Science.gov

Sample records for outer galactic halo

  1. ASSEMBLY OF THE OUTER GALACTIC STELLAR HALO IN THE HIERARCHICAL MODEL

    SciTech Connect

    Murante, Giuseppe; Curir, Anna; Poglio, Eva; Villalobos, Alvaro E-mail: curir@oato.inaf.i E-mail: villalobos@oats.inaf.i

    2010-06-20

    We provide a set of numerical N-body simulations for studying the formation of the outer Milky Ways' stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halos with a dark matter main halo, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than {approx}1/40 of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low-inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.

  2. Duration of the Early Galactic Formation Epoch: HST Photometry for Red-Horizontal Branch Clusters in the Outer Halo

    NASA Astrophysics Data System (ADS)

    Hesser, J. E.; Stetson, P. B.; McClure, R. D.; van den Bergh, S.; Bolte, M.; Harris, W. E.; van den Berg, D. A.; Bell, R. A.; Fahlman, G. G.; Richer, H. B.; Bond, H. E.

    1997-12-01

    Last year we presented evidence from HST photometry of the low-metallicity cluster NGC 2419 (M_V = -9.5, R_⊙ ~ 90 kpc, [Fe/H] = -2.2) that globular cluster formation began at essentially the same time throughout a region of the Galactic halo now almost 200 kpc in diameter (Harris et al. 1997 AJ 114, 1030). We now turn to the time spread of halo formation, with the ultimate aim of addressing the relative roles of mergers over the first 4 or more Gyrs (Searle & Zinn 1978, ApJ, 225, 357; Lee, Demarque & Zinn 1994 ApJ, 423, 248) versus models favoring a rapid collapse (Eggen, Lynden-Bell & Sandage 1962, ApJ, 236, 748; Stetson, VandenBerg & Bolte 1996, PASP, 108, 560), or some combination of those and other processes. We provide the first reliable measurements from the giant branch through the main-sequence turnoffs of red-horizontal-branch clusters in the outer halo, which are frequently postulated to be younger than most other globular clusters. From WFPC2 F555W (`V') and F814W (`I') photometry for Pal 3 (M_V = -5.2, R_⊙ ~ 87 kpc), Pal 4 (M_V = -5.8, R_⊙ ~ 98 kpc), and Eridanus (M_V = -4.8, R_⊙ ~ 78 kpc), all with [Fe/H] ~ -1.5, we estimate their relative ages by making differential comparisons among them and with respect to inner-halo objects of, presumably, comparable chemical compositions. It seems likely at this stage of our analysis that (a) the three clusters are the same age to our measurement precision of ~ 1 Gyr, and, (b) the CMDs of all three outer halo clusters differ from those of M 3 and M 5 (our template clusters of similar metallicity), in the sense that the outer halo clusters are younger by ~ 3 Gyr, or they are ~ 0.5 dex more metal-rich than currently thought. Large uncertainties in chemical compositions (He, [alpha /Fe], [CNO/Fe]) for outer halo and template clusters alike mask the true interpretation.

  3. GALACTIC WARPS IN TRIAXIAL HALOS

    SciTech Connect

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae E-mail: sungsoo.kim@khu.ac.kr

    2009-05-10

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  4. PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; Belokurov, V.; Koposov, S. E.; Prieto, J. L.; Larson, S.; Christensen, E.; Beshore, E.

    2013-01-20

    We present analysis of 12,227 type-ab RR Lyraes (RRLs) found among the 200 million public light curves in Catalina Surveys Data Release 1. These stars span the largest volume of the Milky Way ever surveyed with RRLs, covering {approx}20,000 deg{sup 2} of the sky (0 Degree-Sign < {alpha} < 360 Degree-Sign , -22 Degree-Sign < {delta} < 65 Degree-Sign ) to heliocentric distances of up to 60 kpc. Each of the RRLs is observed between 60 and 419 times over a six-year period. Using period finding and Fourier fitting techniques we determine periods and apparent magnitudes for each source. We find that the periods are generally accurate to {sigma} = 0.002% in comparison to 2842 previously known RRLs and 100 RRLs observed in overlapping survey fields. We photometrically calibrate the light curves using 445 Landolt standard stars and show that the resulting magnitudes are accurate to {approx}0.05 mag using Sloan Digital Sky Survey (SDSS) data for {approx}1000 blue horizontal branch stars and 7788 RRLs. By combining Catalina photometry with SDSS spectroscopy, we analyze the radial velocity and metallicity distributions for >1500 of the RRLs. Using the accurate distances derived for the RRLs, we show the paths of the Sagittarius tidal streams crossing the sky at heliocentric distances from 20 to 60 kpc. By selecting samples of Galactic halo RRLs, we compare their velocity, metallicity, and distance with predictions from a recent detailed N-body model of the Sagittarius system. We find that there are some significant differences between the distances and structures predicted and our observations.

  5. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  6. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  7. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  8. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  9. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  10. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  11. Probing the outer limits of a galactic halo - deep imaging of exceptionally remote globular clusters in M31

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2011-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the formation and growth of galaxies. As part of the ongoing Pan-Andromeda Archaeological Survey {PAndAS} we have discovered a group of exceptionally remote GCs in the M31 halo, spanning a range in projected galactocentric distance of 85-145 kpc. Here we apply for deep ACS imaging of 13 such targets, which will allow us to study their constituent stellar populations, line-of-sight distances, and structural parameters. Our measurements will facilitate the use of these GCs as a unique set of probes of the exceptionally remote halo of a large disk galaxy, opening up a completely new area of parameter space to observational constraint. Comparing the properties of our targets with more centrally-located objects will provide a much clearer picture of the M31 GC population than is presently available, while comparison with the outermost Milky Way GCs will further elucidate well-known disparities between the two systems and offer vital clues to differences in their assembly. In addition, our measurements will substantially augment a broad swathe of science that is presently underway - including probing the dark mass distribution in M31 at very large radii, and investigating the detailed chemical composition of M31 GCs via high-resolution integrated-light spectroscopy.

  12. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Lee, Young Sun; Beers, Timothy C.; Kim, Young Kwang; Placco, Vinicius; Yoon, Jinmi; Carollo, Daniela; Masseron, Thomas; Jung, Jaehun

    2017-02-01

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = -1.5 and -2.2, respectively. From consideration of the absolute carbon abundances for our sample, A(C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP-s stars (those with strong overabundances of elements associated with the s-process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP-s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP-s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  13. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  14. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  15. Static galactic halo and galactic wind

    NASA Technical Reports Server (NTRS)

    Ko, Chung-Ming

    1993-01-01

    Although the exact state of the interstellar medium (ISM) in our Galaxy (other galaxies as well) is not clear at all, the 'common consensus' is that a rough pressure balance (or equipartition of energy) exists between different components and phases: cold, warm, hot phases of the ISM, magnetic field, cosmic rays, etc. If the halo of a galaxy is taken to be an extension of the ISM, then its structure is influenced by various ISM components. A 'complete' description of the halo is evidently very complicated. This paper gives a brief account on cosmic ray halo, which emphasizes the role played by cosmic rays. The interaction between cosmic rays and thermal plasma is facilitated by magnetic field. The cosmic rays are scattered by hydromagnetic waves (e.g., Alfven waves) which in turn can be generated by cosmic ray streaming instability. This constitutes a self-consistent picture. Since we are interested in the structure of the halo, we adopted a hydrodynamic model in which the cosmic rays and waves are described by their pressures. In general there are two classes of halos: static and dynamic.

  16. Probing the galactic halo with ROSAT

    NASA Technical Reports Server (NTRS)

    Burrows, David N.; Mendenhall, J. A.

    1992-01-01

    We discuss the current status of ROSAT shadowing observations designed to search for emission from million degree gas in the halo of the Milky Way galaxy. Preliminary results indicate that million degree halo gas is observed in the 1/4 keV band in some directions, most notably toward the Draco cloud at (l,b) = (92 deg, +38 deg), but that the halo emission is patchy and highly anisotropic. Our current understanding of this halo emission is based on a small handful of observations which have been analyzed to date. Many more observations are currently being analyzed or are scheduled for observation within the next year, and we expect our understanding of this component of the galactic halo to improve dramatically in the near future.

  17. Probing the galactic halo with ROSAT

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Mendenhall, J. A.

    1993-01-01

    We discuss the current status of ROSAT shadowing observations designed to search for emission from million degree gas in the halo of the Milky Way galaxy. Preliminary results indicate that million degree halo gas is observed in the 1/4 keV band in some directions, most notably toward the Draco cloud at (l,b) = (92 deg, +38 deg), but that the halo emission is patchy and highly anisotropic. Our current understanding of this halo emission is based on a small handful of observations which have been analyzed to date. Many more observations are currently being analyzed or are scheduled for observation within the next year, and we expect our understanding of this component of the galactic halo to improve dramatically in the near future.

  18. Analytical halo model of galactic conformity

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  19. Stability of BEC galactic dark matter halos

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.; González-Avilés, J. J.; Rivera-Paleo, F. J.

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  20. Formation of the Galactic Stellar Halo. I. Structure and Kinematics

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Chiba, Masashi

    2001-09-01

    We perform numerical simulations for the formation of the Galactic stellar halo, based on the currently favored cold dark matter theory of galaxy formation. Our numerical models, taking into account both dynamical and chemical evolution processes in a consistent manner, are aimed at explaining the observed structure and kinematics of the stellar halo in the context of hierarchical galaxy formation. The main results of the present simulations are summarized as follows: (1) Basic physical processes involved in the formation of the stellar halo, composed of metal-deficient stars with [Fe/H]<=-1.0, are described by both dissipative and dissipationless merging of subgalactic clumps and their resultant tidal disruption in the course of gravitational contraction of the Galaxy at high redshift (z>1). (2) The simulated halo has a density profile similar to the observed power-law form of ρ(r)~r-3.5 and also has a metallicity distribution similar to the observations. The halo shows virtually no radial gradient for stellar ages and only a small gradient for metallicities. (3) The dual nature of the halo, i.e., its inner flattened and outer spherical density distribution, is reproduced, at least qualitatively, by the present model. The outer spherical halo is formed via essentially dissipationless merging of small subgalactic clumps, whereas the inner flattened one is formed via three different mechanisms, i.e., dissipative merging between larger, more massive clumps, adiabatic contraction due to the growing Galactic disk, and gaseous accretion onto the equatorial plane. (4) For the simulated metal-poor stars with [Fe/H]<=-1.0, there is no strong correlation between metal abundances and orbital eccentricities, in good agreement with the recent observations. Moreover, the observed fraction of the low-eccentricity stars is reproduced correctly for [Fe/H]<=-1.6 and approximately for the intermediate-abundance range of -1.6<[Fe/H]<=-1.0. (5) The mean rotational velocity of the

  1. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  2. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  3. The Dual Origin of Galactic Stellar Halos

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    2011-01-01

    Accreted stellar halos are a natural consequence of galaxy formation in a Lambda-CDM Universe, and contain unique fossil records of hierarchical galaxy formation. The properties of local Milky Way halo stars, however, suggest that the Galaxy's halo is composed of at least two distinct stellar populations, each exhibiting different spatial distributions, orbits, and metallicities. This observed dichotomy is the result of the assembly history of the halo, which likely formed through a process more complex than pure hierarchical accretions. In this talk I will describe the formation of stellar halos surrounding Milky Way-massed disk galaxies simulated using high-resolution cosmological Smooth Particle Hydrodynamics + N-Body simulations. We find that two competing physical processes - accretion of dwarf galaxies and in situ star formation - contribute to the formation of every stellar halo. While the outer regions (r > 20 kpc) of the halos were assembled solely through the accretion and disruption of satellites, in situ star formation supplements accretion in the formation of inner halos. The relative contribution of each stellar population to a halo is shown to be a function of a galaxy's merging history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger population of such stars. We show how the chemical abundance trends ([Fe/H] vs. [alpha/Fe]) of accreted and in situ stars diverge at the high [Fe/H] end of the metallicity distribution function, and discuss how such trends can be used to study and identify the observable imprints of the Milky Way's formation history.

  4. Structure of the Galactic Halo Towards the North Galactic Pole

    NASA Astrophysics Data System (ADS)

    Kinman, T. D.; Bragaglia, A.; Cacciari, C.; Buzzoni, A.; Spagna, A.

    2005-01-01

    We have used RR Lyrae and Blue HB stars as tracers of the old Galactic halo, in order to study the halo structure and the galactic rotation as a function of height above the plane. Our sample includes 40 RR Lyrae and 80 BHB stars that are about 2 to 15 kpc above the plane, in a roughly 250 deg2 area around the North Galactic Pole (NGP). We use proper motions (derived from the GSCII data base) and radial velocities to determine the rotation of the halo. From the whole sample the motion appears to be significantly more retrograde than the samples in the solar neighbourhood, confirming Majewski (1992) results and our own preliminary results based on 1/3 the present sample (Kinman et al. 2003; Spagna et al. 2003). However, the better statistics have now revealed the likely existence of two components, whose characteristics need an accurate analysis of systematic errors on the proper motions in order to be assessed in detail.

  5. The angular momentum distribution in galactic halos

    NASA Astrophysics Data System (ADS)

    Quinn, P. J.; Zurek, W. H.

    1988-08-01

    N-body simulations are used to model the formation of individual galactic halos from scale-free density perturbations in universes dominated by cold, nondissipative dark matter. In well-mixed halos, the angular momentum distribution is shown to have a systematic behavior with power law index n corresponding to that found for circular rotation curves. For a given n, the distribution of angular momentum has the same trend with radius and energy as that implied for a halo in which all the matter has its maximum possible angular momentum. Dynamical mixing during the relaxation of the halo redistributes both angular momentum and binding energy in an orderly manner. The organized nature of the collapse means that relaxation is not completely violent and that the secondary infall paradigm, in its simplest form, needs to be modified to include the organizing effects of dynamical friction. It is shown that the Mestel hypothesis is not consistent with the final collapsed state of halos, but may be applicable to the collapse of the disks of spirals.

  6. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    SciTech Connect

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Harding, Paul; Rockosi, Constance; Xue, Xiang Xiang; Rix, Hans-Walter; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  7. The SEGUE K Giant Survey. III. Quantifying Galactic Halo Substructure

    NASA Astrophysics Data System (ADS)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Rockosi, Constance; Starkenburg, Else; Xue, Xiang Xiang; Rix, Hans-Walter; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (˜33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  8. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  9. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  10. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  11. The Stellar Metallicity Distribution of the Galactic Halo Based on SCUSS and SDSS Data

    NASA Astrophysics Data System (ADS)

    Zuo, Wenbo; Du, Cuihua; Jing, Yingjie; Gu, Jiayin; Newberg, Heidi Jo; Wu, Zhenyu; Ma, Jun; Zhou, Xu

    2017-05-01

    Based on the Sloan Digital Sky Survey and South Galactic Cap u-band Sky Survey (SCUSS), we simulate the photometric metallicity distribution functions (MDFs) of stars in the Galactic halo. The photometric metallicity of stars was estimated by a new Monte-Carlo method. Due to the use of a more reliable metallicity calibration method and more accurate u-band deep measurements from SCUSS, we can obtain more accurate MDFs of a large sample of distant stars in the Galactic halo. In this study, we select 78,092 F/G main-sequence turnoff stars (MSTO) in the south Galactic cap, with 0.2 < (g - r)0 < 0.4, as tracers of the stellar MDFs in the Galactic halo. The sample stars are divided into two height intervals above the Galactic plane: -8 < z < -4 kpc and -12 < z < -8 kpc. The MDFs of selected stars in each interval are well fit by a three-Gaussian model, with peaks at [Fe/H] ≈ -0.63, -1.45, and -2.0. The two metal-poor components correspond to the inner halo and outer halo, respectively. The fraction of the metal-rich component, which may be contributed by the substructure (such as Sagittarius stream or other streams) is about 10%. With limited kinematic estimation, we find the correlations between metallicity and kinematics. Our results provide additional supporting evidence of duality of the Galactic halo.

  12. Chemical trends in the Galactic halo from APOGEE data

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Carigi, L.; Allende Prieto, C.; Hayden, M. R.; Beers, T. C.; Fernández-Trincado, J. G.; Meza, A.; Schultheis, M.; Santiago, B. X.; Queiroz, A. B.; Anders, F.; da Costa, L. N.; Chiappini, C.

    2017-02-01

    The galaxy formation process in the Λ cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 ≲ r ≲ 30 kpc and -2.5 < [M/H] < 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] ∼ -1.5 and ∼-2.1, consistent with previously reported halo metallicity distributions. We obtain a difference of ∼0.1 dex for α-element-to-iron ratios for stars at r > 15 kpc and [M/H] > -1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.

  13. Inhomogeneous chemical enrichment in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2016-08-01

    In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances originate from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relation. This means that the most metal-poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant branch stars or neutron star mergers can contribute at low metallicities. The intrinsic variation of yields are important in the early Universe or metal-poor systems such as in the Galactic halo. The carbon enhancement of extremely metal-poor (EMP) stars can be best explained by faint supernovae, the low [α/Fe] ratios in some EMP stars naturally arise from low-mass (~ 13 - 15M ⊙) supernovae, and finally, the [α/Fe] knee in dwarf spheroidal galaxies can be produced by subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions.

  14. Blue horizontal branch field stars in the galactic halo - Observations versus kinematic models

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper; Christensen, Per Rex

    1989-07-01

    A sample of 185 blue horizontal branch field (BHBF) stars situated in four fields in the galactic halo at galactocentric distances r of less than 40 kpc has been analyzed. The BHBF stars are found to constitute a well mixed system. The Sommer-Larsen (1986, 1987) model is shown to provide a better fit to the kinematical data in all four fields than either the White (1985, 1988) or Ratnatunga and Freeman (1985, 1989) models. A formation scenario for the galactic halo which includes the effects of gas dynamical processes is proposed to account for the feature of the Sommer-Larsen model that the velocity distribution of halo stars is radially anisotropic in the inner halo, but tangentially anisotropic in the outer parts of the halo.

  15. Cosmic stellar relics in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Salvadori, Stefania; Schneider, Raffaella; Ferrara, Andrea

    2007-10-01

    We study the stellar population history and chemical evolution of the Milky Way (MW) in a hierarchical Λ cold dark matter model for structure formation. Using a Monte Carlo method based on the semi-analytical extended Press & Schechter formalism, we develop a new code GALAXY MERGER TREE AND EVOLUTION (GAMETE) to reconstruct the merger tree of the Galaxy and follow the evolution of gas and stars along the hierarchical tree. Our approach allows us to compare the observational properties of the MW with model results, exploring different properties of primordial stars, such as their initial mass function and the critical metallicity for low-mass star formation, Zcr. In particular, by matching our predictions to the metallicity distribution function (MDF) of metal-poor stars in the Galactic halo we find that: (i) a strong supernova (SN) feedback is required to reproduce the observed properties of the MW; (ii) stars with [Fe/H] < -2.5 form in haloes accreting Galactic medium (GM) enriched by earlier SN explosions; (iii) the fiducial model (Zcr = 10-4Zsolar, mPopIII = 200 Msolar) provides an overall good fit to the MDF, but cannot account for the two hyper-metal-poor (HMP) stars with [Fe/H] < -5 the latter can be accommodated if Zcr <= 10-6 Zsolar but such model overpopulates the `metallicity desert', that is, the range -5.3 < [Fe/H] < -4 in which no stars have been detected; (iv) the current non-detection of metal-free stars robustly constrains either Zcr > 0 or the masses of the first stars mPopIII > 0.9 Msolar (v) the statistical impact of truly second-generation stars, that is, stars forming out of gas polluted only by metal-free stars, is negligible in current samples; and (vi) independent of Zcr, 60 per cent of metals in the GM are ejected through winds by haloes with masses M < 6 × 109 Msolar, thus showing that low-mass haloes are the dominant population contributing to cosmic metal enrichment. We discuss the limitations of our study and comparison with previous

  16. Inhomogeneous chemical enrichment in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2015-08-01

    In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances is originated from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relations. This means that the most metal poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant blanch stars or neutron star mergers can contribute the abundance patterns of extremely metal-poor stars, which are in good agreement with observations.

  17. Particle Dark Matter in the galactic halo

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; D'Angelo, S.; di Marco, A.; Montecchia, F.; D'Angelo, A.; Incicchitti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, X. H.; Sheng, X. D.; Wang, R. G.; Ye, Z. P.

    2015-10-01

    The DAMA/LIBRA-phase1 and the former DAMA/NaI data (cumulative exposure 1.33 ton × yr, corresponding to 14 annual cycles) give evidence at 9.3σ C.L. for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target. Results and comparisons will be shortly recalled. Recent analyses on possible diurnal effects and on the Earth shadowing effect (the latter holds only for some DM candidates) will be mentioned. The analysis of the time distribution of the low-energy single-hit events in DAMA/LIBRA-phase1 is reported for the first time. Finally, some perspectives of the presently running DAMA/LIBRA-phase2 will be mentioned.

  18. NGC 5694: another foster son of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Bellazzini, M.; Catelan, M.; Dalessandro, E.; Amigo, P.; Correnti, M.; Cortés, C.; D'Orazi, V.

    2013-11-01

    We present the results of the analysis of high-resolution spectra obtained with UVES-FLAMES at the Very Large Telescope for six red giant branch stars in the outer-halo metal-poor ([Fe/H] I = -1.98 and [Fe/H] II = -1.83) Galactic globular cluster NGC 5694, which has been suggested as a possible incomer by Lee et al. based on the anomalous chemical composition of a single cluster giant. We obtain accurate abundances for a large number of elements and we find that (a)the six target stars have the same chemical composition within the uncertainties, except for Na and Al; (b) the average cluster abundance of α elements (with the only exception of Si) is nearly solar, at odds with typical halo stars and globular clusters of similar metallicity; (c) Y, Ba, La and Eu abundances are also significantly lower than in Galactic field stars and star clusters of similar metallicity. Hence, we confirm the Lee et al. classification of NGC 5694 as a cluster of extragalactic origin. We provide the first insight on the Na-O and Mg-Al anticorrelations in this cluster: all the considered stars have very similar abundance ratios for these elements, except one that has significantly lower [Na/Fe] and [Al/Fe] ratios, suggesting that some degree of early self-enrichment has occurred also in this cluster.

  19. Experimental searches for galactic halo axions.

    PubMed

    van Bibber, Karl A; Kinion, S Darin

    2003-11-15

    A very light axion would be copiously produced during the Big Bang as a zero-temperature Bose gas, and it would possess vanishingly small couplings to matter and radiation. It thus represents an ideal cold dark matter candidate. Galactic halo axions may be detected by their resonant conversion to microwave photons in a high-Q cavity permeated by a strong magnetic field. A large-scale search for the axion is ongoing in the US with sufficient sensitivity to see axions of plausible model couplings. Dramatic breakthroughs in the development of near-quantum limited superconducting quantum interference device amplifiers promise to improve the sensitivity of the experiment by a factor of 30 in the near future. In Japan, a group has been developing a Rydberg atom single-quantum detector as an alternative to linear amplifiers for a microwave-cavity axion experiment. Should the axion be discovered, the predicted fine structure in the axion signal would be rich in information about the history of galactic formation.

  20. THE PECULIAR CHEMICAL INVENTORY OF NGC 2419: AN EXTREME OUTER HALO 'GLOBULAR CLUSTER'

    SciTech Connect

    Cohen, Judith G.; Kirby, Evan N.; Huang Wenjin E-mail: enk@astro.caltech.edu

    2011-10-20

    NGC 2419 is a massive outer halo Galactic globular cluster (GC) whose stars have previously been shown to have somewhat peculiar abundance patterns. We have observed seven luminous giants that are members of NGC 2419 with Keck/HIRES at reasonable signal-to-noise ratio. One of these giants is very peculiar, with an extremely low [Mg/Fe] and high [K/Fe] but normal abundances of most other elements. The abundance pattern does not match the nucleosynthetic yields of any supernova model. The other six stars show abundance ratios typical of inner halo Galactic GCs, represented here by a sample of giants in the nearby GC M30. Although our measurements show that NGC 2419 is unusual in some respects, its bulk properties do not provide compelling evidence for a difference between inner and outer halo GCs.

  1. Highly ionized gas in the Galactic halo

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Slavin, Jonathan D.

    1994-01-01

    We reexamine the values of electron density n(sub e) and gas pressure P/k in the interstellar medium (ISM) of the Galactic halo, as inferred from C IV emission and absorption lines and using current C IV atomic data. In a homogeneous model with 4.7 less than or equal to log T less than or equal to 5.3, the data are consistent with 0.01 less than or equal to n(sub e) less than or equal to 0.02/cu cm and 2200 less than or equal to P/k less than or equal to 3700/cu cm K, a factor of 2-3 higher than advocated by Martin & Bowyer (1990) and comparable to the thermal pressure in the disk. If some of the C IV absorption arises from nonemitting, photoionized gas, then the inferred density and pressure will increase accordingly. The volume filling factor for homogeneous models ranges from 0.5% to 5%. Because of the constraints arising from filling factor and radiated power, most of the C IV must arise from gas near the peak of the cooling curve, at log t less than or equal to 5.6. We relate both emission-line and absorption-line observations to recent models in which turbulent mixing layers and isobarically cooling supernova remnants (SNRs) provide significant amounts of halo gas at approximately 10(exp 5.3) K and process 20-40 solar mass/yr with a power of approximately 10(exp 41) ergs/sec. Since the observed C IV and N V absorption scale heights have been reported to differ, at 4.9 kpc and 1.6 kpc, respectively, we examine inhomogeneous models with different exponential scale heights of T, P, and SN energy input. The ISM may change its character with distance above the Galactic plane, as superbubbles and mixing layers dominate over isolated SNRs as the source of the C IV. For appropiate scale heights, the midplane pressure is twice the homogeneous values quoted above. The O IV lambda 1034 diffuse emission line, which can be used as a temperature diagnostic of the hot gas, is predicted to be comparable in strength to that of C IV lambda 1549 (approximately 6000 photons

  2. Stellar haloes in Milky Way mass galaxies: from the inner to the outer haloes

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Beers, Timothy C.; Carollo, Daniela; Scannapieco, Cecilia

    2014-04-01

    We present a comprehensive study of the chemical properties of the stellar haloes of Milky Way mass galaxies, analysing the transition between the inner to the outer haloes. We find the transition radius between the relative dominance of the inner-halo and outer-halo stellar populations to be ˜15-20 kpc for most of our haloes, similar to that inferred for the Milky Way from recent observations. While the number density of stars in the simulated inner-halo populations decreases rapidly with distance, the outer-halo populations contribute about 20-40 per cent in the fiducial solar neighbourhood, in particular at the lowest metallicities. We have determined [Fe/H] profiles for our simulated haloes; they exhibit flat or mild gradients, in the range [-0.002, -0.01] dex kpc-1. The metallicity distribution functions exhibit different features, reflecting the different assembly history of the individual stellar haloes. We find that stellar haloes formed with larger contributions from massive subgalactic systems have steeper metallicity gradients. Very metal-poor stars are mainly contributed to the halo systems by lower mass satellites. There is a clear trend among the predicted metallicity distribution functions that a higher fraction of low-metallicity stars are found with increasing radius. These properties are consistent with the range of behaviours observed for stellar haloes of nearby galaxies.

  3. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  4. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2017-08-01

    Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We describe the current status of HaloSat.

  5. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  6. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  7. Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-07-01

    Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22cm3s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

  8. The Fractions of Inner- and Outer-halo Stars in the Local Volume

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Beers, Timothy C.; Santucci, Rafael M.; Carollo, Daniela; Placco, Vinicius M.; Lee, Young Sun; Rossi, Silvia

    2015-11-01

    We obtain a new determination of the metallicity distribution function (MDF) of stars within ˜5-10 kpc of the Sun, based on recently improved co-adds of ugriz photometry for Stripe 82 from the Sloan Digital Sky Survey. Our new estimate uses the methodology developed previously by An et al. to study in situ halo stars, but is based on a factor of two larger sample than available before, with much-improved photometric errors and zero-points. The newly obtained MDF can be divided into multiple populations of halo stars, with peak metallicities at [Fe/H] ≈ -1.4 and -1.9, which we associate with the inner-halo and outer-halo populations of the Milky Way, respectively. We find that the kinematics of these stars (based on proper-motion measurements at high Galactic latitude) supports the proposed dichotomy of the halo, as stars with retrograde motions in the rest frame of the Galaxy are generally more metal-poor than stars with prograde motions, consistent with previous claims. In addition, we generate mock catalogs of stars from a simulated Milk Way halo system, and demonstrate for the first time that the chemically and kinematically distinct properties of the inner- and outer-halo populations are qualitatively in agreement with our observations. The decomposition of the observed MDF and our comparison with the mock catalog results suggest that the outer-halo population contributes on the order of ˜35%-55% of halo stars in the local volume.

  9. Palomar 13: An Unusual Stellar System in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.

    2002-08-01

    We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of s=24.1+/-0.5 km s-1 and a projected, intrinsic velocity dispersion of σp=2.2+/-0.4 km s-1. Although modest, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, it implies a mass-to-light ratio of ΥV=40+24-17 based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears unusual compared to most Galactic globular clusters; depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of ``extratidal'' stars, or is considerably more spatially extended than previously suspected. The full surface density profile is equally well fitted by a King-Michie model having a high concentration and large tidal radius, or by a Navarro-Frenk-White model. We examine-and tentatively reject-a number of possible origins for the observed characteristics of Palomar 13 (e.g., velocity ``jitter'' among the red giant branch stars, spectroscopic binary stars, nonstandard mass functions, modified Newtonian dynamics) and conclude that the two leading explanations are either catastrophic heating during a recent perigalacticon passage or the presence of a dark matter halo. The available evidence therefore suggests that Palomar 13 is either a globular cluster that is now in

  10. Mixing between high velocity clouds and the galactic halo

    SciTech Connect

    Gritton, Jeffrey A.; Shelton, Robin L.; Kwak, Kyujin E-mail: rls@physast.uga.edu

    2014-11-01

    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.

  11. Abundance analysis of the outer halo globular cluster Palomar 14

    NASA Astrophysics Data System (ADS)

    Çalışkan, Ş.; Christlieb, N.; Grebel, E. K.

    2012-01-01

    We determine the elemental abundances of nine red giant stars belonging to Palomar 14 (Pal 14). Pal 14 is an outer halo globular cluster (GC) at a distance of ~70 kpc. Our abundance analysis is based on high-resolution spectra and one-dimensional stellar model atmospheres. We derived the abundances for the iron peak elements Sc, V, Cr, Mn, Co, Ni, the α-elements O, Mg, Si, Ca, Ti, the light odd element Na, and the neutron-capture elements Y, Zr, Ba, La, Ce, Nd, Eu, Dy, and Cu. Our data do not permit us to investigate light element (i.e., O to Mg) abundance variations. The neutron-capture elements show an r-process signature. We compare our measurements with the abundance ratios of inner and other outer halo GCs, halo field stars, GCs of recognized extragalactic origin, and stars in dwarf spheroidal galaxies (dSphs). The abundance pattern of Pal 14 is almost identical to those of Pal 3 and Pal 4, the next distant members of the outer halo GC population after Pal 14. The abundance pattern of Pal 14 is also similar to those of the inner halo GCs, halo field stars, and GCs of recognized extragalactic origin, but differs from what is customarily found in dSphs field stars. The abundance properties of Pal 14, as well as those of the other outer halo GCs, are thus compatible with an accretion origin from dSphs. Whether or not GC accretion played a role, it seems that the formation conditions of outer halo GCs and GCs in dSphs were similar. Based on observations collected at the European Southern Observatory, Chile (Program IDs 077.B-0769).Tables A.1 and A.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A83

  12. Production and Recycling of Carbon in the Early Galactic Halo

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Thidemann Hansen, Terese; Nordström, Birgitta

    2015-08-01

    Extremely metal-poor (EMP) stars - [Fe/H] below ~ -3 - are fossil records of the conditions in the early halo. High-resolution 8m-class spectroscopy has shown that the detailed abundance pattern of EMP giant stars is surprisingly uniform and essentially Solar (e.g. Bonifacio+ 2012), apart from the usual α-enhancement in the halo. In the simplest picture, iron is a proxy for both overall metallicity and time, so the EMP stars should form before the oldest and most metal-poor Galactic globular clusters, notably at the lowest metallicities ([Fe/H] ≲ -3.5).It is thus striking that 20-40% of the EMP giants are strongly enhanced in carbon - the CEMP stars (Lucatello+ 2006). This is conventionally ascribed to mass transfer from a former AGB binary companion, and from a limited compilation of data, Lucatello+ (2005) concluded that most or all CEMP stars are indeed binaries, similar to the classical Ba and CH stars (e.g. Jorissen+ 1998). However, most of the sample was of the inner-halo CEMP-s variety (C and s-process elements both enhanced), while CEMP-no stars dominate the outer halo (Carollo+ 2014). Our precise radial velocity monitoring for CEMP stars over 8 years shed light on this issue.Our data suggest a normal binary frequency for the CEMP-no stars; i.e. the C was not produced in a binary companion, but in sites at interstellar distances, e.g. ‘faint’ SNe, and imprinted on the natal clouds of the low-mass stars we observe. This has immediate implications for the formation of dust in primitive, high-redshift galaxies (Watson+ 2015) and the origin of C-enhanced DLAs (Cooke+ 2011, 2012). The CEMP-s binary orbits are also revealing, with periods up to several decades and generally low amplitudes and eccentricities, suggesting that EMP AGB stars have very large radii, facilitating extensive mass loss. More work on faint SNe and EMP AGB envelopes is needed!

  13. The gamma-ray-flux PDF from galactic halo substructure

    SciTech Connect

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc E-mail: ando@tapir.caltech.edu

    2009-07-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M{sub ⊕}, for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure.

  14. The Stellar Density Profile of the Distant Galactic Halo

    NASA Astrophysics Data System (ADS)

    Slater, Colin T.; Nidever, David L.; Munn, Jeffrey A.; Bell, Eric F.; Majewski, Steven R.

    2016-12-01

    We use extensive gravity-sensitive DDO 51 photometry over 5100 square degrees, combined with Sloan Digital Sky Survey broadband photometry, to select a catalog of ˜4000 giant stars covering a large fraction of the high Galactic latitude sky and reaching out to ˜80 kpc in the Galactic halo. This sample of bright and unbiased tracers enables us to measure the radial profile and 3D structure of the stellar halo to large distances, which had previously only been measured with sparse tracers or small samples. Using population synthesis models to reproduce the observed giant star luminosity function, we find that the halo maintains a {r}-3.5 profile from 30 to 80 kpc with no signs of a truncation or sharp break over this range. The radial profile measurement is largely insensitive to individual halo substructure components, but we find that attempting to measure the shape of the halo is overwhelmed by the Sagittarius stream such that no elliposidal shape is a satisfactory description in this region. These measurements allow us to begin placing the Milky Way in context with the growing sample of external galaxies where similar halo profile measurements are available, with the goal of further linking the properties of stellar halos to the accretion histories that formed them.

  15. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  16. High-velocity pulsars in the galactic halo.

    PubMed

    Eichler, D; Silk, J

    1992-08-14

    It is proposed that high-velocity pulsars are produced in extended galactic halos, and possibly in extragalactic space, from primordial (population III) stars. Such a population of neutron stars could provide an explanation for the gamma-ray bursters and would then accommodate the possibility that most bursters are not in the visible parts of galaxies.

  17. WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN

    SciTech Connect

    Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich; Scholz, Ralf-Dieter

    2010-07-20

    The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuring a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.

  18. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  19. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2017-01-01

    Observations of the nearby universe fail to locate about half of the baryons observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  20. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-04-01

    Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  1. Tidal Tails around the Outer Halo Globular Clusters Eridanus and Palomar 15

    NASA Astrophysics Data System (ADS)

    Myeong, G. C.; Jerjen, Helmut; Mackey, Dougal; Da Costa, Gary S.

    2017-05-01

    We report the discovery of tidal tails around the two outer halo globular clusters, Eridanus and Palomar 15, based on gi-band images obtained with DECam at the CTIO 4 m Blanco Telescope. The tidal tails are among the most remote stellar streams currently known in the Milky Way halo. Cluster members have been determined from the color-magnitude diagrams and used to establish the radial density profiles, which show, in both cases, a strong departure in the outer regions from the best-fit King profile. Spatial density maps reveal tidal tails stretching out on opposite sides of both clusters, extending over a length of ˜760 pc for Eridanus and ˜1160 pc for Palomar 15. The great circle projected from the Palomar 15 tidal tails encompasses the Galactic Center, while that for Eridanus passes close to four dwarf satellite galaxies, one of which (Sculptor) is at a comparable distance to that of Eridanus.

  2. Mapping the Galactic Halo. I. The ``Spaghetti'' Survey

    NASA Astrophysics Data System (ADS)

    Morrison, Heather L.; Mateo, Mario; Olszewski, Edward W.; Harding, Paul; Dohm-Palmer, R. C.; Freeman, Kenneth C.; Norris, John E.; Morita, Miwa

    2000-05-01

    We describe a major survey of the Milky Way halo designed to test for kinematic substructure caused by destruction of accreted satellites. We use the Washington photometric system to identify halo stars efficiently for spectroscopic follow-up. Tracers include halo giants (detectable out to more than 100 kpc), blue horizontal-branch (BHB) stars, halo stars near the main-sequence turnoff, and the ``blue metal-poor stars'' of Preston, Beers, & Shectman. We demonstrate the success of our survey by showing spectra of stars we have identified in all these categories, including giants as distant as 75 kpc. We discuss the problem of identifying the most distant halo giants. In particular, extremely metal-poor halo K dwarfs are present in approximately equal numbers to the distant giants for V>18, and we show that our method will distinguish reliably between these two groups of metal-poor stars. We plan to survey 100 deg2 at high Galactic latitude and expect to increase the numbers of known halo giants, BHB stars, and turnoff stars by more than an order of magnitude. In addition to the strong test that this large sample will provide for the question, Was the Milky Way halo accreted from satellite galaxies? we will improve the accuracy of mass measurements of the Milky Way beyond 50 kpc via the kinematics of the many distant giants and BHB stars we find. We show that one of our first data sets constrains the halo density law over Galactocentric radii of 5-20 kpc and z-heights of 2-15 kpc. The data support a flattened power-law halo with b/a of 0.6 and exponent -3.0. More complex models with a varying axial ratio may be needed with a larger data set.

  3. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY

    SciTech Connect

    De Propris, Roberto; Harrison, Craig D.; Mares, Peter J.

    2010-08-20

    We use 666 blue horizontal branch stars from the 2Qz Redshift Survey to map the Galactic halo in four dimensions (position, distance, and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index {approx}-2.5 in two different directions separated by about 150{sup 0} on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds, or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase toward large radii while the stellar velocity distribution is non-Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  4. A Search for Moving Groups in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Aguilar, L. A.; Hoogerwerf, R.

    The idea that the Galactic Halo has been formed largely by the accretion and tidal disruption of satellite systems has been gaining strength. The discovery of a retrograde rotating stellar group (Majewski et al., 1992), patchiness in the kinematics of halo stars (Majewski et al., 1996), the realization that most of the Milky Way satellites lie near two great circles in the sky (Lynden-Bell, 1976) and the discovery of an elongated dwarf galaxy in Sagittarius (Ibata et al., 1994), all add credence to this idea. Theoretically, the apparent fragility of galactic disks (Toth & Ostriker, 1992) no longer seems to be a problem for accretion (Velazquez & White, 1997). The tidal ``streamers'' from tidal disruption seem to be long lived (Barnes 1996) and can be exploited to devise algorithms to search for them in galactic surveys (Johnston et al., 1996). The phase space portrait of the halo, far from being a smooth distribution, should consist of a patchy aggregation of tidally disrupted systems that have been phase mixed over wide swaths in the sky, but which retain kinematic memory of their existence as a coherent entity. The challenges to discover these moving groups in the halo are enormous due to the distances involved and the fact that they can span large angles in the sky. The availability of astrometric databases of unprecedent accuracies (HIPPARCOS) and plans for follow up (GAIA), offer an opportunity to search for these moving groups. Together with these databases, new search techniques must be devised (Chen etal. 1997, Hoogerwerf & Aguilar, 1997).

  5. Does SEGUE/SDSS indicate a dual galactic halo?

    SciTech Connect

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-05-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  6. Simulating the carbon footprint of galactic haloes

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Rubin, Kate H. R.; Suresh, Joshua; Hernquist, Lars

    2016-10-01

    We compare simulations, including the Illustris simulations, to observations of C IV and C II absorption at z = 2-4. These are the C IV column density distribution function in the column density range 1012-1015 cm-2, the C IV equivalent width distribution at 0.1-2 Å, and the covering fractions and equivalent widths of C IV1548 Å and C II 1337 Å around damped Lyman α systems (DLAs). In the context of the feedback models that we investigate, all C IV observations favour the use of more energetic wind models, which are better able to enrich the gas surrounding haloes. We propose two ways to achieve this: an increased wind velocity and an increase in wind thermal energy. However, even our most energetic wind models do not produce enough absorbers with C IV equivalent width >0.6 Å, which in our simulations are associated with the most massive haloes. All simulations are in reasonable agreement with the C II covering fraction and equivalent widths around damped Lyman α absorbers, although there is a moderate deficit in one bin 10-100 kpc from the DLA. Finally, we show that the C IV in our simulations is predominantly photoionized.

  7. Characterizing the X-Ray Spectrum of the Galactic Halo

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this project is to determine the spectrum of the Galactic halo's soft X-ray emission. These photons are emitted by hot, diffuse gas hundreds to thousands of parsecs from the Galactic plane. Thus, the emission is weak, can be confused with locally produced photons, and must be distinguished from noise. My co-I has made significant progress on determining the background. I have been working on a complementary aspect of the project: computer simulations of the hot gas in the local and distant regions.

  8. Characterizing the X-Ray Spectrum of the Galactic Halo

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this project is to determine the spectrum of the Galactic halo's soft X-ray emission. These photons are emitted by hot, diffuse gas hundreds to thousands of parsecs from the Galactic plane. Thus, the emission is weak, can be confused with locally produced photons, and must be distinguished from noise. My co-I has made significant progress on determining the background. I have been working on a complementary aspect of the project: computer simulations of the hot gas in the local and distant regions.

  9. What to expect from dynamical modelling of galactic haloes

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; Frenk, Carlos; Sawala, Till

    2017-09-01

    Many dynamical models of the Milky Way halo require assumptions that the distribution function of a tracer population should be independent of time (i.e. a steady-state distribution function) and that the underlying potential is spherical. We study the limitations of such modelling by applying a general dynamical model with minimal assumptions to a large sample of galactic haloes from cosmological N-body and hydrodynamical simulations. Using dark matter particles as dynamical tracers, we find that the systematic uncertainties in the measured mass and concentration parameters typically have an amplitude of 25-40 per cent. When stars are used as tracers, however, the systematic uncertainties can be as large as a factor of 2-3. The systematic uncertainties are not reduced by increasing the tracer sample size and vary stochastically from halo to halo. These systematic uncertainties are mostly driven by underestimated statistical noise caused by correlated phase-space structures that violate the steady-state assumption. The number of independent phase-space structures inferred from the uncertainty level sets a limiting sample size beyond which a further increase no longer significantly improves the accuracy of dynamical inferences. The systematic uncertainty level is determined by the halo merger history, the shape and environment of the halo. Our conclusions apply generally to any spherical steady-state model.

