtained density of this study is 6.7 g/cm3 at 3 GPa and 2005 K. Compared to the density of pure liquid iron (Anderson and Ahrens, 1994) at the present experimental condition, the density of liquid Fe-O is about 5.3 % smaller than that of pure liquid iron. On the other hand, thermal expansion coefficient of liquid Fe-O shows similar value to that of liquid iron.

  7. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  8. Dynamical Upheaval in Ice Giant Formation: A Solution to the Fine-tuning Problem in the Formation Story

    NASA Astrophysics Data System (ADS)

    Frelikh, Renata; Murray-Clay, Ruth

    2018-04-01

    We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.

  9. Seismic Structure in the Vicinity of the Inner Core Boundary beneath northeastern Asia

    NASA Astrophysics Data System (ADS)

    Ibourichene, A. S.; Romanowicz, B. A.

    2016-12-01

    The inner core boundary (ICB) separates the solid inner core from the liquid outer core. The crystallization of iron occurring at this limit induces the expulsion of lighter elements such as H, O, S, Si into the outer core, generating chemically-driven convection, which provides power for the geodynamo. Both the F layer, right above the ICB, and the uppermost inner core, are affected by this process so that their properties provide important constraints for a better understanding of core dynamics and, ultimately, the generation and sustained character of the earth's magnetic field. In this study, we investigate the evolution of model parameters (P-velocity, density and quality factor) with depth in the vicinity of the ICB. For this purpose, we combine observations of two body wave phases sensitive to this region: the PKP(DF) phase refracted in the inner core and the PKiKP reflected on the ICB. Variations in the PKP(DF)/PKiKP amplitude ratio and PKP(DF)-PKiKP differential travel times can be related to structure around the ICB. We use waveform data from earthquakes located in Sumatra and recorded by the dense USArray seismic network, which allows us to sample ICB structure beneath northeastern Asia. Observed waveforms are compared to synthetics computed using the DSM method (e.g., Geller et Takeuchi, 1995) in model AK135 (e.g., Montagner & Kennett, 1996) in order to measure amplitude and travel time anomalies. Previous studies (e.g., Tanaka, 1997 ; Cao and Romanowicz, 2004, Yu and Wen, 2006; Waszek and Deuss, 2011) have observed an hemispherical pattern in the vicinity of the ICB exhibiting a faster and more attenuated eastern hemisphere compared to the western hemisphere. The region studied is located in the eastern hemisphere. We find that, on average, travel time anomalies are consistent with previous studies of the eastern hemisphere, however, amplitude ratios are not. We conduct a parameter search for the 1D model that best fits our data. We also consider fluctuations around this best fitting average model and quantify the statistical properties of the short wavelength fluctuations.

  10. Mitochondrial filaments and clusters as intracellular power-transmitting cables.

    PubMed

    Skulachev, V P

    2001-01-01

    Mitochondria exist in two interconverting forms; as small isolated particles, and as extended filaments, networks or clusters connected with intermitochondrial junctions. Extended mitochondria can represent electrically united systems, which can facilitate energy delivery from the cell periphery to the cell core and organize antioxidant defence of the cell interior when O2 is consumed by mitochondrial clusters near the the outer cell membrane, and protonic potential is transmitted to the cell core mitochondria to form ATP. As to small mitochondria, they might represent a transportable form of these organelles.

  11. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    PubMed

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  12. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  13. Television observations of Mercury by Mariner 10

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Belton, M. J. S.; Danielson, E. G.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.

    1977-01-01

    The morphology and optical properties of the surface of Mercury resemble those of the Moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.

  14. Television observations of Mercury by Mariner 10

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Belton, M. J. S.; Danielson, G. E.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.

    1974-01-01

    The morphology and optical properties of the surface of Mercury resemble that of the moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.

  15. Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth's core

    NASA Astrophysics Data System (ADS)

    Badro, James; Fiquet, Guillaume; Guyot, François; Gregoryanz, Eugene; Occelli, Florent; Antonangeli, Daniele; d'Astuto, Matteo

    2007-02-01

    We measured compressional sound velocities in light element alloys of iron (FeO, FeSi, FeS, and FeS2) at high-pressure by inelastic X-ray scattering. This dataset provides new mineralogical constraints on the composition of Earth's core, and completes the previous sets formed by the pressure-density systematics for these compounds. Based on the combination of these datasets and their comparison with radial seismic models, we propose an average composition model of the Earth's core. We show that the incorporation of small amounts of silicon or oxygen is compatible with geophysical observations and geochemical abundances. The effect of nickel on the calculated light element contents is shown to be negligible. The preferred core model derived from our measurements is an inner core which contains 2.3 wt.% silicon and traces of oxygen, and an outer core containing 2.8 wt.% silicon and around 5.3 wt.% oxygen.

