Science.gov

Sample records for outer halo globular

  1. The Newly-Discovered Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, D.; Huxor, A.; Ferguson, A.

    2012-08-01

    In this contribution we describe the discovery of a large number of globular clusters in the outer halo of M31 from the Pan-Andromeda Archaeological Survey (PAndAS). New globular clusters have also been found in the outskirts of M33, and NGC 147 and 185. Many of the remote M31 clusters are observed to preferentially project onto tidal debris streams in the stellar halo, suggesting that much of the outer M31 globular cluster system has been assembled via the accretion of satellite galaxies. We briefly discuss the global properties of the M31 halo globular cluster system.

  2. Mass segregation in the outer halo globular cluster Palomar 14

    NASA Astrophysics Data System (ADS)

    Frank, Matthias J.; Grebel, Eva K.; Küpper, Andreas H. W.

    2014-09-01

    We present evidence for mass segregation in the outer halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope imaging, we analyse the radial dependence of the stellar mass function in the cluster's inner 39.2 pc in the mass range of 0.53 ≤ m ≤ 0.80 M⊙, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6 ± 0.2 in the cluster's core to a slope of 1.6 ± 0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al., who interpret the cluster's non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the cluster's expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.

  3. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  4. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    SciTech Connect

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Chapman, S. C.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.

  5. Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  6. The kinematics of globular clusters systems in the outer halos of the Aquarius simulations

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Helmi, A.

    2016-07-01

    Stellar halos and globular cluster (GC) systems contain valuable information regarding the assembly history of their host galaxies. Motivated by the detection of a significant rotation signal in the outer halo GC system of M 31, we investigate the likelihood of detecting such a rotation signal in projection, using cosmological simulations. To this end we select subsets of tagged particles in the halos of the Aquarius simulations to represent mock GC systems, and analyse their kinematics. We find that GC systems can exhibit a non-negligible rotation signal provided the associated stellar halo also has a net angular momentum. The ability to detect this rotation signal is highly dependent on the viewing perspective, and the probability of seeing a signal larger than that measured in M 31 ranges from 10% to 90% for the different halos in the Aquarius suite. High values are found from a perspective such that the projected angular momentum of the GC system is within ≲40 deg of the rotation axis determined via the projected positions and line-of-sight velocities of the GCs. Furthermore, the true 3D angular momentum of the outer stellar halo is relatively well aligned, within 35 deg, with that of the mock GC systems. We argue that the net angular momentum in the mock GC systems arises naturally when the majority of the material is accreted from a preferred direction, namely along the dominant dark matter filament of the large-scale structure that the halos are embedded in. This, together with the favourable edge-on view of M 31's disk suggests that it is not a coincidence that a large rotation signal has been measured for its outer halo GC system.

  7. Exploring the Milky Way outer halo globular clusters AM 1 and Pyxis

    NASA Astrophysics Data System (ADS)

    Pohl, Brian L.

    In order to probe the origins and history of the Milky Way halo, I executed a photometric survey of the outer halo globular clusters AM 1 and Pyxis using the southern astrophysical research (SOAR) telescope. The principal goal of this investigation was to determine the ages of these clusters, but the techniques employed in this process revealed other intrinsic properties such as chemical composition. A total of 32.2 hours of data were obtained on the program clusters, and observations of 22 stars from the Landolt (1992) catalogue were used to transform the clusters to the Johnson-Cousins BV standard system. The resultant color-magnitude diagrams are used in conjunction with the reference globular cluster M5 to determine the intrinsic properties of the program clusters. Three independent age determination techniques show agreement, consistent to within the error of the techniques, that AM 1 is --1.0 Gyr younger than, and that Pyxis is coeval to, the reference cluster M5. The chemical properties of both clusters are found to be the same for both clusters, [Fe/H] = --1.40 and [alpha/Fe] = +0.4, similar to M5. The results are presented in terms of two outstanding issues regarding the outer halo; the second parameter problem and the issue of accretion vs. in-situ formation.

  8. Young accreted globular clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2013-02-01

    We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.

  9. The outer halo globular cluster system of M31 - I. The final PAndAS catalogue

    NASA Astrophysics Data System (ADS)

    Huxor, A. P.; Mackey, A. D.; Ferguson, A. M. N.; Irwin, M. J.; Martin, N. F.; Tanvir, N. R.; Veljanoski, J.; McConnachie, A.; Fishlock, C. K.; Ibata, R.; Lewis, G. F.

    2014-08-01

    We report the discovery of 59 globular clusters (GCs) and two candidate GCs in a search of the halo of M31, primarily via visual inspection of Canada-France-Hawaii Telescope/MegaCam imagery from the Pan-Andromeda Archaeological Survey (PAndAS). The superior quality of these data also allows us to check the classification of remote objects in the Revised Bologna Catalogue (RBC), plus a subset of GC candidates drawn from Sloan Digital Sky Survey (SDSS) imaging. We identify three additional new GCs from the RBC, and confirm the GC nature of 11 SDSS objects (8 of which appear independently in our remote halo catalogue); the remaining 188 candidates across both lists are either foreground stars or background galaxies. Our new catalogue represents the first uniform census of GCs across the M31 halo - we find clusters to the limit of the PAndAS survey area at projected radii of up to Rproj ˜ 150 kpc. Tests using artificial clusters reveal that detection incompleteness cuts in at luminosities below MV = -6.0; our 50 per cent completeness limit is MV ≈ -4.1. We construct a uniform set of PAndAS photometric measurements for all known GCs outside Rproj = 25 kpc, and any new GCs within this radius. With these data, we update results from Huxor et al., investigating the luminosity function (LF), colours and effective radii of M31 GCs with a particular focus on the remote halo. We find that the GCLF is clearly bimodal in the outer halo (Rproj > 30 kpc), with the secondary peak at MV ˜ -5.5. We argue that the GCs in this peak have most likely been accreted along with their host dwarf galaxies. Notwithstanding, we also find, as in previous surveys, a substantial number of GCs with above-average luminosity in the outer M31 halo - a population with no clear counterpart in the Milky Way.

  10. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  11. Deep CCD Photometry and RR Lyrae Survey for the Outer-Halo Globular Cluster NGC 6229

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Borissova, J.; Spassova, N.; Ferraro, F. R.; Buonanno, R.; Sweigart, A. V.

    1997-12-01

    Deep BV CCD photometry for a large field covering the outer-halo Galactic globular cluster NGC 6229 is presented. For the first time, a color-magnitude diagram (CMD) reaching below the main-sequence turnoff has been obtained for this cluster. Previous results regarding the overall morphology of the horizontal and giant branches are confirmed. In addition, several candidate blue straggler stars are identified. However, a preliminary analysis of the cluster's CMD suggests that the putative extreme horizontal branch population suggested by Borissova et al. (1997, AJ, 113, 692) may not be present. Unfortunately, the innermost cluster regions could not be studied due to crowding. Comparison of the cluster CMD locus with the latest isochrones from VandenBerg (1997, private communication) is also presented, as is a study of the cluster age relative to a few well-studied reference globulars, using both the ``horizontal" and ``vertical" methods. We also report on an investigation of the variable stars in NGC 6229. We obtained new light curves and re-derived the periods, amplitudes and mean V and B-V magnitudes for 17 RR Lyrae stars listed in Sawyer Hogg's (1973, Publ. David Dunlap Obs., 3, No. 6) catalog. We obtained the first light curves for the RR Lyrae candidates No. 155 and No. 88 (Carney et al. 1991, AJ, 101, 1699), and confirm variability of their star No. 134, as well as of the RR Lyrae stars V3, V8 and V12 suspected by Borissova et al. (1997). A search for variable stars in our 5 x 5 arcmin field does not lead to any new variable candidates.

  12. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N. E-mail: harris@physics.mcmaster.ca

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  13. The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?

    NASA Astrophysics Data System (ADS)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  14. The binary populations of eight globular clusters in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Bedin, L. R.; Dotter, A.; Jerjen, H.; Kim, D.; Nardiello, D.; Piotto, G.; Cong, J.

    2016-01-01

    We analyse colour-magnitude diagrams of eight globular clusters (GCs) in the outer Galactic halo. Images were taken with the Wide Field Channel of the Advanced Camera for Survey and the Ultraviolet and Visual Channel of the Wide Field Camera 3 on board of the Hubble Space Telescope. We have determined the fraction of binary stars along the main sequence and combined results with those of a recent paper where some of us have performed a similar analysis on 59 Galactic GCs. In total, binaries have been now studied homogeneously in 67 GCs. We studied the radial and luminosity distributions of the binary systems, the distribution of their mass ratios and investigated univariate relations with several parameters of the host GCs. We confirm the anticorrelation between the binary fraction and the luminosity of the host cluster, and find that low-luminosity clusters can host a large population in excess of ˜40 per cent in the cluster core. However, our results do not support a significant correlation with the cluster age as suggested in the literature. In most GCs, binaries are more centrally concentrated than single stars. If the fraction of binaries is normalized to the core binary fraction the radial density profiles follow a common trend. It has a maximum in the centre and declines by a factor of 2 at a distance of about two core radii from the cluster centre. After dropping to its minimum at a radial distance of ˜5 core radii it stays approximately constant at larger radii. We also find that the mass ratio and the distribution of binaries as a function of the mass of the primary star is almost flat.

  15. THE CENTRAL BLUE STRAGGLER POPULATION IN FOUR OUTER-HALO GLOBULAR CLUSTERS

    SciTech Connect

    Beccari, Giacomo; Luetzgendorf, Nora; Olczak, Christoph; Ferraro, Francesco R.; Lanzoni, Barbara; Carraro, Giovanni; Boffin, Henri M. J.; Stetson, Peter B.; Sollima, Antonio

    2012-08-01

    Using Hubble Space Telescope/Wide Field Planetary Camera 2 data, we have performed a comparative study of the Blue Straggler Star (BSS) populations in the central regions of the globular clusters (GCs) AM 1, Eridanus, Palomar 3, and Palomar 4. Located at distances R{sub GC} > 50 kpc from the Galactic center, these are (together with Palomar 14 and NGC 2419) the most distant clusters in the halo. We determine their color-magnitude diagrams and centers of gravity. The four clusters turn out to have similar ages (10.5-11 Gyr), significantly smaller than those of the inner-halo globulars, and similar metallicities. By exploiting wide-field ground-based data, we build the most extended radial density profiles from resolved star counts ever published for these systems. These are well reproduced by isotropic King models of relatively low concentration. BSSs appear to be significantly more centrally segregated than red giants in all GCs, in agreement with the estimated core and half-mass relaxation times which are smaller than the cluster ages. Assuming that this is a signature of mass segregation, we conclude that AM 1 and Eridanus are slightly dynamically more evolved than Pal 3 and Pal 4.

  16. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  17. The horizontal branch morphology of M 31 globular clusters. Extreme second parameter effect in outer halo clusters

    NASA Astrophysics Data System (ADS)

    Perina, S.; Bellazzini, M.; Buzzoni, A.; Cacciari, C.; Federici, L.; Fusi Pecci, F.; Galleti, S.

    2012-10-01

    We use deep, high quality color magnitude diagrams obtained with the Hubble Space Telescope to compute a simplified version of the Mironov index (SMI; B/(B+R)) to parametrize the horizontal branch (HB) morphology for 23 globular clusters in the M 31 galaxy (Sample A), all located in the outer halo at projected distances between 10 kpc and 100 kpc. This allows us to compare them with their Galactic counterparts, for which we estimated the SMI exactly in the same way, in the SMI vs. [Fe/H] plane. We find that the majority of the considered M 31 clusters lie in a significantly different locus, in this plane, with respect to Galactic clusters lying at any distance from the center of the Milky Way. In particular they have redder HB morphologies at a given metallicity, or, in other words, clusters with the same SMI value are ≈ 0.4 dex more metal rich in the Milky Way than in M 31. We discuss the possible origin of this difference and we conclude that the most likely explanation is that many globular clusters in the outer halo of M 31 formed ≈1-2 Gyr later than their counterparts in the outer halo of the Milky Way, while differences in the cluster-to-cluster distribution of He abundance of individual stars may also play a role. The analysis of another sample of 25 bright M 31 clusters (eighteen of them with MV ≤ -9.0, Sample B), whose SMI estimates are much more uncertain as they are computed on shallow color magnitude diagrams, suggests that extended blue HB tails can be relatively frequent among the most massive M 31 globular clusters, possibly hinting at the presence of multiple populations. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). STScI is operated by the Association of Universities for

  18. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    SciTech Connect

    Cohen, Judith G.; Kirby, Evan N. E-mail: enk@astro.caltech.edu

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  19. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  20. GLOBULAR CLUSTERS IN THE OUTER GALACTIC HALO: NEW HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS IMAGING OF SIX GLOBULAR CLUSTERS AND THE GALACTIC GLOBULAR CLUSTER AGE-METALLICITY RELATION

    SciTech Connect

    Dotter, Aaron; Anderson, Jay; Sarajedini, Ata

    2011-09-01

    Color-magnitude diagrams (CMDs) derived from Hubble Space Telescope (HST) Advanced Camera for Surveys F606W, F814W photometry of six globular clusters (GCs) are presented. The six GCs form two loose groupings in Galactocentric distance (R{sub GC}): IC 4499, NGC 6426, and Ruprecht 106 at {approx}15-20 kpc and NGC 7006, Palomar 15, and Pyxis at {approx}40 kpc. The CMDs allow the ages to be estimated from the main-sequence turnoff in every case. In addition, the age of Palomar 5 (R{sub GC} {approx} 18 kpc) is estimated using archival HST Wide Field Planetary Camera 2 V, I photometry. The age analysis reveals the following: IC 4499, Ruprecht 106, and Pyxis are 1-2 Gyr younger than inner halo GCs with similar metallicities; NGC 7006 and Palomar 5 are marginally younger than their inner halo counterparts; NGC 6426 and Palomar 15, the two most metal-poor GCs in the sample, are coeval with all the other metal-poor GCs within the uncertainties. Combined with our previous efforts, the current sample provides strong evidence that the Galactic GC age-metallicity relation consists of two distinct branches. One suggests a rapid chemical enrichment in the inner Galaxy while the other suggests prolonged GC formation in the outer halo. The latter is consistent with the outer halo GCs forming in dwarf galaxies and later being accreted by the Milky Way.

  1. Probing the outer limits of a galactic halo - deep imaging of exceptionally remote globular clusters in M31

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2011-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the formation and growth of galaxies. As part of the ongoing Pan-Andromeda Archaeological Survey {PAndAS} we have discovered a group of exceptionally remote GCs in the M31 halo, spanning a range in projected galactocentric distance of 85-145 kpc. Here we apply for deep ACS imaging of 13 such targets, which will allow us to study their constituent stellar populations, line-of-sight distances, and structural parameters. Our measurements will facilitate the use of these GCs as a unique set of probes of the exceptionally remote halo of a large disk galaxy, opening up a completely new area of parameter space to observational constraint. Comparing the properties of our targets with more centrally-located objects will provide a much clearer picture of the M31 GC population than is presently available, while comparison with the outermost Milky Way GCs will further elucidate well-known disparities between the two systems and offer vital clues to differences in their assembly. In addition, our measurements will substantially augment a broad swathe of science that is presently underway - including probing the dark mass distribution in M31 at very large radii, and investigating the detailed chemical composition of M31 GCs via high-resolution integrated-light spectroscopy.

  2. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  3. The Outer Halo Metallicity Distribution

    NASA Astrophysics Data System (ADS)

    MA, ZHIBO; Morrison, H.; Harding, P.; Xue, X.; Rix, H.; Rockosi, C.; Johnson, J.; Lee, Y.; Cudworth, K.

    2012-01-01

    We present a new determination of the metallicity distribution function in the Milky Way halo, based on an in situ sample of more than 5000 K giants from SDSS/SEGUE. We have also measured the metallicity gradient in the halo, using our sample which stretches from 5 kpc to more than 100 kpc from the galactic center. The halo metallicity gradient has been a controversial topic in recent studies, but our in-situ study overcomes the problems caused in these studies by their extrapolations from local samples to the distant halo. We also describe our extensive checks of the log g and [Fe/H] measurements from the SEGUE Stellar Parameters pipeline, using globular and open cluster stars and SEGUE stars with follow-up high-resolution analysis. In addition, we present a new Bayesian estimate of distances to the K giants, which avoids the distance bias introduced by the red giant branch luminosity function.

  4. CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Martell, Sarah L.; Beers, Timothy C.; Freeman, Ken C. E-mail: smartell@aao.gov.au E-mail: kcf@mso.anu.edu.au

    2013-06-01

    We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

  5. Globular clusters in the halo of M31

    SciTech Connect

    Racine, R. Canada-France-Hawaii Telescope Corp., Kamuela, HI )

    1991-03-01

    The CFHT was used to obtain high-resolution CCD images of 82 cluster candidates in the halo of M31. These data, combined with radial velocities which cover an additional 27 candidates, are used to compile a catalog of 51 bona fide M31 halo globulars. The other candidates are found to be background galaxies (54) and field stars (4). The cluster sample appears to be incomplete for V greater than 18. The projected distribution of globulars follows an 1/r-squared law for r(kpc) between values of 6 and 22 and then drops faster, suggesting a cutoff at about 40 kpc. These trends are similar to those for globular clusters in the Milky Way halo. The total populaton of globulars in M31 is estimated to be larger than in the Milky Way by a factor of 1.8 + or - 0.3. 30 refs.

  6. STAR FORMATION HISTORY OF THE MILKY WAY HALO TRACED BY THE OOSTERHOFF DICHOTOMY AMONG GLOBULAR CLUSTERS

    SciTech Connect

    Jang, Sohee; Lee, Young-Wook

    2015-06-22

    In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation histories are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the “population-shift” effect within the instability strip, for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.

  7. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    SciTech Connect

    Hudson, Michael J.; Harris, Gretchen L.; Harris, William E.

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  8. The Sizes of Globular Clusters as Tracers of Galactic Halo Potentials

    NASA Astrophysics Data System (ADS)

    Zonoozi, A. H.; Rabiee, M.; Haghi, H.; Küpper, A. H. W.

    2016-02-01

    We present N-body simulations of globular clusters, exploring the effect of different galactic potentials on cluster sizes, rh. For various galactocentric distances, RG, we assess how cluster sizes change when we vary the virial mass and concentration of the host galaxy’s dark-matter halo. We show that sizes of GCs are determined by the local galactic mass density rather than the virial mass of the host galaxy. We find that clusters evolving in the inner halos of less concentrated galaxies are significantly more extended than those evolving in more concentrated ones, while the sizes of those orbiting in the outer halo are almost independent of concentration. Adding a baryonic component to our galaxy models does not change these results much, since its effect is only significant in the very inner halo. Our simulations suggest that there is a relation between rh and RG, which systematically depends on the physical parameters of the halo. Hence, observing such relations in individual galaxies can put a new observational constraint on dark-matter halo characteristics. However, by varying the halo mass in a wide range of {10}9≤slant {M}{vir}/{M}⊙ ≤slant {10}13, we find that the rh - RG relationship will be nearly independent of halo mass, if one assumes Mvir and cvir as two correlated parameters, as is suggested by cosmological simulations.

  9. The outer haloes of massive, elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Das, Payel; Gerhard, Ortwin; de Lorenzi, Flavio; McNeil, Emily; Churazov, Eugene; Coccato, Lodovico

    2010-11-01

    The outer haloes of massive elliptical galaxies are dark-matter dominated regions where stellar orbits have longer dynamical timescales than the central regions and therefore better preserve their formation history. Dynamical models out to large radii suffer from a degeneracy between mass and orbital structure, as the outer kinematics are unable to resolve higher moments of the line-of-sight velocity distribution. We mitigate this degeneracy for a sample of quiescent, massive, nearby ellipticals by determining their mass distributions independently using a non-parametric method on X-ray observations of the surrounding hot interstellar medium. We then create dynamical models using photometric and kinematic constraints consisting of integral-eld, long-slit and planetary nebulae (PNe) data extending to ~50 kpc. The rst two galaxies of our sample, NGC 5846 and NGC 1399, were found to have very shallow pro jected light distributions with a power law index of ~1.5 and a dark matter content of 70-80% at 50 kpc. Spherical Jeans models of the data show that, in the outer haloes of both galaxies, the pro jected velocity dispersions are almost inde- pendent of the anisotropy and that the PNe prefer the lower end of the range of mass distributions consistent with the X-ray data. Using the N-body code NMAGIC, we cre- ated axisymmetric models of NGC 5846 using the individual PNe radial velocities in a likelihood method and found them to be more constraining than the binned velocity dispersions. Characterising the orbital structure in terms of spherically averaged proles of the velocity dispersions we nd σψ > σr > σθ.

  10. The Age of the Inner Halo Globular Cluster NGC 6652

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  11. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  12. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  13. STRUCTURAL PARAMETERS FOR 10 HALO GLOBULAR CLUSTERS IN M33

    SciTech Connect

    Ma, Jun

    2015-05-15

    In this paper, we present the properties of 10 halo globular clusters (GCs) with luminosities L ≃ 5–7 × 10{sup 5} L{sub ⊙} in the Local Group galaxy M33 using images from the Hubble Space Telescope WFPC2 in the F555W and F814W bands. We obtained the ellipticities, position angles, and surface brightness profiles for each GC. In general, the ellipticities of the M33 sample clusters are similar to those of the M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios (M/L values) from population-synthesis models. The structural parameters include core radii, concentration, half-light radii, and central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density, and predicted line of sight velocity dispersion at the cluster center. The velocity dispersions of the four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo GCs are better fitted by both the King model and the Wilson model than the Sérsic model. In general, the properties of the clusters in M33, M31, and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a “fundamental plane” for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.

  14. Outer density profiles of 19 Galactic globular clusters from deep and wide-field imaging

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Gieles, Mark; Sollima, Antonio; Koposov, Sergey; Martínez-Delgado, David; Peñarrubia, Jorge

    2012-01-01

    Using deep photometric data from Wide Field Camera at the Isaac Newton Telescope and Wide Field Imager at the ESO 2.2-m telescope we measure the outer number density profiles of 19 stellar clusters located in the inner region of the Milky Way halo (within a Galactocentric distance range of 10-30 kpc) in order to assess the impact of internal and external dynamical processes on the spatial distribution of stars. Adopting power-law fitting templates, with index -γ in the outer region, we find that the clusters in our sample can be divided in two groups: a group of massive clusters (≥105 M⊙) that has relatively flat profiles with 2.5 < γ < 4, and a group of low-mass clusters (≤105 M⊙), with steep profiles (γ > 4) and clear signatures of interaction with the Galactic tidal field. We refer to these two groups as 'tidally unaffected' and 'tidally affected', respectively. Our results also show a clear trend between the slope of the outer parts and the half-mass density of these systems, which suggests that the outer density profiles may retain key information on the dominant processes driving the dynamical evolution of globular clusters.

  15. A search for stellar tidal debris of defunct dwarf galaxies around globular clusters in the inner Galactic halo

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Sollima, Antonio; Martínez-Delgado, David; Pila-Díez, Berenice; Leaman, Ryan; Fliri, Jürgen; Muñoz, Ricardo R.; Corral-Santana, Jesús M.

    2014-12-01

    In the hierarchical formation scenario in which the outer halo of the Milky Way is the result of the continuous accretion of low-mass galaxies, a fraction of the Galactic globular cluster system might have originated in and been accreted with already extinct dwarf galaxies. In this context, we expect that the remnants of these progenitor galaxies might be still populating the surroundings of those accreted globulars. In this work, we present wide-field photometry of a sample of 23 globular clusters in the Galactocentric distance range 10 ≤ RG ≤ 40 kpc, which we use to search for remnants of their hypothetical progenitor systems. Our deep photometry reveals the presence of underlying stellar populations along the line of sight of about half of the globulars included in our sample. Among the detections lying in the footprint of the Sagittarius tidal stream, which we identify via the comparison with its orbit derived from numerical simulations, only Whiting 1 and NGC 7492 seem to be immersed in that remnant at a compatible heliocentric distance. We also confirm the existence of a subjacent main-sequence feature in the surroundings of NGC 1851. A tentative detection of the vast Hercules-Aquila cloud is unveiled in the background of NGC 7006.

  16. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to be very large (Rdisk>~80 kpc) and/or warped. More likely, these four stars represent a metal-rich debris trail from a past accretion event in the halo. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. The outer profile of dark matter haloes: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-07-01

    A steepening feature in the outer density profiles of dark matter haloes indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  18. Globular clusters and their contribution to the formation of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio

    2016-08-01

    This is a ``biased'' review because I will show recent evidence on the contribution of globular clusters (GCs) to the halo of our Galaxy seen through the lens of the new paradigm of multiple populations in GCs. I will show a few examples where the chemistry of multiple populations helps to answer hot questions including whether and how much GCs did contribute to the halo population, if we have evidence of the GCs-halo link, what are the strengths and weak points concerning this contribution.

  19. Globular cluster clustering around ultra compact dwarf galaxies in the halo of NGC 1399

    NASA Astrophysics Data System (ADS)

    Voggel, Karina; Hilker, Michael; Richtler, Tom

    2016-08-01

    We tested the spatial distribution of UCDs and GCs in the halo of NGC 1399 in the Fornax cluster. In particular we tried to find out if globular clusters are more abundant in the vicinity of UCDs than what is expected from their global distribution. A local overabundance of globular clusters was found around UCDs on a scale of 1 kpc compared to what is expected from the large scale distribution of globulars in the host galaxy. This effect is stronger for the metal-poor blue GCs and weaker for the red GCs. An explanation for these clustered globulars is either that they are the remains of a GC system of an ancestor dwarf galaxy before it was stripped to its nucleus, which appears as UCD today. Alternatively these clustered GCs could have been originally part of a super star cluster complex.

  20. CHEMICAL COMPOSITIONS OF KINEMATICALLY SELECTED OUTER HALO STARS

    SciTech Connect

    Zhang Lan; Zhao Gang; Ishigaki, Miho; Chiba, Masashi; Aoki, Wako E-mail: zhanglan@bao.ac.c E-mail: chiba@astr.tohoku.ac.j

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including alpha-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [alpha/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens and Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy.

  1. Globular Clusters, Ultra-Compact Dwarfs, and the Formation of Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Peng, Eric

    2015-08-01

    Globular clusters (GCs) are a distinctive and ubiquitous constituent of galaxy halos. Their existence alludes to an early epoch of galaxy building characterized by the high star formation rates needed to form massive clusters, and a merging process that produced the extended, spheroidal stellar halos in today's galaxies. While studies of stellar halos are generally limited by low surface brightnesses or the faintness of individual halo stars, GCs are bright and compact, making them excellent tracers of stellar halos out to hundreds of megaparsecs. The Next Generation Virgo Cluster Survey (NGVS) is a CFHT Large Program that has acquired imaging of the 104 square degrees within the Virgo Cluster's virial radius. This deep and contiguous imaging of the nearest galaxy cluster provides us a new view of globular clusters across the full range of galaxy morphology and mass, as well as in the regions between galaxies. It also provides the first complete census of ultra-compact dwarfs (UCDs) in Virgo, objects which may be related to massive GCs and galaxy nuclei. In this talk, I will present what we have learned so far about extragalactic GC systems and UCDs from the NGVS, from both photometry and spectroscopy.

  2. Duration of the Early Galactic Formation Epoch: HST Photometry for Red-Horizontal Branch Clusters in the Outer Halo

    NASA Astrophysics Data System (ADS)

    Hesser, J. E.; Stetson, P. B.; McClure, R. D.; van den Bergh, S.; Bolte, M.; Harris, W. E.; van den Berg, D. A.; Bell, R. A.; Fahlman, G. G.; Richer, H. B.; Bond, H. E.

    1997-12-01

    Last year we presented evidence from HST photometry of the low-metallicity cluster NGC 2419 (M_V = -9.5, R_⊙ ~ 90 kpc, [Fe/H] = -2.2) that globular cluster formation began at essentially the same time throughout a region of the Galactic halo now almost 200 kpc in diameter (Harris et al. 1997 AJ 114, 1030). We now turn to the time spread of halo formation, with the ultimate aim of addressing the relative roles of mergers over the first 4 or more Gyrs (Searle & Zinn 1978, ApJ, 225, 357; Lee, Demarque & Zinn 1994 ApJ, 423, 248) versus models favoring a rapid collapse (Eggen, Lynden-Bell & Sandage 1962, ApJ, 236, 748; Stetson, VandenBerg & Bolte 1996, PASP, 108, 560), or some combination of those and other processes. We provide the first reliable measurements from the giant branch through the main-sequence turnoffs of red-horizontal-branch clusters in the outer halo, which are frequently postulated to be younger than most other globular clusters. From WFPC2 F555W (`V') and F814W (`I') photometry for Pal 3 (M_V = -5.2, R_⊙ ~ 87 kpc), Pal 4 (M_V = -5.8, R_⊙ ~ 98 kpc), and Eridanus (M_V = -4.8, R_⊙ ~ 78 kpc), all with [Fe/H] ~ -1.5, we estimate their relative ages by making differential comparisons among them and with respect to inner-halo objects of, presumably, comparable chemical compositions. It seems likely at this stage of our analysis that (a) the three clusters are the same age to our measurement precision of ~ 1 Gyr, and, (b) the CMDs of all three outer halo clusters differ from those of M 3 and M 5 (our template clusters of similar metallicity), in the sense that the outer halo clusters are younger by ~ 3 Gyr, or they are ~ 0.5 dex more metal-rich than currently thought. Large uncertainties in chemical compositions (He, [alpha /Fe], [CNO/Fe]) for outer halo and template clusters alike mask the true interpretation.

  3. The Fraction of Globular Cluster Second-generation Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2010-08-01

    Many observational studies have revealed the presence of multiple stellar generations in Galactic globular clusters. These studies suggest that second-generation stars make up a significant fraction of the current mass of globular clusters, with the second-generation mass fraction ranging from ~50% to 80% in individual clusters. In this Letter, we carry out hydrodynamical simulations to explore the dependence of the mass of second-generation stars on the initial mass and structural parameters and stellar initial mass function (IMF) of the parent cluster. We then use the results of these simulations to estimate the fraction f SG,H of the mass of the Galactic stellar halo composed of second-generation stars that originated in globular clusters. We study the dependence of f SG,H on the parameters of the IMF of the Galactic globular cluster system. For a broad range of initial conditions, we find that the fraction of mass of the Galactic stellar halo in second-generation stars is always small, f SG,H < 4%-6% for a Kroupa-1993 IMF and f SG,H < 7%-9% for a Kroupa-2001 IMF.

  4. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Wu, Hong; Zhang, Tian-Meng; Zhao, Yong-Heng

    2011-11-01

    We present spectroscopic observations for 11 confirmed globular clusters (GCs) of M31 with the OMR spectrograph on the 2.16 m telescope at the Xinglong site of National Astronomical Observatories, Chinese Academy of Sciences. Nine of our sample clusters are located in the halo of M31 and the most remote one is out to a projected radius of 78.75 kpc from the galactic center. For all our sample clusters, we measured the Lick absorption-line indices and radial velocities. It is noted that most GCs in our sample are distinct from the HI rotation curve of galaxy M31, especially for B514, MCGC5, H12 and B517, suggesting that most of our sample clusters do not have a kinematic association with the star-forming young disk of the galaxy. We separately fitted the absorption line indices from the updated stellar population model of Thomas et al. with two different tracks of Cassisi and Padova, by applying the χ2—minimization method. The fitting results show that all our sample clusters are older than 10Gyr, and metal-poor (-2.38 <= [Fe/H] <= -0.91dex). After merging the spectroscopic metallicity of our work with the previously published ones, we extended the cluster sample out to a projected radius of 117 kpc from the galaxy's center. We found the metallicity gradient exists for all the confirmed clusters with a slope of -0.028 ± 0.001 dex kpc-1. However, the slope turns out to be -0.018 ± 0.001 dex kpc-1 for all the halo clusters, which is much shallower. If we only consider the outer halo clusters with rp > 25 kpc, the slope becomes -0.010 ± 0.002 dex kpc-1 and if one cluster G001 is excluded from the outer halo sample, the slope is -0.004 ± 0.002 dex kpc-1. Thus, we conclude that the metallicity gradient for M31's outer halo clusters is not significant, which agrees well with previous findings.

  5. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  6. Globular clusters as tracers of the halo assembly of nearby central cluster galaxies

    NASA Astrophysics Data System (ADS)

    Hilker, Michael; Richtler, Tom

    2016-08-01

    The properties of globular cluster systems (GCSs) in the core of the nearby galaxy clusters Fornax and Hydra I are presented. In the Fornax cluster we have gathered the largest radial velocity sample of a GCS system so far, which enables us to identify photometric and kinematic sub-populations around the central galaxy NGC 1399. Moreover, ages, metallicities and [α/Fe] abundances of a sub-sample of 60 bright globular clusters (GCs) with high S/N spectroscopy show a multi-modal distribution in the correlation space of these three parameters, confirming heterogeneous stellar populations in the halo of NGC 1399. In the Hydra I cluster very blue GCs were identified. They are not uniformly distributed around the central galaxies. 3-color photometry including the U-band reveals that some of them are of intermediate age. Their location coincides with a group of dwarf galaxies under disruption. This is evidence of a structurally young stellar halo ``still in formation'', which is also supported by kinematic measurements of the halo light that point to a kinematically disturbed system. The most massive GCs divide into generally more extended ultra-compact dwarf galaxies (UCDs) and genuine compact GCs. In both clusters, the spatial distribution and kinematics of UCDs are different from those of genuine GCs. Assuming that some UCDs represent nuclei of stripped galaxies, the properties of those UCDs can be used to trace the assembly of nucleated dwarf galaxies into the halos of central cluster galaxies. We show via semi-analytical approaches within a cosmological simulation that only the most massive UCDs in Fornax-like clusters can be explained by stripped nuclei, whereas the majority of lower mass UCDs belong to the star cluster family.

  7. Major substructure in the M31 outer halo: the South-West Cloud

    NASA Astrophysics Data System (ADS)

    Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.

    2014-02-01

    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.

  8. Resolving the outer density profile of dark matter halo in Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao

    2013-08-01

    Large-scale faint structure detected by the recent observations in the halo of the Andromeda galaxy (M31) provides an attractive window to explore the structure of outer cold dark matter (CDM) halo in M31. Using an N-body simulation of the interaction between an accreting satellite galaxy and M31, we investigate the mass-density profile of the CDM halo. We find the sufficient condition of the outer density profile of CDM halo in M31 to reproduce the Andromeda giant stream and the shells at the east and west sides of M31. The result indicates that the density profile of the outer dark matter halo of M31 is a steeper than the prediction of the theory of the structure formation based on the CDM model.

  9. Dark Matter Halos in Galaxies and Globular Cluster Populations. II. Metallicity and Morphology

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Harris, Gretchen L.; Hudson, Michael J.