  10. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  11. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  12. RADIAL VELOCITIES OF GALACTIC HALO STARS IN VIRGO

    SciTech Connect

    Brink, Thomas G.; Mateo, Mario; Martinez-Delgado, David E-mail: mmateo@umich.ed

    2010-11-15

    We present multi-slit radial velocity measurements for 111 stars in the direction of the Virgo Stellar Stream (VSS). The stars were photometrically selected to be probable main-sequence stars in the Galactic halo. When compared with the radial velocity distribution expected for the halo of the Milky Way, as well as the distribution seen in a control field, we observe a significant excess of negative velocity stars in the field, which can likely be attributed to the presence of a stellar stream. This kinematic excess peaks at a Galactic standard of rest radial velocity of -75 km s{sup -1}. A rough distance estimate suggests that this feature extends from {approx}15 kpc out to, and possibly beyond, the {approx}30 kpc limit of the study. The mean velocity of these stars is incompatible with those of the VSS itself (V{sub gsr} {approx} 130 km s{sup -1}), which we weakly detect, but it is consistent with radial velocity measurements of nearby 2MASS M-giants and SDSS+SEGUE K/M-giants and blue horizontal branch stars that constitute the leading tidal tail of the Sagittarius dwarf spheroidal galaxy. Some oblate models for the shape of the Milky Way's dark matter halo predict that the leading arm of the Sagittarius Stream should pass through this volume, and have highly negative (V{sub gsr} {approx}< -200 km s{sup -1}) radial velocities, as it descends down from the northern Galactic hemisphere toward the Galactic plane. The kinematic feature observed in this study, if it is in fact Sagittarius debris, is not consistent with these predictions, and instead, like other leading stream radial velocity measurements, is consistent with a recently published triaxial halo model, or, if axisymmetry is imposed, favors a prolate shape for the Galactic halo potential. However, a rough distance estimate to the observed kinematic feature places it somewhat closer (D {approx} 15-30 kpc) than the Sagittarius models predict (D {approx} 35-45 kpc).

  13. The outer profile of dark matter haloes: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-07-01

    A steepening feature in the outer density profiles of dark matter haloes indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  14. Galactic evolution. II - Disk galaxies with massive halos

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thuan, T. X.

    1975-01-01

    Models of galactic evolution are computed in which matter shed by dying halo stars accumulates in a smaller, more rapidly rotating disk. The models are simpler and more successful than one-zone (pure disk) models in that (1) the observed absence of low-metal-abundance low-mass dwarfs is expected, not anomalous and (2) the relative birthrate function (or IMF) need not be a strongly variable function of time in agreement with recent interpretations of observed stellar populations and neutral hydrogen in our own and other galaxies. Even a simple 'Salpeter' IMF for both disk and halo will produce an acceptable model. The model with a halo 'Salpeter' IMF, roughly one-quarter of the mass in the secondary disk, and approximately half the metals produced in the halo seems most compatible with observations of the metal abundance in low-mass stars, the deuterium abundance, halo planetary nebulae, and light from Population II stars, as well as with arguments on the stability of the disk.

  15. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  16. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  17. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  18. The ionization conditions in the Milky Way halo - Infalling gas toward the North Galactic Pole

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1992-01-01

    Observations of gas in the Milky Way halo are studied with an eye toward the theoretical predictions of the Galactic Fountain model for the production of halo gas. Data are shown that indicate significant variations in the ionization conditions in infalling halo gas in the northern galactic hemisphere. Understanding the nature of Milky Way halo gas plays a critical role in interpreting QSO absorption lines in the investigation of galaxies at high redshift.

  19. The ionization conditions in the Milky Way halo - Infalling gas toward the North Galactic Pole

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1992-01-01

    Observations of gas in the Milky Way halo are studied with an eye toward the theoretical predictions of the Galactic Fountain model for the production of halo gas. Data are shown that indicate significant variations in the ionization conditions in infalling halo gas in the northern galactic hemisphere. Understanding the nature of Milky Way halo gas plays a critical role in interpreting QSO absorption lines in the investigation of galaxies at high redshift.

  20. CHEMICAL COMPOSITIONS OF KINEMATICALLY SELECTED OUTER HALO STARS

    SciTech Connect

    Zhang Lan; Zhao Gang; Ishigaki, Miho; Chiba, Masashi; Aoki, Wako E-mail: zhanglan@bao.ac.c E-mail: chiba@astr.tohoku.ac.j

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including alpha-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [alpha/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens and Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy.

  1. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20halo red giants from foreground Milky Way dwarf stars, faint compact background galaxies, and M31 disk giants. The observed distribution of radial velocities is well fitted by an equal mix of foreground Milky Way dwarf stars, drawn from a standard Galactic model and with velocities v<~0 km s-1, and M31 halo giants represented by a Gaussian of width σM31v~150 km s-1 centered on its systemic velocity of vM31sys~-300 km s-1. A secure sample of 29 M31 red giant stars is identified on the basis of radial velocity (v<-220 km s-1) and, in the case of four intermediate-velocity stars (-160halo giants has an rms spread of at least 0.6 dex and spans the >~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are

  2. Interaction of Cosmic Rays with Cold Clouds in Galactic Halos

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Peng Oh, S.; Zweibel, Ellen G.

    2017-01-01

    We investigate the effects of cosmic ray (CR) dynamics on cold, dense clouds embedded in a hot, tenuous galactic halo. If the magnetic field does not increase too much inside the cloud, the local reduction in Alfvén speed imposes a bottleneck on CRs streaming out from the star-forming galactic disk. The bottleneck flattens the upstream CR gradient in the hot gas, implying that multi-phase structure could have global effects on CR driven winds. A large CR pressure gradient can also develop on the outward-facing edge of the cloud. This pressure gradient has two independent effects. The CRs push the cloud upward, imparting it with momentum. On smaller scales, the CRs pressurize cold gas in the fronts, reducing its density, consistent with the low densities of cold gas inferred in recent COS observations of local L★ galaxies. They also heat the material at the cloud edge, broadening the cloud-halo interface and causing an observable change in interface ionic abundances. Due to the much weaker temperature dependence of cosmic ray heating relative to thermal conductive heating, CR mediated fronts have a higher ratio of low to high ions compared to conduction fronts, in better agreement with observations. We investigate these effects separately using 1D simulations and analytic techniques.

  3. Interaction of cosmic rays with cold clouds in galactic haloes

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Oh, S. Peng; Zweibel, Ellen G.

    2017-05-01

    We investigate the effects of cosmic ray (CR) dynamics on cold, dense clouds embedded in a hot, tenuous galactic halo. If the magnetic field does not increase too much inside the cloud, the local reduction in Alfvén speed imposes a bottleneck on CRs streaming out from the star-forming galactic disc. The bottleneck flattens the upstream CR gradient in the hot gas, implying that multiphase structure could have global effects on CR-driven winds. A large CR pressure gradient can also develop on the outward-facing edge of the cloud. This pressure gradient has two independent effects. The CRs push the cloud upwards, imparting it with momentum. On smaller scales, the CRs pressurize cold gas in the fronts, reducing its density, consistent with the low densities of cold gas inferred in recent Cosmic Origins Spectrograph (COS) observations of local L* galaxies. They also heat the material at the cloud edge, broadening the cloud-halo interface and causing an observable change in interface ionic abundances. Due to the much weaker temperature dependence of CR heating relative to thermal-conductive heating, CR mediated fronts have a higher ratio of low-to-high ions compared to conduction fronts, in better agreement with observations. We investigate these effects separately using 1D simulations and analytic techniques.

  4. The galactic halo question: New size constraints from galactic gamma-ray data

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Jones, F. C.

    1977-01-01

    The SAS-2 gamma-ray data is analyzed making use of recent CO line emission and other data for determining the large-scale distribution of galactic gas. A nonuniform distribution of cosmic rays in the galaxy is implied. This fact rules out large trapping halo models and extragalactic origin models. Detailed models of diffusion halos of various sizes perpendicular to the galactic plane are considered. In such models, the scale perpendicular to the plane has a strong effect in determining the radial distribution of cosmic rays. Such radial distributions are calculated for cylindrical coordinate models. The implied gamma-ray longitude distributions are then calculated and compared with the SAS-2 data for goodness-of-fit. Assuming the sources to be supernova remnants or pulsars, cosmic ray nucleon halo models with scale heights greater than 3 kpc are found to provide a poor fit to the gamma-ray longitude data (probability of 6% or less). Thin halo, or source dominated diffusion models are found to provide a good fit to the gamma-ray data, with an upper limit scale height of approximately 3 kpc.

  5. Galactic Behavior for the Outer B Ring

    NASA Image and Video Library

    2010-11-01

    Keeping a close watch on the outer portion of Saturn B ring, NASA Cassini spacecraft records the complex inward and outward movement of the edge of the ring. This ring movement resembles the suspected behavior of spiral disk galaxies.

  6. The outer halo globular clusters of M31

    NASA Astrophysics Data System (ADS)

    Alves-Brito, Alan; Forbes, Duncan A.; Mendel, Jon T.; Hau, George K. T.; Murphy, Michael T.

    2009-05-01

    We present Keck/HIRES spectra of three globular clusters in the outer halo of M31, at projected distances beyond ~80 kpc from M31. The measured recession velocities for all three globular clusters confirm their association with the globular cluster system of M31. We find evidence for a declining velocity dispersion with radius for the globular cluster system. Their measured internal velocity dispersions, derived virial masses and mass-to-light ratios are consistent with those for the bulk of the M31 globular cluster system. We derive old ages and metallicities which indicate that all three belong to the metal-poor halo globular cluster subpopulation. We find indications that the radial gradient of the mean metallicity of the globular cluster system interior to 50 kpc flattens in the outer regions, however it is still more metal-poor than the corresponding field stars at the same (projected) radius. Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. E-mail: abrito@astro.swin.edu.au

  7. Modelling galactic conformity with the colour-halo age relation in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Bray, Aaron D.; Pillepich, Annalisa; Sales, Laura V.; Zhu, Emily; Genel, Shy; Rodriguez-Gomez, Vicente; Torrey, Paul; Nelson, Dylan; Vogelsberger, Mark; Springel, Volker; Eisenstein, Daniel J.; Hernquist, Lars

    2016-01-01

    Comparisons between observational surveys and galaxy formation models find that dark matter haloes' mass can largely explain their galaxies' stellar mass. However, it remains uncertain whether additional environmental variables, known as assembly bias, are necessary to explain other galaxy properties. We use the Illustris simulation to investigate the role of assembly bias in producing galactic conformity by considering 18 000 galaxies with Mstellar > 2 × 109 M⊙. We find a significant signal of galactic conformity: out to distances of about 10 Mpc, the mean red fraction of galaxies around redder galaxies is higher than around bluer galaxies at fixed stellar mass. Dark matter haloes exhibit an analogous conformity signal, in which the fraction of haloes formed at earlier times (old haloes) is higher around old haloes than around younger ones at fixed halo mass. A plausible interpretation of galactic conformity is the combination of the halo conformity signal with the galaxy colour-halo age relation: at fixed stellar mass, particularly towards the low-mass end, Illustris' galaxy colours correlate with halo age, with the reddest galaxies (often satellites) preferentially found in the oldest haloes. We explain the galactic conformity effect with a simple semi-empirical model, assigning stellar mass via halo mass (abundance matching) and galaxy colour via halo age (age matching). Regarding comparison to observations, we conclude that the adopted selection/isolation criteria, projection effects, and stacking techniques can have a significant impact on the measured amplitude of the conformity signal.

  8. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  9. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  10. Investigating the outer density profile of the dark matter halo of M31

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu

    2015-08-01

    In the context of the hierarchical structure formation in the universe, cosmological N -body simulations predict that cold dark matter (CDM) halos have a universal mass-density profile(Navarro et al. 1996; Fukushige & Makino 1997; Moore et al. 1998).Especially, the density profile of CDM outer halos decreases with the cube of the radius from the galactic center. However, so far, not much effort has examined this hypothesis because it is extremely difficult to measure the mass distribution of the outer region of a galaxy.On the other hand, a recent observation discovered a giant stellar stream (GSS) and stellar shells in the halo of the Andromeda galaxy (M31). The GSS extends over 120 kpc further away along the line of sight from M31, and its spatial and velocity structure have been observed in detail. So far, N -body simulations of a galaxy merger between a satellite dwarf galaxy and M31 nicely reproduced these structures (Fardal et al. 2007; Mori & Rich 2008).We present the result of the N -body simulation of the galaxy merger to investigate the mass distribution of the DM halo in M31. We vary the power-law index of the outer-density profile and the total mass of the CDM halo of M31. To reproduce the observed structures, we find the sufficient condition for the power-law index x. The best-fit parameter is x=-3.7, which is steeper than the CDM prediction (x=-3).In addition, we also focus on the morphology of the progenitor galaxy. We perform large parameter surveys of the galaxy merger varying thickness and rotation velocity of a disk-like component of the progenitor. The result suggests that a rotating component of the progenitor is required to reproduce an asymmetric internal structure of the GSS. Using the parameter that reproduces the observed structures in detail, we discuss the evolution and relaxation of the dark matter component that initially associated with the progenitor.

  11. An origin for multiphase gas in galactic winds and haloes

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Quataert, Eliot; Zhang, Dong; Weinberg, David H.

    2016-01-01

    The physical origin of high-velocity cool gas seen in galactic winds remains unknown. Following work by B. Wang, we argue that radiative cooling in initially hot thermally-driven outflows can produce fast neutral atomic and photoionized cool gas. The inevitability of adiabatic cooling from the flow's initial 107-108 K temperature and the shape of the cooling function for T ≲ 107 K imply that outflows with hot gas mass-loss rate relative to star formation rate of β =dot{M}_hot/dot{M}_star ≳ 0.5 cool radiatively on scales ranging from the size of the energy injection region to tens of kpc. We highlight the β and star formation rate surface density dependence of the column density, emission measure, radiative efficiency, and velocity. At rcool, the gas produces X-ray and then UV/optical line emission with a total power bounded by ˜10-2 L⋆ if the flow is powered by steady-state star formation with luminosity L⋆. The wind is thermally unstable at rcool, potentially leading to a multiphase medium. Cooled winds decelerate significantly in the extended gravitational potential of galaxies. The cool gas precipitated from hot outflows may explain its prevalence in galactic haloes. We forward a picture of winds whereby cool clouds are initially accelerated by the ram pressure of the hot flow, but are rapidly shredded by hydrodynamical instabilities, thereby increasing β, seeding radiative and thermal instability, and cool gas rebirth. If the cooled wind shocks as it sweeps up the circumgalactic medium, its cooling time is short, thus depositing cool gas far out into the halo. Finally, conduction can dominate energy transport in low-β hot winds, leading to flatter temperature profiles than otherwise expected, potentially consistent with X-ray observations of some starbursts.

  12. SMASH: Spitzer Merger History and Shape of the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn; Scowcroft, Vicky; Madore, Barry; Freedman, Wendy; Scowcroft, Victoria; Clementini, Gisella; Cioni, Maria-Rosa; van der Marel, Roeland; Udalski, Andrzej; Pietrzynski, Grzegorz; Soszynski, Igor; Nidever, David; Kallivayalil, Nitya; Besla, Gurtina; Majewski, Steve; Monson, Andy; Seibert, Mark; Smith, Horace; Preston, George; Kollmeier, Juna; Bono, Giuseppe; Marengo, Massimo; Persson, Eric; Law, David; Grillmair, Carl; Cohen, Judy; Sesar, Branimir; Price-Whelan, Adrian; Fabrizio, Michele

    2013-10-01

    The existence of a period-luminosity relation for RR Lyrae variables as measured at IRAC mid-infrared wavelengths allows Spitzer to estimate distances to individual stars with 2% errors. The SMASH program will exploit this unprecedented opportunity to precisely map structures throughout the halo of our Galaxy. SMASH will construct the first 3-D map of one of the larger satellites of the Milky Way (Sagittarius), it will determine precise distances to four more satellites (Ursa Minor, Carina, Sculptor & Bootes) and make the only measurements of stars in tidal streams accurate enough to determine their individual positions within the debris. This proposal describes some of the ground-breaking science enabled by this program, from increased accuracy in determining the orbits of satellite galaxies, to revolutionary constraints on the mass, shape and orientation of our Milky Way's dark matter halo. The foundational importance of these data sets cannot be overstated. These Milky Way structures lie far beyond the reach of any current or proposed future direct parallax measurements. Moreover, the combination of the SMASH results with proper motions from ESA's upcoming astrometric mission, Gaia, can effectively stretch Gaia's horizon for full 6D phase-space maps of our Galaxy by nearly four orders of magnitude in volume! These data and the resulting distance measurements will become Spitzer's legacy to the Galactic Astronomy community for years to come.

  13. Joint constraints on the Galactic dark matter halo and Galactic Centre from hypervelocity stars

    NASA Astrophysics Data System (ADS)

    Rossi, Elena M.; Marchetti, T.; Cacciato, M.; Kuiack, M.; Sari, R.

    2017-05-01

    The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here, we show that hypervelocity stars (HVSs) can in principle provide such constraints. We model the observed velocity distribution of HVSs, produced by tidal break-up of stellar binaries caused by Sgr A*. Considering a Galactic Centre (GC) binary population consistent with that inferred in more observationally accessible regions, a fit to current HVS data with significance level >5 per cent can only be obtained if the escape velocity from the GC to 50 kpc is VG ≲ 850 km s-1, regardless of the enclosed mass distribution. When a Navarro, Frenk and White matter density profile for the dark matter halo is assumed, haloes with VG ≲ 850 km s-1 are in agreement with predictions in the Λ cold dark matter model and a subset of models around M200 ˜ 0.5-1.5 × 1012 M⊙ and rs ≲ 35 kpc can also reproduce Galactic circular velocity data. HVS data alone cannot currently exclude potentials with VG > 850 km s-1. Finally, specific constraints on the halo mass from HVS data are highly dependent on the assumed baryonic mass potentials. This first attempt to simultaneously constrain GC and dark halo properties is primarily hampered by the paucity and quality of data. It nevertheless demonstrates the potential of our method, that may be fully realized with the ESA Gaia mission.

  14. High S/N Observations of Low-Ionization Gas Through the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.; Roth, K. C.; Savage, B. D.; Lu, L.

    1993-12-01

    Optical absorption-line studies of extragalactic objects can now provide a sensitive probe of low-ionization gas over the full extent of the Galactic halo. Such work is particularly pertinent to a better understanding of the distances, metallicities, and sky coverage of the high-velocity clouds (HVCs) primarily observed in H I 21 cm emission. We have recently obtained high S/N, high resolution (20 km s(-1) ) KPNO 4-m echelle observations of the Ca II absorption toward the QSO 1821+643, the Seyfert galaxy Mkn 231, and SN 1993J in the galaxy M81. We detect a weak (W_lambda ~30 m Angstroms) Ca II component at an LSR velocity of -140 km s(-1) toward 1821+643 that corresponds to the Outer Arm H I HVC Complex. In the case of Mkn 231, we find no evidence of high-velocity Ca II absorption despite the location of this sightline near H I HVC Complex C. Our Ca II observations toward SN 1993J are especially exceptional in quality (S/N~500) and reveal absorption due to the Galactic halo, the disk of M81, and intergalactic material in the M81 group. Although the M81 disk gas dominates the absorption in the velocity region encompassing HVC Complex C, we do find a high-velocity component at +228 km s(-1) in Ca II that has also been seen in Mg II absorption with HST (Bowen et al. 1994, Ap. J. (Letters), in press). Our echelle spectra of SN 1993J also reveal detections of other interstellar atoms and molecules such as Ti II, Ca I, and CH(+) \\@. The Ti II measurement is particularly interesting in that it represents the first detection of Ti II toward an extragalactic object and indicates a Ti II scale height of about 1200 pc which is somewhat less than expected from observations of Ti II toward halo stars.

  15. Comparing the properties of local globular cluster systems: implications for the formation of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Gilmore, G. F.

    2004-12-01

    We investigate the hypothesis that some fraction of the globular clusters presently observed in the Galactic halo formed in external dwarf galaxies. This is done by means of a detailed comparison between the `old halo', `young halo' and `bulge/disc' subsystems defined by Zinn and the globular clusters in the Large Magellanic Cloud, Small Magellanic Cloud, and Fornax and Sagittarius dwarf spheroidal galaxies. We first use high-quality photometry from Hubble Space Telescope images to derive a complete set of uniform measurements of horizontal branch (HB) morphology in the external clusters. We also compile structural and metallicity measurements for these objects and update the data base of such measurements for the Galactic globular clusters, including new calculations of HB morphology for 11 objects. Using these data together with recent measurements of globular cluster kinematics and ages we examine the characteristics of the three Galactic cluster subsystems. Each is quite distinct in terms of their spatial and age distributions, age-metallicity relationships, and typical orbital parameters, although we observe some old halo clusters with ages and orbits more similar to those of young halo objects. In addition, almost all of the Galactic globular clusters with large core radii fall into the young halo subsystem, while the old halo and bulge/disc ensembles are characterized by compact clusters. We demonstrate that the majority of the external globular clusters are essentially indistinguishable from the Galactic young halo objects in terms of HB morphology, but ~20-30 per cent of external clusters have HB morphologies most similar to the Galactic old halo clusters. We further show that the external clusters have a distribution of core radii which very closely matches that for the young halo objects. The old halo distribution of core radii can be very well represented by a composite distribution formed from ~83-85 per cent of objects with structures typical of bulge

  16. An Outer Arm in the Second Galactic Quadrant: Structure

    NASA Astrophysics Data System (ADS)

    Du, Xinyu; Xu, Ye; Yang, Ji; Sun, Yan; Li, Facheng; Zhang, Shaobo; Zhou, Xin

    2016-05-01

    The lack of arm tracers, especially remote tracers, is one of the most difficult problems preventing us from studying the structure of the Milky Way. Fortunately, with its high-sensitivity CO survey, the Milky Way Imaging Scroll Painting (MWISP) project offers such an opportunity. Since completing about one-third of its mission, an area of l = [100, 150]°, b = [-3, 5]° has nearly been covered. The Outer arm of the Milky Way first clearly revealed its shape in the second galactic quadrant in the form of molecular gas—this is the first time that the Outer arm has been reported in such a large-scale mapping of molecular gas. Using the 115 GHz 12CO(1-0) data of MWISP at the LSR velocity ≃[-100, -60] km s-1 and in the area mentioned above, we have detected 481 molecular clouds in total, and among them 332 (about 69%) are newly detected and 457 probably belong to the Outer arm. The total mass of the detected Outer arm clouds is ˜3.1 × 106 M ⊙. Assuming that the spiral arm is a logarithmic spiral, the pitch angle is fitted as ˜13.°1. Besides combining both the CO data from MWISP and the 21 cm H i data from the Canadian Galactic Plane Survey (CGPS), the gas distribution, warp, and thickness of the Outer arm are also studied.

  17. Old open clusters in the outer Galactic disk

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Geisler, D.; Villanova, S.; Frinchaboy, P. M.; Majewski, S. R.

    2007-12-01

    Context: The outer parts of the Milky Way disk are believed to be one of the main arenas where the accretion of external material in the form of dwarf galaxies and subsequent formation of streams is taking place. The Monoceros stream and the Canis Major and Argo over-densities are notorious examples. Understanding whether what we detect is the signature of accretion or, more conservatively, simply the intrinsic nature of the disk, represents one of the major goals of modern Galactic astronomy. Aims: We try to shed more light on the properties of the outer disk by exploring the properties of distant anti-center old open clusters. We want to verify whether distant clusters follow the chemical and dynamical behavior of the solar vicinity disk, or whether their properties can be better explained in terms of an extra-galactic population. Methods: VLT high resolution spectra have been acquired for five distant open clusters: Ruprecht 4, Ruprecht 7, Berkeley 25, Berkeley 73 and Berkeley 75. We derive accurate radial velocities to distinguish field interlopers and cluster members. For the latter we perform a detailed abundance analysis and derive the iron abundance [Fe/H] and the abundance ratios of several α elements. Results: Our analysis confirms previous indications that the radial abundance gradient in the outer Galactic disk does not follow the expectations extrapolated from the solar vicinity, but exhibits a shallower slope. By combining the metallicity of the five program clusters with eight more clusters for which high resolution spectroscopy is available, we find that the mean metallicity in the outer disk between 12 and 21 kpc from the Galactic center is [Fe/H] ≈ -0.35, with only marginal indications for a radial variation. In addition, all the program clusters exhibit solar scaled or slightly enhanced α elements, similar to open clusters in the solar vicinity and thin disk stars. Conclusions: We investigate whether this outer disk cluster sample might

  18. HaloSat: A CubeSat to Map the Distribution of Baryonic Matter in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.

    2016-04-01

    Approximately half of predicted baryonic matter in the Milky Way remains unidentified. One possible explanation for the location of this missing matter is in an extended Galactic halo. HaloSat is a CubeSat that aims to constrain the mass and distribution of the halo’s baryonic matter by obtaining an all-sky map of O VII and O VIII emission in the hot gas associated with the halo of the Milky Way. HaloSat offers an improvement in the quality of measurements of oxygen line emission over existing X-ray observatories and an observation plan dedicated to mapping the hot gas in the Galactic halo. In addition to the missing baryon problem, HaloSat will assign a portion of its observations to the solar wind charge exchange (SWCX) in order to calibrate models of SCWX emission. We present here the current status of HaloSat and the progression of instrument development in anticipation of a 2018 launch.

  19. Dynamical Evolution of Outer-Halo Globular Clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Zonoozi, Akram H.; Haghi, Hosein; Lützgendorf, Nora; Mieske, Steffen; Frank, Matthias; Baumgardt, Holger; Kroupa, Pavel

    2017-03-01

    Outer-halo globular clusters show large half-light radii and flat stellar mass functions, depleted in low-mass stars. Using N-body simulations of globular clusters on eccentric orbits within a Milky Way-like potential, we show how a cluster's half-mass radius and its mass function develop over time. The slope of the central mass function flattens proportionally to the amount of mass a cluster has lost, and the half-mass radius grows to a size proportional to the average strength of the tidal field. The main driver of these processes is mass segregation of dark remnants. We conclude that the extended, depleted clusters observed in the Milky Way must have had small half-mass radii in the past, and that they expanded due to the weak tidal field they spend most of their lifetime in. Moreover, their mass functions must have been steeper in the past but flattened significantly as a cause of mass segregation and tidal mass loss.

  20. NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.; Held, E. V.; Saviane, I.

    2014-03-01

    We present a detailed study of the strengths of the calcium triplet absorption lines in the spectra of a large sample of red giant members of the luminous outer Galactic halo globular cluster NGC 5824. The spectra were obtained with the FORS2 and GMOS-S multi-object spectrographs at the VLT and the Gemini-S telescope, respectively. By comparing the line strengths of the NGC 5824 stars with those for red giants in clusters with well-established abundances, we conclude that there is an intrinsic abundance dispersion in NGC 5824 characterized by an inter-quartile range in [Fe/H] of 0.10 dex and a total range of ˜0.3 dex. As for ω Cen and M22, the abundance distribution shows a steep rise on the metal-poor side and a shallower decline on the metal-rich side. There is also some indication that the distribution is not unimodal with perhaps three distinct abundance groupings present. NGC 5824 has a further unusual characteristic: the outer surface density profile shows no signs of a tidal cutoff. Instead, the profile has a power-law distribution with cluster stars detected to a radius exceeding 400 pc. We postulate that NGC 5824 may be the remnant nuclear star cluster of a now disrupted dwarf galaxy accreted during the formation of the Galaxy's halo. We further speculate that the presence of an intrinsic [Fe/H] spread is the characteristic that distinguishes former nuclear star clusters from other globular clusters.

  1. Are ancient dwarf satellites the building blocks of the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.; Romano, D.

    2016-05-01

    According to the current cosmological cold dark matter paradigm, the Galactic halo could have been the result of the assemblage of smaller structures. Here we explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [α/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. The α elements deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio, the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [α/Fe] ratios. Moreover, for the first time we consider the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time-scale, and the presence of a threshold in the gas for star formation. In particular, in models with an infall time-scale for the halo around 0.8 Gyr coupled with a threshold in the surface gas density for the star formation (4 M⊙ pc-2), and the enriched infall from dwarf spheroidal satellites, the first halo stars formed show [Fe/H]>-2.4 dex. In this case, to explain [α/Fe] data for stars with [Fe/H]<-2.4 dex, we need stars formed in dSph systems.

  2. CALET's sensitivity to Dark Matter annihilation in the galactic halo

    SciTech Connect

    Motz, H.; Asaoka, Y.; Torii, S.; Bhattacharyya, S. E-mail: yoichi.asaoka@aoni.waseda.jp E-mail: saptashwab@ruri.waseda.jp

    2015-12-01

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 10{sup 5} and an aperture of 1200 cm{sup 2·} sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e{sup +} + e{sup −}, such as the LKP (Lightest Kaluza-Klein particle)

  3. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  4. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  5. A `Universal' Density Profile for the Outer Stellar Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus

    2017-03-01

    The outer stellar halos of galaxies contain vital information about the formation history of galaxies, since the relaxation timescales in the outskirts are long enough to keep the memory, while the information about individual formation events in the central parts has long been lost due to mixing, star formation and relaxation. To unveil some of the information encoded in these faint outer halo regions, we study the stellar outskirts of galaxies selected from a fully hydrodynamical high-resolution cosmological simulation, called Magneticum. We find that the density profiles of the outer stellar halos of galaxies over a broad mass range can be well described by an Einasto profile. For a fixed total mass range, the free parameters of the Einasto fits are closely correlated. Galaxies which had more (dry) merger events tend to have lesser curved outer stellar halos, however, we find no indication that the amount of curvature is correlated with galaxy morphology. The Einasto-like shape of the outer stellar halo densities can also explain the observed differences between the Milky Way and Andromeda outer stellar halos.

  6. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N. E-mail: harris@physics.mcmaster.ca

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  7. The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?

    NASA Astrophysics Data System (ADS)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  8. The Newly-Discovered Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, D.; Huxor, A.; Ferguson, A.

    2012-08-01

    In this contribution we describe the discovery of a large number of globular clusters in the outer halo of M31 from the Pan-Andromeda Archaeological Survey (PAndAS). New globular clusters have also been found in the outskirts of M33, and NGC 147 and 185. Many of the remote M31 clusters are observed to preferentially project onto tidal debris streams in the stellar halo, suggesting that much of the outer M31 globular cluster system has been assembled via the accretion of satellite galaxies. We briefly discuss the global properties of the M31 halo globular cluster system.

  9. Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo

    NASA Technical Reports Server (NTRS)

    Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.

    1993-01-01

    We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).

  10. STELLAR POPULATIONS IN THE OUTER HALO OF THE MASSIVE ELLIPTICAL M49

    SciTech Connect

    Mihos, J. Christopher; Harding, Paul; Rudick, Craig S.; Feldmeier, John J. E-mail: paul.harding@case.edu E-mail: jjfeldmeier@ysu.edu

    2013-02-20

    We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49's stellar halo out to {approx}100 kpc (7r{sub e}), where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B - V {approx} 0.7); if this is purely a metallicity effect, it argues for extremely metal-poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxy's surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49's outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49's halo. Thus the extremely metal-poor nature of M49's extended halo provides some tension against current models for elliptical galaxy formation.

  11. Highly-Ionized Gas in the Galactic Halo: A FUSE Survey of O 6 Absorption toward 22 Halo Stars

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Sembach, K. R.; Howk, J. C.; Savage, B. D.

    2002-12-01

    Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of 22 Galactic halo stars are studied to determine the amount of O 6 in the Galactic halo between ~0.3 and ~10 kpc from the Galactic mid-plane. Strong O 6 λ 1031.93 absorption was detected toward 21 stars, and a reliable 3 σ upper limit was obtained toward HD 97991. The weaker member of the O 6 doublet at 1037.62 Å could be studied toward only six stars. The observed columns are reasonably consistent with a patchy exponential O 6 distribution with a mid-plane density of 1.7x10-8 cm-3 and scale height between 2.3 and 4 kpc. We do not see clear signs of strong high-velocity components in O 6 absorption along the Galactic sight lines, which indicates the general absence of high velocity O 6 within 2-5 kpc of the Galactic mid-plane. The correlation between the H 1 and O 6 intermediate velocity absorption is also poor. The O 6 velocity dispersions are much larger than the value of ~18 km/s expected from thermal broadening for gas at T ~ 3x105 K, the temperature at which O 6 is expected to reach its peak abundance in collisional ionization equilibrium. Turbulence, inflow, and outflow must have an effect on the shape of the O 6 profiles. Kinematical comparisons of O 6 with Ar 1 reveal that 9 of 21 sight lines are closely aligned in LSR velocity (|Δ VLSR| <=5 km/s ), while 8 of 21 exhibit significant velocity differences (|Δ VLSR| >= 15 km/s ). This dual behavior may indicate the presence of two different types of O 6-bearing environments toward the Galactic sight lines. Comparison of O 6 with other highly-ionized species suggests that the high ions are produced primarily by cooling hot gas in the Galactic fountain flow, and that turbulent mixing also has a significant contribution. The role of turbulent mixing is most important toward sight lines that sample supernova remnants like Loop I and IV. We are also able to show that the O 6 enhancement toward the Galactic center region that was observed in the FUSE

  12. Studies of the Hot Gas in the Galactic halo and Local Bubble

    NASA Technical Reports Server (NTRS)

    Shelton, Robin L.

    2003-01-01

    This paper presents a report on the progress made on Studies of the Hot Gas in the Galactic halo and Local Bubble at Johns Hopkins University. The broad goals of this project are to determine the physical conditions and history of the hot phase of the Galaxy's interstellar medium. Such gas resides in the Galactic halo, the Local Bubble surrounding the solar neighborhood, other bubbles, and supernova remnants. A better understanding of the hot gas and the processes occurring within it requires several types of work, including ultraviolet and X-ray data analyses and computer modeling.

  13. The binary populations of eight globular clusters in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Bedin, L. R.; Dotter, A.; Jerjen, H.; Kim, D.; Nardiello, D.; Piotto, G.; Cong, J.

    2016-01-01

    We analyse colour-magnitude diagrams of eight globular clusters (GCs) in the outer Galactic halo. Images were taken with the Wide Field Channel of the Advanced Camera for Survey and the Ultraviolet and Visual Channel of the Wide Field Camera 3 on board of the Hubble Space Telescope. We have determined the fraction of binary stars along the main sequence and combined results with those of a recent paper where some of us have performed a similar analysis on 59 Galactic GCs. In total, binaries have been now studied homogeneously in 67 GCs. We studied the radial and luminosity distributions of the binary systems, the distribution of their mass ratios and investigated univariate relations with several parameters of the host GCs. We confirm the anticorrelation between the binary fraction and the luminosity of the host cluster, and find that low-luminosity clusters can host a large population in excess of ˜40 per cent in the cluster core. However, our results do not support a significant correlation with the cluster age as suggested in the literature. In most GCs, binaries are more centrally concentrated than single stars. If the fraction of binaries is normalized to the core binary fraction the radial density profiles follow a common trend. It has a maximum in the centre and declines by a factor of 2 at a distance of about two core radii from the cluster centre. After dropping to its minimum at a radial distance of ˜5 core radii it stays approximately constant at larger radii. We also find that the mass ratio and the distribution of binaries as a function of the mass of the primary star is almost flat.

  14. Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Pradhan, Raj K.; Guglielmo, Magda; Davies, Luke J. M.; Driver, Simon P.

    2017-09-01

    The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained 'known unknowns'. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > -1.4) and the metal-poor ([Fe/H] ≤ -1.4) MSTO samples show a clear systematic difference in vrot ∼ 20-40 km s - 1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased i.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, i.e. in situ versus accretion.

  15. Exploring the Hot Galactic Halo Using Shadows of High Latitude Clouds

    NASA Technical Reports Server (NTRS)

    Juda, M.; Petre, Robert (Technical Monitor)

    2001-01-01

    The objective of this proposal was to measure variations in the 1/4 keV emission from the galactic halo, using ROSAT (x-ray astronomy satellite) Position Sensitive Proportional Counters (PSPC) observations toward known enhancements in the absorbing column density along the line-of-sight out of the Galaxy. Target directions were selected to have a low total hydrogen column density but to also show significant gradients in the amount of absorbing material, as traced by Infrared Astronomical Satellite (IRAS) 100 micron emission, on angular scales that would be contained within the PSPC field of view. In addition, we restricted the galactic latitude of the target directions to be greater than 60 degrees or less than -60 degrees in order to enable a cleaner separation of Galactic halo emission from that of the Galactic disk. The observations would also provide a measurement of the brightness of the emission from the Local Bubble.

  16. THE ORIGIN OF THE HOT GAS IN THE GALACTIC HALO: TESTING GALACTIC FOUNTAIN MODELS' X-RAY EMISSION

    SciTech Connect

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin; Hill, Alex S.; Mac Low, Mordecai-Mark

    2015-02-20

    We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without an interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.

  17. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kwon, Ryun-Young; Vourlidas, Angelos

    2017-02-01

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A, -B, and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s‑1 sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° and 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.

  18. Assembly history of subhalo populations in galactic and cluster sized dark haloes

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; Gao, Liang

    2015-12-01

    We make use of two suits of ultrahigh resolution N-body simulations of individual dark matter haloes from the Phoenix and the Aquarius Projects to investigate systematics of assembly history of subhaloes in dark matter haloes differing by a factor of 1000 in the halo mass. We have found that real progenitors which built up present-day subhalo population are relatively more abundant for high-mass haloes, in contrast to previous studies claiming a universal form independent of the host halo mass. That is mainly because of repeated counting of the `re-accreted' (progenitors passed through and were later re-accreted to the host more than once) and inclusion of the `ejected' progenitor population (progenitors were accreted to the host in the past but no longer members at present day) in previous studies. The typical accretion time for all progenitors vary strongly with the host halo mass, which is typical about z ˜ 5 for the galactic Aquarius and about z ˜ 3 for the cluster sized Phoenix haloes. Once these progenitors start to orbit their parent haloes, they rapidly lose their original mass but not their identifiers, more than 55 (50) per cent of them survive to present day for the Phoenix (Aquarius) haloes. At given redshift, survival fraction of the accreted subhalo is independent of the parent halo mass, whilst the mass-loss of the subhalo is more efficient in high-mass haloes. These systematics results in similarity and difference in the subhalo population in dark matter haloes of different masses at present day.

  19. IC 1257: A New Globular Cluster in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Harris, W. E.; Phelps, R. L.; Madore, B. F.; Pevunova, O.; Skiff, B. A.; Crute, C.; Wilson, B.

    1996-01-01

    New CCD photometry of the faint, compact star cluster IC 1257 (L = 17? = +/- 15?obtained with the Palomar 5m telescope, reveals that it is a highly reddened globular cluster well beyond the Galactic center.

  20. IC 1257: A New Globular Cluster in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Harris, W. E.; Phelps, R. L.; Madore, B. F.; Pevunova, O.; Skiff, B. A.; Crute, C.; Wilson, B.

    1996-01-01

    New CCD photometry of the faint, compact star cluster IC 1257 (L = 17? = +/- 15?obtained with the Palomar 5m telescope, reveals that it is a highly reddened globular cluster well beyond the Galactic center.

  1. The kinematics of globular clusters systems in the outer halos of the Aquarius simulations

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Helmi, A.

    2016-07-01

    Stellar halos and globular cluster (GC) systems contain valuable information regarding the assembly history of their host galaxies. Motivated by the detection of a significant rotation signal in the outer halo GC system of M 31, we investigate the likelihood of detecting such a rotation signal in projection, using cosmological simulations. To this end we select subsets of tagged particles in the halos of the Aquarius simulations to represent mock GC systems, and analyse their kinematics. We find that GC systems can exhibit a non-negligible rotation signal provided the associated stellar halo also has a net angular momentum. The ability to detect this rotation signal is highly dependent on the viewing perspective, and the probability of seeing a signal larger than that measured in M 31 ranges from 10% to 90% for the different halos in the Aquarius suite. High values are found from a perspective such that the projected angular momentum of the GC system is within ≲40 deg of the rotation axis determined via the projected positions and line-of-sight velocities of the GCs. Furthermore, the true 3D angular momentum of the outer stellar halo is relatively well aligned, within 35 deg, with that of the mock GC systems. We argue that the net angular momentum in the mock GC systems arises naturally when the majority of the material is accreted from a preferred direction, namely along the dominant dark matter filament of the large-scale structure that the halos are embedded in. This, together with the favourable edge-on view of M 31's disk suggests that it is not a coincidence that a large rotation signal has been measured for its outer halo GC system.

  2. Compact binary mergers as the origin of r-process elements in the Galactic halo

    SciTech Connect

    Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    2014-05-02

    Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ∼ −3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ⊙} and 2 × 10{sup 8}M{sub ⊙}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ≤ −3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ∼ −1.5 for [Fe/H] < −3) are explained by the contribution from the short-lived (∼ 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.

  3. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  4. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  5. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    SciTech Connect

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-12-10

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  6. Evidence for recent star formation in the galactic halo

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.

    1986-09-01

    Observational data for PHL 346 obtained with the 2.5 m Issac Newton telescope on August 1985 are studied. Measured stellar Stromgren colors, hydrogen-line profiles, and helium and metal-line equivalent widths are compared with those predicted by local thermodynamic equilibrium model-atmosphere calculations. Effective temperature, surface gravity, microturbulent velocity, and helium and metal abundances for the star are derived. A mass of 13 + or - 2 solar masses, a lifetime of 11 x 10 to the 6th yr, a distance from the galactic plane of 8.7 + or - 1.5 kpc, and a velocity in the z direction of +56 + or - 10 km/s are calculated for the star. The data reveal that the star was not ejected from the galactic plane, but that it formed out of galactic fountain gas at about 6 kpc from the disc.

  7. Comparative Study Of Outer Halos Of Planetary Nebula NGC 246, NGC 1501, And NGC 2022

    NASA Astrophysics Data System (ADS)

    Arion, Douglas N.; Finnvik, S.; Troyer, Z.

    2012-01-01

    A number of planetary nebulae exhibit multiple shell structures, including concentric outer halos. Three such nebulae have been studied by obtaining deep images in [O III] to identify linkages between structures observed in the inner nebula and structures found in the outer halos. Three different planetaries were studied - NGC 246, 1501, and 2022, and all exhibit similar morphologies, suggesting similar evolutionary pathways. Of note are jet structures that appear to extend through all of the shell/halo layers, implying that the layers were ejected before the jets. Data were obtained on the 0.9m WIYN telescope at Kitt Peak National Observatory and the 1.52m Kuiper Telescope of the University of Arizona Steward Observatory. This work was supported in part by the Wisconsin Space Grant Consortium and a private bequest from Ms. Linda Staubitz.

  8. A comprehensive chemical abundance study of the outer halo globular cluster M 75

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Koch, A.; McWilliam, A.