  16. Shell-corona microgels from double interpenetrating networks.

    PubMed

    Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V

    2018-04-18

    Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.

  17. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  18. High-pressure metallization of FeO and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  19. Asymmetric dynamics of the inner core and impact on the outer core

    NASA Astrophysics Data System (ADS)

    Alboussière, Thierry; Deguen, Renaud

    2012-10-01

    The history and present state of knowledge of the dynamics of the inner core are outlined in this paper. The observations that motivated ideas on the dynamical processes are introduced, but the main objective is really to concentrate on the diverse dynamical models that have been and are currently proposed for the formation and evolution of the inner core. A deliberate choice has been made of reproducing key figures from the literature in a didactic attempt to provide clear and quick identification for these models. This review looses impartiality concerning recent models, notably those aiming at explaining the hemispherical asymmetry. A preference for an intrinsic dynamic mode of the inner core is expressed, as opposed to the distant influence of the dynamics of the mantle through heat-flux heterogeneities. Meanwhile, the opinion is conveyed that the dynamics of the inner core is largely not understood yet and that every model must be considered with a critical eye.

  20. Time-dependent heat transfer in the spherical Earth: Implications on the power and thermal evolution of the core

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2015-12-01

    We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.

  1. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.

  2. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism.

    PubMed

    Spicher, Livia; Kessler, Felix

    2015-06-01

    Tocopherol (vitamin E) and phylloquinone (vitamin K1) are lipid-soluble antioxidants that can only be synthesized by photosynthetic organisms. These compounds function primarily at the thylakoid membrane but are also present in chloroplast lipid droplets, also known as plastoglobules (PG). Depending on environmental conditions and stage of plant development, changes in the content, number and size of PG occur. PG are directly connected to the thylakoid membrane via the outer lipid leaflet. Apart from storage, PG are active in metabolism and likely trafficking of diverse lipid species. This review presents recent advances on how plastoglobules are implicated in the biosynthesis and metabolism of vitamin E and K. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.

    PubMed

    Vergari, Claudio; Mansfield, Jessica; Meakin, Judith R; Winlove, Peter C

    2016-06-01

    The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical behaviour of the disc's outer layer using second harmonic generation, a technique which allowed us to visualize, with unprecedented detail, how bundles of collagen fibres slide relative to each other when loaded. Our results will help further the development of new multiscale numerical models and repairing techniques. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Structural Insights into the Free-Standing Condensation Enzyme SgcC5 Catalyzing Ester-Bond Formation in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027.

    PubMed

    Chang, Chin-Yuan; Lohman, Jeremy R; Huang, Tingting; Michalska, Karolina; Bigelow, Lance; Rudolf, Jeffrey D; Jedrzejczak, Robert; Yan, Xiaohui; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-03-21

    C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-β-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-β-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.

  5. Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core.

    PubMed

    Hoshino, Tsutomu

    2011-09-01

    Violacein is a natural violet pigment produced by several gram-negative bacteria, including Chromobacterium violaceum, Janthinobacterium lividum, and Pseudoalteromonas tunicata D2, among others. This pigment has potential medical applications as antibacterial, anti-trypanocidal, anti-ulcerogenic, and anticancer drugs. The structure of violacein consists of three units: a 5-hydroxyindole, an oxindole, and a 2-pyrrolidone. The biosynthetic origins of hydrogen, nitrogen, and carbon in the pyrrolidone nucleus were established by feeding experiments using various stable isotopically labeled tryptophans (Trps). Pro-S hydrogen of CH(2) at the 3-position of Trp is retained during biosynthesis. The nitrogen atom is exclusively from the α-amino group, and the skeletal carbon atoms originate from the side chains of the two Trp molecules. All three oxygen atoms in the violacein core are derived from molecular oxygen. The most interesting biosynthetic mechanism is the 1,2-shift of the indole nucleus on the left side of the violacein scaffold. The alternative Trp molecule is directly incorporated into the right side of the violacein core. This indole shift has been observed only in violacein biosynthesis, despite the large number of natural products having been isolated. There were remarkable advances in biosynthetic studies in 2006-2008. During the 3 years, most of the intermediates and the complete pathway were established. Two independent processes are involved: the enzymatic process catalyzed by the five proteins VioABCDE or the alternative nonenzymatic oxidative decarboxylation reactions. The X-ray crystallographic structure of VioE that mediates the indole rearrangement reaction was recently identified, and the mechanism of the indole shift is discussed here.