    2015-06-01

    An increasing body of data reveals a one-to-one linear correlation between galaxy halo mass and the total mass in its globular cluster (GC) population, {{M}GCS}∼ Mh1.03+/- 0.03, valid over five orders of magnitude. In this paper we explore the nature of this correlation for galaxies of different morphological types and for the subpopulations of metal-poor (blue) and metal-rich (red) GCs. For the subpopulations of different metallicity, we find {{M}GCS}(blue)∼ Mh0.96+/- 0.03 and {{M}GCS}(red)∼ Mh1.21+/- 0.03 with similar scatter. The numerical values of these exponents can be derived from the detailed behavior of the red and blue GC fractions with galaxy mass and provide a self-consistent set of relations. In addition, all morphological types (E, S0, S/Irr) follow the same relation, but with a second-order trend for spiral galaxies to have a slightly higher fraction of metal-rich GCs for a given mass. These results suggest that the amount of gas available for GC formation at high redshift was in nearly direct proportion to the dark matter halo potential, in strong contrast to the markedly nonlinear behavior of total stellar mass versus halo mass. Of the few available theoretical treatments that directly discuss the formation of GCs in a hierarchical-merging framework, we find that the model of Kravtsov & Gnedin best matches these observations. They find that the blue, metal-poor GCs formed in small halos at z\\gt 3 and did so in nearly direct proportion to halo mass. Similar models addressing the formation rate of the red, more metal-rich GCs in the same detail and continuing to lower redshift are still needed for a comprehensive picture.

  10. Did globular clusters contribute to the stellar population of the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Krause, Martin

    2016-08-01

    The origin of Galactic halo stars and the contribution of globular clusters (GC) to this stellar population have long been (and still are) debated. The discovery of multiple stellar populations with peculiar chemical properties in GCs both in the Milky Way and in Local Group galaxies recently brought a renewal on these questions. Indeed most of the scenarios that compete to reproduce the present-day GC characteristics call for fast expulsion of both gas and low-mass stars from these clusters in their early infancy. In this framework, the initial masses of GCs could have been 8 to 25 times higher than their present-day stellar mass, and they could have contributed to 5 to 20 % of the low-mass stars in the Galactic halo. Here we revisit these conclusions, which are in tension with observations of dwarf galaxies and of young massive star clusters in the Local Group. We come back in particular on the paradigm of gas expulsion from massive star clusters, and propose an alternative interpretation of the GC abundance properties. We conclude by proposing a major revision of the current concepts regarding the role massive star clusters play in the assembly of galactic haloes.

  11. Deep photometry of two accreted families of globular clusters in the remote M31 halo

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the merger and accretion events that underlie hierarchical galaxy assembly. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered two groups of GCs that closely trace narrow stellar debris streams in the M31 halo. These clearly represent two distinct accreted families of GCs - the only known examples apart from the few Galactic GCs arriving with the Sagittarius dwarf. We propose to obtain deep ACS imaging of 14 GCs spanning these two accreted families, allowing us to measure the constituent stellar populations, line-of-sight distance, and structural parameters of each object. We will, for the first time, quantify the typical properties of accreted GCs in the M31 halo as well as the degree of variation amongst them, and how closely they correspond to the suspected accreted GC population in the Milky Way. Combined with new radial velocity measurements for the GCs, our proposed observations will allow us to trace the 3D orbits of the two streams within the M31 halo, and thus break the main degeneracies that plague numerical models designed to probe the gravitational potential and distribution of dark mass.

  12. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  13. A Rich Globular Cluster System in Dragonfly 17: Are Ultra-diffuse Galaxies Pure Stellar Halos?

    NASA Astrophysics Data System (ADS)

    Peng, Eric W.; Lim, Sungsoon

    2016-05-01

    Observations of nearby galaxy clusters at low surface brightness have identified galaxies with low luminosities, but sizes as large as L ⋆ galaxies, leading them to be dubbed “ultra-diffuse galaxies” (UDGs). The survival of UDGs in dense environments like the Coma cluster suggests that UDGs could reside in much more massive dark halos. We report the detection of a substantial population of globular clusters (GCs) around a Coma UDG, Dragonfly 17 (DF17). We find that DF17 has a high GC specific frequency of S N = 26 ± 13. The GC system is extended, with an effective radius of 12″ ± 2″, or 5.6 ± 0.9 kpc at Coma distance, 70% larger than the galaxy itself. We also estimate the mean of the GC luminosity function to infer a distance of {97}-14+17 Mpc, providing redshift-independent confirmation that one of these UDGs is in the Coma cluster. The presence of a rich GC system in DF17 indicates that, despite its low stellar density, star formation was intense enough to form many massive star clusters. If DF17's ratio of total GC mass to total halo mass is similar to those in other galaxies, then DF17 has an inferred total mass of ˜1011 M ⊙, only ˜10% the mass of the Milky Way, but extremely dominated by dark matter, with M/L V ≈ 1000. We suggest that UDGs like DF17 may be “pure stellar halos,” i.e., galaxies that formed their stellar halo components, but then suffered an early cessation in star formation that prevented the formation of any substantial central disk or bulge. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  14. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ∼9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ∼13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  15. F Turnoff Distribution in the Galactic Halo Using Globular Clusters as Proxies

    NASA Astrophysics Data System (ADS)

    Newby, Matthew; Newberg, Heidi Jo; Simones, Jacob; Cole, Nathan; Monaco, Matthew

    2011-12-01

    F turnoff stars are important tools for studying Galactic halo substructure because they are plentiful, luminous, and can be easily selected by their photometric colors from large surveys such as the Sloan Digital Sky Survey (SDSS). We describe the absolute magnitude distribution of color-selected F turnoff stars, as measured from SDSS data, for 11 globular clusters in the Milky Way halo. We find that the Mg distribution of turnoff stars is intrinsically the same for all clusters studied, and is well fit by two half-Gaussian functions, centered at μ = 4.18, with a bright-side σ = 0.36, and with a faint-side σ = 0.76. However, the color errors and detection efficiencies cause the observed σ of the faint-side Gaussian to change with magnitude due to contamination from redder main-sequence stars (40% at 21st magnitude). We present a function that will correct for this magnitude-dependent change in selected stellar populations, when calculating stellar density from color-selected turnoff stars. We also present a consistent set of distances, ages, and metallicities for 11 clusters in the SDSS Data Release 7. We calculate a linear correction function to Padova isochrones so that they are consistent with SDSS globular cluster data from previous papers. We show that our cluster population falls along the Milky Way age-metallicity relationship (AMR), and further find that isochrones for stellar populations on the AMR have very similar turnoffs; increasing metallicity and decreasing age conspire to produce similar turnoff magnitudes and colors for all old clusters that lie on the AMR.

  16. F TURNOFF DISTRIBUTION IN THE GALACTIC HALO USING GLOBULAR CLUSTERS AS PROXIES

    SciTech Connect

    Newby, Matthew; Newberg, Heidi Jo; Simones, Jacob; Cole, Nathan; Monaco, Matthew E-mail: heidi@rpi.edu

    2011-12-20

    F turnoff stars are important tools for studying Galactic halo substructure because they are plentiful, luminous, and can be easily selected by their photometric colors from large surveys such as the Sloan Digital Sky Survey (SDSS). We describe the absolute magnitude distribution of color-selected F turnoff stars, as measured from SDSS data, for 11 globular clusters in the Milky Way halo. We find that the M{sub g} distribution of turnoff stars is intrinsically the same for all clusters studied, and is well fit by two half-Gaussian functions, centered at {mu} = 4.18, with a bright-side {sigma} = 0.36, and with a faint-side {sigma} = 0.76. However, the color errors and detection efficiencies cause the observed {sigma} of the faint-side Gaussian to change with magnitude due to contamination from redder main-sequence stars (40% at 21st magnitude). We present a function that will correct for this magnitude-dependent change in selected stellar populations, when calculating stellar density from color-selected turnoff stars. We also present a consistent set of distances, ages, and metallicities for 11 clusters in the SDSS Data Release 7. We calculate a linear correction function to Padova isochrones so that they are consistent with SDSS globular cluster data from previous papers. We show that our cluster population falls along the Milky Way age-metallicity relationship (AMR), and further find that isochrones for stellar populations on the AMR have very similar turnoffs; increasing metallicity and decreasing age conspire to produce similar turnoff magnitudes and colors for all old clusters that lie on the AMR.

  17. The structure of star clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A.; Read, J. I.; Lewis, G. F.; Irwin, M. J.; Chapman, S.; Ibata, R.; Wilkinson, M. I.; McConnachie, A. W.; Martin, N. F.; Davies, M. B.; Bridges, T. J.

    2012-05-01

    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ˜20 parsec core radii and ˜100 parsec photometric tidal radii, or by Sérsic profiles of index ˜1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ˜2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.

  18. STELLAR POPULATIONS IN THE OUTER HALO OF THE MASSIVE ELLIPTICAL M49

    SciTech Connect

    Mihos, J. Christopher; Harding, Paul; Rudick, Craig S.; Feldmeier, John J. E-mail: paul.harding@case.edu E-mail: jjfeldmeier@ysu.edu

    2013-02-20

    We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49's stellar halo out to {approx}100 kpc (7r{sub e}), where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B - V {approx} 0.7); if this is purely a metallicity effect, it argues for extremely metal-poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxy's surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49's outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49's halo. Thus the extremely metal-poor nature of M49's extended halo provides some tension against current models for elliptical galaxy formation.

  19. Three ancient halo subgiants: precise parallaxes, compositions, ages, and implications for globular clusters , ,

    SciTech Connect

    VandenBerg, Don A.; Bond, Howard E.; Nelan, Edmund P.; Nissen, P. E.; Schaefer, Gail H.; Harmer, Dianne E-mail: heb11@psu.edu E-mail: pen@phys.au.dk E-mail: diharmer@noao.edu

    2014-09-10

    The most accurate ages for the oldest stars are those obtained for nearby halo subgiants because they depend almost entirely on just the measured parallaxes and absolute oxygen abundances. In this study, we have used the Fine Guidance Sensors on the Hubble Space Telescope to determine trigonometric parallaxes, with precisions of 2.1% or better, for the Population II subgiants HD 84937, HD 132475, and HD 140283. High quality spectra have been used to derive their surface abundances of O, Fe, Mg, Si, and Ca, which are assumed to be 0.1-0.15 dex less than their initial abundances due to the effects of diffusion. Comparisons of isochrones with the three subgiants on the (log T {sub eff}, M{sub V} ) diagram yielded ages of 12.08 ± 0.14, 12.56 ± 0.46, and 14.27 ± 0.38 Gyr for HD 84937, HD 132475, and HD 140283, in turn, where each error bar includes only the parallax uncertainty. The total uncertainty is estimated to be ∼ ± 0.8 Gyr (larger in the case of the near-turnoff star HD 84937). Although the age of HD 140283 is greater than the age of the universe as inferred from the cosmic microwave background by ∼0.4-0.5 Gyr, this discrepancy is at a level of <1σ. Nevertheless, the first Population II stars apparently formed very soon after the Big Bang. (Stellar models that neglect diffusive processes seem to be ruled out as they would predict that HD 140283 is ∼1.5 Gyr older than the universe.) The field halo subgiants appear to be older than globular clusters of similar metallicities: if distances close to those implied by the RR Lyrae standard candle are assumed, M 92 and M 5 are younger than HD 140283 and HD 132475 by ∼1.5 and ∼1.0 Gyr, respectively.

  20. Globular cluster clustering and tidal features around ultra-compact dwarf galaxies in the halo of NGC 1399

    NASA Astrophysics Data System (ADS)

    Voggel, Karina; Hilker, Michael; Richtler, Tom

    2016-02-01

    We present a novel approach to constrain the formation channels of ultra-compact dwarf galaxies (UCDs). They most probably are an inhomogeneous class of objects, composed of remnants of tidally stripped dwarf elliptical galaxies and star clusters that occupy the high mass end of the globular cluster luminosity function. We use three methods to unravel their nature: 1) we analyzed their surface brightness profiles; 2) we carried out a direct search for tidal features around UCDs; and 3) we compared the spatial distribution of GCs and UCDs in the halo of their host galaxy. Based on FORS2 observations under excellent seeing conditions, we studied the detailed structural composition of a large sample of 97 UCDs in the halo of NGC 1399, the central galaxy of the Fornax cluster, by analyzing their surface brightness profiles. We found that 13 of the UCDs were resolved above the resolution limit of 23 pc and we derived their structural parameters fitting a single Sérsic function. When decomposing their profiles into composite King and Sérsic profiles, we find evidence for faint stellar envelopes at μ = ~ 26 mag arcsec-2, surrounding the UCDs up to an extension of 90 pc in radius. We also show new evidence for faint asymmetric structures and tidal tail-like features surrounding several of these UCDs, a possible tracer of their origin and assembly history within their host galaxy halos. In particular, we present evidence for the first discovery of a significant tidal tail with an extension of ~350 pc around UCD-FORS 2. Finally, we studied the local overdensities in the spatial distribution of globular clusters within the halo of NGC 1399 out to 110 kpc to see if they are related to the positions of the UCDs. We found a local overabundance of globular clusters on a scale of ≤1 kpc around UCDs, when we compared it to the distribution of globulars from the host galaxy. This effect is strongest for the metal-poor blue GCs. We discuss how likely it is that these clustered

  1. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    SciTech Connect

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-12-10

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  2. Globular Clusters, Dwarf Galaxies, and the Assembly of the M87 Halo

    NASA Astrophysics Data System (ADS)

    Peng, Eric W.; Zhang, Hong-Xin; Liu, Chengze; Liu, Yiqing

    2016-08-01

    At the center of the nearest galaxy cluster, the Virgo cluster, lies the massive cD galaxy, M87 (NGC 4486). Using data from the Next Generation Virgo Cluster Survey, we investigate the relationship between M87, its globular clusters (GCs), and satellite dwarf galaxies. We find that the kinematics of GCs and ultra-compact dwarfs (UCDs) are different, indicating that UCDs are not simply massive GCs. We also identify a morphological sequence of envelope fraction around UCDs correlated with cluster-centric distance that suggest UCDs are the result of tidal stripping. Lastly, we find that the [α/Fe] abundance ratios of low-mass early-type galaxies in Virgo exhibit a strong negative gradient within ~ 400 kpc of M87, where the galaxies closest to M87 have the highest values. These satellite galaxies are likely the surviving counterparts of accreted dwarfs that contribute stars to the metal-poor, α-rich stellar halos of massive galaxies. Together, these results describe a dense environment that has had a strong and continuing impact on the evolution of its low-mass neighbors.

  3. Kinematic and Chemical Constraints on the Formation of M31's Inner and Outer Halo

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Rich, R. Michael; Reitzel, David B.; Martin, Nicolas F.; Ibata, Rodrigo A.; Chapman, Scott C.; Majewski, Steven R.; Mori, Masao; Loh, Yeong-Shang; Ostheimer, James C.; Tanaka, Mikito

    2008-12-01

    The halo of M31 shows a wealth of substructures, some of which are consistent with assembly from satellite accretion. Here we report on kinematic and abundance results from Keck DEIMOS spectroscopy in the near-infrared calcium triplet region of over 3500 red giant star candidates along the minor axis and in off-axis spheroid fields of M31. These data reach out to large radial distances of about 160 kpc. The derived radial velocity distributions show an indication of a kinematically cold substructure around ~17 kpc, which has been reported before. We devise a new and improved method to measure spectroscopic metallicities from the calcium triplet in low signal-to-noise ratio spectra using a weighted co-addition of the individual lines. The resulting distribution (accurate to ~0.3 dex down to signal-to-noise ratios of 5) leads us to note an even stronger gradient in the abundance distribution along M31's minor axis and in particular toward the outer halo fields than previously detected. The mean metallicity in the outer fields reaches below -2 dex, with individual values as low as lesssim-2.6 dex. This is the first time such a metal-poor halo has been detected in M31. In the fields toward the inner spheroid, we find a sharp decline of ~0.5 dex in metallicity in a region at ~20 kpc, which roughly coincides with the edge of an extended disk, previously detected from star count maps. A large fraction of red giants that we detect in the most distant fields are likely members of M33's overlapping halo. A comparison of our velocities with those predicted by new N-body simulations argues that the event responsible for the Giant Stream is most likely not responsible for the full population of the inner halo. We show further that the abundance distribution of the Stream is different from that of the inner halo, from which it becomes evident, in turn, that the merger event that formed the Stream and the outer halo cannot have contributed any significant material to the inner

  4. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  5. Globular Cluster Orbits from HST Proper Motions: Constraining the Formation and Mass of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony; Van Der Marel, Roeland P.; Deason, Alis J.; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2016-06-01

    The globular cluster (GC) system of the Milky Way (MW) provides important information on the MW's present structure and past evolution. GCs in the halo are particularly useful tracers; because of their long dynamical timescales, their orbits retain imprints of their origin or accretion history. Full 3D motions are required to calculate past orbits. While most GCs have known line of sight velocities, accurate proper motion (PM) measurements are currently available for only a few halo GCs. Our goal is to create the first high-quality PM database for halo GCs. We have identified suitable 1st-epoch data in the HST Archive for 20 halo GCs at 10-100 kpc from the Galactic Center. We are in the process of obtaining the necessary 2nd-epoch data to determine absolute PMs of the target GCs through our HST program GO-14235. We will use the same advanced astrometric techniques that allowed us to measure the PMs of M31 and Leo I. Previous studies of the halo GC system based on e.g., stellar populations, metallicities, RR Lyrae properties, and structural properties have revealed a dichotomy between old and young halo GCs. This may reflect distinct formation scenarios (in situ vs. accreted). Orbit calculations based on our PMs will directly test this. The PMs will also yield the best handle yet on the velocity anisotropy profile of any tracer population in the halo. This will resolve the mass-anisotropy degeneracy to provide an improved estimate of the MW mass, which is at present poorly known. In summary, our project will deliver the first accurate PMs for halo GCs, and will significantly increase our understanding of the formation, evolution, and mass of the MW.

  6. Puzzling outer-density profile of the dark matter halo in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao

    2014-12-01

    The cold dark matter (CDM) cosmology, which is the standard theory of the structure formation in the universe, predicts that the outer density profile of dark matter halos decreases with the cube of distance from the center. However, so far not much effort has been expended in examining this hypothesis. In the halo of the Andromeda galaxy (M 31), large-scale stellar structures detected by the recent observations provide a potentially suitable window to investigate the mass-density distribution of the dark matter halo. We explore the density structure of the dark matter halo in M 31 using an N-body simulation of the interaction between an accreting satellite galaxy and M 31. To reproduce the Andromeda Giant Southern Stream and the stellar shells at the east and west sides of M 31, we find the sufficient condition for the power-law index α of the outer density distribution of the dark matter halo. The best-fitting parameter is α = -3.7, which is steeper than the CDM prediction.

  7. TRACING THE OUTER HALO IN A GIANT ELLIPTICAL TO 25 R {sub eff}

    SciTech Connect

    Rejkuba, M.; Harris, W. E.; Greggio, L.; Harris, G. L. H.; Jerjen, H.; Gonzalez, O. A.

    2014-08-10

    We have used the Advanced Camera for Surveys and Wide Field Camera 3 cameras on board the Hubble Space Telescope to resolve stars in the halo of the nearest giant elliptical (gE) galaxy NGC 5128 out to a projected distance of 140 kpc (25 effective radii, R {sub eff}) along the major axis and 90 kpc (16 R {sub eff}) along the minor axis. This data set provides an unprecedented radial coverage of the stellar halo properties in any gE galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128, even in our most distant fields. The star counts demonstrate increasing flattening of the outer halo, which is elongated along the major axis of the galaxy. The V – I colors of the red giants enable us to measure the metallicity distribution in each field and so map the gradient out to ∼16 R {sub eff} from the galaxy center along the major axis. A median metallicity is obtained even for the outermost fields along both axes. We observe a smooth transition from a metal-rich ([M/H] ∼0.0) inner galaxy to lower metallicity in the outer halo, with the metallicity gradient slope along the major axis of Δ[M/H]/ΔR ≅ –0.0054 ± 0.0006 dex kpc{sup –1}. In the outer halo, beyond ∼10 R {sub eff}, the number density profile follows a power law, but also significant field-to-field metallicity and star count variations are detected. The metal-rich component dominates in all observed fields, and the median metallicity is [M/H] >–1 dex in all fields.

  8. Very Metal-poor Outer-halo Stars with Round Orbits

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-01

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  9. VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-20

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  10. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  11. Dependence of the outer density profiles of halos on their mass accretion rate

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2014-07-01

    We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.

  12. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope II: dynamics, metallicity and age

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Zhao, Yong-Heng

    2012-07-01

    In Paper I, we performed spectroscopic observations on 11 confirmed globular clusters (GCs) in M31 with the Xinglong 2.16 m telescope. We mainly focused on the fitting method and the metallicity gradient for the M31 GC sample. Here, we analyze and further discuss the dynamics, metallicity and age, and their distributions, as well as the relationships between these parameters. In our work, eight more confirmed GCs in the halo of M31 were observed, most of which lack previous spectroscopic information. These star clusters are located far from the galactic center at a projected radius of ~ 14 to ~ 117 kpc, which is more spatially extended than that in the previous work. Firstly, we measured the Lick absorption-line indices and the radial velocities. Then the ages and metallicity values of [Fe/H] and [α/Fe] were fitted by comparing the observed spectral feature indices and the Single Stellar Population model of Thomas et al. in the Cassisi and Padova stellar evolutionary tracks, respectively. Our results show that most of the star clusters in our sample are older than 10 Gyr except B290, which is ~ 5.5 Gyr, and most of them are metal-poor with metallicity [Fe/H] < -1, suggesting that these clusters were born at the early stage of the galaxy's formation. We find that the metallicity gradient for the outer halo clusters with rp > 25 kpc may have an insignificant slope of -0.005 ± 0.005 dex kpc-1 and if the outliers G001 and H11 are excluded, the slope does not change significantly, with a value of -0.002 ± 0.003 dex kpc-1. We also find that the metallicity is not a function of age for the GCs with age < 7 Gyr, but for the old GCs with age > 7 Gyr, there seems to be a trend that the older ones have lower metallicity. Additionally, we plot metallicity distributions with the largest sample of M31 GCs so far and show the bimodality is not significant, and the number of metal-poor and metal-rich groups becomes comparable. The spatial distributions show that the metal

  13. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  14. PROGRESSIVELY MORE PROLATE DARK MATTER HALO IN THE OUTER GALAXY AS TRACED BY FLARING H I GAS

    SciTech Connect

    Banerjee, Arunima; Jog, Chanda J. E-mail: cjjog@physics.iisc.ernet.in

    2011-05-01

    A galactic disk in a spiral galaxy is generally believed to be embedded in an extended dark matter halo, which dominates its dynamics in the outer parts. However, the shape of the halo is not clearly understood. Here we show that the dark matter halo in the Milky Way is prolate in shape. Further, it is increasingly more prolate at larger radii, with the vertical-to-planar axis ratio monotonically increasing to 2.0 at 24 kpc. This is obtained by modeling the observed steeply flaring atomic hydrogen gas layer in the outer Galactic disk, where the gas is supported by pressure against the net gravitational field of the disk and the halo. The resulting prolate-shaped halo can explain several long-standing puzzles in galactic dynamics, for example, it permits long-lived warps thus explaining their ubiquitous nature.

  15. Investigating the outer density profile of the dark matter halo of M31

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu

    2015-08-01

    In the context of the hierarchical structure formation in the universe, cosmological N -body simulations predict that cold dark matter (CDM) halos have a universal mass-density profile(Navarro et al. 1996; Fukushige & Makino 1997; Moore et al. 1998).Especially, the density profile of CDM outer halos decreases with the cube of the radius from the galactic center. However, so far, not much effort has examined this hypothesis because it is extremely difficult to measure the mass distribution of the outer region of a galaxy.On the other hand, a recent observation discovered a giant stellar stream (GSS) and stellar shells in the halo of the Andromeda galaxy (M31). The GSS extends over 120 kpc further away along the line of sight from M31, and its spatial and velocity structure have been observed in detail. So far, N -body simulations of a galaxy merger between a satellite dwarf galaxy and M31 nicely reproduced these structures (Fardal et al. 2007; Mori & Rich 2008).We present the result of the N -body simulation of the galaxy merger to investigate the mass distribution of the DM halo in M31. We vary the power-law index of the outer-density profile and the total mass of the CDM halo of M31. To reproduce the observed structures, we find the sufficient condition for the power-law index x. The best-fit parameter is x=-3.7, which is steeper than the CDM prediction (x=-3).In addition, we also focus on the morphology of the progenitor galaxy. We perform large parameter surveys of the galaxy merger varying thickness and rotation velocity of a disk-like component of the progenitor. The result suggests that a rotating component of the progenitor is required to reproduce an asymmetric internal structure of the GSS. Using the parameter that reproduces the observed structures in detail, we discuss the evolution and relaxation of the dark matter component that initially associated with the progenitor.

  16. The Outer Galactic Halo As Probed By RR Lyr Stars From the Palomar Transient Facility + Keck

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Sesar, Branimir; Banholzer, Sophianna

    2016-08-01

    We present initial results from our study of the outer halo of the Milky Way using a large sample of RR Lyr(ab) variables datamined from the archives of the Palomar Transient Facility. Of the 464 RR Lyr in our sample with distances exceeding 50 kpc, 62 have been observed spectroscopically at the Keck Observatory. vr and σ(vr ) are given as a function of distance between 50 and 110 kpc, and a very preliminary rather low total mass for the Milky Way out to 110 kpc of ~7+/-1.5×1011 M ⊙ is derived from our data.

  17. Formation of Globular Clusters in Atomic-cooling Halos Via Rapid Gas Condensation and Fragmentation during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue; Rosdahl, Joakim; Yi, Sukyoung K.

    2016-05-01

    We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with {M}{{halo}}˜ 4× {10}7 {M}⊙ at z\\gt 10 using cosmological radiation-hydrodynamics simulations. We find that very compact (≲1 pc) and massive (˜ 6× {10}5 {M}⊙ ) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient Lyα emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short (\\ll 1 {{Myr}}), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. The simulated clusters closely resemble the local GCs in mass and size but show a metallicity spread that is much wider than found in the local GCs. We discuss a role of pre-enrichment by Pop III and II stars as a potential solution to the latter issue. Although not without shortcomings, it is encouraging that a naive blind (not tuned) cosmological simulation presents a possible channel for the formation of at least some massive GCs.

  18. The age of the globular cluster NGC 288, the formation of the Galactic halo, and the second parameter

    SciTech Connect

    Bolte, M. )

    1989-06-01

    A differential comparison of precise CCD photometry in the globular clusters NGC 288, NGC 362, and NGC 1261 shows that differences exist in the positions of the main-sequence turnoff in these clusters that are most naturally explained if NGC 288 is some 3 billion yr older than NGC 362 and about 1 to 2 billion yr older than NGC 1261. This implies that the formation time for the Galactic halo is significantly longer than a freefall time. Consideration of the inferred ages and horizontal-branch morphologies of the clusters Pal 12, NGC 288, NGC 362, and NGC 1261, all with similar metal abundances, suggests that age may be the parameter that, after overall metal abundance, most determines horizontal-branch morphology. 56 refs.

  19. A Hubble Space Telescope Study of the Enigmatic Milky Way Halo Globular Cluster Crater*

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Koposov, Sergey E.; Dolphin, Andrew E.; Belokurov, Vasily; Gieles, Mark; Mateo, Mario L.; Olszewski, Edward W.; Sills, Alison; Walker, Matthew G.

    2016-05-01

    We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Crater’s color–magnitude diagram (CMD) extends ˜4 mag below the oldest main-sequence (MS) turnoff. Structurally, we find that Crater has a half-light radius of ˜20 pc and no evidence for tidal distortions. We model Crater’s CMD as a simple stellar population (SSP) and alternatively by solving for its full star formation history. In both cases, Crater is well described by an SSP with an age of ˜7.5 Gyr, a metallicity of [M/H] ˜ ‑1.65, a total stellar mass of {M}\\star ˜ 1{{e}}4 {M}ȯ , and a luminosity of {M}V˜ -5.3, located at a distance of d ˜ 145 kpc, with modest uncertainties due to differences in the underlying stellar evolution models. We argue that the sparse sampling of stars above the turnoff and subgiant branch are likely to be 1.0–1.4 {M}ȯ blue stragglers and their evolved descendants, as opposed to intermediate-age MS stars. We find that Crater is an unusually young cluster given its location in the Galaxy’s outer halo. We discuss scenarios for Crater’s origin, including the possibility of being stripped from the SMC or the accretion from lower-mass dwarfs such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than z ˜ 1 (8 Gyr ago), providing an important new constraint on the accretion history of the Galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13746.

  20. A Hubble Space Telescope Study of the Enigmatic Milky Way Halo Globular Cluster Crater*

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Koposov, Sergey E.; Dolphin, Andrew E.; Belokurov, Vasily; Gieles, Mark; Mateo, Mario L.; Olszewski, Edward W.; Sills, Alison; Walker, Matthew G.

    2016-05-01

    We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Crater’s color-magnitude diagram (CMD) extends ˜4 mag below the oldest main-sequence (MS) turnoff. Structurally, we find that Crater has a half-light radius of ˜20 pc and no evidence for tidal distortions. We model Crater’s CMD as a simple stellar population (SSP) and alternatively by solving for its full star formation history. In both cases, Crater is well described by an SSP with an age of ˜7.5 Gyr, a metallicity of [M/H] ˜ -1.65, a total stellar mass of {M}\\star ˜ 1{{e}}4 {M}⊙ , and a luminosity of {M}V˜ -5.3, located at a distance of d ˜ 145 kpc, with modest uncertainties due to differences in the underlying stellar evolution models. We argue that the sparse sampling of stars above the turnoff and subgiant branch are likely to be 1.0-1.4 {M}⊙ blue stragglers and their evolved descendants, as opposed to intermediate-age MS stars. We find that Crater is an unusually young cluster given its location in the Galaxy’s outer halo. We discuss scenarios for Crater’s origin, including the possibility of being stripped from the SMC or the accretion from lower-mass dwarfs such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than z ˜ 1 (8 Gyr ago), providing an important new constraint on the accretion history of the Galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13746.

  1. A Peculiar Faint Satellite in the Remote Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Martin, N. F.; Ferguson, A. M. N.; Dotter, A.; McConnachie, A. W.; Ibata, R. A.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Tanvir, N. R.; Venn, K. A.

    2013-06-01

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age >~ 10 Gyr and [Fe/H] lsim -2.3. Our inferred distance modulus (m - M)0 = 24.57 ± 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149^{+19}_{-8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r_h=26^{+4}_{-3} pc, integrated luminosity MV = -4.8 ± 0.5, and ellipticity \\epsilon =0.30^{+0.08}_{-0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 12515.

  2. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    SciTech Connect

    Mackey, A. D.; Dotter, A.; Huxor, A. P.; Martin, N. F.; Ibata, R. A.; Ferguson, A. M. N.; McConnachie, A. W.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Venn, K. A.; Tanvir, N. R.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.

  3. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  4. FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. III. OBSERVABILITY AND CONNECTION TO HALO GLOBULAR CLUSTERS

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2011-12-01

    The early universe hosted a large population of low-mass virialized 'minihalos', that were not massive enough to form stars on their own. While most minihalos were photoevaporated by ionizing photons from star-forming galaxies, these galaxies also drove large outflows, which in some cases would have reached the minihalos in advance of ionization fronts. In the previous papers in this series, we carried out high-resolution, three-dimensional adaptive mesh refinement simulations of outflow-minihalo interactions that included non-equilibrium chemistry, radiative cooling, and turbulent mixing. We found that, for a fiducial set of parameters, minihalos were transformed into dense, chemically homogenous stellar clusters. Here we conduct a suite of simulations that follow these interactions over a wide range of parameters including minihalo mass, minihalo formation redshift, outflow energy, outflow redshift, distance, concentration, and spin. In almost all cases, the shocked minihalos form molecules through non-equilibrium reactions and then cool rapidly to become compact, chemically homogenous stellar clusters. Furthermore, we show that the unique properties of these clusters make them a prime target for direct study with the next generation of telescopes, and that there are many reasons to suspect that their low-redshift counterparts are the observed population of halo globular clusters.

  5. CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Kennedy, Catherine R.; Bovy, Jo; Sivarani, Thirupathi; Aoki, Wako E-mail: kcf@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: kenne257@msu.edu E-mail: sivarani@iiap.res.in

    2012-01-10

    Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ({sup c}arbonicity{sup )} in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] <-1.5 is 8%, for [Fe/H] <-2.0 it is 12%, and for [Fe/H] <-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from ([C/Fe]) {approx}+1.0 at [Fe/H] =-1.5 to ([C/Fe]) {approx}+1.7 at [Fe/H] =-2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, |Z|. For |Z| <5 kpc, relatively few CEMP stars are identified. For distances |Z| >5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with -2.0 < [Fe/H] <-1.5, the frequency grows from 5% at |Z| {approx}2 kpc to 10% at |Z| {approx}10 kpc. For stars with [Fe/H] <-2.0, the frequency grows from 8% at |Z| {approx}2 kpc to 25% at |Z| {approx}10 kpc. For stars with -2.0 < [Fe/H] <-1.5, the mean carbonicity is ([C/Fe]) {approx}+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <-2.0, ([C/Fe]) {approx}+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components-the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components-the inner halo has a greater portion of stars with modest carbon

  6. 2MASS J06164006-6407194: THE FIRST OUTER HALO L SUBDWARF

    SciTech Connect

    Cushing, Michael C.; Looper, Dagny; Burgasser, Adam J.; Sanderson, Robyn E.; Kirkpatrick, J. Davy; Cruz, Kelle L.; Sweet, Anne

    2009-05-01

    We present the serendipitous discovery of an L subdwarf in the Two Micron All Sky Survey (2MASS) J06164006-6407194, in a search of the 2MASS for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressure-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H{sub 2}O, and enhanced collision induced absorption of H{sub 2}. We assign 2MASS J0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion ({mu} = 1.''405 {+-} 0.008 yr{sup -1}), large radial velocity (V {sub rad} = 454 {+-} 15 km s{sup -1}), estimated u, v, w velocities (94, -573, 125) km s{sup -1} and Galactic orbit with an apogalacticon at {approx}29 kpc are indicative of membership in the outer halo making 2MASS J0616-6407 the first ultracool member of this population.

  7. OXYGEN ABUNDANCES IN LOW- AND HIGH-{alpha} FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS

    SciTech Connect

    Ramirez, I.; Melendez, J.

    2012-10-01

    Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and {alpha}-element (Mg, Si, Ca, Ti) abundances: thick disk, high-{alpha} halo, and low-{alpha} halo. We find the oxygen abundance trends of thick-disk and high-{alpha} halo stars very similar. The low-{alpha} stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the {alpha} elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% {+-} 2% of the local field metal-poor star population was born in GCs.

  8. The outer envelopes of globular clusters - I. NGC 7089 (M2)

    NASA Astrophysics Data System (ADS)

    Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.; Roderick, T. A.