    2013-06-01

    Context. M 75 is a relatively young globular cluster (GC) found at 15 kpc from the Galactic centre at the transition region between the inner and outer Milky Way halos. Aims: Our aims are to perform a comprehensive abundance study of a variety of chemical elements in this GC such as to investigate its chemical enrichment history in terms of early star formation, and to search for any multiple populations. Methods: We have obtained high resolution spectroscopy with the MIKE instrument at the Magellan telescope for 16 red giant stars. Their membership within the GC is confirmed from radial velocity measurements. Our chemical abundance analysis is performed via equivalent width measurements and spectral synthesis, assuming local thermodynamic equilibrium. Results: We present the first comprehensive abundance study of M 75 to date. The cluster is metal-rich ([Fe/H] = -1.16 ± 0.02 dex, [α/Fe] = +0.30 ± 0.02 dex), and shows a marginal spread in [Fe/H] of 0.07 dex, typical of most GCs of similar luminosity. A moderately extended O-Na anticorrelation is clearly visible, likely showing three generations of stars, formed on a short timescale. Additionally the two most Na-rich stars are also Ba-enhanced by 0.4 and 0.6 dex, respectively, indicative of pollution by lower mass (M ~ 4-5 M⊙) asymptotic giant branch stars. The overall n-capture element pattern is compatible with predominant r-process enrichment, which is rarely the case in GCs of such a high metallicity. Full Tables 2 and 5, and the reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A81

  9. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2009-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  10. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2006-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  11. The horizontal branch morphology of M 31 globular clusters. Extreme second parameter effect in outer halo clusters

    NASA Astrophysics Data System (ADS)

    Perina, S.; Bellazzini, M.; Buzzoni, A.; Cacciari, C.; Federici, L.; Fusi Pecci, F.; Galleti, S.

    2012-10-01

    We use deep, high quality color magnitude diagrams obtained with the Hubble Space Telescope to compute a simplified version of the Mironov index (SMI; B/(B+R)) to parametrize the horizontal branch (HB) morphology for 23 globular clusters in the M 31 galaxy (Sample A), all located in the outer halo at projected distances between 10 kpc and 100 kpc. This allows us to compare them with their Galactic counterparts, for which we estimated the SMI exactly in the same way, in the SMI vs. [Fe/H] plane. We find that the majority of the considered M 31 clusters lie in a significantly different locus, in this plane, with respect to Galactic clusters lying at any distance from the center of the Milky Way. In particular they have redder HB morphologies at a given metallicity, or, in other words, clusters with the same SMI value are ≈ 0.4 dex more metal rich in the Milky Way than in M 31. We discuss the possible origin of this difference and we conclude that the most likely explanation is that many globular clusters in the outer halo of M 31 formed ≈1-2 Gyr later than their counterparts in the outer halo of the Milky Way, while differences in the cluster-to-cluster distribution of He abundance of individual stars may also play a role. The analysis of another sample of 25 bright M 31 clusters (eighteen of them with MV ≤ -9.0, Sample B), whose SMI estimates are much more uncertain as they are computed on shallow color magnitude diagrams, suggests that extended blue HB tails can be relatively frequent among the most massive M 31 globular clusters, possibly hinting at the presence of multiple populations. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). STScI is operated by the Association of Universities for

  12. Modelling the Formation of HI Clouds in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Mac Low, M.-M.

    2001-05-01

    Large scale modelling of the cycle of gas between the disk and the halo has been carried out with a 3D adaptive mesh refinement code. The model includes a gravitational field provided by the stars in the disk, an ideal-gas equation of state, and an approximation for the cooling curve, assuming collisional ionization equilibrium. Supernovae are set up at the beginning of their Sedov phases at a rate compatible with observations. Sixty percent of the SNe are set up within associations and the rest are set up at random sites. After a transient startup period of roughly 200 Myr, dynamical balance between upward and downward flowing gas is reached. Gas at the disk-halo interface (z ~ 1.5 kpc) flows into the halo in a turbulent convective flow at a rate of ~ 6 Msun yr-1, forming a large scale fountain. Ascending gas cools into clouds, with a large range of velocities, which we identify with observed H i clouds. These in turn rain down upon the disk. The descending clouds interact with the thick gas disk and eventually impact onto the thin disk leading to its deformation and disruption. The sizes of the clouds vary from a few pc to several tens of pc and their distribution in the halo varies with z. Intermediate velocity clouds (IVCs) are mainly distributed between z=0.8 and 4.2 kpc, whereas a large fraction of high velocity clouds (HVCs) are found at greater heights. On average 55-60% of the clouds have negative velocities. During a period of 50 Myr, approximately 18% of the total number of clouds have velocities between -90 and -160 km/s, whereas only ~ 3% of the clouds have vz<-160 km/s. The bulk of the HI clouds detected in the simulations have intermediate positive (40 to 90 km/s) and negative (-40 to -90 km/s) velocities. The former constitutes ~20% and the latter constitutes 25-27% of the total number of HI clouds detected. Most of the clouds show a multiphase structure with a core of cold gas, having temperatures of some 103 K, embedded in a warmer phase. M

  13. A general relativistic approach to the Navarro Frenk White galactic halos

    NASA Astrophysics Data System (ADS)

    Matos, Tonatiuh; Núñez, Darío; Sussman, Roberto A.

    2004-11-01

    Although galactic dark matter halos are basically Newtonian structures, the study of their interplay with large-scale cosmic evolution and with relativistic effects, such as gravitational lenses, quintessence sources or gravitational waves, makes it necessary to obtain adequate relativistic descriptions for these self-gravitating systems. With this purpose in mind, we construct a post-Newtonian fluid framework for the 'Navarro Frenk White' (NFW) models of galactic halos that follow from N-body numerical simulations. Since these simulations are unable to resolve regions very near the halo centre, the extrapolation of the fitting formula leads to a spherically averaged 'universal' density profile that diverges at the origin. We remove this inconvenient feature by replacing a small central region of the NFW halo with an interior Schwarzschild solution with constant density, continuously matched to the remaining NFW spacetime. A model of a single halo, as an isolated object with finite mass, follows by smoothly matching the NFW spacetime to a Schwarzschild vacuum exterior along the virial radius, the physical 'cut-off' customarily imposed, as the mass associated with NFW profiles diverges asymptotically. Numerical simulations assume weakly interacting collisionless particles, hence we suggest that NFW halos approximately satisfy an 'ideal gas' type of equation of state, where mass-density is the dominant rest-mass contribution to matter-energy, with the internal energy contribution associated with an anisotropic kinetic pressure. We show that, outside the central core, this pressure and the mass density roughly satisfy a polytropic relation. Since stellar polytropes are the equilibrium configurations in Tsallis' non-extensive formalism of statistical mechanics, we argue that NFW halos might provide a rough empirical estimate of the free parameter q of Tsallis' formalism.

  14. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  15. Puzzling outer-density profile of the dark matter halo in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao

    2014-12-01

    The cold dark matter (CDM) cosmology, which is the standard theory of the structure formation in the universe, predicts that the outer density profile of dark matter halos decreases with the cube of distance from the center. However, so far not much effort has been expended in examining this hypothesis. In the halo of the Andromeda galaxy (M 31), large-scale stellar structures detected by the recent observations provide a potentially suitable window to investigate the mass-density distribution of the dark matter halo. We explore the density structure of the dark matter halo in M 31 using an N-body simulation of the interaction between an accreting satellite galaxy and M 31. To reproduce the Andromeda Giant Southern Stream and the stellar shells at the east and west sides of M 31, we find the sufficient condition for the power-law index α of the outer density distribution of the dark matter halo. The best-fitting parameter is α = -3.7, which is steeper than the CDM prediction.

  16. TRACING THE OUTER HALO IN A GIANT ELLIPTICAL TO 25 R {sub eff}

    SciTech Connect

    Rejkuba, M.; Harris, W. E.; Greggio, L.; Harris, G. L. H.; Jerjen, H.; Gonzalez, O. A.

    2014-08-10

    We have used the Advanced Camera for Surveys and Wide Field Camera 3 cameras on board the Hubble Space Telescope to resolve stars in the halo of the nearest giant elliptical (gE) galaxy NGC 5128 out to a projected distance of 140 kpc (25 effective radii, R {sub eff}) along the major axis and 90 kpc (16 R {sub eff}) along the minor axis. This data set provides an unprecedented radial coverage of the stellar halo properties in any gE galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128, even in our most distant fields. The star counts demonstrate increasing flattening of the outer halo, which is elongated along the major axis of the galaxy. The V – I colors of the red giants enable us to measure the metallicity distribution in each field and so map the gradient out to ∼16 R {sub eff} from the galaxy center along the major axis. A median metallicity is obtained even for the outermost fields along both axes. We observe a smooth transition from a metal-rich ([M/H] ∼0.0) inner galaxy to lower metallicity in the outer halo, with the metallicity gradient slope along the major axis of Δ[M/H]/ΔR ≅ –0.0054 ± 0.0006 dex kpc{sup –1}. In the outer halo, beyond ∼10 R {sub eff}, the number density profile follows a power law, but also significant field-to-field metallicity and star count variations are detected. The metal-rich component dominates in all observed fields, and the median metallicity is [M/H] >–1 dex in all fields.

  17. Tracing the Outer Halo in a Giant Elliptical to 25 R eff

    NASA Astrophysics Data System (ADS)

    Rejkuba, M.; Harris, W. E.; Greggio, L.; Harris, G. L. H.; Jerjen, H.; Gonzalez, O. A.

    2014-08-01

    We have used the Advanced Camera for Surveys and Wide Field Camera 3 cameras on board the Hubble Space Telescope to resolve stars in the halo of the nearest giant elliptical (gE) galaxy NGC 5128 out to a projected distance of 140 kpc (25 effective radii, R eff) along the major axis and 90 kpc (16 R eff) along the minor axis. This data set provides an unprecedented radial coverage of the stellar halo properties in any gE galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128, even in our most distant fields. The star counts demonstrate increasing flattening of the outer halo, which is elongated along the major axis of the galaxy. The V - I colors of the red giants enable us to measure the metallicity distribution in each field and so map the gradient out to ~16 R eff from the galaxy center along the major axis. A median metallicity is obtained even for the outermost fields along both axes. We observe a smooth transition from a metal-rich ([M/H] ~0.0) inner galaxy to lower metallicity in the outer halo, with the metallicity gradient slope along the major axis of Δ[M/H]/ΔR ~= -0.0054 ± 0.0006 dex kpc-1. In the outer halo, beyond ~10 R eff, the number density profile follows a power law, but also significant field-to-field metallicity and star count variations are detected. The metal-rich component dominates in all observed fields, and the median metallicity is [M/H] >-1 dex in all fields.

  18. Halo K-Giant Stars from LAMOST: Kinematics and Galactic Mass Estimate

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.

    2017-03-01

    We analyze line-of-sight velocities of over 3000 halo K-giant stars from the second data release of the spectral survey LAMOST (Zhao et al. 2012). We find a nearly constant velocity dispersion profile, with no large dips or peaks, in a Galactocentric radial range of 10-30 kpc, in accord with earlier analyses (Battaglia et al. 2005, 2006; Xue et al. 2008, 2014) (see Fig. 1). Previous studies of halo star radial velocity dispersions in a reference frame centered on the Galactic Center have detected dips within this radial range (Sommer-Larsen et al. 1994; Kafle et al. 2012, 2014). We use the stars to make estimates of the enclosed mass out to 40 kpc from the Galactic Center using the method of Evans et al. (2011). Tens of thousands of such stars are expected to become available to this analysis by the end of the five-year survey.

  19. Using chemical tagging to redefine the interface of the Galactic disc and halo

    NASA Astrophysics Data System (ADS)

    Hawkins, K.; Jofré, P.; Masseron, T.; Gilmore, G.

    2015-10-01

    We present a chemical abundance distribution study in 14 α, odd-Z, even-Z, light, and Fe-peak elements of approximately 3200 intermediate-metallicity giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The main aim of our analysis is to explore the Galactic disc-halo transition region within -1.20 < [Fe/H] < -0.55 as a means to study chemical difference (and similarities) between these components. In this paper, we show that there is an α-poor and α-rich sequence within both the metal-poor and intermediate-metallicity regions. Using the Galactic rest-frame radial velocity and spatial positions, we further separate our sample into the canonical Galactic components. We then studied the abundances ratios of Mg, Ti, Si, Ca, O, S, Al, C+N, Na, Ni, Mn, V, and K for each of the components and found the following: (1) the α-poor halo subgroup is chemically distinct in the α-elements, particularly O, Mg, S, Al, C+N, and Ni, from the α-rich halo, consistent with the literature confirming the existence of an α-poor accreted halo population; (2) the canonical thick disc and halo are not chemically distinct in all elements indicating a smooth transition between the thick disc and halo; (3) a subsample of the α-poor stars at metallicities as low as [Fe/H] ˜ -0.85 dex are chemically and dynamically consistent with the thin disc indicating that the thin disc may extend to lower metallicities than previously thought; and (4) the locations of the most metal-poor thin disc stars are consistent with a negative radial metallicity gradient. Finally, we used our analysis to suggest a new set of chemical abundance planes ([α/Fe], [C+N/Fe], [Al/Fe], and [Mg/Mn]) that may be able to chemically label the Galactic components in a clean and efficient way independent of kinematics.

  20. Soft X-Ray Observations of the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Shelton, Robin; Kuntz, K. D.

    2003-01-01

    In this project, my co-I (K.D. Kuntz) and I plan to extract the soft X-ray spectrum emitted by the hot gas along a high latitude line of sight. We plan to subtract off the local component (garnered from other observations) in order to isolate the halo component. We then plan to combine this spectral information with the ultraviolet resonance line emission produced by slightly cooler gas along the line of sight and use the two observations as a constraint on models. My co-I, K.D., Kuntz has been working on the determination of the instrumental background. I have not yet drawn any of the funds for this project. I have just moved from J h s Hopkins University to the University of Georgia and anticipate finishing the project while at the University of Georgia.

  1. Soft X-Ray Observations of the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Shelton, Robin; Kuntz, K. D.

    2003-01-01

    In this project, my co-I (K.D. Kuntz) and I plan to extract the soft X-ray spectrum emitted by the hot gas along a high latitude line of sight. We plan to subtract off the local component (garnered from other observations) in order to isolate the halo component. We then plan to combine this spectral information with the ultraviolet resonance line emission produced by slightly cooler gas along the line of sight and use the two observations as a constraint on models. My co-I, K.D., Kuntz has been working on the determination of the instrumental background. I have not yet drawn any of the funds for this project. I have just moved from J h s Hopkins University to the University of Georgia and anticipate finishing the project while at the University of Georgia.

  2. Expanding hydrodynamical jets crossing a galactic halo/intergalactic medium interface

    NASA Technical Reports Server (NTRS)

    Wiita, Paul J.; Rosen, Alexander; Norman, Michael L.

    1990-01-01

    Parameters within ranges that are plausible for radio sources are presently used to perform two-dimensional hydrodynamical calculations of axisymmetric, initially conical, jets whose initial propagation is through isothermal galactic halos with power-law density distributions; these emerge across a pressure-matched interface into a hotter, but less dense medium whose parameters are typical of an intracluster or intergalactic gas. Upon crossing this interface, the jets accelerate and focused toward cylindrical shapes having long, narrow cocoons.

  3. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  4. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  5. INTERACTION BETWEEN DARK MATTER SUB-HALOS AND A GALACTIC GASEOUS DISK

    SciTech Connect

    Kannan, Rahul; Maccio, Andrea V.; Walter, Fabian; Pasquali, Anna; Moster, Benjamin P.

    2012-02-10

    We investigate the idea that the interaction of dark matter (DM) sub-halos with the gaseous disks of galaxies can be the origin for the observed holes and shells found in their neutral hydrogen (H I) distributions. We use high-resolution hydrodynamic simulations to show that pure DM sub-halos impacting a galactic disk are not able to produce holes; on the contrary, they result in high-density regions in the disk. However, sub-halos containing a small amount of gas (a few percent of the total DM mass of the sub-halo) are able to displace the gas in the disk and form holes and shells. The sizes and lifetimes of these holes depend on the sub-halo gas mass, density, and impact velocity. A DM sub-halo, of mass 10{sup 8} M{sub Sun} and a gas mass fraction of {approx}3%, is able to create a kiloparsec-scale hole with a lifetime similar to those observed in nearby galaxies. We also register an increase in the star formation rate at the rim of the hole, again in agreement with observations. Even though the properties of these simulated structures resemble those found in observations, we find that the number of predicted holes (based on mass and orbital distributions of DM halos derived from cosmological N-body simulations) falls short compared to the observations. Only a handful of holes are produced per gigayear. This leads us to conclude that DM halo impact is not the major channel through which these holes are formed.

  6. Runaway Stars in the Galactic Halo: Their Origin and Kinematics

    NASA Astrophysics Data System (ADS)

    Duarte de Vasconcelos Silva, Manuel

    2012-03-01

    Star formation in the Milky Way is confined to star-forming regions (OB associ- ation, HII regions, and open clusters) in the Galactic plane. It is usually assumed that these regions are found preferably along spiral arms, as is observed in other spiral galaxies. However, young early-type stars are often found at high Galactic latitudes, far away from their birthplaces in the Galactic disc. These stars are called runaway stars, and it is believed that they were ejected from their birth- places early in their lifetimes by one of two mechanisms: ejection from a binary system following the destruction of the massive companion in a supernova type II event (the binary ejection mechanism), or ejection from a dense cluster following a close gravitational encounter between two close binaries (the dynamical ejection mechanism). The aims of our study were: to improve the current understanding of the nature of high Galactic latitude runaway stars, in particular by investigating whether the theoretical ejection mechanisms could explain the more extreme cases; to show the feasibility of using high Galactic latitude stars as tracers of the spiral arms. The main technique used in this investigation was the tracing of stellar orbits back in time, given their present positions and velocities in 3D space. This technique allowed the determination of the ejection velocities, flight times and birthplaces of a sample of runaway stars. In order to obtain reasonable velocity estimates several recent catalogues of proper motion data were used. We found that the evolutionary ages of the vast majority of runaway stars is consistent with the disc ejection scenario. However, we identified three outliers which would need flight times much larger then their estimated ages in order to reach their present positions in the sky. Moreover, the ejection velocity distribution appears to be bimodal, showing evidence for two populations of runaway stars: a "low" velocity population (89 per cent of the

  7. Did globular clusters contribute to the stellar population of the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Krause, Martin

    2016-08-01

    The origin of Galactic halo stars and the contribution of globular clusters (GC) to this stellar population have long been (and still are) debated. The discovery of multiple stellar populations with peculiar chemical properties in GCs both in the Milky Way and in Local Group galaxies recently brought a renewal on these questions. Indeed most of the scenarios that compete to reproduce the present-day GC characteristics call for fast expulsion of both gas and low-mass stars from these clusters in their early infancy. In this framework, the initial masses of GCs could have been 8 to 25 times higher than their present-day stellar mass, and they could have contributed to 5 to 20 % of the low-mass stars in the Galactic halo. Here we revisit these conclusions, which are in tension with observations of dwarf galaxies and of young massive star clusters in the Local Group. We come back in particular on the paradigm of gas expulsion from massive star clusters, and propose an alternative interpretation of the GC abundance properties. We conclude by proposing a major revision of the current concepts regarding the role massive star clusters play in the assembly of galactic haloes.

  8. Magnetized High Velocity Clouds in the Galactic Halo: A New Distance Constraint

    NASA Astrophysics Data System (ADS)

    Grønnow, Asger; Tepper-García, Thor; Bland-Hawthorn, Joss; McClure-Griffiths, N. M.

    2017-08-01

    High velocity gas that does not conform to Galactic rotation is observed throughout the Galaxy’s halo. One component of this gas, H i high velocity clouds (HVCs), have attracted attention since their discovery in the 1960s and remain controversial in terms of their origins, largely due to the lack of reliable distance estimates. The recent discovery of enhanced magnetic fields toward HVCs has encouraged us to explore their connection to cloud evolution, kinematics, and survival as they fall through the magnetized Galactic halo. For a reasonable model of the halo magnetic field, most infalling clouds see transverse rather than radial field lines. We find that significant compression (and thereby amplification) of the ambient magnetic field occurs in front of the cloud and in the tail of material stripped from the cloud. The compressed transverse field attenuates hydrodynamical instabilities. This delays cloud destruction, though not indefinitely. The observed {\\boldsymbol{B}} field compression is related to the cloud’s distance from the Galactic plane. As a result, the observed rotation measure provides useful distance information on a cloud’s location.

  9. Effect of dark matter halo on global spiral modes in a collisionless galactic disk

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2017-07-01

    Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.

  10. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to

  11. The outer halo globular cluster system of M31 - II. Kinematics

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A. P.; Côté, P.; Irwin, M. J.; Tanvir, N. R.; Peñarrubia, J.; Bernard, E. J.; Fardal, M.; Martin, N. F.; McConnachie, A.; Lewis, G. F.; Chapman, S. C.; Ibata, R. A.; Babul, A.

    2014-08-01

    We present a detailed kinematic analysis of the outer halo globular cluster system of the Andromeda galaxy (M31). Our basis for this is a set of new spectroscopic observations for 78 clusters lying at projected distances between Rproj ˜ 20-140 kpc from the M31 centre. These are largely drawn from the recent Pan-Andromeda Archaeological Survey globular cluster catalogue; 63 of our targets have no previous velocity data. Via a Bayesian maximum likelihood analysis, we find that globular clusters with Rproj > 30 kpc exhibit coherent rotation around the minor optical axis of M31, in the same direction as more centrally located globular clusters, but with a smaller amplitude of 86 ± 17 km s-1. There is also evidence that the velocity dispersion of the outer halo globular cluster system decreases as a function of projected distance from the M31 centre, and that this relation can be well described by a power law of index ≈ -0.5. The velocity dispersion profile of the outer halo globular clusters is quite similar to that of the halo stars, at least out to the radius up to which there is available information on the stellar kinematics. We detect and discuss various velocity correlations amongst subgroups of globular clusters that lie on stellar debris streams in the M31 halo. Many of these subgroups are dynamically cold, exhibiting internal velocity dispersions consistent with zero. Simple Monte Carlo experiments imply that such configurations are unlikely to form by chance, adding weight to the notion that a significant fraction of the outer halo globular clusters in M31 have been accreted alongside their parent dwarf galaxies. We also estimate the M31 mass within 200 kpc via the Tracer Mass Estimator (TME), finding (1.2-1.6) ± 0.2 × 1012 M⊙. This quantity is subject to additional systematic effects due to various limitations of the data, and assumptions built in into the TME. Finally, we discuss our results in the context of formation scenarios for the M31 halo.

  12. The outer halo globular cluster system of M31 - I. The final PAndAS catalogue

    NASA Astrophysics Data System (ADS)

    Huxor, A. P.; Mackey, A. D.; Ferguson, A. M. N.; Irwin, M. J.; Martin, N. F.; Tanvir, N. R.; Veljanoski, J.; McConnachie, A.; Fishlock, C. K.; Ibata, R.; Lewis, G. F.

    2014-08-01

    We report the discovery of 59 globular clusters (GCs) and two candidate GCs in a search of the halo of M31, primarily via visual inspection of Canada-France-Hawaii Telescope/MegaCam imagery from the Pan-Andromeda Archaeological Survey (PAndAS). The superior quality of these data also allows us to check the classification of remote objects in the Revised Bologna Catalogue (RBC), plus a subset of GC candidates drawn from Sloan Digital Sky Survey (SDSS) imaging. We identify three additional new GCs from the RBC, and confirm the GC nature of 11 SDSS objects (8 of which appear independently in our remote halo catalogue); the remaining 188 candidates across both lists are either foreground stars or background galaxies. Our new catalogue represents the first uniform census of GCs across the M31 halo - we find clusters to the limit of the PAndAS survey area at projected radii of up to Rproj ˜ 150 kpc. Tests using artificial clusters reveal that detection incompleteness cuts in at luminosities below MV = -6.0; our 50 per cent completeness limit is MV ≈ -4.1. We construct a uniform set of PAndAS photometric measurements for all known GCs outside Rproj = 25 kpc, and any new GCs within this radius. With these data, we update results from Huxor et al., investigating the luminosity function (LF), colours and effective radii of M31 GCs with a particular focus on the remote halo. We find that the GCLF is clearly bimodal in the outer halo (Rproj > 30 kpc), with the secondary peak at MV ˜ -5.5. We argue that the GCs in this peak have most likely been accreted along with their host dwarf galaxies. Notwithstanding, we also find, as in previous surveys, a substantial number of GCs with above-average luminosity in the outer M31 halo - a population with no clear counterpart in the Milky Way.

  13. The lithium content of the galactic halo stars

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Primas, F.

    Thanks to the accurate determination of the baryon density of the Universe by the recent cosmic microwave background experiments, updated predictions of the standard model of Big Bang nucleosynthesis yield the initial abundances of the primordial light elements with an unprecedented precision (Bennet et al. 2003; Spergel et al. 2003; Coc et al. 2004; Cyburt 2004; Serpico et al. 2004). In the case of ^7Li, the CMB+SBBN value is significantly higher than the generally reported abundances for Pop II stars along the Spite plateau. Here, we report on the very recent results we obtained by revisiting a large sample of literature Li data in halo stars that we assembled following some strict criteria on the quality of the original analyses published from the early 90 s onwards. We put a strong emphasis on the temperature scale and reddening issues, and on the determination of the evolutionary status of each of our sample stars. Using our “best" (i.e. most consistent) set of temperatures we discuss the resulting mean Li value along the plateau for the dwarf stars on one hand and for the turnoff and subgiant stars on the other hand.

  14. THE FRACTION OF GLOBULAR CLUSTER SECOND-GENERATION STARS IN THE GALACTIC HALO

    SciTech Connect

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2010-08-01

    Many observational studies have revealed the presence of multiple stellar generations in Galactic globular clusters. These studies suggest that second-generation stars make up a significant fraction of the current mass of globular clusters, with the second-generation mass fraction ranging from {approx}50% to 80% in individual clusters. In this Letter, we carry out hydrodynamical simulations to explore the dependence of the mass of second-generation stars on the initial mass and structural parameters and stellar initial mass function (IMF) of the parent cluster. We then use the results of these simulations to estimate the fraction f{sub SG,H} of the mass of the Galactic stellar halo composed of second-generation stars that originated in globular clusters. We study the dependence of f{sub SG,H} on the parameters of the IMF of the Galactic globular cluster system. For a broad range of initial conditions, we find that the fraction of mass of the Galactic stellar halo in second-generation stars is always small, f{sub SG,H} < 4%-6% for a Kroupa-1993 IMF and f{sub SG,H} < 7%-9% for a Kroupa-2001 IMF.

  15. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    SciTech Connect

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Chapman, S. C.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.

  16. MORE REMOTE GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Di Tullio Zinn, Graziella; Zinn, Robert

    2013-02-01

    We searched the Sloan Digital Sky Survey for outer halo globular clusters (GCs) around M31. Our search of non-stellar objects, within the limits of 0.3 {<=} (g - i){sub 0} {<=} 1.5 and 14.0 {<=} r{sub 0} {<=} 19.0 concentrated in some remote areas of the extended halo, to a maximum projected distance of 240 kpc, for a total of approximately 200 deg{sup 2}. Another {approx}50 deg{sup 2}, {approx}5-75 kpc from M31, were surveyed as test areas. In these areas, we identified 39 GCs and 2 GC candidates, 84% of the previously known GCs (93% of the 'classical GCs' and 40% of the 'halo extended clusters', on the cluster classification scheme of Huxor et al.). For the entire survey, we visually inspected 78,516 objects for morphological evidence of cluster status, and we identified 18 new clusters, and 75 candidate clusters. The new clusters include 15 classical globulars and 3 clusters of lower density. Six of the clusters reside in the remote areas of the outer halo, beyond projected distances of 100 kpc. Previously, only MGC1 was found beyond this limit at 117 kpc. The farthest cluster discovered in this survey lies at a projected radius of 158 kpc from M31, assuming that the M31 distance is 780 kpc.

  17. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  18. Neutrino propagation in the Galactic dark matter halo

    NASA Astrophysics Data System (ADS)

    de Salas, P. F.; Lineros, R. A.; Tórtola, M.

    2016-12-01

    Neutrino oscillations are a widely observed and well-established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant GF with no further restrictions on its flavor structure. For the galactic dark matter profile we consider a homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light O (sub -eV - keV ) or weakly interacting massive particlelike dark matter particle or as a new interaction with a mediator of O (sub -eV - keV ) mass.

  19. The Abundances of Metal-poor Stars in the Outer Halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Lai, David K.; Rockosi, C. M.; Johnson, J. A.; Bolte, M.; SEGUE Collaboration

    2009-01-01

    We present a program measuring the abundance ratios of stars in the outer halo of the Milky Way. Using the metal-poor candidates from SDSS-SEGUE and follow-up spectra with ESI on Keck we efficiently measure metallicity, alpha-ratio abundances, and certain neutron-capture abundance ratios for stars out to distances of about 30 kpc, thereby placing them in situ in the outer halo (Carollo et al. 2007). By studying metal-poor stars in this relatively unexplored region we can look for evidence of different star formation environments which can provide a important constraint on current Galaxy formation scenarios (e.g., Bullock & Johnston 2005), and potentially discover interesting individual stars. In an initial sample of 25 stars, we have already discovered one new highly r-process-enhanced metal-poor star and a new type of very metal-poor star with a unique [Ca/Mg] of 1.2. In terms of the larger sample, we are also seeing hints of a different alpha-element population, possible evidence of varied star formation environments in the outer halo. DKL acknowledges the support from the NSF grant AST-0802292 through the Astronomy and Astrophysics Postdoctoral Fellowship program.

  20. A New Model for Chemical Evolution of the Galactic Halo: Formulation and Applications

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Takuji; Shigeyama, Toshikazu; Yoshii, Yuzuru

    A model for Galactic chemical evolution, driven by supernova-induced star formation, is formulated and used to examine the nature of the Galactic halo at early epochs. In this model, new stars are formed following each supernova event, thus their abundance pattern is determined by the combination of heavy elements ejected from the supernova itself and those elements which are already present in the interstellar gas swept up by the supernova remnant. The end result is a prediction of large scatter in the abundance ratios among low-metallicity stars, reflecting a different nucleosynthesis yield for each Type II supernova (SN II) with a different progenitor mass. Formation of new stars is terminated when supernova remnants sweep up too little gas to form shells. We show from calculations based on the above scenario that (i) the observed [Fe/H] distribution for the Galactic halo field stars can be reproduced without effectively decreasing the heavy-element yields from SNe II by some manipulation required by previous models (e.g., via mass lass from the early Galaxy, or later mixing with "pristine" hydrogen clouds), (ii) the large observed scatter in the abundante ratio [Eu/Fe] for the most metal-poor stars can also be reproduced, and (iii) the frequency distribution of stars in the [Eu/Fe]-[Fe/H] plane can be predicted. Our model suggests that the probability of identifying essentially metal-free stars (Population III) in the local halo is around one in 103-4, provided that star formation in the halo is confined to individual gas clouds with mass of 10 ^{6-7} M_⊙ and that the initial mass function of metal-free stars is not significantly different from the Salpeter mass function.

  1. THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY

    SciTech Connect

    An, Deokkeun; Beers, Timothy C.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Lee, Young Sun; Bovy, Jo; Ivezic, Zeljko; Carollo, Daniela; Newby, Matthew

    2013-01-20

    We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5-8 kpc and |b| > 35 Degree-Sign , and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically selected local halo stars from Ryan and Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan and Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] Almost-Equal-To -1.7 and -2.3, the metal-poor component accounts for {approx}20%-35% of the entire halo population in this distance range.

  2. Determining the Galactic Halo's Emission Measure from UV and X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Lei, Shijun; Shelton, Robin L.; Henley, David B.

    2009-07-01

    We analyze a pair of Suzaku shadowing observations in order to determine the X-ray spectrum of the Galaxy's gaseous halo. Our data consist of an observation toward an absorbing filament in the southern Galactic hemisphere and an observation toward an unobscured region adjacent to the filament. We simultaneously fit the spectra with models having halo, local, and extragalactic components. The intrinsic intensities of the halo O VII triplet and O VIII Ly α emission lines are 9.98+1.10 -1.99 LU (line unit; photons cm-2 s-1 sr-1) and 2.66+0.37 -0.30 LU, respectively. These results imply the existence of hot gas with a temperature of ~106.0 K to ~107.0 K in the Galactic halo. Meanwhile, FUSE O VI observations for the same directions and SPEAR C IV observations for a nearby direction indicate the existence of hot halo gas at temperatures of ~105.0 K to ~106.0 K. This collection of data implies that the hot gas in the Galactic halo is not isothermal, but its temperature spans a relatively wide range from ~105.0 K to ~107.0 K. We therefore construct a differential emission measure (DEM) model for the halo's hot gas, consisting of two components. In each, dEM/dlog T is assumed to follow a power-law function of the temperature and the gas is assumed to be in collisional ionizational equilibrium. The low-temperature component (LTC) of the broken power-law DEM model covers the temperature range of 104.80-106.02 K with a slope of 0.30 and the high-temperature component (HTC) covers the temperature range of 106.02-107.02 K with a slope of -2.21. We compare our observations with predictions from models for hot gas in the halo. The observed spatial distribution of gas with temperatures in the range of our HTC is smoother than that of the LTC. We thus suggest that two types of sources contribute to our broken power-law model. We find that a simple model in which hot gas accretes onto the Galactic halo and cools radiatively cannot explain both the observed UV and X-ray portions of

  3. Galactic halo origin of the neutrinos detected by IceCube

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.; Gabici, Stefano; Aharonian, Felix

    2014-05-01

    Recent IceCube results suggest that the first detection of very high energy astrophysical neutrinos have been accomplished. We consider these results at face value in a Galactic origin context. Emission scenarios from both the Fermi bubble and broader halo region are considered. We motivate that such an intensity of diffuse neutrino emission could be Galactic in origin if it is produced from an outflow into the halo region. This scenario requires cosmic ray transport within the outflow environment to be different to that inferred locally within the disk and that activity in the central part of the Galaxy accelerates cosmic rays to trans-"knee" energies before they escape into an outflow. The presence of a large reservoir of gas in a very extended halo around the Galaxy, recently inferred from x-ray observations, implies that the relatively modest acceleration power of 1039 erg s-1 in PeV energy cosmic rays may be sufficient to explain the observed neutrino flux. Such a luminosity is compatible with that required to explain the observed intensity of cosmic rays around the knee.

  4. A hierarchical model for the ages of Galactic halo white dwarfs

    NASA Astrophysics Data System (ADS)

    Si, Shijing; van Dyk, David A.; von Hippel, Ted; Robinson, Elliot; Webster, Aaron; Stenning, David

    2017-07-01

    In astrophysics, we often aim to estimate one or more parameters for each member object in a population and study the distribution of the fitted parameters across the population. In this paper, we develop novel methods that allow us to take advantage of existing software designed for such case-by-case analyses to simultaneously fit parameters of both the individual objects and the parameters that quantify their distribution across the population. Our methods are based on Bayesian hierarchical modelling that is known to produce parameter estimators for the individual objects that are on average closer to their true values than estimators based on case-by-case analyses. We verify this in the context of estimating ages of Galactic halo white dwarfs (WDs) via a series of simulation studies. Finally, we deploy our new techniques on optical and near-infrared photometry of 10 candidate halo WDs to obtain estimates of their ages along with an estimate of the mean age of Galactic halo WDs of 12.11_{-0.86}^{+0.85} Gyr. Although this sample is small, our technique lays the ground work for large-scale studies using data from the Gaia mission.

  5. Formation of the Galactic Stellar Halo: Origin of the Metallicity-Eccentricity Relation.

    PubMed

    Bekki; Chiba

    2000-05-01

    Motivated by the recently improved knowledge on the kinematic and chemical properties of the Galactic metal-poor stars, we present the numerical simulation for the formation of the Galactic stellar halo to interpret the observational results. As a model for the Galaxy contraction, we adopt the currently standard theory of galaxy formation based on the hierarchical assembly of the cold dark matter fluctuations. We find, for the simulated stars with &sqbl0;Fe&solm0;H&sqbr0;Galactic halo is a natural consequence of the hierarchical evolution of the subgalactic clumps seeded from the cold dark matter density fluctuations.

  6. Formation of the Galactic Stellar Halo: Origin of the Metallicity-Eccentricity Relation

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Chiba, Masashi

    2000-05-01

    Motivated by the recently improved knowledge on the kinematic and chemical properties of the Galactic metal-poor stars, we present the numerical simulation for the formation of the Galactic stellar halo to interpret the observational results. As a model for the Galaxy contraction, we adopt the currently standard theory of galaxy formation based on the hierarchical assembly of the cold dark matter fluctuations. We find, for the simulated stars with [Fe/H]<=-1.0, that there is no strong correlation between metal abundances and orbital eccentricities, in good agreement with the observations. Moreover, the observed fraction of the low-eccentricity stars is reproduced correctly for [Fe/H]<=-1.6 and approximately for the intermediate abundance range of -1.6<[Fe/H]<=-1.0. We show that this successful reproduction of the kinematics of the Galactic halo is a natural consequence of the hierarchical evolution of the subgalactic clumps seeded from the cold dark matter density fluctuations.

  7. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    SciTech Connect

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E.; Tolstoy, Eline; Salaris, Maurizio; Bernard, Edouard J.

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  8. Probing ionization conditions of Galactic halo gas using H-alpha observations of the Magellanic Stream

    NASA Astrophysics Data System (ADS)

    Barger, Kat; Madsen, Gregory J.; Fox, Andrew; Wakker, Bart P.; Bland-Hawthorn, Jonathan; Nidever, David L.; Lehner, Nicolas; Haffner, L. Matthew; Hill, Alex S.

    2017-01-01

    Galaxy interactions have greatly disturbed and redistributed the gas in the Magellanic System throughout the halos of the Milky Way. Using the Wisconsin H-alpha Mapper (WHAM) telescope, we have completed the highest sensitivity and kinematically resolved emission-line survey of the entire Magellanic Stream. These observations enable us to determine how the ionization conditions change over 100-degrees across the sky, including the region below the South Galactic Pole. We explore the sources of that ionization and find that photoionization from the Milky Way and Magellanic Clouds is insufficient to explain the observed H-alpha emission. We further investigate whether energetic processes associated with the Milky Way's center or interactions with the halo could provide the remaining ionization. The gas in the Magellanic Steam could supply enough gas to maintain or even boost the star formation in the Milky Way, but only if it can survive the journey to the Galaxy's disk.

  9. Beryllium in the Galactic halo - Surface abundances from standard, diffusive, and rotational stellar evolution, and implications

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, Marc H.

    1990-01-01

    The recently observed upper limits to the beryllium abundances in population II stars are much lower than population I detections. This difference reflects an intrinsic difference in the initial abundances and is not caused by different degrees of depletion driven by stellar evolution processes from similar initial abundances. Evolutionary sequences of models from the early premain sequence to beyond the turnoff that correspond to halo dwarfs with Fe/H abundances of -1.3, -2.3, and -3.3 are constructed, and standard, diffusive, and rotational mechanisms are used to estimate a maximal possible beryllium depletion. Halo star models in the T(eff) range 6000 to 5000 K might be rotationally depleted by a factor of 1.5-2, and the total depletion should be no more than (conservatively) a factor of 3. Implications for cosmology, cosmic-ray theory, and Galactic chemical evolution are discussed.

  10. On the Stringent Constraint on Massive Dark Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.

    1997-09-01

    This Letter revises the recent claims of a dynamical constraint on massive dark clusters from the Galactic globular cluster luminosity function (GCLF). We point out that this argument is invalid for two reasons. The first point is that with a proper sample of globular clusters, the GCLF presents a significant trend with Galactocentric position, and second, the disruption timescale of globular clusters by encounters with these massive objects depends strongly on many uncertain parameters. For the usual halo model of Cadwell & Ostriker, it may be smaller by only a factor of 2 for distant globular clusters. Therefore, the existence of massive dark clusters in the halo could be possible. This provides a scenario in which the formation of dark clusters and globular clusters may have a similar origin.

  11. Major substructure in the M31 Outer Halo: the East Cloud

    NASA Astrophysics Data System (ADS)

    McMonigal, B.; Bate, N. F.; Conn, A. R.; Mackey, A. D.; Lewis, G. F.; Irwin, M. J.; Martin, N. F.; McConnachie, A. W.; Ferguson, A. M. N.; Ibata, R. A.; Huxor, A. P.

    2016-02-01

    We present the first detailed analysis of the East Cloud, a highly disrupted diffuse stellar substructure in the outer halo of M31. The core of the substructure lies at a projected distance of ˜100 kpc from the centre of M31 in the outer halo, with possible extensions reaching right into the inner halo. Using Pan-Andromeda Archaeological Survey photometry of red giant branch stars, we measure the distance, metallicity and brightness of the cloud. Using Hubble Space Telescope data, we independently measure the distance and metallicity to the two globular clusters coincident with the East Cloud core, PA-57 and PA-58, and find their distances to be consistent with the cloud. Four further globular clusters coincident with the substructure extensions are identified as potentially associated. Combining the analyses, we determine a distance to the cloud of 814^{+20}_{-9} kpc, a metallicity of [Fe/H] = -1.2 ± 0.1, and a brightness of MV = -10.7 ± 0.4 mag. Even allowing for the inclusion of the potential extensions, this accounts for less than 20 per cent of the progenitor luminosity implied by the luminosity-metallicity relation. Using the updated techniques developed for this analysis, we also refine our estimates of the distance and brightness of the South-West Cloud, a separate substructure analysed in the previous work in this series.

  12. Exploring the Milky Way outer halo globular clusters AM 1 and Pyxis

    NASA Astrophysics Data System (ADS)

    Pohl, Brian L.

    In order to probe the origins and history of the Milky Way halo, I executed a photometric survey of the outer halo globular clusters AM 1 and Pyxis using the southern astrophysical research (SOAR) telescope. The principal goal of this investigation was to determine the ages of these clusters, but the techniques employed in this process revealed other intrinsic properties such as chemical composition. A total of 32.2 hours of data were obtained on the program clusters, and observations of 22 stars from the Landolt (1992) catalogue were used to transform the clusters to the Johnson-Cousins BV standard system. The resultant color-magnitude diagrams are used in conjunction with the reference globular cluster M5 to determine the intrinsic properties of the program clusters. Three independent age determination techniques show agreement, consistent to within the error of the techniques, that AM 1 is --1.0 Gyr younger than, and that Pyxis is coeval to, the reference cluster M5. The chemical properties of both clusters are found to be the same for both clusters, [Fe/H] = --1.40 and [alpha/Fe] = +0.4, similar to M5. The results are presented in terms of two outstanding issues regarding the outer halo; the second parameter problem and the issue of accretion vs. in-situ formation.

  13. Joint constraints on the Galactic dark matter halo and GC from hypervelocity stars

    NASA Astrophysics Data System (ADS)

    Rossi, Elena M.; Marchetti, T.; Cacciato, M.; Kuiack, M.; Sari, R.

    2017-01-01

    The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here we show that hypervelocity stars (HVSs) can in principle provide such constraints. We model the observed velocity distribution of HVSs, produced by tidal break-up of stellar binaries caused by Sgr A*. Considering a Galactic Centre (GC) binary population consistent with that inferred in more observationally accessible regions, a fit to current HVS data with significance level >5% can only be obtained if the escape velocity from the GC to 50 kpc is V_G ≲ 850 km s-1, regardless of the enclosed mass distribution. When a NFW matter density profile for the dark matter halo is assumed, haloes with V_G ≲ 850 km s-1are in agreement with predictions in the ΛCDM model and that a subset of models around M200 ˜ 0.5 - 1.5 × 1012M⊙ and r_s ≲ 35 kpc can also reproduce Galactic circular velocity data. HVS data alone cannot currently exclude potentials with VG > 850 km s-1. Finally, specific constraints on the halo mass from HVS data are highly dependent on the assumed baryonic mass potentials. This first attempt to simultaneously constrain GC and dark halo properties is primarily hampered by the paucity and quality of data. It nevertheless demonstrates the potential of our method, that may be fully realised with the ESA Gaia mission.