  6. An Atypical α/β-Hydrolase Fold Revealed in the Crystal Structure of Pimeloyl-Acyl Carrier Protein Methyl Esterase BioG from Haemophilus influenzae.

    PubMed

    Shi, Jie; Cao, Xinyun; Chen, Yaozong; Cronan, John E; Guo, Zhihong

    2016-12-06

    Pimeloyl-acyl carrier protein (ACP) methyl esterase is an α/β-hydrolase that catalyzes the last biosynthetic step of pimeloyl-ACP, a key intermediate in biotin biosynthesis. Intriguingly, multiple nonhomologous isofunctional forms of this enzyme that lack significant sequence identity are present in diverse bacteria. One such esterase, Escherichia coli BioH, has been shown to be a typical α/β-hydrolase fold enzyme. To gain further insights into the role of this step in biotin biosynthesis, we have determined the crystal structure of another widely distributed pimeloyl-ACP methyl esterase, Haemophilus influenzae BioG, at 1.26 Å. The BioG structure is similar to the BioH structure and is composed of an α-helical lid domain and a core domain that contains a central seven-stranded β-pleated sheet. However, four of the six α-helices that flank both sides of the BioH core β-sheet are replaced with long loops in BioG, thus forming an unusual α/β-hydrolase fold. This structural variation results in a significantly decreased thermal stability of the enzyme. Nevertheless, the lid domain and the residues at the lid-core interface are well conserved between BioH and BioG, in which an analogous hydrophobic pocket for pimelate binding as well as similar ionic interactions with the ACP moiety are retained. Biochemical characterization of site-directed mutants of the residues hypothesized to interact with the ACP moiety supports a similar substrate interaction mode for the two enzymes. Consequently, these enzymes package the identical catalytic function under a considerably different protein surface.

  7. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    PubMed

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  8. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development

    PubMed Central

    Lashbrooke, Justin; Aharoni, Asaph; Costa, Fabrizio

    2015-01-01

    The outer epidermal layer of apple fruit is covered by a protective cuticle. Composed of a polymerized cutin matrix embedded with waxes, the cuticle is a natural waterproof barrier and protects against several abiotic and biotic stresses. In terms of apple production, the cuticle is essential to maintain long post-harvest storage, while severe failure of the cuticle can result in the formation of a disorder known as russet. Apple russet results from micro-cracking of the cuticle and the formation of a corky suberized layer. This is typically an undesirable consumer trait, and negatively impacts the post-harvest storage of apples. In order to identify genetic factors controlling cuticle biosynthesis (and thus preventing russet) in apple, a quantitative trait locus (QTL) mapping survey was performed on a full-sib population. Two genomic regions located on chromosomes 2 and 15 that could be associated with russeting were identified. Apples with compromised cuticles were identified through a novel and high-throughput tensile analysis of the skin, while histological analysis confirmed cuticle failure in a subset of the progeny. Additional genomic investigation of the determined QTL regions identified a set of underlying genes involved in cuticle biosynthesis. Candidate gene expression profiling by quantitative real-time PCR on a subset of the progeny highlighted the specific expression pattern of a SHN1/WIN1 transcription factor gene (termed MdSHN3) on chromosome 15. Orthologues of SHN1/WIN1 have been previously shown to regulate cuticle formation in Arabidopsis, tomato, and barley. The MdSHN3 transcription factor gene displayed extremely low expression in lines with improper cuticle formation, suggesting it to be a fundamental regulator of cuticle biosynthesis in apple fruit. PMID:26220084

  9. Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar: Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure[W

    PubMed Central

    Leplé, Jean-Charles; Dauwe, Rebecca; Morreel, Kris; Storme, Véronique; Lapierre, Catherine; Pollet, Brigitte; Naumann, Annette; Kang, Kyu-Young; Kim, Hoon; Ruel, Katia; Lefèbvre, Andrée; Joseleau, Jean-Paul; Grima-Pettenati, Jacqueline; De Rycke, Riet; Andersson-Gunnerås, Sara; Erban, Alexander; Fehrle, Ines; Petit-Conil, Michel; Kopka, Joachim; Polle, Andrea; Messens, Eric; Sundberg, Björn; Mansfield, Shawn D.; Ralph, John; Pilate, Gilles; Boerjan, Wout

    2007-01-01

    Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula × Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested. PMID:18024569

  10. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance.