    2016-10-01

    We present the results of a wide-field imaging survey of the periphery of the Milky Way globular cluster NGC 7089 (M2). Data were obtained with MegaCam on the Magellan Clay Telescope and the Dark Energy Camera on the Blanco Telescope. We find that M2 is embedded in a diffuse stellar envelope extending to a radial distance of at least ˜60 arcmin (˜210 pc) - five times the nominal tidal radius of the cluster. The envelope appears nearly circular in shape, has a radial density decline well described by a power law of index γ = -2.2 ± 0.2, and contains approximately 1.6 per cent of the luminosity of the entire system. While the origin of the envelope cannot be robustly identified using the presently available data, the fact that M2 also hosts stellar populations exhibiting a broad dispersion in the abundances of both iron and a variety of neutron capture elements suggests that this object might plausibly constitute the stripped nucleus of a dwarf galaxy that was long ago accreted and destroyed by the Milky Way.

  9. RR Lyrae stars in the outer region of the globular cluster M 3: A shortage of long periods at r ˜ 3.5 to 6 arcmin?

    NASA Astrophysics Data System (ADS)

    Butler, D. J.

    2004-06-01

    An analysis of the radial distribution of ab-type RR Lyrae star periods in the outer region of the globular cluster M 3 at r ≥0.83' has been performed. That analysis points towards a real shortage of stars with long periods in the radial distance range 3.5' to 6' (or about 7 to 12 core radii). A brief discussion is presented. The origin of the phenomenon remains an open question.

  10. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    SciTech Connect

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-08-10

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100 Degree-Sign -117 Degree-Sign , within 30 Degree-Sign of the Galactic plane. For |b| < 15 Degree-Sign , we observe a symmetric RM distribution about the Galactic plane. This is consistent with a disk field in the Perseus arm of even parity across the Galactic mid-plane. In the range 15 Degree-Sign < |b| < 30 Degree-Sign , we find median RMs of -15 {+-} 4 rad m{sup -2} and -62 {+-} 5 rad m{sup -2} in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 {mu}G (7 {mu}G) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  11. A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

    SciTech Connect

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Sesar, Branimir; Rix, Hans-Walter; Schlafly, Edward F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Slater, Colin T.; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth C.; Denneau, Larry; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Sweeney, William E.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-05-01

    We present a new satellite in the outer halo of the Galaxy, the first Milky Way satellite found in the stacked photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) Survey. From follow-up photometry obtained with WFI on the MPG/ESO 2.2 m telescope, we argue that the object, located at a heliocentric distance of 145 ± 17 kpc, is the most distant Milky Way globular cluster yet known. With a total magnitude of M{sub V} = –4.3 ± 0.2 and a half-light radius of 20 ± 2 pc, it shares the properties of extended globular clusters found in the outer halo of our Galaxy and the Andromeda galaxy. The discovery of this distant cluster shows that the full spatial extent of the Milky Way globular cluster system has not yet been fully explored.

  12. RR Lyrae to understand the Galactic halo

    NASA Astrophysics Data System (ADS)

    Fiorentino, Giuliana

    2016-08-01

    We present recent results obtained using old variable RR Lyrae stars on the Galactic halo structure and its connection with nearby dwarf galaxies. We compare the period and period-amplitude distributions for a sizeable sample of fundamental mode RR Lyrae stars (RRab) in dwarf spheroidals (~1300 stars) with those in the Galactic halo (~16'000 stars) and globular clusters (~1000 stars). RRab in dwarfs -as observed today- do not appear to follow the pulsation properties shown by those in the Galactic halo, nor they have the same properties as RRab in globulars. Thanks to the OGLE experiment we extended our comparison to massive metal-rich satellites like the dwarf irregular Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf spheroidal. These massive and more metal-rich stellar systems likely have contributed to the Galactic halo formation more than classical dwarf spheroidals. Finally, exploiting the intrinsic nature of RR Lyrae as distance indicators we were able to study the period and period amplitude distributions of RRab within the Halo. It turned out that the inner and the outer Halo do show a difference that may suggest a different formation scenario (in situ vs accreted).

  13. Multiple populations in globular clusters and the origin of the Oosterhoff dichotomy

    NASA Astrophysics Data System (ADS)

    Jang, S.; Lee, Y.-W.

    2016-05-01

    The globular cluster community is now facing a new paradigm of multiple stellar populations. In light of this, we have recently proposed a new model to explain the origin of the difference in mean period of type ab RR Lyrae variables between the two Oosterhoff groups. In our model, the instability strip in the metal-poor group II clusters, such as M15, is populated by second-generation stars (G2) with mildly enhanced helium and CNO abundances, while the RR Lyraes in the relatively metal-rich group I clusters such as M3 are produced mostly by first-generation stars (G1) without these enhancements. When these models are extended to all metallicity regimes, the observed dichotomies in the inner and outer halo globular clusters can be naturally reproduced. We found that specific star formation histories are required for the inner and outer halos, which is consistent with the dual origin of the Milky Way halo.

  14. PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; Belokurov, V.; Koposov, S. E.; Prieto, J. L.; Larson, S.; Christensen, E.; Beshore, E.

    2013-01-20

    We present analysis of 12,227 type-ab RR Lyraes (RRLs) found among the 200 million public light curves in Catalina Surveys Data Release 1. These stars span the largest volume of the Milky Way ever surveyed with RRLs, covering {approx}20,000 deg{sup 2} of the sky (0 Degree-Sign < {alpha} < 360 Degree-Sign , -22 Degree-Sign < {delta} < 65 Degree-Sign ) to heliocentric distances of up to 60 kpc. Each of the RRLs is observed between 60 and 419 times over a six-year period. Using period finding and Fourier fitting techniques we determine periods and apparent magnitudes for each source. We find that the periods are generally accurate to {sigma} = 0.002% in comparison to 2842 previously known RRLs and 100 RRLs observed in overlapping survey fields. We photometrically calibrate the light curves using 445 Landolt standard stars and show that the resulting magnitudes are accurate to {approx}0.05 mag using Sloan Digital Sky Survey (SDSS) data for {approx}1000 blue horizontal branch stars and 7788 RRLs. By combining Catalina photometry with SDSS spectroscopy, we analyze the radial velocity and metallicity distributions for >1500 of the RRLs. Using the accurate distances derived for the RRLs, we show the paths of the Sagittarius tidal streams crossing the sky at heliocentric distances from 20 to 60 kpc. By selecting samples of Galactic halo RRLs, we compare their velocity, metallicity, and distance with predictions from a recent detailed N-body model of the Sagittarius system. We find that there are some significant differences between the distances and structures predicted and our observations.

  15. Major substructure in the M31 outer halo: distances and metallicities along the giant stellar stream

    NASA Astrophysics Data System (ADS)

    Conn, A. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Ferguson, A. M. N.; Irwin, M. J.; Elahi, P. J.; Venn, K. A.; Mackey, A. D.

    2016-05-01

    We present a renewed look at M31's giant stellar stream along with the nearby structures streams C and D, exploiting a new algorithm capable of fitting to the red giant branch (RGB) of a structure in both colour and magnitude space. Using this algorithm, we are able to generate probability distributions in distance, metallicity and RGB width for a series of subfields spanning these structures. Specifically, we confirm a distance gradient of approximately 20 kpc per degree along a 6 deg extension of the giant stellar stream, with the farthest subfields from M31 lying ˜120 kpc more distant than the innermost subfields. Further, we find a metallicity that steadily increases from -0.7^{+0.1}_{-0.1} to -0.2^{+0.2}_{-0.1} dex along the inner half of the stream before steadily dropping to a value of -1.0^{+0.2}_{-0.2} dex at the farthest reaches of our coverage. The RGB width is found to increase rapidly from 0.4^{+0.1}_{-0.1} to 1.1^{+0.2}_{-0.1} dex in the inner portion of the stream before plateauing and decreasing marginally in the outer subfields of the stream. In addition, we estimate stream C to lie at a distance between 794 and 862 kpc and stream D between 758 and 868 kpc. We estimate the median metallicity of stream C to lie in the range -0.7 to -1.6 dex and a metallicity of -1.1^{+0.3}_{-0.2} dex for stream D. RGB widths for the two structures are estimated to lie in the range 0.4-1.2 dex and 0.3-0.7 dex, respectively. In total, measurements are obtained for 19 subfields along the giant stellar stream, four along stream C, five along stream D and three general M31 spheroid fields for comparison. We thus provide a higher resolution coverage of the structures in these parameters than has previously been available in the literature.

  16. Are Some Milky Way Globular Clusters Hosted by Undiscovered Galaxies?

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis; Crnojević, Denija; Sand, David J.

    2016-07-01

    The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass—halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy’s total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 109 M ⊙ of total mass, the surviving Milky Way (MW) subhalos with masses smaller than 1010 M ⊙ could host as many as 5-31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass-halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW’s outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.

  17. The outer halo of the nearest giant elliptical: a VLT/VIMOS survey of the resolved stellar populations in Centaurus A to 85 kpc

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Ferguson, A. M. N.; Irwin, M. J.; Bernard, E. J.; Arimoto, N.; Jablonka, P.; Kobayashi, C.

    2013-06-01

    We present the first survey of resolved stellar populations in the remote outer halo of our nearest giant elliptical (gE), Centaurus A (D = 3.8 Mpc). Using the VIsible Multi Object Spectrograph (VIMOS)/Very Large Telescope (VLT) optical camera, we obtained deep photometry for four fields along the major and minor axes at projected elliptical radii of ˜30-85 kpc (corresponding to ˜5-14Reff). We use resolved star counts to map the spatial and colour distribution of red giant branch (RGB) stars down to ˜2 mag below the RGB tip. We detect an extended halo out to the furthermost elliptical radius probed (˜85 kpc or ˜14Reff), demonstrating the vast extent of this system. We detect a localized substructure in these parts, visible in both (old) RGB and (intermediate-age) luminous asymptotic giant branch stars, and there is some evidence that the outer halo becomes more elliptical and has a shallower surface brightness profile. We derive photometric metallicity distribution functions for halo RGB stars and find relatively high median metallicity values (<[Fe/H]>med ˜ -0.9 to -1.0 dex) that change very little with radius over the extent of our survey. Radial metallicity gradients are measured to be ≈ -0.002-0.004 dex kpc-1, and the fraction of metal-poor stars (defined as [Fe/H] < -1.0) is ≈40-50 per cent at all radii. We discuss these findings in the context of galaxy formation models for the buildup of gE haloes.

  18. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia; Arnaboldi, Magda; Gerhard, Ortwin; Hanuschik, Reinhard

    2015-07-01

    Aims: We present a spectroscopic study of a sample of 287 planetary nebulas (PNs) around the brightest cluster galaxy (BCG) M 87 in Virgo A, of which 211 are located between 40 kpc and 150 kpc from the galaxy centre. With these data we can distinguish the stellar halo from the co-spatial intracluster light (ICL) and study both components separately. Methods: We obtained PN velocities with a high resolution FLAMES/VLT survey targeting eight fields in a total area of ~0.4 deg2. We identified PNs from their narrow and symmetric redshifted λ5007 Å [OIII] emission line, the presence of the second λ4959 Å [OIII] emission line, and the absence of significant continuum. We implement a robust technique to measure the halo velocity dispersion from the projected phase-space to identify PNs associated with the M 87 halo and ICL. Using photometric magnitudes, we construct PN luminosity functions (PNLFs), which are complete down to m5007 = 28.8. Results: The velocity distribution of the spectroscopically confirmed PNs is bimodal, containing a narrow component centred on the systemic velocity of the BCG and an off-centred broader component, which we identify as halo and ICL, respectively. We find that 243 PNs are part of the velocity distribution of the M 87 halo, while the remaining subsample of 44 PNs are intracluster PNs (ICPNs). Halo and ICPNs have different spatial distributions: the number density of halo PNs follow the galaxy's surface brightness profile, whereas the ICPNs are characterised by a shallower power-law profile, IICL ∝ Rγ with γ in the range [-0.34, -0.04 ]. No evidence is found for an asymmetry in the halo and ICPN density distributions when the NW and SE fields are studied separately. A study of the composite PN number density profile confirms the superposition of different PN populations associated with the M 87 halo and the ICL, characterised by different PN specific numbers α. We derive αhalo = 1.06 × 10-8NPN L⊙,bol-1 and αICL = 2.72 × 10

  19. Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.

    2014-01-01

    Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.

  20. THE CASE FOR THE DUAL HALO OF THE MILKY WAY

    SciTech Connect

    Beers, Timothy C.; Lee, Young Sun; Carollo, Daniela; Norris, John E.; Freeman, Ken C. E-mail: lee@pa.msu.edu E-mail: jen@mso.anu.edu.au; and others

    2012-02-10

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs to within 6%-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 {<=}log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  1. Light-element abundance variations in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  2. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "cannibalized" other nearby dwarf galaxies and clusters, and that this process is still going on. Some astronomers have even speculated that many of the globular clusters now observed may originally have been the particularly dense, central regions ("nuclei") of unfortunate, small galaxies whose more tenuous outer structures have since been dissipated into the Galactic halo. If this is the case, then the Milky Way halo may now contain fossil structures, left over from this process (referred to as "accretion"). A study of the halo and the objects therein may therefore provide very useful information about the formation and evolution of the Milky Way, our home galaxy. The VLT observations In order to investigate this basic issue in more detail, CCD images obtained with the Test Camera at the first 8.2-m VLT Unit Telescope (UT1) have been used to study one of the old globular clusters in the Milky Way. NGC 6712 [2] is an enormous swarm of stars in the southern constellation Scutum (The Shield). It is located at a distance of about 23,000 light-years, in the direction towards the Galactic Center. This cluster is of spherical form and contains somewhat fewer than 1 million stars, all of which are lighter than our Sun. NGC 6712 is one of about 150 globular clusters now known in the Milky Way. They all move in extended elliptical orbits that periodically take them through the densely populated main plane of our Galaxy in which the stars and nebulae form the well-known spiral structure. From there they move into the halo regions high above the plane and then down again. The orbit of NGC 6712 is comparatively small and the cluster passes particularly close to the Galactic Center. The orbital period is in the short range so this happens rather frequently. In fact, it appears that NGC 6712 crossed the Galactic plane just a few million years ago. ESO PR Photo 06a/99 ESO PR Photo 06a/99 [Preview - JPEG: 800 x 494 pix - 344k] [High-Res - JPEG: 3000 x 1851 pix - 2.3M] Caption to PR Photo 06a

  3. Globular Clusters in the Milky Way and Dwarf Galaxies: A Distribution-Free Statistical Comparison

    NASA Astrophysics Data System (ADS)

    Mondal, Saptarshi; Chattopadhyay, Asis Kumar; Chattopadhyay, Tanuka

    2008-08-01

    It has been found that globular clusters (GCs) in dwarf galaxies and those in the Milky Way (MW) outer halo mostly have the same parent distributions, while GCs in the MW disk and inner halo have a different origin from those in dwarf galaxies. Thus, these dwarf galaxies did not play a crucial role in the formation of the Galactic disk or inner halo. In order to investigate this phenomenon in a more objective manner, a statistical comparison of the GCs of our Galaxy and those of neighboring dwarf galaxies has been carried out by a multivariate nonparametric method. For the various parameters of GCs in the MW and in dwarf galaxies, the multivariate Gaussian assumption fails, so a nonparametric method of comparison (instead of multivariate analysis of variance [MANOVA]) has been chosen. The test is performed on GCs of the MW disk, inner halo, and outer halo separately, with GCs from neighboring dwarf galaxies Canis Major, Fornax, and Sculptor, and the LMC dwarf irregular galaxy. The test is also performed for GCs from dwarf spheroidal galaxies in the neighborhood of M31: M33, NGC 147, NGC 185, and NGC 205.

  4. Two New Ultra-Faint Star Clusters in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2016-08-01

    Kim 1 & 2 are two new star clusters discovered in the Stromlo Missing Satellite Survey. Kim 1, located at a heliocentric distance of 19.8 +/- 0.9 kpc, features an extremely low total luminosity (M V = 0.3 +/- 0.5 mag) and low star concentration. Together with the large ellipticity (ɛ = 0.42 +/- 0.10) and irregular isophotes, these properties suggest that Kim 1 is an intermediate mass star cluster being stripped by the Galactic tidal field. Kim 2 is a rare ultra-faint outer halo globular cluster located at a heliocentric distance of 104.7 +/- 4.1 kpc. The cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. Kim 2 is likely to follow an orbit confined to the peripheral region of the Galactic halo, and/or to have formed in a dwarf galaxy that was later accreted into the Galactic halo.

  5. Comments on the Formation of Globular Clusters from Coalesced Clouds.

    PubMed

    Smith

    1999-11-20

    If a substantial fraction of the proto-Galactic halo was constituted of cloudy structures of sizes 1 kpc or larger, then collisions between these clouds would have been common during the infall of the Galaxy. Such collisions would have shaped the properties of the clouds from which globular clusters formed. If Milky Way globular clusters formed from progenitor clouds which in turn had been constructed from the coalescence of smaller cloud structures, then cluster properties that could naturally be accounted for include: (1) the low percentage of stars in globular clusters relative to the halo field, (2) the chemical homogeneity of globular clusters with respect to heavy elements, and (3) the fact that the lowest metallicity globular clusters are not as metal-poor as some halo field stars.

  6. The horizontal-branch stars in globular clusters. 2: The second parameter phenomenon

    NASA Technical Reports Server (NTRS)

    Lee, Young-Wook; Demarque, Pierre; Zinn, Robert

    1994-01-01

    Using synthetic horizontal-branch models, we have investigated the origin of the systematic variation in horizontal-branch (HB) morphology with galactocentric distance (R(sub G)) among globular clusters. The variations in He abundance, CNO abundance, and core mass required separately to explain this effect are inconsistent with either the observed properties of the RR Lyrae variables or the observed main-sequence turnoffs in the clusters. There is also no clear evidence that the trend with R(sub G) is related to the central concentrations, central densities, or absolute magnitudes of the clusters. The variations in cluster age required to explain this effect are not in conflict with any observations. A detailed comparison of our synthetic HB calculations with pairs of clusters of very different HB morphology but similar (Fe/H) reveals reasonably good agreement between the age differences inferred from HB morphology and the main-sequence turnoff. The major source of uncertainty is the need for ad hoc hypotheses in the modeling of the HB morphologies of a few peculiar clusters (e.g., NGC 6752). Nonetheless, there is firm evidence for age variations of several gigayears (as much as approximately 5 Gyr) among the halo globular clusters. Our results support the hypothesis of Searle & Zinn that the inner halo is more uniform in age and is older in the mean than the outer halo, and we estimate this difference to be approximately 2 Gyr.

  7. VizieR Online Data Catalog: Photometry in globular cluster NGC 6229 (Carney+, 1991)

    NASA Astrophysics Data System (ADS)

    Carney, B. W.; Fullton, L. K.; Trammell, S. R.

    2016-06-01

    We present CCD-based BV photometry for over 1100 stars in and around the globular cluster NGC 6229. For the first time, the cluster's entire giant branch and its horizontal branch are delineated, from which metallicity ([Fe/H]~-1.4) and distance (d⊙_~28kpc; dGC~27kpc) estimates ensue. NGC 6229 is found to have a relatively blue horizontal branch for its intermediate metallicity, which is unusual for an outer halo cluster. Its low R value (defined as NHB/NRG) hints that the blue color of its horizontal branch is due to a lower than average helium abundance. Three possible new variable stars are identified, including one RR Lyrae and two long-period variables. We present a brief review of our knowledge of basic data for the 13 globular clusters lying more than 24 kpc from the Galactic center. The unusually red horizontal branch phenomenon is common only among the outermost clusters. An average R value for these clusters suggests the effect is not caused by an overabundance of helium. The Oosterhoff dichotomy apparently persists into the outer halo, although the number of clusters with RR Lyrae variables is small. (1 data file).

  8. Keck spectroscopy and NGVS photometry in the direction of the Virgo cluster: Globular cluster satellites of dwarf ellipticals, Milky Way halo substructure, and large-scale structure in the background

    NASA Astrophysics Data System (ADS)

    Muller, Meredith; Toloba, E.; Guhathakurta, P.; Yagati, S.; Chen, J.; Cote, P.; Dorman, C.; Ferrarese, L.; Peng, E. W.; Next Generation Virgo Cluster Survey Collaboration

    2014-01-01

    The Virgo cluster, the nearest large galaxy cluster, is a rich repository of dwarf elliptical (dE) galaxies. The formation mechanism of dE galaxies remains the subject of much debate. Dwarf galaxies in general are believed to be building blocks in the hierarchical growth of galaxies as per the “cold dark matter” model of structure formation. Globular cluster (GC) satellites serve as important tracers of dark matter in the outer regions of dEs (beyond 1 half-light radius). This project presents new spectroscopic data from Keck's DEIMOS, which specifically targeted low-luminosity (-17 < Mv < -15) dEs and GC satellites, in the Virgo cluster. These data are among the deepest spectroscopic data ever taken in this region. Secondary science targets - Milky Way foreground stars and galaxies in the background - are also discussed. All targets were chosen based on photometric data from the Next Generation Virgo Survey (NGVS) and the Advanced Camera for Surveys Virgo Cluster Survey (ACSVCS). Further, these two surveys were critical to the tomographic analysis of spectroscopic targets. From this analysis we were able to: identify 117 GCs associated with any one of the 21 dE targets in the Virgo cluster, identify Milky Way foreground stars as part of the Virgo Overdensity or Sagittarius streams, quantify the velocity structure of these ongoing cannibalism events, and identify two new superclusters of galaxies in the background using redshift distribution. This research was carried out under the auspices of UCSC's Science Internship Program. We thank the National Science Foundation for funding support. ET was supported by a Fulbright fellowship.

  9. Near-Infrared Imaging of the Central Regions of Metal-Poor Inner Spheroid Globular Clusters

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2001-06-01

    JHK images obtained with the Canada-France-Hawaii Telescope adaptive optics bonnette are used to investigate the near-infrared photometric properties of red giant branch (RGB) and horizontal-branch (HB) stars in eight metal-poor globular clusters with RGC<=2 kpc. The slope of the RGB on the (K, J-K) CMDs confirms the metal-poor nature of these clusters, four of which (NGC 6287, 6293, 6333, and 6355) are found to have metallicities that are comparable to M92. The luminosity functions of RGB stars in inner spheroid and outer halo clusters have similar slopes, although there is a tendency for core-collapsed clusters to have slightly flatter luminosity functions than noncollapsed clusters. The distribution of red HB stars on the (K, J-K) CMDs of inner spheroid clusters with [Fe/H]~-1.5 is very different from that of clusters with [Fe/H]~-2.2, suggesting that metallicity is the main parameter defining HB content among these objects. The RGB bump is detected in four of the inner spheroid clusters, and this feature is used to compute distances to these objects. Finally, the specific frequency of globular clusters in the inner Galaxy is discussed in the context of the early evolution of the bulge. Based on the ratio of metal-poor to metal-rich clusters in the inner Galaxy it is suggested that the metal-poor clusters formed during an early intense burst of star formation. It is also demonstrated that if the globular cluster formation efficiency for the inner Galaxy is similar to that measured in other spheroidal systems, then the main body of the bulge could have formed from gas that was chemically enriched in situ; hence, material from a separate pre-enriched reservoir, such as the disk or outer halo, may not be required to form the bulge.

  10. Radial Velocity and Metallicity Determinations for Remote Globular Clusters in M31 and M33

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette; Barmby, Pauline; Cote, Pat; Harris, Bill; Huxor, Avon; Mackey, Dougal; Puzia, Thomas

    2009-08-01

    We propose to determine radial velocities and metallicities for a sample of ~ 20 remote globular clusters (GCs) which we have discovered in the outer halos of the Local Group galaxies M31 and M33. Most of these objects have been uncovered in the course of the PAndAs survey, an international collaboration which is using CFHT/MegaPrime to map more than 300 square degrees in the g and i bands around M31 and M33. The target clusters, all of which have been identified from high- quality imaging (typically ≲ 0.8'' seeing), lie at projected radii of up to 130 kpc from M31 and 30 kpc from M33 and thus lie significantly beyond all previously-known GCs in these systems. Rather intriguingly, many of the new discoveries exhibit either possible associations with halo tidal streams, or show unusual spatial anisotropies with respect to their host galaxy. Velocity and metallicity data for these objects will provide a detailed characterization of the ensemble properties of the outer halo GC populations, and, through the search for kinematic and metallicity correlations within groups of GCs, help determine what fraction of these objects can be attributed to either late or ongoing accretion events. Ultimately, these data will also provide a basis for improved dynamical mass estimates of both galaxies.

  11. Where Are the Universe's Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Observations of globular clusters gravitationally-bound, spherical clusters of stars that orbit galaxies as satellites are critical to studies of galactic and stellar evolution. What type of galaxies host the largest total number of globular clusters in todays universe? A recent study answers this question.Total number of globular clusters vs. host galaxy luminosity for a catalog of ~400 galaxies of all types. [Harris 2016]Globular FavoritismGlobular clusters can be found in the halos of all galaxies above a critical brightness of about 107 solar luminosities (in practice, all but the smallest of dwarfs). The number of globulars a galaxy hosts is related to its luminosity: the Milky Way is host to ~150 globulars, the slightly brighterAndromeda galaxy may have several hundred globulars, and the extremelybright giant elliptical galaxy M87 likely has over ten thousand.But the number of galaxies is not evenly distributed in luminosity; tiny dwarf galaxies are extremely numerous in the universe, whereas giant ellipticals are far less common. So are most of the universes globulars found around dwarfs, simply because there are more dwarfs to host them? Or are the majority ofglobular clusters orbiting large galaxies? A scientist at McMaster University in Canada, William Harris, has done some calculations to find the answer.Finding the PeakHarris combines two components in his estimates:The Schechter function, a function that describes the relative number of galaxies per unit luminosity. This function drops off near a characteristic luminosity roughly that of our galaxy.Empirical data from ~400 galaxies that describe the average number of globulars per galaxy as a function of galaxy luminosity.Relative number of globular clusters in all galaxies at a given luminosity, for metal-poor globulars only (blue), metal-rich globulars only (red), and all globulars (black). The curves peak around the Schechter characteristic luminosity, and metal-poor globulars outnumber metal

  12. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "cannibalized" other nearby dwarf galaxies and clusters, and that this process is still going on. Some astronomers have even speculated that many of the globular clusters now observed may originally have been the particularly dense, central regions ("nuclei") of unfortunate, small galaxies whose more tenuous outer structures have since been dissipated into the Galactic halo. If this is the case, then the Milky Way halo may now contain fossil structures, left over from this process (referred to as "accretion"). A study of the halo and the objects therein may therefore provide very useful information about the formation and evolution of the Milky Way, our home galaxy. The VLT observations In order to investigate this basic issue in more detail, CCD images obtained with the Test Camera at the first 8.2-m VLT Unit Telescope (UT1) have been used to study one of the old globular clusters in the Milky Way. NGC 6712 [2] is an enormous swarm of stars in the southern constellation Scutum (The Shield). It is located at a distance of about 23,000 light-years, in the direction towards the Galactic Center. This cluster is of spherical form and contains somewhat fewer than 1 million stars, all of which are lighter than our Sun. NGC 6712 is one of about 150 globular clusters now known in the Milky Way. They all move in extended elliptical orbits that periodically take them through the densely populated main plane of our Galaxy in which the stars and nebulae form the well-known spiral structure. From there they move into the halo regions high above the plane and then down again. The orbit of NGC 6712 is comparatively small and the cluster passes particularly close to the Galactic Center. The orbital period is in the short range so this happens rather frequently. In fact, it appears that NGC 6712 crossed the Galactic plane just a few million years ago. ESO PR Photo 06a/99 ESO PR Photo 06a/99 [Preview - JPEG: 800 x 494 pix - 344k] [High-Res - JPEG: 3000 x 1851 pix - 2.3M] Caption to PR Photo 06a

  13. Globular Cluster Streams as Galactic High-Precision Scales

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio X.

    2016-08-01

    Tidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.

  14. THE GLOBULAR CLUSTER SYSTEM OF THE MILKY WAY: ACCRETION IN A COSMOLOGICAL CONTEXT

    SciTech Connect

    Keller, Stefan C.; Mackey, Dougal; Da Costa, Gary S.

    2012-01-01

    We examine the significance of a planar arrangement in the spatial distribution of the Milky Way (MW) globular clusters (GCs). We find that, when separated on the basis of horizontal branch morphology and metallicity, the outermost canonical young halo (YH) GC sample (at galactocentric radii in excess of 10 kpc) exhibits an anisotropic distribution that may be equated to a plane (24 {+-} 4) kpc thick (rms) and inclined at 8 Degree-Sign {+-} 5 Degree-Sign to the polar axis of the MW disk. To quantify the significance of this plane we determine the fraction of times that an isotropic distribution replicates the observed distribution in Monte Carlo trials. The plane is found to remain significant at the >95% level outside a galactocentric radius of 10 kpc, inside this radius the spatial distribution is apparently isotropic. In contrast, the spatial distribution of the old halo sample outside 10 kpc is well matched by an isotropic distribution. The plane described by the outer YH GCs is indistinguishable in orientation from that presented by the satellite galaxies of the MW. Simulations have shown that the planar arrangement of satellites can arise as filaments of the surrounding large-scale structure feed into the MW's potential. We therefore propose that our results are direct observational evidence for the accreted origin of the outer YH GC population. This conclusion confirms numerous lines of evidence that have similarly indicated an accreted origin for this set of clusters from the inferred cluster properties.

  15. DETECTION OF A DISTINCT METAL-POOR STELLAR HALO IN THE EARLY-TYPE GALAXY NGC 3115

    SciTech Connect

    Peacock, Mark B.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.

    2015-02-10

    We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC 3115. Using deep Hubble Space Telescope observations, we analyze stars 2 mag fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37, and 54 kpc from its center—corresponding to 7, 14, and 21 effective radii (r{sub e} ). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ∼ –0.5 to –0.65. The fraction of metal-poor stars ([Z/H] < –0.95) increases from 17% at 16-37 kpc to 28% at ∼54 kpc. We observe a distinct low-metallicity population (peaked at [Z/H] ∼ –1.3 and with total mass 2 × 10{sup 10} M {sub ☉} ∼ 14% of the galaxy's stellar mass) and argue that this represents the detection of an underlying low-metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late-type galaxies, including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC 3115 are consistent with the galaxy's globular cluster system, which has a similar low-metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemodynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC 3115 of 30.05 ± 0.05 ± 0.10{sub sys} (10.2 ± 0.2 ± 0.5{sub sys} Mpc)

  16. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  17. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  18. Studying Stellar Halos with Future Facilities

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Falomo, Renato; Uslenghi, Michela

    2015-08-01

    Stellar halos around galaxies retain fundamental evidence of the processes which lead to their build up. Sophisticated models of galaxy formation in a cosmological context yield quantitative predictions about various observable characteristics, including the amount of substructure, the slope of radial mass profiles and three dimensional shapes, and the properties of the stellar populations in the galaxies halos. The comparison of such models with the observations leads to constraints on the general picture of galaxy formation in the hierarchical Universe, as well as on the physical processes taking place in the halos formation. With the current observing facilities, stellar halos can be effectively probed only for a limited number of nearby galaxies. In this contribution we illustrate the progress which we expect in this field with the future large aperture ground based telescopes (E-ELT and TNT), and with JWST. In particular we adress the following issues: (I) the characterization of the stellar populations in the halos innermost regions and substructures, (ii) the measurement of the halos profiles and shapes , and the halos mass content, (iii) the study of Globular Clusters inhabiting the halos of distant galaxies. In order to assess the expected capabilities of future facilities we present the results of a set of simulated images to evaluate to which level of accuracy it will be possible to probe the halos of distant galaxies.

  19. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  20. A MegaCam Survey of Outer Halo Satellites. VI. The Spatially Resolved Star-formation History of the Carina Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Santana, Felipe A.; Muñoz, Ricardo R.; de Boer, T. J. L.; Simon, Joshua D.; Geha, Marla; Côté, Patrick; Guzmán, Andrés E.; Stetson, Peter; Djorgovski, S. G.

    2016-10-01

    We present the spatially resolved star-formation history (SFH) of the Carina dwarf spheroidal galaxy, obtained from deep, wide-field g and r imaging and a metallicity distribution from the literature. Our photometry covers ˜2 deg2, reaching up to ˜10 times the half-light radius of Carina with a completeness higher than 50% at g ˜ 24.5, more than one magnitude fainter than the oldest turnoff. This is the first time a combination of depth and coverage of this quality has been used to derive the SFH of Carina, enabling us to trace its different populations with unprecedented accuracy. We find that Carina’s SFH consists of two episodes well separated by a star-formation temporal gap. These episodes occurred at old (\\gt 10 Gyr) and intermediate (2-8 Gyr) ages. Our measurements show that the old episode comprises the majority of the population, accounting for 54 ± 5% of the stellar mass within 1.3 times the King tidal radius, while the total stellar mass derived for Carina is 1.60+/- 0.09× {10}6 {M}⊙ , and the stellar mass-to-light ratio is 1.8 ± 0.2. The SFH derived is consistent with no recent star formation, which hints that the observed blue plume is due to blue stragglers. We conclude that the SFH of Carina evolved independently of the tidal field of the Milky Way, since the frequency and duration of its star-formation events do not correlate with its orbital parameters. This result is supported by the age-metallicity relation observed in Carina and the gradients calculated indicating that outer regions are older and more metal-poor. Based on observations obtained with the MegaCam imager on the Magellan II-Clay telescope at Las Campanas Observatory in the Atacama Region, Chile. This telescope is operated by a consortium consisting of the Carnegie Institution of Washington, Harvard University, MIT, the University of Michigan, and the University of Arizona.

  1. Dynamical evolution of globular-cluster systems in clusters of galaxies

    SciTech Connect

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  2. GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES: A NEAR-UNIVERSAL LUMINOSITY FUNCTION?

    SciTech Connect

    Harris, William E.; O'Halloran, Heather; Cockcroft, Robert E-mail: ohallohm@mcmaster.ca; and others

    2014-12-20

    We present the first results from our Hubble Space Telescope brightest cluster galaxy (BCG) survey of seven central supergiant cluster galaxies and their globular cluster (GC) systems. We measure a total of 48,000 GCs in all seven galaxies, representing the largest single GC database. We find that a log-normal shape accurately matches the observed the luminosity function (LF) of the GCs down to the globular cluster luminosity function turnover point, which is near our photometric limit. In addition, the LF has a virtually identical shape in all seven galaxies. Our data underscore the similarity in the formation mechanism of massive star clusters in diverse galactic environments. At the highest luminosities (L ≳ 10{sup 7} L {sub ☉}), we find small numbers of ''superluminous'' objects in five of the galaxies; their luminosity and color ranges are at least partly consistent with those of ultra-compact dwarfs. Last, we find preliminary evidence that in the outer halo (R ≳ 20 kpc), the LF turnover point shows a weak dependence on projected distance, scaling as L {sub 0} ∼ R {sup –0.2}, while the LF dispersion remains nearly constant.

  3. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  4. An aligned stream of low-metallicity clusters in the halo of the Milky Way.