  14. Abundances and Evolution of Lithium in the Galactic Halo and Disk

    NASA Astrophysics Data System (ADS)

    Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina

    2001-03-01

    We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).

  15. Erratum: Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo

    NASA Astrophysics Data System (ADS)

    Capriotti, E. R.; Hawley, S. L.

    1997-07-01

    In § 2 of the recent paper ``Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo'' by E. R. Capriotti and S. L. Hawley (ApJ, 464, 765 [1996]), equation (1) contains a misprint. It should read rt=2r/3 [(Mc)/(AMH(r))]1/3/[1-r/(AMH(r)) (dMH(r))/dr]1/3 , (1)where the difference from the published version is that an A replaces the 3 in the denominator of the last term. The authors regret the error.

  16. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  17. Inflow of halo gas from the direction of the Galactic north pole

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1984-01-01

    A far-UV echelle spectrum has been obtained of the UV-bright star vZ1128 in the globular cluster M3. This cluster lies in a direction 11 deg off the Galactic north pole at a distance of about 10 kpc. Only the usually strong interstellar lines are recognizable in the faint spectrum, and they show absorption at velocities from near +40 km/s to -100 km/s. Since in the direction observed the line-of-sight component of the Milky Way rotation is negligible, the detected velocities demonstrate for this direction the motion of gas from the Milky Way halo toward the disk. Gas returning to the disk in a galactic fountainlike flow may explain the observations.

  18. Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  19. Emission from the Local Galactic Halo in the 1/4 keV Band

    NASA Astrophysics Data System (ADS)

    Juda, M.

    1994-12-01

    Pointed observations with the ROSAT PSPC toward clouds at high galactic latitude provide a unique opportunity to probe emission from the local galactic halo in the 1/4 keV band. I present data from five fields toward clouds at |b| > 60(deg) identified through their IRAS 100 microns emission, two in the north galactic hemisphere and three in the south. In four of the five fields significant shadows are detected (2 north, 2 south). The derivation of the brightness of the shadowed component depends strongly on the assumed location and amount of absorbing material. Scaling the IRAS 100 microns emission by 10(20) H atom cm(-2) /MJy sr(-1) and correcting for the difference from the observed average 21 cm derived column density, the implied brightness of the distant emitting component is the same for the two northern latitude fields at { ~ 1.2*E(-3) counts s(-1) arcmin(-2}) ; this brightness is lower than that seen in the direction of Draco (Burrows & Mendenhall 1991, Snowden et al. 1991) and higher than in Ursa Major (Snowden et al. 1994). The two southern fields also have the same derived distant brightness at nearly the same level as the northern fields, { ~ 1.0*E(-3) counts s(-1) arcmin(-2}) . Approximately 20% of this emission may be attributed to an extragalactic background (Hasinger et al. 1993). The remaining emission, { ~ 0.8*E(-3) counts s(-1) arcmin(-2}) , would be provided by the local galactic halo. If these x-rays arise from a collisionally excited plasma at a temperature of 10(6) K the required emission measure is { ~ 0.0033 cm(-6) pc}. Burrows & Mendenhall 1991, Nature, 351, 629. Hasinger et al. 1993, A&A, 275, 1. Snowden et al. 1991, Science, 252, 1529. Snowden et al. 1994, ApJ, 430, 601.

  20. The halo+cluster system of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Milone, A. P.; Yong, D.; Dotter, A.; Da Costa, G.; Asplund, M.; Jerjen, H.; Mackey, D.; Norris, J.; Cassisi, S.; Sbordone, L.; Stetson, P. B.; Weiss, A.; Aparicio, A.; Bedin, L. R.; Lind, K.; Monelli, M.; Piotto, G.; Angeloni, R.; Buonanno, R.

    2014-08-01

    NGC 1851 is surrounded by a stellar component that extends more than 10 times beyond the tidal radius. Although the nature of this stellar structure is not known, it has been suggested to be a sparse halo of stars or associated with a stellar stream. We analyse the nature of this intriguing stellar component surrounding NGC 1851 by investigating its radial velocities and chemical composition, in particular in comparison with those of the central cluster analysed in a homogeneous manner. In total we observed 23 stars in the halo with radial velocities consistent with NGC 1851, and for 15 of them we infer [Fe/H] abundances. Our results show that (i) stars dynamically linked to NGC 1851 are present at least up to ˜2.5 tidal radii, supporting the presence of a halo of stars surrounding the cluster; (ii) apart from the NGC 1851 radial velocity-like stars, our observed velocity distribution agrees with that expected from Galactic models, suggesting that no other substructure (such as a stream) at different radial velocities is present in our field; (iii) the chemical abundances for the s-process elements Sr and Ba are consistent with the s-normal stars observed in NGC 1851; (iv) all halo stars have metallicities, and abundances for the other studied elements Ca, Mg and Cr, consistent with those exhibited by the cluster. The complexity of the whole NGC 1851 cluster+halo system may agree with the scenario of a tidally disrupted dwarf galaxy in which NGC 1851 was originally embedded.

  1. Weak Galactic halo-Fornax dSph connection from RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Fiorentino, G.; Monelli, M.; Stetson, P. B.; Bono, G.; Gallart, C.; Martínez-Vázquez, C. E.; Bernard, E. J.; Massari, D.; Braga, V. F.; Dall'Ora, M.

    2017-03-01

    Aims: For the first time accurate pulsation properties of the ancient variable stars of the Fornax dwarf spheroidal galaxy (dSph) are discussed in the broad context of galaxy formation and evolution. Methods: Homogeneous multi-band BVI optical photometry of spanning twenty years has allowed us to identify and characterize more than 1400 RR Lyrae stars (RRLs) in this galaxy. Results: Roughly 70% are new discoveries. We investigate the period-amplitude distribution and find that Fornax shows a lack of high amplitude (AV ⪆ 0.75 mag) short period fundamental-mode RRLs (P ≲ 0.48 d, HASPs). These objects occur in stellar populations more metal-rich than [Fe/H] -1.5 and they are common in the Galactic halo (hereafter Halo) and in globulars. This evidence suggests that old Fornax stars (older than 10 Gyr) are relatively metal poor. A detailed statistical analysis of the role of the present-day Fornax dSph in reproducing the Halo period distribution shows that it can only account for up to 20% of the Halo when combined with RRLs in massive dwarf galaxies (Sagittarius dSph, Large Magellanic Cloud). This finding indicates that Fornax-like systems played a smaller role than massive dwarfs in building up the Halo. Conclusions: We also discuss the occurrence of HASPs in connection with the luminosity and the early chemical composition of nearby dwarf galaxies. We find that, independently of their individual star formation histories, bright (MV ≲ -13.5 mag) galaxies have HASPs, whereas faint ones (MV ⪆ -11 mag) do not. Interestingly enough, Fornax belongs to a luminosity range (-11 < MV ≲ -13.5 mag) in which the occurrence of HASPs appears to be correlated with the early star formation and chemical enrichment of the host galaxy.

  2. V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT

    SciTech Connect

    Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.; Walter, Frederick M.

    2011-04-15

    We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similar to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.

  3. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ˜9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ˜13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  4. Discovery of a Faint Outer Halo Milky Way Star Cluster in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut; Milone, Antonino P.; Mackey, Dougal; Da Costa, Gary S.

    2015-04-01

    We report the discovery of a new, low-luminosity star cluster in the outer halo of the Milky Way. High-quality gr photometry is presented, from which a color-magnitude diagram is constructed, and estimates of age, [Fe/H], [α/Fe], and distance are derived. The star cluster, which we designate as Kim 2, lies at a heliocentric distance of ˜105 kpc. With a half-light radius of ˜12.8 pc and ellipticity of ɛ ˜ 0.12, it shares the properties of outer halo globular clusters, except for at higher metallicity ([Fe/H] ˜ -1.0) and lower luminosity ({{M}V}˜ -1.5). These parameters are similar to those for the globular cluster AM 4, which is considered to be associated with the Sagittarius dwarf spheroidal galaxy. We find evidence of dynamical mass segregation and the presence of extra-tidal stars that suggests that Kim 2 is most likely a star cluster. Spectroscopic observations for radial-velocity membership and chemical abundance measurements are needed to further understand the nature of the object.

  5. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  6. Structural Parameters for Globular Clusters in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ma, Jun

    2012-06-01

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy Eb with mass M mod indicates that the "fundamental plane" does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  7. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  8. HOT GAS IN THE GALACTIC THICK DISK AND HALO NEAR THE DRACO CLOUD

    SciTech Connect

    Shelton, R. L.; Henley, D. B.; Dixon, W. V. E-mail: dbh@physast.uga.ed

    2010-10-10

    This paper examines the ultraviolet and X-ray photons generated by hot gas in the Galactic thick disk or halo in the Draco region of the northern hemisphere. Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O VIII, sampling temperatures of {approx}10{sup 5} to {approx}3 x 10{sup 6} K. We measured the O VI, O VII, and O VIII intensities from FUSE and XMM-Newton data and subtracted off the local contributions in order to deduce the thick disk/halo contributions. These were supplemented with published C IV intensity and O VI column density measurements. Our estimate of the thermal pressure in the O VI-rich thick disk/halo gas, p{sub th}/k = 6500{sup +2500}{sub -2600} K cm{sup -3}, suggests that the thick disk/halo is more highly pressurized than would be expected from theoretical analyses. The ratios of C IV to O VI to O VII to O VIII intensities were compared with those predicted by theoretical models. Gas which was heated to 3 x 10{sup 6} K then allowed to cool radiatively cannot produce enough C IV or O VI-generated photons per O VII or O VIII-generated photon. Producing enough C IV and O VI emission requires heating additional gas to 10{sup 5} K < T < 10{sup 6} K. However, shock heating, which provides heating across this temperature range, overproduces O VI relative to the others. Obtaining the observed mix may require a combination of several processes, including some amount of shock heating, heat conduction, and mixing, as well as radiative cooling of very hot gas.

  9. Hot Gas in the Galactic Thick Disk and Halo Near the Draco Cloud

    NASA Astrophysics Data System (ADS)

    Shelton, R. L.; Henley, D. B.; Dixon, W. V.

    2010-10-01

    This paper examines the ultraviolet and X-ray photons generated by hot gas in the Galactic thick disk or halo in the Draco region of the northern hemisphere. Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O VIII, sampling temperatures of ~105 to ~3 × 106 K. We measured the O VI, O VII, and O VIII intensities from FUSE and XMM-Newton data and subtracted off the local contributions in order to deduce the thick disk/halo contributions. These were supplemented with published C IV intensity and O VI column density measurements. Our estimate of the thermal pressure in the O VI-rich thick disk/halo gas, p th/k = 6500+2500 -2600 K cm-3, suggests that the thick disk/halo is more highly pressurized than would be expected from theoretical analyses. The ratios of C IV to O VI to O VII to O VIII intensities were compared with those predicted by theoretical models. Gas which was heated to 3 × 106 K then allowed to cool radiatively cannot produce enough C IV or O VI-generated photons per O VII or O VIII-generated photon. Producing enough C IV and O VI emission requires heating additional gas to 105 K < T < 106 K. However, shock heating, which provides heating across this temperature range, overproduces O VI relative to the others. Obtaining the observed mix may require a combination of several processes, including some amount of shock heating, heat conduction, and mixing, as well as radiative cooling of very hot gas.

  10. Searching for Gravitational Radiation from Binary Black Hole MACHOs in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.

    2007-05-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) is one of a new generation of detectors of gravitational radiation. The existence of gravitational radiation was first predicted by Einstein in 1916, however gravitational waves have not yet been directly observed. One source of gravitation radiation is binary inspiral. Two compact bodies orbiting each other, such as a pair of black holes, lose energy to gravitational radiation. As the system loses energy the bodies spiral towards each other. This causes their orbital speed and the amount of gravitational radiation to increase, producing a characteristic ``chirp'' waveform in the LIGO sensitive band. In this thesis, matched filtering of LIGO science data is used to search for low mass binary systems in the halo of dark matter surrounding the Milky Way. Observations of gravitational microlensing events of stars in the Large Magellanic Cloud suggest that some fraction of the dark matter in the halo may be in the form of Massive Astrophysical Compact Halo Objects (MACHOs). It has been proposed that low mass black holes formed in the early universe may be a component of the MACHO population; some fraction of these black hole MACHOs will be in binary systems and detectable by LIGO. The inspiral from a MACHO binary composed of two 0.5 solar mass black holes enters the LIGO sensitive band around 40 Hz. The chirp signal increases in amplitude and frequency, sweeping through the sensitive band to 4400 Hz in 140 seconds. By using evidence from microlensing events and theoretical predictions of the population an upper limit is placed on the rate of black hole MACHO inspirals in the galactic halo.

  11. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  12. Simultaneous orbit fitting of stellar streams: Constraining the galactic dark matter halo

    NASA Astrophysics Data System (ADS)

    Willett, Benjamin Arthur

    2010-12-01

    The Milky Way Galaxy serves as a laboratory for testing models of galaxy formation. Discovering the nature of dark matter is often cited as the second most important problem in astrophysics, preceded only by dark energy. Mapping the structure and dynamics of the Milky Way Galaxy can tell us how galaxies form, and place constraints on the properties of dark matter. We can map the distribution of dark matter in the Milky Way using tidal streams, collections of stars that have been gravitationally stripped from satellite dwarf galaxies and globular clusters. By knowing the positions and velocities of these stars, and assuming they came from a compact source, we can follow them back in time and constrain the shape of the Milky Way dark matter halo. This Thesis presents a method that allows us to constrain the parameters of a static Galactic gravitational potential using the data from any number of tidal debris streams. The method is tested on simulated tidal streams, and successfully recovers the original model parameters in most cases. The importance of simultaneously fitting the measured rotation curve of the Milky Way is explored, and the strengths and weaknesses of the algorithm are discussed. The orbit fitting algorithm is applied independently to the Stream of Grillmair and Dionatos (GD-1), the Orphan Stream, and the Cetus Polar Stream (CPS). We show that no known globular cluster or dwarf galaxy in the Milky Way has kinematics consistent with being the progenitor of the GD-1 stream. The Orphan Stream constrains the Milky Way dark matter halo as having a mass at the low end of previous measurements, giving a best fit halo speed of vhalo = 73 +/- 24 km s-1, compared to typical values of vhalo ≈ 115 km s -1. A lower halo speed implies a less massive halo. The GD-1 and Orphan streams are then fit simultaneously with the Sagittarius Dwarf Tidal Stream (Sgr), within a triaxial dark matter halo. Results for restricted triaxial cases are shown to be consistent with

  13. XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD

    SciTech Connect

    Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.; Stancil, Phillip C.

    2015-02-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, and two representing SWCX emission. We found that the resulting halo model parameters (temperature T {sub h} ≈ 2 × 10{sup 6} K, emission measure E{sub h}≈4×10{sup −3} cm{sup −6} pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.

  14. Changes in interstellar atomic abundances from the galactic plane to the halo

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1982-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.

  15. Domain wall model in the galactic Bose-Einstein condensate halo

    SciTech Connect

    Souza, J.C.C. de; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2013-05-01

    We assume that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [1], can present topological defects, namely domain walls, arising as the dark soliton solution for the Gross-Pitaevskii equation in a self-graviting potential. We investigate the influence that such substructures would have in the gravitational interactions within a galaxy. We find that, for the simple domain wall model proposed, the effects are too small to be identified, either by means of a local measurement of the gradient of the gravitational field or by analysing galaxy rotation curves. In the first case, the gradient of the gravitational field in the vicinity of the domain wall would be 10{sup −31} (m/s{sup 2})/m. In the second case, the ratio of the tangential velocity correction of a star due to the presence of the domain wall to the velocity in the spherical symmetric case would be 10{sup −8}.

  16. Hot subdwarf stars in the Galactic halo Tracers of prominent events in late stellar evolution

    NASA Astrophysics Data System (ADS)

    Geier, Stephan; Kupfer, Thomas; Schaffenroth, Veronika; Heber, Ulrich

    2016-08-01

    Hot subdwarf stars (sdO/Bs) are the stripped cores of red giants located at the bluest extension of the horizontal branch. They constitute the dominant population of UV-bright stars in old stellar environments and are most likely formed by binary interactions. We perform the first systematic, spectroscopic analysis of a sample of those stars in the Galactic halo based on data from SDSS. In the course of this project we discovered 177 close binary candidates. A significant fraction of the sdB binaries turned out to have close substellar companions, which shows that brown dwarfs and planets can significantly influence late stellar evolution. Close hot subdwarf binaries with massive white dwarf companions on the other hand are good candidates for the progenitors of type Ia supernovae. We discovered a hypervelocity star, which not only turned out to be the fastest unbound star known in our Galaxy, but also the surviving companion of such a supernova explosion.

  17. Light bending in the galactic halo by Rindler-Ishak method

    SciTech Connect

    Bhattacharya, Amrita; Nandi, Kamal K.; Isaev, Ruslan; Scalia, Massimo; Cattani, Carlo E-mail: subfear@gmail.com E-mail: ccattani@unisa.it

    2010-09-01

    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant Λ appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the exact Mannheim-Kazanas-de Sitter solution of the Weyl conformal gravity, nicely yields the expected answer together with several other physically interesting new terms. Apart from Λ, the solution is parametrized by a conformal parameter γ, which is known to play a dominant role in the galactic halo gravity. The application of the method yields exactly the same γ− correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.

  18. Particle Dark Matter in the galactic halo: results from DAMA/LIBRA

    SciTech Connect

    Bernabei, R.; Belli, P.; Nozzoli, F.; Montecchia, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Presperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, X. H.; Sheng, X. D.

    2010-02-10

    The DAMA/LIBRA experiment at the Gran Sasso National Laboratory of the I.N.F.N. has confirmed with higher sensitivity the model independent evidence for Dark Matter (DM) particles in the galactic halo obtained by the former DAMA/NaI experiment by investigating the DM annual modulation signature. Considering the data collected by DAMA/LIBRA together with the data collected by the former DAMA/NaI (cumulative exposure of 0.82 tonxyr) a confidence level of 8.2 sigma has been achieved. The experiment is in data taking; a first upgrading of the set-up has been carried out in Spetember 2008 and a second one--aiming to decrease the experimental energy threshold--is foreseen in September 2010.

  19. RR Lyrae in XSTPS: The Halo Density Profile in the North Galactic Cap

    NASA Astrophysics Data System (ADS)

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.; Zhang, H.-H.; Liu, X.-W.; Zhao, H.-B.; Yao, J.-S.

    2014-06-01

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg2 at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more than 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.

  20. RR Lyrae in XSTPS: The halo density profile in the north galactic cap

    SciTech Connect

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.; Liu, X.-W.; Zhang, H.-H.; Zhao, H.-B.; Yao, J.-S. E-mail: msmith@shao.ac.cn

    2014-06-20

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg{sup 2} at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more than 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.

  1. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-05-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] < -4, while the latter represents the majority of EMP stars with {approx}<[Fe/H]> - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  2. An HST/ACS view of the inhomogeneous outer halo of M31

    NASA Astrophysics Data System (ADS)

    Richardson, J. C.; Ferguson, A. M. N.; Mackey, A. D.; Irwin, M. J.; Chapman, S. C.; Huxor, A.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2009-07-01

    We present a high precision photometric view of the stellar populations in the outer halo of M31, using data taken with the Hubble Space Telescope/Advanced Camera for Surveys. We analyse the field populations adjacent to 11 luminous globular clusters which sample the galactocentric radial range 18 <~ R <~ 100kpc and reach a photometric depth of ~2.5mag below the horizontal branch (mF814W ~ 27mag). The colour-magnitude diagrams are well populated out to ~60kpc and exhibit relatively metal-rich red giant branches, with the densest fields also showing evidence for prominent red clumps. We use the Dartmouth isochrones to construct metallicity distribution functions which confirm the presence of dominant populations with <[Fe/H]> ~ -0.6 to -1.0dex and considerable metallicity dispersions of 0.2 to 0.3dex (assuming a 10 Gyr population and scaled-solar abundances). The average metallicity over the range 30-60kpc is [Fe/H] = -0.80 +/- 0.14dex, with no evidence for a significant radial gradient. Metal-poor stars ([Fe/H] <= -1.3) typically account for <~10-20 per cent of the population in each field, irrespective of radius. Assuming our fields are unbiased probes of the dominant stellar populations in these parts, we find that the M31 outer halo remains considerably more metal rich than that of the Milky Way out to at least 60kpc. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. E-mail: jcr@roe.ac.uk

  3. ANISOTROPY AS A PROBE OF THE GALACTIC COSMIC-RAY PROPAGATION AND HALO MAGNETIC FIELD

    SciTech Connect

    Qu, Xiao-bo; Zhang, Yi; Liu, Cheng; Hu, Hong-bo; Xue, Liang

    2012-05-01

    The anisotropy of cosmic rays (CRs) in the solar vicinity is generally attributed to CR streaming due to the discrete distribution of CR sources or local magnetic field modulation. Recently, the two-dimensional large-scale CR anisotropy has been measured by many experiments in the TeV-PeV energy range in both hemispheres. The tail-in excess along the tangential direction of the local spiral arm and the loss cone deficit pointing to the north Galactic pole direction agree with what have been obtained in tens to hundreds of GeV. The persistence of the two large-scale anisotropy structures in such a wide energy range suggests that the anisotropy might be due to global streaming of the Galactic CRs (GCRs). This work tries to extend the observed CR anisotropy picture from the solar system to the whole galaxy. In such a case, we can find a new interesting signature, a loop of GCR streaming, of the GCR propagation. We further calculate the overall GCR streaming induced magnetic field, and find a qualitative consistency with the observed structure of the halo magnetic field.

  4. The Smith Cloud and its dark matter halo: survival of a Galactic disc passage

    NASA Astrophysics Data System (ADS)

    Nichols, Matthew; Mirabal, Nestor; Agertz, Oscar; Lockman, Felix J.; Bland-Hawthorn, Joss

    2014-08-01

    Under conservative assumptions about the Galaxy, the derived velocity of the Smith Cloud indicates that it will have undergone at least one passage of the Galactic disc. Using hydrodynamic simulations, we examine the present-day structure of the Smith Cloud and find that a dark matter supported cloud is able to reproduce the observed present-day neutral hydrogen mass, column density distribution and morphology. In this case, the dark matter halo becomes elongated owing to the tidal interaction with the Galactic disc. Clouds in models neglecting dark matter confinement are destroyed upon disc passage, unless the initial cloud mass is well in excess of what is observed today. We then determine integrated flux upper limits to the gamma-ray emission around such a hypothesized dark matter core in the Smith Cloud. No statistically significant core or extended gamma-ray emission are detected down to a 95 per cent confidence level upper limit of 1.4 × 10-10 ph cm-2 s-1 in the 1-300 GeV energy range. For the derived distance of 12.4 kpc, the Fermi upper limits set the first tentative constraints on the dark matter cross-sections annihilating into τ+τ- and bbar{b} for a high-velocity cloud.

  5. THE ORIGIN OF THE HOT GAS IN THE GALACTIC HALO: CONFRONTING MODELS WITH XMM-NEWTON OBSERVATIONS

    SciTech Connect

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin; Joung, M. Ryan; Mac Low, Mordecai-Mark

    2010-11-01

    We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between l = 120{sup 0} and l = 240{sup 0}. These observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky ({approx}(1.8-2.4) x 10{sup 6} K), whereas the halo emission measure varies by an order of magnitude ({approx}0.0005-0.006 cm{sup -6} pc). When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in isolated extraplanar supernova (SN) remnants-this model predicts emission an order of magnitude too faint. A model of an SN-driven interstellar medium, including the flow of hot gas from the disk into the halo in a galactic fountain, gives good agreement with the observed 0.4-2.0 keV surface brightness. This model overpredicts the halo X-ray temperature by a factor of {approx}2, but there are a several possible explanations for this discrepancy. We therefore conclude that a major (possibly dominant) contributor to the halo X-ray emission observed with XMM-Newton is a fountain of hot gas driven into the halo by disk SNe. However, we cannot rule out the possibility that the extended hot halo of accreted material predicted by disk galaxy formation models also contributes to the emission.

  6. Neutron-Capture Elements in Low Metallicity Stars within the Inner Galactic Halo

    NASA Astrophysics Data System (ADS)

    Jumper, Kenneth A.; Burris, Debra L.

    2017-01-01

    The inner galactic halo is home to some of the oldest and low metallicity stars known. These stars are local enough to observe heavy element synthesis in the oldest stars in our galaxy. The purpose of this research is to analyze the distributions of neutron capture elements in low metallicity stars to help us understand the nature of first stars, which are responsible for the chemical enrichment of our galaxy, and consequently get man closer to an answer to some of the most fundamental questions about the universe.. The researchers will analyze and measure the stellar abundances of metal poor stars using MOOG’s spectral synthesis. Heavy element formation is connected to stellar evolution, thus by observing the chronometric ages of the distributions of Thorium/Europium, one can determine the age of the oldest stars. Analyzing the distribution of Uranium and Thorium as chronometers can set a lower limit on the age of the Universe. The chemical composition in our oldest observable stars resemble that of the earliest stars. This demonstrates that these stars were not synthesized internally but a result of previous deaths of stars generations before. This in turn provides useful information about the first star’s formation, evolution and nucleosynthesis of stars, and the arrangement of the structure of the early Universe. The most r-process rich halo stars abundances are consistent with a scaled solar system r-process abundance distribution. Also, there is symmetry in the rare earth elements in the stars within the Galactic halo. However the lighter n-capture abundances don’t conform to the solar pattern. This suggests the possibility of multiple synthesis mechanisms for the n capture elements. The combinations could include the main r-process, V-P process (core collapsed super- novae), charged particle reactions with Beta delayed fission, and the weak r-process. The weak r-process is sometimes called the incomplete r-process does not have enough neutrons to

  7. Colliding galaxies: Global star formation and the creation of hot galactic halos

    NASA Astrophysics Data System (ADS)

    Hearn, Nathan Charles

    Galaxies are fundamental components of the structure of the universe, and mergers and collisions between galaxies are thought to have played an essential role in the formation of the galaxies that exist today. Collisions between galaxies of similar mass often trigger large amounts of star formation over short timescales. These collisions provide excellent laboratories for the study of collision-induced star formation and the production of hot halo material. In order to gain more insight into the processes involved in large-scale star formation, computer simulations of galaxy collisions have been compared with observations of real colliding systems exhibiting starburst activity. These comparisons show a correlation between star forming regions in the observed galaxies and regions of strong shocks and enhanced gas density that formed in the simulated systems. The evolution of structure in the simulations has been used in conjunction with observations taken at multiple wavelengths to determine the history of collision-induced star formation in these galaxies, and to calculate estimates on the timing and duration of the different star formation episodes. A number of galaxies have been found to possess extensive halos of hot gas enveloping, and sometimes extending well beyond, the visible galactic components; many of these systems have been involved in a recent collision or merger with a similarly-massive galaxy. The ram pressure and large-scale gravitational contraction that occur in the gaseous components of a colliding system can produce extensive regions of shock-heated gas; this hot material may serve to enrich an intergalactic or intracluster medium with heavy elements. I have written a new simulation code that incorporates thermal processes for the purpose of studying the role of shock heating and various cooling processes in the hot gas production mechanisms. It has been used to generate a model collision between two disk galaxies, which is compared with Arp 220

  8. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  9. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  10. Transonic galactic outflows in a dark matter halo with a central black hole

    NASA Astrophysics Data System (ADS)

    Igarashi, Asuka; Mori, Masao; Nitta, Shin-Ya

    We study fundamental properties of transonic galactic outflows in the gravitational potential of a cold dark matter halo (DMH) with a central super-massive black hole (SMBH) assuming an isothermal, steady and spherically symmetric state. Transonic solutions of galactic outflows are classified according to their topological features. As result, we find two types of transonic solutions distinguished by a magnitude relationship between the gravity of DMH and that of SMBH. The loci of transonic points for two types are different; one transonic point is formed at a central region (< 0.01kpc) and another is at a very distant region (> 100kpc). Also, mass fluxes and outflow velocities are different for two solutions. Thus, these solutions may differently influence the evolution of galaxies and the release of metals into the intergalactic space. Furthermore, we apply our model to the Sombrero galaxy. In this galaxy, the wide-spread hot gas is detected as the trace of galactic outflows while the star-formation rate is low, and the observed gas density distribution is similar to the hydrostatic state (Li et al. 2011). To solve this discrepancy, we propose a solution that this galaxy has a slowly accelerating outflow; the transonic point forms in a very distant region (~ 120 kpc) and the wide subsonic region spreads across the stellar distribution. Thus, the gas density distribution in the observed region is similar to the hydrostatic state. Such slowly accelerating outflows are different from high-velocity outflows conventionally studied (Igarashi et al. 2014). However, this isothermal model requires an unrealistically large mass flux. Then, we apply the polytropic model to this galaxy incorporating mass flux supplied by stellar components. We find that it can reproduce the observed gas density and the temperature distributions with the realistic mass flux. Thus, our polytropic model successfully demonstrates the existence of the slowly accelerating outflow in the Sombrero

  11. Kinematic structure in the Galactic halo at the North Galactic Pole: RR Lyrae and blue horizontal branch stars show different kinematics

    NASA Astrophysics Data System (ADS)

    Kinman, T. D.; Cacciari, C.; Bragaglia, A.; Buzzoni, A.; Spagna, A.

    2007-03-01

    Radial velocities and proper motions (derived from the GSC-II data base) are given for 38 RR Lyrae (RRL) stars and 79 blue horizontal branch (BHB) stars in a ~200 deg2 area around the North Galactic Pole (NGP). Both heliocentric (UVW) and galactocentric (VR, Vφ, Vz) space motions are derived for these stars using a homogeneous distance scale consistent with (m - M)0 = 18.52 for the Large Magellanic Cloud (LMC). An analysis of the 26 RRL and 52 BHB stars whose height (Z) above the plane is less than 8 kpc shows that this halo sample is not homogeneous. Our BHB sample (like that of Sirko et al.) has a zero galactic rotation (Vφ) and roughly isotropic velocity dispersions. The RRL sample shows a definite retrograde rotation (Vφ = -95 +/- 29 kms-1) and non-isotropic velocity dispersions. The combined BHB and RRL sample has a retrograde galactic rotation (V) that is similar to that found by Majewski for his sample of subdwarfs in Selected Area (SA) 57. The velocity dispersion of the RRL stars that have a positive W motion is significantly smaller than the dispersion of those `streaming down' with a negative W. Also, the ratio of RRL to BHB stars is smaller for the sample that has positive W. Our halo sample occupies 10.4 kpc3 at a mean height of 5 kpc above the Galactic plane. In this volume, one component (rich in RRL stars) shows retrograde rotation and the streaming motion that we associate with the accretion process. The other component (traced by the BHB stars) shows essentially no rotation and less evidence of streaming. These two components have horizontal branch (HB) morphologies that suggest that they may be the field star equivalents of the young and old halo globular clusters, respectively. Clearly, it is quite desirable to use more than one tracer in any kinematic analysis of the halo.

  12. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    NASA Astrophysics Data System (ADS)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    White dwarfs are fossil stars that can encode valuable information about the formation, evolution and other properties of the different Galactic stellar populations. They are the direct descendants of main-sequence stars with masses ranging from ∼0.8 M⊙ to ∼10 M⊙, which means that over 95% of the stars in our Galaxy will eventually become white dwarfs. This fact, correlated with the excellent quality of modern white dwarf cooling models, clearly marks their potential as cosmic clocks for estimating the ages of Galactic stellar populations, as well as place white dwarfs as privileged objects in understanding several actual astrophysical problems. Stellar population synthesis methods (Tinsley, 1968) use theoretical evolutionary sequences to reproduce luminosities, temperatures and other parameters building up to a synthetic population that can be readily compared to an observed sample of stars. Such techniques are perfect for the study of the different white dwarf populations in our Galaxy and their strength has only grown in recent years, fueled both by improved evolutionary sequences and detailed cooling tracks and also by the ever growing samples of white dwarfs identified through modern survey missions. In particular, the work presented in this thesis uses an updated population synthesis code based on previous versions of the code from our group (García-Berro et al., 1999; Torres et al., 2002; García-Berro et al., 2004; Torres et al., 2005; Camacho et al., 2014). Our synthetic population code, based on Monte Carlo statistical techniques, has been extensively used in the study of the disk (García-Berro et al., 1! 999; Torres et al., 2001; Torres & García-Berro, 2016) and halo (Torres et al., 2002; García-Berro et al., 2004) single white-dwarf population, white dwarf plus main sequence stars (Camacho et al., 2014), as well as open clusters such as NGC 6791 (García-Berro et al., 2010; García-Berro et al., 2011) or globular clusters, as 47 Tuc (Garc

  13. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  14. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  15. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-age Open Cluster Tombaugh 1

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.

  16. F Turnoff Distribution in the Galactic Halo Using Globular Clusters as Proxies

    NASA Astrophysics Data System (ADS)

    Newby, Matthew; Newberg, H. J.; Simones, J.; Monaco, M.; Cole, N.

    2012-01-01

    F turnoff stars are important tools for studying Galactic halo substructure because they are plentiful, luminous, and can be easily selected by their photometric colors from large surveys such as the Sloan Digital Sky Survey (SDSS). We describe the absolute magnitude distribution of color-selected F turnoff stars, as measured from SDSS data, for eleven globular clusters in the Milky Way halo. We find that the absolute magnitude distribution of turnoff stars is intrinsically the same for all clusters studied, and is well fit by two half Gaussian functions, centered at μ = 4.18, with a bright-side σ = 0.36, and with a faint-side σ = 0.76. However, the color errors and detection efficiencies cause the observed σ of the faint-side Gaussian to change with magnitude due to contamination from redder main sequence stars (40% at 21st magnitude). We present a function that will correct for this magnitude-dependent change in selected stellar populations, when calculating stellar density from color-selected turnoff stars. We also present a consistent set of distances, ages and metallicities for eleven clusters in the SDSS Data Release 7. We calculate a linear correction function to Padova isochrones so that they are consistent with SDSS globular cluster data from previous papers. We show that our cluster population falls along the theoretical Age-Metallicity Relationship (AMR), and further find that isochrones for stellar populations on the AMR have very similar turnoffs; increasing metallicity and decreasing age conspire to produce similar turnoff magnitudes and colors for all old clusters that lie on the AMR. This research was supported by NSF grant AST 10-09670 and the NASA/NY Space Grant.

  17. Gas motions within high-velocity cloud Complex A reveal that it is dissolving into the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Huey-You, Cannan; Barger, Kathleen; Nidever, David L.; Rueff, Katherine Meredith

    2017-01-01

    A massive gas cloud, known as Complex A, is headed towards our Galaxy. This high-velocity cloud is made up of 2 million solar masses of neutral and ionized hydrogen. This cloud is traveling through the Galactic halo, which causes a headwind that damages the cloud. Light escaping the Milky Way’s disk also hits the cloud and ionizes it. Using 21-cm radio observations from the Green Bank Telescope, we studied the motions of the gas. We found that diffuse gas is lagging behind the denser parts of the cloud. These motions suggest that gas is being stripped off the cloud and that it is dissolving into the Galactic halo. This disruptive process means that less gas will safely reach the disk of Milky Way and therefore the cloud will provide less gas for making future stars.

  18. Characterizing the high-velocity stars of RAVE: the discovery of a metal-rich halo star born in the Galactic disc

    NASA Astrophysics Data System (ADS)

    Hawkins, K.; Kordopatis, G.; Gilmore, G.; Masseron, T.; Wyse, R. F. G.; Ruchti, G.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Kunder, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W. A.; Scholz, R. D.; Seabroke, G.; Siebert, A.; Steinmetz, M.; Watson, F.; Zwitter, T.

    2015-02-01

    We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities larger than 275 km s-1. With 6D position and velocity information, we integrated the orbits of the HiVel stars and found that, on average, they reach out to 13 kpc from the Galactic plane and have relatively eccentric orbits consistent with the Galactic halo. Using the stellar parameters and [α/Fe] estimates from RAVE, we found the metallicity distribution of the HiVel stars peak at [M/H] = -1.2 dex and is chemically consistent with the inner halo. There are a few notable exceptions that include a hypervelocity star candidate, an extremely HiVel bound halo star, and one star that is kinematically consistent with the halo but chemically consistent with the disc. High-resolution spectra were obtained for the metal-rich HiVel star candidate and the second highest velocity star in the sample. Using these high-resolution data, we report the discovery of a metal-rich halo star that has likely been dynamically ejected into the halo from the Galactic thick disc. This discovery could aid in explaining the assembly of the most metal-rich component of the Galactic halo.

  19. An ancient F-type subdwarf from the halo crossing the Galactic plane

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.; Heber, U.; Heuser, C.; Ziegerer, E.; Geier, S.; Niederhofer, F.

    2015-02-01

    Aims: We selected the bluest object, WISE J0725-2351, from Luhman's new high proper motion (HPM) survey based on observations with the Wide-field Infrared Survey Explorer (WISE) for spectroscopic follow-up observations. Our aim was to unravel the nature of this relatively bright (V ~ 12, J ~ 11) HPM star (μ = 267 mas/yr). Methods: We obtained low- and medium-resolution spectra with the European Southern Observatory (ESO) New Technology Telescope (NTT)/EFOSC2 and Very Large Telescope (VLT)/X-Shooter instruments, investigated the radial velocity and performed a quantitative spectral analysis that allowed us to determine physical parameters. The fit of the spectral energy distribution based on the available photometry to low-metallicity model spectra and the similarity of our target to a metal-poor benchmark star (HD 84937) allowed us to estimate the distance and space velocity. Results: As in the case of HD 84937, we classified WISE J0725-2351 as sdF5: or a metal-poor turnoff star with [ Fe/H ] = -2.0 ± 0.2, Teff = 6250 ± 100 K, log g = 4.0 ± 0.2, and a possible age of about 12 Gyr. At an estimated distance of more than 400 pc, its proper motion translates to a tangential velocity of more than 500 km s-1. Together with its constant (on timescales of hours, days, and months) and large radial velocity (about +240 km s-1), the resulting Galactic restframe velocity is about 460 km s-1, implying a bound retrograde orbit for this extreme halo object that currently crosses the Galactic plane at high speed. Based on observations at the La Silla-Paranal Observatory of the European Southern Observatory for programmes 092.D-0040(A) and 093.D-0127(A).

  20. Sc and neutron-capture abundances in Galactic low- and high-α field halo stars

    NASA Astrophysics Data System (ADS)

    Fishlock, C. K.; Yong, D.; Karakas, A. I.; Alves-Brito, A.; Meléndez, J.; Nissen, P. E.; Kobayashi, C.; Casey, A. R.

    2017-01-01

    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd, and Eu for a sample of 27 Galactic dwarf stars with -1.5 < [Fe/H] <-0.8. We also measure the iron-peak element Sc. These stars separate into three populations (low- and high-α halo and thick-disc stars) based on the [α/Fe] abundance ratio and their kinematics as discovered by Nissen & Schuster. We find differences between the low- and high-α groups in the abundance ratios of [Sc/Fe], [Zr/Fe], [La/Zr], [Y/Eu], and [Ba/Eu] when including Y and Ba from Nissen & Schuster. For all ratios except [La/Zr], the low-α stars have a lower abundance compared to the high-α stars. The low-α stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-α stars. These distinct chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-α population. By comparing the low-α population with AGB stellar models, we place constraints on the mass range of the AGB stars.

  1. The Relative Ages and Fractions of the Accreted and In Situ Populations in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hawkins, K.; Jofré, P.; Masseron, T.

    2016-10-01

    The inner Galactic halo is thought to be formed by a combination of stars formed in situ and in dwarf galaxies that were accreted onto the Milky Way at later times. The two populations have been shown to be chemically distinct primarily in the α-elements such that the accreted population has lower [α/Fe] compared to the in situ stars at a constant metallicity. In this paper, we outline a powerful new spectral-indexing method to measure the [α/Fe] from low-resolution Sloan Digital Sky Survey spectra, and use the method in addition to turnoff temperature to study the relative age difference between, and age-metallicity relation of, the accreted and in situ populations. Our results indicate that at high metallicities the α-poor population is systematically younger than the α-rich population, but becomes coeval at low metallicities. Finally, we discuss the implication of this finding and potential applications for the new method.

  2. Young accreted globular clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2013-02-01

    We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.

  3. Major substructure in the M31 outer halo: the South-West Cloud

    NASA Astrophysics Data System (ADS)

    Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.

    2014-02-01

    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.

  4. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    SciTech Connect

    De Souza, J.C.C.; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  5. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material.

  6. Estimating Gaia's performance for O stars in the Outer Galactic plane using Herschel data

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Molinari, S.; Prusti, T.; Antoja, T.; Elia, D.; de Bruijne, J.

    2014-07-01

    It is in the less dense Outer Galaxy where Gaia can contribute much to stellar studies of the Galactic Plane. As O stars are by definition young objects, their positions and kinematics can still be related to their formation site and history. O star astrometry will not only be important for studies of high-mass star formation, such as triggered star-formation in shells, but also an interesting complement to the radio maser astrometry of star-forming regions and the structure of spiral arms. With the TLUSTY (Lanz & Hubeny 2013) model atmospheres and the nominal Gaia parallax uncertainty, we estimate the parallax uncertainty for all subtypes of main sequence O stars given a visual extinction. The expected extinction is an important limitation for Gaia's astrometric performance and we estimate the extinction from the column density maps calculated from the Herschel Infrared Galactic Plane survey (Molinari et al. 2010), a thermal cold dust emission survey of unprecedented angular resolution and sensitivity. In the 10∘ strip, taken to represent the first estimate of the average extinction in the Outer Galaxy, we find that most of the visual extinction is less than 10 mag. Only the most dense parts of the clouds have AV > 10 mag. Given these extinctions toward the Outer Galaxy, Gaia will provide accurate (5σ) astrometry for O stars in the Outer Galaxy up to distances of at least 4-6 kpc, which means that Gaia's O star astrometry will be able to transgress the Perseus arm and reach the less-known Outer Arm of the Milky Way (Rygl et al.https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_Rygl%2cK.pdf).

  7. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and

  8. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and

  9. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids

    NASA Astrophysics Data System (ADS)

    Yong, David; Carney, Bruce W.; Teixera de Almeida, Maria Luísa; Pohl, Brian L.