    PubMed

    Bang, Seung Woon; Lee, Dong-Keun; Jung, Harin; Chung, Pil Joong; Kim, Youn Shic; Choi, Yang Do; Suh, Joo-Won; Kim, Ju-Kon

    2018-05-21

    Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms. Overexpression of the OsTF1L in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both effective photosynthesis and a reduction in the water loss rate under drought conditions. Importantly, the OsTF1L overexpressing plants showed a higher drought tolerance at the reproductive stage of growth with a higher grain yield than non-transgenic controls under field-drought conditions. Genome-wide analysis of OsTF1L overexpression plants revealed up-regulation of drought-inducible, stomatal movement and lignin biosynthetic genes. Overexpression of OsTF1L promoted accumulation of lignin in shoots, whereas the RNAi lines showed opposite patterns of lignin accumulation. OsTF1L is mainly expressed in outer cell layers including the epidermis, and the vasculature of the shoots, which coincides with areas of lignification. In addition, OsTF1L overexpression enhances stomatal closure under drought conditions resulted in drought tolerance. More importantly, OsTF1L directly bound to the promoters of lignin biosynthesis and drought-related genes involving poxN/PRX38, Nodulin protein, DHHC4, CASPL5B1 and AAA-type ATPase. Collectively, our results provide a new insight into the role of OsTF1L in enhancing drought tolerance through lignin biosynthesis and stomatal closure in rice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis

    PubMed Central

    Jin, Liang; Wu, Xuri; Xue, Yanjiu; Jin, Yue; Wang, Shuzhen

    2016-01-01

    ABSTRACT Nosiheptide, a typical member of the ribosomally synthesized and posttranslationally modified peptides (RiPPs), exhibits potent activity against multidrug-resistant Gram-positive bacterial pathogens. The precursor peptide of nosiheptide (NosM) is comprised of a leader peptide with 37 amino acids and a core peptide containing 13 amino acids. To pinpoint elements in the leader peptide that are essential for nosiheptide biosynthesis, a collection of mutants with unique sequence features, including N- and C-terminal motifs, peptide length, and specific sites in the leader peptide, was generated by mutagenesis in vivo. The effects of various mutants on nosiheptide biosynthesis were evaluated. In addition to the necessity of a conserved motif LEIS box, native length and the N-terminal 12 amino acid residues were indispensable, and single-site substitutions of these 12 amino acid residues resulted in changes ranging from a greater-than-5-fold decrease to a 2-fold increase of nosiheptide production, depending on the sites and substituted residues. Moreover, although the C-terminal motif is not conservative, significant effects of this portion on nosiheptide production were also evident. Taken together, the present results further highlight the importance of the leader peptide in nosiheptide biosynthesis, and provide new insights into the diversity and specificity of leader peptides in the biosynthesis of various RiPPs. IMPORTANCE As a representative thiopeptide, nosiheptide exhibits excellent antibacterial activity. Although the biosynthetic gene cluster and several modification steps have been revealed, the presence and roles of the leader peptide within the precursor peptide of the nosiheptide gene cluster remain elusive. Thus, identification of specific elements in the leader peptide can significantly facilitate the genetic manipulation of the gene cluster for increasing nosiheptide production or generating diverse analogues. Given the complexity of the biosynthetic process, the instability of the leader peptide, and the unavailability of intermediates, cocrystallization of intermediates, leader peptide, and modification enzymes is currently not feasible. Therefore, a mutagenesis approach was used to construct a series of leader peptide mutants to uncover a number of crucial and characteristic elements affecting nosiheptide biosynthesis, which moves a considerable distance toward a thorough understanding of the biosynthetic machinery for thiopeptides. PMID:27913416

  12. Measurement and simulation of thermal neutron flux distribution in the RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  13. Anatomical Analysis of Saccharomyces cerevisiae Stalk-Like Structures Reveals Spatial Organization and Cell Specialization

    PubMed Central

    Scherz, Ruth; Shinder, Vera; Engelberg, David

    2001-01-01

    Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon. PMID:11514526

  14. Inhomogeneity of collagen organization within the fibrotic scar after myocardial infarction: results in a swine model and in human samples.