    PubMed

    Yoon, Suk-Jin; Lee, Young-Wook

    2002-07-26

    One of the long-standing problems in modern astronomy is the curious division of Galactic globular clusters, the "Oosterhoff dichotomy," according to the properties of their RR Lyrae stars. Here, we find that most of the lowest metallicity ([Fe/H] < -2.0) clusters, which are essential to an understanding of this phenomenon, display a planar alignment in the outer halo. This alignment, combined with evidence from kinematics and stellar population, indicates a captured origin from a satellite galaxy. We show that, together with the horizontal-branch evolutionary effect, the factor producing the dichotomy could be a small time gap between the cluster-formation epochs in the Milky Way and the satellite. The results oppose the traditional view that the metal-poorest clusters represent the indigenous and oldest population of the Galaxy.

  5. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.; Carretta, Eugenio; Bragaglia, Angela

    2012-02-01

    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, but rather are made up of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second-parameter problem, it also opens new perspectives on the relation between globular clusters and the halo of our Galaxy, and by extension on all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focussing on the most recent studies. Several points remain to become properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.

  6. DUAL HALOS AND FORMATION OF EARLY-TYPE GALAXIES

    SciTech Connect

    Park, Hong Soo; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2013-08-20

    We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation with the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.

  7. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-06-01

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo. PMID:22678285

  8. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-05-30

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.

  9. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  10. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  11. THE ONGOING ASSEMBLY OF A CENTRAL CLUSTER GALAXY: PHASE-SPACE SUBSTRUCTURES IN THE HALO OF M87

    SciTech Connect

    Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A.; Strader, Jay; Mihos, J. Christopher; Spitler, Lee R.; Forbes, Duncan A.; Foster, Caroline

    2012-03-20

    The halos of galaxies preserve unique records of their formation histories. We carry out the first combined observational and theoretical study of phase-space halo substructure in an early-type galaxy: M87, the central galaxy in the Virgo cluster. We analyze an unprecedented wide-field, high-precision photometric and spectroscopic data set for 488 globular clusters (GCs), which includes new, large-radius Subaru/Suprime-Cam and Keck/DEIMOS observations. We find signatures of two substructures in position-velocity phase space. One is a small, cold stream associated with a known stellar filament in the outer halo; the other is a large shell-like pattern in the inner halo that implies a massive, hitherto unrecognized accretion event. We perform extensive statistical tests and independent metallicity analyses to verify the presence and characterize the properties of these features, and to provide more general methodologies for future extragalactic studies of phase-space substructure. The cold outer stream is consistent with a dwarf galaxy accretion event, while for the inner shell there is tension between a low progenitor mass implied by the cold velocity dispersion, and a high mass from the large number of GCs, which might be resolved by a {approx}0.5 L* E/S0 progenitor. We also carry out proof-of-principle numerical simulations of the accretion of smaller galaxies in an M87-like gravitational potential. These produce analogous features to the observed substructures, which should have observable lifetimes of {approx}1 Gyr. The shell and stream GCs together support a scenario where the extended stellar envelope of M87 has been built up by a steady rain of material that continues until the present day. This phase-space method demonstrates unique potential for detailed tests of galaxy formation beyond the Local Group.

  12. The galactic globular cluster system

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Meylan, G.

    1994-01-01

    We explore correlations between various properties of Galactic globular clusters, using a database on 143 objects. Our goal is identify correlations and trends which can be used to test and constrain theoretical models of cluster formation and evolution. We use a set of 13 cluster parameters, 9 of which are independently measured. Several arguments suggest that the number of clusters still missing in the obscured regions of the Galaxy is of the order of 10, and thus the selection effects are probably not severe for our sample. Known clusters follow a power-law density distribution with a slope approximately -3.5 to -4, and an apparent core with a core radius approximately 1 kpc. Clusters show a large dynamical range in many of their properties, more so for the core parameters (which are presumably more affected by dynamical evolution) than for the half-light parameters. There are no good correlations with luminosity, although more luminous clusters tend to be more concentrated. When data are binned in luminosity, several trends emerge: more luminous clusters tend to have smaller and denser cores. We interpret this as a differential survival effect, with more massive clusters surviving longer and reaching more evolved dynamical states. Cluster core parameters and concentrations also correlate with the position in the Galaxy, with clusters closer to the Galactic center or plane being more concentrated and having smaller and denser cores. These trends are more pronounced for the fainter (less massive) clusters. This is in agreement with a picture where tidal shocks form disk or bulge passages accelerate dynamical evolution of clusters. Cluster metallicities do not correlate with any other parameter, including luminosity and velocity dispersion; the only detectable trend is with the position in the Galaxy, probably reflecting Zinn's disk-halo dichotomy. This suggests that globular clusters were not self-enriched systems. Velocity dispersions show excellent correlations

  13. Production and Recycling of Carbon in the Early Galactic Halo

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Thidemann Hansen, Terese; Nordström, Birgitta

    2015-08-01

    Extremely metal-poor (EMP) stars - [Fe/H] below ~ -3 - are fossil records of the conditions in the early halo. High-resolution 8m-class spectroscopy has shown that the detailed abundance pattern of EMP giant stars is surprisingly uniform and essentially Solar (e.g. Bonifacio+ 2012), apart from the usual α-enhancement in the halo. In the simplest picture, iron is a proxy for both overall metallicity and time, so the EMP stars should form before the oldest and most metal-poor Galactic globular clusters, notably at the lowest metallicities ([Fe/H] ≲ -3.5).It is thus striking that 20-40% of the EMP giants are strongly enhanced in carbon - the CEMP stars (Lucatello+ 2006). This is conventionally ascribed to mass transfer from a former AGB binary companion, and from a limited compilation of data, Lucatello+ (2005) concluded that most or all CEMP stars are indeed binaries, similar to the classical Ba and CH stars (e.g. Jorissen+ 1998). However, most of the sample was of the inner-halo CEMP-s variety (C and s-process elements both enhanced), while CEMP-no stars dominate the outer halo (Carollo+ 2014). Our precise radial velocity monitoring for CEMP stars over 8 years shed light on this issue.Our data suggest a normal binary frequency for the CEMP-no stars; i.e. the C was not produced in a binary companion, but in sites at interstellar distances, e.g. ‘faint’ SNe, and imprinted on the natal clouds of the low-mass stars we observe. This has immediate implications for the formation of dust in primitive, high-redshift galaxies (Watson+ 2015) and the origin of C-enhanced DLAs (Cooke+ 2011, 2012). The CEMP-s binary orbits are also revealing, with periods up to several decades and generally low amplitudes and eccentricities, suggesting that EMP AGB stars have very large radii, facilitating extensive mass loss. More work on faint SNe and EMP AGB envelopes is needed!

  14. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  15. The Stellar Populations of Nuclei, Globular Clusters, and Stars in dE Galaxies in Virgo and Fornax

    NASA Astrophysics Data System (ADS)

    Whitfield Miller, Bryan; Hyazinth Puzia, Thomas; Hilker, Michael; Sanchez-Janssen, Ruben; Kissler-Patig, Markus

    2015-08-01

    We present ages and metallicities for globular clusters, nuclei, and underlying stars in nucleated dwarf elliptical galaxies (dE,N) in the Virgo and Fornax Cluster based on Lick/IDS index measurements and SSP models. Gemini/GMOS spectroscopy shows that the globular clusters are mostly old and metal-poor, very similar to the globular clusters in the Milky Way halo. The nuclei and underlying stars tend to be more metal-rich than the globular clusters and have a wide range of ages. The [α/Fe] ratios for both the globular clusters and nuclei range between 0.0 and 0.3. Formation scenarios for globular clusters and nuclei will be discussed.

  16. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  17. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the discs of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of 33° in both cases. While the centrals are better aligned with the inner 10 kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central-satellite alignment is weak (median misalignment angle of 52°) and we find that around 20 per cent of systems have a misalignment angle larger than 78°, which is the value for the Milky Way. The central-satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central-halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disc) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  18. Dark Matter Halos with VIRUS-P

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.

    2010-05-01

    We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.

  19. Two stellar components in the halo of the Milky Way.

    PubMed

    Carollo, Daniela; Beers, Timothy C; Lee, Young Sun; Chiba, Masashi; Norris, John E; Wilhelm, Ronald; Sivarani, Thirupathi; Marsteller, Brian; Munn, Jeffrey A; Bailer-Jones, Coryn A L; Fiorentin, Paola Re; York, Donald G

    2007-12-13

    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components--an inner and an outer halo--that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.

  20. DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1

    SciTech Connect

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron E-mail: kvenn@uvic.ca E-mail: aoki.wako@nao.ac.jp E-mail: dotter@stsci.edu

    2011-10-20

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R{sub GC} = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 {+-} 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [{alpha}/Fe] ratios, though in agreement with the Galactic stars within the 1{sigma} errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/{alpha}] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  1. ORIGAMI: Delineating Halos Using Phase-space Folds

    NASA Astrophysics Data System (ADS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  2. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    SciTech Connect

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  3. Population studies - The age difference between the globular clusters NGC 288 and NGC 362

    SciTech Connect

    Green, E.M.; Norris, J.E. )

    1990-04-01

    CCD and photoelectric BR photometry are presented of the globular clusters NGC 288 and NGC 362 over the B range from 14 to 22. The data were obtained to test in as differential a manner as possible the hypothesis of Searle and Zinn (1978) that age is the second parameter affecting horizontal-branch morphology, and that there is an age spread in the globular cluster system of the Galaxy. Superposition of color-magnitude data for the two clusters, together with comparison of the morphology in the vicinity of the main-sequence turnoff, demonstrate basic differences most readily explained in terms of NGC 362 being some 3 + or - 1 Gyr younger than NGC 288, as has been advocated by Bolte (1989). The data are most consistent with the view that the halo globular cluster system, and by inference the Galactic halo, formed in a chaotic manner as advocated by Searle and Zinn. 23 refs.

  4. The prolate dark matter halo of the Andromeda galaxy

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  5. The effect of primordial mass segregation on the size scale of globular clusters

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Hoseini-Rad, Seyed Mohammad; Zonoozi, Akram Hasani; Küpper, Andreas H. W.

    2014-11-01

    We use direct N-body calculations to investigate the impact of primordial mass segregation on the size scale and mass-loss rate of star clusters in a galactic tidal field. We run a set of simulations of clusters with varying degrees of primordial mass segregation at various galactocentric radii and show that, in primordially segregated clusters, the early, impulsive mass-loss from stellar evolution of the most massive stars in the innermost regions of the cluster leads to a stronger expansion than for initially non-segregated clusters. Therefore, models in stronger tidal fields dissolve faster due to an enhanced flux of stars over the tidal boundary. Throughout their lifetimes, the segregated clusters are more extended by a factor of about 2, suggesting that (at least) some of the very extended globular clusters in the outer halo of the Milky Way may have been born with primordial mass segregation. We finally derive a relation between star-cluster dissolution time, Tdiss, and galactocentric radius, RG, and show how it depends on the degree of primordial mass segregation.

  6. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  7. WIDE-FIELD PRECISION KINEMATICS OF THE M87 GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Beasley, Michael A.; Arnold, Jacob A.; Tamura, Naoyuki; Sharples, Ray M.; Arimoto, Nobuo

    2011-12-01

    We present the most extensive combined photometric and spectroscopic study to date of the enormous globular cluster (GC) system around M87, the central giant elliptical galaxy in the nearby Virgo Cluster. Using observations from DEIMOS and the Low Resolution Imaging Spectrometer at Keck, and Hectospec on the Multiple Mirror Telescope, we derive new, precise radial velocities for 451 GCs around M87, with projected radii from {approx}5 to 185 kpc. We combine these measurements with literature data for a total sample of 737 objects, which we use for a re-examination of the kinematics of the GC system of M87. The velocities are analyzed in the context of archival wide-field photometry and a novel Hubble Space Telescope catalog of half-light radii, which includes sizes for 344 spectroscopically confirmed clusters. We use this unique catalog to identify 18 new candidate ultracompact dwarfs and to help clarify the relationship between these objects and true GCs. We find much lower values for the outer velocity dispersion and rotation of the GC system than in earlier papers and also differ from previous work in seeing no evidence for a transition in the inner halo to a potential dominated by the Virgo Cluster, nor for a truncation of the stellar halo. We find little kinematical evidence for an intergalactic GC population. Aided by the precision of the new velocity measurements, we see significant evidence for kinematical substructure over a wide range of radii, indicating that M87 is in active assembly. A simple, scale-free analysis finds less dark matter within {approx}85 kpc than in other recent work, reducing the tension between X-ray and optical results. In general, out to a projected radius of {approx}150 kpc, our data are consistent with the notion that M87 is not dynamically coupled to the Virgo Cluster; the core of Virgo may be in the earliest stages of assembly.

  8. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  9. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same

  10. Stellar halos and the link to galaxy formation

    NASA Astrophysics Data System (ADS)

    Helmi, Amina

    2016-08-01

    I present a brief overview of how stellar halos may be used to constrain the process of galaxy formation. In particular, streams and substructure in stellar halos trace merger events but can also be used to determine the mass distribution of the host galaxy and hence put constraints on the nature of dark matter. Much of the focus of this contribution is on the Milky Way, but I also present an attempt to understand the kinematics of the globular cluster system of M31.

  11. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  12. Globular cluster ages

    PubMed Central

    Jimenez, Raul

    1998-01-01

    We review two new methods to determine the age of globular clusters (GCs). These two methods are more accurate than the classical isochrone fitting technique. The first method is based on the morphology of the horizontal branch and is independent of the distance modulus of the globular cluster. The second method uses a careful binning of the stellar luminosity function and determines simultaneously the distance and age of the GC. We find that the oldest galactic GCs have an age of 13.5 ± 2 gigayears (Gyr). The absolute minimum age for the oldest GCs is 10.5 Gyr (with 99% confidence) and the maximum 16.0 Gyr (with 99% confidence). Therefore, an Einstein–De Sitter Universe (Ω = 1) is not totally ruled out if the Hubble constant is about 65 ± 10 Km s−1 Mpc−1. PMID:9419317

  13. THE DUAL ORIGIN OF STELLAR HALOS

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Brook, Chris B.; Stinson, Greg E-mail: bwillman@haverford.edu

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surrounded by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.

  14. The Globular Cluster System of NGC 5128: Ages, Metallicities, Kinematics and Structural Parameters

    NASA Astrophysics Data System (ADS)

    Woodley, K. A.; Gómez, M.

    2010-10-01

    We review our recent studies of the globular cluster system of NGC 5128. First, we have obtained low-resolution, high signal-to-noise spectroscopy of 72 globular clusters using Gemini-S/GMOS to obtain the ages, metallicities, and the level of alpha enrichment of the metal-poor and metal-rich globular cluster subpopulations. Second, we have explored the rotational signature and velocity dispersion of the galaxy's halo using over 560 globular clusters with radial velocity measurements. We have also compared the dependence of these properties on galactocentric distance and globular cluster age and metallicity. Using globular clusters as tracer objects, we have analyzed the mass, and mass-to-light ratio of NGC 5128. Last, we have measured the structural parameters, such as half-light radii, of over 570 globular clusters from a superb 1.2-square-degree Magellan/IMACS image. We will present the findings of these studies and discuss the connection to the formation and evolution of NGC 5128.

  15. Phase-space structure of cold dark matter halos

    SciTech Connect

    Sikivie, P.; Ipser, J.R.

    1991-12-31

    A galactic halo of cold dark matter particles has a sheet-like structure in phase-space. The energy and momentum spectra of such particles on earth has a set of peaks whose central values and intensities form a record of the formation of the Galaxy. Scattering of the dark matter particles by stars and globular clusters broadens the peaks but does not erase them entirely. The giant shells around some elliptical galaxies may be a manifestation of this structure.

  16. GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY

    SciTech Connect

    Naoz, Smadar; Narayan, Ramesh

    2014-08-10

    The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 10{sup 5}-2.5 × 10{sup 6} M {sub ☉} (10{sup 5}-4 × 10{sup 6} M {sub ☉}) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies.

  17. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  18. Halo formation and evolution: unifying physical properties with structure

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  19. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  20. Using Globular Clusters to Test Gravity in the Weak Acceleration Regime

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Marconi, Gianni; Gilmozzi, Roberto; Carraro, Giovanni

    2007-06-01

    We report on the results from an ongoing programme aimed at testing Newton's law of gravity in the low acceleration regime using globular clusters. We find that all clusters studied so far behave like galaxies, that is, their velocity dispersion profiles flatten out at large radii where the acceleration of gravity goes below 10 8 cm s 2, instead of following the expected Keplerian fall-off. In galaxies this behaviour is ascribed to the existence of a dark matter halo. Globular clusters, however, are not supposed to contain dark matter, hence this result might indicate that our present understanding of gravity in the weak regime of accelerations is incomplete and possibly incorrect.

  1. Properties of stellar generations in globular clusters and relations with global parameters

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; Recio-Blanco, A.; Lucatello, S.; D'Orazi, V.; Cassisi, S.

    2010-06-01

    We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide GCs, as the stellar aggregates showing the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of GCs is fairly independent of their population, suggesting that it is imprinted by the formation mechanism only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs. The extremely low Al abundances found for the primordial population of massive GCs indicate a very fast enrichment process before the formation of the primordial population. We suggest a scenario for the formation of GCs that includes at least three main phases: i) the formation of a precursor population (likely due to the interaction of cosmological structures similar to those that led to the formation of dwarf spheroidals, but residing at smaller Galactocentric distances, with the early Galaxy or with other structures); ii) the triggering of a long episode of star formation (the primordial population) from the precursor population; and iii) the formation of the current GC, mainly within a cooling flow formed by the slow winds of a fraction of the primordial population. The precursor population is very effective in raising the metal content in massive and/or metal-poor (mainly halo) clusters, while its rôle is minor in small and/or metal-rich (mainly disk) ones. Finally, we use principal component analysis and multivariate relations to study the phase of metal enrichment

  2. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  3. Absorption by halo gas in the direction of M13

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1983-01-01

    A high velocity cloud in the direction 1 = 59 degrees, b = 41 degrees is detected in absorption at approximately -80 km/s in high dispersion IUE spectra of the blue star Barnard 29 in the globular cluster M13. The cloud is also seen in the H I 21 cm emission data of Kerr and Knapp (1972). Its radial velocity agrees with Giovanelli's data (1980, 1981) for high velocity clouds seen in this general direction of the sky. The cloud's motion is incompatible with the suggestions that neutral halo gas corotates with disk gas. The motion could be explained if neutral halo gas rotates more slowly than disk gas with increasing distance from the galactic plane. Because of our very limited understanding of the actual motions of halo gas, the scale height of this gas is best derived from plots of N sin b versus z for galactic and extragalactic stars.

  4. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  5. Photometry of the globular cluster system of the Sagittarius dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Ibata, Rodrigo

    1996-07-01

    We propose to use the WFPC2 to obtain deep V {F555W} and I {F814W} band images of the globular clusters of the Sagittarius dwarf galaxy: M54 {NGC 6715}, Ter 7, Ter 8 and Arp 2. Isochrone fits to these data will yield the accurate ages of M54, Ter 8 and the Sagittarius dwarf galaxy {Sgr}. These age estimates are needed to model the dynamics and evolution of the Sgr system and its interaction with the Milky Way. Sgr is in the final stages of tidal disruption {Velazquez & White 1995}, so its globular clusters will drift away from their parent galaxy and soon disperse into the Galactic halo. Therefore at least some of the globular clusters of giant spiral galaxies like the Milky Way will have been captured from tidally destroyed dwarf galaxies. This statement has fundamental and wide ranging implications for the formation and evolution of globular clusters and spiral galaxies. It is therefore essential to conduct a detailed and accurate comparative study of the stellar populations of the Sgr and Galactic globular clusters, as we propose here. This, in turn, will allow detailed modeling of the chemical and dynamical evolution of Sgr and its globular clusters.

  6. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2015-08-01

    This talk will review ideas about the formation of stellar halos. It will include discussion of the observational evidence for stellar populations formed "in situ" (meaning formed in orbits close to their current ones), "kicked-out" (meaning formed in the inner galaxy in orbits unlike their current ones) and "accreted" (meaning formed in a dark matter halo other than the one they currently occupy). The properties of these (and other) populations seen in simulations of stellar halo formation will also be examined.

  7. Globular clusters: DNA of early-type galaxies?

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Vega, E. Irene; Faifer, Favio R.; Smith Castelli, Analía V.; Escudero, Carlos; González, Nélida M.; Sesto, Leandro

    2014-06-01

    This paper explores if the mean properties of early-type galaxies (ETGs) can be reconstructed from `genetic' information stored in their globular clusters (GCs; i.e. in their chemical abundances, spatial distributions and ages). This approach implies that the formation of each globular occurs in very massive stellar environments, as suggested by some models that aim at explaining the presence of multipopulations in these systems. The assumption that the relative number of GCs to diffuse stellar mass depends exponentially on chemical abundance, [Z/H], and the presence of two dominant GC subpopulations (blue and red), allows the mapping of low-metallicity haloes and of higher metallicity (and more heterogeneous) bulges. In particular, the masses of the low-metallicity haloes seem to scale up with dark matter mass through a constant. We also find a dependence of the GC formation efficiency with the mean projected stellar mass density of the galaxies within their effective radii. The analysis is based on a selected subsample of galaxies observed within the ACS Virgo Cluster Survey of the Hubble Space Telescope. These systems were grouped, according to their absolute magnitudes, in order to define composite fiducial galaxies and look for a quantitative connection with their (also composite) GCs systems. The results strengthen the idea that GCs are good quantitative tracers of both baryonic and dark matter in ETGs.

  8. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  9. Binaries in Globular Clusters Multiple Populations

    NASA Astrophysics Data System (ADS)

    Lucatello, Sara; Sollima, Antonio; Gratton, Raffaele; D'Orazi, Valentina; Vesperini, Enrico; Carretta, Eugenio; Bragaglia, Angela

    2015-08-01

    In spite of considerable theoretical and obsservational effort, the series of events that leads to the formation of Globular Clusters and their multiple populations is still unclear.One of the key matters is where the so-called second generation of stars form and its distribution at the time of its birth with respect to the first generation. Some of the latest modeling has suggested that second generation should form in a compact subsystem concentrated in the inner regions of the primordial, first generation cluster. In this scenario, loss of a large fraction of the cluster mass is expected, mostly comprised of first generation stars. This would account for the mass budget issue (one of the main problems in the self-enrichment scenario) and would imply a considerable contribution of the clusters to the formation of the Galactic Halo.Testing this prediction is hence of great importance, but not so immediate. Long-term, dynamical evolution of multiple-population clusters could blur considerably the signature of the initial different concentrations, leaving at present time some memory in the very central part (Vesperini et al. 2013), which, because of its high density, is generally not accessible to the multi-object high resolution spectrographs that yield the spectra that allow the chemical composition measurements necessary to tag the different populations.An alternative approach to test the prediction of the initial segregation of the second generations is that of determining their binary fractions. In fact, until the two populations are completely mixed, second generation stars will evolve in a denser environment where disruption will occur more rapidly, leading to a smaller binary incidence in such population (Vesperini et al 2011).I will present the results of our long-term radial velocity monitoring of 10 Galactic Globular clusters, discuss the derived binary fractions in the two populations and address the implications of our findings on our understanding of

  10. THE GLOBULAR CLUSTER MASS FUNCTION AS A REMNANT OF VIOLENT BIRTH

    SciTech Connect

    Elmegreen, Bruce G.

    2010-04-01

    The log-normal shape of the mass function for metal-poor halo globular clusters is proposed to result from an initial M {sup -2} power law modified rapidly by evaporation, collisions with clouds, and mutual cluster interactions in the dense environment of a redshift z {approx} 5-15 disk galaxy. Galaxy interactions subsequently spray these clusters into the galaxy group environment, where they fall into other growing galaxies and populate their halos. Clusters forming later in z {approx} 2-5 galaxies, and those formed during major mergers, produce metal-rich globulars. Monte Carlo models of evolving cluster populations demonstrate the early formation of a log-normal mass function for typical conditions in high-redshift galaxies.

  11. The extended stellar substructures of four metal-poor globular clusters in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2016-08-01

    We investigated the stellar density substructures around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge. Wide-field near-infrared (JHK s ) imaging data were obtained from WFCAM of UKIRT telescope. Field stars contamination around the globular clusters was reduced by using a statistical weighted filtering algorithm. Tidal stripping stellar substructures in the form of tidal tail (NGC 6266 and NGC 6626) or small density lobes/chunk (NGC 6642 and NGC 6723) were found around the four globular clusters in the two-dimensional density contour maps. We also find the overdensity features, which deviate from the theoretical models, in the outer region of radial density profiles. The observed results imply that the four globular clusters have experienced a strong tidal force or the bulge/disk shock effect of the Galaxy.

  12. Kinematics of the Globular Cluster System of the Sombrero Galaxy

    NASA Astrophysics Data System (ADS)

    Windschitl, Jessica L.; Rhode, K. L.; Bridges, T. J.; Zepf, S. E.; Gebhardt, K.; Freeman, K. C.

    2013-06-01

    Using spectra from the Hydra spectrograph on the 3.5m WIYN telescope and from the AAOmega spectrograph on the 3.9m Anglo-Australian Telescope, we have measured heliocentric radial velocities for >50 globular clusters in the Sombrero Galaxy (M104). We combine these new measurements with those from previous studies to construct and analyze a total sample of >360 globular cluster velocities in M104. We use the line-of-sight velocity dispersion to determine the mass and mass-to-light ratio profiles for the galaxy using a spherical, isotropic Jeans mass model. In addition to the increased sample size, our data provide a significant expansion in radial coverage compared to previous spectroscopic studies. This allows us to reliably compute the mass profile of M104 out to ~43 kpc, nearly 14 kpc farther into the halo than previous work. We find that the mass-to-light ratio profile increases from the center to a value of ~20 at 43 kpc. We also look for the presence of rotation in the globular cluster system as a whole and within the red and blue subpopulations. Despite the large number of clusters and better radial sampling, we do not find strong evidence of rotation.

  13. MAPPING THE DARK SIDE WITH DEIMOS: GLOBULAR CLUSTERS, X-RAY GAS, AND DARK MATTER IN THE NGC 1407 GROUP

    SciTech Connect

    Romanowsky, Aaron J.; Strader, Jay; Brodie, Jean P.; Johnson, Ria; Ponman, Trevor

    2009-06-15

    NGC 1407 is the central elliptical in a nearby evolved group of galaxies apparently destined to become a galaxy cluster core. We use the kinematics of globular clusters (GCs) to probe the dynamics and mass profile of the group's center, out to a radius of 60 kpc ({approx}10 galaxy effective radii)-the most extended data set to date around an early-type galaxy. This sample consists of 172 GC line-of-sight velocities, most of them newly obtained using Keck/DEIMOS, with a few additional objects identified as dwarf-globular transition objects or as intragroup GCs. We find weak rotation for the outer parts of the GC system (v/{sigma} {approx} 0.2), with a rotational misalignment between the metal-poor and metal-rich GCs. The velocity dispersion profile declines rapidly to a radius of {approx}20 kpc, and then becomes flat or rising to {approx}60 kpc. There is evidence that the GC orbits have a tangential bias that is strongest for the metal-poor GCs-in possible contradiction to theoretical expectations. We construct cosmologically motivated galaxy+dark halo dynamical models and infer a total mass within 60 kpc of {approx}3 x 10{sup 12} M {sub sun}, which extrapolates to a virial mass of {approx}6 x 10{sup 13} M {sub sun} for a typical lambda cold dark matter ({lambda}CDM) halo-in agreement with results from kinematics of the group galaxies. We present an independent Chandra-based analysis, whose relatively high mass at {approx}20 kpc disagrees strongly with the GC-based result unless the GCs are assumed to have a peculiar orbit distribution, and we therefore discuss more generally some comparisons between X-ray and optical results. The group's B-band mass-to-light ratio of {approx}800 (uncertain by a factor of {approx}2) in Solar units is extreme even for a rich galaxy cluster, much less a poor group-placing it among the most dark matter (DM) dominated systems in the universe, and also suggesting a massive reservoir of baryons lurking in an unseen phase, in addition to

  14. POSSIBLE SUBGROUPS OF GLOBULAR CLUSTERS AND PLANETARY NEBULAE IN NGC 5128

    SciTech Connect

    Woodley, Kristin A.; Harris, William E. E-mail: harris@physics.mcmaster.ca

    2011-01-15

    We use recently compiled position and velocity data for the globular cluster and planetary nebula subsystems in NGC 5128, the nearby giant elliptical, to search for evidence of past dwarf-satellite accretion events. Beyond a 10' ({approx}11 kpc) radius in galactocentric distance, we find tentative evidence for four subgroups of globular clusters and four subgroups of planetary nebulae. These each have more than four members within a search radius of 2' and internal velocity dispersion of {approx}<40 km s{sup -1}, typical parameters for a dwarf galaxy. In addition, two of the globular cluster groupings overlap with two of the planetary nebulae groupings, and two subgroupings also appear to overlap with previously known arc and shell features in the halo light. Simulation tests of our procedure indicate that the probability of finding false groups due to chance is <1%.

  15. Implications of intermediate mass black hole in globular cluster G1 on dark matter detection.

    SciTech Connect

    Zaharijas, G.; High Energy Physics

    2008-07-01

    Recently there has been growing evidence in favor of the presence of an intermediate mass black hole in the globular cluster G1, in Andromeda Galaxy. Under the assumption that formation of this globular cluster occurred within a dark matter halo, we explore whether the presence of a black hole could result in an observable gamma ray signal due to dark matter annihilation in this globular cluster. Starting from an initial Navarro-Frenk-White matter profile, with density parameters consistent with G1 observations, we find that indeed, if the spike in the density has been formed and has survived until the present, the signal could be observed by GLAST and current atmospheric Cerenkov telescope detectors.

  16. Implications of the intermediate mass black hole in globular cluster G1 on dark matter detection

    SciTech Connect

    Zaharijas, Gabrijela

    2008-07-15

    Recently there has been growing evidence in favor of the presence of an intermediate mass black hole in the globular cluster G1, in Andromeda Galaxy. Under the assumption that formation of this globular cluster occurred within a dark matter halo, we explore whether the presence of a black hole could result in an observable gamma ray signal due to dark matter annihilation in this globular cluster. Starting from an initial Navarro-Frenk-White matter profile, with density parameters consistent with G1 observations, we find that indeed, if the spike in the density has been formed and has survived until the present, the signal could be observed by GLAST and current atmospheric Cerenkov telescope detectors.

  17. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  18. Constraining the initial conditions of globular clusters using their radius distribution

    NASA Astrophysics Data System (ADS)

    Alexander, Poul E. R.; Gieles, Mark

    2013-05-01

    Studies of extragalactic globular clusters (GCs) have shown that the peak size of the GC radius distribution (RD) depends only weakly on galactic environment. We model RDs of GC populations using a simple prescription for a Hubble time of relaxation-driven evolution of cluster mass and radius. We consider a power-law cluster initial mass function (CIMF) with and without an exponential truncation, and focus in particular on a flat and a steep CIMF (power-law indices of 0 and -2, respectively). For the initial half-mass radii at birth, we adopt either Roche volume (RV) filling conditions (`filling', meaning that the ratio of half-mass to Jacobi radius is approximately rh/rJ ≃ 0.15) or strongly RV under-filling conditions (`under-filling', implying that initially rh/rJ ≪ 0.15). Assuming a constant orbital velocity about the galaxy centre, we find for a steep CIMF that the typical half-light radius scales with the galactocentric radius RG as R{^{1/3}_G}. This weak scaling is consistent with observations, but this scenario has the (well-known) problem that too many low-mass clusters survive. A flat CIMF with `filling' initial conditions results in the correct MF at old ages, but with too many large (massive) clusters at large RG. An `under-filling' GC population with a flat CIMF also results in the correct MF, and can also successfully reproduce the shape of the RD, with a peak size that is (almost) independent of RG. In this case, the peak size depends (almost) only on the peak mass of the GC MF. The (near) universality of the GC RD is therefore because of the (near) universality of the CIMF. There are some extended GCs in the outer halo of the Milky Way that cannot be explained by this model.

  19. Novae in globular clusters

    SciTech Connect

    Kato, Mariko; Hachisu, Izumi; Henze, Martin

    2013-12-10

    We present the first light-curve analysis of Population II novae that appeared in M31 globular clusters. Our light-curve models, based on the optically thick wind theory, reproduce well both the X-ray turn-on and turnoff times with the white dwarf (WD) mass of about 1.2 M {sub ☉} for M31N 2007-06b in Bol 111 and about 1.37 M {sub ☉} for M31N 2010-10f in Bol 126. The transient supersoft X-ray source CXO J004345 in Bol 194 is highly likely a nova remnant of 1.2-1.3 M {sub ☉} WD. These WD masses are quite consistent with the temperatures deduced from X-ray spectra. We also present the dependence of nova light curves on the metallicity in the range from [Fe/H] = 0.4 to –2.7. Whereas strong optically thick winds are accelerated in Galactic disk novae owing to a large Fe opacity peak, only weak winds occur in Population II novae with low Fe abundance. Thus, nova light curves are systematically slow in low Fe environment. For an extremely low Fe abundance normal nova outbursts may not occur unless the WD is very massive. We encourage V or y filter observation rather than R as well as high cadence X-ray monitorings to open quantitative studies of extragalactic novae.

  20. The youngest globular clusters

    NASA Astrophysics Data System (ADS)

    Beck, Sara

    2015-11-01

    It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The super star clusters (SSCs) seen in starburst galaxies are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infrared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have ≈ 106 M⊙ or more in volumes of a few pc3 and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency η, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to the violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded H II region.

  1. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  2. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  3. Observing RR Lyrae Variables in the M3 Globular Cluster with the BYU West Mountain Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.

    2016-06-01

    (Abstract only) We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on the northern hemisphere globular cluster NGC 5272 (M3). We made 216 observations in the V filter spaced between March and August 2012. We present light curves of the M3 RR Lyrae stars using different techniques. We compare light curves produced using DAOPHOT and ISIS software packages for stars in both the halo and core regions of this globular cluster. The light curve fitting is done using FITLC.

  4. Nonlinear dynamics of globular proteins

    SciTech Connect

    Lomdahl, P.S.

    1983-01-01

    Some ongoing work aimed at generalizing DAVYDOV's ideas to a real globular protein is described. So far, a computer code, GLOP, which calculates amide-I bond energy evolution on a globular protein has been developed and tested. The code is quite versatile and takes as input the coordinates of a protein. The full geometry of the molecule is then taken into account when the dipole-dipole interaction between peptide groups is calculated. The amide-I energy is coupled to one intramolecular excitation, but can without difficulty be extended to more or to include intermolecular excitations.

  5. AHF: AMIGA'S HALO FINDER

    SciTech Connect

    Knollmann, Steffen R.; Knebe, Alexander

    2009-06-15

    Cosmological simulations are the key tool for investigating the different processes involved in the formation of the universe from small initial density perturbations to galaxies and clusters of galaxies observed today. The identification and analysis of bound objects, halos, is one of the most important steps in drawing useful physical information from simulations. In the advent of larger and larger simulations, a reliable and parallel halo finder, able to cope with the ever-increasing data files, is a must. In this work we present the freely available MPI parallel halo finder AHF. We provide a description of the algorithm and the strategy followed to handle large simulation data. We also describe the parameters a user may choose in order to influence the process of halo finding, as well as pointing out which parameters are crucial to ensure untainted results from the parallel approach. Furthermore, we demonstrate the ability of AHF to scale to high-resolution simulations.