    2006-04-01

    We present metallicities, [Fe/H], and elemental abundance ratios, [X/Fe], for a sample of 24 Cepheids in the outer Galactic disk based on high-resolution echelle spectra. The sample members have galactocentric distances covering 12 kpc<=RGC<=17.2 kpc, making them the most distant Galactic Cepheids upon which detailed abundance analyses have been performed. We find subsolar ratios of [Fe/H] and overabundances of [α/Fe], [La/Fe], and [Eu/Fe] in the program stars. All abundance ratios exhibit a dispersion that exceeds the measurement uncertainties. As seen in our previous studies of old open clusters and field giants, enhanced ratios of [α/Fe] and [Eu/Fe] reveal that recent star formation has taken place in the outer disk with Type II supernovae preferentially contributing ejecta to the interstellar medium and with Type Ia supernovae playing only a minor role. The enhancements for La suggest that asymptotic giant branch stars have contributed to the chemical evolution of the outer Galactic disk. Some of the young Cepheids are more metal-poor than the older open clusters and field stars at comparable galactocentric distances. This demonstrates that the outer disk is not the end result of the isolated evolution of an ensemble of gas and stars. We showed previously that the older open clusters and field stars reached a basement metallicity at about 10-11 kpc. The younger Cepheids reach the same metallicity but at larger galactocentric distances, roughly 14 kpc. This suggests that the Galactic disk has been growing with time, as predicted from numerical simulations. The outer disk Cepheids appear to exhibit a bimodal distribution for [Fe/H] and [α/Fe]. Most of the Cepheids continue the trends with galactocentric distance exhibited by S. M. Andrievsky's larger Cepheid sample, and we refer to these stars as the ``Galactic Cepheids.'' A minority of the Cepheids show considerably lower [Fe/H] and higher [α/Fe], and we refer to these stars as the ``Merger Cepheids.'' One

  10. The gaseous galactic halo as inferred from the line spectra of the galaxies Markarian 509 and Fairall 9

    NASA Technical Reports Server (NTRS)

    York, D. G.; Songaila, A.; Blades, J. C.; Cowie, L. L.; Morton, D. C.; Wu, C.-C.

    1982-01-01

    Narrow interstellar absorption lines of S II 1259.52, Si II 1260.42, and Fe II 1608.46 due to gas in the disk and the halo of the Galaxy have been detected in the spectrum of the Seyfert galaxy Mrk 509 with the International Ultraviolet Explorer. This gas is also seen at higher resolution in the Ca II and Na I absorption lines in two components at LSR velocities of +6 and +62 km/s. In addition, narrow Ly-alpha and C IV absorption near the Seyfert redshift seem to be present in the spectrum. Si II 1260.42 absorption from the galactic disk and from the Magellanic Stream or the halo of the SMC have been detected with the IUE in the spectrum of Fairall 9. The observations of these two objects when combined with existing results are shown to be consistent with a corotating galactic halo having a height of less than 10 kpc at the sun.

  11. Polytropic transonic galactic outflows in a dark matter halo with a central black hole

    NASA Astrophysics Data System (ADS)

    Igarashi, Asuka; Mori, Masao; Nitta, Shin-ya

    2017-09-01

    Polytropic transonic solutions of spherically symmetric and steady galactic winds in the gravitational potential of a dark matter halo (DMH) with a supermassive black hole (SMBH) are studied. The solutions are classified in terms of their topological features, and the gravitational potential of the SMBH adds a new branch to the transonic solutions generated by the gravity of the DMH. The topological types of the transonic solutions depend on the mass distribution, the amount of supplied energy, the polytropic index γ and the slope α of the DMH mass distribution. When α becomes larger than a critical value αc, the transonic solution types change dramatically. Further, our model predicts that it is possible for a slowly accelerating outflow to exist, even in quiescent galaxies with small γ. This slowly accelerating outflow differs from those considered in many of the previous studies focusing on supersonic outflows in active star-forming galaxies. In addition, our model indicates that outflows in active star-forming galaxies have only one transonic point in the inner region (∼0.01 kpc). The locus of this transonic point does not strongly depend on γ. We apply the polytropic model incorporating mass flux supplied by stellar components to the Sombrero galaxy, and conclude that it can reproduce the observed gas density and the temperature distribution well. This result differs significantly from the isothermal model, which requires an unrealistically large mass flux. Thus, we conclude that the polytropic model is more realistic than the isothermal model, and that the Sombrero galaxy can have a slowly accelerating outflow.

  12. May 2005 Halo CMEs and Galactic Cosmic Ray Flux Changes at Earth's Orbit

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.; Alania, M. V.; Wawrzynczak, A.; Ygbuhay, R. C.; Fikani, M. M.

    2014-05-01

    The pressure corrected hourly data from the global network of cosmic ray detectors, measurements of the interplanetary magnetic field (IMF) intensity ( B) at Earth's orbit and its components B x , B y , B z (in the geocentric solar ecliptic coordinates) are used to conduct a comprehensive study of the galactic cosmic ray (GCR) intensity fluctuations caused by the halo coronal mass ejection of 13 May 2005. Distinct differences exist in GCR timelines recorded by neutron monitors (NMs) and multidirectional muon telescopes (MTs), the latter respond to the high rigidity portion of the GCR differential rigidity spectrum. The Forbush decrease (FD) onset in MTs is delayed (˜5 h) with respect to the onset of a geomagnetic storm sudden commencement (SSC) and a large pre-increase is present in MT data before, during, and after the SSC onset, of unknown origin. The rigidity spectrum, for a range of GCR rigidities (≤200 GV), is a power law in rigidity (R) with a negative exponent ( γ=-1.05) at GCR minimum intensity, leading us to infer that the quasi-linear theory of modulation is inconsistent with observations at high rigidities (>1 GV); the results support the force field theory of modulation. At present, we do not have a comprehensive model for the FD explaining quantitatively all the observational features but we present a preliminary model listing physical processes that may contribute to a FD timeline. We explored the connections between different phases of the FD and the power spectra of IMF components but did not find a sustained relationship.

  13. Light and Heavy Element Abundance Variations in the Outer Halo Globular Cluster NGC 6229

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Walker, Matthew G.

    2017-10-01

    NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R ≈ 38,000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -{138.1}-1.0+1.0 {km} {{{s}}}-1, a small dispersion of {3.8}-0.7+1.0 {km} {{{s}}}-1, and a relatively low {(M/{L}{{V}})}ȯ ={0.82}-0.28+0.49. The cluster is moderately metal-poor with < [{Fe}/{{H}}]> =-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La, Nd/Fe] ratios that are correlated with a small (∼0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of ω Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O–Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na, Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.

  14. A hadronic-leptonic model for the Fermi bubbles: Cosmic-rays in the galactic halo and radio emission

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2014-07-01

    We investigate non-thermal emission from the Fermi bubbles in a hadronic model. Cosmic-ray (CR) protons are accelerated at the forward shock of the bubbles. They interact with the background gas in the Galactic halo and create π{sup 0}-decay gamma-rays and secondary electrons through proton-proton interaction. We follow the evolution of the CR protons and electrons by calculating their distribution functions. We find that the spectrum and the intensity profiles of π{sup 0}-decay gamma-rays are consistent with observations. We predict that the shock front is located far ahead of the gamma-ray boundary of the Fermi bubbles. This naturally explains the fact that a clear temperature jump of thermal gas was not discovered at the gamma-ray boundary in recent Suzaku observations. We also consider re-acceleration of the background CRs in the Galactic halo at the shock front. We find that it can significantly affect the gamma-rays from the Fermi bubbles, unless the density of the background CRs is ≲ 10% of that in the Galactic disk. We indicate that secondary electrons alone cannot produce the observed radio emission from the Fermi bubbles. However, the radio emission from the outermost region of the bubbles can be explained if electrons are directly accelerated at the shock front with an efficiency of ∼0.1% of that of protons.

  15. Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Lu, Limin

    1995-01-01

    We present Goddard High Resolution Spectrograph intermediate-resolution measurements of the 1233-1256 A spectral region of HD 156396, a halo star at l = 328.7 deg, b = -14.5 deg in the inner Galaxy with a line-of sight distance of 11.1 kpc and a z-distance of -2.8 kpc. The data have a resolution of 18 km/s Full Width at Half Maximum (FWHM) and a signal-to-noise ratio of approximately 50:1. We detect interstellar lines of Mg II, S II, S II, Ge II, and N V and determine log N/(Mg II) = 15.78 +0.25, -0.27, log N(Si II) greater than 13.70, log N(S II) greater than 15.76, log N(Ge II) = 12.20 +0.09,-0.11, and log N(N v) = 14.06 +/- 0.02. Assuming solar reference abundances, the diffuse clouds containing Mg, S, and Ge along the sight line have average logarithmic depletions D(Mg) = -0.6 +/- 0.3 dex, D(S) greater than -0.2 dex, and D(Ge) = -0.2 +/- 0.2 dex. The Mg and Ge depletions are approximately 2 times smaller than is typical of diffuse clouds in the solar vicinity. Galactic rotational modeling of the N v profiles indicates that the highly ionized gas traced by this ion has a scale height of approximately 1 kpc if gas at large z-distances corotates with the underlying disk gas. Rotational modeling of the Si iv and C iv profiles measured by the IUE satellite yields similar scale height estimates. The scale height results contrast with previous studies of highly ionized gas in the outer Milky Way that reveal a more extended gas distribtion with h approximately equals 3-4 kpc. We detect a high-velocity feature in N v and Si II v(sub LSR) approximately equals + 125 km/s) that is probably created in an interface between warm and hot gas.

  16. Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Lu, Limin

    1995-01-01

    We present Goddard High Resolution Spectrograph intermediate-resolution measurements of the 1233-1256 A spectral region of HD 156396, a halo star at l = 328.7 deg, b = -14.5 deg in the inner Galaxy with a line-of sight distance of 11.1 kpc and a z-distance of -2.8 kpc. The data have a resolution of 18 km/s Full Width at Half Maximum (FWHM) and a signal-to-noise ratio of approximately 50:1. We detect interstellar lines of Mg II, S II, S II, Ge II, and N V and determine log N/(Mg II) = 15.78 +0.25, -0.27, log N(Si II) greater than 13.70, log N(S II) greater than 15.76, log N(Ge II) = 12.20 +0.09,-0.11, and log N(N v) = 14.06 +/- 0.02. Assuming solar reference abundances, the diffuse clouds containing Mg, S, and Ge along the sight line have average logarithmic depletions D(Mg) = -0.6 +/- 0.3 dex, D(S) greater than -0.2 dex, and D(Ge) = -0.2 +/- 0.2 dex. The Mg and Ge depletions are approximately 2 times smaller than is typical of diffuse clouds in the solar vicinity. Galactic rotational modeling of the N v profiles indicates that the highly ionized gas traced by this ion has a scale height of approximately 1 kpc if gas at large z-distances corotates with the underlying disk gas. Rotational modeling of the Si iv and C iv profiles measured by the IUE satellite yields similar scale height estimates. The scale height results contrast with previous studies of highly ionized gas in the outer Milky Way that reveal a more extended gas distribtion with h approximately equals 3-4 kpc. We detect a high-velocity feature in N v and Si II v(sub LSR) approximately equals + 125 km/s) that is probably created in an interface between warm and hot gas.

  17. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. III. THE GALACTIC HALO X-RAY EMISSION

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2013-08-20

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on {approx}4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 Multiplication-Sign 10{sup 6} K, interquartile range = 0.63 Multiplication-Sign 10{sup 6} K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude ({approx}(0.4-7) Multiplication-Sign 10{sup -3} cm{sup -6} pc and {approx}(0.5-7) Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively, with median detections of 1.9 Multiplication-Sign 10{sup -3} cm{sup -6} pc and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.

  18. PyMGC3: Finding stellar streams in the Galactic Halo using a family of Great Circle Cell counts methods

    NASA Astrophysics Data System (ADS)

    Mateu, C.

    2014-11-01

    PyMGC3 is a Python toolkit to apply the Modified Great Circle Cell Counts (mGC3) method to search for tidal streams in the Galactic Halo. The code computes pole count maps using the full mGC3/nGC3/GC3 family of methods. The original GC3 method (Johnston et al., 1996) uses positional information to search for 'great-circle-cell structures'; mGC3 makes use of full 6D data and nGC3 uses positional and proper motion data.

  19. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    SciTech Connect

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara; Aguilar, Luis A. E-mail: barbara@astro.unam.mx

    2012-10-01

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they would be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  20. A relationship between halo mass, cooling, active galactic nuclei heating and the co-evolution of massive black holes

    NASA Astrophysics Data System (ADS)

    Main, R. A.; McNamara, B. R.; Nulsen, P. E. J.; Russell, H. R.; Vantyghem, A. N.

    2017-02-01

    We derive X-ray mass, luminosity, and temperature profiles for 45 galaxy clusters to explore relationships between halo mass, active galactic nuclei (AGN) feedback, and central cooling time. We find that radio-mechanical feedback power (referred to here as `AGN power') in central cluster galaxies correlates with halo mass as Pmech ∝ M1.55 ± 0.26, but only in haloes with central atmospheric cooling times shorter than 1 Gyr. The trend of AGN power with halo mass is consistent with the scaling expected from a self-regulating AGN feedback loop, as well as with galaxy and central black hole co-evolution along the MBH-σ relation. AGN power in clusters with central atmospheric cooling times longer than ˜1 Gyr typically lies two orders of magnitude below those with shorter central cooling times. Galaxies centred in clusters with long central cooling times nevertheless experience ongoing and occasionally powerful AGN outbursts. We further investigate the impact of feedback on cluster scaling relations. We find L-T and M-T relations in clusters with direct evidence of feedback which are steeper than self-similar, but not atypical compared to previous studies of the full cluster population. While the gas mass rises, the stellar mass remains nearly constant with rising total mass, consistent with earlier studies. This trend is found regardless of central cooling time, implying tight regulation of star formation in central galaxies as their haloes grew, and long-term balance between AGN heating and atmospheric cooling. Our scaling relations are presented in forms that can be incorporated easily into galaxy evolution models.

  1. ON THE ORIGIN OF THE ANGULAR MOMENTUM PROPERTIES OF GAS AND DARK MATTER IN GALACTIC HALOS AND ITS IMPLICATIONS

    SciTech Connect

    Sharma, Sanjib; Bland-Hawthorn, Joss; Steinmetz, Matthias

    2012-05-10

    We perform a set of non-radiative hydrodynamical simulations of merging spherical halos in order to understand the angular momentum (AM) properties of the galactic halos seen in cosmological simulations. The universal shape of AM distributions seen in simulations is found to be generically produced as a result of mergers. The universal shape is such that it has an excess of low AM material and hence cannot explain the exponential structure of disk galaxies. A resolution to this is suggested by the spatial distribution of low AM material which is found to be in the center and a conical region close to the axis of rotation. A mechanism that preferentially discards the material in the center and prevents the material along the poles from falling onto the disk is proposed as a solution. We implement a simple geometric criterion for the selective removal of low AM material and show that in order for 90% of halos to host exponential disks one has to reject at least 40% of material. Next, we explore the physical mechanisms responsible for distributing the AM within the halo during a merger. For dark matter there is an inside-out transfer of AM, whereas for gas there is an outside-in transfer, which is due to differences between collisionless and gas dynamics. This is responsible for the spin parameter {lambda} and the shape parameter {alpha} of AM distributions being higher for gas compared to dark matter. We also explain the apparent high spin of dark matter halos undergoing mergers and show that a criterion stricter than what is currently used would be required to detect such unrelaxed halos. Finally, we demonstrate that the misalignment of AM between gas and dark matter only occurs when the intrinsic spins of the merging halos are not aligned with the orbital AM of the system. The self-misalignment (orientation of AM when measured in radial shells not being constant), which could be the cause of warps and anomalous rotation in disks galaxies, also occurs under similar

  2. The role of cosmic rays and Alfven waves in the structure of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dougherty, M. K.; Mckenzie, J. F.; Westergaard, N. J.

    1985-01-01

    The effect that cosmic rays and the Alfven waves they generate have on the structure of the plasma distribution perpendicular to the galactic disk is examined. It is shown that the plasma distribution exhibits two length scales and the predicted values of gas density far from the galactic plane indicate that models involving hydrostatic equilibrium should be replaced by those allowing for a galactic wind.

  3. Evidence for Gamma-ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Kusenko, Alexander

    2010-10-01

    Intergalactic magnetic fields (IGMFs) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magnetic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGNs) in the 11 month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over the point-spread function in the surface brightness profile is statistically significant at 3.5σ (99.95% confidence level), for the nearby, hard population of AGNs. The halo size and brightness are consistent with IGMF, B IGMF ≈ 10-15 G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMFs are likely to originate from the primordial seed fields created shortly after the big bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early universe.

  4. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density

    NASA Astrophysics Data System (ADS)

    Momany, Y.; Zaggia, S.; Gilmore, G.; Piotto, G.; Carraro, G.; Bedin, L. R.; de Angeli, F.

    2006-05-01

    Aims.In this paper we derive the structure of the Galactic stellar warp and flare. Methods: .We use 2MASS red clump and red giant stars, selected at mean and fixed heliocentric distances of R⊙≃3, 7 and 17 kpc. Results: .Our results can be summarized as follows: (i) a clear stellar warp signature is derived for the 3 selected rings, proving that the warp starts already within the solar circle; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and neutral atomic hydrogen; (iii) the consistency and regularity of the stellar-gaseous warp is traced out to about R_GC˜20 kpc; (iv) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (φ˜15°) is close to the orientation angle of the Galactic bar and this, most importantly, produces an asymmetric warp for the inner R⊙≃3 and 7 kpc rings; (v) a Northern/Southern warp symmetry is observed only for the ring at R⊙≃17 kpc, at which the dependency on φ is weakened; (vi) treating a mixture of thin and thick disk stellar populations, we trace the variation with R_GC of the disk thickness (flaring) and derive an almost constant scale-height (~0.65 kpc) within R_GC˜15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ~1.5 kpc at R_GC˜23 kpc; (vii) the derived outer disk warping and flaring provide further robust evidence that there is no disk radial truncation at R_GC˜14 kpc. Conclusions: .In the particular case of the Canis Major (CMa) over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l˜240° (for R⊙≃7 kpc) which brings down the Milky Way mid-plane by ~3° in this direction. The regularity and consistency of the stellar, gaseous and dust warp argues strongly against a recent merger scenario for Canis Major. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion

  5. The settling of warped disks in oblate dark halos

    NASA Technical Reports Server (NTRS)

    Dubinski, John; Kuijken, Konrad

    1995-01-01

    When a galaxy forms, the disk may initially be tilted with respect to a flattened dark halo. The misalignment between the disk and the halo is a common explanation for galactic disk warps, since in this state disks have precessing bending modes which resemble real warps. The gravitational response of the halo has often been ignored, and its strength and effect on possible bending modes is unknown. We therefore calculate the response of an oblate halo to a precessing inclined exponential disk using a variety of techniques. We construct models with a rigid exponential disk precessing in a particle halo, a particle disk precessing inside a static bulge/halo potential, and a self-consistent model with a particle disk, bulge, and halo. When the disk: halo mass ratio is small (approximately 10%) within 5 exponential scale radii, the disk settles to the equatorial plane of the halo within five orbital times. When the disk and halo mass are comparable, the halo rapidly aligns with the disk within a few orbital times, while the disk inclination drops. The rapid response of the halo to an inclined precessing disk suggests that the warps seen in galactic disks are not due to a misalignment between the disk and the inner halo. If a galaxy forms inclined to the principal plane of a dark halo, either the disk will settle to a pricipal plane or the inner halo will twist to align with the disk. The outer halo will remain misaligned for a much longer time and therefore may still exert a torque. Warped bending modes may still exist if the misalignment of the outer halo persists for a Hubble time.

  6. The settling of warped disks in oblate dark halos

    NASA Technical Reports Server (NTRS)

    Dubinski, John; Kuijken, Konrad

    1995-01-01

    When a galaxy forms, the disk may initially be tilted with respect to a flattened dark halo. The misalignment between the disk and the halo is a common explanation for galactic disk warps, since in this state disks have precessing bending modes which resemble real warps. The gravitational response of the halo has often been ignored, and its strength and effect on possible bending modes is unknown. We therefore calculate the response of an oblate halo to a precessing inclined exponential disk using a variety of techniques. We construct models with a rigid exponential disk precessing in a particle halo, a particle disk precessing inside a static bulge/halo potential, and a self-consistent model with a particle disk, bulge, and halo. When the disk: halo mass ratio is small (approximately 10%) within 5 exponential scale radii, the disk settles to the equatorial plane of the halo within five orbital times. When the disk and halo mass are comparable, the halo rapidly aligns with the disk within a few orbital times, while the disk inclination drops. The rapid response of the halo to an inclined precessing disk suggests that the warps seen in galactic disks are not due to a misalignment between the disk and the inner halo. If a galaxy forms inclined to the principal plane of a dark halo, either the disk will settle to a pricipal plane or the inner halo will twist to align with the disk. The outer halo will remain misaligned for a much longer time and therefore may still exert a torque. Warped bending modes may still exist if the misalignment of the outer halo persists for a Hubble time.

  7. Surface density of dark matter haloes on galactic and cluster scales

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Cardone, V. F.; Belvedere, G.

    2013-02-01

    In this paper, we analysed the correlation between the central surface density and the halo core radius of galaxies, and cluster of galaxies dark matter (DM) haloes, in the framework of the secondary infall model. We used Del Popolo secondary infall model taking into account ordered and random angular momentum, dynamical friction and DM adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that r* (the halo characteristic radius) is not a universal quantity as claimed by Donato et al. and Gentile et al. On the contrary, we find a correlation with the halo mass M200 in agreement with Cardone & Tortora, Boyarsky et al. and Napolitano, Romanowsky & Tortora, but with a significantly smaller scatter, namely 0.16 ± 0.05. We also consider the baryon column density finding this latter being indeed a constant for low-mass systems, such as dwarfs, but correlating with mass with a slope of α = 0.18 ± 0.05. In the case of the surface density of DM for a system composed only of DM, as in dissipationless simulations, we get α = 0.20 ± 0.05. These results leave little room for the recently claimed universality of (dark and stellar) column density.

  8. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    SciTech Connect

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-04-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  9. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.; Lester, Daniel F.

    1990-01-01

    Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.

  10. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    SciTech Connect

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-03-20

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  11. NIHAO VII: predictions for the galactic baryon budget in dwarf to Milky Way mass haloes

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Dutton, Aaron A.; Stinson, Gregory S.; Macciò, Andrea V.; Gutcke, Thales; Kang, Xi

    2017-04-01

    We use the Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) galaxy formation simulations to make predictions for the baryonic budget in present day galaxies ranging from dwarf (M200 ˜ 1010 M⊙) to Milky Way (M200 ˜ 1012 M⊙) masses. The sample is made of 88 independent high-resolution cosmological zoom-in simulations. NIHAO galaxies reproduce key properties of observed galaxies, such as the stellar mass versus halo mass and cold gas versus stellar mass relations. Thus they make plausible predictions for the baryon budget. We present the mass fractions of stars, cold gas (T < 104 K), cool gas (104 < T < 105 K), warm-hot gas (105 < T < 5 × 106 K) and hot gas (T > 5 × 106 K), inside the virial radius, R200. Compared to the predicted baryon mass, using the dark halo mass and the universal baryon fraction, fb ≡ Ωb/Ωm = 0.15, we find that all of our haloes are missing baryons. The missing mass has been relocated past 2 virial radii, and cool gas dominates the corona at low mass (M200 ≲ 3 × 1011 M⊙) while the warm-hot gas dominates at high mass (M200 ≳ 3 × 1011 M⊙). Haloes of mass M200 ˜ 1010 M⊙ are missing ˜90 per cent of their baryons. More massive haloes (M200 ˜ 1012 M⊙) retain a higher fraction of their baryons, with ˜30 per cent missing, consistent with recent observational estimates. Moreover, these more massive haloes reproduce the observed fraction of cold, warm-hot and hot gases. The fraction of cool gas we predict (0.11 ± 0.06) is significantly lower than the observation from COS-Halos (0.3-0.47), but agrees with the alternative analysis of Stern et al. (2016).

  12. Reconstructing the Accretion History of the Galactic Stellar Halo from Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-03-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ˜103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ˜6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  13. NIHAO VII: Predictions for the galactic baryon budget in dwarf to Milky Way mass haloes

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Dutton, Aaron A.; Stinson, Gregory S.; Macciò, Andrea V.; Gutcke, Thales; Kang, Xi

    2017-01-01

    We use the NIHAO galaxy formation simulations to make predictions for the baryonic budget in present day galaxies ranging from dwarf (M_{200} ˜ 10^{10} M_{⊙}) to Milky Way (M_{200} ˜ 10^{12} M_{⊙}) masses. The sample is made of 88 independent high resolution cosmological zoom-in simulations. NIHAO galaxies reproduce key properties of observed galaxies, such as the stellar mass vs halo mass and cold gas vs stellar mass relations. Thus they make plausible predictions for the baryon budget. We present the mass fractions of stars, cold gas (T < 104K), cool gas (104 < T < 105K), warm-hot gas (105 < T < 5 × 106K), and hot gas (T>5 × 106K), inside the virial radius, R200. Compared to the predicted baryon mass, using the dark halo mass and the universal baryon fraction, fb ≡ Ωb/Ωm = 0.15, we find that all of our haloes are missing baryons. The missing mass has been relocated past 2 virial radii, and cool gas dominates the corona at low mass (M_{200} ≲ 3 × 10^{11} M_{⊙}) while the warm-hot gas dominates at high mass (M_{200} ≳ 3 × 10^{11} M_{⊙}). Haloes of mass M_{200} ˜ 10^{10}M_{⊙} are missing ˜90% of their baryons. More massive haloes (M_{200} ˜ 10^{12}M_{⊙}) retain a higher fraction of their baryons, with ˜30% missing, consistent with recent observational estimates. Moreover, these more massive haloes reproduce the observed fraction of cold, warm-hot and hot gas. The fraction of cool gas we predict (0.11 ± 0.06) is significantly lower than the observation from COS-HALOs (0.3-0.47), but agrees with the alternative analysis of Stern et al. (2016).

  14. White Dwarfs:. Contributors and Tracers of the Galactic Dark-Matter Halo

    NASA Astrophysics Data System (ADS)

    Koopmans, L. V. E.; Blandford, R. D.

    2002-03-01

    We examine the claim by Oppenheimer et al. (2001) that the local halo density of white dwarfs is an order of magnitude higher than previously thought. As it stands, the observational data support the presence of a kinematically distinct population of halo white dwarfs at the >99% confidence level. A maximum-likelihood analysis gives a radial velocity dispersion of σ hU = 150+80-40\\ km s-1 and an asymmetric drift of ν ha = 176+102-80\\ km s-1, for a Schwarzschild velocity distribution function with σU:σV:σW = 1:2/3:1/2. Halo white dwarfs have a local number density of 1.1+2.1-0.7 × 10-4\\ pc-3, which amounts to 0.8+1.6-0.5 per cent of the nominal local dark-matter halo density and is 5.0+9.5-3.2 times (90% C.L.) higher and thus only marginally in agreement with previous estimates. We discuss several direct consequences of this white-dwarf population (e.g. microlensing) and postulate a potential mechanism to eject young white dwarfs from the disc to the halo, through the orbital instabilities in triple or multiple stellar systems.

  15. Probing the interstellar dust towards the Galactic Centre: dust-scattering halo around AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall

    2017-07-01

    AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.

  16. The Outer Halos of Very Massive Galaxies: BCGs and their DSC in the Magneticum Simulations

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Dolag, Klaus; Hoffmann, Tadziu

    2017-09-01

    Recent hydrodynamic cosmological simulations cover volumes up to Gpc^3 and resolve halos across a wide range of masses and environments, from massive galaxy clusters down to normal galaxies, while following a large variety of physical processes (star formation, chemical enrichment, AGN feedback) to allow a self-consistent comparison to observations at multiple wavelengths. Using the Magneticum simulations, we investigate the buildup of the diffuse stellar component (DSC) around massive galaxies within group and cluster environments. The DSC in our simulations reproduces the spatial distribution of the observed intracluster light (ICL) as well as its kinematic properties remarkably well. For galaxy clusters and groups we find that, although the DSC in almost all cases shows a clear separation from the brightest cluster galaxy (BCG) with regard to its dynamic state, the radial stellar density distribution in many halos is often characterized by a single Sersic profile, representing both the BCG component and the DSC, very much in agreement with current observational results. Interestingly, even in those halos that clearly show two components in both the dynamics and the spatial distribution of the stellar component, no correlation between them is evident.

  17. Tracing the Galactic Halo: Obtaining Bayesian mass estimates of the Galaxy in the presence of incomplete data

    NASA Astrophysics Data System (ADS)

    Eadie, Gwendolyn; Harris, William; Widrow, Lawrence; Springford, Aaron

    2016-08-01

    The mass and cumulative mass profile of the Galaxy are its most fundamental properties. Estimating these properties, however, is not a trivial problem. We rely on the kinematic information from Galactic satellites such as globular clusters and dwarf galaxies, and this data is incomplete and subject to measurement uncertainty. In particular, the complete 3D velocity vectors of objects are sometimes unavailable, and there may be selection biases due to both the distribution of objects around the Galaxy and our measurement position. On the other hand, the uncertainties of these data are fairly well understood. Thus, we would like to incorporate these uncertainties and the incomplete data into our estimate of the Milky Way's mass. The Bayesian paradigm offers a way to deal with both the missing kinematic data and measurement errors using a hierarchical model. An application of this method to the Milky Way halo mass profile, using the kinematic data for globular clusters and dwarf satellites, is shown.

  18. PRIMUS: One- and Two-halo Galactic Conformity at 0.2 < z < 1

    NASA Astrophysics Data System (ADS)

    Berti, Angela M.; Coil, Alison L.; Behroozi, Peter S.; Eisenstein, Daniel J.; Bray, Aaron D.; Cool, Richard J.; Moustakas, John

    2017-01-01

    We test for galactic conformity at 0.2< z< 1.0 to a projected distance of 5 Mpc using spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS). Our sample consists of ∼60,000 galaxies in five separate fields covering a total of ∼5.5 square degrees, which allows us to account for cosmic variance. We identify star-forming and quiescent “isolated primary” (i.e., central) galaxies using isolation criteria and cuts in specific star formation rate. We match the redshift and stellar mass distributions of these samples to control for correlations between quiescent fraction and redshift and stellar mass. We detect a significant (>3σ) one-halo conformity signal, or an excess of star-forming neighbors around star-forming central galaxies, of ∼5% on scales of 0–1 Mpc and a 2.5σ two-halo signal of ∼1% on scales of 1–3 Mpc. These signals are weaker than those detected in the Sloan Digital Sky Survey and are consistent with galactic conformity being the result of large-scale tidal fields and reflecting assembly bias. We also measure the star-forming fraction of central galaxies at fixed stellar mass as a function of large-scale environment and find that central galaxies are more likely to be quenched in overdense environments, independent of stellar mass. However, we find that environment does not affect the star formation efficiency of central galaxies, as long as they are forming stars. We test for redshift and stellar mass dependence of the conformity signal within our sample and show that large volumes and multiple fields are required at intermediate redshift to adequately account for cosmic variance.

  19. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2016-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~ 103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs - precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~ 6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies - and the detailed accretion history of the halo - across cosmic time.

  20. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane Morris; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs --- precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies --- and the detailed accretion history of the halo --- across cosmic time.

  1. Chandra observation of the edge-on spiral NGC 5775: probing the hot galactic disc/halo connection

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Li, Zhiyuan; Wang, Q. Daniel; Irwin, Judith A.; Rossa, Joern

    2008-10-01

    We study the edge-on galaxy NGC 5775, utilizing a 58.2 ks Chandra ACIS-S observation together with complementary Hubble Space Telescope (HST) ACS, Spitzer IRAC and other multi-wavelength data sets. This edge-on galaxy, with its disc-wide active star formation, is particularly well suited for studying the disc/halo interaction on subgalactic scales. We detect 27 discrete X-ray sources within the D25 region of the galaxy, including an ultra-luminous source with a 0.3-7 keV luminosity of ~7 × 1040ergs-1. The source-removed diffuse X-ray emission shows several prominent extraplanar features, including a ~10kpc diameter `shell-like' feature and a `blob' reaching a projected distance of ~25kpc from the galactic disc. The bulk of the X-ray emission in the halo has a scale height of ~1.5 kpc and can be characterized by a two-temperature optically thin thermal plasma with temperatures of ~0.2 and 0.6keV and a total 0.3-2 keV luminosity of ~3.5 × 1039ergs-1. The high-resolution, multi-wavelength data reveal the presence of several extraplanar features around the disc, which appear to be associated with the in-disc star formation. We suggest that hot gas produced with different levels of mass loading can have different temperatures, which may explain the characteristic temperatures of hot gas in the halo. We have obtained a subgalactic scale X-ray-intensity-star-formation relation, which is consistent with the integrated version in other star-forming galaxies.

  2. Wide-Field Imaging of Galactic Halos with a Near-Infrared Rocket-Borne Telescope

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    We successfully completed both of the proposed flights by May of 1998, on schedule and on budget. In both flights the instrument worked flawlessly, achieving sensitivities slightly better than the specification (1 nW/sq m sr per pixel). The payload was recovered with only minor damage after both flights. The results from the first flight, which targeted the nearby edge-on spiral NCG 4565, have been published. Analysis of the data failed to detect any significant emission, from the halo around the galaxy, and set a very stringent 2 sigma lower limit on the M/L ratio of the halo of greater than 260 in solar units. The results from the second flight, which targeted the infamous NGC 5907, have taken longer to analyze because of an offset in the absolute pointing of the payload which broke the symmetry of the scan pattern about the galaxy, thus complicating the analysis, After careful analysis, Caltech graduate student, Sarah Yost, has recovered the full sensitivity of the experiment, setting a 2 sigma lower limit on the M/L ratio of the halo of greater than 280 in solar units. This result rules out the hypothesis that a significant portion of the halo around NGC 5907 is composed of low-mass stars, as previous observations had suggested. NITE probes directly the halo at 10 to 30 kpc from the disk, a region far too dim for other experiments. Our conclusion is that observations of a significant IR signature associated with the halo at less than approximately 5kpc radius where contaminated by tidally disrupted disk population of stars. In order to test the idea that we could study faint surface-brightness fluctuations in the diffuse background using NITE, we have analyzed the data from the 1997 flight which targeted NCG 4565 (this target is in a region of lower stellar confusion than is NGC 5907). We have detected a significant correlation in the noise at zero-lag, with an amplitude that corresponds to brightness fluctuations of 3.04 plus or minus 0.16 nW/sq m sr. This

  3. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  4. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  5. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes

    NASA Astrophysics Data System (ADS)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman

    2017-07-01

    We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.

  6. The structure of star clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A.; Read, J. I.; Lewis, G. F.; Irwin, M. J.; Chapman, S.; Ibata, R.; Wilkinson, M. I.; McConnachie, A. W.; Martin, N. F.; Davies, M. B.; Bridges, T. J.

    2012-05-01

    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ˜20 parsec core radii and ˜100 parsec photometric tidal radii, or by Sérsic profiles of index ˜1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ˜2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.

  7. The contribution of dissolving star clusters to the population of ultra faint objects in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.

    2017-04-01

    In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ∼5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.

  8. Possible existence of wormholes in the central regions of halos

    SciTech Connect

    Rahaman, Farook; Salucci, P.; Kuhfittig, P.K.F.; Ray, Saibal; Rahaman, Mosiur

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  9. Spectroscopy of globular clusters in the outer halo of M81

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong; Sarajedini, Ata

    2017-01-01

    We present integrated spectroscopy of two globular clusters and two globular cluster candidates in the central region of the dynamically active M81 group of galaxies. These spectra were obtained from the OSIRIS instrument at the 10.4m Gran Telescopio Canarias (GTC). The target clusters are located in the halo between M81, M82, and NGC3077, which contains a significant amount of young stars and HI gas as a result of interactions between these galaxies. The spectra of the target clusters show spectral features of globular clusters, confirming their globular cluster nature. One of the two clusters is located 400 kpc away from M81, making it the most isolated globular cluster in the local universe. However, the origin of these clusters is still largely a mystery. We use their spectra to study their kinematics, ages, and metallicities to better understand the impact of galaxy interactions on the process of galaxy formation and evolution.

  10. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Ishigaki, Miho N.; Sugai, Hajime

    2016-09-01

    The dwarf spheroidal galaxies (dSphs) in the Milky Way are the primary targets in the indirect searches for particle dark matter. To set robust constraints on candidate dark matter particles, understanding the dark halo structure of these systems is of substantial importance. In this paper, we first evaluate the astrophysical factors for dark matter annihilation and decay for 24 dSphs, taking into account a non-spherical dark halo, using generalized axisymmetric mass models based on axisymmetric Jeans equations. First, from a fitting analysis of the most recent kinematic data available, our axisymmetric mass models are a much better fit than previous spherical ones, thus, our work should be the most realistic and reliable estimator for astrophysical factors. Secondly, we find that among analysed dSphs, the ultra-faint dwarf galaxies Triangulum II and Ursa Major II are the most promising but large uncertain targets for dark matter annihilation while the classical dSph Draco is the most robust and detectable target for dark matter decay. It is also found that the non-sphericity of luminous and dark components influences the estimate of astrophysical factors, even though these factors largely depend on the sample size, the prior range of parameters and the spatial extent of the dark halo. Moreover, owing to these effects, the constraints on the dark matter annihilation cross-section are more conservative than those of previous spherical works. These results are important for optimizing and designing dark matter searches in current and future multi-messenger observations by space and ground-based telescopes.

  11. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e– produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derivedmore » based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less

  12. Glow in the dark matter: observing galactic halos with scattered light.

    PubMed

    Davis, Jonathan H; Silk, Joseph

    2015-02-06

    We consider the observation of diffuse halos of light around the discs of spiral galaxies, as a probe of the interaction cross section between dark matter (DM) and photons. Using the galaxy M101 as an example, we show that for a scattering cross section at the level of 10(-23)(m/GeV)  cm(2) or greater dark matter in the halo will scatter light out from the more luminous center of the disc to larger radii, contributing to an effective increased surface brightness at the edges of the observed area on the sky. This allows us to set an upper limit on the DM-photon cross section using data from the Dragonfly instrument. We then show how to improve this constraint, and the potential for discovery, by combining the radial profile of DM-photon scattering with measurements at multiple wavelengths. Observation of diffuse light presents a new and potentially powerful way to probe the interactions of dark matter with photons, a way that is complementary to existing searches.

  13. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  14. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    SciTech Connect

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D’Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Poon, H.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Sbarra, C.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Stawarz, Łukasz; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wood, K. S.; Wood, M.; Yang, Z.; Zaharijas, G.; Zimmer, S.

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  15. Searching for planetary nebulae at the Galactic halo via J-PAS

    NASA Astrophysics Data System (ADS)

    Gonçalves, Denise R.; Aparício-Villegas, T.; Akras, S.; Cortesi, A.; Borges-Fernandes, M.; Daflon, S.; Pereira, C. B.; Lorenz-Martins, S.; Marcolino, W.; Kanaan, A.; Viironen, K.; de Oliveira, C. Mendes; Molino, A.; Ederoclite, A.

    2016-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey. It will last 5 years and will observe 8500 sq. deg. of the sky. There will be 54 contiguous narrow-band filters of 145Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus the 3-g, r, and i- SDSS filters. Thus, J-PAS can be an important tool to search for new planetary nebulae (PNe) at the halo, increasing their numbers, because only 14 of them have been convincingly identified in the literature. Halo PNe are able to reveal precious information for the study of stellar evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense emission lines of PNe make them good objects to be searched by J-PAS. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS strategy to search for PNe. Our first results are shown in this contribution.

  16. CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM FERMI-LAT DIFFUSE MEASUREMENTS

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2012-12-20

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e {sup +}/e {sup -} produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  17. Searching for planetary nebulae at the Galactic halo via J-PAS and J-PLUS

    NASA Astrophysics Data System (ADS)

    Goncalves, Denise R.; Aparício-Villegas, Teresa; Akras, Stavros; Borges Fernandes, Marcelo; J-PAS Collaboration

    2015-08-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a narrow-band imaging, very wide field cosmological survey to be carried out from a dedicated 2.5m telescope and a 4.7 sq.deg camera with 1.2Gpix. It will last 5 years and will observe 8500 sq.deg of Northern sky to a 5-σ magnitude depth for point sources, equivalent to i ~23.3 over an aperture of 2 arcsec2. The J-PAS filter system consists of 54 contiguous narrow band filters of 145-Å FWHM, from 3,500 to 10,000Å. Two broad-band filters will be added at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. The Javalambre Photometric Local Universe Survye (J-PLUS) will be an auxiliary survey ofJ-PAS (mainly for calibration) with a dedicated 0.80m telescope. J-PLUS comprises 12 filters, including g, r, i and z SDSS ones. Though about 2,500 planetary nebulae (PNe, confirmed spectroscopically) are known in the Galaxy, only 14 objects have been convincingly identified as halo PNe. They were classified as such from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched by J-PAS, and even by J-PLUS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS/J-PLUS, given the typical limit magnitude of the survey. Though covering a significantly smaller sky area, data from the ALHAMBRA survey were used to test our J-PAS/J-PLUS strategy to search for PNe. Our first results will be shown in this poster.

  18. Evolution of heavy-element abundances in the Galactic halo and disk

    NASA Technical Reports Server (NTRS)

    Mathews, G. J.; Cowan, J. J.; Schramm, D. N.

    1988-01-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is descirbed in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies.

  19. Evolution of heavy-element abundances in the Galactic halo and disk

    NASA Technical Reports Server (NTRS)

    Mathews, G. J.; Cowan, J. J.; Schramm, D. N.

    1988-01-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is descirbed in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies.

  20. Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions

    NASA Astrophysics Data System (ADS)

    Dooley, Gregory A.; Peter, Annika H. G.; Vogelsberger, Mark; Zavala, Jesús; Frebel, Anna

    2016-09-01

    We investigate the effects of self-interacting dark matter (SIDM) on the tidal stripping and evaporation of satellite galaxies in a Milky Way-like host. We use a suite of five zoom-in, dark-matter-only simulations, two with velocity-independent SIDM cross-sections, two with velocity-dependent SIDM cross-sections, and one cold dark matter (CDM) simulation for comparison. After carefully assigning stellar mass to satellites at infall, we find that stars are stripped at a higher rate in SIDM than in CDM. In contrast, the total bound dark matter mass-loss rate is minimally affected, with subhalo evaporation having negligible effects on satellites for viable SIDM models. Centrally located stars in SIDM haloes disperse out to larger radii as cores grow. Consequently, the half-light radius of satellites increases, stars become more vulnerable to tidal stripping, and the stellar mass function is suppressed. We find that the ratio of core radius to tidal radius accurately predicts the relative strength of enhanced SIDM stellar stripping. Velocity-independent SIDM models show a modest increase in the stellar stripping effect with satellite mass, whereas velocity-dependent SIDM models show a large increase in this effect towards lower masses, making observations of ultrafaint dwarfs prime targets for distinguishing between and constraining SIDM models. Due to small cores in the largest satellites of velocity-dependent SIDM, no identifiable imprint is left on the all-sky properties of the stellar halo. While our results focus on SIDM, the main physical mechanism of enhanced tidal stripping of stars apply similarly to satellites with cores formed via other means.

  1. The Distribution of Interstellar Molecular Hydrogen in the Galactic Disk and Halo

    NASA Astrophysics Data System (ADS)

    Dixon, W. V.; Hurwitz, M.

    2001-12-01

    Dixon et al. (BAAS, 31, 1476, 1999) derive molecular-hydrogen column densities from the spectra of 57 early-type stars observed with the Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS), part of the ORFEUS telescope, which flew on the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. We have analyzed their results, investigating the distribution of molecular hydrogen with |z|, the distance from the Galactic plane. We find that the majority of interstellar H2 clouds follow an exponential density distribution with a scale height of 50 +/- 20 pc. Toward stars with very low projected H2 column densities, we find evidence for a second population of low-density molecular clouds for which n(H2) increases linearly with |z|. If not an artifact of the small sample size or a selection effect, this density profile suggests either an increase in the rate of molecular formation or a decrease in the rate of molecular destruction in these clouds with distance from the plane. We consider a model in which a decrease in the rate of molecular destruction results from a drop in the Galactic FUV background with |z| and show that it can qualitatively reproduce the observed distribution of cloud densities. This research is supported by NASA grant NAG5-696.