    PubMed

    Hervas, Arantxa; Ruiz-Sauri, Amparo; de Dios, Elena; Forteza, Maria Jose; Minana, Gema; Nunez, Julio; Gomez, Cristina; Bonanad, Clara; Perez-Sole, Nerea; Gavara, Jose; Chorro, Francisco Javier; Bodi, Vicente

    2016-01-01

    We aimed to characterize the organization of collagen within a fibrotic scar in swine and human samples from patients with chronic infarctions. Swine were subjected to occlusion of the left anterior descending artery followed by reperfusion 1 week (acute myocardial infarction group) or 1 month (chronic myocardial infarction group) after infarction. The organization of the collagen fibers (Fast Fourier Transform of samples after picrosirius staining; higher values indicate more disorganization) was studied in 100 swine and 95 human samples. No differences in collagen organization were found between the acute and chronic groups in the core area of the scar in the experimental model. In the chronic group, the endocardium [0.90 (0.84-0.94); median (interquartile range)], epicardium [0.84 (0.79-0.91)] and peripheral area [0.73 (0.63-0.83)] displayed a much more disorganized pattern than the core area of the fibrotic scar [0.56 (0.45-0.64)]. Similarly, in human samples, the collagen fibers were more disorganized in all of the outer areas than in the core of the fibrotic scar (P < 0.0001). Both in a highly controlled experimental model and in patient samples, collagen fibers exhibited an organized pattern in the core of the infarction, whereas the outer areas displayed a high level of inhomogeneity. This finding contributes pathophysiological information regarding the healing process and may lead to a clearer understanding of the genesis and invasive treatment of arrhythmias after acute myocardial infarction. © 2015 Anatomical Society.

  15. Unified equation of state for neutron stars on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Sharma, B. K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. F.

    2015-12-01

    We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between ≃0.067 fm-3 and ≃0.0825 fm-3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M⊙ with a radius of 10 km, and a 1.5 M⊙ NS with a radius of 11.6 km.

  16. Too Big to Be Real? No Depleted Core in Holm 15A

    NASA Astrophysics Data System (ADS)

    Bonfini, Paolo; Dullo, Bililign T.; Graham, Alister W.

    2015-07-01

    Partially depleted cores, as measured by core-Sérsic model “break radii,” are typically tens to a few hundred parsecs in size. Here we investigate the unusually large ({R}γ \\prime =0.5 = 4.57 kpc) depleted core recently reported for Holm 15A, the brightest cluster galaxy of Abell 85. We model the one-dimensional (1D) light profile, and also the two-dimensional (2D) image (using Galfit-Corsair, a tool for fitting the core-Sérsic model in 2D). We find good agreement between the 1D and 2D analyses, with minor discrepancies attributable to intrinsic ellipticity gradients. We show that a simple Sérsic profile (with a low index n and no depleted core) plus the known outer exponential “halo” provide a good description of the stellar distribution. We caution that while almost every galaxy light profile will have a radius where the negative logarithmic slope of the intensity profile γ \\prime equals 0.5, this alone does not imply the presence of a partially depleted core within this radius.

  17. Proteome Analysis of Cytoplasmatic and Plastidic β-Carotene Lipid Droplets in Dunaliella bardawil1[OPEN

    PubMed Central

    Davidi, Lital; Levin, Yishai; Ben-Dor, Shifra; Pick, Uri

    2015-01-01

    The halotolerant green alga Dunaliella bardawil is unique in that it accumulates under stress two types of lipid droplets: cytoplasmatic lipid droplets (CLD) and β-carotene-rich (βC) plastoglobuli. Recently, we isolated and analyzed the lipid and pigment compositions of these lipid droplets. Here, we describe their proteome analysis. A contamination filter and an enrichment filter were utilized to define core proteins. A proteome database of Dunaliella salina/D. bardawil was constructed to aid the identification of lipid droplet proteins. A total of 124 and 42 core proteins were identified in βC-plastoglobuli and CLD, respectively, with only eight common proteins. Dunaliella spp. CLD resemble cytoplasmic droplets from Chlamydomonas reinhardtii and contain major lipid droplet-associated protein and enzymes involved in lipid and sterol metabolism. The βC-plastoglobuli proteome resembles the C. reinhardtii eyespot and Arabidopsis (Arabidopsis thaliana) plastoglobule proteomes and contains carotene-globule-associated protein, plastid-lipid-associated protein-fibrillins, SOUL heme-binding proteins, phytyl ester synthases, β-carotene biosynthesis enzymes, and proteins involved in membrane remodeling/lipid droplet biogenesis: VESICLE-INDUCING PLASTID PROTEIN1, synaptotagmin, and the eyespot assembly proteins EYE3 and SOUL3. Based on these and previous results, we propose models for the biogenesis of βC-plastoglobuli and the biosynthesis of β-carotene within βC-plastoglobuli and hypothesize that βC-plastoglobuli evolved from eyespot lipid droplets. PMID:25404729