  6. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  7. Centaurus A: Stellar Metallicity Transition in the Halo

    NASA Astrophysics Data System (ADS)

    Bird, Sarah; Flynn, C.; Harris, W. E.; Valtonen, M.

    2013-01-01

    The very earliest stars in giant galaxies - the most metal-poor halo stars and globular clusters - may have formed before the onset of hierarchical merging, within small pregalactic dwarfs that populated the large-scale dark-matter potential well. Today, these relic stars should be found in a sparse and extremely extended “outermost-halo” component. Finding clear traces of this component in other giant galaxies, and deconvolving it from the more obvious and metal-rich spheroid component generated later by mergers, has been extraordinarily difficult. Now, striking new evidence discovered in M 31 and NGC 3379 suggests that the metal-poor outermost halo can be isolated at very large radii, R > 12Reff . We now have a new deep imaging study with ESO VLT of the nearest giant elliptical and merger remnant, Centaurus A, to search for this extended remnant of the galaxy’s earliest history.

  8. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    SciTech Connect

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E.; Tolstoy, Eline; Salaris, Maurizio; Bernard, Edouard J.

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  9. Aeolotopic interactions of globular proteins

    PubMed Central

    Lomakin, Aleksey; Asherie, Neer; Benedek, George B.

    1999-01-01

    Protein crystallization, aggregation, liquid–liquid phase separation, and self-assembly are important in protein structure determination in the industrial processing of proteins and in the inhibition of protein condensation diseases. To fully describe such phase transformations in globular protein solutions, it is necessary to account for the strong spatial variation of the interactions on the protein surface. One difficulty is that each globular protein has its own unique surface, which is crucial for its biological function. However, the similarities amongst the macroscopic properties of different protein solutions suggest that there may exist a generic model that is capable of describing the nonuniform interactions between globular proteins. In this paper we present such a model, which includes the short-range interactions that vary from place to place on the surface of the protein. We show that this aeolotopic model [from the Greek aiolos (“variable”) and topos (“place”)] describes the phase diagram of globular proteins and provides insight into protein aggregation and crystallization. PMID:10449715

  10. Hot subdwarfs in globular clusters

    SciTech Connect

    Drukier, G.A.; Fahlman, G.G.; Richter, H.B. )

    1989-07-01

    Spectra of faint blue stars in the globular clusters M71 and M4 are presented. The spectra suggest that they are hot subdwarfs. Arguments in favor of membership in their respective clusters and comments regarding their evolutionary status are given. 18 refs.

  11. A Gravitational Double-scattering Mechanism for Generating High-velocity Objects during Halo Mergers

    NASA Astrophysics Data System (ADS)

    Samsing, Johan

    2015-02-01

    We present a dynamical model that describes how halo particles can receive a significant energy kick from the merger between their own host halo and a target halo. This could provide a possible explanation for some high-velocity objects, including extended systems like globular clusters (GCs). In the model we especially introduce a double-scattering mechanism, where a halo particle receives a significant part of its total energy kick by first undergoing a gravitational deflection by the target halo and subsequently by its original host halo. This generates an energy kick that is due to the relative velocity between the halos during the deflections. We derive analytically the total kick energy of the particle, which is composed of energy from the double-scattering mechanism and tidal fields, as a function of its position in its original host halo just before merger. In the case of a 1:10 merger, we find that the presented mechanisms can easily generate particles with a velocity approximately two times the virial velocity of the target halo. This motivates us to suggest that the high velocity of the recently discovered GC HVGC-1 can be explained by a head-on halo merger. Finally, we illustrate the orbital evolution of high-velocity particles outside the virial sphere of the target halo by solving the equation of motion in an expanding universe. We find a sweet spot around a scale factor of 0.3-0.5 for ejecting particles into large orbits, which can easily reach beyond approximately five virial radii.

  12. A GRAVITATIONAL DOUBLE-SCATTERING MECHANISM FOR GENERATING HIGH-VELOCITY OBJECTS DURING HALO MERGERS

    SciTech Connect

    Samsing, Johan

    2015-02-01

    We present a dynamical model that describes how halo particles can receive a significant energy kick from the merger between their own host halo and a target halo. This could provide a possible explanation for some high-velocity objects, including extended systems like globular clusters (GCs). In the model we especially introduce a double-scattering mechanism, where a halo particle receives a significant part of its total energy kick by first undergoing a gravitational deflection by the target halo and subsequently by its original host halo. This generates an energy kick that is due to the relative velocity between the halos during the deflections. We derive analytically the total kick energy of the particle, which is composed of energy from the double-scattering mechanism and tidal fields, as a function of its position in its original host halo just before merger. In the case of a 1:10 merger, we find that the presented mechanisms can easily generate particles with a velocity approximately two times the virial velocity of the target halo. This motivates us to suggest that the high velocity of the recently discovered GC HVGC-1 can be explained by a head-on halo merger. Finally, we illustrate the orbital evolution of high-velocity particles outside the virial sphere of the target halo by solving the equation of motion in an expanding universe. We find a sweet spot around a scale factor of 0.3-0.5 for ejecting particles into large orbits, which can easily reach beyond approximately five virial radii.

  13. TWO DISTINCT RED GIANT BRANCH POPULATIONS IN THE GLOBULAR CLUSTER NGC 2419 AS TRACERS OF A MERGER EVENT IN THE MILKY WAY

    SciTech Connect

    Lee, Young-Wook; Han, Sang-Il; Joo, Seok-Joo; Jang, Sohee; Na, Chongsam; Lim, Dongwook; Kim, Hak-Sub; Yoon, Suk-Jin; Okamoto, Sakurako; Arimoto, Nobuo

    2013-11-20

    Recent spectroscopic observations of the outer halo globular cluster (GC) NGC 2419 show that it is unique among GCs, in terms of chemical abundance patterns, and some suggest that it was originated in the nucleus of a dwarf galaxy. Here we show, from the Subaru narrowband photometry employing a calcium filter, that the red giant branch (RGB) of this GC is split into two distinct subpopulations. Comparison with spectroscopy has confirmed that the redder RGB stars in the hk[=(Ca–b) – (b – y)] index are enhanced in [Ca/H] by ∼0.2 dex compared to the bluer RGB stars. Our population model further indicates that the calcium-rich second generation stars are also enhanced in helium abundance by a large amount (ΔY = 0.19). Our photometry, together with the results for other massive GCs (e.g., ω Cen, M22, and NGC 1851), suggests that the discrete distribution of RGB stars in the hk index might be a universal characteristic of this growing group of peculiar GCs. The planned narrowband calcium photometry for the Local Group dwarf galaxies would help to establish an empirical connection between these GCs and the primordial building blocks in the hierarchical merging paradigm of galaxy formation.

  14. Massive Stars and Their Possible Impacts in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Decressin, Thibaut

    2012-05-01

    Globular clusters exhibit peculiar chemical patterns where Fe and heavy elements abundances stay constant inside a given cluster while light elements (Li to Al) show strong star-to-star variations. This peculiar chemical pattern can be explained by self-pollution of the intracluster gas occurring in the early evolution of clusters. Here I present the possible strong impact of fast rotating massive stars on clusters evolution. First providing they rotate initially fast enough, these stars can reach the break-up velocity during the main sequence and matter will be ejected from the equator at low velocity. Rotation-induced mixing will also bring matter from the convective core to the surface. From this ejected matter loaded in H-burning material a second generation of stars will born. The chemical pattern of these second generation stars are similar to the one observed for stars in globular cluster with abundance anomalies in light elements. Then during the explosion as supernovae the massive stars will also clear the cluster of the remaining gas. One important feature of globular clusters observed today is that 50 to 80% of the low mass stars still evolving in the cluster are second generation starts whereas, with a standard IMF, these stars should be at most 10% of the cluster stars. This strong discrepancy can be solved if the proto-globular clusters were more massive (up to a factor 20-30) and mass-segregated during their formation. In this case a strong loss of first generation stars occupying the outer part of the cluster is possible through the dynamical history of the cluster.

  15. A CATALOG OF GLOBULAR CLUSTER SYSTEMS: WHAT DETERMINES THE SIZE OF A GALAXY'S GLOBULAR CLUSTER POPULATION?

    SciTech Connect

    Harris, William E.; Alessi, Matthew; Harris, Gretchen L. H. E-mail: alessimj@mcmaster.ca

    2013-08-01

    We present a catalog of 422 galaxies with published measurements of their globular cluster (GC) populations. Of these, 248 are E galaxies, 93 are S0 galaxies, and 81 are spirals or irregulars. Among various correlations of the total number of GCs with other global galaxy properties, we find that N{sub GC} correlates well though nonlinearly with the dynamical mass of the galaxy bulge M{sub dyn}= 4{sigma}{sub e}{sup 2} R{sub e} /G, where {sigma}{sub e} is the central velocity dispersion and R{sub e} the effective radius of the galaxy light profile. We also present updated versions of the GC specific frequency S{sub N} and specific mass S{sub M} versus host galaxy luminosity and baryonic mass. These graphs exhibit the previously known U-shape: highest S{sub N} or S{sub M} values occur for either dwarfs or supergiants, but in the midrange of galaxy size (10{sup 9}-10{sup 10} L{sub Sun }) the GC numbers fall along a well-defined baseline value of S{sub N} {approx_equal} 1 or S{sub M} = 0.1, similar among all galaxy types. Along with other recent discussions, we suggest that this trend may represent the effects of feedback, which systematically inhibited early star formation at either very low or very high galaxy mass, but which had its minimum effect for intermediate masses. Our results strongly reinforce recent proposals that GC formation efficiency appears to be most nearly proportional to the galaxy halo mass M{sub halo}. The mean 'absolute' efficiency ratio for GC formation that we derive from the catalog data is M{sub GCS}/M{sub halo} = 6 Multiplication-Sign 10{sup -5}. We suggest that the galaxy-to-galaxy scatter around this mean value may arise in part because of differences in the relative timing of GC formation versus field-star formation. Finally, we find that an excellent empirical predictor of total GC population for galaxies of all luminosities is N{sub GC} {approx} (R{sub e} {sigma}{sub e}){sup 1.3}, a result consistent with fundamental plane scaling

  16. Dual Stellar Halos in Early-type Galaxies and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. It is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. We present photometry and metallicity of the resolved stars in the inner and outer regions of M105. These provide strong evidence that there are two distinct stellar halos in this galaxy, a metal-poor (blue) halo and a metal-rich (red) halo. Then we compare them with those in other early-type galaxies and use the dual halo mode formation scenario to describe how massive galaxies formed.

  17. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  18. Central Rotations of Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  19. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    SciTech Connect

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

  20. Full spectral fitting of Milky Way and M 31 globular clusters: ages and metallicities

    NASA Astrophysics Data System (ADS)

    Cezario, E.; Coelho, P. R. T.; Alves-Brito, A.; Forbes, D. A.; Brodie, J. P.

    2013-01-01

    Context. The formation and evolution of disk galaxies are long standing questions in astronomy. Understanding the properties of globular cluster systems can lead to important insights on the evolution of its host galaxy. Aims: We aim to obtain the stellar population parameters - age and metallicity - of a sample of M 31 and Galactic globular clusters. Studying their globular cluster systems is an important step towards understanding their formation and evolution in a complete way. Methods: Our analysis employs a modern pixel-to-pixel spectral fitting technique to fit observed integrated spectra to updated stellar population models. By comparing observations to models we obtain the ages and metallicities of their stellar populations. We apply this technique to a sample of 38 globular clusters in M 31 and to 41 Galactic globular clusters, used as a control sample. Results: Our sample of M 31 globular clusters spans ages from 150 Myr to the age of the Universe. Metallicities [Fe/H] range from -2.2 dex to the solar value. The age-metallicity relation obtained can be described as having two components: an old population with a flat age-[Fe/H] relation, possibly associated with the halo and/or bulge, and a second one with a roughly linear relation between age and metallicity, higher metallicities corresponding to younger ages, possibly associated with the M 31 disk. While we recover the very well known Galactic GC metallicity bimodality, our own analysis of M 31's metallicity distribution function (MDF) suggests that both GC systems cover basically the same [Fe/H] range yet M 31's MDF is not clearly bimodal. These results suggest that both galaxies experienced different star formation and accretion histories. Table 4 is available in electronic form at http://www.aanda.org

  1. Stochastic Evolution of Halo Spin

    NASA Astrophysics Data System (ADS)

    Kim, Juhan

    2015-08-01

    We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.

  2. Characterizing stellar halo populations - I. An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-08-01

    We fit an extended distribution function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex kpc-1, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex kpc-1, and a higher degree of radial anisotropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  3. Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Mateo, M.; Murdin, P.

    2000-11-01

    Globular clusters have long been known to be among the richest stellar groupings within our Galaxy, but for many years they were believed to be largely devoid of the most minimal stellar group: binary stars (see BINARY STARS: OVERVIEW). For many years, the only evidence that any binaries existed in these clusters came from the presence of BLUE STRAGGLERS—stars that appear to be significantly you...

  4. A search for globular clusters in more remote areas around M31 and M33 II

    SciTech Connect

    Di Tullio Zinn, Graziella; Zinn, Robert

    2014-04-01

    Using the Sloan Digital Sky Survey (SDSS), ∼900 deg{sup 2} of the sky surrounding M31 and M33 have been searched for globular clusters (GCs) that through galaxy interaction have become unbound from their parent systems and M31 (hence, intergalactic globular clusters, IGCs). This search reached a maximum of ∼500 kpc in projected galactocentric distance (R {sub gc}) from M31. Visual examination of 283,871 SDSS cutout images and of 1143 fits images yielded 320 candidates. This sample was reduced to six GCs and one likely candidate by excluding galaxies on the basis of combinations of their optical, ultraviolet, and infrared colors from the SDSS, the Galaxy Evolution Explorer satellite, and the Wide-field Infrared Survey Explorer satellite, as well as their photometric redshifts from the SDSS. Since these seven objects have 14 kpc ≤ R {sub gc} ≤ 137 kpc, they are more likely to be GCs in the halo of M31 than IGCs. They are all 'classical' as opposed to 'extended' GCs, and they provide further evidence that the remote halo of M31 (R {sub gc} ≥ 50 kpc) contains more GCs of all types and, in particular, far more 'classical' ones than the remote halo of the Milky Way.

  5. The elusive stellar halo of the Triangulum galaxy

    NASA Astrophysics Data System (ADS)

    McMonigal, B.; Lewis, G. F.; Brewer, B. J.; Irwin, M. J.; Martin, N. F.; McConnachie, A. W.; Ibata, R. A.; Ferguson, A. M. N.; Mackey, A. D.; Chapman, S. C.

    2016-10-01

    The stellar haloes of large galaxies represent a vital probe of the processes of galaxy evolution. They are the remnants of the initial bouts of star formation during the collapse of the protogalactic cloud, coupled with imprint of ancient and ongoing accretion events. Previously, we have reported the tentative detection of a possible, faint, extended stellar halo in the Local Group spiral, the Triangulum galaxy (M33). However, the presence of substructure surrounding M33 made interpretation of this feature difficult. Here, we employ the final data set from the Pan-Andromeda Archaeological Survey, combined with an improved calibration and a newly derived contamination model for the region to revisit this claim. With an array of new fitting algorithms, fully accounting for contamination and the substantial substructure beyond the prominent stellar disc in M33, we reanalyse the surrounds to separate the signal of the stellar halo and the outer halo substructure. Using more robust search algorithms, we do not detect a large-scale smooth stellar halo and place a limit on the maximum surface brightness of such a feature of μV = 35.5 mag arcsec-2, or a total halo luminosity of L < 106 L⊙.

  6. Observation and analysis of halo current in EAST

    NASA Astrophysics Data System (ADS)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  7. The Gaia-ESO Survey: Detailed abundances in the metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    San Roman, I.; Muñoz, C.; Geisler, D.; Villanova, S.; Kacharov, N.; Koch, A.; Carraro, G.; Tautvaišiene, G.; Vallenari, A.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Francois, P.; Korn, A. J.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Bergemann, M.; Costado, M. T.; Damiani, F.; Heiter, U.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Masseron, T.; Morbidelli, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-07-01

    We present the abundance analysis for a sample of 7 red giant branch stars in the metal-poor globular cluster NGC 4372 based on UVES spectra acquired as part of the Gaia-ESO Survey. This is the first extensive study of this cluster from high-resolution spectroscopy. We derive abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Fe, Cr, Ni, Y, Ba, and La. We find a metallicity of [Fe/H] = -2.19 ± 0.03 and find no evidence of any metallicity spread. This metallicity makes NGC 4372 one of the most metal-poor Galactic globular clusters. We also find an α-enhancement typical of halo globular clusters at this metallicity. Significant spreads are observed in the abundances of light elements. In particular, we find a Na-O anticorrelation. Abundances of O are relatively high compared with other globular clusters. This could indicate that NGC 4372 was formed in an environment with high O for its metallicity. A Mg-Al spread is also present that spans a range of more than 0.5 dex in Al abundances. Na is correlated with Al and Mgabundances at a lower significance level. This pattern suggests that the Mg-Al burning cycle is active. This behavior can also be seen in giant stars of other massive, metal-poor clusters. A relation between light and heavy s-process elements has been identified.

  8. Mapping The Dark Side with DEIMOS: Globular Clusters, X-Ray Gas, and Dark Matter in the NGC 1407 Group

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Strader, Jay; Spitler, Lee R.; Johnson, Ria; Brodie, Jean P.; Forbes, Duncan A.; Ponman, Trevor

    2009-06-01

    NGC 1407 is the central elliptical in a nearby evolved group of galaxies apparently destined to become a galaxy cluster core. We use the kinematics of globular clusters (GCs) to probe the dynamics and mass profile of the group's center, out to a radius of 60 kpc (~10 galaxy effective radii)—the most extended data set to date around an early-type galaxy. This sample consists of 172 GC line-of-sight velocities, most of them newly obtained using Keck/DEIMOS, with a few additional objects identified as dwarf-globular transition objects or as intragroup GCs. We find weak rotation for the outer parts of the GC system (v/σ ~ 0.2), with a rotational misalignment between the metal-poor and metal-rich GCs. The velocity dispersion profile declines rapidly to a radius of ~20 kpc, and then becomes flat or rising to ~60 kpc. There is evidence that the GC orbits have a tangential bias that is strongest for the metal-poor GCs—in possible contradiction to theoretical expectations. We construct cosmologically motivated galaxy+dark halo dynamical models and infer a total mass within 60 kpc of ~3 × 1012 M sun, which extrapolates to a virial mass of ~6 × 1013 M sun for a typical lambda cold dark matter (ΛCDM) halo—in agreement with results from kinematics of the group galaxies. We present an independent Chandra-based analysis, whose relatively high mass at ~20 kpc disagrees strongly with the GC-based result unless the GCs are assumed to have a peculiar orbit distribution, and we therefore discuss more generally some comparisons between X-ray and optical results. The group's B-band mass-to-light ratio of ~800 (uncertain by a factor of ~2) in Solar units is extreme even for a rich galaxy cluster, much less a poor group—placing it among the most dark matter (DM) dominated systems in the universe, and also suggesting a massive reservoir of baryons lurking in an unseen phase, in addition to the nonbaryonic DM. We compare the kinematical and mass properties of the NGC 1407 group

  9. Variable Stars in the LMC Globular Cluster NGC 2257 New: Results Based on 2007-08 B, V Photometry

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Walker, Alistair R.; Jeon, Young-Beom

    2009-09-01

    The variable star population in the Large Magellanic Cloud outer-halo globular cluster NGC 2257 has been reinvestigated using photometry (to ~20th mag) of over 400 new B, V CCD images taken with the CTIO 0.9-m telescope on 14 nights in Dec'07 and Jan'08. The derived periods of most of the stars are consistent with the pulsation periods derived previously, and where there were discrepancies these have been resolved. Accurate Fourier coefficients and parameters were computed for the B and V light curves. Six new variable stars were discovered (V45-V50), including a bright candidate long-period variable star showing secondary oscillations (V45). Examination of archival HST images and previously-published photometry shows that the excess brightness of two bright RR Lyrae stars (V48, V50) is due to contamination from close red giant branch stars. Among the previously known variable stars three double-mode (RRd) RR Lyrae stars (V8, V16 and V34) and several Blazhko variables were discovered. The total number of cluster variable stars now stands at forty-seven: 23 RRab stars, four of which show Blazhko light-curve variations; 20 RRc stars, one showing clear Blazhko variations and another showing possible Blazhko variations; the three RRd stars, all having the dominant period ~0.36 day and period ratios P1/P0~0.7450, and the LPV located near the tip of the red giant branch. A comparison with similar stars in other environments shows that the RRd stars in NGC 2257 are most similar to those in IC 4499.

  10. The SEGUE K Giant Survey. III. Quantifying Galactic Halo Substructure

    NASA Astrophysics Data System (ADS)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Rockosi, Constance; Starkenburg, Else; Xue, Xiang Xiang; Rix, Hans-Walter; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (˜33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  11. On the Fundamental Plane of the Galactic globular cluster system

    NASA Astrophysics Data System (ADS)

    Pasquato, M.; Bertin, G.

    2008-10-01

    coefficient divided by the relevant mass-to-light ratio); the distribution of the logarithms, reconstructed through kernel density estimation methods, shows evidence for bimodality, which suggests that the galactic globular cluster system may be composed of at least two dynamically different populations. Yet, these populations do not appear to reflect the standard dichotomy between disk and halo clusters.

  12. Nearby Spiral Galaxy Globular Cluster Systems. II. Globular Cluster Metallicities in NGC 300

    NASA Astrophysics Data System (ADS)

    Nantais, Julie B.; Huchra, John P.; Barmby, Pauline; Olsen, Knut A. G.

    2010-03-01

    We present new metallicity estimates for globular cluster (GC) candidates in the Sd spiral NGC 300, one of the nearest spiral galaxies outside the Local Group. We have obtained optical spectroscopy for 44 Sculptor Group GC candidates with the Boller and Chivens (B&C) spectrograph on the Baade Telescope at Las Campanas Observatory. There are two GCs in NGC 253 and 12 objects in NGC 300 with globular-cluster-like spectral features, nine of which have radial velocities above 0 km s-1. The remaining three, due to their radial velocities being below the expected 95% confidence limit for velocities of NGC 300 halo objects, are flagged as possible foreground stars. The non-cluster-like candidates included 13 stars, 15 galaxies, and an H II region. One GC, four galaxies, two stars, and the H II region from our sample were identified in archival Hubble Space Telescope images. For the GCs, we measure spectral indices and estimate metallicities using an empirical calibration based on Milky Way GCs. The GCs of NGC 300 appear similar to those of the Milky Way. Excluding possible stars and including clusters from the literature, the GC system (GCS) has a velocity dispersion of 68 km s-1 and has no clear evidence of rotation. The mean metallicity for our full cluster sample plus one literature object is [Fe/H] = -0.94, lying above the relationship between mean GC metallicity and overall galaxy luminosity. Excluding the three low-velocity candidates, we obtain a mean [Fe/H] = -0.98, still higher than expected, raising the possibility of significant foreground star contamination even in this sample. Visual confirmation of genuine GCs using high-resolution space-based imagery could greatly reduce the potential problem of interlopers in small samples of GCSs in low-radial-velocity galaxies. Data for this project were obtained at the Baade 6.5 m telescope, Las Campanas Observatory, Chile. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint

  13. Could wormholes form in dark matter galactic halos?

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Shit, G. C.; Sen, Banashree; Ray, Saibal

    2016-01-01

    We estimate expression for velocity as a function of the radial coordinate r by using polynomial interpolation based on the experimental data of rotational velocities at distant outer regions of galaxies. The interpolation technique has been used to estimate fifth degree polynomial followed by cubic spline interpolation. This rotational velocity is used to find the geometry of galactic halo regions within the framework of Einstein's general relativity. In this paper we have analyzed features of galactic halo regions based on two possible choices for the dark matter density profile, viz. Navarro, Frenk & White (NFW) type (Navarro et al. in Astrophys. J. 462:563, 1996) and Universal Rotation Curve (URC) (Castignani et al. in Nat. Sci. 4:265, 2012). It is argued that spacetime of the galactic halo possesses some of the characteristics needed to support traversable wormholes.

  14. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  15. Melanocyte halo explained.

    PubMed

    Tata, M; Sidhu, G S

    1994-01-01

    Electron microscopic examination was performed of skin biopsy specimens processed for electron microscopy directly after formaldehyde fixation, after retrieval from paraffin blocks, and as for paraffin embedding but with retrieval after clearing with xylene, the last step before paraffin infiltration. The halos surrounding melanocytes in the epidermis are a retraction artifact that develops during paraffin infiltration of the tissue. It is proposed that this artifact is related to the high temperature of the paraffin bath. PMID:8066827

  16. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Astrophysics Data System (ADS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-04-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  17. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  18. Ages of globular clusters and helium diffusion

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Sarajedini, Ata; Demarque, Pierre

    1992-01-01

    Evolutionary tracks have been calculated with alpha-enhanced compositions which cover the entire globular cluster metallicity range and have constructed isochrones which include the effects of microscopic diffusion of helium. The turnoff magnitudes from the isochrones were combined with the theoretical RR Lyrae magnitudes from Lee to determine the ages of 32 Galactic globular clusters using the magnitude difference between the turnoff and horizontal branch. It is found that including the effects of helium diffusion has a negligible effect on the derived ages of globular clusters. Regardless of the inclusion of helium diffusion, a significant age spread of 5 Gyr among the globular clusters is found. The oldest globular clusters studied here are 17 +/- 2 Gyr old.

  19. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan M.; Becker, Andrew C.; Stuart, J. Scott; Sharma, Sanjib; Palaversa, Lovro; Juric, Mario; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-08-01

    We present a sample of {approx}5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over {approx}8000 deg{sup 2} of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of {approx}4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.

  20. Gaps in globular cluster streams: giant molecular clouds can cause them too

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.; Gómez, Facundo A.; Vegetti, Simona; White, Simon D. M.

    2016-11-01

    As a result of their internal dynamical coherence, thin stellar streams formed by disrupting globular clusters (GCs) can act as detectors of dark matter (DM) substructure in the Galactic halo. Perturbations induced by close flybys amplify into detectable density gaps, providing a probe both of the abundance and of the masses of DM subhaloes. Here, we use N-body simulations to show that the Galactic population of giant molecular clouds (GMCs) can also produce gaps (and clumps) in GC streams, and so may confuse the detection of DM subhaloes. We explore the cases of streams analogous to the observed Palomar 5 and GD1 systems, quantifying the expected incidence of structure caused by GMC perturbations. Deep observations should detect such disturbances regardless of the substructure content of the Milky Way's halo. Detailed modelling will be needed to demonstrate that any detected gaps or clumps were produced by DM subhaloes rather than by molecular clouds.

  1. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  2. Next Generation Virgo Survey Photometry and Keck/DEIMOS Spectroscopy of Globular Cluster Satellites of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration

    2015-01-01

    We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the

  3. The Spheroid of M33: Bulge or Halo?

    NASA Astrophysics Data System (ADS)

    Regan, Michael W.; Vogel, Stuart N.

    1993-12-01

    Because of its proximity, M33 provides a unique opportunity to investigate a spiral galaxy with a very small bulge. However, the existence of a bulge in M33 remains controversial (van den Bergh 1991). For example, Kent (1987) suggested that the excess light seen near the nucleus is due to spiral structure, while Bothun (1992) stated that the central surface brightness of M33 could not be fit by a single r(1/4) law and may not be a bulge but a large scale diffuse halo. Recently, Minniti, Olszewski, and Rieke (1993) used H-band photometry of individual stars near the center of M33 and concluded that there is a bulge, and that it has undergone recent (<1 Gyr) star formation. We present J, H, and K-band observations of M33 obtained with the SQIID camera on the KPNO 1.3 meter telescope that show that the inner spheriodal light distribution of M33 is better characterized by a halo than a bulge. The total light in the halo is larger than previous estimates for the bulge of M33, leading to an estimate of the ratio of globular clusters to total spheriodal luminosity closer to that measured for other spiral galaxies.

  4. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  5. MACHO RR lyrae in the inner halo and bulge

    SciTech Connect

    Drake, A.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T.S.; Becker, A.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D.

    1998-10-01

    The RR Lyrse in the bulge have been proposed to be the oldest populations in the Milky Way, tracers of how the galaxy formed. We study here the distribution of ?{approximately}1600 bulge RR Lyrae stars found by the MACHO Project. The RR Lyrae with 0.4 ? R ? 3 kpc show a density law that is well fit by the extension of the metal-poor stellar halo present in the outer regions of the Milky Way.

  6. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. IX. HORIZONTAL BRANCH MORPHOLOGY AND THE SECOND PARAMETER PHENOMENON

    SciTech Connect

    Dotter, Aaron; Sarajedini, Ata; Anderson, Jay; Bedin, Luigi R.; Paust, Nathaniel; Reid, I. Neill; Aparicio, Antonio; MarIn-Franch, A.; Rosenberg, Alfred; Majewski, Steven; Milone, Antonino; Piotto, Giampaolo; Siegel, Michael E-mail: ata@astro.ufl.ed

    2010-01-01

    The horizontal branch (HB) morphology of globular clusters (GCs) is most strongly influenced by metallicity. The second parameter phenomenon, first described in the 1960s, acknowledges that metallicity alone is not enough to describe the HB morphology of all GCs. In particular, astronomers noticed that the outer Galactic halo contains GCs with redder HBs at a given metallicity than are found inside the solar circle. Thus, at least a second parameter was required to characterize HB morphology. While the term 'second parameter' has since come to be used in a broader context, its identity with respect to the original problem has not been conclusively determined. Here we analyze the median color difference between the HB and the red giant branch, hereafter denoted as DELTA(V - I), measured from Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) photometry of 60 GCs within approx20 kpc of the Galactic center. Analysis of this homogeneous data set reveals that, after the influence of metallicity has been removed from the data, the correlation between DELTA(V - I) and age is stronger than that of any other parameter considered. Expanding the sample to include HST ACS and Wide Field Planetary Camera 2 photometry of the six most distant Galactic GCs lends additional support to the correlation between DELTA(V - I) and age. This result is robust with respect to the adopted metallicity scale and the method of age determination, but must bear the caveat that high-quality, detailed abundance information is not available for a significant fraction of the sample. Furthermore, when a subset of GCs with similar metallicities and ages is considered, a correlation between DELTA(V - I) and central luminosity density is exposed. With respect to the existence of GCs with anomalously red HBs at a given metallicity, we conclude that age is the second parameter and central density is most likely the third. Important problems related to HB morphology in GCs, notably multi

  7. THE OUTSKIRTS OF GLOBULAR CLUSTERS AS MODIFIED GRAVITY PROBES

    SciTech Connect

    Hernandez, X.; Jimenez, M. A.

    2012-05-01

    In the context of theories of gravity modified to account for the observed dynamics of galactic systems without the need to invoke the existence of dark matter, a prediction often appears regarding low-acceleration systems: wherever a falls below a{sub 0}, one should expect a transition from the classical to the modified gravity regime. This modified gravity regime will be characterized by equilibrium velocities that become independent of distance and that scale with the fourth root of the total baryonic mass, V{sup 4}{proportional_to}M. The two conditions above are the well-known flat rotation curves and Tully-Fisher relations of the galactic regime. Recently, however, a similar phenomenology has been hinted at, at the outskirts of Galactic globular clusters, precisely in the region where a < a{sub 0}. Radial profiles of the projected velocity dispersion have been observed to stop decreasing along Keplerian expectations and to level off at constant values beyond the radii where a < a{sub 0}. We have constructed gravitational equilibrium dynamical models for a number of globular clusters for which the above gravitational anomaly has been reported, using a modified Newtonian force law that yields equilibrium velocities equivalent to modified Newtonian dynamics. We find models having an inner Newtonian region and an outer modified gravity regime, which reproduce all observational constraints, surface brightness profiles, total masses, and line-of-sight velocity dispersion profiles, can be easily constructed. Through the use of detailed single stellar population models tuned individually to each of the globular clusters in question, we derive estimates of the total masses for these systems. Interestingly, we find that the asymptotic values of the velocity dispersion profiles are consistent with scaling with the fourth root of the total masses, as expected under modified gravity scenarios.

  8. Global Properties of M31's Stellar Halo from the SPLASH Survey. II. Metallicity Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Beaton, Rachael L.; Geha, Marla C.; Kirby, Evan N.; Majewski, Steven R.; Patterson, Richard J.; Tollerud, Erik J.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ~100 kpc, with a magnitude of ~ - 0.01 dex kpc-1. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. Global properties of M31's stellar halo from the splash survey. II. Metallicity profile

    SciTech Connect

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Geha, Marla C.; Tollerud, Erik J.; Kirby, Evan N.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.

  10. Extragalactic Globular Clusters: Tracers of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Bassino, Lilia P.

    2008-09-01

    The study of globular cluster systems provides clues about different topics related to galaxy evolution. In the past years we have been investigating the globular cluster systems of galaxies in the Fornax and Antlia clusters, particularly those associated to the cluster-dominant galaxies. We present here the main results related to these systems. All of them have bimodal color distributions, even those around low-luminosity galaxies, that correspond to the metal-poor (``blue'') and metal-rich (``red'') globular cluster subpopulations. The radial and azimuthal projected areal distributions of the globular clusters are also analyzed. Total globular cluster populations are estimated through the luminosity functions. We stress on the properties of the globular cluster systems that allow us to trace possible interaction processes between the galaxies, like tidal stripping of globular clusters. The observational material consists of CCD images obtained with the wide-field MOSAIC Imager of the CTIO 4-m telescope (La Serena, Chile), and the FORS1 camera at the VLT ``Antu'' 8-m telescope (Cerro Paranal, Chile).

  11. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  12. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  13. Are Halo CMEs special events?

    NASA Astrophysics Data System (ADS)

    Lara, A.; Xie, H.; Mendoza, E.

    2005-12-01

    We re-visit the properties of wide coronal mass ejections (CMEs) called halo CMEs. Using the large LASCO/SOHO CMEs data set, from 1996 to 2004, we examine the statistical properties of (partial and full) halo CMEs and compare with the same properties of ``normal'' width (lower than 120°) CMEs, we found that halo CMEs have different properties than ``normal'' CMEs which can not be explained by the current geometric interpretation of halos, as CMEs traveling in the Sun Earth direction. We found that the CME width distribution is formed by, at least, three different populations. Two gaussians one narrow and one medium centered at ~17° and ~38°, respectively. It is highly probable, that the narrow population corresponds to ``true'' observed widths, whereas the medium width population is the product of projection effects. The number of wider CMEs (80° < W < 210°) decreases as a power law. After this width, i. e. partial and full halo CMEs, do not follow any particular distribution. This lack of regularity, may be due to the small number of such events. In particular, we found that the number of observed full halo CMEs is lower than the expected. The CME speed follows a log-normal distribution, except for the very low speed CME population, wich follows a gaussian distribution centered at ~100 km/s and probably is due to projection effects. When the CMEs are dividing by width into no, partial and full halo groups we found that the peak of the distributions are shifted towards higher speeds, ~300, ~400 and ~600 km/s for no, partial and full halo CMEs. This confirms that halo CMEs tend to be high speed CMEs. We introduce a new observational CME parameter: the final observed distance (FOD) which is the highest point, inside the coronograph field of view, where the CME can be distinguished from the background. In other words, the highest CME altitude measured. The FOD for no halo CMEs decreases exponentialy from ~5 to ~30 Ro˙ in the LASCO field of view. On the other

  14. The Chemical Properties of Milky Way and M31 Globular Clusters. II. Stellar Population Model Predictions

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; Brodie, Jean P.; Strader, Jay; Forbes, Duncan A.; Proctor, Robert N.; Barmby, Pauline; Huchra, John P.