  2. The complex structure of stars in the outer galactic disk as revealed by Pan-STARRS1

    SciTech Connect

    Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Martin, Nicolas F.; Rix, Hans-Walter; Morganson, Eric; Peñarrubia, Jorge; Bernard, Edouard J.; Ferguson, Annette M. N.; Martinez-Delgado, David; Wyse, Rosemary F. G.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Magnier, Eugene A.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-08-10

    We present a panoptic view of the stellar structure in the Galactic disk's outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = –25° and b = +35° and covering over 130° in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations—the tidal stream predicts material at larger distances that is not detected while in the distorted disk model, the midplane is warped to an excessive degree—future tuning of the models to accommodate these latest data may yield better agreement.

  3. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.

    2017-03-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)-this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.

  4. A Peculiar Faint Satellite in the Remote Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Martin, N. F.; Ferguson, A. M. N.; Dotter, A.; McConnachie, A. W.; Ibata, R. A.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Tanvir, N. R.; Venn, K. A.

    2013-06-01

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age >~ 10 Gyr and [Fe/H] lsim -2.3. Our inferred distance modulus (m - M)0 = 24.57 ± 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149^{+19}_{-8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r_h=26^{+4}_{-3} pc, integrated luminosity MV = -4.8 ± 0.5, and ellipticity \\epsilon =0.30^{+0.08}_{-0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 12515.

  5. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    SciTech Connect

    Cohen, Judith G.; Kirby, Evan N. E-mail: enk@astro.caltech.edu

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  6. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    SciTech Connect

    Mackey, A. D.; Dotter, A.; Huxor, A. P.; Martin, N. F.; Ibata, R. A.; Ferguson, A. M. N.; McConnachie, A. W.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Venn, K. A.; Tanvir, N. R.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.

  7. Prospecting for Elements: Galactic Halo Planetary Nebulae Abundances and Virgo Spiral Galaxy Color Profiles

    NASA Astrophysics Data System (ADS)

    Howard, Joseph William

    Halo planetary nebulae. Using published spectral line data for nine halo planetary nebulae (HPNe), I have calculated photoionization models in an attempt to gain insight into the physical conditions and chemical abundances of these nebulae. The nine HPNE reported upon are K648, DdDm-1, NGC2242, NGC4361, PN243.8-37.1, PN006-41.9, M2-29, BB-1, and H4-1. The derived abundance ranges for the HPNe are: C 6.60-8.95, N 7.18-8.00, O 7.56-8.56, Ne 6.24-7.71, Ar 4.12-7.70, and S 4.90-7.00 (log(x) + 12). The temperature range for the central stars of these nebulae is 40,000 to 140,000K. Specifically, with a few exceptions, I find that all nine objects exhibit subsolar O/H; most show enhanced C/O and N/O, and a constant Ne/O ration. I also note the existence of comparatively larger abundance scatter in the HPNe as opposed to disk PNe, and suggest that this is consistent with the accretion model of halo formation formulated by Searle & Zinn. In addition, I test the effects on derived abundances and central star temperatures of a variety of model atmospheres as well as blackbodies for input ionizing spectra. I find that nebular line strengths are relatively insensitive to atmospheric details; thus blackbody spectra are suitable for central star continua. Near-infrared Virgo cluster spiral colors. Near-infrared (NIR) surface photometry in J (1.2μm), H (1.6μm) and K (2.2μm) have been obtained for a sample of Virgo cluster spirals; NGC4321, NGC4303, NGC4571, NGC4689, and NGC4254 which span a large range in HI deficiency. The spirals range from a normal gas content to a deficiency of a factor of 10 compared to normal galaxies. Using previous HII region abundance studies along with the NIR colors an attempt has been made to calibrate any correlation between the J-K index to the overall gas phase abundance gradients as a first step to probing the underlying stellar metallicity. Decomposition techniques have been used to produce estimates of spiral bulge/disk masses and luminosities

  8. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.

    PubMed

    Dauphas, Nicolas

    2005-06-30

    Some heavy elements (with atomic number A > 69) are produced by the 'rapid' (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from approximately 0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way, to determine the U/Th production ratio very precisely (0.57(+0.037)(-0.031). This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations, to help determine the source of Galactic cosmic rays, and to date circumstellar grains. I also estimate the age of the Milky Way (14.5(+2.8)(-2.2)Gyr in a way that is independent of the uncertainties associated with fluctuations in the microwave background or models of stellar evolution.

  9. Identifying Galactic halo PN candidates in the imaging surveys: J-PLUS/S-PLUS and J-PAS

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Soto, L.; Gonçalves, D. R.; Akras, S.; Cortesi, A.; Ederoclite, T.; Aparício-Villegas, T.; Borges-Fernandes, M.; Daflon, S.; Pereira, C. B.; Mendes de Oliveira, C.; Viironen, K.; J-PAS Collaboration

    2017-07-01

    Halo planetary nebulae (HPNe) are able to reveal important information about stellar and chemical evolution in galaxies. Their characteristic low continuum and strong emission lines make them good objects to be searched by multi-filter imaging surveys. Given that only 14 HPNe are known in the Galaxy, we are exploring colour-colour diagrams to search for these sources in Javalambre/Southern Photometric Local Universe Survey (J-PLUS/S-PLUS) and the Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS). They are narrow- and broad-band imaging cosmological surveys, with 12 and 54 filters, respectively. The J-PAS survey will be able to observe 85002 of Northern sky, it will detect sources up to magnitude mAB˜23. In the case of the J-PLUS survey the limit magnitudes is around mAB˜21.5. The S-PLUS survey will observe more than 60002 and it will map the Southern sky. Other optical emission lines sources, such as Galactic and extragalactic symbiotic stars (SySts), cataclysmic variables (CVs), QSOs at different redshifts, star-forming galaxies (SFGs), extragalactic H II regions and supernova remnants (SNR) can mimic PNe. Therefore, we explore different colour-colour diagrams in order to highlight those that can better identify HPN candidates, separating them from these other objects.

  10. Two stellar components in the halo of the Milky Way.

    PubMed

    Carollo, Daniela; Beers, Timothy C; Lee, Young Sun; Chiba, Masashi; Norris, John E; Wilhelm, Ronald; Sivarani, Thirupathi; Marsteller, Brian; Munn, Jeffrey A; Bailer-Jones, Coryn A L; Fiorentin, Paola Re; York, Donald G

    2007-12-13

    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components--an inner and an outer halo--that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.

  11. A Photometric Study of the Outer Halo Globular Cluster NGC 5824

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Andreuzzi, G.; Martínez-Vázquez, C. E.; Kunder, A. M.; Stetson, P. B.; Cassisi, S.; Monelli, M.; Bono, G.; Dall'Ora, M.; Vivas, A. K.

    2017-07-01

    Multi-wavelength CCD photometry over 21 years has been used to produce deep color-magnitude diagrams (CMDs) together with light curves for the variables in the Galactic globular cluster NGC 5824. Twenty-one new cluster RR Lyrae stars are identified, bringing the total to 47, of which 42 have reliable periods determined for the first time. The CMD is matched using BaSTI isochrones with ages of 13 Gyr, and reddening is found to be E(B-V)=0.15+/- 0.02; using the period-Wesenheit relation in two colors, the distance modulus is {(m-M)}0=17.45+/- 0.07 corresponding to a distance of 30.9 Kpc. The observations show no signs of populations that are significantly younger than the 13 Gyr stars. The width of the red giant branch does not allow for a spread in [{Fe}/{{H}}] greater than σ =0.05 {dex}, and there is no photometric evidence for widened or parallel sequences. The V,{c}{UBI} pseudo-CMD shows a bifurcation of the red giant branch that by analogy with other clusters is interpreted as being due to differing spectral signatures of the first (75%) and second (25%) generations of stars whose age difference is close enough that main-sequence (MS) turnoffs in the CMD are unresolved. The cluster MS is visible against the background out to a radial distance of ˜17 arcmin. We conclude that NGC 5824 appears to be a classical Oosterhoff Type II globular cluster, without overt signs of being a remnant of a now-disrupted dwarf galaxy.

  12. ACS Photometry of Newly Discovered Globular Clusters in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A.; Ferguson, A. M. N.; Tanvir, N. R.; Irwin, M.; Ibata, R.; Bridges, T.; Johnson, R. A.; Lewis, G.

    2007-02-01

    We report the first results from deep ACS imaging of 10 classical globular clusters in the far outer regions (15 kpc<~Rp<~100 kpc) of M31. Eight of the clusters, including two of the most remote M31 globular clusters presently known, are described for the first time. Our F606W, F814W color-magnitude diagrams extend ~3 mag below the horizontal branch and clearly demonstrate that the majority of these objects are old (>~10 Gyr), metal-poor clusters. Five have [Fe/H] ~ -2.1, while an additional four have -1.9 <~ [Fe/H] <~ -1.5. The remaining object is more metal-rich, with [Fe/H] ~ -0.70. Several clusters exhibit the second-parameter effect. Using aperture photometry, we estimate integrated luminosities and structural parameters for all clusters. Many, including all four clusters with projected radii greater than 45 kpc, are compact and very luminous, with -8.9 <~ MV <~ -8.3. These four outermost clusters are thus quite unlike their Milky Way counterparts, which are typically diffuse, subluminous (-6.0 <~ MV <~ -4.7), and more metal-rich (-1.8 <~ [Fe/H] <~ -1.3). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program 10394.

  13. IONIZED GAS IN THE FIRST 10 kpc OF THE INTERSTELLAR GALACTIC HALO: METAL ION FRACTIONS

    SciTech Connect

    Howk, J. Christopher; Consiglio, S. Michelle E-mail: smconsiglio@ucla.edu

    2012-11-10

    We present direct measures of the ionization fractions of several sulfur ions in the Galactic warm ionized medium (WIM). We obtained high-resolution ultraviolet absorption-line spectroscopy of post-asymptotic giant branch stars in the globular clusters Messier 3 [(l, b) = (42.{sup 0}2, +78.{sup 0}7), d = 10.2 kpc, and z = 10.0 kpc] and Messier 5 [(l, b) = (3.{sup 0}9, +46.{sup 0}8), d = 7.5 kpc, and z = +5.3 kpc] with the Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer to measure, or place limits on, the column densities of S I, S II, S III, S IV, S VI, and H I. These clusters also house millisecond pulsars, whose dispersion measures give an electron column density from which we infer the H II column in these directions. We find fractions of S{sup +2} in the WIM for the M 3 and M 5 sight lines x(S{sup +2}) {identical_to} N(S{sup +2})/N(S) = 0.33 {+-} 0.07 and 0.47 {+-} 0.09, respectively, with variations perhaps related to location. With negligible quantities of the higher ionization states, we conclude that S{sup +} and S{sup +2} account for all of the S in the WIM. We extend the methodology to study the ion fractions in the warm and hot ionized gas of the Milky Way, including the high ions Si{sup +3}, C{sup +3}, N{sup +4}, and O{sup +5}. The vast majority of the Galactic ionized gas is warm (T {approx} 10{sup 4} K) and photoionized (the WIM) or very hot (T > 4 Multiplication-Sign 10{sup 5} K) and collisionally ionized. The common tracer of ionized gas beyond the Milky Way, O{sup +5}, traces <1% of the total ionized gas mass of the Milky Way.

  14. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY

    SciTech Connect

    Balbinot, E.; Santiago, B. X.; Da Costa, L.; Maia, M. A. G.; Rocha-Pinto, H. J.; Majewski, S. R.; Nidever, D.; Thomas, D.; Wechsler, R. H.; Yanny, B.

    2013-04-20

    We report on the discovery of a new Milky Way (MW) companion stellar system located at ({alpha}{sub J2000,}{delta}{sub J2000}) = (22{sup h}10{sup m}43{sup s}.15, 14 Degree-Sign 56 Prime 58 Double-Prime .8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using Canada-France-Hawaii-Telescope/MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9{sup +1.0}{sub -1.6} kpc, with a half-light radius of r{sub h}= 7.24{sup +1.94}{sub -1.29} pc and a concentration parameter of c = log{sub 10}(r{sub t} /r{sub c} ) = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log (age yr{sup -1}) = 10.07{sup +0.05}{sub -0.03} and [Fe/H] = -1.58{sup +0.08}{sub -0.13}. These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 95 {+-} 6 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of M{sub V} = -1.21 {+-} 0.66. The resulting surface brightness is {mu}{sub V} = 25.90 mag arcsec{sup -2}. Its position in the M{sub V} versus r{sub h} diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster-one of the faintest and lowest mass systems yet identified.

  15. NO OBSERVATIONAL CONSTRAINTS FROM HYPOTHETICAL COLLISIONS OF HYPOTHETICAL DARK HALO PRIMORDIAL BLACK HOLES WITH GALACTIC OBJECTS

    SciTech Connect

    Abramowicz, Marek A.; Becker, Julia K.; Garzilli, Antonella; Johansson, Fredrik; Biermann, Peter L.; Qian Lei

    2009-11-01

    It was suggested by several authors that hypothetical primordial black holes (PBHs) may contribute to the dark matter (DM) in our Galaxy. There are strong constraints based on the Hawking evaporation that practically exclude PBHs with masses m{sub pbh} approx 10{sup 15}to10{sup 16} g and smaller as significant contributors to the Galactic DM. Similarly, PBHs with masses greater than about 10{sup 26} g are practically excluded by the gravitational lensing observation. The mass range between 10{sup 16} g

  16. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    SciTech Connect

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella E-mail: ripepi@na.astro.it; and others

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability. The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.

  17. Major substructure in the M31 outer halo: distances and metallicities along the giant stellar stream

    NASA Astrophysics Data System (ADS)

    Conn, A. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Ferguson, A. M. N.; Irwin, M. J.; Elahi, P. J.; Venn, K. A.; Mackey, A. D.

    2016-05-01

    We present a renewed look at M31's giant stellar stream along with the nearby structures streams C and D, exploiting a new algorithm capable of fitting to the red giant branch (RGB) of a structure in both colour and magnitude space. Using this algorithm, we are able to generate probability distributions in distance, metallicity and RGB width for a series of subfields spanning these structures. Specifically, we confirm a distance gradient of approximately 20 kpc per degree along a 6 deg extension of the giant stellar stream, with the farthest subfields from M31 lying ˜120 kpc more distant than the innermost subfields. Further, we find a metallicity that steadily increases from -0.7^{+0.1}_{-0.1} to -0.2^{+0.2}_{-0.1} dex along the inner half of the stream before steadily dropping to a value of -1.0^{+0.2}_{-0.2} dex at the farthest reaches of our coverage. The RGB width is found to increase rapidly from 0.4^{+0.1}_{-0.1} to 1.1^{+0.2}_{-0.1} dex in the inner portion of the stream before plateauing and decreasing marginally in the outer subfields of the stream. In addition, we estimate stream C to lie at a distance between 794 and 862 kpc and stream D between 758 and 868 kpc. We estimate the median metallicity of stream C to lie in the range -0.7 to -1.6 dex and a metallicity of -1.1^{+0.3}_{-0.2} dex for stream D. RGB widths for the two structures are estimated to lie in the range 0.4-1.2 dex and 0.3-0.7 dex, respectively. In total, measurements are obtained for 19 subfields along the giant stellar stream, four along stream C, five along stream D and three general M31 spheroid fields for comparison. We thus provide a higher resolution coverage of the structures in these parameters than has previously been available in the literature.

  18. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    SciTech Connect

    Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it; and others

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70 {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.

  19. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  20. Distribution and kinematics of classical cepheids in the Galactic outer ring

    NASA Astrophysics Data System (ADS)

    Mel'nik, A. M.; Rautiainen, P.; Berdnikov, L. N.; Dambis, A. K.; Rastorguev, A. S.

    The existence of an outer ring in the Galaxy can explain the kinematics of OB associations in the Perseus and Sagittarius stellar-gas complexes. Moreover, it can also explain the orientation of the Carina arm with respect to the major axis of the bar. We show that the morphological and kinematical features of the sample of classical cepheids are consistent with the presence of a two-component outer ring in the Galaxy.

  1. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  2. The Massive-black-hole-Velocity-dispersion Relation and the Halo Baryon Fraction: A Case for Positive Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Silk, Joseph; Nusser, Adi

    2010-12-01

    Force balance considerations put a limit on the rate of active galactic nucleus radiation momentum output, L/c, capable of driving galactic superwinds and reproducing the observed M BH-σ relation between black hole mass and spheroid velocity dispersion. We show that black holes cannot supply enough momentum in radiation to drive the gas out by pressure alone. Energy-driven winds give a M BH-σ scaling favored by a recent analysis but also fall short energetically once cooling is incorporated. We propose that outflow triggering of star formation by enhancing the intercloud medium turbulent pressure and squeezing clouds can supply the necessary boost and suggest possible tests of this hypothesis. Our hypothesis simultaneously can account for the observed halo baryon fraction.

  3. THE MASSIVE-BLACK-HOLE-VELOCITY-DISPERSION RELATION AND THE HALO BARYON FRACTION: A CASE FOR POSITIVE ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect

    Silk, Joseph; Nusser, Adi E-mail: adi@physics.technion.ac.i

    2010-12-10

    Force balance considerations put a limit on the rate of active galactic nucleus radiation momentum output, L/c, capable of driving galactic superwinds and reproducing the observed M{sub BH}-{sigma} relation between black hole mass and spheroid velocity dispersion. We show that black holes cannot supply enough momentum in radiation to drive the gas out by pressure alone. Energy-driven winds give a M{sub BH}-{sigma} scaling favored by a recent analysis but also fall short energetically once cooling is incorporated. We propose that outflow triggering of star formation by enhancing the intercloud medium turbulent pressure and squeezing clouds can supply the necessary boost and suggest possible tests of this hypothesis. Our hypothesis simultaneously can account for the observed halo baryon fraction.

  4. Very high energy gamma rays from active galactic nuclei: Cascading on the cosmic background radiation fields and the formation of pair halos

    NASA Technical Reports Server (NTRS)

    Aharonian, F. A.; Coppi, P. S.; Voelk, H. J.

    1994-01-01

    Recent high-energy gamma-ray observations (E(sub gamma) greater than 100 MeV) of blazar Active Galactic Nuclei (AGNs) show emission spectra with no clear upper energy cutoff. AGNs, considered to be possible sources for the observed flux of cosmic rays beyond 10(exp 19) eV, may well have emission extending into the very high energy (VHE), (E(sub gamma) greater than 100 GeV) domain. Because VHE gamma-rays are absorbed by pair production on the intergalactic background radiation fields, much of this emission may not be directly visible. The electromagnetic cascades initiated by absorbed VHE gamma-rays, however, may be observable. Since, most probably, the velocities of (e(+), e(-)) pairs produced in a cascade are quickly isotropized by an ambient random magnetic field, extended 'halos' (R greater than 1 Mpc) of pairs will be formed around AGNs with VHE emission. The cascade radiation from these pair halos is emitted isotropically and should be observable at energies below a few TeV. The halo radiation can be distinguished by its characteristic variation in spectrum and intensity with angular distance from the central source. This variation depends weakly on the details of the central source model, e.g., the orientation and beaming/opening angle of an emitting jet. Limiting or determining the intensity of the pair halo can thus serve as a model-independent bound on or measure of the VHE power of AGNs. Next-generation Cherenkov telescopes may be able to image a pair halo.

  5. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    SciTech Connect

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio; Martínez-Medina, Luis A. E-mail: octavio@astro.unam.mx

    2015-05-20

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  6. Galactic Halos of Hydrogen

    NASA Image and Video Library

    2005-07-25

    This image shows two companion galaxies, NGC 4625 top and NGC 4618 bottom, and their surrounding cocoons of cool hydrogen gas purple. The huge set of spiral arms on NGC 4625 blue was discovered by the ultraviolet eyes of NASA GALEX.

  7. Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey

    SciTech Connect

    Miceli, A; Rest, A; Stubbs, C W; Hawley, S L; Cook, K H; Magnier, E A; Krisciunas, K; Bowell, E; Koehn, B

    2007-02-23

    We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg{sup 2} and span distances ranging from 3-30kpc from the Galactic Center. Object selection is based on phased, photometric data with 28-50 epochs. We use this large sample to explore the bulk properties of the stellar halo, including the spatial distribution. The period-amplitude distribution of this sample shows that the majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a significant fraction (26%) which have longer periods and appear to be Oosterhoff type II. We find that the radial distributions of these two populations have significantly different profiles ({rho}{sub OoI} {approx} R{sup -2.26{+-}0.07} and {rho}{sub OoII} {approx} R{sup -2.88{+-}0.11}). This suggests that the stellar halo was formed by at least two distinct accretion processes and supports dual-halo models.

  8. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia; Arnaboldi, Magda; Gerhard, Ortwin; Hanuschik, Reinhard

    2015-07-01

    Aims: We present a spectroscopic study of a sample of 287 planetary nebulas (PNs) around the brightest cluster galaxy (BCG) M 87 in Virgo A, of which 211 are located between 40 kpc and 150 kpc from the galaxy centre. With these data we can distinguish the stellar halo from the co-spatial intracluster light (ICL) and study both components separately. Methods: We obtained PN velocities with a high resolution FLAMES/VLT survey targeting eight fields in a total area of ~0.4 deg2. We identified PNs from their narrow and symmetric redshifted λ5007 Å [OIII] emission line, the presence of the second λ4959 Å [OIII] emission line, and the absence of significant continuum. We implement a robust technique to measure the halo velocity dispersion from the projected phase-space to identify PNs associated with the M 87 halo and ICL. Using photometric magnitudes, we construct PN luminosity functions (PNLFs), which are complete down to m5007 = 28.8. Results: The velocity distribution of the spectroscopically confirmed PNs is bimodal, containing a narrow component centred on the systemic velocity of the BCG and an off-centred broader component, which we identify as halo and ICL, respectively. We find that 243 PNs are part of the velocity distribution of the M 87 halo, while the remaining subsample of 44 PNs are intracluster PNs (ICPNs). Halo and ICPNs have different spatial distributions: the number density of halo PNs follow the galaxy's surface brightness profile, whereas the ICPNs are characterised by a shallower power-law profile, IICL ∝ Rγ with γ in the range [-0.34, -0.04 ]. No evidence is found for an asymmetry in the halo and ICPN density distributions when the NW and SE fields are studied separately. A study of the composite PN number density profile confirms the superposition of different PN populations associated with the M 87 halo and the ICL, characterised by different PN specific numbers α. We derive αhalo = 1.06 × 10-8NPN L⊙,bol-1 and αICL = 2.72 × 10

  9. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    SciTech Connect

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea; Naab, Thorsten; Walch, Stefanie; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Baczynski, Christian; Clark, Paul C.

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alone is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.

  10. The Bolocam Galactic Plane Survey. IX. Data Release 2 and Outer Galaxy Extension

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Glenn, Jason; Rosolowsky, Erik; Ellsworth-Bowers, Timothy P.; Battersby, Cara; Dunham, Miranda; Merello, Manuel; Shirley, Yancy; Bally, John; Evans, Neal J., II; Stringfellow, Guy; Aguirre, James

    2013-10-01

    We present a re-reduction and expansion of the Bolocam Galactic Plane Survey (BGPS), first presented by Aguirre et al. and Rosolowsky et al. The BGPS is a 1.1 mm survey of dust emission in the Northern galactic plane, covering longitudes -10° < l < 90° and latitudes |b| < 0.°5 with a typical 1σ rms sensitivity of 30-100 mJy in a ~33'' beam. Version 2 of the survey includes an additional ~20 deg2 of coverage in the third and fourth quadrants and ~2 deg2 in the first quadrant. The new data release has improved angular recovery, with complete recovery out to ~80'' and partial recovery to ~300'', and reduced negative bowls around bright sources resulting from the atmospheric subtraction process. We resolve the factor of 1.5 flux calibration offset between the v1.0 data release and other data sets and determine that there is no offset between v2.0 and other data sets. The v2.0 pointing accuracy is tested against other surveys and is demonstrated to be accurate and an improvement over v1.0. We present simulations and tests of the pipeline and its properties, including measurements of the pipeline's angular transfer function. The Bolocat cataloging tool was used to extract a new catalog, which includes 8594 sources, with 591 in the expanded regions. We have demonstrated that the Bolocat 40'' and 80'' apertures are accurate even in the presence of strong extended background emission. The number of sources is lower than in v1.0, but the amount of flux and area included in identified sources is larger.

  11. THE BOLOCAM GALACTIC PLANE SURVEY. IX. DATA RELEASE 2 AND OUTER GALAXY EXTENSION

    SciTech Connect

    Ginsburg, Adam; Glenn, Jason; Ellsworth-Bowers, Timothy P.; Battersby, Cara; Bally, John; Stringfellow, Guy; Rosolowsky, Erik; Dunham, Miranda; Merello, Manuel; Evans II, Neal J.; Shirley, Yancy; Aguirre, James

    2013-10-01

    We present a re-reduction and expansion of the Bolocam Galactic Plane Survey (BGPS), first presented by Aguirre et al. and Rosolowsky et al. The BGPS is a 1.1 mm survey of dust emission in the Northern galactic plane, covering longitudes –10° < l < 90° and latitudes |b| < 0.°5 with a typical 1σ rms sensitivity of 30-100 mJy in a ∼33'' beam. Version 2 of the survey includes an additional ∼20 deg{sup 2} of coverage in the third and fourth quadrants and ∼2 deg{sup 2} in the first quadrant. The new data release has improved angular recovery, with complete recovery out to ∼80'' and partial recovery to ∼300'', and reduced negative bowls around bright sources resulting from the atmospheric subtraction process. We resolve the factor of 1.5 flux calibration offset between the v1.0 data release and other data sets and determine that there is no offset between v2.0 and other data sets. The v2.0 pointing accuracy is tested against other surveys and is demonstrated to be accurate and an improvement over v1.0. We present simulations and tests of the pipeline and its properties, including measurements of the pipeline's angular transfer function. The Bolocat cataloging tool was used to extract a new catalog, which includes 8594 sources, with 591 in the expanded regions. We have demonstrated that the Bolocat 40'' and 80'' apertures are accurate even in the presence of strong extended background emission. The number of sources is lower than in v1.0, but the amount of flux and area included in identified sources is larger.

  12. The Vertical Structure of the Halo Rotation

    NASA Astrophysics Data System (ADS)

    Kinman, T. D.; Cacciari, C.; Bragaglia, A.; Buzzoni, A.; Spagna, A.

    New GSC-II proper motions of RR Lyrae and Blue Horizontal Branch (BHB) stars near the North Galactic Pole are used to show that the Galactic Halo 5 kpc above the Plane has a significantly retrograde galactic rotation.

  13. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and >3D< Models. II. Chemical Properties of the Galactic Metal-poor Disk and the Halo

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph; Andrae, Rene; Kovalev, Mikhail; Ruchti, Greg; Hansen, Camilla Juul; Magic, Zazralt

    2017-09-01

    From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged <3D> models. We show that compared to the <3D> NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best <3D> NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]–[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ∼ ‑1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.

  14. The Modulation of Galactic Cosmic Ray Intensity in the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Fedorov, Yurii; Stehlik, Milan

    2017-09-01

    Voyager 1 and 2 observations could improve a model of the heliosphere that includes the supersonic solar wind and heliosheath as far as local interstellar space. This enables us to construct a simple model of the propagation of galactic cosmic-ray particles (GCR) in the heliosphere and its magnetic fields. Solutions of the cosmic-ray transport equation in an spherical force-field approximation (Gleeson and Urch in Astrophys. Space Sci. 25:387, 1973) are generalized, and then they are modified in a second-order approximation assuming a small GCR streaming (GCR anisotropy) as a smallness parameter. GCR reacceleration on shock waves is not considered in our model. This idealized approach still yields additional insight into the process of GCR distribution in the real heliosphere. The energy and spatial distribution of the GCR intensity is investigated in separate regions of the heliosphere. The GCR energy streaming is estimated, and the anisotropy in the GCR angular distribution is computed for particle kinetic energies from 100 MeV up to 10 GeV.

  15. The Dual Origin Of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total

  16. Gems in the outer galaxy: Near-infrared imaging of three young clusters at large galactic radii

    SciTech Connect

    Davidge, T. J.

    2014-02-01

    Images recorded with the Gemini South Adaptive Optics Imager (GSAOI) and corrected for atmospheric seeing by the Gemini Multi-conjugate Adaptive Optics System are used to investigate the stellar contents of the young outer Galactic disk clusters Haffner 17, NGC 2401, and NGC 3105. Ages estimated from the faint end of the main sequence (MS) and the ridgeline of the pre-main sequence on the (K, J – K) color-magnitude diagrams are consistent with published values that are based on the MS turnoff, with the GSAOI data favoring the younger end of the age range for NGC 2401 in the literature. The mass function (MF) of NGC 2401 is similar to that in the solar neighborhood, and stars spanning a wide range of masses in this cluster have similar clustering properties on the sky. It is concluded that NGC 2401 is not evolved dynamically. In contrast, the MF of Haffner 17 differs significantly from that in the solar neighborhood over all masses covered by these data, while the MF of NGC 3105 is deficient in objects with sub-solar masses when compared with the solar neighborhood. Low-mass objects in Haffner 17 and NGC 3105 are also more uniformly distributed on the sky than brighter, more massive, MS stars. This is consistent with both clusters having experienced significant dynamical evolution.

  17. Evidence for a Very Low-column Density Hole in the Galactic Halo in the Direction of the High Latitude Molecular Cloud MBM 16

    NASA Astrophysics Data System (ADS)

    Liu, W.; Galeazzi, M.; Ursino, E.

    2016-01-01

    Shadow observations are the only way to observe emission from the galactic halo (GH) and/or the circumgalactic medium (CGM) free of any foreground contamination from local hot bubble (LHB) and solar wind charge exchange (SWCX). We analyzed data from a shadow observation in the direction of the high latitude, neutral hydrogen cloud MBM 16 with Suzaku. We found that all emission can be accounted for by foreground emission from LHB and SWCX, plus power-law emission associated with unresolved point sources. The GH/CGM in the direction of MBM 16 is negligible or inexistent in our observation, with upper limits on the emission measure of 9× {10}-4 pc cm-6 (90% C.L.-solar metallicity), at the lowest end of current estimates.

  18. New views of the distant stellar halo

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn E.; Secunda, Amy; Johnston, Kathryn V.; Bochanski, John J.

    2017-10-01

    Currently, only a small number of Milky Way (MW) stars are known to exist beyond 100 kpc from the Galactic Centre. Though the distribution of these stars in the outer halo is believed to be sparse, they can provide evidence of more recent accretion events than in the inner halo and help map out the MW's dark matter halo to its virial radius. We have re-examined the outermost regions of 11 existing stellar halo models with two synthetic surveys: one mimicking present-day searches for distant M giants and another mimicking RR Lyra (RRL) projections for the Large Synoptic Survey Telescope (LSST). Our models suggest that colour and proper motion cuts currently used to select M giant candidates for follow-up successfully remove nearly all self-contamination from foreground halo dwarf stars and are useful for focusing observations on distant M giants, of which there are thousands to tens of thousands beyond 100 kpc in our models. We likewise expect that LSST will identify comparable numbers of RRLe at these distances. We demonstrate that several observable properties of both tracers, such as proximity of neighbouring stars, proper motions and distances (for RRLe), could help us separate different accreted dwarf galaxies from one another in the distant MW halo. We also discuss prospects for using ratios of M giants to RRLe as a proxy for accretion time, which in the future could provide new constraints on the recent accretion history of our Galaxy.

  19. Determination of the Point-Spread Function for the FERMI Large Area Telescope from On-Orbit Data and Limits on Pair Halos of Active Galactic Nuclei

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2013-02-15

    We present the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from ≈20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of γ rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broadermore » than the pre-launch PSF. We checked for dependence of the PSF on the class of γ-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. Finally, we found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347–121.« less

  20. DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Asano, K.; Atwood, W. B.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Bonamente, E.; Brandt, T. J.; Brigida, M.; Bruel, P. E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS and others

    2013-03-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.

  1. White Dwarfs in the Galaxy's Halo

    NASA Astrophysics Data System (ADS)

    Oppenheimer, B.; Murdin, P.

    2002-12-01

    The Galaxy's large spherical halo (see GALACTICMETAL-POOR HALO and HALO, GALACTIC) may harboras many as several hundred billion WHITE DWARFS, apopulation as large in number as the total number of stars in theGalaxy's disk (see DISK GALAXIES and GALACTIC THIN DISK). Although this assertion iscontroversial, several astronomical surveys provide strong support for it andthe implications affect fields ...

  2. Two New Ultra-Faint Star Clusters in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2016-08-01

    Kim 1 & 2 are two new star clusters discovered in the Stromlo Missing Satellite Survey. Kim 1, located at a heliocentric distance of 19.8 +/- 0.9 kpc, features an extremely low total luminosity (M V = 0.3 +/- 0.5 mag) and low star concentration. Together with the large ellipticity (ɛ = 0.42 +/- 0.10) and irregular isophotes, these properties suggest that Kim 1 is an intermediate mass star cluster being stripped by the Galactic tidal field. Kim 2 is a rare ultra-faint outer halo globular cluster located at a heliocentric distance of 104.7 +/- 4.1 kpc. The cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. Kim 2 is likely to follow an orbit confined to the peripheral region of the Galactic halo, and/or to have formed in a dwarf galaxy that was later accreted into the Galactic halo.

  3. Analysis of HST/COS spectra of the bare C-O stellar core H1504+65 and a high-velocity twin in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.

    2015-12-01

    H1504+65 is an extremely hot white dwarf (effective temperature Teff = 200 000 K) with a carbon-oxygen dominated atmosphere devoid of hydrogen and helium. This atmospheric composition was hitherto unique among hot white dwarfs (WDs), and it could be related to recently detected cooler WDs with C or O dominated spectra. The origin of the H and He deficiency in H1504+65 is unclear. To further assess this problem, we performed ultraviolet spectroscopy with the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST). In accordance with previous far-ultraviolet spectroscopy performed with the Far Ultraviolet Spectroscopic Explorer, the most prominent lines stem from C iv, O v-vi, and Ne vi-viii. Archival HST/COS spectra are utilized to prove that the supersoft X-ray source RX J0439.8-6809 is, considering the exotic composition, a twin of H1504+65 that is even hotter (Teff = 250 000 K). In contrast to earlier claims, we find that the star is not located in the Large Magellanic Cloud but a foreground object in the Galactic halo at a distance of 9.2 kpc, 5.6 kpc below the Galactic plane, receding with vrad = +220 km s-1. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.

  4. Modeling the Destruction and Survival of PAHs in Astrophysical Regions: from Low-metallicity Galaxies to Elliptical Galaxies and Galactic Halos

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2006-05-01

    The 3.3, 6.2, 7.7, 8.6 and 11.3 micron emission features of polycyclic aromatic hydrocarbon (PAH) molecules have been seen in a wide variety of Galactic and extragalactic objects. However, the PAH features are weak or absent in low-metallicity galaxies and AGN, as generally interpreted as the destruction of PAHs by hard UV photons in metal-poor galaxies or by extreme UV and soft X-ray photons in AGN. On the other hand, the PAH emission features have recently been detected in elliptical galaxies, tidal dwarf galaxies, galaxy halos, and distant galaxies at redshift >=2. However, it is not clear how PAHs can survive in elliptical galaxies containing X-ray emitting hot gas where PAHs are expected to be easily destroyed through sputtering by hot plasma ions. It is also not clear how PAHs get ``levitated'' and survive from galactic plane to galaxy halo where the physical conditions are similar to those of elliptical galaxies. We propose to study the destruction of PAHs (1) by UV photons in low-metallicity galaxies, (2) by extreme UV and X-ray photons in AGN, (3) by intense UV radiation in regions with strong star-forming activities, and (4) through sputtering by plasma ions in hot gas. This will allow us, by the first time, to quantitatively investigate the deficiency or lack of PAHs in AGN and low-metallicity galaxies, as well as the survivability of PAHs in elliptical galaxies, galaxy halo, and superwind, and the method of using the IRAC 8 micron photometry as a tracer of star formation rates. This program will create a web-based ``library'' of the destruction rates of PAHs by UV and X-ray photons as a function of size, intensity and hardness of the radiation field, and the sputtering rates of PAHs by plasma ions as a function of size, gas density and temperature. This library will be made publicly available to the astronomical community by May 2007 on the internet at http://www.missouri.edu/~lia/.

  5. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  6. GeMS in the Outer Galaxy: Near-infrared Imaging of Three Young Clusters at Large Galactic Radii

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2014-02-01

    Images recorded with the Gemini South Adaptive Optics Imager (GSAOI) and corrected for atmospheric seeing by the Gemini Multi-conjugate Adaptive Optics System are used to investigate the stellar contents of the young outer Galactic disk clusters Haffner 17, NGC 2401, and NGC 3105. Ages estimated from the faint end of the main sequence (MS) and the ridgeline of the pre-main sequence on the (K, J - K) color-magnitude diagrams are consistent with published values that are based on the MS turnoff, with the GSAOI data favoring the younger end of the age range for NGC 2401 in the literature. The mass function (MF) of NGC 2401 is similar to that in the solar neighborhood, and stars spanning a wide range of masses in this cluster have similar clustering properties on the sky. It is concluded that NGC 2401 is not evolved dynamically. In contrast, the MF of Haffner 17 differs significantly from that in the solar neighborhood over all masses covered by these data, while the MF of NGC 3105 is deficient in objects with sub-solar masses when compared with the solar neighborhood. Low-mass objects in Haffner 17 and NGC 3105 are also more uniformly distributed on the sky than brighter, more massive, MS stars. This is consistent with both clusters having experienced significant dynamical evolution. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  7. OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO

    SciTech Connect

    Ramirez, I.; Lambert, D. L.; Allende Prieto, C.

    2013-02-10

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P {sub 1}), thick-disk (P {sub 2}), and halo (P {sub 3}) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P {sub 2} > 0.5) relative to thin-disk (P {sub 1} > 0.5) stars with [Fe/H] {approx}< -0.2, as well as a 'knee' that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] {approx}> -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with 'intermediate' kinematics (P {sub 1} < 0.7, P {sub 2} < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P {sub 3} > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s{sup -1}; halo stars with V > -200 km s{sup -1} follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with 'ambiguous' kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  8. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    NASA Astrophysics Data System (ADS)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (i.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  9. Galactic onion

    NASA Image and Video Library

    2015-05-11

    The glowing object in this image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centres approach, they initially oscillate about a common centre, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.

  10. CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Martell, Sarah L.; Beers, Timothy C.; Freeman, Ken C. E-mail: smartell@aao.gov.au E-mail: kcf@mso.anu.edu.au

    2013-06-01

    We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

  11. PROBING THE HALO FROM THE SOLAR VICINITY TO THE OUTER GALAXY: CONNECTING STARS IN LOCAL VELOCITY STRUCTURES TO LARGE-SCALE CLOUDS

    SciTech Connect

    Johnston, Kathryn V.; Sheffield, Allyson A.; Majewski, Steven R.; Sharma, Sanjib; Rocha-Pinto, Helio J.

    2012-11-20

    This paper presents the first potential connections made between two local features in velocity space found in a survey of M giant stars and stellar spatial inhomogeneities on global scales. Comparison to cosmological, chemodynamical stellar halo models confirms that the M giant population is particularly sensitive to rare, recent and massive accretion events. These events can give rise to locally observed velocity sequences-each made from a small fraction of debris from a massive progenitor, passing at high velocity through the survey volume, near the pericenter of the eccentric orbit of the system. The majority of the debris is found in much larger structures, whose morphologies are more cloud-like than stream-like and which lie at the orbital apocenters. Adopting this interpretation, the full-space motions represented by the observed M giant velocity features are derived under the assumption that the members within each sequence share a common space velocity. Orbit integrations are then used to trace the past and future trajectories of these stars across the sky revealing plausible associations with large, previously discovered, cloud-like structures. The connections made between nearby velocity structures and these distant clouds represent preliminary steps toward developing coherent maps of such giant debris systems. These maps promise to provide new insights into the origin of debris clouds, new probes of Galactic history and structure, and new constraints on the high-velocity tails of the local dark matter distribution that are essential for interpreting direct dark matter particle detection experiments.

  12. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.

    PubMed

    Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R

    2011-11-18

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.

  13. First results from the Goddard High-Resolution Spectrograph - The Galactic halo and the Ly-alpha forest at low redshift in 3C 273

    NASA Technical Reports Server (NTRS)

    Morris, Simon L.; Weymann, Ray J.; Savage, Blair D.; Gilliland, Ronald L.

    1991-01-01

    Results of initial spectroscopy using the Goddard High-Resolution Spectrograph and the Hubble Space Telescope on the bright low-redshift quasar 3C 273 are presented. Absorption lines produced by gas in the disk and halo of the Galaxy from numerous neutral and weakly ionized atoms and also from highly ionized atoms are detected. The detection of N v provides additional strong support for the existence of gas with T about 200,000 K at large distances away from the disk of the Galaxy. Ten absorption lines with EW greater than 50 mA, and four possible lines with EW between 25 and 50 mA, are also found in the region between 1235 and 1406 A. These cannot be identified with any lines in the galactic interstellar medium and must therefore all be Ly-alpha systems at very low redshifts. This number of lines is 5-10 times larger than expected from a simple extrapolation of the high-redshift evolution derived from ground-based observations and is consistent with no evolution in cloud properties since z = 2.

  14. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  15. Search for a Dark Matter Annihilation Signal from the Galactic Center Halo with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.'C.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schönwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; Wierzcholska, A.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2011-04-01

    A search for a very-high-energy (VHE; ≥100GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r˜45-150pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) γ-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual γ-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section ⟨σv⟩ as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of ˜1TeV, values for ⟨σv⟩ above 3×10-25cm3s-1 are excluded for the Einasto density profile.

  16. Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S.

    PubMed

    Abramowski, A; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Barnacka, A; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Borrel, V; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füssling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; de los Reyes, R; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schönwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Sushch, I; Szostek, A; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; Wierzcholska, A; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H-S

    2011-04-22

    A search for a very-high-energy (VHE; ≥100  GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r∼45-150  pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) γ-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual γ-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section (σv) as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of ∼1  TeV, values for (σv) above 3×10(-25)  cm(3) s(-1) are excluded for the Einasto density profile.

  17. Diffuse low-ionization gas in the galactic halo casts doubts on z ≃ 0.03 WHIM detections

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Gupta, A.; Mathur, S.; Krongold, Y.; Elvis, M.; Piro, L.

    2016-05-01

    In this Letter, we demonstrate that the two claims of z ≃ 0.03 O VII K α absorption lines from Warm Hot Intergalactic Medium (WHIM) along the lines of sight to the blazars H 2356-309 (Buote et al.; Fang et al.) and Mkn 501 (Ren, Fang & Buote) are likely misidentifications of the z = 0 O II K β line produced by a diffuse Low-Ionization Metal Medium in the Galaxy's interstellar and circum-galactic mediums. We perform detailed modelling of all the available high signal-to-noise Chandra Low Energy Transmission Grating (LETG) and XMM-Newton Reflection Grating Spectrometer (RGS) spectra of H 2356-309 and Mkn 501 and demonstrate that the z ≃ 0.03 WHIM absorption along these two sightlines is statistically not required. Our results, however, do not rule out a small contribution from the z ≃ 0.03 O VII K α absorber along the line of sight to H 2356-309. In our model the temperature of the putative z = 0.031 WHIM filament is T = 3 × 105 K and the O VII column density is N_{O VII} ≲ 4× 10^{15} cm-2, twenty times smaller than the O VIIcolumn density previously reported, and now more consistent with the expectations from cosmological hydrodynamical simulations.