  18. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    ERIC Educational Resources Information Center

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  19. Characterization of Xylella fastidiosa lipopolysaccharide and its role in key steps of the disease cycle in grapevine

    USDA-ARS?s Scientific Manuscript database

    This project aims to elucidate molecular mechanisms of Xylella fastidiosa (Xf) pathogenicity. Work is focused on the lipopolysaccharide (LPS) component of the outer membrane, which consists of lipid A, core oligosaccharides, and a variable O-antigen moiety. Specifically, the O-antigen portion of LPS...

  20. Role of subunit assembly in autosomal dominant retinitis pigmentosa linked to mutations in peripherin 2.

    PubMed

    Molday, Robert S; Molday, Laurie L; Loewen, Christopher J R

    2004-01-01

    Peripherin 2 is a photoreceptor-specific membrane protein implicated in outer segment disk morphogenesis and linked to various retinopathies including autosomal dominant retinitis pigmentosa (ADRP). Peripherin 2 and ROM1 assemble as a mixture of core noncovalent homomeric and heteromeric tetramers that further link together through disulfide bonds to form higher order oligomers. These complexes are critical for disk rim formation and outer segment structure through interaction with the cGMP-gated channel and other photoreceptor proteins. We have examined the role of subunit assembly in peripherin 2 targeting to disks, outer segment structure, and photoreceptor degeneration by examining molecular and cellular properties of peripherin 2 mutants in COS-1 cells and transgenic Xenopus laevis rod photoreceptors. Wild-type (WT) and the ADRP-linked P216L mutant were transported and incorporated into newly formed outer segment disks of transgenic X. laevis. The P216L mutant, however, induced progressive outer segment instability and photoreceptor degeneration possibly through the introduction of a new N-linked oligosaccharide chain. In contrast, the C214S and L185P disease-linked, tetramerization-defective mutants, were retained in the inner segment, but did not affect outer segment structure or induce photoreceptor degeneration. Together, these results indicate that peripherin 2 mutations can cause ADRP either through a deficiency in WT peripherin 2 (C214S, 1.185P) or by a dominant negative effect on disk stability (P216L).

  1. Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis

    PubMed Central

    Faber, Eugenia; Bats, Simon H.; Murillo, Tatiana; Speidel, Yvonne; Coombs, Nina

    2017-01-01

    Highly virulent Helicobacter pylori cause proinflammatory signaling inducing the transcriptional activation and secretion of cytokines such as IL-8 in epithelial cells. Responsible in part for this signaling is the cag pathogenicity island (cagPAI) that codetermines the risk for pathological sequelae of an H. pylori infection such as gastric cancer. The Cag type IV secretion system (CagT4SS), encoded on the cagPAI, can translocate various molecules into cells, the effector protein CagA, peptidoglycan metabolites and DNA. Although these transported molecules are known to contribute to cellular responses to some extent, a major part of the cagPAI-induced signaling leading to IL-8 secretion remains unexplained. We report here that biosynthesis of heptose-1,7-bisphosphate (HBP), an important intermediate metabolite of LPS inner heptose core, contributes in a major way to the H. pylori cagPAI-dependent induction of proinflammatory signaling and IL-8 secretion in human epithelial cells. Mutants defective in the genes required for synthesis of HBP exhibited a more than 95% reduction of IL-8 induction and impaired CagT4SS-dependent cellular signaling. The loss of HBP biosynthesis did not abolish the ability to translocate CagA. The human cellular adaptor TIFA, which was described before to mediate HBP-dependent activity in other Gram-negative bacteria, was crucial in the cagPAI- and HBP pathway-induced responses by H. pylori in different cell types. The active metabolite was present in H. pylori lysates but not enriched in bacterial supernatants. These novel results advance our mechanistic understanding of H. pylori cagPAI-dependent signaling mediated by intracellular pattern recognition receptors. They will also allow to better dissect immunomodulatory activities by H. pylori and to improve the possibilities of intervention in cagPAI- and inflammation-driven cancerogenesis. PMID:28715499

  2. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai, Yang; Christianson, David W.