    2005-03-01

    We derive ages, metallicities, and abundance ratios ([α/Fe]) from the integrated spectra of 23 globular clusters in M31 by employing multivariate fits to two different stellar population models. We also perform a parallel analysis on 21 Galactic globular clusters as a consistency check and in order to facilitate a differential analysis. Our analysis shows that the M31 globular clusters separate into three distinct components in age and metallicity; we identify an old, metal-poor group (seven clusters), an old, metal-rich group (10 clusters), and an intermediate-age (3-6 Gyr), intermediate-metallicity ([Z/H]~-1) group (six clusters). This third group is not identified in the Galactic globular cluster sample. We also see evidence that the old, metal-rich Galactic globular clusters are 1-2 Gyr older than their counterparts in M31. The majority of globular clusters in both samples appear to be enhanced in α-elements, but the degree of enhancement is rather model-dependent. The intermediate-age globular clusters appear to be the most enhanced, with [α/Fe]~0.4. These clusters are clearly depressed in CN with respect to the models and the bulk of the M31 and Milky Way sample. Compared with the bulge of M31, M32, and NGC 205, these clusters most resemble the stellar populations in NGC 205 in terms of age, metallicity, and CN abundance. We infer horizontal branch morphologies for the M31 clusters using the Rose Ca II index and demonstrate that blue horizontal branches are not leading to erroneous age estimates in our analysis. We discuss and reject as unlikely the hypothesis that these objects are in fact foreground stars contaminating the optical catalogs. The intermediate-age clusters have generally higher velocities than the bulk of the M31 cluster population. Spatially, three of these clusters are projected onto the bulge region, and the remaining three are distributed at large radii. We discuss these objects within the context of the build-up of the M31 halo and

  15. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY

    SciTech Connect

    De Propris, Roberto; Harrison, Craig D.; Mares, Peter J.

    2010-08-20

    We use 666 blue horizontal branch stars from the 2Qz Redshift Survey to map the Galactic halo in four dimensions (position, distance, and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index {approx}-2.5 in two different directions separated by about 150{sup 0} on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds, or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase toward large radii while the stellar velocity distribution is non-Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  16. Globular cluster orbits based on Hipparcos proper motions

    NASA Astrophysics Data System (ADS)

    Odenkirchen, M.; Brosche, P.; Geffert, M.; Tucholke, H.-J.

    1997-11-01

    We present and analyse space motions and orbits for a sample of 15 galactic globular clusters. The absolute proper motions of these clusters have been determined with respect to reference stars of the new Hipparcos system. Orbital integrations in two model potentials for the Galaxy are considered. The sample shows a mean rotation near 40 km s-1 in the sense of rotation of the galactic disk. Six clusters are however found to be in retrograde motion. Velocity dispersions are around 104 km s-1 in the direction of rotation, near 116 km s-1 in latitudinal direction and near 127 km s-1 in radial direction. The orbits of the clusters preferentially have small axial angular momenta and high eccentricities, the median of the orbital eccentricities being 0.62. From the spatial extent of the orbits we conclude that the Galaxy must have a massive halo with a radius of at least 30 kpc. The space density distribution of our sample of clusters system, except for distances less than 4 kpc from the galactic center. space density distribution of the total globular cluster system, except for distances less than 4 kpc from the galactic center. The largest apogalactic distances in the sample reach out to 65 kpc. The orbits provide evidence that the more metal-rich clusters are concentrated towards the galactic center. The clusters with significant retrograde motion have metal abundances between - 1.5 and - 2.0 and hence appear to be relatively homogeneous in chemical composition. The small subgroup of 'young halo' clusters within our sample is orbiting with a net retrograde rotation of -9 km s-1. A general relation between orbital eccentricity and metal-abundance does not show up in the sample. The observed radii of the clusters are found to be in a well-defined relation to the tidal limits imposed by orbital motion in the galactic field. It is shown that the cluster radii are however not uniquely determined by the perigalactic distances, but involve at least also the geometry of the

  17. Galactic Globular Cluster Relative Ages

    NASA Astrophysics Data System (ADS)

    De Angeli, Francesca; Piotto, Giampaolo; Cassisi, Santi; Busso, Giorgia; Recio-Blanco, Alejandra; Salaris, Maurizio; Aparicio, Antonio; Rosenberg, Alfred

    2005-07-01

    We present accurate relative ages for a sample of 55 Galactic globular clusters. The ages have been obtained by measuring the difference between the horizontal branch and the turnoff in two internally photometrically homogeneous databases. The mutual consistency of the two data sets has been assessed by comparing the ages of 16 globular clusters in common between the two databases. We have also investigated the consistency of our relative age determination within the recent stellar model framework. All clusters with [Fe/H]<-1.7 are found to be old and coeval, with the possible exception of two objects, which are marginally younger. The age dispersion for the metal-poor clusters is 0.6 Gyr (rms), consistent with a null age dispersion. Intermediate-metallicity clusters (-1.7<[Fe/H]<-0.8) are on average 1.5 Gyr younger than the metal-poor ones, with an age dispersion of 1.0 Gyr (rms) and a total age range of ~3 Gyr. About 15% of the intermediate-metallicity clusters are coeval with the oldest clusters. All the clusters with [Fe/H]>-0.8 are ~1 Gyr younger than the most metal-poor ones, with a relatively small age dispersion, although the metal-rich sample is still too small to allow firmer conclusions. There is no correlation of the cluster age with the galactocentric distance. We briefly discuss the implication of these observational results for the formation history of the Galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, and on observations made at the European Southern Observatory, La Silla, Chile, and with the Isaac Newton Group Telescopes.

  18. Approach to photorealistic halo simulations.

    PubMed

    Gedzelman, Stanley David

    2011-10-01

    A multiple-scattering Monte Carlo model that can produce near-photographic quality images is developed and used to simulate several dramatic halo displays. The model atmosphere contains an absorbing ozone layer plus two clear, molecular air layers with Rayleigh scattering surrounding a cloud layer and an atmospheric boundary layer with aerosol particles subject to Lorentz-Mie scattering. Halos are produced by right hexagonal or pyramidal crystals that reflect and refract according to geometric optics without diffraction, although "junk" crystals with a pronounced forward-scattering peak but no halo peaks may be included to simulate typical, faint halos. Model parameters include ozone height and content, surface and cloud pressure, cloud optical thickness, crystal shapes, orientations and abundances, atmospheric turbidity, aerosol radius, and albedo. Beams for each wavelength are sorted into small bins as halo beams if they have been scattered once only by a single crystal and otherwise as sky beams, which are smoothed and combined with the halo beams to produce images. Multiple scattering generally vitiates halos, but extremely rare halos, such as Kern's arc, can be produced if a significant fraction of crystals in optically thick clouds have identical shapes and are highly oriented. Albedo is a model by-product with potential value in climate studies.

  19. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  20. STRUCTURE AND DYNAMICS OF THE GLOBULAR CLUSTER PALOMAR 13

    SciTech Connect

    Bradford, J. D.; Geha, M.; Munoz, R. R.; Santana, F. A.; Simon, J. D.; Cote, P.; Stetson, P. B.; Kirby, E.; Djorgovski, S. G. E-mail: marla.geha@yale.edu

    2011-12-20

    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of {sigma} = 2.2 {+-} 0.4 km s{sup -1}. We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is {sigma} = 0.7{sup +0.6}{sub -0.5} km s{sup -1}. Combining our DEIMOS data with literature values, our final velocity dispersion is {sigma} = 0.4{sup +0.4}{sub -0.3} km s{sup -1}. We determine a spectroscopic metallicity of [Fe/H] = -1.6 {+-} 0.1 dex, placing a 1{sigma} upper limit of {sigma}{sub [Fe/H]} {approx} 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be M{sub V} = -2.8 {+-} 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters ({Sigma}{proportional_to}r{sup {eta}}, {eta} = -2.8 {+-} 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M{sub 1/2} = 1.3{sup +2:7}{sub -1.3} Multiplication-Sign 10{sup 3} M{sub Sun} and a mass-to-light ratio of M/L{sub V} = 2.4{sup +5.0}{sub -2.4} M{sub Sun }/L{sub Sun }. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither

  1. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  2. Characterizing stellar halo populations II: The age gradient in blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Das, Payel; Williams, Angus; Binney, James

    2016-08-01

    The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitted using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ˜70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ˜2 kpc to -4 in the outer halo, with an axis ratio ˜0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with βs varying from isotropic to between ˜0.1 and ˜0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc-1, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.

  3. The Gaia-ESO Survey: Detailed Abundances in the Globular Cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    San Roman, I.; Muñoz, C.; Geisler, D.; Villanova, S.; Gaia-ESO Survey Consortium

    2015-05-01

    We present the abundance analysis for a sample of 7 red giant branch stars in the metal-poor globular cluster NGC 4372 based on UVES spectra acquired as part of the Gaia-ESO Survey. We derive abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Fe, Cr, Ni Y, Ba, La. We find a metallicity of [Fe/H] = -2.19 ± 0.03 and find no evidence for a metallicity spread. This metallicity makes NGC 4372 one of the most metal-poor galactic globular clusters. We also find an α-enhancement typical of halo globular clusters at this metallicity. Significant spreads are observed in the abundances of light elements. We confirm the presence of the Na-O anti correlation. Abundances of Na and O follow the general GCs trend, although at the high [O/Fe] and [Na/Fe] end with one star with very high Na content. This could indicate that NGC 4372 was formed in an environment with high Na and O for its metallicity. More unusual is the Mg-Al anti correlation which spans a range of more than 0.5 dex in Al abundances. Mg is also anti-correlated with Na and Si abundances at a lower significance level. This pattern suggests the action of nuclear processing at unusually high temperatures. This behavior can also be seen in giant stars of other massive, metal-poor clusters.

  4. No sign (yet) of intergalactic globular clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Beasley, M. A.; Leaman, R.

    2016-07-01

    We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.

  5. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  6. UV-bright stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.

    1994-01-01

    This paper highlights globular cluster studies with Ultraviolet Imaging Telescope (UIT) in three areas: the discrepancy between observed ultraviolet HB magnitudes and predictions of theoretical HB models; the discovery of two hot subdwarfs in NGC 1851, a globular not previously known to contain such stars; and spectroscopic follow up of newly identified UV-bright stars in M79 and w Cen. I also present results of a recent observation of NGC 6397 with the Voyager ultraviolet spectrometer.

  7. Close binary stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Margon, Bruce

    1991-01-01

    Although close binary stars are thought theoretically to play a major role in globular cluster dynamics, virtually no non-degenerate close binaries are known in clusters. We review the status of observations in this area, and report on two new programs which are finally yielding candidate systems suitable for further study. One of the objects, a close eclipsing system in omega Cen, is also a big straggler, thus finally proving firm evidence that globular cluster blue stragglers really are binary stars.

  8. Photometric and kinematic studies of extragalactic globular cluster systems

    NASA Astrophysics Data System (ADS)

    Dowell, Jessica

    Globular clusters (GCs) are old, luminous, compact collections of stars found in galaxy halos that formed during the early stages of galaxy formation. Because of this, GCs serve as excellent tracers of the formation, structure, and merger history of their host galaxies. My dissertation will examine both the photometric and kinematic properties of GC systems and their relationship to their host galaxies. In the first section, I will present the analysis of the GC systems of two spiral galaxies, NGC 891 and NGC 1055. I will discuss the photometric methods used to detect GCs using wide-field BVR imaging and to quantify the global properties of the system such as the total number of GCs and their radial distribution. My results for these two GC systems were compared to those of other galaxies. I will also present the results of spectroscopic follow-up for two giant galaxies: the S0 galaxy NGC 4594 (M104), and the elliptical galaxy NGC 3379 (M105). I measured the radial velocities of GCs in these two galaxies, and combined them with published results to determine the mass distribution and mass-to-light (M/L) ratio profile for each galaxy out to large effective radius (7-9 Re). For both galaxies, I found that the M/L profiles increase with radius and do not flatten, which suggests that the dark matter halos in these galaxies extend to the edge of my data. I also looked for evidence of rotation in the GC systems, and found that neither system exhibits significant rotation around the host galaxy. I examined the velocity dispersion profile of each GC system and found kinematic differences between the red and blue GC subpopulations. Finally, I compared my results to mass estimates for these galaxies from other kinematic tracers and considered them in the context of galaxy formation models.

  9. Binary Black Holes produced in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Rasio, Fred

    2015-04-01

    The mergers of binary black holes will be one of the most promising sources for gravitational-wave astronomy; however, the number of sources expected to form dynamically within the dense environments of globular clusters is highly uncertain. We use a Monte Carlo technique to explore the stellar dynamics of globular clusters. This approach can model systems with ~106 stars and realistic stellar physics, enabling the study of even the most massive of galactic globular clusters. We have produced a collection of globular cluster models with structural properties similar to those observed in the Milky Way. We explore the population of binary black holes produced in these models, including the distribution of masses, semi-major axes, and eccentricities. We find that a typical Milky Way globular cluster can produce hundreds of black hole binaries, several tens of which will coalesce within one Hubble time. We use these models to simulate the globular cluster population of a single Milky Way-equivalent galaxy, providing us with the first realistic merger rate of dynamically formed binary black holes in the local universe.

  10. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  11. A panoramic VISTA of the stellar halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Greggio, L.; Rejkuba, M.; Gonzalez, O. A.; Arnaboldi, M.; Iodice, E.; Irwin, M.; Neeser, M. J.; Emerson, J.

    2014-02-01

    Context. Outskirts of large galaxies contain important information about galaxy formation and assembly. Resolved star count studies can probe the extremely low surface brightness of the outer halos. Aims: NGC 253 is a nearly edge-on disk galaxy in the Sculptor group, of which we resolved the halo stars from ground-based images, with the aim of studying its stellar population content, the structure and the overall extent of the halo. Methods: We use Z and J-band images from the VIRCAM camera mounted on the VISTA telescope to construct the spatially resolved J vs. Z-J color-magnitude diagrams (CMDs). The very deep photometry and the wide area covered allow us to trace the red giant branch (RGB) and asymptotic giant branch (AGB) stars that belong to the halo of NGC 253 out to 50 kpc along the galaxy's minor axis. Results: We confirm the existence of an extra-planar stellar component of the disk, with a very prominent southern shelf and a symmetrical feature on the north side. The only additional visible substructure is an overdensity in the north-west part of the halo ~28 kpc distant from the plane and extending over 20 kpc parallel with the disk of the galaxy. Our data are not deep enough to distinguish its stellar population from that of the surrounding halo, but the excess of stars above the smooth halo traces the mass of the parent population of ~7.5 × 106M⊙. From stellar counts, we measure the transition from the disk to the halo at a radial distance of about 25 kpc with a clear break in the number density profile. The isodensity contours show that the inner halo is a flattened structure that blends with a more extended, diffuse, rounder outer halo. Such external structure can be traced to the very edge of our image out to 50 kpc from the disk plane. The number density profile of the stars in the stellar halo follows a power law with index -1.6, as a function of radius. The CMD shows a very homogeneous stellar population across the field. By comparing

  12. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  13. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  14. Halo traction device.

    PubMed

    Manthey, D E

    1994-08-01

    A thorough understanding of the underlying diseases and of the halo pin traction device will allow for appropriate treatment of complications. Consultation or referral to the neurosurgeon is advised to prevent serious sequelae. The following points should be remembered: 1. Pins should only be tightened during the first 24-hour period after application. 2. Pin infection is treated by local wound care in most cases. 3. CT scan cannot completely exclude the presence of an abscess secondary to artifact, but MRI may be compatible with the newer devices. 4. Pin penetration of the inner table of the skull requires admission. 5. Any suspected loss of alignment or reduction of the cervical spine requires C-spine immobilization. 5. Nasotracheal or fiberoptic intubation or emergent cricothyroidotomy should be used if orotracheal intubation proves difficult due to the device. 7. The anterior portion of the vest is removable for cardiopulmonary resuscitation without compromising the stability of the device. PMID:8062799

  15. The surface density of haloes

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Lee, Xi-Guo

    We study the correlation between the central surface density and the core radius of the dark matter haloes of galaxies and clusters of galaxies. We find that the surface density within the halo characteristic radius r* is not a universal quantity as claimed by some authors (e.g., Milgrom 2009), but it correlates with several physical quantities (e.g., the halo mass M200, and the magnitude MB). The slope of the surface density-mass relation is 0.18 ± 0.05, leaving small room to the possibility of a constant surface density. Finally, we compare the results with MOND predictions.

  16. The CCD photometry of the globular cluster Palomar 1.

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Spassova, N.

    1995-04-01

    A CCD photometry of the halo cluster Palomar 1 is presented in the Thuan-Gunn photometric system. The principal sequences of the color-magnitude diagrams are delineated in different spectral bands. The color-magnitude diagrams of the cluster show a well defined red horizontal branch, a subgiant branch and a main-sequence down to about two magnitudes below the main sequence turnoff. The giant branch is absent and the brightest stars are the horizontal branch stars. The age of the cluster determined by comparison with the isochrones of Bell & Vanden Berg (1987) is consistent with an age in the interval 12-14Gyr. A distance modulus of (m-M)_g0_=15.38+/-0.15 magnitude and E(g-r)=0.16 has been derived. An estimate of the cluster structural parameters such as core radius and concentration parameter gives r_c_=1.5pc and c=1.46. A mass estimate of 1.1 10^3^Msun_ and a mass-to-light ratio of 1.79 have been obtained using King's (1966) method. The morphology of color-magnitude diagrams allows Pal 1 to be interpreted as probably a globular cluster rather than an old open one.

  17. The evolution of horizontal branch stars and the calibration of globular cluster ages

    SciTech Connect

    Lee, Y.

    1989-01-01

    Synthetic models of the horizontal branches in globular clusters were constructed from a new grid of standard horizontal branch (HB) evolutionary tracks. These models were used to investigate the period shifts at constant temperature between the RR Lyrae variables in globular clusters of different metallicities and the variation in HB luminosity with Fe/H . It is shown that two effects--the evolution away from the zero-age horizontal branch (ZAHB) and the non-universal relationship between rise time (or amplitude) and effective temperature--are responsible for the disagreement between the HB luminosity-Fe/H relationship found observationally by Sandage (1982) in his investigation of the Oosterhoff effect and the one given by calculations of ZAHB stars. When these two effects are taken into account, the observed relationship between period shift and Fe/H, matches the theoretical model calculations to within the errors. The resulting relation between the mean luminosity of the RR Lyrae variables and Fe/H has approximately one-half the slope of Sandage's relation, which yields a significant correlation between age and Fe/H among the globular clusters that spans approximately 4 Gyrs (for constant O/Fe) over the metallicity range of the galactic halo. The synthetic HB models are also used to investigate the second parameter phenomenon among the galactic globular clusters system. This investigation confirms the earlier suggestion that there is a systematic variation of the second parameter effect with galactocentric distance. It is shown that full consistency with the pulsation theory and with the standard theory of both turnoff and HB evolution can only be achieved if age is the second parameter that most determines the HB morphology.

  18. Globular cluster system of the galaxy. II. The spatial and metallicity distributions, the second parameter phenomenon, and the formation of the cluster system

    SciTech Connect

    Zinn, R.

    1980-10-15

    The metal abundance measurements that were collected for 84 globular clusters in the first paper of this series are used here to describe the cluster system. The ranking of the clusters by metallicity has been calibrated by a new (Fe/H) scale, which is based in part on the measurement of (Fe/H)=-1.2 for M71. According to this scale, the metal abundance gradient between the inner and outer halo clusters (i.e., R<9 kpc and 9< or =R< 40 kpc) is only a small fraction of that found with previous (Fe/H) scales. It is not clear, however, that the new scale is to be preferred over the old ones; consequently the size of this gradient remains in doubt. The most significant properties of the cluster system that do not depend on the validity of the (Fe/H) scale are the following; (i) there is a wide range in metal abundance among the cluster in the zone 9< or =R<40 kpc, but no evidence of a gradient with R or with distance from the galactic plane, Vertical BarZVertical Bar; (ii) among the clusters with R<9 kpc, there is a metal abundance gradient with Vertical BarZVertical Bar; and (iii) the magnitude of the second parameter effect increases with R, and if age is the second parameter, then over the range 0

  19. Halo model and halo properties in Galileon gravity cosmologies

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Lombriser, Lucas; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: llo@roe.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-04-01

    We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies.

  20. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) ‑ Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  1. Evolution of long-lived globular cluster stars. II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Chantereau, William

    2016-02-01

    Context. Long-lived stars in globular clusters exhibit chemical peculiarities with respect to their halo counterparts. In particular, sodium-enriched stars are identified as belonging to a second stellar population born from cluster material contaminated by the hydrogen-burning ashes of a first stellar population. Their presence and numbers in different locations of the colour-magnitude diagram provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the asymptotic giant branch (AGB) has recently been found to vary strongly from cluster to cluster (NGC 6752, 47 Tuc, and NGC 2808), while it is relatively constant on the red giant branch (RGB). Aims: We investigate the impact of both age and metallicity on the theoretical sodium spread along the AGB within the framework of the fast rotating massive star (FRMS) scenario for globular cluster self-enrichment. Methods: We computed evolution models of low-mass stars for four different metallicities ([Fe/H] = -2.2, -1.75, -1.15, -0.5) assuming the initial helium-sodium abundance correlation for second population stars derived from the FRMS models and using mass loss prescriptions on the RGB with two realistic values of the free parameter in the Reimers formula. Results: Based on this grid of models we derive the theoretical critical initial mass for a star born with a given helium, sodium, and metal content that determines whether that star will climb or not the AGB. This allows us to predict the maximum sodium content expected on the AGB for globular clusters as a function of both their metallicity and age. We find that (1) at a given metallicity, younger clusters are expected to host AGB stars exhibiting a larger sodium spread than older clusters and (2) at a given age, higher sodium dispersion along the AGB is predicted in the most metal-poor globular clusters than in the metal-rich ones. We also confirm the strong impact of the mass loss rate in the earlier

  2. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    SciTech Connect

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  3. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  4. FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale

    NASA Astrophysics Data System (ADS)

    Dias, B.; Barbuy, B.; Saviane, I.; Held, E. V.; Da Costa, G. S.; Ortolani, S.; Gullieuszik, M.; Vásquez, S.

    2016-05-01

    Context. Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. Aims: We obtain homogeneous metallicities and α-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. Methods: We observed R ~ 2000 spectra in the wavelength interval 456-586 nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. Results: [Fe/H], [Mg/Fe], and [α/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within σ = 0.08 dex over the interval -2.5< [Fe/H] < 0.0. Furthermore, a comparison of previous metallicity scales with our values yields σ< 0.16 dex. We also find that the distribution of [Mg/Fe] and [α/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters have been included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, only photometric metallicities were available previously for the first three

  5. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown worlds in the…

  6. Outer planet satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon.

  7. Modelling the Distribution of Globular Cluster Masses

    NASA Astrophysics Data System (ADS)

    McLaughlin, Dean E.; Pudritz, Ralph E.

    1994-12-01

    On the basis of various observational evidence, we argue that the overall present-day distribution of mass in globular cluster systems around galaxies as diverse as M87 and the Milky Way may be in large part reflective of robust formation processes, and little influenced by subsequent dynamical evolution of the globulars. With this in mind, Harris & Pudritz (1994, ApJ, 429, 177) have recently suggested that globular clusters with a range of masses are formed in pregalactic ``supergiant molecular clouds'' which grow by (coalescent) binary collisions with other clouds. We develop this idea more fully by solving for the steady-state mass distributions resulting from such coalescent encounters, with provisions made for the disruption of high-mass clouds due to star formation. Agglomeration models have been proposed in various guises to explain the mass spectra of planetesimals, stars, giant molecular clouds and their cores, and galaxies. The present theory generalizes aspects of these models, and appears able to account for the distribution of globular cluster masses at least above the so-called ``turnover'' of the globular cluster luminosity function.

  8. On the (non-)universality of halo density profiles

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt

    We present a systematic study of the density profiles of dark matter halos in LambdaCDM cosmologies, focusing on the question whether these profiles are "universal", i.e., whether they follow the same functional form regardless of halo mass, redshift, cosmology, and other parameters. The inner profiles (r [special character omitted] R vir) can be described as a function of only mass and concentration, and we thus begin by investigating whether there is a universal, cosmology-independent relation between those two parameters. We propose a model in which concentration is a function only of a halo's peak height and the local slope of the matter power spectrum. This model matches the concentrations in LambdaCDM and scale-free simulations, correctly extrapolates over 16 orders of magnitude in halo mass, and differs significantly from all previously proposed models at high masses and redshifts. We find that the outer profiles (r [special character omitted] Rvir) are remarkably universal across redshifts when radii are rescaled by R200m, whereas the inner profiles are most universal in units of R200c, highlighting that universality depends upon the definition of the halo boundary. Furthermore, we discover that the profiles exhibit significant deviations from the supposedly universal analytic formulae previously suggested in the literature, such as the NFW and Einasto forms. In particular, the logarithmic slope of the profiles of massive or rapidly accreting halos steepens more sharply than predicted around r ≈ R200m, where the steepness increases with increasing peak height or mass accretion rate. We propose a new, accurate fitting formula that takes these dependencies into account. Finally, we demonstrate that the profile steepening corresponds to the caustic at the apocenter of infalling matter on its first orbit. We call the location of the caustic the splashback radius, Rsp, and propose this radius as a new, physically motivated definition of the halo boundary. We

  9. Anchoring the Population II Distance Scale: Accurate Ages for Globular Clusters

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian C.; Chaboyer, Brian C.; Carney, Bruce W.; Latham, David W.; Dunca, Douglas; Grand, Terry; Layden, Andy; Sarajedini, Ataollah; McWilliam, Andrew; Shao, Michael

    2004-01-01

    The metal-poor stars in the halo of the Milky Way galaxy were among the first objects formed in our Galaxy. These Population II stars are the oldest objects in the universe whose ages can be accurately determined. Age determinations for these stars allow us to set a firm lower limit, to the age of the universe and to probe the early formation history of the Milky Way. The age of the universe determined from studies of Population II stars may be compared to the expansion age of the universe and used to constrain cosmological models. The largest uncertainty in estimates for the ages of stars in our halo is due to the uncertainty in the distance scale to Population II objects. We propose to obtain accurate parallaxes to a number of Population II objects (globular clusters and field stars in the halo) resulting in a significant improvement in the Population II distance scale and greatly reducing the uncertainty in the estimated ages of the oldest stars in our galaxy. At the present time, the oldest stars are estimated to be 12.8 Gyr old, with an uncertainty of approx. 15%. The SIM observations obtained by this key project, combined with the supporting theoretical research and ground based observations outlined in this proposal will reduce the estimated uncertainty in the age estimates to 5%).

  10. The assembly and evolution of the outter regions of Brightest Cluster Galaxies as traced by the star light and globular clusters.

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin Fabien Pierre

    2015-08-01

    In this talk I will present high-resolution cosmological zoom-in N-body simulations of the assembly of galaxy clusters focussed on the late assembly of the Brightest Cluster Galaxies (BCGs) and their globular clusters. At z=2 dark matter halos are populated with stellar components (and globular clusters) following the scaling relations of z=2 massive quiescent galaxies and their subsequent evolution is followed to the present-day. This leads to a significant build up of the outter envelope of BCGs through accretion and stripping of galaxies consistent with the observed surface brightness profiles of real objects strongly suggesting a dissipationless merger scenario for their assembly with little star formation involved. I will show how it is possible to also study the evolution of the red and blue globular cluster populations in BCGs under the dissipationless merger scenario. I will present predictions on their spatial distribution and kinematics in clusters and how these compare with observations of globular clusters in Virgo and also depend on the accretion history inside the galaxy clusters. Finally, I will also discuss how blue globular clusters in particular can be used to infer the past accretion history of BCGs by tracing low-surface brightness features of shredded galaxies in BCGs otherwise not recognisable/detectable in the light.

  11. Radiative transfer modelling of dust in IRAS 18333-2357: the only planetary nebula in the metal-poor globular cluster M22

    NASA Astrophysics Data System (ADS)

    Muthumariappan, C.; Parthasarathy, M.; Ita, Y.

    2013-10-01

    We report results from our 1D radiative transfer modelling of dust in the hydrogen-deficient planetary nebula IRAS 18333-2357 located in the globular cluster M22. A spectral energy distribution was constructed from archival UV, optical and IR data including Akari photometry at its 18, 65, 90, 140 and 160 μm bands. An archival Spitzer spectrum shows several aromatic infrared bands indicating a carbon-rich dust shell. The spectral energy distribution is well fitted by a model which considers a modified Mathis-Rumpl-Nordsieck grain size distribution and a radial density function which includes compression of the nebula by its interaction with the Galactic halo gas. The model indicates that a significant amount of cold dust, down to a temperature of 50 K, is present at the outer edge of the nebula. At the inner edge, the dust temperature is 97 K. The dust shell has a size of 26 ± 6.3 arcsec. We find a large amount of excess emission, over the emission from thermal equilibrium dust, in the mid-IR region. This excess emission may have originated from the thermally fluctuating dust grains with size ˜12 Å in the UV field of the hot central star. These grains, however, come from the same population and conditions as the thermal equilibrium grains. The dust mass of this grain population is (1.2 ± 0.73) × 10-3 M⊙ and for the thermal equilibrium grains it is (1.4 ± 0.60) × 10-4 M⊙, leading to a total dust mass of (1.3 ± 0.91) × 10-3 M⊙. The derived dust-to-gas mass ratio is 0.3 ± 0.21. For a derived bolometric luminosity of (1700 ± 1230) L⊙ and an assumed central star mass of (0.55 ± 0.02) M⊙, the surface gravity is derived to be log g = 4.6 ± 0.24. We propose that the progenitor of IRAS 18333-2357 had possibly evolved from an early stellar merger case and the hydrogen-deficient nebula results from a late thermal pulse. The hydrogen-rich nebula, which was ejected by the progenitor during its normal asymptotic giant branch evolution, might have been

  12. Reconstructing galaxy histories from globular clusters

    NASA Astrophysics Data System (ADS)

    West, Michael J.; Côté, Patrick; Marzke, Ronald O.; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant `island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  13. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events. PMID:14702077

  14. Nova-driven winds in globular clusters

    NASA Technical Reports Server (NTRS)

    Scott, E. H.; Durisen, R. H.

    1978-01-01

    Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.

  15. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  16. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    SciTech Connect

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.; Placco, Vinicius M.; Tumlinson, Jason; Martell, Sarah L. E-mail: kcf@mso.anu.edu.au E-mail: vplacco@gemini.edu E-mail: smartell@aao.gov.au

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner- and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.

  17. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  18. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  19. Halo modelling in chameleon theories

    SciTech Connect

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  20. Galaxy Kinematics with VIRUS-P: The Dark Matter Halo of M87

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Adams, J. J.

    2011-01-01

    We have conducted axisymmetric, orbit-based dynamical modeling on M87, the second rank galaxy in the Virgo cluster, and find clear evidence for a large dark matter halo. The total enclosed mass within 47 kpc is 6e12 solar masses making M87 one of the most massive dark halos ever measured in the local universe. To construct these dynamical models we fit for the stellar mass-to-light ratio and two dark halo parameters, assuming a cored logarithmic dark halo profile. The dynamical data comes from existing globular cluster data, SAURON stellar kinematics in the center of M87, and new 2-D stellar kinematics taken with VIRUS-P, an integral field unit currently deployed at the McDonald Observatory. These kinematics add significantly to the current data set on M87 and allow for a direct comparison between different dynamical tracers. We find good agreement between the dynamics of the stars and globular cluster data at large radii, indicating these two systems are in equilibrium. However, the enclosed mass we measure is 60% higher than recent mass estimates calculated from X-ray gas measurements. Understanding the systematics present in the various tools used to estimate mass in local galaxies is critical to our understanding of the formation history and the role dark matter plays in the evolution of these galaxies. We also report on the current status of a VIRUS-P survey of the stellar kinematics of local, massive elliptical galaxies. Our data set includes giant field ellipticals, cluster members and brightest cluster galaxies. The goal of this project is to quantify the amount of dark matter in these systems in order to explore how the role of cluster environment influences both the amount and shape of the dark matter profile.

  1. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  2. FIRST RESULTS FROM THE NOAO SURVEY OF THE OUTER LIMITS OF THE MAGELLANIC CLOUDS

    SciTech Connect

    Saha, Abhijit; Olsen, Knut; Knezek, Patricia; Harris, Jason; Claver, Jennifer; Olszewski, Edward W.; Brondel, Brian; Smith, Chris; Rest, Armin; Subramaniam, Annapurni; Seitzer, Patrick; Cook, Kem H.; Minniti, Dante; Suntzeff, Nicholas B. E-mail: kolsen@noao.ed E-mail: jharris@30doradus.or E-mail: eolszewski@as.arizona.ed E-mail: csmith@ctio.noao.ed E-mail: purni@iiap.res.i E-mail: kcook@llnl.go E-mail: suntzeff@physics.tamu.ed

    2010-12-15

    We describe the first results from the Outer Limits Survey, an NOAO survey designed to detect, map, and characterize the extended structure of the Large and Small Magellanic Clouds (LMC and SMC). The survey consists of deep images of 55 0.{sup 0}6 x 0.{sup 0}6 fields distributed at distances up to 20{sup 0} from the Clouds, with 10 fields at larger distances representing controls for contamination by Galactic foreground stars and background galaxies. The field locations probe the outer structure of both the LMC and SMC, as well as exploring areas defined by the Magellanic Stream, the Leading Arm, and the LMC orbit as recently measured from its proper motion. The images were taken with C, M, R, I, and DDO51 filters on the CTIO Blanco 4 m telescope and Mosaic2 camera, with supporting calibration observations taken at the CTIO 0.9 m telescope. The CRI images reach depths below the oldest main-sequence (MS) turnoffs at the distance of the Clouds, thus yielding numerous probes of structure combined with good ability to measure stellar ages and metallicities. The M and DDO51 images allow for discrimination of LMC and SMC giant stars from foreground dwarfs, allowing us to use giants as additional probes of Cloud structure and populations. From photometry of eight fields located at radii of 7{sup 0}-19{sup 0} north of the LMC bar, we find MS stars associated with the LMC out to 16{sup 0} from the LMC center, while the much rarer giants can only be convincingly detected out to 11{sup 0}. In one field, designated as a control, we see the unmistakable signature of the Milky Way (MW) globular cluster NGC 1851, which lies several tidal radii away from the field center. The color-magnitude diagrams show that while at 7{sup 0} radius LMC populations as young as 500 Myr are present, at radii {approx}>11{sup 0} only the LMC's underlying old metal-poor ([M/H] {approx}-1) population remains, demonstrating the existence of a mean population gradient at these radii. Nevertheless, even

  3. Mapping Baryons in the Halo of NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2012-10-01

    We propose observing 5 background QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 53-183 kpc. NGC 1097 is a bright {-21.1} spiral galaxy that has the highest surface density of background, UV-bright QSOs in the nearby Universe. The galaxy hosts a low luminosity AGN at its core, surrounded by a ring of intense star-forming regions; there is also evidence from stellar tidal streams that the galaxy has recently cannibalized a number of dwarf galaxies, and a companion dwarf elliptical is still clearly merging with the outer disk. We aim to examine the physical conditions of gas that fills the halo of such an active galaxy. We will search primarily for Lya and SiIV absorption lines in the spectra of the background QSOs, as well as weak NV from hot gas. At the lowest impact parameters, we may also be able to find absorption lines from low ionization species. Our goals are to test whether the halo of NGC 1097 contains the same distribution of Lyman-alpha forest clouds seen at higher redshifts out to large distances from galaxies, and determine how the HI column density, covering fraction, and temperature of the gas decline with radius in a single galaxy halo. We will examine whether the velocities of the absorbers are consistent with those expected from gas co-rotating in the dark matter halo of the galaxy, or whether there exists a distribution of velocities that might indicate outflows from the galactic disk or from the central AGN, or, alternatively, from inflows from the IGM. Our map of Lya and SiIV around NGC 1097 will provide an important template for understanding the origin of higher redshift QSO absorption line systems.