  18. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    natal clouds by an external (distant) source. This finding has important implications for our understanding of carbon enrichment in the early Galactic halo and some high-redshift damped lyman alpha (DLA) systems, and of the mass loss from extremely metal-poor AGB stars.

  19. The growth of galactic bulges through mergers in Λ CDM haloes revisited - I. Present-day properties

    NASA Astrophysics Data System (ADS)

    Zavala, Jesus; Avila-Reese, Vladimir; Firmani, Claudio; Boylan-Kolchin, Michael

    2012-12-01

    We use the combined data sets of the Millennium I and II cosmological simulations to revisit the impact of mergers in the growth of bulges in central galaxies in the Λ cold dark matter (ΛCDM) scenario. We seed galaxies within the growing CDM haloes using semi-empirical relations to assign stellar and gaseous masses, and an analytic treatment to estimate the transfer of stellar mass to the bulge of the remnant after a galaxy merger. We find that this model roughly reproduces the observed correlation between the bulge-to-total mass (B/T) ratio and stellar mass (M*) in present-day central galaxies as well as their observed demographics, although low-mass B/T < 0.1 (bulgeless) galaxies might be scarce relative to the observed abundance. In our merger-driven scenario, bulges have a composite stellar population made of (i) stars acquired from infalling satellites, (ii) stars transferred from the primary disc due to merger-induced perturbations and (iii) newly formed stars in starbursts triggered by mergers. We find that the first two are the main channels of mass assembly, with the first one being dominant for massive galaxies, creating large bulges with different stellar populations than those of the inner discs, while the second is dominant for intermediate/low-mass galaxies and creates small bulges with similar stellar populations to the inner discs. We associate the dominion of the first (second) channel to classical (pseudo) bulges, and compare the predicted fractions to observations. We emphasize that our treatment does not include other mechanisms of bulge growth such as intrinsic secular processes in the disc or misaligned gas accretion. Interestingly, we find that the evolution of the stellar and gaseous contents of the satellite as it spirals towards the central galaxy is a key ingredient in setting the morphology of the remnant galaxy, and that a good match to the observed bulge demographics occurs when this evolution proceeds closely to that of the central

  20. The warp of the Galactic stellar disk detected in IRAS source counts

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Sosin, Craig

    1989-01-01

    About 90,000 IRAS point sources have been used as disk tracers in order to explore the possibility of warp in the Galactic stellar disk. The results imply that the Galactic stellar disk is warped at large radii in a way similar to the H-I layer, and that the warp is an important characteristic of the Galaxy as a whole. It is suggested that the warp may be a long-lasting phenomenon, possibly caused by asymmetries of the mass distribution in the outer regions of the Galactic dark halo.

  1. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    PubMed

    Abdallah, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Lohse, T; Lorentz, M; Lui, R; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; Odaka, H; Ohm, S; Öttl, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seyffert, A S; Shafi, N; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spieß, F; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-09-09

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10^{-26}  cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26}  cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particles.

  2. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Lui, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Ohm, S.; Öttl, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-09-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ -ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ -ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σ v ⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σ v ⟩ values of 6 ×10-26 cm3 s-1 in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 ×10-26 cm3 s-1 in the τ+τ- channel for a 1 TeV mass. For the first time, ground-based γ -ray observations have reached sufficient sensitivity to probe ⟨σ v ⟩ values expected from the thermal relic density for TeV DM particles.

  3. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  4. The Spatial Clustering of ROSAT All-Sky Survey Active Galactic Nuclei. IV. More Massive Black Holes Reside in More Massive Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Husemann, Bernd; Fanidakis, Nikos; Coil, Alison L.; Aceves, Hector

    2015-12-01

    This is the fourth paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey and Sloan Digital Sky Survey (SDSS). In this paper we investigate the cause of the X-ray luminosity dependence of the clustering of broad-line, luminous AGNs at 0.16\\lt z\\lt 0.36. We fit the Hα line profile in the SDSS spectra for all X-ray and optically selected broad-line AGNs, determine the mass of the supermassive black hole (SMBH), {M}{BH}, and infer the accretion rate relative to Eddington (L/{L}{EDD}). Since {M}{BH} and L/{L}{EDD} are correlated, we create AGN subsamples in one parameter while maintaining the same distribution in the other parameter. In both the X-ray and optically selected AGN samples, we detect a weak clustering dependence with {M}{BH} and no statistically significant dependence on L/{L}{EDD}. We find a difference of up to 2.7σ when comparing the objects that belong to the 30% least and 30% most massive {M}{BH} subsamples, in that luminous broad-line AGNs with more massive black holes reside in more massive parent dark matter halos at these redshifts. These results provide evidence that higher accretion rates in AGNs do not necessarily require dense galaxy environments, in which more galaxy mergers and interactions are expected to channel large amounts of gas onto the SMBH. We also present semianalytic models that predict a positive {M}{DMH} dependence on {M}{BH}, which is most prominent at {M}{BH}˜ {10}8-9 {M}⊙ .

  5. The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A.

    2015-11-01

    Context. The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later (post-birth) mass transfer of chemically processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Aims: Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether local mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. Methods: High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over eight years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m s-1 were determined by cross-correlation against an optimized template. Results: Fourteen of the programme stars exhibit no significant radial-velocity variation over this temporal window, while three are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18 ± 6% for the sample. Conclusions: Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies

  6. The velocity field of the outer Galaxy in the Southern Hemisphere. II - CO observations of galactic nebulae

    NASA Astrophysics Data System (ADS)

    Brand, J.; Blitz, L.; Wouterloot, J. G. A.; Kerr, F. J.

    1987-02-01

    CO observations of 308 objects (77 percent) from a catalogue (Brand et al., 1985) of galactic emission and reflection nebulae are presented; CO was detected in the direction of 234 nebulae (76 percent). For 194 of these objects (63 percent) the emission could actually be associated with the nebula. Fifteen objects (5 percent) have associated CO emission with velocity in excess of 50 km/s (VLSR). These objects are of crucial importance as they are potentially very distant, and nearly all of them have been newly identified. In the course of this survey several sources with interesting line profiles were found. Eighteen of them exhibit wings and/or plateaus and are potential CO outflow sources.

  7. Characterizing stellar halo populations II: the age gradient in blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Das, Payel; Williams, Angus; Binney, James

    2016-12-01

    The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitted using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that traces the phase-space kinematics and chemistry out to ˜70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fitting EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ˜2 kpc to -4 in the outer halo, with an axis ratio ˜0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with βs varying from isotropic to between ˜0.1 and ˜0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc-1, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo primarily comprises younger, smaller systems.

  8. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  9. Halos around planetary nebulae

    NASA Technical Reports Server (NTRS)

    Jewitt, D. C.; Danielson, G. E.; Kupferman, P. N.

    1986-01-01

    Preliminary results of a CCD survey designed to detect and investigate faint halos around planetary nebulae are reported. A TI 800 x 800 pixel CCD was used to take deep exposures of 44 planetary nebulae. The exposures were obtained through an H-alpha filter at the Cassegrain focus of the Palomar 1.5 m telescope. Spatial resolutions of 1 to 2 arcsec were obtained across 400 arcsec wide fields. The images, which are in many cases considerably deeper than any previously taken, reveal numerous planetary nebula halos. About two-thirds of the studied nebulae possess extensive outer halos, here defined as any extended emission beyond the 10 percent isophote. Ionized sulphur electron density measurements show that in some nebulae, the mass in the halo is comparable to the mass contained in the primary H II region. The data have been used to place constraints on the mode of origin of the halos. It is likely that the halos originate either by dynamical separation of a single ejected shell of gas or by the ejection of two or more such shells from the central star. It is possible but less likely that the halos are caused by excitation of the preplanetary stellar wind and improbable that the halos represent reflection nebulae.

  10. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  11. Ultraviolet Halos around Spiral Galaxies. I. Morphology

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N.

    2016-12-01

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 106-107 M ⊙ of dust within 2-10 kpc of the disk, whose properties may change with height in starburst galaxies.

  12. A Receding Halo Sub-structure Towards Norma

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya

    2016-01-01

    We present results from follow-up spectroscopic observations of clustered Cepheid candidates identified from K-band light curves towards the Norma constellation (Chakrabarti et al. 2015), as well as others that we have found more recently. The average radial velocity of these stars is ~ 200 km/s, which is large and distinct from that of the Galaxy's stellar disk. These objects at l ~ -27 and b ~ -1 are therefore halo stars; using the period-luminosity relation of Type I Cepheids, they are at ~ 90 kpc. While the spectra do not have sufficient S/N to independently determine the metallicity and spectral type of the stars, there is a clear correspondence between the observed Brackett series lines in these observations and in known Type I Cepheids. Distances determined from the K-band period-luminosity relation (Matsunaga et al. 2013) and the 3.6 μm period-luminosity relation (Scowcroft et al. 2011) agree closely, and I-band observations have confirmed the periods of these sources. The extinction corrected J - Ks colors of these sources are comparable to known Type I Cepheids (Persson et al. 2004). The observed radial velocity of these stars agrees with predictions from dynamical models (Chakrabarti & Blitz 2009). If these stars are indeed members of the predicted dark-matter dominated dwarf galaxy that perturbed the outer HI disk of the Milky Way, this would represent the first application of Galactoseismology. These observations also challenge models of the Galactic halo. Young Cepheid variables are unexpected in models of the Galactic halo, though star formation due to infall of gas-rich dwarf galaxies may well produce a small population of yet undiscovered Cepheids in the outer halo.

  13. Contribution of the Large Magellanic Cloud to the Galactic warp

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Toshio

    2002-09-01

    Multi-scale interaction between the LMC, the Galactic halo, and the disk is examined with N-body simulations, and precise amplitudes of the Galactic warp excitation are obtained. The Galactic models are constructed most realistically to satisfy available observational constraints on the local circular velocity, the mass, surface density and thickness of the disk, the mass and size of the bulge, the local density of the halo matter at the solar radius, and the mass and orbit of the LMC. The mass of the halo within R=50 kpc is set to about 5×10 11 M ⊙. Since the observational estimate of the mass distributed in outer region has large ambiguity, two extreme cases are examined; M(<170 kpc)=2.1 and 0.9×10 12 M ⊙. LMC is orbiting in a ellipse with apocentric radii of 100 kpc, thus the main difference between our two models is the mass density in the satellite orbiting region, so that our study can clarify the role of the halo on excitation of the warp. By using hybrid algorithm (SCF-TREE) I have succeeded to follow the evolution with millions of particles. The orbiting satellite excites density enhancement as a wake, and the wake exerts a tidal force on the disk. Because of the additional torque from the wakes in the halo, the amplitudes of the induced warps are much larger than the classical estimate by Hunter and Toomre [ApJ 155 (1969) 747], who considered only the direct torque from the LMC. The obtained amplitudes of m=0, 1, 2 warps in the larger halo model show very good agreement with the observed amplitude in the Milky Way. This result revives the LMC as a possible candidate of the origin of the Galactic warp. Our smaller halo model, however, yield only weak warps in all the harmonic modes. Therefore, the halo still has significant influence on excitation of warp even in the interaction scenario for excitation of warps.

  14. Search for Halo Axions

    SciTech Connect

    Daw, E. J.,; van Bibber, K.

    1998-01-01

    A collaboration of MIT, LLNL, Univ. of Florida, FNAL, UC Berkeley and INR Moscow have built a large-scale RF cavity axion detector. The experiment has been taking production data since February of 1996 and is sensitive enough to detect plausible dark matter axions comprising a reasonable fraction of the mass in our galactic halo. After a brief introduction to axion physics, I discuss details of our instrumentation, our analysis methodology, our run plan and future goals of the experiments.

  15. Determination of the Point-Spread Function for the FERMI Large Area Telescope from On-Orbit Data and Limits on Pair Halos of Active Galactic Nuclei

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Asano, K.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chaty, S.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Cillis, A. N.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Kamae, T.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lavalley, C.; Lee, S. -H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nemmen, R.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Poon, H.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Romoli, C.; Roth, M.; Sanchez, D. A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Snyder, A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wallace, E.; Weltevrede, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2013-02-15

    We present the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from ≈20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of γ rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of γ-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. Finally, we found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347–121.

  16. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  17. The Case for the Dual Halo of the Milky Way

    SciTech Connect

    Beers, Timothy C.; Carollo, Daniela; Ivezic, Zeljko; An, Deokkeun; Chiba, Masashi; Norris, John E.; Freeman, Ken C.; Lee, Young Sun; Munn, Jeffrey A.; Fiorentin, Paola Re; Sivarani, Thirupathi; /Bangalore, Indian Inst. Astrophys. /Kentucky U.

    2011-04-01

    Based on an analysis of the local kinematics of SDSS DR7 calibration stars, Carollo et al. have resolved the stellar population of the Milky Way halo into at least two components. This result has recently been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al.. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the incorrect relation adopted by Schoenrich et al. yields, on average, 18% shorter distances (independent of metallicity) for stars near the main-sequence turnoff (TO). When the correct relationship is used, the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs agree to within 6-10%, depending on the color range considered. We have also compared the Carollo et al. distances with the distances derived from the calibrated isochrones of An et al., and find a similar level of agreement for low-metallicity dwarfs. Schoenrich et al. also point out that stars of intermediate gravity (3.5 {<=} log g < 4.0, based on spectroscopic determinations) are likely misclassified, at least for colors significantly redder than the TO region, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior for the Carollo et al. stars that are most likely associated with the outer halo demonstrate that, when either a sample of exclusively dwarf stars or the full sample of dwarf, TO, and subgiant/giant stars is used, the retrograde signature and high velocity dispersion of the outer-halo population remains, with values

  18. Overview of Galactic Archaelogy with Kepler and K2

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer; APOKASC Team; APO-K2 Team

    2017-01-01

    The exquisite lightcurves of the Kepler and K2 missions have been an unexpected boon to the field of near-field cosmology. Ages and evolutionary states can now be derived for field red giants, by combining seismic and granulation signatures with spectroscopic data. Red giants, far more luminous than the main-sequence turnoff stars usually used, allow us to probe the evolution of the whole Galaxy. Originally these investigations were restricted to a single line of sight in the direction of Cygnus. With the failure of the reaction wheels and the start of the K2 program, we now probe distinctly different Galactic populations, including the inner and outer disks, the bulge-halo interface, and far more ofthe Galactic halo. I will present an overview of some of the Galactic archaeology efforts underway with Kepler and K2 data, focusing on our calibration of absolute ages. I will also present results on Galactic chemical evolution and the timescales for the formation of the elements.

  19. The global dark halo structure of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We set new limits on the global shape of the dark halo in the Andromeda galaxy based on axisymmetric mass models constructed by Hayashi & Chiba (2012). This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Based on the application of our models to latest kinematical data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield not a spherical but a prolate shape for its dark halo. We also find that the prolate dark halo is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their galactic host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web.

  20. Chemical Abundances of the Milky Way Thick Disk and Stellar Halo. II. Sodium, Iron-peak, and Neutron-capture Elements

    NASA Astrophysics Data System (ADS)

    Ishigaki, M. N.; Aoki, W.; Chiba, M.

    2013-07-01

    We present chemical abundance analyses of sodium, iron-peak, and neutron-capture elements for 97 kinematically selected thick disk, inner halo, and outer halo stars with metallicities -3.3 < [Fe/H] <-0.5. The main aim of this study is to examine chemical similarities and differences among metal-poor stars belonging to these old Galactic components as a clue to determine their early chemodynamical evolution. In our previous paper, we obtained abundances of α elements by performing a one-dimensional LTE abundance analysis based on the high-resolution (R ~ 50, 000) spectra obtained with the Subaru/HDS. In this paper, a similar analysis is performed to determine abundances of an additional 17 elements. We show that, in metallicities below [Fe/H] ~-2, the abundance ratios of many elements in the thick disk, inner halo, and outer halo subsamples are largely similar. In contrast, in higher metallicities ([Fe/H] gsim -1.5), differences in some of the abundance ratios among the three subsamples are identified. Specifically, the [Na/Fe], [Ni/Fe], [Cu/Fe], and [Zn/Fe] ratios in the inner and outer halo subsamples are found to be lower than those in the thick disk subsample. A modest abundance difference between the two halo subsamples in this metallicity range is also seen for the [Na/Fe] and [Zn/Fe] ratios. In contrast to that observed for [Mg/Fe] in our previous paper, [Eu/Fe] ratios are more enhanced in the two halo subsamples rather than in the thick disk subsample. The observed distinct chemical abundances of some elements between the thick disk and inner/outer halo subsamples with [Fe/H] >-1.5 support the hypothesis that these components formed through different mechanisms. In particular, our results favor the scenario that the inner and outer halo components formed through an assembly of multiple progenitor systems that experienced various degrees of chemical enrichments, while the thick disk formed through rapid star formation with an efficient mixing of chemical

  1. The Vertical Structure of the Halo Rotation

    NASA Astrophysics Data System (ADS)

    Kinman, T. D.; Bragaglia, A.; Cacciari, C.; Buzzoni, A.; Spagna, A.

    New GSC-II proper motions and radial velocities of RR Lyrae and Blue Horizontal Branch stars near the North Galactic Pole are used to show that the Galactic Halo 5 kpc above the Plane has a significantly retrograde galactic rotation. Streaming motions cannot be excluded. Based on observations collected at the Kitt Peak and TNG Observatories. Funded by MIUR-Cofin 2001 (PI: Gratton).

  2. Mapping Baryons in the Halo of NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2012-10-01

    We propose observing 5 background QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 53-183 kpc. NGC 1097 is a bright {-21.1} spiral galaxy that has the highest surface density of background, UV-bright QSOs in the nearby Universe. The galaxy hosts a low luminosity AGN at its core, surrounded by a ring of intense star-forming regions; there is also evidence from stellar tidal streams that the galaxy has recently cannibalized a number of dwarf galaxies, and a companion dwarf elliptical is still clearly merging with the outer disk. We aim to examine the physical conditions of gas that fills the halo of such an active galaxy. We will search primarily for Lya and SiIV absorption lines in the spectra of the background QSOs, as well as weak NV from hot gas. At the lowest impact parameters, we may also be able to find absorption lines from low ionization species. Our goals are to test whether the halo of NGC 1097 contains the same distribution of Lyman-alpha forest clouds seen at higher redshifts out to large distances from galaxies, and determine how the HI column density, covering fraction, and temperature of the gas decline with radius in a single galaxy halo. We will examine whether the velocities of the absorbers are consistent with those expected from gas co-rotating in the dark matter halo of the galaxy, or whether there exists a distribution of velocities that might indicate outflows from the galactic disk or from the central AGN, or, alternatively, from inflows from the IGM. Our map of Lya and SiIV around NGC 1097 will provide an important template for understanding the origin of higher redshift QSO absorption line systems.

  3. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  4. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  5. The Galactic Habitable Zone: Galactic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter

    2001-07-01

    We propose the concept of a "Galactic Habitable Zone" (GHZ). Analogous to the Circumstellar Habitable Zone (CHZ), the GHZ is that region in the Milky Way where an Earth-like planet can retain liquid water on its surface and provide a long-term habitat for animal-like aerobic life. In this paper we examine the dependence of the GHZ on Galactic chemical evolution. The single most important factor is likely the dependence of terrestrial planet mass on the metallicity of its birth cloud. We estimate, very approximately, that a metallicity at least half that of the Sun is required to build a habitable terrestrial planet. The mass of a terrestrial planet has important consequences for interior heat loss, volatile inventory, and loss of atmosphere. A key issue is the production of planets that sustain plate tectonics, a critical recycling process that provides feedback to stabilize atmospheric temperatures on planets with oceans and atmospheres. Due to the more recent decline from the early intense star formation activity in the Milky Way, the concentration in the interstellar medium of the geophysically important radioisotopes 40K, 235,238U, and 232Th has been declining relative to Fe, an abundant element in the Earth. Also likely important are the relative abundances of Si and Mg to Fe, which affects the mass of the core relative to the mantle in a terrestrial planet. All these elements and isotopes vary with time and location in the Milky Way; thus, planetary systems forming in other locations and times in the Milky Way with the same metallicity as the Sun will not necessarily form habitable Earth-like planets. As a result of the radial Galactic metallicity gradient, the outer limit of the GHZ is set primarily by the minimum required metallicity to build large terrestrial planets. Regions of the Milky Way least likely to contain Earth-mass planets are the halo (including globular clusters), the thick disk, and the outer thin disk. The bulge should contain Earth

  6. Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre

    SciTech Connect

    Tempel, Elmo; Hektor, Andi; Raidal, Martti E-mail: andi.hektor@cern.ch

    2012-09-01

    We analyze publicly available Fermi-LAT high-energy gamma-ray data and confirm the existence of clear spectral feature peaked at E{sub γ} = 130 GeV. Scanning over the Galaxy we identify several disconnected regions where the observed excess originates from. Our best optimized fit is obtained for the central region of Galaxy with a clear peak at 130 GeV with local statistical significance 4.5σ. The observed excess is not correlated with Fermi bubbles. We compute the photon spectra induced by dark matter annihilations into two and four standard model particles, the latter via two light intermediate states, and fit the spectra with data. Since our fits indicate sharper and higher signal peak than in the previous works, data favors dark matter direct two-body annihilation channels into photons or other channels giving only line-like spectra. If Einasto halo profile correctly predicts the central cusp of Galaxy, dark matter annihilation cross-section to two photons is of order ten percent of the standard thermal freeze-out cross-section. The large dark matter two-body annihilation cross-section to photons may signal a new resonance that should be searched for at the CERN LHC experiments.

  7. The kinematics and morphology of cool galactic winds and halo gas from galaxies at 0.3 < z < 1.4

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.

    cool halo gas is typically studied along sightlines to background QSOs, the use of background galaxies offers several advantages over more traditional techniques. Because the background galaxy is spatially extended, we probe absorption over a large (> 4 h-170 kpc) area in the foreground halo, and find that the gas exhibits a large velocity dispersion and high covering fraction over this area. Spectroscopy of the foreground host galaxy reveals that it experienced a burst of star formation ˜1 Gyr ago, and we suggest that the absorbing gas in the halo was most likely ejected or tidally stripped during this past violent event. As such, these results again place a novel constraint on the radial extent of cool gas originating in the ISM of a distant galaxy.

  8. On the physical origin of galactic conformity

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Behroozi, Peter S.; van den Bosch, Frank C.

    2016-09-01

    Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby haloes as a potential physical origin for this effect. We find that pairs of host haloes `know about' each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the haloes to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both haloes. Larger haloes are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z ≳ 1. These predictions are testable with current surveys to z ˜ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.

  9. Spectroscopy of Hot Stars in the Galactic Halo. III. Analysis of a Large Sample of Field Horizontal-Branch and Other A-Type Stars

    NASA Astrophysics Data System (ADS)

    Wilhelm, Ronald; Beers, Timothy C.; Sommer-Larsen, Jesper; Pier, Jeffrey R.; Layden, Andrew C.; Flynn, Chris; Rossi, Silvia; Christensen, Per Rex

    1999-05-01

    We present results from an analysis of medium-resolution spectroscopy and UBV photometry for a sample of 1121 A-type stars in the halo (and disk) of the Galaxy. A previously developed calibration technique is used to assign estimates of effective temperature, surface gravity, and stellar metal abundance, as parameterized by [Fe/H]. Radial velocities are reported with an accuracy of ~10 km s^-1. Distance estimates are obtained for the stars with well-determined luminosity classes. Note that although we refer to ``A-type'' stars, which dominate the present sample, the present data set includes roughly 100 stars of later spectral types, as a result of the temperature range we have chosen to explore in this paper (6000 K<=T_eff<=10,000 K). Included in the hot star sample are 444 stars we classify as field horizontal-branch stars, 416 we classify as main-sequence-gravity A-type (or slightly later) stars (including stars that are likely members of the blue metal-poor population, the so-called BMPs), 140 stars we classify as likely metallic-line (Am) or peculiar (Ap) stars, and 121 stars that cannot be unambiguously classified based on the present data. Examination of the distributions in metallicity and velocity indicates that the field horizontal-branch and main-sequence A-type samples are quite distinct; hence we expect only a modest amount of cross-contamination between the subsamples. We identify 58 RR Lyrae candidates among the hot star sample, based on incompatibilities in their photometric and spectroscopic data. There are 19 stars in the sample that have been previously classified as RR Lyrae variables, and one additional star that had been previously suggested as a variable, though not necessarily of the RR Lyrae class. There are 115 stars in the sample that were previously classified as BMPs by Preston, Beers, & Shectman, most of which fall into the main-sequence A-type category, but 10 of which are found among the Am/Ap classifications. Furthermore, 53 of

  10. A MegaCam Survey of Outer Halo Satellites. VI. The Spatially Resolved Star-formation History of the Carina Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Santana, Felipe A.; Muñoz, Ricardo R.; de Boer, T. J. L.; Simon, Joshua D.; Geha, Marla; Côté, Patrick; Guzmán, Andrés E.; Stetson, Peter; Djorgovski, S. G.

    2016-10-01

    We present the spatially resolved star-formation history (SFH) of the Carina dwarf spheroidal galaxy, obtained from deep, wide-field g and r imaging and a metallicity distribution from the literature. Our photometry covers ˜2 deg2, reaching up to ˜10 times the half-light radius of Carina with a completeness higher than 50% at g ˜ 24.5, more than one magnitude fainter than the oldest turnoff. This is the first time a combination of depth and coverage of this quality has been used to derive the SFH of Carina, enabling us to trace its different populations with unprecedented accuracy. We find that Carina’s SFH consists of two episodes well separated by a star-formation temporal gap. These episodes occurred at old (\\gt 10 Gyr) and intermediate (2-8 Gyr) ages. Our measurements show that the old episode comprises the majority of the population, accounting for 54 ± 5% of the stellar mass within 1.3 times the King tidal radius, while the total stellar mass derived for Carina is 1.60+/- 0.09× {10}6 {M}⊙ , and the stellar mass-to-light ratio is 1.8 ± 0.2. The SFH derived is consistent with no recent star formation, which hints that the observed blue plume is due to blue stragglers. We conclude that the SFH of Carina evolved independently of the tidal field of the Milky Way, since the frequency and duration of its star-formation events do not correlate with its orbital parameters. This result is supported by the age-metallicity relation observed in Carina and the gradients calculated indicating that outer regions are older and more metal-poor. Based on observations obtained with the MegaCam imager on the Magellan II-Clay telescope at Las Campanas Observatory in the Atacama Region, Chile. This telescope is operated by a consortium consisting of the Carnegie Institution of Washington, Harvard University, MIT, the University of Michigan, and the University of Arizona.

  11. A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE

    NASA Astrophysics Data System (ADS)

    Helmi, Amina; Veljanoski, Jovan; Breddels, Maarten A.; Tian, Hao; Sales, Laura V.

    2017-02-01

    Context. The hierarchical structure formation model predicts that stellar halos should form, at least partly, via mergers. If this was a predominant formation channel for the Milky Way's halo, imprints of this merger history in the form of moving groups or streams should also exist in the vicinity of the Sun. Aims: We study the kinematics of halo stars in the Solar neighbourhood using the very recent first data release from the Gaia mission, and in particular the TGAS dataset, in combination with data from the RAVE survey. Our aim is to determine the amount of substructure present in the phase-space distribution of halo stars that could be linked to merger debris. Methods: To characterise kinematic substructure, we measured the velocity correlation function in our sample of halo (low-metallicity) stars. We also studied the distribution of these stars in the space of energy and two components of the angular momentum, in what we call "integrals of motion" space. Results: The velocity correlation function reveals substructure in the form of an excess of pairs of stars with similar velocities, well above that expected for a smooth distribution. Comparison to cosmological simulations of the formation of stellar halos indicates that the levels found are consistent with the Galactic halo having been built solely via accretion. Similarly, the distribution of stars in the space of integrals of motion is highly complex. A strikingly high fraction (from 58% up to more than 73%) of the stars that are somewhat less bound than the Sun are on (highly) retrograde orbits. A simple comparison to Milky Way-mass galaxies in cosmological hydrodynamical simulations suggests that less than 1% have such prominently retrograde outer halos. We also identify several other statistically significant structures in integrals of motion space that could potentially be related to merger events.

  12. Nuclear Halos

    SciTech Connect

    Vogt, Erich

    2010-07-27

    We show that extreme nuclear halos are caused only by pairs of s-wave neutrons (or single s-wave neutrons) and that such states occur much more frequently in the periodic table than previously believed. Besides lingering long near zero neutron separation energy such extreme halos have very remarkable properties: they can contribute significantly to the nuclear density at more than twice the normal nuclear radius and their spreading width can be very narrow. The properties of these states are primarily determined by the ''thickness'' of the nuclear surface in the mean-free nuclear potential and thus their importance increases greatly as we approach the neutron drip line. We discuss what such extreme halos are, where they occur, what their properties are and some of their impact on nuclear observations.

  13. Remarks on the spherical scalar field halo in galaxies

    SciTech Connect

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-08-15

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  14. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  15. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Spekkens, Kristine; Urbancic, Natasha; Mason, Brian S.; Willman, Beth; Aguirre, James E.

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  16. The Dearth of Neutral Hydrogen in Galactic Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Spekkens, Kristine; Urbancic, Natasha; Mason, Brian S.; Willman, Beth; Aguirre, James E.

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits MH \\scriptsize{I}^lim are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity LV and dynamical mass M dyn, we find MH \\scriptsize{I}^lim/L_V˜ 10-3 {M⊙ / L⊙ } and MH \\scriptsize{I}^lim/M_dyn˜ 5× 10-5, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds MH \\scriptsize{I}^lim by a factor of ~30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  17. Is the Milky Way's hot halo convectively unstable?

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Using published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.

  18. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  19. Dynamical evolution of globular clusters in dark matter halos

    NASA Astrophysics Data System (ADS)

    Breen, Phil; Varri, Anna Lisa; Penarrubia, Jorge; Heggie, Douglas C.

    2017-06-01

    The formation of globular clusters in a cosmological context is a topical open problem. One possible formation scenario is that globular clusters have formed in their own dark matter halos, and, as a result, some clusters may have retained it to the present day. In such a case, collisional processes taking place in the central regions of globulars may lead to the formation of a tenuous stellar envelope extending far beyond the tidal boundary of the parent cluster.The synergy between the astrometric mission Gaia and forthcoming multi-object spectrographs such as WEAVE will allow us to explore, with unprecedented accuracy, the outer regions of selected Galactic globular clusters, therefore it is particularly timely to consider to what extent the presence of dark matter is consistent with their dynamics and structure at large distances from the cluster centre.Driven by these motivations, we present the results of a series of direct N-body simulations where globular clusters have been evolved self-consistently in a static dark matter potential. Special attention will be given to the exploration of the effects of the dark halo on the traditional phases of the long-term evolution of collisional systems and the dynamical interplay with other fundamental physical ingredients, such as stellar-mass black holes, will be discussed.

  20. The Dependence of the Occupation of Galaxies on the Halo Formation Time

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zheng, Zheng; Lin, W. P.; Jing, Y. P.; Kang, Xi; Gao, Liang

    2006-03-01

    We study the dependence of the galaxy contents within halos on the halo formation time using two galaxy formation models, one being a semianalytic model utilizing the halo assembly history from a high-resolution N-body simulation and the other being a smoothed particle hydrodynamics simulation including radiative cooling, star formation, and energy feedback from galactic winds. We confirm the finding by Gao et al. that at fixed mass, the clustering of halos depends on the halo formation time, especially for low-mass halos. This age dependence of halo clustering makes it desirable to study the correlation between the occupation of galaxies within halos and the halo age. We find that, in halos of fixed mass, the number of satellite galaxies has a strong dependence on halo age, with fewer satellites in older halos. The youngest one-third of the halos can have an order of magnitude more satellites than the oldest one-third. For central galaxies, in halos that form earlier, they tend to have more stars and thus appear to be more luminous, and the dependence of their luminosity on halo age is not as strong as that of stellar mass. The results can be understood through the star formation history in halos and the merging of satellites onto central galaxies. The age dependence of the galaxy contents within halos would constitute an important ingredient in a more accurate halo-based model of galaxy clustering.

  1. Coupling Semi-Analytic Models and N-Body Simulations: A New Way of Making Galaxies and Stellar Halos

    NASA Astrophysics Data System (ADS)

    McCord, Krista

    Stellar halos give insight into the initial conditions that existed when a host galaxy first formed and provide details on disrupted satellites via their different stellar populations. An algorithm that is computationally inexpensive compared to hydrodynamic simulations is necessary in order to theoretically study the structure and formation of galactic stellar halos in sufficient detail to probe substructure. CoSANG (Coupling Semi-Analytic/N-body Galaxies) is a new computational method that we are developing which couples pure dark matter N-body simulations with a semi-analytic galaxy formation model. At each timestep, results from the N-body simulation feed into the semi-analytic code, whose results feed back into the N-body code making the evolution of the dark matter and baryonic matter dependent on one another. CoSANG will enable a variety of galaxy formation science, including analysis of stellar populations, halo merging, satellite accretion, supermassive black holes, and indirect and direct dark matter detection. In this dissertation, I will describe the new simulation code CoSANG. The results from the extensive testing phase on CoSANG will be presented which indicate CoSANG is properly simulating feedback from galaxies within a dark matter halo. I used this validated code to analyze a CoSANG zoom simulation of a 1012M solar masses dark matter halo. Results showed a flatter inner halo near the disk and a more spherical outer halo which is expected when a galaxy exists at the center of a dark matter halo. A comparison is made with a simulation run with the same initial conditions, but with the baryonic component simulated using a hydrodynamic algorithm. The semi-analytic model predicted galaxy types better than the hydrodynamic simulation leading to the conclusion that the CoSANG halo is more accurate. I also present a dark matter direct detection analysis on the CoSANG zoom halo to measure the dark matter velocity distributions and modulation amplitudes

  2. Halo Substructure Towards the Galactic Center

    NASA Astrophysics Data System (ADS)

    Amy, Paul Martin; Martin, Charles; Newberg, Heidi Jo; Shelton, Siddartha; Carlin, Jeffrey L.; Willett, Benjamin A.

    2017-01-01

    We measure the velocity substructure of blue horizontal branch stars in Data Release 10 of the Sloan Digital Sky Survey, particularly in the regions of the Hermus Stream, the Hyllus Stream, and the Hercules-Aquila Cloud. These stars are concentrated at lower latitudes (b < 50°) in the first quadrant (0°

  3. Flows of Baryons through the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Fox, Andrew J.

    2017-07-01

    The Milky Way provides an ideal opportunity to study baryon flows in the circumgalactic medium of a star-forming spiral galaxy. High velocity clouds (HVCs) seen in UV absorption toward background AGN probe the multi-phase ionized gas in the Galactic CGM. In this talk new observations from the Cosmic Origins Spectrograph (COS) on Hubble will be presented, focusing on two Galactic regions: the biconical outflow from the Galactic Center, which drives gas into the Fermi Bubbles, and the Smith Cloud, an accreting HVC close to the Galactic disk showing clear signs of fragmentation. These observations allow us to constrain the rates of gas circulation in the Galactic halo.

  4. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  5. Dark energy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Strigari, Louis E.; Zentner, Andrew R.; Bullock, James S.; Primack, Joel R.

    2005-02-01

    We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>=-1 and w < -1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. accurately predicts the median concentrations of haloes over the range of w, halo masses and redshifts that we are capable of probing. We find that the Bullock et al. model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed σ8), w > -1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. For example, models with w~=- 0.5 seem disfavoured by the data, which can be matched only by allowing extremely low normalizations, σ8<~ 0.6. Meanwhile w < -1 models help to reduce the apparent discrepancy. We confirm that the halo mass function of Jenkins et al. provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w < -1.

  6. Orbital anisotropy in cosmological haloes revisited

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Gottlöber, Stefan; Klypin, Anatoly

    2013-09-01

    The velocity anisotropy of particles inside dark matter (DM) haloes is an important physical quantity, which is required for the accurate modelling of mass profiles of galaxies and clusters of galaxies. It is typically measured using the ratio of the radial to tangential velocity dispersions at a given distance from the halo centre. However, this measure is insufficient to describe the dynamics of realistic haloes, which are not spherical and are typically quite elongated. Studying the velocity distribution in massive DM haloes in cosmological simulations, we find that in the inner parts of the haloes, the local velocity ellipsoids are strongly aligned with the major axis of the halo, the alignment being stronger for more relaxed haloes. In the outer regions of the haloes, the alignment becomes gradually weaker and the orientation is more random. These two distinct regions of different degree of the alignment coincide with two characteristic regimes of the DM density profile: a shallow inner cusp and a steep outer profile that are separated by a characteristic radius at which the density declines as ρ ∝ r-2. This alignment of the local velocity ellipsoids requires reinterpretation of features found in measurements based on the spherically averaged ratio of the radial to tangential velocity dispersions. In particular, we show that the velocity distribution in the central halo regions is highly anisotropic. For cluster-size haloes with mass 1014-1015 h-1 M⊙, the velocity anisotropy along the major axis is nearly independent of radius and is equal to β = 1 - σ ^2_perp/σ ^2_radial≈ 0.4, which is significantly larger than the previously estimated spherically averaged velocity anisotropy. The alignment of density and velocity anisotropies and the radial trends may also have some implications for the mass modelling based on kinematical data of objects such as galaxy clusters or dwarf spheroidals, where the orbital anisotropy is a key element in an unbiased mass

  7. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  8. Discovery of two low-luminosity star clusters in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2015-08-01

    Star clusters in the halo of the Milky Way (MW) hold important clues to the formation and structure of their host galaxy. In the talk, I present the discovery of two new low-luminosity star clusters in the inner and outer halo of the Milky Way. These two star clusters, named as Kim 1 and Kim 2, were first detected in the Sloan Digital Sky Survey and our independent 500 sqr degree survey using the Dark Energy Survey camera (DECam) at the 4m Blanco telescope at CTIO repectively. Their true identies were confirmed by deep follow-up imaging using DECam and Gemini-South 8-m telescope. Kim 1 and Kim 2 both exhibit unsual physical properties compared to other classically known star clusters. Kim 1, located at a heliocentric distance of 17 kpc, features extremely low luminosity (Mv~0.3 mag) and low star concentration. Together with the high ellipticity (e ~ 0.4) and irregular isophotes, these properties suggest that we are seeing an intermediate mass star cluster being stripped by the Galactic tidal field. In the case of Kim 2, ~ 104 kpc away from the sun, is the faintest globular cluster ever found in the outer halo of the Milky Way. The globular cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. The observed properties of the new star cluster also raise the question about how such a low luminosity star cluster could have survived until today. One possible scenario is that Kim 2 is a star cluster originally located in a satellite dwarf galaxy and was accreted into the Milky Way's halo.

  9. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "cannibalized" other nearby dwarf galaxies and clusters, and that this process is still going on. Some astronomers have even speculated that many of the globular clusters now observed may originally have been the particularly dense, central regions ("nuclei") of unfortunate, small galaxies whose more tenuous outer structures have since been dissipated into the Galactic halo. If this is the case, then the Milky Way halo may now contain fossil structures, left over from this process (referred to as "accretion"). A study of the halo and the objects therein may therefore provide very useful information about the formation and evolution of the Milky Way, our home galaxy. The VLT observations In order to investigate this basic issue in more detail, CCD images obtained with the Test Camera at the first 8.2-m VLT Unit Telescope (UT1) have been used to study one of the old globular clusters in the Milky Way. NGC 6712 [2] is an enormous swarm of stars in the southern constellation Scutum (The Shield). It is located at a distance of about 23,000 light-years, in the direction towards the Galactic Center. This cluster is of spherical form and contains somewhat fewer than 1 million stars, all of which are lighter than our Sun. NGC 6712 is one of about 150 globular clusters now known in the Milky Way. They all move in extended elliptical orbits that periodically take them through the densely populated main plane of our Galaxy in which the stars and nebulae form the well-known spiral structure. From there they move into the halo regions high above the plane and then down again. The orbit of NGC 6712 is comparatively small and the cluster passes particularly close to the Galactic Center. The orbital period is in the short range so this happens rather frequently. In fact, it appears that NGC 6712 crossed the Galactic plane just a few million years ago. ESO PR Photo 06a/99 ESO PR Photo 06a/99 [Preview - JPEG: 800 x 494 pix - 344k] [High-Res - JPEG: 3000 x 1851 pix - 2.3M] Caption to PR Photo 06a

  10. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  11. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    SciTech Connect

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  12. The Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Barbuy, B.

    2016-06-01

    The Galactic bulge is the least studied component of our Galaxy. Yet, its formation and evolution are key to understand the formation of the Galaxy itself. Studies on the Galactic bulge have increased significantly in the last years, but still there are many points of controversy. This volume contains several contributions from experts in different aspects of the bulge. Issues discussed include the following: the presence of an old spheroidal bulge, or identification of its old stellar population with the thick disk or halo; fraction of stars younger than 10 Gyr is estimated to be of < 5 to 22% depending on method and authors; multiple populations or only a metal-poor and a metal-rich ones; spheroidal or ellipsoidal distribution of RR Lyrae; formation of the bulge from early mergers or from secular evolution of the bar; different methods of mapping extinction; selection and identification of bulge globular clusters.

  13. Active Galactic Nuclei Feedback and Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  14. Borromean halo, Tango halo, and halo isomers in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, Igor

    2016-01-01

    Structure of the ground and excited states in halo-like nuclei is discussed. Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei.Structure of the halo may be different for the different levels and resonances in atomic nuclei. Isobar analog, double isobar analog, configuration, and double configuration states can simultaneously have n-n, n-p, and p-p halo components in their wave functions. When the halo structure of the excited state differs from that of the ground state, or the ground state has non-halo structure, the γ-transition from the excited state to the ground state can be essentially hindered, i.e. the formation of a specific type of isomers (halo isomers) becomes possible. B(Mγ) and B(Eγ) values for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei which ground state does not exhibit halo structure but the excited state (halo isomer) may have one.

  15. The prolate dark matter halo of the Andromeda galaxy

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  16. Moving Groups in the Milky Way Halo and Disk Induced by the Bar and Spiral Arms

    NASA Astrophysics Data System (ADS)

    Schuster, William John

    2015-08-01

    In a previous study (Moreno et al. 2015), the use of a detailed Milky Way potential (observationally and dynamically constrained) has shown that the Galactic bar is able to efficiently concentrate stars of the stellar halo and disk into several main resonances. With the tools introduced here, the Galactic bar is shown to produce significant phase-space structure attracting stars to several main resonances. This new study is dedicated to the study of known groups of the Galactic halo and disk, and their relation to these resonances. Stars belonging to some known halo and disk moving groups have settled down along these bar resonant families, showing, in some cases, a likely Galactic secular origin. In general, the 2D resonant orbits of the disk produced by the bar, seem to dominate at large scale-heights (several kiloparsecs) into the Galactic halo. In particular, provisionally six of the members of the Kapteyn halo moving group seem to be associated with one of these resonances, and also the Groombridge 1830 (Eggen 1996a; Eggen & Sandage 1959) and especially the newer halo moving groups G21-22 and G18-39 (Silva et al. 2012) show some correlation with these resonances suggesting possible secular origins, while the halo moving group Ross 451 (Eggen 1996b) does not show any such correlation, indicating a more probable cosmological (non-secular) ancestry. All Galactic disk moving groups (such as Arcturus, Hercules, Castor, IC 2391, Hyades, Pleiades, and Ursa Major) show considerable association with these resonances.