    Leishmaniaarginase is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme initiatesde novopolyamine biosynthesis by catalyzing the hydrolysis of L-arginine to generate L-ornithine and urea. The product L-ornithine subsequently undergoes decarboxylation to yield putrescine, which in turn is utilized for spermidine biosynthesis. Polyamines such as spermidine are essential for the growth and survival of the parasite, so inhibition of enzymes in the polyamine-biosynthetic pathway comprises an effective strategy for treating parasitic infections. To this end, two X-ray crystal structures ofL. mexicanaarginase complexed with α,α-disubstituted boronic amino-acid inhibitors based on the molecular scaffold of 2-(S)-amino-6-boronohexanoic acidmore » are now reported. Structural comparisons with human and parasitic arginase complexes reveal interesting differences in the binding modes of the additional α-substituents,i.e.the D side chains, of these inhibitors. Subtle differences in the three-dimensional contours of the outer active-site rims among arginases from different species lead to different conformations of the D side chains and thus different inhibitor-affinity trends. The structures suggest that it is possible to maintain affinity while fine-tuning intermolecular interactions of the D side chain of α,α-disubstituted boronic amino-acid inhibitors in the search for isozyme-specific and species-specific arginase inhibitors.« less

  4. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  5. Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP.

    PubMed

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-01-01

    Antifungal proteins from molds have been proposed as a valuable tool against unwanted molds, but the resistance of some fungi limits their use. Resistance to antimicrobial peptides has been suggested to be due to lack of interaction with the mold or to a successful response. The antifungal protein PgAFP produced by Penicillium chrysogenum inhibits the growth of various ascomycetes, but not Penicillium polonicum. To study the basis for resistance to this antifungal protein, localization of PgAFP and metabolic, structural, and morphological changes were investigated in P. polonicum. PgAFP bound the outer layer of P. polonicum but not regenerated chitin, suggesting an interaction with specific molecules. Comparative two-dimensional gel electrophoresis (2D-PAGE) and comparative quantitative proteomics revealed changes in the relative abundance of several proteins from ribosome, spliceosome, metabolic, and biosynthesis of secondary metabolite pathways. The proteome changes and an altered permeability reveal an active reaction of P. polonicum to PgAFP. The successful response of the resistant mold seems to be based on the higher abundance of protein Rho GTPase Rho1 that would lead to the increased chitin deposition via cell wall integrity (CWI) signaling pathway. Thus, combined treatment with chitinases could provide a complementary means to combat resistance to antifungal proteins.

  6. Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere.

    PubMed

    Balsanelli, Eduardo; Tadra-Sfeir, Michelle Z; Faoro, Helisson; Pankievicz, Vânia Cs; de Baura, Valter A; Pedrosa, Fábio O; de Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2016-09-01

    Molecular mechanisms of plant recognition and colonization by diazotrophic bacteria are barely understood. Herbaspirillum seropedicae is a Betaproteobacterium capable of colonizing epiphytically and endophytically commercial grasses, to promote plant growth. In this study, we utilized RNA-seq to compare the transcriptional profiles of planktonic and maize root-attached H. seropedicae SmR1 recovered 1 and 3 days after inoculation. The results indicated that nitrogen metabolism was strongly activated in the rhizosphere and polyhydroxybutyrate storage was mobilized in order to assist the survival of H. seropedicae during the early stages of colonization. Epiphytic cells showed altered transcription levels of several genes associated with polysaccharide biosynthesis, peptidoglycan turnover and outer membrane protein biosynthesis, suggesting reorganization of cell wall envelope components. Specific methyl-accepting chemotaxis proteins and two-component systems were differentially expressed between populations over time, suggesting deployment of an extensive bacterial sensory system for adaptation to the plant environment. An insertion mutation inactivating a methyl-accepting chemosensor induced in planktonic bacteria, decreased chemotaxis towards the plant and attachment to roots. In summary, analysis of mutant strains combined with transcript profiling revealed several molecular adaptations that enable H. seropedicae to sense the plant environment, attach to the root surface and survive during the early stages of maize colonization. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Stokes-Einstein relation in liquid iron-nickel alloy up to 300 GPa

    NASA Astrophysics Data System (ADS)

    Cao, Q.-L.; Wang, P.-P.