  4. The Stellar Halos of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' × 107''), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 pixel-1 in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions σ* > 150 km s-1, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between σ* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are ~ an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 Re , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high α-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  5. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  6. Are the globular clusters with significant internal [Fe/H] spreads all former dwarf galaxy nuclei?

    NASA Astrophysics Data System (ADS)

    da Costa, G. S.

    2016-08-01

    In this contribution the hypothesis that the Galactic globular clusters with substantial internal [Fe/H] abundance ranges are the former nuclei of disrupted dwarf galaxies is discussed. Evidence considered includes the form of the metallicity distribution function, the occurrence of large diffuse outer envelopes in cluster density profiles, and the presence of ([s-process/Fe], [Fe/H]) correlations. The hypothesis is shown to be plausible but with the caveat that if significantly more than the current nine clusters known to have [Fe/H] spreads are found, then re-evaluation will be required.

  7. Observations of globular membranes and apparent elementary particles in rat mitochondria, in situ.

    PubMed

    Baur, P S; Stacey, T R

    1978-01-01

    Ultrastructural details of rat skeletal muscle, fixed in a PIPES-buffered glutaraldehyde solution, included the globular configuration of the outer and inner mitochondrial membranes as well as small transparent particles (80--100A diameter) distributed throughout the matrix of these organelles. The size of these particles and their intimate relationship with the innermost surface of the cristae suggests that they may represent an in situ visualization of the elementary particles once reported in intact cells and frequently observed in negatively stained mitochondrial preparations. The membrane configurations and particles were not discernable in these tissues when a phosphate buffer system was used in the fixation regimen. PMID:725795

  8. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  9. The IMF of Globular Clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, G.; Paresce, F.

    1999-12-01

    Accurate luminosity functions (LF) for a dozen globular clusters have now been measured at or just beyond their half-light radius using HST. They span almost the entire cluster main sequence below 0.75 MO. All these clusters exhibit LF that rise continuously from an absolute I magnitude MI 6 to a peak at MI 8.5-9 and then drop with increasing MI. Transformation of the LF into mass functions (MF) by means of the most recent mass luminosity relations that are consistent with all presently available data on the physical properties of low mass, low metallicity stars shows that all the LF observed so far can be obtained from MF having the shape of a log-normal distribution with characteristic mass mc=0.33 +/- 0.03 MO and standard deviation sigma =1.81 +/- 0.19. In particular, the LF of the four clusters in the sample that extend well beyond the peak luminosity down to close to the Hydrogen burning limit (NGC6341, NGC6397, NGC6752, and NGC6809) can only be reproduced by such distributions and not by a single power-law in the 0.1 - 0.6 MO range. After correction for the effects of mass segregation, the variation of the ratio of the number of higher to lower mass stars with cluster mass or any simple orbital parameter or the expected time to disruption recently computed for these clusters shows no statistically significant trend over a range of this last parameter of more than a factor of 100. We conclude that the global MF of these clusters have not been measurably modified by evaporation and tidal interactions with the Galaxy and, thus, should reflect the initial distribution of stellar masses. Since the log-normal function that we find is also very similar to the one obtained independently for much younger clusters and to the form expected theoretically, the implication seems to be unavoidable that it represents the true stellar IMF for this type of stars in this mass range.

  10. STRUCTURAL PROPERTIES OF NON-SPHERICAL DARK HALOS IN MILKY WAY AND ANDROMEDA DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2015-09-01

    We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of dark halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.

  11. RR Lyrae Variables in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Contreras, R.; Salinas, R.; Escobar, M. E.; Smith, H. A.; De Lee, N.; Pritzl, B. J.; Borissova, J.

    2004-12-01

    RR Lyrae variables are the cornerstone of the Population II distance scale, and yet our knowledge of the RR Lyrae variable star content in Galactic globular clusters is now known to be surprisingly incomplete. In the present paper, we present our new results in this area. Highlights of our work includes: i) The discovery of a vast number of variable stars in M62 (NGC 6266), making it one of the three most RR Lyrae-rich globular clusters known, and also placing it as Oosterhoff type I in spite of a blue horizontal branch morphology; ii) The determination of light curves and Oosterhoff types for globular clusters associated with the Sagittarius dSph galaxy, including NGC 5634, Arp 2, and Terzan 8; iii) A reassessment of the variable star content in the moderately metal-rich globular clusters M69 and NGC 6304; iv) The first theoretical calibration of the RR Lyrae period-luminosity-metallicity relation in I, J, and H, as well as an updated calibration of the K-band relation---along with comparisons against the empirical data, particularly in I. This project was supported in part by Proyecto Fondecyt Regular 1030954.

  12. Tied down: tethering redox proteins to the outer membrane in Neisseria and other genera.

    PubMed

    Li, Xi; Parker, Steven; Deeudom, Manu; Moir, James W

    2011-12-01

    Typically, the redox proteins of respiratory chains in Gram-negative bacteria are localized in the cytoplasmic membrane or in the periplasm. An alternative arrangement appears to be widespread within the betaproteobacterial genus Neisseria, wherein several redox proteins are covalently associated with the outer membrane. In the present paper, we discuss the structural properties of these outer membrane redox proteins and the functional consequences of this attachment. Several tethered outer membrane redox proteins of Neisseria contain a weakly conserved repeated structure between the covalent tether and the redox protein globular domain that should enable the redox cofactor-containing domain to extend from the outer membrane, across the periplasm and towards the inner membrane. It is argued that the constraints imposed on the movement and orientation of the globular domains by these tethers favours the formation of electron-transfer complexes for entropic reasons. The attachment to the outer membrane may also affect the exposure of the host to redox proteins with a moonlighting function in the host-microbe interaction, thus affecting the host response to Neisseria infection. We identify putative outer membrane redox proteins from a number of other bacterial genera outside Neisseria, and suggest that this organizational arrangement may be more common than previously recognized.

  13. A study of rotating globular clusters. The case of the old, metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Bianchini, P.; Koch, A.; Frank, M. J.; Martin, N. F.; van de Ven, G.; Puzia, T. H.; McDonald, I.; Johnson, C. I.; Zijlstra, A. A.

    2014-07-01

    Context. NGC 4372 is a poorly studied old, very metal-poor globular cluster (GC) located in the inner Milky Way halo. Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. We build a velocity dispersion profile and a systemic rotation curve using this kinematic data set. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a Markov chain Monte Carlo fitting algorithm. From this, we derive the cluster's half-light radius and ellipticity as rh = 3.44' ± 0.04' and ɛ = 0.08 ± 0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km s-1) for its metallicity. This puts it in line, however, with two other exceptional, very metal-poor GCs: M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC Mdyn = 2.0 ± 0.5 × 105M⊙ based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M⊙/L⊙, representative of an old, purely stellar population. Based on

  14. Touching the void: A striking drop in stellar halo density beyond 50 kpc

    SciTech Connect

    Deason, A. J.; Rockosi, C. M.; Belokurov, V.; Koposov, S. E.

    2014-05-20

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 ≲ D {sub BS}/kpc ≲ 75, 40 ≲ D {sub BHB}/kpc ≲ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index α ∼ 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (α ∼ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  15. Touching The Void: A Striking Drop in Stellar Halo Density Beyond 50 kpc

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Belokurov, V.; Koposov, S. E.; Rockosi, C. M.

    2014-05-01

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 <~ D BS/kpc <~ 75, 40 <~ D BHB/kpc <~ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index α ~ 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (α ~ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  16. The Galactic Halo and CDM

    NASA Astrophysics Data System (ADS)

    Merrifield, M. R.

    2004-07-01

    This paper reviews the available information on the central density distribution and shape of the Milky Way's halo. At present, there is no strong evidence that the Milky Way's halo properties conflict with the predictions of cold dark matter (CDM): a primordial central power law cusp can be accommodated by the observations, and the current constraints on flattening are also consistent with the predictions of the theory. If you want to pick a fight with CDM, then the Milky Way is probably not the place to do it.

  17. Simulation of halo particles with Simpsons

    NASA Astrophysics Data System (ADS)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  18. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  19. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  20. The Crab Halo

    NASA Astrophysics Data System (ADS)

    Lundqvist, Peter

    2011-10-01

    The Crab Nebula, along with its central pulsar and its explosive originin SN 1054, plays a crucial role in our understanding of the linkbetween supernovae and pulsar formation and activity.Yet, there are fundamental uncertainties in the nature of the event thathave not been settled in more than two decades of investigation.The observed mass in the nebula and pulsar is nearly half of theexpected initial stellar mass and the observed energy {much of whichmay come from the central pulsar} is only a fewpercent of the typical supernova energy.An attractive solution to this ``missing mass'' problem is that this massis in a high velocity envelope around the observed Crab Nebula.The envelope would have most of the energy of the explosion {roughly 10^{51} ergs}, bringing the energy up to that typical of a Type II supernova. The fact that the Crab filaments have a measured acceleration and show no deceleration at the outer edge is consistent with this hypothesis. The lack of an interaction region created by the fast shell can be attributed to a very low density around the supernova. We propose to search for the fast shell by taking a COS spectrum of the Crab pulsar in the region of the C IV 1550 line. We have carried out time-dependent ionization calculations that show that this line should produce a detectable broad, blueshifted absorption if the shell is present.

  1. A WFC3/HST VIEW OF THE THREE STELLAR POPULATIONS IN THE GLOBULAR CLUSTER NGC 6752

    SciTech Connect

    Milone, A. P.; Marino, A. F.; Yong, D. E-mail: amarino@mso.anu.edu.au; and others

    2013-04-20

    Multi-band Hubble Space Telescope photometry reveals that the main sequence, sub-giant, and the red-giant branch of the globular cluster NGC 6752 splits into three main components in close analogy with the three distinct segments along its horizontal branch stars. These triple sequences are consistent with three stellar groups: a stellar population with a chemical composition similar to field-halo stars (Population a), a Population (c) with enhanced sodium and nitrogen, depleted carbon and oxygen, and an enhanced helium abundance ({Delta}Y {approx} 0.03), and a Population (b) with an intermediate (between Populations a and c) chemical composition and slightly enhanced helium ({Delta}Y {approx} 0.01). These components contain {approx}25% (Population a), {approx}45% (Population b), and {approx}30% (Population c) of the stars. No radial gradient for the relative numbers of the three populations has been identified out to about 2.5 half-mass radii.

  2. Multiple populations in the Sagittarius nuclear cluster M 54 and in other anomalous globular clusters

    NASA Astrophysics Data System (ADS)

    Milone, A. P.

    2016-08-01

    M 54 is the central cluster of the Sagittarius dwarf galaxy. This stellar system is now in process of being disrupted by the tidal interaction with the Milky Way and represents one of the building blocks of the Galactic Halo. Recent discoveries, based on the synergy of photometry and spectroscopy have revealed that the color-magnitude diagram (CMD) of some massive, anomalous, Globular Clusters (GCs) host stellar populations with different content of heavy elements. In this paper, I use multi-wavelength Hubble Space Telescope (HST) photometry to detect and characterize multiple stellar populations in M 54. I provide empirical evidence that this GC shares photometric and spectroscopic similarities with the class of anomalous GCs. These findings make it tempting to speculate that, similarly to Sagittarius nuclear cluster M 54, other anomalous GCs were born in an extra-Galactic environment.

  3. A FOSSIL BULGE GLOBULAR CLUSTER REVEALED BY VERY LARGE TELESCOPE MULTI-CONJUGATE ADAPTIVE OPTICS

    SciTech Connect

    Ortolani, Sergio; Barbuy, Beatriz; Momany, Yazan; Saviane, Ivo; Jilkova, Lucie; Bica, Eduardo; Salerno, Gustavo M.; Jungwiert, Bruno E-mail: barbuy@astro.iag.usp.br E-mail: isaviane@eso.org E-mail: bica@if.ufrgs.br

    2011-08-10

    The globular cluster HP 1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics Demonstrator on the Very Large Telescope allowed us to acquire high-resolution deep images that, combined with first epoch New Technology Telescope data, enabled us to derive accurate proper motions. The cluster and bulge fields' stellar contents were disentangled through this process and produced an unprecedented definition in color-magnitude diagrams of this cluster. The metallicity of [Fe/H] {approx} -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch imply an age older than the halo average. Orbit reconstruction results suggest that HP 1 is spatially confined within the bulge.

  4. The effect of helium diffusion on the ages of globular clusters

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Deliyannis, Constantine P.; Demarque, Pierre; Pinsonneault, M. H.; Sarajedini, Ata

    1992-01-01

    Evolutionary tracks for halo stars were calculated, and isochrones which include the effects of microscopic diffusion of helium were constructed. The isochrones were fitted to a metal poor (M92) and a moderately metal rich (NGC 288) globular cluster using an updated version of the Revised Yale Isochrone color calibration. Ages of the two clusters were also determined using the difference between the turnoff magnitude and horizontal branch magnitude, and the difference in color between the main-sequence turnoff and lower giant branch. Considering all methods and constraints, diffusion is argued to reduce the derived ages of M92 and NGC 288 by 0.5-1 Gyr. The maximum age reduction that diffusion could cause is 3 Gyr. Age estimates including diffusion indicate that M92 is 16 +/- 2 Gyr old, and that M92 is about 3 Gyr older than NGC 288, assuming that the clusters have the same O/Fe of +0.4.

  5. Photometric and Kinematic Studies of Extragalactic Globular Cluster Systems

    NASA Astrophysics Data System (ADS)

    Windschitl-Dowell, Jessica L.

    2015-01-01

    Globular clusters (GCs) are compact, luminous collections of stars created during the early stages of galaxy formation. As a result, the properties of GC systems provide important clues about the formation, merger history, and structure of their host galaxies. In particular, kinematic studies of GCs can be used to investigate the dark matter distribution in galaxy halos and provide observational evidence that can be used to constrain models of galaxy formation. I will present our study of the GC systems of two spiral galaxies, NGC 891 and NGC 1055, and show how we used wide-field BVR imaging from the WIYN 3.5-m telescope to detect the GC population and measure the global properties of the system. We quantified the radial distribution of the GC system and total number of GCs in these galaxies and compared the results to those of other galaxies.I will also present the results of spectroscopic follow-up for two giant galaxies: the S0 galaxy NGC 4594 (M104), and the elliptical galaxy NGC 3379 (M105). Using spectra taken with AAT/AAOmega, WIYN/HYDRA, and MMT/Hectospec, I measured the radial velocities of GCs, and combined them with published results to determine the mass distribution and V-band mass-to-light (M/LV) ratio profile for each galaxy out to large effective radius (7-9 Re). I compared our results to mass estimates from other kinematic tracers and also considered them in the context of galaxy formation models. For both galaxies, I found that the M/LV profiles increase with radius and do not flatten, which suggests that the dark matter halos in these galaxies extend to the edge of our data. I also looked for evidence of rotation within the GC systems, and found that neither system exhibits significant rotation around the host galaxy. Finally, I examined the velocity dispersion of each GC system as a function of radius and found kinematic differences between the red, metal-rich and blue, metal-poor GC subpopulations.

  6. A Synoptic Map of Halo Substructures from the Pan-STARRS1 3π Survey

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Ferguson, Annette M. N.; Schlafly, Edward F.; Martin, Nicolas F.; Rix, Hans-Walter; Bell, Eric F.; Finkbeiner, Douglas P.; Goldman, Bertrand; Martínez-Delgado, David; Sesar, Branimir; Wyse, Rosemary F. G.; Burgett, William S.; Chambers, Kenneth C.; Draper, Peter W.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Metcalfe, Nigel; Wainscoat, Richard J.; Waters, Christopher

    2016-08-01

    We present a panoramic map of the entire Milky Way halo north of δ ˜ -30° (˜ 30,000 deg2), constructed by applying the matched-filter technique to the Pan-STARRS1 3π Survey dataset. Using single-epoch photometry reaching to g ˜22, we are sensitive to stellar substructures with heliocentric distances between 3.5 and ˜35 kpc. We recover almost all previously-reported streams in this volume and demonstrate that several of these are significantly more extended than earlier datasets have indicated. In addition, we also report five new candidate stellar streams. One of these features appears significantly broader and more luminous than the others and is likely the remnant of a dwarf galaxy. The other four streams are consistent with a globular cluster origin, and three of these are rather short in projection (≲ 10°), suggesting that streams like Ophiuchus may not be that rare. Finally, a significant number of more marginal substructures are also revealed by our analysis; many of these features can also be discerned in matched-filter maps produced by other authors from SDSS data, and hence they are very likely to be genuine. However, the extant 3π data is currently too shallow to determine their properties or produce convincing CMDs. The global view of the Milky Way provided by Pan-STARRS1 provides further evidence for the important role of both globular cluster disruption and dwarf galaxy accretion in building the Milky Way's stellar halo.

  7. Extensive gaseous haloes surrounding giant elliptical galaxies - Evidence from depolarization in radio galaxies

    NASA Astrophysics Data System (ADS)

    Strom, R. G.; Jaegers, W. J.

    1988-04-01

    Radio polarization measurements have been used to investigate large scale gaseous components associated with some thirteen double radio sources. At 49 cm a significant proportion of the bridge emission, roughly centered on the parent galaxy, is invariably found to be unpolarized. The authors present evidence that this lack of polarization at long wavelengths is the result of differential Faraday rotation in a large scale halo associated with the central (usually elliptical) galaxy. The haloes, which extend beyond 100 kpc, appear to be the outer envelopes of hot gas such as that observed in the form of extended X-ray emission associated with a number of nearby early-type galaxies.

  8. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  9. Globular Cluster Streams as Galactic High-Precision Scales - The Poster Child Palomar 5

    NASA Astrophysics Data System (ADS)

    Kupper, Andreas Hans Wilhelm; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio

    2015-01-01

    We model the tidal stream of the Milky Way globular cluster Palomar 5 (Pal 5), and show that the unique geometry of the problem yields powerful constraints on the model parameters characterizing the Local Standard of Rest (LSR), the Milky Way and Pal 5 itself. Using only SDSS data and a few radial velocities from the literature, we find that the distance of the Sun from the Galactic Center is 8.30+/-0.25 kpc, and the LSR transverse velocity is 242+/-16 km/s. Assuming that the dark halo of the Galaxy follows a NFW density profile, we fit it with a virial mass of (1.6+/-0.4) 1012Msun, a virial radius of 195+/-19 kpc, and hence a rather low concentration of 5+/-2. Moreover, we find it with a flattening of qz = 0.95(+0.16)(-0.12) to be essentially spherical - at least within the inner 25 kpc, which are effectively probed by Pal 5. We also determine Pal 5's mass, distance and proper motions independently from other methods, which enables us to perform vital cross-checks for these methods. We conclude that finding more globular cluster streams is essential for mapping out the structure of the halo of our Galaxy to high precision. Finally, we point out that all our best-fit models yield similar substructure patterns as the ones observed in the Pal 5 stream within about 5 kpc of the cluster. The origin of these substructures is epicylic motion of stars along the stream. Such epicylic substructures have to be taken into account when searching tidal streams for signs of past encounters with dark-matter subhalos

  10. The Outer Ejecta

    NASA Astrophysics Data System (ADS)

    Weis, Kerstin

    η Carinae is surrounded by a complex circumstellar nebula ejected during more than one eruption, the great eruption in the 1840s and the second or lesser eruption in the 1890s. Beyond the well-defined edges of its famous bipolar nebula are additional nebulous features and ejecta referred to as the outer ejecta. The outer ejecta includes a variety of structures of very different sizes and morphologies distributed in a region 0.67 pc in diameter with a mass of > 2-4 M⊙. Some individual features in the outer ejecta are moving extremely fast, up to 3,200 km/s, with most of the expansion velocities between 400-900 km/s. As a consequence of these high velocities, structures in the outer ejecta interact with the surrounding medium and with each other. The strong shocks that arise from these interactions give rise to soft X-ray emission. The global expansion pattern of the outer ejecta reveals an overall bipolar distribution, giving a symmetric structure to its morphologically more irregular appearance. The long, highly collimated filaments, called strings, are particularly unusual. The material in the strings follow a Hubble-flow and appear to originate at the central star. The properties of the nebulae associated with other LBVs also are described and compared with η Car. HR Car and AG Car show similar bipolar morphologies but are much older; HR Car's nebula may be η Car's older twin. The larger, extended nebulae detected around the giant eruption LBV P Cygni, and the extended nebulosity associated with AG Car and HR Car could be either from previous eruptions or facsimiles to η Car's outer ejecta.

  11. A STATISTICAL ANALYSIS OF THE LATE-TYPE STELLAR CONTENT IN THE ANDROMEDA HALO

    SciTech Connect

    Koch, Andreas; Rich, R. Michael E-mail: rmr@astro.ucla.ed

    2010-06-15

    We present a statistical characterization of the carbon-star to M-giant (C/M) ratio in the halo of M31. Based on the application of pseudo-filter bandpasses to our Keck/DEIMOS spectra, we measure the 81 - 77 color index of 1288 stars in the giant stellar stream and in halo fields out to large distances. From this well-established narrow-band system, supplemented by V - I colors, we find only a low number (five in total) of C-star candidates. The resulting low C/M ratio of 10% is consistent with the values in the M31 disk and inner halo from the literature. Although our analysis is challenged by small number statistics and our sample selection, there is an indication that the oxygen-rich M-giants occur in similar number throughout the entire halo. We also find no difference in the C-star population of the halo fields compared to the giant stream. The very low C/M ratio is at odds with the observed low metallicities and the presence of intermediate-age stars at large radii. Our observed absence of a substantial carbon-star population in these regions indicates that the (outer) M31 halo cannot be dominated by the debris of disk-like or Small-Magellanic-Cloud-type galaxies, but rather resemble the dwarf elliptical NGC 147.

  12. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397.

  13. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397. PMID:23903747

  14. The Globular Cluster System of the Spiral Galaxy NGC 7814

    NASA Astrophysics Data System (ADS)

    Rhode, Katherine L.; Zepf, Stephen E.

    2003-11-01

    We present the results of a wide-field photometric study of the globular cluster (GC) system of the edge-on Sab spiral NGC 7814. This is the first spiral to be fully analyzed from our survey of the GC systems of a large sample of galaxies beyond the Local Group. NGC 7814 is of particular interest because a previous study estimated that it has 500-1000 GCs, giving it the largest specific frequency (SN) known for a spiral. Understanding this galaxy's GC system is important in terms of our understanding of the GC populations of spirals in general and has implications for the formation of massive galaxies. We observed the galaxy in BVR filters with the WIYN 3.5 m telescope and used image classification and three-color photometry to select GC candidates. We also analyzed archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images of NGC 7814, both to help quantify the contamination level of the WIYN GC candidate list and to detect GCs in the inner part of the galaxy halo. Combining HST data with high-quality ground-based images allows us to trace the entire radial extent of this galaxy's GC system and determine the total number of GCs directly through observation. We find that rather than being an especially high-SN spiral, NGC 7814 has <~200 GCs and SN~1, making it comparable to the two most well-studied spiral galaxies, the Milky Way and M31. We explore the implications of these results for models of the formation of galaxies and their GC systems. The initial results from our survey suggest that the GC systems of typical elliptical galaxies can be accounted for by the merger of two or more spirals, but that for highly luminous elliptical galaxies, additional physical processes may be needed.

  15. Evidence for a Significant Intermediate-Age Population in the M31 Halo from Main Sequence Photometry

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Ferguson, Henry C.; Smith, Ed; Kimble, Randy A.; Sweigart, Allen V.; Renzini, Alvio; Rich, R. Michael; Vandenberg, Don A.

    2003-01-01

    We present a color-magnitude diagram (CMD) for a minor-axis field in the halo of the Andromeda galaxy (M3l), 51 arcmin (11 kpc) from the nucleus. These observations, taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, are the deepest optical images yet obtained, attaining 50% completeness at m(sub v) = 30.7 mag. The CMD, constructed from approx. 3 x 10(exp 5) stars, reaches more than 1.5 mag fainter than the old main-sequence turnoff. Our analysis is based on direct comparisons to ACS observations of four globular clusters through the same filters, as well as chi square fitting to a finely-spaced grid of calibrated stellar-population models. We find that the M31 halo contains a major (approx. 30% by mass) intermediate-age (6-8 Gyr) metal-rich ([Fe/H] greater than -0.5) population, as well as a significant globular-cluster age (11-13.5 Gyr) metal-poor population. These findings support the idea that galaxy mergers played an important role in the formation of the M31 halo.

  16. A spectroscopic study of the Globular Cluster M28 (NGC 6626)

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Moni Bidin, C.; Mauro, F.; Munoz, C.; Monaco, L.

    2016-10-01

    We present the abundance analysis for a sample of 17 red giant branch stars in the metal-poor globular cluster M28 based on high resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, and Eu. We find a metallicity of [Fe/H]=-1.29±0.01 and an α-enhancement of +0.34±0.01 (errors on the mean), typical of Halo Globular Clusters in this metallicity regime. A large spread is observed in the abundances of light elements O, Na, and Al. Mg also shows an anticorrelation with Al with a significance of 3σ. The cluster shows a Na-O anticorrelation and a Na-Al correlation. This correlation is not linear but "segmented" and that the stars are not distributed continuously, but form at least 3 well separated sub-populations. In this aspect M28 resembles NGC 2808 that was found to host at least 5 sub-populations. The presence of a Mg-Al anticorrelation favor massive AGB stars as the main polluters responsible for the multiple-population phenomenon.

  17. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  18. Heavy elements in globular clusters: The role of asymptotic giant branch stars

    SciTech Connect

    Straniero, O.; Cristallo, S.; Piersanti, L.

    2014-04-10

    Recent observations of heavy elements in globular clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few globular clusters only. We show that the combined pollution of asymptotic giant branch (AGB) stars with a mass ranging between 3 to 6 M {sub ☉} may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two very different neutron-capture nucleosynthesis episodes. The first is due to the {sup 13}C(α, n){sup 16}O reaction and takes place during the interpulse periods. The second is due to the {sup 22}Ne(α, n){sup 25}Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Rb, Sr, Y, Zr). The first mainly operates in the less massive AGB stars, while the second dominates in the more massive. From the heavy-s/light-s ratio, we derive that the pollution phase should last for 150 ± 50 Myr, a period short enough compared to the formation timescale of the globular cluster system, but long enough to explain why the s-process pollution is observed in a few cases only. With few exceptions, our theoretical prediction provides a reasonable reproduction of the observed s-process abundances, from Sr to Hf. However, Ce is probably underproduced by our models, while Rb and Pb are overproduced. Possible solutions are discussed.

  19. Visibility of halos and rainbows.

    PubMed

    Gedzelman, S D

    1980-09-15

    A theory for the visibility of halos and rainbows is presented. The light reaching the observer's eye from the direction of the halo or rainbow is assumed to consist of two parts: (1) a beam of singly scattered sunlight (or moonlight) from a cloud of ice crystals or a rainswath, which, in turn, has suffered depletion by scattering or absorption in its passage to the observer, and (2) the general background brightness. The model is able to account for several long-known qualitative observations concerning halos, namely, that the brightest halos are produced by optically thin cirrostratus clouds (i.e., for which the cloud optical depth tau(c), halo is visible much more frequently than the bottom. (This is shown to result in good part from extinction by the turbid atmosphere.) With the rainbow the brightness of the beam increases monotonically with the optical depth tau(R) of the sunlit part of the rainswath, but the increase is quite small for tau(R) >/=1. On the other hand, the brightness of the background increases more rapidly with tau(R) for tau(R)> 1 so that the rainbow appears most easily visible for tau(R) less, similar1. This implies that the most easily visible rainbows are produced by light or moderate showers rather than heavy downpours. Finally, suggestions are made for applying the theory to other atmospheric optical phenomena, such as coronas and glories.

  20. Visibility of halos and rainbows.

    PubMed

    Gedzelman, S D

    1980-09-15

    A theory for the visibility of halos and rainbows is presented. The light reaching the observer's eye from the direction of the halo or rainbow is assumed to consist of two parts: (1) a beam of singly scattered sunlight (or moonlight) from a cloud of ice crystals or a rainswath, which, in turn, has suffered depletion by scattering or absorption in its passage to the observer, and (2) the general background brightness. The model is able to account for several long-known qualitative observations concerning halos, namely, that the brightest halos are produced by optically thin cirrostratus clouds (i.e., for which the cloud optical depth tau(c), halo is visible much more frequently than the bottom. (This is shown to result in good part from extinction by the turbid atmosphere.) With the rainbow the brightness of the beam increases monotonically with the optical depth tau(R) of the sunlit part of the rainswath, but the increase is quite small for tau(R) >/=1. On the other hand, the brightness of the background increases more rapidly with tau(R) for tau(R)> 1 so that the rainbow appears most easily visible for tau(R) less, similar1. This implies that the most easily visible rainbows are produced by light or moderate showers rather than heavy downpours. Finally, suggestions are made for applying the theory to other atmospheric optical phenomena, such as coronas and glories. PMID:20234562

  1. Discovery of Remote Globular Cluster Satellites of M87

    NASA Astrophysics Data System (ADS)

    Sparkman, Lea; Guo, Rachel; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Ferrarese, Laura; Cote, Patrick; NGVS Collaboration

    2016-01-01

    We present the discovery of several tens of globular clusters (GCs) in the outer regions of the giant elliptical M87, the brightest galaxy in the Virgo Cluster. These M87 GC satellites were discovered in the course of Keck/DEIMOS spectroscopic follow up of GC candidates that were identified in the Next Generation Virgo cluster Survey (NGVS). Specifically, the primary targets of this Keck spectroscopic campaign were GC satellites of early-type dwarf (dE) galaxies. However, we found that our sample contained a subset of GCs for which M87 is the most likely host. This subset is consistent with having an r^-1 power-law surface density distribution and a radial velocity distribution both centered on M87. The remote M87 GC satellites span the radial range 140 to 900 kpc, out to about a third of the Virgo Cluster's virial radius (for comparison, M87's effective radius is only 8 kpc). These M87 GC satellites are probably former satellites of other Virgo Cluster galaxies that have subsequently been cannibalized by M87.This research was supported by the National Science Foundation and the UC Santa Cruz Science Internship Program.

  2. Multivariate Analysis of the Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Chattopadhayay, Tanuka; Davoust, Emmanuel

    2015-11-01

    An objective classification of 147 globular clusters (GCs) in the inner region of the giant elliptical galaxy M87 is carried out with the help of two methods of multivariate analysis. First, independent component analysis (ICA) is used to determine a set of independent variables that are linear combinations of various observed parameters (mostly Lick indices) of the GCs. Next, K-means cluster analysis (CA) is applied on the independent components (ICs), to find the optimum number of homogeneous groups having an underlying structure. The properties of the four groups of GCs thus uncovered are used to explain the formation mechanism of the host galaxy. It is suggested that M87 formed in two successive phases. First a monolithic collapse, which gave rise to an inner group of metal-rich clusters with little systematic rotation and an outer group of metal-poor clusters in eccentric orbits. In a second phase, the galaxy accreted low-mass satellites in a dissipationless fashion, from the gas of which the two other groups of GCs formed. Evidence is given for a blue stellar population in the more metal rich clusters, which we interpret by Helium enrichment. Finally, it is found that the clusters of M87 differ in some of their chemical properties (NaD, TiO1, light-element abundances) from GCs in our Galaxy and M31.

  3. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  4. A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra-diffuse Galaxy Dragonfly 44

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Danieli, Shany; Merritt, Allison; Mowla, Lamiya; Romanowsky, Aaron; Zhang, Jielai

    2016-09-01

    Recently a population of large, very low surface brightness, spheroidal galaxies was identified in the Coma cluster. The apparent survival of these ultra-diffuse galaxies (UDGs) in a rich cluster suggests that they have very high masses. Here, we present the stellar kinematics of Dragonfly 44, one of the largest Coma UDGs, using a 33.5 hr integration with DEIMOS on the Keck II telescope. We find a velocity dispersion of σ ={47}-6+8 {km} {{{s}}}-1, which implies a dynamical mass of {M}{dyn}(\\lt {r}1/2)={0.7}-0.2+0.3× {10}10 {M}ȯ within its deprojected half-light radius of {r}1/2=4.6+/- 0.2 {kpc}. The mass-to-light ratio is M/{L}I(\\lt {r}1/2)={48}-14+21 {M}ȯ /{L}ȯ , and the dark matter fraction is 98% within {r}1/2. The high mass of Dragonfly 44 is accompanied by a large globular cluster population. From deep Gemini imaging taken in 0\\buildrel{\\prime\\prime}\\over{.} 4 seeing we infer that Dragonfly 44 has {94}-20+25 globular clusters, similar to the counts for other galaxies in this mass range. Our results add to other recent evidence that many UDGs are “failed” galaxies, with the sizes, dark matter content, and globular cluster systems of much more luminous objects. We estimate the total dark halo mass of Dragonfly 44 by comparing the amount of dark matter within r=4.6 {kpc} to enclosed mass profiles of NFW halos. The enclosed mass suggests a total mass of ˜ {10}12 {M}ȯ , similar to the mass of the Milky Way. The existence of nearly dark objects with this mass is unexpected, as galaxy formation is thought to be maximally efficient in this regime.