  17. An aligned stream of low-metallicity clusters in the halo of the Milky Way.

    PubMed

    Yoon, Suk-Jin; Lee, Young-Wook

    2002-07-26

    One of the long-standing problems in modern astronomy is the curious division of Galactic globular clusters, the "Oosterhoff dichotomy," according to the properties of their RR Lyrae stars. Here, we find that most of the lowest metallicity ([Fe/H] < -2.0) clusters, which are essential to an understanding of this phenomenon, display a planar alignment in the outer halo. This alignment, combined with evidence from kinematics and stellar population, indicates a captured origin from a satellite galaxy. We show that, together with the horizontal-branch evolutionary effect, the factor producing the dichotomy could be a small time gap between the cluster-formation epochs in the Milky Way and the satellite. The results oppose the traditional view that the metal-poorest clusters represent the indigenous and oldest population of the Galaxy.

  18. Population Gradients in Stellar Halos from GHOSTS

    NASA Astrophysics Data System (ADS)

    Bailin, Jeremy; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Ghosts Survey

    2015-01-01

    We report on recent results from the Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters (GHOSTS) survey, an HST ACS+WFC3 imaging survey to study stellar populations in and around 16 nearby spiral galaxies. By using HST resolution to resolve the stellar halos into individual red giant branch (RGB) stars, we are able to detect distinct stellar populations at several points throughout the halo of the half dozen massive highly-inclined galaxies in the sample. In approximately half of these galaxies, we detect a gradient in the color of the RGB; which we interpret as a metallicity gradient. Stellar halo formation models predict a wide variety of metallicity gradients: those in which the halos are dominated by stars formed in situ predict stronger gradients than we observe, while accretion-dominated halo models predict weaker or nonexistent gradients. Our measurements therefore provide a useful discriminator between stellar halo models, and at first look appear most consistent with the accretion-based model of Cooper et al. (2010).

  19. The Halo

    NASA Image and Video Library

    2013-12-23

    NASA's Cassini spacecraft looks towards the dark side of Saturn's largest moon, Titan, capturing the blue halo caused by a haze layer that hovers high in the moon's atmosphere. The haze that permeates Titan's atmosphere scatters sunlight and produces the orange color seen here. More on Titan's orange and blue hazes can be found at PIA14913. This view looks towards the side of Titan (3,200 miles or 5,150 kilometers across) that leads in its orbit around Saturn. North on Titan is up and rotated 40 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft narrow-angle camera on Nov. 3, 2013. The view was acquired at a distance of approximately 2.421 million miles (3.896 million kilometers) from Titan. Image scale is 14 miles (23 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17180

  20. Relativistic Dark Matter at the Galactic Center

    SciTech Connect

    Amin, Mustafa A.; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  1. The Origin Billions Star Survey: Galactic Explorer

    DTIC Science & Technology

    2006-10-18

    The Origins Billions Star Survey is a mission concept addressing the astrophysics of extrasolar planets , Galactic structure, the Galactic halo and...planetary transits. While current ground-based radial velocity searches for extrasolar planets are limited to 8th visual magnitude and thousands of stars...Sun. After only 1.5 years of operation, OBSS will have dis- covered about 10 times more extrasolar giant planets (EGPs) than are known at this time

  2. Halo Microlensing and Dark Baryons

    NASA Astrophysics Data System (ADS)

    Crotts, A. P. S.

    1993-12-01

    (While Pierce lectures review past accomplishments, customarily, this talk concerns efforts which we have pursued for some years and which are now reaching fruition. We present elsewhere at this meeting results from research cited for the Prize.) Dark matter exists in the halos of spiral galaxies, and the least radical alternative for its identity is normal matter produced by primordial nucleosynthesis. This matter could easily be hidden in large, condensed objects. Paczynski pointed out in 1986 that if condensations of Galactic halo matter are sufficiently massive, they will produce detectable amplification of background starlight by gravitational lensing. Several groups recently reported possible detections of this effect after surveying large numbers of stars in the Galactic Bulge and LMC. The connection between these events and massive, dark halos is unclear and likely to remain so for some time, given the rate at which they are detected. Following Paczynski's realization, we stressed that a much higher event rate, a statistical control sample, sensitivity to a much broader mass range, and modulation of the predicted lensing rate with galactocentric distance can all be realized by a different experiment: observing the halo of M31 (and the Galaxy) using stars in M31. In some ways, M31 is a more difficult target than the LMC or the Bulge, given the faintness of its stars, but our observations in 1991 and 1993 indicate that these problems have been surmounted. We can detect stellar variability even under extremely crowded conditions like those in M31's inner disk, and can monitor a sufficient number of stars to study halo lensing. We present results from our initial survey which indicates that the required sensitivity can be reached to confirm or reject the hypothesis that sub-solar masses like those detected in our Galaxy make up the missing spiral galaxy mass. It is possible that we may use the data already obtained (and still being analyzed) to place

  3. Magnetic spiral arms in galaxy haloes

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  4. Galactic archaeology in and around the Milky Way

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else

    2011-12-01

    There is much to be learnt from our own "cosmological backyard" Only in our own Milky Way and some surrounding galaxies we can resolve and observe individual stars and learn from them about galaxies in general. Because stars keep a chemical fingerprint during their lives and also preserve kinematical information for long times, studying the present-day stars can teach us about the past. In this thesis we discuss various topics in this area of Galactic archaeology. In one of our projects, we look for substructures in position and velocity space in the outer halo of the Milky Way. These can be remnants of disrupted dwarf galaxies, victims from a process called "cosmic cannibalism". We find several substructures and deduce that at least 10%, but perhaps the whole halo of the Milky Way is built up from disrupted smaller galaxies. Subsequently we focus on the study of the smaller satellite galaxies that (still) survive the gravitational forces from the much bigger Milky Way they orbit. A surprising result from earlier work was that no very primitive stars were found in these small galaxies. We show however that these stars are present. Further study of the chemical elements in the atmosphere of some of these primitive stars shows that these match better the (equivalent) population of stars in the Milky Way than the dominant population of stars in dwarf galaxies. We also model the formation and evolution of satellite galaxies and find that many of the observed properties can be well reproduced in our model.

  5. Galactic politics

    NASA Image and Video Library

    2015-12-07

    Only rarely does an astronomical object have a political association. However, the spiral galaxy NGC 7252 acquired exactly that when it was given an unusual nickname. In December 1953, the US President Dwight D. Eisenhower gave a speech advocating the use of nuclear power for peaceful purposes. This  “Atoms for Peace” speech was significant for the scientific community, as it brought nuclear research into the public domain, and NGC 7252, which has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, was dubbed the Atoms for Peace galaxy in honour of this. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disc that is rotating in a direction opposite to the rest of the galaxy. This disc resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10 000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process.

  6. THE DUAL ORIGIN OF STELLAR HALOS

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Brook, Chris B.; Stinson, Greg E-mail: bwillman@haverford.edu

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surrounded by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.

  7. Stellar halos: a rosetta stone for galaxy formation and cosmology

    NASA Astrophysics Data System (ADS)

    Inglis Read, Justin

    2015-08-01

    Stellar halos make up about a percent of the total stellar mass in galaxies. Yet their old age and long phase mixing times make them living fossil records of galactic history. In this talk, I review the latest simulations of structure formation in our standard Lambda Cold Dark Matter cosmology. I discuss the latest predictions for stellar halos and the relationship between the stellar halo light and the underlying dark matter. Finally, I discuss how these simulations compare to observations of the Milky Way and Andromeda and, ultimately, what this means for our cosmological model and the formation history of the Galaxy.

  8. SED, Galactic Evolutionary Tracks and High-z Galaxies

    NASA Astrophysics Data System (ADS)

    Suran, Marian D.; Popescu, Nedelia A.

    2005-04-01

    Using photometric redshifts determined by means of a neural network method, we investigate HDFN, HDFS, and CHANDRA samples (z < 6) in order to derive observational galactic evolutionary tracks in color - photometric redshift diagrams. We also present the behaviour of different high-z galactic populations and theoretical N-body VIRGO high-z halos populations (GIF Project, semi-analytic photometrical SED models using total and bulge component luminosities) in comparison with such galactic evolutionary tracks.

  9. SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS

    SciTech Connect

    Helmi, Amina; Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Navarro, J. F.

    2011-05-20

    We characterize the substructure in the simulated stellar halos of Cooper et al. which were formed by the disruption of satellite galaxies within the cosmological N-body simulations of galactic halos of the Aquarius project. These stellar halos exhibit a wealth of tidal features: broad overdensities and very narrow faint streams akin to those observed around the Milky Way. The substructures are distributed anisotropically on the sky, a characteristic that should become apparent in the next generation of photometric surveys. The normalized RMS of the density of stars on the sky appears to be systematically larger for our halos compared with the value estimated for the Milky Way from main-sequence turnoff stars in the Sloan Digital Sky Survey. We show that this is likely to be due in part to contamination by faint QSOs and redder main-sequence stars, and might suggest that {approx}10% of the Milky Way halo stars have formed in situ.

  10. Halo CME

    NASA Image and Video Library

    2017-09-28

    A giant cloud appears to expand outward from the sun in all directions in this image from Sept. 28, 2012, which is called a halo CME. This kind of image occurs when a CME moves toward Earth – as here – or directly away from it. Credit: ESA/NASA/SOHO CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two

  11. Farside Halo

    NASA Image and Video Library

    2017-09-28

    There's no way to tell from this SOHO image whether the halo CME on March 5, 2013, originated from the front or far of the sun. But the STEREO spacecraft were watching the sun from the sides and showed it was from the far side. The bright planet is Venus. Credit: NASA/SOHO CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which

  12. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Wu, Hong; Zhang, Tian-Meng; Zhao, Yong-Heng

    2011-11-01

    We present spectroscopic observations for 11 confirmed globular clusters (GCs) of M31 with the OMR spectrograph on the 2.16 m telescope at the Xinglong site of National Astronomical Observatories, Chinese Academy of Sciences. Nine of our sample clusters are located in the halo of M31 and the most remote one is out to a projected radius of 78.75 kpc from the galactic center. For all our sample clusters, we measured the Lick absorption-line indices and radial velocities. It is noted that most GCs in our sample are distinct from the HI rotation curve of galaxy M31, especially for B514, MCGC5, H12 and B517, suggesting that most of our sample clusters do not have a kinematic association with the star-forming young disk of the galaxy. We separately fitted the absorption line indices from the updated stellar population model of Thomas et al. with two different tracks of Cassisi and Padova, by applying the χ2—minimization method. The fitting results show that all our sample clusters are older than 10Gyr, and metal-poor (-2.38 <= [Fe/H] <= -0.91dex). After merging the spectroscopic metallicity of our work with the previously published ones, we extended the cluster sample out to a projected radius of 117 kpc from the galaxy's center. We found the metallicity gradient exists for all the confirmed clusters with a slope of -0.028 ± 0.001 dex kpc-1. However, the slope turns out to be -0.018 ± 0.001 dex kpc-1 for all the halo clusters, which is much shallower. If we only consider the outer halo clusters with rp > 25 kpc, the slope becomes -0.010 ± 0.002 dex kpc-1 and if one cluster G001 is excluded from the outer halo sample, the slope is -0.004 ± 0.002 dex kpc-1. Thus, we conclude that the metallicity gradient for M31's outer halo clusters is not significant, which agrees well with previous findings.

  13. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  14. Galactic evolution of Beryllium

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; King, Jeremy R.

    1993-12-01

    The abundance of Be in the lowest-metallicity stars is a probe of Big Bang Nucleosynthesis and its abundance in halo and disk stars is a probe of galactic evolution and stellar structure. We present observations of the Be II resonance lines in 14 halo stars and 27 (mostly old) disk stars with (Fe/H) from -2.7 to +0.13. The spectra were obtained at the Canada-France-Hawaii (CFH) 3.6 m telescope and have a measured resolution of 0.13 A and a median signal-to-noise ratio of approximately 50. For 18 of the 41 stars we have also made observations of the O I triplet at the Palomar 5 m telescope, the UH 2.2 m telescope, and the CFH telescope. Stellar parameters of Teff, log g, and (Fe/H) were carefully determined from several independent estimates. Abundances are determined for log N (Be/H) and (O/H) from measured equivalent widths, model parameters, and Kurucz (1991) model atmospheres with the RAI10 model atmosphere abundance program. The agreement with previously published Be detections is very good (a mean difference of 0.05 dex) for five of six determinations in four halo stars and in four of five disk stars. The agreement with very recently published O abundances is 0.0075 dex. It is plausible, but far from conclusive, that there is a plateau in the amount of Be present in the lowest metallicity stars: log N (Be/H) approximately -12.8 for (Fe/H) less than -2.2 As (Fe/H) increases from -2.2 to -1.0, log N (Be/H) increases and the slope is 1.2-1.3, indicating a faster increase in Be than in Fe. This is consistent with the production of Be by spallation reactions between cosmic rays and O atoms from massive stars and the production of Fe from intermediate mass stars. Evidence for stellar processing of Be exists in the disk stars and in at least two of the halo stars. A plot of Be abundance vs O abundances shows that Be increases as O1.12, indicating that Be is produced primarily is the vicinity of supernovae envelopes, but a small and interesting fraction is produced in

  15. Dwarf Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Colín, P.; Klypin, A.; Valenzuela, O.; Gottlöber, Stefan

    2004-09-01

    We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses of 107-109 h-1 Msolar. We find that the density profiles of relaxed dwarf halos are well fitted by the Navarro, Frenk, & White (NFW) profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model, while the latter is well fitted by a lognormal distribution with λ0=0.042 and σλ=0.63. We estimate the distribution of concentrations for halos in a mass range that covers 6 orders of magnitude, from 107 to 1013 h-1 Msolar, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z=0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6×109 to 1013 h-1 Msolar and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just downscaled versions of the large halos. They are cuspy and, as expected, more concentrated. They have the same spin parameter distribution and follow the same mass function that was measured for large halos.

  16. SECULAR DAMPING OF STELLAR BARS IN SPINNING DARK MATTER HALOS

    SciTech Connect

    Long, Stacy; Shlosman, Isaac; Heller, Clayton

    2014-03-01

    We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ ≳ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised. Halos with λ ≳ 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.

  17. N-body dark matter haloes with simple hierarchical histories

    NASA Astrophysics Data System (ADS)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  18. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  19. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  20. Detecting Halo Substructure in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Mateu, C.; Aguilar, L.; Bruzual, G.; Brown, A.; Valenzuela, O.; Carigi, L.; Velázquez, H.; Hernández, F.

    2014-06-01

    The observational data expected to come from the Gaia astrometric mission represent an unrivaled opportunity to search for tidal streams using all-sky full phase-space information for nearly a billion stars in our Galaxy. In this contribution we will describe the Modified Great Circle Cell Count (mGC3) method devised for the detection of stellar streams in the galactic halo. This method is based on the GC3 method originally devised by Johnston, Hernquist, & Bolte (1996), modified to include velocity information in order to enhance the contrast of stream signatures with respect to the galactic halo background. We present our results on the efficiency of mGC3, tested by embedding tidal streams from N-body simulations in a mock Gaia catalogue of the galactic background, which includes a realistic realization of the photometric and kinematic properties, errors and completeness limits. We investigate mGC3's efficiency as a function of initial satellite luminosity, star formation history and orbital parameters and find that satellites in the range 10^8-10^9 L_⊙ can be recovered for streams as dynamically old as ~10 Gyr and up to galactocentric distances of ~40 kpc. For some combinations of dynamical ages and orbits, tidal streams with luminosities down to 4-5×10^7 L_⊙ can be recovered.

  1. Resolved Stellar Halos of M87 and NGC 5128: Metallicities from the Red-Giant Branch

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.

    2016-08-01

    We have searched halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the galactic center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We have resolved thousands of red-giant-branch (RGB) stars in these stellar halo fields using V and I filters, and, in addition, measured the metallicity using stellar isochrones. The metallicity distribution function (MDF) of the inner stellar halo of M87 is similar to that of NGC 5128's stellar halo.

  2. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-Han; Allen, R. J.; Hu, Fu-Xing

    1986-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  3. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-han; Allen, R. J.; Hu, Fu-xing

    1987-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  4. Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kang, Hoyoung; Ricotti, Massimo

    2016-01-01

    We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.

  5. THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Juric, Mario

    2011-04-10

    We use Canada-France-Hawaii Telescope Legacy Survey data for 170 deg{sup 2}, recalibrated and transformed to the Sloan Digital Sky Survey ugri photometric system, to study the distribution of near-turnoff main-sequence stars in the Galactic halo along four lines of sight to heliocentric distances of {approx}35 kpc. We find that the halo stellar number density profile becomes steeper at Galactocentric distances greater than R{sub gal} {approx} 28 kpc, with the power-law index changing from n{sub inner} = -2.62 {+-} 0.04 to n{sub outer} = -3.8 {+-} 0.1. In particular, we test a series of single power-law models and find them to be strongly disfavored by the data. The parameters for the best-fit Einasto profile are n = 2.2 {+-} 0.2 and R{sub e} = 22.2 {+-} 0.4 kpc. We measure the oblateness of the halo to be q {identical_to} c/a = 0.70 {+-} 0.01 and detect no evidence of it changing across the range of probed distances. The Sagittarius stream is detected in the l = 173 deg. and b = -62 deg. direction as an overdensity of [Fe/H] {approx} -1.5 dex stars at R{sub gal} {approx} 32 kpc, providing a new constraint for the Sagittarius stream and dark matter halo models. We also detect the Monoceros stream as an overdensity of [Fe/H] > -1.5 dex stars in the l = 232 deg. and b = 26 deg. direction at R{sub gal} {approx}< 25 kpc. In the two sight lines where we do not detect significant substructure, the median metallicity is found to be independent of distance within systematic uncertainties ([Fe/H] {approx} -1.5 {+-} 0.1 dex).

  6. Kinematics of the Stellar Halo and the Mass Distribution of the Milky Way Using Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2012-12-01

    Here, we present a kinematic study of the Galactic halo out to a radius of ~60 kpc, using 4664 blue horizontal branch stars selected from the SDSS/SEGUE survey to determine key dynamical properties. Using a maximum likelihood analysis, we determine the velocity dispersion profiles in spherical coordinates (σ r , σθ, σphi) and the anisotropy profile (β). The radial velocity dispersion profile (σ r ) is measured out to a galactocentric radius of r ~ 60 kpc, but due to the lack of proper-motion information, σθ, σphi, and β could only be derived directly out to r ~ 25 kpc. From a starting value of β ≈ 0.5 in the inner parts (9 < r/kpc < 12), the profile falls sharply in the range r ≈ 13-18 kpc, with a minimum value of β = -1.2 at r = 17 kpc, rising sharply at larger radius. In the outer parts, in the range 25 < r/kpc < 56, we predict the profile to be roughly constant with a value of β ≈ 0.5. The newly discovered kinematic anomalies are shown not to arise from halo substructures. We also studied the anisotropy profile of simulated stellar halos formed purely by accretion and found that they cannot reproduce the sharp dip seen in the data. From the Jeans equation, we compute the stellar rotation curve (v circ) of the Galaxy out to r ~ 25 kpc. The mass of the Galaxy within r <~ 25 kpc is determined to be 2.1 × 1011 M ⊙, and with a three-component fit to v circ(r), we determine the virial mass of the Milky Way dark matter halo to be M vir = 0.9+0.4 -0.3 × 1012 M ⊙ (R vir = 249+34 -31 kpc).

  7. EFFECT OF DARK MATTER HALO SUBSTRUCTURES ON GALAXY ROTATION CURVES

    SciTech Connect

    Roy, Nirupam

    2010-11-01

    In this paper, the effect of halo substructures on galaxy rotation curves is investigated using a simple model of dark matter clustering. A dark matter halo density profile is developed based only on the scale-free nature of clustering that leads to a statistically self-similar distribution of the substructures at the galactic scale. A semi-analytical method is used to derive rotation curves for such a clumpy dark matter density profile. It is found that the halo substructures significantly affect the galaxy velocity field. Based on the fractal geometry of the halo, this self-consistent model predicts a Navarro-Frenk-White-like rotation curve and a scale-free power spectrum of the rotation velocity fluctuations.

  8. Terminal Velocity Infall in QSO Absorption Line Halos

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.

    We explore the hypothesis that clouds detected in quasar absorption line systems are falling at a terminal velocity toward the center of high redshift gaseous galactic halos. Since both the ionization level and terminal velocity of halo clouds increase with increasing distance from the central galaxy, velocity resolved profiles of highly ionized gas are predicted to have a greater width than low ionization gas. A line of sight passing through the center of gaseous halo (an idealized damped Ly alpha system), yields low ionization absorption at the velocity of the galaxy, flanked by high ionization on either side. Reasonable halo parameters yield total velocity extents for C IV of Delta v_{C IV}=100-200 km s^{-1}, in agreement with many systems observed by Lu et al (1997). The remaining systems may better described by the rotating disk model of Prochaska & Wolfe (1998). Finally, observational tests are suggested for verifying or falsifying the terminal velocity hypothesis for these systems.

  9. Identifying CEMP-s and CEMP-no Stars within Milky Way Halo Structures

    NASA Astrophysics Data System (ADS)

    Dietz, Sarah Eliana; Beers, Timothy C.; Carollo, Daniela; Yoon, Jinmi; Placco, Vinicius M.

    2017-01-01

    Carbon-enhanced metal-poor (CEMP) stars are ancient objects used to probe the star-formation history of the first generations of stars in the Galactic halo. CEMP stars may be further separated into sub-classes based on the presence or absence of heavy elements associated with different neutron-capture processes. Here we examine CEMP stars enriched with the nucleosynthesis products of the slow neutron-capture process (CEMP-s stars) and those that exhibit no strong neutron-capture element enrichments (CEMP-no stars), which are preferentially found in the Galaxy’s inner and outer halo regions, respectively [1,2].Recent structure-finding algorithms have been applied to samples of K giants from SDSS to identify groups of associated stars and classify them as members of known structures, such as the Sagittarius tidal debris stream [3]. Here we investigate whether CEMP-s and CEMP-no stars are associated in different proportion with such structures or with the diffuse halo. We distinguish CEMP-s stars from CEMP-no stars using metallicity ([Fe/H]) and carbonicity ([C/Fe]), a method that has been demonstrated to be as effective as separation based on the presence of Ba enhancements used in the past [4]. We discuss the impact of our results on our understanding of the nature of CEMP stars and their progenitor populations, as well as on the assembly history of the Milky Way.This work received partial support from PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.References:[1] Carollo, D. et al. 2007, Nature, 450, 1020[2] Carollo, D. et al. 2010, ApJ, 712, 692[3] Janesh, W. et al. 2016, ApJ, 816, 80[4] Yoon, J. et al. 2016, ApJ, in press (arXiv:1607.06336)

  10. Confirmation of the Galactic thick disk component by the Basle RGU- and UBV-photometric space densities. IV - Synopsis of 25 years Basle Halo Program: SA 107, SA 51

    NASA Astrophysics Data System (ADS)

    Fenkart, R.

    1989-12-01

    This is the last contribution to the four part Basle synopsis which compares RGU-photometrically determined space densities in both photometric populations, I and II, with density gradients of a discriminative set of multicomponent models. It submits two fields, SA 107 and SA 51, to the involved comparison procedure in this separate paper (N), since their density histograms had been derived, for one or more luminosity-groups, over distance intervals which, partly, are not the same for both populations; so they had to be approximated by least-square solution curves to be added to total (I+II) densities which, in this form, can be compared to the total model densities. The comparison procedure itself, as well as the model definitions, are fully described in the appendix, and the model parameters are given in its table A The slight, technically caused modification of the comparison method evidently does not afflict the homogeneity of the procedure, nor the consistency of the obtained results with the ones of the whole synopsis. The observations in both fields, again, prefer the Thick Disk model GW IV as best fitting. SA 51, almost in anticentre-direction, does so quite unconditionally, like the overwhelming majority of all fields treated within the comparison phase of the Basle Halo Program. For SA 107, this is true to a lesser degree, conform to its position in the centre-hemisphere (cf. the similar behaviour of the fields in paper II (Fenkart, 1989b)).

  11. An Improved Catalog of Halo Wide Binary Candidates

    NASA Astrophysics Data System (ADS)

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé & Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio & Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ~ a -1 (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  12. An improved catalog of halo wide binary candidates

    SciTech Connect

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  13. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  14. The slight spin of the old stellar halo

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Belokurov, Vasily; Koposov, Sergey E.; Gómez, Facundo A.; Grand, Robert J.; Marinacci, Federico; Pakmor, Rüdiger

    2017-09-01

    We combine Gaia data release 1 astrometry with Sloan Digital Sky Survey (SDSS) images taken some ∼10-15 years earlier, to measure proper motions of stars in the halo of our Galaxy. The SDSS-Gaia proper motions have typical statistical errors of 2 mas yr-1 down to r ∼ 20 mag, and are robust to variations with magnitude and colour. Armed with this exquisite set of halo proper motions, we identify RR Lyrae, blue horizontal branch (BHB), and K giant stars in the halo, and measure their net rotation with respect to the Galactic disc. We find evidence for a gently rotating prograde signal (〈Vϕ〉 ∼ 5-25 km s-1) in the halo stars, which shows little variation with Galactocentric radius out to 50 kpc. The average rotation signal for the three populations is 〈Vϕ〉 = 14 ± 2 ± 10 (syst.) km s-1. There is also tentative evidence for a kinematic correlation with metallicity, whereby the metal richer BHB and K giant stars have slightly stronger prograde rotation than the metal poorer stars. Using the Auriga simulation suite, we find that the old (T >10 Gyr) stars in the simulated haloes exhibit mild prograde rotation, with little dependence on radius or metallicity, in general agreement with the observations. The weak halo rotation suggests that the Milky Way has a minor in situ halo component, and has undergone a relatively quiet accretion history.

  15. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ∼25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  16. Study of galactic rotation curves in wormhole spacetime

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Sen, Banashree; Chakraborty, Koushik; Shit, G. C.

    2016-03-01

    The spacetime of the galactic halo region is described by a wormhole like line element. We assume violation of Null Energy Condition (NEC) in the galactic halo. The Einstein Field equations are solved for two different conditions of pressure and density to obtain physical parameters like tangential velocity of test particles and parameters related to the wormhole geometry. The theoretical rotation curve of the test particles is plotted and compared the same with an observed rotation curve. We obtain a satisfactory fit between the observed curve and the curve obtained from the present theory for the radial distances in the range 9 Kpc to 100 Kpc.

  17. PHYSICAL PROPERTIES OF COMPLEX C HALO CLOUDS

    SciTech Connect

    Hsu, W.-H.; Putman, M. E.; Peek, J. E. G.; Heitsch, F.; Clark, S. E.; Stanimirovic, S.

    2011-02-15

    Observations from the Galactic Arecibo L-band Feed Array H I (GALFA-H I) Survey of the tail of Complex C are presented and the halo clouds associated with this complex are cataloged. The properties of the Complex C clouds are compared to clouds cataloged at the tail of the Magellanic Stream to provide insight into the origin and destruction mechanism of Complex C. Magellanic Stream and Complex C clouds show similarities in their mass distributions (slope = -0.7 and -0.6 log (N( log (mass)))/ log (mass), respectively) and have a common line width of 20-30 km s{sup -1} (indicative of a warm component), which may indicate a common origin and/or physical process breaking down the clouds. The clouds cataloged at the tail of Complex C extend over a mass range of 10{sup 1.1}-10{sup 4.8} M{sub sun}, sizes of 10{sup 1.2}-10{sup 2.6} pc, and have a median volume density and pressure of 0.065 cm{sup -3} and (P/k) = 580 K cm{sup -3}. We do not see a prominent two-phase structure in Complex C, possibly due to its low metallicity and inefficient cooling compared to other halo clouds. Assuming that the Complex C clouds are in pressure equilibrium with a hot halo medium, we find a median halo density of 5.8 x 10{sup -4} cm{sup -3}, which given a constant distance of 10 kpc is at a z-height of {approx}3 kpc. Using the same argument for the Stream results in a median halo density of 8.4 x 10-{sup 5} (60 kpc/d) cm{sup -3}. These densities are consistent with previous observational constraints and cosmological simulations. We also assess the derived cloud and halo properties with three-dimensional grid simulations of halo H I clouds and find that the temperature is generally consistent within a factor of 1.5 and the volume densities, pressures, and halo densities are consistent within a factor of three.

  18. Stellar Bar Evolution in Cuspy and Flat-cored Triaxial CDM Halos

    NASA Astrophysics Data System (ADS)

    Berentzen, Ingo; Shlosman, Isaac; Jogee, Shardha

    2006-02-01

    We analyze the formation and evolution of stellar bars in galactic disks embedded in mildly triaxial cold dark matter (CDM) halos that have density distributions ranging from large flat cores to cuspy profiles. We have applied tailored numerical simulations of analytical and live halos that include the feedback from disk/bar system onto the halo in order to test and extend earlier work by El-Zant and Shlosman. The latter employed the method of Liapunov exponents to analyze the fate of bars in analytical asymmetric halos. We find the following: (1) The bar growth is very similar in all rigid axisymmetric and triaxial halos. (2) Bars in live models experience vertical buckling instability and the formation of a pseudobulge with a boxy/peanut shape, while bars in rigid halos do not buckle. (3) In live axisymmetric halos, the bar strength varies by a factor of <~2, in growth or decay, during the secular evolution following the buckling. The bar pattern speed evolution (i.e., deceleration) anticorrelates with the halo core size. In such halos, the bar strength is larger for smaller disk-to-halo mass ratios (D/H) within disk radii, the bar size correlates with the halo core sizes, and the bar pattern speeds correlate with the halo central mass concentration. In contrast, bars embedded in live triaxial halos have a starkly different fate: they dissolve on a timescale of ~1.5-5 Gyr due to the onset of chaos over continuous zones, sometimes leaving behind a weak oval distortion. The onset of chaos is related to the halo triaxiality, the fast-rotating bar, and the halo cuspiness. Before the bar dissolves, the region outside it develops strong spiral structures, especially in the live triaxial halos. (4) More angular momentum is absorbed (fractionally) by the triaxial halos than in the axisymmetric models. The disk-halo angular momentum exchange is mediated by the lower resonances in the latter models. (5) Cuspy halos are more susceptible than flat-core halos to having their

  19. Radio-Optical Alignment and Recent Star Formation Associated with Ionized Filaments in the Halo of NGC 5128 (Centaurus A)

    NASA Astrophysics Data System (ADS)

    Rejkuba, M.; Minniti, D.; Courbin, F.; Silva, D. R.

    2002-01-01

    We used a direct CCD camera at the Magellan I telescope at Las Campanas Observatory and the Focal Reducer/Low Dispersion Spectrograph (FORS1) at the Antu Very Large Telescope (VLT) ESO Paranal Observatory to image fields centered on the inner and outer optical filaments in the halo of NGC 5128. In the V versus U-V color-magnitude diagrams we have identified young blue supergiants associated with these line-emitting filaments located between the inner radio lobe and the northern middle lobe. Around the outer filament, stars as young as 10 Myr were detected. They are principally aligned with the direction of the radio jet, but a vertical north-south alignment along the edge of the H I cloud is also present. Young stars in the inner filament field are found inside the bright knots of photoionized gas and are strongly aligned in the direction of the center of the galaxy at the same position angle as the inner radio jet. Fitting the Padova isochrones on UV color-magnitude diagrams, we find that blue stars around the inner filaments have ages similar to the ones around the outer filaments ~10-15 Myr and the same abundance of Z=0.004. The presence of young blue supergiants clearly shows that the bright blue knots in the northeastern halo of NGC 5128 are associations of young stars with photoionized gas. The temperature of the brightest stars is T~12,000-16,000 K, insufficient to account alone for the high excitation lines observed in the surrounding ionized gas. Thus, the optical emission jet is principally seen due to its alignment with the radio structure of the active galactic nucleus (AGN). The highly collimated star formation is present only in the northeastern halo of the galaxy, suggesting interaction of the jet with the gas clouds deposited during the last accretion event as the preferred triggering mechanism. From these observations, we infer a lower limit for the age of the NGC 5128 jet at 107 yr. The triggering of the star formation in the dense clouds in the

  20. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  1. Stochastic Chemical Evolution of Sub-Halos and the Origin of r-Process Elements

    NASA Astrophysics Data System (ADS)

    Ojima, Takuya; Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    The main origin of r-process elements is still uncertain, but recent nucleosynthesis studies show that neutron star mergers (NSMs) are capable of naturally explaining the solar r-process abundance. Though, previous chemical evolution models hold conflict with the NSM scenario because the long NSM coalescence timescale causes an [r/Fe] enhancement at higher metallicity compared to the observed Galactic halo stars in the [r/Fe] vs [Fe/H] plane. However, it is not the case if assuming the formation of the Galactic halo by clusterings of sub-halos with varying star formation histories. We construct a chemical evolution model of sub-halos, where NSM occurring in each sub-halos are computed stochastically. Our results are in good agreement with the Galactic halo stars, explaining the observed dispersion and trend. Also, the abundance ratio pattern of the low mass sub-halos is in consistency with Reticulum II, a dwarf galaxy that might have been contaminated by a single r-process event.

  2. The Halo of the Milky Way

    SciTech Connect

    Newberg, Heidi Jo; Yanny, Brian; /Rensselaer Poly. /Fermilab

    2005-02-01

    The authors show that the star counts in the spheroid of the Milky Way are not symmetric about the l = 0{sup o}, l = 180{sup o} plane. The minimum counts are found towards l = 155{sup o}. The Galactic longitude of maximum star counts depends on the magnitude and color selection of the halo stars. They interpret this as evidence that the spheroid population is triaxial with a major axis oriented 65{sup o} from the line of sight from the Sun to the Galactic center, and approximately perpendicular to the Galactic bar. Large local star concentrations from tidal debris and possible tidal debris are also observed. A full understanding of the Galactic spheroid population awaits position information and three dimensional space velocities for a representative set of stars in every substructure. Tangential velocities for many stars will be provided by current and planned astrometry missions, but no planned mission will measure stars faint enough to unravel the more distant parts of the spheroid, which contain the majority of the spatial substructure. This paper uses data from the Sloan Digital Sky Survey (SDSS) public data release DR3.

  3. Subaru Hyper Suprime Cam Survey of the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Tanaka, Mikito; Komiyama, Yutaka

    2016-08-01

    We present a progress report on our deep and wide-field imaging survey of the Andromeda halo with Hyper Suprime Cam (HSC) mounted on Subaru. HSC is the upgraded prime focus camera after Suprime-Cam, having a field of view of 1.77 square degree (1.5 degree in diameter), namely about 10 times larger than that of Suprime-Cam. This camera will thus offer us great opportunities to explore unique and legacy surveys for the Andromeda halo, as well as for other Galactic Archaeology science cases.

  4. Better Galactic mass models through chemistry

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn Ellyn; Wetzel, Andrew; Hopkins, Philip F.; Sharma, Sanjib

    2017-01-01

    With the upcoming release of the Gaia catalog and the many multiplexed spectroscopic surveys on the horizon, we are rapidly moving into a new data-driven era in the study of the Milky Way's stellar halo. When combined, these data sets will give us a many-dimensional view of stars in accreted structures in the halo that includes both dynamical information about their orbits and chemical information about their formation histories. Using simulated data from the state-of-the-art Latte simulations of Milky-Way-like galaxies, which include hydrodynamics, feedback, and chemical evolution in a cosmological setting using the FIRE physics model, we demonstrate that while dynamical information alone can be used to constrain models of the Galactic mass distribution in the halo, including the extra dimensions provided by chemical abundances can improve these constraints as well as assist in untangling different accreted components.

  5. Stellar and Galactic Astrophysics with SIM

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2001-05-01

    SIM will revolutionize stellar and Galactic astrophysics by tackling new questions that could never previously be addressed and making order of magnitude improvements in key parameters. SIM will measure R0 and Theta0 to <2 will enable precise measurements of the Milky Way mass and rotation curve. It will probe the Galactic 3-D mass distribution by 2 independent methods. By calibrating the RR Lyrae MV-[Fe/H] relation as well as obtaining direct distances to clusters and halo field objects, SIM will precisely date halo and globular-cluster formation as a function of metallicity. SIM will obtain 1 measurements for 200 stars of all types ranging from brown dwarfs (BD) to O stars from a broad range of metallicities, including both binaries and single stars, and it will yield precision measurements of white dwarf (WD) and black hole (BH) remnants as well. SIM microlensing will take an unbiased census of all objects in the Galactic bulge, both dark (BD WD NS BH) and luminous, and will resolve the nature of the dark-halo (MACHO) candidates currently being detected toward the LMC.

  6. The halo fixator.

    PubMed

    Bono, Christopher M

    2007-12-01

    The halo fixator may be used for the definitive treatment of cervical spine trauma, preoperative reduction in the patient with spinal deformity, and adjunctive postoperative stabilization following cervical spine surgery. Halo fixation decreases cervical motion by 30% to 96%. Absolute contraindications include cranial fracture, infection, and severe soft-tissue injury at the proposed pin sites. Relative contraindications include severe chest trauma, obesity, advanced age, and a barrel-shaped chest. In children, a computed tomography scan of the head should be obtained before pin placement to determine cranial bone thickness. Complications of halo fixation include pin loosening, pin site infection, and skin breakdown. A concerning rate of life-threatening complications, such as respiratory distress, has been reported in elderly patients. Despite a paucity of contemporary data, recent retrospective studies have demonstrated acceptable results for halo fixation in managing some upper and lower cervical spine injuries.

  7. AHF: AMIGA'S HALO FINDER

    SciTech Connect

    Knollmann, Steffen R.; Knebe, Alexander

    2009-06-15

    Cosmological simulations are the key tool for investigating the different processes involved in the formation of the universe from small initial density perturbations to galaxies and clusters of galaxies observed today. The identification and analysis of bound objects, halos, is one of the most important steps in drawing useful physical information from simulations. In the advent of larger and larger simulations, a reliable and parallel halo finder, able to cope with the ever-increasing data files, is a must. In this work we present the freely available MPI parallel halo finder AHF. We provide a description of the algorithm and the strategy followed to handle large simulation data. We also describe the parameters a user may choose in order to influence the process of halo finding, as well as pointing out which parameters are crucial to ensure untainted results from the parallel approach. Furthermore, we demonstrate the ability of AHF to scale to high-resolution simulations.

  8. Revisiting the Bulge-Halo Conspiracy. I. Dependence on Galaxy Properties and Halo Mass

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Sonnenfeld, Alessandro; Mamon, Gary A.; Chae, Kyu-Hyun; Gavazzi, Raphael; Treu, Tommaso; Diemer, Benedikt; Nipoti, Carlo; Buchan, Stewart; Bernardi, Mariangela; Sheth, Ravi; Huertas-Company, Marc

    2017-05-01

    We carry out a systematic investigation of the total mass density profile of massive ({log} {M}{star}/{M}⊙ ≳ 11.3) early-type galaxies and its dependence on galactic properties and host halo mass with the aid of a variety of lensing/dynamical data and large mock galaxy catalogs. The latter are produced via semi-empirical models that, by design, are based on just a few basic input assumptions. Galaxies with measured stellar masses, effective radii, and Sérsic indices, are assigned, via abundance matching relations, host dark matter halos characterized by a typical ΛCDM profile. Our main results are as follows. (1) In line with observational evidence, our semi-empirical models naturally predict that the total, mass-weighted density slope at the effective radius γ‧ is not universal, steepening for more compact and/or massive galaxies, but flattening with increasing host halo mass. (2) Models characterized by a Salpeter or variable initial mass function (IMF) and uncontracted dark matter profiles are in good agreement with the data, while a Chabrier IMF and/or adiabatic contractions/expansions of the dark matter halos are highly disfavored. (3) Currently available data on the mass density profiles of very massive galaxies ({log} {M}{star}/{M}⊙ ≳ 12), with {M}{halo}≳ 3× {10}14 {M}⊙ , favor instead models with a stellar profile flatter than a Sérsic one in the very inner regions (r ≲ 3-5 kpc), and a cored NFW or Einasto dark matter profile with median halo concentration a factor of ˜2 or ≲1.3, respectively, higher than those typically predicted by N-body numerical simulations.

  9. Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Beers, Timothy C.

    2000-06-01

    -abundance stars close to the Galactic plane are, in part, affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a vertical velocity gradient on the order of Δ/Δ|Z|=-30+/-3 km s-1 kpc-1) and velocity ellipsoid (σU, σV, σW)=(46+/-4, 50+/-4, 35+/-3) km s-1. The fraction of low-metallicity stars in the solar neighborhood that are members of the thick disk population is estimated as ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1. We obtain an estimate of the radial scale length of the metal-weak thick disk of 4.5+/-0.6 kpc. We also analyze the global kinematics of the stars constituting the halo component of the Galaxy. The outer part of the halo, which we take to be represented by local stars on orbits reaching more than 5 kpc from the Galactic plane, exhibits no systematic rotation. In particular, we show that previous suggestions of the presence of a ``counter-rotating high halo'' are not supported by our analysis. The density distribution of the outer halo is nearly spherical and exhibits a power-law profile that is accurately described as ρ~R-3.55+/-0.13. The inner part of the halo is characterized by a prograde rotation and a highly flattened density distribution. We find no distinct boundary between the inner and outer halo. We confirm the clumping in angular-momentum phase space of a small number of local metal-poor stars noted in 1999 by Helmi et al. We also identify an additional elongated feature in angular-momentum phase space extending from the clump to regions with high azimuthal rotation. The number of members in the detected clump is not significantly increased from that reported by Helmi et al., even though the total number of the sample stars we consider is almost triple that of the previous investigation. We conclude that the fraction of halo stars that may have arisen from the precursor object of this clump may be smaller than 10% of the present Galactic halo, as previously suggested. The implications

  10. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  11. Secular resonant dressed orbital diffusion - II. Application to an isolated self-similar tepid galactic disc

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe

    2015-05-01

    The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel disc are recovered using a dressed Fokker-Planck formalism in angle-action variables. The shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are investigated in turn. For such galactic discs all elements seem to impact the locus and direction of the ridge. For instance, when the halo mass is decreased, we observe a transition between a regime of heating in the inner regions of the disc through the inner Lindblad resonance to a regime of radial migration of quasi-circular orbits via the corotation resonance in the outer part of the disc. The dressed secular formalism captures both the nature of collisionless systems (via their natural frequencies and susceptibility), and their nurture via the structure of the external perturbing power spectrum. Hence it provides the ideal framework in which to study their long-term evolution.

  12. The Case for the Dual Halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Carollo, Daniela; Ivezić, Željko; An, Deokkeun; Chiba, Masashi; Norris, John E.; Freeman, Ken C.; Lee, Young Sun; Munn, Jeffrey A.; Re Fiorentin, Paola; Sivarani, Thirupathi; Wilhelm, Ronald; Yanny, Brian; York, Donald G.

    2012-02-01

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schönrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schönrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezić et al. When compared to the recommended relation from Ivezić et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schönrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezić et al. for low-metallicity dwarfs to within 6%-10%. Schönrich et al. also point out that intermediate-gravity stars (3.5 <=log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  13. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line