    2017-05-01

    Molecular dynamic simulations were applied to investigate the Stokes-Einstein relation (SER) and the Rosenfeld entropy scaling law (ESL) in liquid Fe0.9Ni0.1 over a sufficiently broad range of temperatures (0.70 < T/Tm < 1.85 Tm is melting temperature) and pressures (from 50 GPa to 300 GPa). Our results suggest that the SER and ESL hold well in the normal liquid region and break down in the supercooled region under high-pressure conditions, and the deviation becomes larger with decreasing temperature. In other words, the SER can be used to calculate the viscosity of liquid Earth's outer core from the self-diffusion coefficients of iron/nickel and the ESL can be used to predict the viscosity and diffusion coefficients of liquid Earth's outer core form its structural properties. In addition, the pressure dependence of effective diameters cannot be ignored in the course of using the SER. Moreover, ESL provides a useful, structure-based probe for the validity of SER, while the ratio of the self-diffusion coefficients of the components cannot be used as a probe for the validity of SER.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Zhang, Hongbin

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  9. IXO/XMS Detector Trade-Off Study

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline Anne; deKorte, P.; Smith, S.; Hoevers, H.; vdKuur, J.; Ezoe, Y.; Ullom, J.

    2010-01-01

    This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly.

  10. Functional characterization of the Dsc E3 ligase complex in the citrus postharvest pathogen Penicillium digitatum.

    PubMed

    Ruan, Ruoxin; Chung, Kuang-Ren; Li, Hongye

    2017-12-01

    Sterol regulatory element binding proteins (SREBPs) are required for sterol homeostasis in eukaryotes. Activation of SREBPs is regulated by the Dsc E3 ligase complex in Schizosaccharomyces pombe and Aspergillus spp. Previous studies indicated that an SREBP-coding gene PdsreA is required for fungicide resistance and ergosterol biosynthesis in the citrus postharvest pathogen Penicillium digitatum. In this study, five genes, designated PddscA, PddscB, PddscC, PddscD, and PddscE encoding the Dsc E3 ligase complex were characterized to be required for fungicide resistance, ergosterol biosynthesis and CoCl 2 tolerance in P. digitatum. Each of the dsc genes was inactivated by target gene disruption and the resulted phenotypes were analyzed and compared. Genetic analysis reveals that, of five Dsc complex components, PddscB is the core subunit gene in P. digitatum. Although the resultant dsc mutants were able to infect citrus fruit and induce maceration lesions as the wild-type, the mutants rarely produced aerial mycelia on affected citrus fruit peels. P. digitatum Dsc proteins regulated not only the expression of genes involved in ergosterol biosynthesis but also that of PdsreA. Yeast two-hybrid assays revealed a direct interaction between the PdSreA protein and the Dsc proteins. Ectopic expression of the PdSreA N-terminus restored fungicide resistance in the dsc mutants. Our results provide important evidence to understand the mechanisms underlying SREBP activation and regulation of ergosterol biosynthesis in plant pathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis1[W

    PubMed Central

    Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley

    2014-01-01

    The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191

  12. Gene PA2449 Is Essential for Glycine Metabolism and Pyocyanin Biosynthesis in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lundgren, Benjamin R.; Thornton, William; Dornan, Mark H.; Villegas-Peñaranda, Luis Roberto; Boddy, Christopher N.

    2013-01-01

    Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria. PMID:23457254

  13. Heparan sulfate proteoglycans regulate autophagy in Drosophila.

    PubMed

    Reynolds-Peterson, Claire E; Zhao, Na; Xu, Jie; Serman, Taryn M; Xu, Jielin; Selleck, Scott B

    2017-08-03

    Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.

  14. Chlorophyll Biosynthesis Gene Evolution Indicates Photosystem Gene Duplication, Not Photosystem Merger, at the Origin of Oxygenic Photosynthesis

    PubMed Central

    Sousa, Filipa L.; Shavit-Grievink, Liat; Allen, John F.; Martin, William F.

    2013-01-01

    An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe. PMID:23258841

  15. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis.

    PubMed

    Sousa, Filipa L; Shavit-Grievink, Liat; Allen, John F; Martin, William F

    2013-01-01

    An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.

  16. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  17. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  18. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  19. Applications of liquid state physics to the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1980-01-01

    New results derived for application to the earth's outer core using the modern theory of liquids and the hard-sphere model of liquid structure are presented. An expression derived in terms of the incompressibility and pressure is valid for a high-pressure liquid near its melting point, provided that the pressure is derived from a strongly repulsive pair potential; a relation derived between the melting point and density leads to a melting curve law of essentially the same form as Lindemann's law. Finally, it is shown that the 'core paradox' of Higgins and Kennedy (1971) can occur only if the Gruneisen parameter is smaller than 2/3, and this constant is larger than this value in any liquid for which the pair potential is strongly repulsive.

  20. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    NASA Technical Reports Server (NTRS)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

Top