  5. A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra-diffuse Galaxy Dragonfly 44

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Danieli, Shany; Merritt, Allison; Mowla, Lamiya; Romanowsky, Aaron; Zhang, Jielai

    2016-09-01

    Recently a population of large, very low surface brightness, spheroidal galaxies was identified in the Coma cluster. The apparent survival of these ultra-diffuse galaxies (UDGs) in a rich cluster suggests that they have very high masses. Here, we present the stellar kinematics of Dragonfly 44, one of the largest Coma UDGs, using a 33.5 hr integration with DEIMOS on the Keck II telescope. We find a velocity dispersion of σ ={47}-6+8 {km} {{{s}}}-1, which implies a dynamical mass of {M}{dyn}(\\lt {r}1/2)={0.7}-0.2+0.3× {10}10 {M}ȯ within its deprojected half-light radius of {r}1/2=4.6+/- 0.2 {kpc}. The mass-to-light ratio is M/{L}I(\\lt {r}1/2)={48}-14+21 {M}ȯ /{L}ȯ , and the dark matter fraction is 98% within {r}1/2. The high mass of Dragonfly 44 is accompanied by a large globular cluster population. From deep Gemini imaging taken in 0\\buildrel{\\prime\\prime}\\over{.} 4 seeing we infer that Dragonfly 44 has {94}-20+25 globular clusters, similar to the counts for other galaxies in this mass range. Our results add to other recent evidence that many UDGs are “failed” galaxies, with the sizes, dark matter content, and globular cluster systems of much more luminous objects. We estimate the total dark halo mass of Dragonfly 44 by comparing the amount of dark matter within r=4.6 {kpc} to enclosed mass profiles of NFW halos. The enclosed mass suggests a total mass of ∼ {10}12 {M}ȯ , similar to the mass of the Milky Way. The existence of nearly dark objects with this mass is unexpected, as galaxy formation is thought to be maximally efficient in this regime.

  6. Globular clusters as tracers of the host galaxy mass distribution: the Fornax dSph test case

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, M.; Capuzzo-Dolcetta, R.

    2016-10-01

    The Fornax dwarf spheroidal galaxy is the most massive satellites of the Milky Way, claimed to be embedded in a huge dark matter halo, and the only among the Milky Way satellites hosting five globular clusters. Interestingly, their estimated masses, ages and positions seem hardly compatible with the presence of a significant dark matter component, as expected in the ΛCDM scheme. Indeed, if Fornax would have a CDM halo with a standard density profile, all its globular clusters should have sunk to the galactic centre many Gyr ago due to dynamical friction. Due to this, some authors proposed that the most massive clusters may have formed out of Fornax and later tidally captured. In this paper, we investigate the past evolution of the Fornax GC system by using both a recently developed, semi-analytical treatment of dynamical friction and direct N-body simulations of the orbital evolution of the globular clusters within Fornax and of Fornax galaxy around the Milky Way. Our results suggest that an `in situ' origin for all the clusters is likely if their observed positions are close to their spatial ones and their orbits are almost circular. Moreover, the Milky Way seems to accelerate the GC decay reducing the decay time of 15 per cent. Nevertheless, our results indicate that the GCs survival probability exceeds 50 per cent, even in the case of cuspy density profiles. We conclude that more detailed data are required to shed light on the Fornax dark matter content, to distinguish between a cuspy or a cored profile.

  7. Tracing the Galactic Halo: Obtaining Bayesian mass estimates of the Galaxy in the presence of incomplete data

    NASA Astrophysics Data System (ADS)

    Eadie, Gwendolyn; Harris, William; Widrow, Lawrence; Springford, Aaron

    2016-08-01

    The mass and cumulative mass profile of the Galaxy are its most fundamental properties. Estimating these properties, however, is not a trivial problem. We rely on the kinematic information from Galactic satellites such as globular clusters and dwarf galaxies, and this data is incomplete and subject to measurement uncertainty. In particular, the complete 3D velocity vectors of objects are sometimes unavailable, and there may be selection biases due to both the distribution of objects around the Galaxy and our measurement position. On the other hand, the uncertainties of these data are fairly well understood. Thus, we would like to incorporate these uncertainties and the incomplete data into our estimate of the Milky Way's mass. The Bayesian paradigm offers a way to deal with both the missing kinematic data and measurement errors using a hierarchical model. An application of this method to the Milky Way halo mass profile, using the kinematic data for globular clusters and dwarf satellites, is shown.

  8. The GHOSTS survey - II. The diversity of halo colour and metallicity profiles of massive disc galaxies

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Bailin, Jeremy; de Jong, Roelof S.; Holwerda, Benne; Streich, David; Silverstein, Grace

    2016-04-01

    We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar outskirts out to projected distances of ˜50-70 kpc from their galactic centre along the minor axis. The 50 per cent completeness levels of the colour-magnitude diagrams are typically at 2 mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar haloes out to ˜50 kpc and two out to ˜70 kpc. We determined the halo colour distribution and colour profile for each galaxy using the median colours of stars in the RGB. Within each galaxy, we find variations in the median colours as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other have no significant colour or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo colour/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent in the assembling history of galaxies.

  9. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  10. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  11. VARIABLES IN GLOBULAR CLUSTER NGC 5024

    SciTech Connect

    Safonova, M.; Stalin, C. S. E-mail: stalin@iiap.res.in

    2011-12-15

    We present the results of a commissioning campaign to observe Galactic globular clusters for the search of microlensing events. The central 10' Multiplication-Sign 10' region of the globular cluster NGC 5024 was monitored using the 2 m Himalayan Chandra Telescope in R-band for a period of about 8 hr on 2010 March 24. Light curves were obtained for nearly 10,000 stars using a modified Differential Image Analysis technique. We identified all known variables within our field of view and revised the periods and status of some previously reported short-period variables. We report about 70 new variable sources and present their equatorial coordinates, periods, light curves, and possible types. Out of these, 15 are SX Phe stars, 10 are W UMa-type stars, and 14 are probable RR Lyrae stars. Nine of the newly discovered SX Phe stars and one eclipsing binary belong to the blue straggler star population.

  12. Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Bica, E.; Ortolani, S.; Barbuy, B.

    2016-06-01

    A view of the Galactic bulge by means of their globular clusters is fundamental for a deep understanding of its formation and evolution. Connections between the globular cluster and field star properties in terms of kinematics, orbits, chemical abundances, and ages should shed light on different stellar population components. Based on spatial distribution and metallicity, we define a probable best list of bulge clusters, containing 43 entries. Future work on newly discovered objects, mostly from the VVV survey, is suggested. These candidates might alleviate the issue of missing clusters on the far side of the bulge. We discuss the reddening law affecting the cluster distances towards the centre of the Galaxy, and conclude that the most suitable total-to-selective absorption value appears to be R V=3.2, in agreement with recent analyses. An update of elemental abundances for bulge clusters is provided.

  13. The self-enrichment of globular clusters

    SciTech Connect

    Morgan, S.; Lake, G.

    1989-04-01

    It is shown that protoglobular clusters of primordial gas can confine the supernovae needed to enrich themselves. The required protocluster cloud masses and structural parameters are the same as those currently observed for the clusters. Two causal scenarios for star formation are examined to calculate the initial enrichment of primordial clouds. In the 'Christmas tree' scheme, the maximum final (Fe/H) is about 0.1. Since the time scale for formation and evolution of massive stars at the center of a cluster is nearly an order of magnitude less than the collapse time of the cluster, every globular cluster may have to survive a supernova detonation. If this is the case, the minimum mass of a globular cluster is about 10 to the 4.6th solar mass. 24 refs.

  14. Chemical Abundances of Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  15. UNCLOAKING GLOBULAR CLUSTERS IN THE INNER GALAXY

    SciTech Connect

    Alonso-Garcia, Javier; Catelan, Marcio; Minniti, Dante; Mateo, Mario; Sen, Bodhisattva; Banerjee, Moulinath; Von Braun, Kaspar E-mail: mcatelan@astro.puc.cl E-mail: mmateo@umich.edu E-mail: moulib@umich.edu

    2012-03-15

    Extensive photometric studies of the globular clusters located toward the center of the Milky Way have been historically neglected. The presence of patchy differential reddening in front of these clusters has proven to be a significant obstacle to their detailed study. We present here a well defined and reasonably homogeneous photometric database for 25 of the brightest Galactic globular clusters located in the direction of the inner Galaxy. These data were obtained in the B, V, and I bands using the Magellan 6.5 m Telescope and the Hubble Space Telescope. A new technique is extensively used in this paper to map the differential reddening in the individual cluster fields, and to produce cleaner, dereddened color-magnitude diagrams for all the clusters in the database. Subsequent papers will detail the astrophysical analysis of the cluster populations, and the properties of the obscuring material along the clusters' lines of sight.

  16. Gas infall into atomic cooling haloes: on the formation of protogalactic discs and supermassive black holes at z > 10

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Jimenez, Raul; Haiman, Zoltán

    2013-12-01

    We have performed hydrodynamical simulations from cosmological initial conditions using the Adaptive Mesh Refinement (AMR) code RAMSES to study atomic cooling haloes (ACHs) at z = 10 with masses in the range 5 × 107 M⊙ ≲ M ≲ 2 × 109 M⊙. We assume the gas has primordial composition and H2-cooling and prior star formation in the haloes have been suppressed. We present a comprehensive analysis of the gas and dark matter (DM) properties of 19 haloes at a spatial resolution of ˜10 (proper) pc, selected from simulations with a total volume of ˜2000 (comoving) Mpc3. This is the largest statistical hydro-simulation study of ACHs at z > 10 to date. We examine the morphology, angular momentum, thermodynamical state and turbulent properties of these haloes, in order to assess the prevalence of discs and massive overdensities that may lead to the formation of supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the angular momentum of the gas and its parent DM halo. Only three of the haloes form rotationally supported cores. Two of the most massive haloes, however, form massive, compact overdense blobs, which migrate to the outer region of the halo. These blobs have an accretion rate between ˜10-1 and 10-3 M⊙ yr-1 (at a distance of 100 pc from their centre), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes that form overdense blobs are located at knots of the cosmic web, cooled their gas early on (z > 17) and experienced many mergers. The gas in these haloes is thus lumpy and highly turbulent, with Mach numbers M≳ 5. In contrast, the haloes forming rotationally supported cores are relatively more isolated, located mid-way along filaments of the cosmic web, cooled their gas more recently and underwent fewer mergers. As a result, the

  17. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  18. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  19. Reionization histories of Milky Way mass halos

    SciTech Connect

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A. E-mail: rwechsler@stanford.edu E-mail: malvarez@cita.utoronto.ca

    2014-04-20

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600{sup 3} Mpc{sup 3} volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10{sup 11} M {sub ☉} reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10{sup 12±0.25} M {sub ☉} halos, decreasing slightly to ∼95 Myr for 10{sup 15±0.25} M {sub ☉} halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  20. The formation and evolution of dark matter halos early in cosmic history

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    Observational evidence points to the formation of super-massive black holes, heavy elements and halo structure much earlier in cosmic history than expected [1], and this is challenging for Lambda Cold Dark Matter (LCDM) theory. However, if photon scattering cross sections were less than expected it becomes possible for halos to form at earlier times and relax the tensions that exist with LCDM theory. This may indeed be the case: it has recently been shown [2,3] that photon-particle scattering cross sections vary significantly with the eigenspectral distribution of the scattering particle in deep gravity wells, an effect that depends on the degree of localization of the particle wavefunction and the proximity of the halo to thermal equilibrium. Cross sections tend to be lower the larger and deeper the gravitational well. This purely quantum effect means that accepted cross sections, as measured on Earth and used to determine the rate and timing of halo formation, may not be applicable to deep gravity wells, not only at the present epoch but throughout cosmic history.By combining reduced photon scattering cross sections with Carr’s primordial black hole mass spectrum formulation[4] calculated at the last phase transition (t = 1 s), it is possible to provide a scenario of halo formation that enables galaxies and halos to form much earlier in cosmic history, yet maintain consistency with cosmic microwave background observations and primordial nucleosynthesis. In addition this scenario provides a unified model relating globular clusters, dwarf spheroidal galaxies and bulges, enables an understanding of the black hole-bulge/black hole-dark halo relations, and enables prediction of dark to visible matter, based on the physical parameters of a halo. This scenario will be presented and discussed.[1] Xue-Bing Wu et al, 2015, Nature, 518,512-515 doi: 10.1038/nature14241[2] Ernest A. D., 2009, J. Phys. A: Math. Theor. 42 115207, 115208[3] Ernest A. D, 2012, in Advances in

  1. Globular cluster formation - The fossil record

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1992-01-01

    Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.

  2. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profiles to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.

  3. Dynamics of the NGC 4636 globular cluster system. An extremely dark matter dominated galaxy?

    NASA Astrophysics Data System (ADS)

    Schuberth, Y.; Richtler, T.; Dirsch, B.; Hilker, M.; Larsen, S. S.; Kissler-Patig, M.; Mebold, U.

    2006-11-01

    Context: .We present the first dynamical study of the globular cluster system of NGC 4636. It is the southernmost giant elliptical galaxy of the Virgo cluster and is claimed to be extremely dark matter dominated, according to X-ray observations. Aims: .Globular clusters are used as dynamical tracers to investigate, by stellar dynamical means, the dark matter content of this galaxy. Methods: .Several hundred medium resolution spectra were acquired at the VLT with FORS 2/MXU. We obtained velocities for 174 globular clusters in the radial range 0.90 arcmin < R < 15.5 arcmin, or 0.5-9~Re in units of effective radius. Assuming a distance of 15 Mpc, the clusters are found at projected galactocentric distances in the range 4 to 70 kpc, the overwhelming majority within 30 kpc. The measured line-of-sight velocity dispersions are compared to Jeans-models. Results: .We find some indication of a rotation of the red (metal-rich) clusters about the minor axis. Out to a radius of 30 kpc, we find a roughly constant projected velocity dispersion for the blue clusters of σ ≈ 200~km s-1. The red clusters are found to have a distinctly different behavior: at a radius of about 3', the velocity dispersion drops by ~50~km s-1 to about 170~km s-1, which then remains constant out to a radius of 7'. The cause might be the steepening of the number density profile at ~3' observed for the red clusters. Using only the blue clusters as dynamical tracers, we perform Jeans-analyses for different assumptions of the orbital anisotropy. Enforcing the model dark halos to be of the NFW type, we determine their structural parameters. Depending on the anisotropy and the adopted M/L-values, we find that the dark matter fraction within one effective radius can vary between 20% and 50%, with most a probable range between 20% and 30%. The ambiguity of the velocity dispersion in the outermost bin is a main source of uncertainty. A comparison with cosmological N-body simulations reveals no striking

  4. VizieR Online Data Catalog: Model SDSS colors for halo stars (Allende Prieto+, 2014)

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernandez-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-06-01

    We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that best reproduces each observed spectrum. We use an optimization algorithm and evaluate model fluxes by means of interpolation in a pre-computed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars at logg (cgs units) lower than 2.5. An analysis of stars in the globular cluster M13 reveals a dependence of the inferred metallicity on surface gravity for stars with logg<2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with that expected from a dual halo system in the Milky Way. (1 data file).

  5. Understanding the Current Dynamical States of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2008-09-01

    We appear to be on the verge of a major paradigm shift in our understanding of the current dynamical states of Galactic globular clusters. Fregeau (2008) brought together two recent theoretical breakthroughs as well as an observational breakthrough made possible by Chandra -- that a globular cluster's X-ray source population scales with its dynamical encounter frequency -- to persuasively argue that we have misunderstood the dynamical states of Galactic globular clusters. The observational evidence hinges on Chandra results from clusters which are classified as "core collapsed," of which there are only a handful of observations. I propose a nearly complete census with Chandra of the rest of the "core collapsed" globular clusters.

  6. Broken degeneracies: the rotation curve and velocity anisotropy of the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Belokurov, V.; Evans, N. W.; An, J.

    2012-07-01

    We use distant blue horizontal branch stars with Galactocentric distances 16 < r < 48 kpc as kinematic tracers of the Milky Way dark halo. We model the tracer density as an oblate, power law embedded within a spherical power-law potential. Using a distribution function method, we estimate the overall power-law potential and the velocity anisotropy of the halo tracers. We measure the slope of the potential to be γ˜ 0.4, and the overall mass within 50 kpc is ˜4 × 1011 M⊙. The tracer velocity anisotropy is radially biased with β˜ 0.5, which is in good agreement with local solar neighbourhood studies. Our results provide an accurate outer circular velocity profile for the Milky Way and suggest a relatively high-concentration dark matter halo (cvir˜ 20).

  7. CONSTRAINTS ON THE SHAPE OF THE MILKY WAY DARK MATTER HALO FROM THE SAGITTARIUS STREAM

    SciTech Connect

    Vera-Ciro, Carlos; Helmi, Amina

    2013-08-10

    We propose a new model for the dark matter halo of the Milky Way that fits the properties of the stellar stream associated with the Sagittarius dwarf galaxy. Our dark halo is oblate with q{sub z} = 0.9 for r {approx}< 10 kpc, and can be made to follow the Law and Majewski model at larger radii. However, we find that the dynamical perturbations induced by the Large Magellanic Cloud on the orbit of Sgr cannot be neglected when modeling its streams. When taken into account, this leads us to constrain the Galaxy's outer halo shape to have minor-to-major axis ratio >(c/a){sub {Phi}} = 0.8 and intermediate-to-major axis ratio (b/a){sub {Phi}} = 0.9, in good agreement with cosmological expectations.

  8. Numerical simulation of sprites halo

    NASA Astrophysics Data System (ADS)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2014-03-01

    In the framework of C. Wilson's hypothesis substantiating a possibility of electric discharge development in the Earth's atmosphere at high altitudes above thunderclouds, numerical simulations were executed of the discharge exciting the sprite halo with realistic variations of thundercloud dipole moment transferred to the ground by positive lightning discharge. For various values of time and altitude, at which the avalanche-to-streamer transition occurs, optical radiation was calculated in the 1 P, 2 P, and 1 N bands of the nitrogen molecule and Meinel's band of the N{2/+} ion. The calculated brightness and space-time evolution of the luminescence are consistent with the data of the field observations of the halo luminescence.

  9. Beam breakup with longitudinal halo

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.

    1991-01-01

    We have developed an analytical model of cumulative beam breakup in linear accelerators that predicts the displacement of particles between bunches. Beam breakup is assumed to be caused by a periodic current consisting of an infinite bunch train. The particles in the halo do not contribute to the breakup but experience the deflecting fields and are displaced by them. Under certain circumstances, the displacement of particles in the halo can be considerably larger than that of the bunches. This may have important consequences for the design of high-current cw accelerators where even a small flux of particles striking components of the accelerator cannot be tolerated because of activation. 11 refs., 2 figs.

  10. Beyond the Brim of the Hat: Kinematics of Globular Clusters out to Large Radii in the Sombrero Galaxy

    NASA Astrophysics Data System (ADS)

    Dowell, Jessica L.; Rhode, Katherine L.; Bridges, Terry J.; Zepf, Stephen E.; Gebhardt, Karl; Freeman, Ken C.; de Boer, Elizabeth Wylie

    2014-06-01

    We have obtained radial velocity measurements for 51 new globular clusters around the Sombrero galaxy. These measurements were obtained using spectroscopic observations from the AAOmega spectrograph on the Anglo-Australian Telescope and the Hydra spectrograph at WIYN. Combining our own past measurements and velocity measurements obtained from the literature, we have constructed a large database of radial velocities that contains a total of 360 confirmed globular clusters. Previous studies' analyses of the kinematics and mass profile of the Sombrero globular cluster system have been constrained to the inner ~9' (~24 kpc or ~5Re ), but our new measurements have increased the radial coverage of the data, allowing us to determine the kinematic properties of M104 out to ~15' (~41 kpc or ~9Re ). We use our set of radial velocities to study the GC system kinematics and to determine the mass profile and V-band mass-to-light profile of the galaxy. We find that M/LV increases from 4.5 at the center to a value of 20.9 at 41 kpc (~9Re or 15'), which implies that the dark matter halo extends to the edge of our available data set. We compare our mass profile at 20 kpc (~4Re or ~7.'4) to the mass computed from X-ray data and find good agreement. We also use our data to look for rotation in the globular cluster system as a whole, as well as in the red and blue subpopulations. We find no evidence for significant rotation in any of these samples.

  11. Dynamical evolution and spatial mixing of multiple population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2013-03-01

    Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the

  12. SMASH 1: A Very Faint Globular Cluster Disrupting in the Outer Reaches of the LMC?

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Jungbluth, Valentin; Nidever, David L.; Bell, Eric F.; Besla, Gurtina; Blum, Robert D.; Cioni, Maria-Rosa L.; Conn, Blair C.; Kaleida, Catherine C.; Gallart, Carme; Jin, Shoko; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Muñoz, Ricardo R.; Noël, Noelia E. D.; Olsen, Knut; Stringfellow, Guy S.; van der Marel, Roeland P.; Vivas, A. Katherina; Walker, Alistair R.; Zaritsky, Dennis

    2016-10-01

    We present the discovery of a very faint stellar system, SMASH 1, that is potentially a satellite of the Large Magellanic Cloud. Found within the Survey of the Magellanic Stellar History (SMASH), SMASH 1 is a compact ({r}h={9.1}-3.4+5.9 {pc}) and very low luminosity ({M}V=-1.0+/- 0.9, {L}V={10}2.3+/- 0.4 {L}ȯ ) stellar system that is revealed by its sparsely populated main sequence and a handful of red giant branch candidate member stars. The photometric properties of these stars are compatible with a metal-poor ([{Fe}/{{H}}]=-2.2) and old (13 Gyr) isochrone located at a distance modulus of ∼18.8, i.e., a distance of ∼ 57 {kpc}. Situated at 11.°3 from the LMC in projection, its three-dimensional distance from the Cloud is ∼ 13 {kpc}, consistent with a connection to the LMC, whose tidal radius is at least 16 {kpc}. Although the nature of SMASH 1 remains uncertain, its compactness favors it being a stellar cluster and hence dark-matter free. If this is the case, its dynamical tidal radius is only ≲ 19 {pc} at this distance from the LMC, and smaller than the system’s extent on the sky. Its low luminosity and apparent high ellipticity (ε ={0.62}-0.21+0.17) with its major axis pointing toward the LMC may well be the tell-tale sign of its imminent tidal demise.

  13. Halo ion trap mass spectrometer.

    PubMed

    Austin, Daniel E; Wang, Miao; Tolley, Samuel E; Maas, Jeffrey D; Hawkins, Aaron R; Rockwood, Alan L; Tolley, H Dennis; Lee, Edgar D; Lee, Milton L

    2007-04-01

    We describe a novel radio frequency ion trap mass analyzer based on toroidal trapping geometry and microfabrication technology. The device, called the halo ion trap, consists of two parallel ceramic plates, the facing surfaces of which are imprinted with sets of concentric ring electrodes. Radii of the imprinted rings range from 5 to 12 mm, and the spacing between the plates is 4 mm. Unlike conventional ion traps, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo ion trap are established by applying different radio frequency potentials to each ring. The potential on each ring can be independently optimized to provide the best trapping field. The halo ion trap features an open structure, allowing easy access for in situ ionization. The toroidal geometry provides a large trapping and analyzing volume, increasing the number of ions that can be stored and reducing the effects of space-charge on mass analysis. Preliminary mass spectra show resolution (m/Deltam) of 60-75 when the trap is operated at 1.9 MHz and 500 Vp-p. PMID:17335180

  14. Globular clusters as the relics of regular star formation in `normal' high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik

    2015-12-01

    We present an end-to-end, two-phase model for the origin of globular clusters (GCs). In the model, populations of stellar clusters form in the high-pressure discs of high-redshift (z > 2) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day (a slow-disruption phase due to tidal evaporation). The high galaxy merger rates of z > 2 galaxies allow these clusters to be `liberated' into the galaxy haloes before they are disrupted within the high-density discs. This physically motivated toy model is the first to include the rapid-disruption phase, which is shown to be essential for simultaneously reproducing the wide variety of properties of observed GC systems, such as their universal characteristic mass-scale, the dependence of the specific frequency on metallicity and galaxy mass, the GC system mass-halo mass relation, the constant number of GCs per unit supermassive black hole mass, and the colour bimodality of GC systems. The model predicts that most of these observables were already in place at z = 1-2, although under rare circumstances GCs may still form in present-day galaxies. In addition, the model provides important constraints on models for multiple stellar populations in GCs by putting limits on initial GC masses and the amount of pristine gas accretion. The paper is concluded with a discussion of these and several other predictions and implications, as well as the main open questions in the field.

  15. Modeling the Formation of Globular Cluster Systems in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Li, Hui; Gnedin, Oleg Y.

    2014-11-01

    The mass distribution and chemical composition of globular cluster (GC) systems preserve fossil record of the early stages of galaxy formation. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. We present a simple model for the formation and disruption of GCs that aims to match the ACSVCS data. This model tests the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range of 2 × 1012 to 7 × 1013 M ⊙ and match them to 19 Virgo galaxies with K-band luminosity between 3 × 1010 and 3 × 1011 L ⊙. To set the [Fe/H] abundances, we use an empirical galaxy mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches the observed cluster metallicity distribution. A characteristic bimodal shape appears because metal-rich GCs are produced by late mergers between massive halos, while metal-poor GCs are produced by collective merger activities of less massive hosts at early times. The model outcome is robust to alternative prescriptions for cluster formation rate throughout cosmic time, but a gradual evolution of the mass-metallicity relation with redshift appears to be necessary to match the observed cluster metallicities. We also affirm the age-metallicity relation, predicted by an earlier model, in which metal-rich clusters are systematically several billion younger than their metal-poor counterparts.

  16. Modeling the formation of globular cluster systems in the Virgo cluster

    SciTech Connect

    Li, Hui; Gnedin, Oleg Y. E-mail: ognedin@umich.edu

    2014-11-20

    The mass distribution and chemical composition of globular cluster (GC) systems preserve fossil record of the early stages of galaxy formation. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. We present a simple model for the formation and disruption of GCs that aims to match the ACSVCS data. This model tests the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range of 2 × 10{sup 12} to 7 × 10{sup 13} M {sub ☉} and match them to 19 Virgo galaxies with K-band luminosity between 3 × 10{sup 10} and 3 × 10{sup 11} L {sub ☉}. To set the [Fe/H] abundances, we use an empirical galaxy mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches the observed cluster metallicity distribution. A characteristic bimodal shape appears because metal-rich GCs are produced by late mergers between massive halos, while metal-poor GCs are produced by collective merger activities of less massive hosts at early times. The model outcome is robust to alternative prescriptions for cluster formation rate throughout cosmic time, but a gradual evolution of the mass-metallicity relation with redshift appears to be necessary to match the observed cluster metallicities. We also affirm the age-metallicity relation, predicted by an earlier model, in which metal-rich clusters are systematically several billion younger than their metal-poor counterparts.

  17. Simultaneous orbit fitting of stellar streams: Constraining the galactic dark matter halo

    NASA Astrophysics Data System (ADS)

    Willett, Benjamin Arthur

    2010-12-01

    The Milky Way Galaxy serves as a laboratory for testing models of galaxy formation. Discovering the nature of dark matter is often cited as the second most important problem in astrophysics, preceded only by dark energy. Mapping the structure and dynamics of the Milky Way Galaxy can tell us how galaxies form, and place constraints on the properties of dark matter. We can map the distribution of dark matter in the Milky Way using tidal streams, collections of stars that have been gravitationally stripped from satellite dwarf galaxies and globular clusters. By knowing the positions and velocities of these stars, and assuming they came from a compact source, we can follow them back in time and constrain the shape of the Milky Way dark matter halo. This Thesis presents a method that allows us to constrain the parameters of a static Galactic gravitational potential using the data from any number of tidal debris streams. The method is tested on simulated tidal streams, and successfully recovers the original model parameters in most cases. The importance of simultaneously fitting the measured rotation curve of the Milky Way is explored, and the strengths and weaknesses of the algorithm are discussed. The orbit fitting algorithm is applied independently to the Stream of Grillmair and Dionatos (GD-1), the Orphan Stream, and the Cetus Polar Stream (CPS). We show that no known globular cluster or dwarf galaxy in the Milky Way has kinematics consistent with being the progenitor of the GD-1 stream. The Orphan Stream constrains the Milky Way dark matter halo as having a mass at the low end of previous measurements, giving a best fit halo speed of vhalo = 73 +/- 24 km s-1, compared to typical values of vhalo ≈ 115 km s -1. A lower halo speed implies a less massive halo. The GD-1 and Orphan streams are then fit simultaneously with the Sagittarius Dwarf Tidal Stream (Sgr), within a triaxial dark matter halo. Results for restricted triaxial cases are shown to be consistent with

  18. Are halo coronal mass ejections special events?

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro; Gopalswamy, Nat; Xie, Hong; Mendoza-Torres, Eduardo; PéRez-EríQuez, RomáN.; Michalek, Gregory

    2006-06-01

    We revisited the properties of wide coronal mass ejections (CMEs) called halo CMEs. Using the large LASCO/SOHO CMEs data set, from 1996 to 2004, we examined the statistical properties of (partial and full) halo CMEs and compare with the same properties of "normal" width (lower than 120°) CMEs. We found that halo CMEs have different properties than "normal" CMEs, which cannot be explained merely by the current geometric interpretation that they are seen as halos because they are traveling in the Sun Earth direction. We found that the CME width distribution is formed by, at least, three different populations: Two gaussians: a narrow and a medium distribution centered at ˜17° and ˜38°, respectively; the narrow population most likely corresponds to the "true" observed widths, whereas the medium width population is the product of projection effects. The third distribution corresponds to wider CMEs (80° < W < 210°) which behaves as a power law. Partial and full halo CMEs wider than these do not follow any particular distribution. This lack of regularity may be due to the small number of such events. In particular, we found (and test by a statistical approach) that the number of observed full halo CMEs is lower than expected. The CME speed follows a log-normal distribution, except for the very low speed CME population, which follows a gaussian distribution centered at ˜100 km/s and is probably due to projection effects. When the CMEs are divided by width into nonhalo, partial halo, and full halo, we found that the peaks of the distributions are shifted toward higher speeds, ˜300, ˜400 and ˜600 km/s for nonhalo, partial halo, and full halo CMEs, respectively. This confirms that halo CMEs tend to be high speed CMEs. The acceleration of full halo CMEs tends to be more negative compared with nonhalo and partial halo CMEs. We introduce a new observational CME parameter: The final observed distance (FOD), i.e., the highest point within the coronograph field of view

  19. Magnetized galactic haloes and velocity lags

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.; Irwin, J. A.

    2016-06-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas (not with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height z. The formula also predicts the change in lag with radius, r.

  20. CT "halo sign" in pulmonary tuberculoma.

    PubMed

    Gaeta, M; Volta, S; Stroscio, S; Romeo, P; Pandolfo, I

    1992-01-01

    The CT halo sign has been described as the CT finding of a low-attenuation zone surrounding a pulmonary nodule. It is an early clue to the diagnosis of invasive pulmonary aspergillosis. We describe a case of CT halo sign associated with a pulmonary tuberculoma. Therefore, we think that a diagnosis other than invasive pulmonary aspergillosis should be considered in the presence of the CT halo sign in immunocompetent patients.

  1. Halotools: Galaxy-Halo connection models

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew; Tollerud, Erik; Robitaille, Thomas; Droettboom, Michael; Zentner, Andrew; Bray, Erik; Craig, Matt; Bradley, Larry; Barbary, Kyle; Deil, Christoph; Tan, Kevin; Becker, Matthew R.; More, Surhud; Günther, Hans Moritz; Sipocz, Brigitta

    2016-04-01

    Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.

  2. The stability of stellar discs in Milky Way-sized dark matter haloes

    NASA Astrophysics Data System (ADS)

    Yurin, Denis; Springel, Volker

    2015-09-01

    We employ an improved methodology to insert live stellar discs into high-resolution dark matter simulations of Milky Way-sized haloes, allowing us to investigate the fate of thin stellar discs in the tumultuous environment of cold dark matter structures. We study a set of eight different haloes, drawn from the Aquarius simulation project, in which stellar discs are adiabatically grown with a prescribed structure, and then allowed to self-consistently evolve. The initial velocity distribution is set-up in very good equilibrium with the help of the GALIC code. We find that the residual triaxiality of the haloes leads to significant disc tumbling, qualitatively confirming earlier work. We show that the disc turning motion is unaffected by structural properties of the galaxies such as the presence or absence of a bulge or bar. In typical Milky Way-sized dark matter haloes, we expect an average turning of the discs by about 40°between z = 1 and 0, over the course of 7.6 Gyr. We also investigate the impact of the discs on substructures, and conversely, the disc heating rate caused by the dark matter halo substructures. The presence of discs reduces the central subhalo abundance by a about a factor of 2, due to an increased evaporation rate by gravitational shocks from disc passages. We find that substructures are important for heating the outer parts of stellar discs but do not appear to significantly affect their inner parts.

  3. Tracing the stellar halo of an early type galaxy out to 25 effective radii

    NASA Astrophysics Data System (ADS)

    Rejkuba, Marina

    2016-08-01

    We have used ACS and WFC3 cameras on board HST to resolve stars in the halo of NGC 5128 out to 140 kpc (25 effective radii, R eff) along the major axis and 70 kpc (13 R eff) along the minor axis. This dataset provides an unprecedented radial coverage of stellar halo properties in any galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128 even in the most distant fields. The V-I colors of the red giants enable us to measure the metallicity distribution in each field and so map the metallicity gradient over the sampled area. The stellar metallicity follows a shallow gradient and even out at 140 kpc (25 R eff) its median value does not go below [M/H]~-1 dex. We observe significant field-to-field metallicity and stellar density variations. The star counts are higher along the major axis when compared to minor axis field located 90 kpc from the galaxy centre, indicating flattening in the outer halo. These observational results provide new important constraints for the assembly history of the halo and the formation of this gE galaxy.

  4. Halo scale predictions of symmetron modified gravity

    SciTech Connect

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin E-mail: bjain@physics.upenn.edu

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  5. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.

    1998-01-01

    The Principal Investigator's responsibilities on this grant fell into two categories according to his participation. In the nomenclature work of the International Astronomical Union (IAU). Owen is chair of the Task Group for the Outer Solar System. He is also a member of the IAU's Working Group on Planetary and Satellite Nomenclature (WGPSN) which is composed of the chairs of the several Task Groups plus the presidents of two IAU Commissions and several outside consultants. The WGPSN is presided over by its President, Professor Kaare Aksnes from the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway.

  6. Jupiter's outer atmosphere.

    NASA Technical Reports Server (NTRS)

    Brice, N. M.

    1973-01-01

    The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.

  7. HUBBLE SPIES GLOBULAR CLUSTER IN NEIGHBORING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has captured a view of a globular cluster called G1, a large, bright ball of light in the center of the photograph consisting of at least 300,000 old stars. G1, also known as Mayall II, orbits the Andromeda galaxy (M31), the nearest major spiral galaxy to our Milky Way. Located 130,000 light-years from Andromeda's nucleus, G1 is the brightest globular cluster in the Local Group of galaxies. The Local Group consists of about 20 nearby galaxies, including the Milky Way. The crisp image is comparable to ground-based telescope views of similar clusters orbiting the Milky Way. The Andromeda cluster, however, is nearly 100 times farther away. A glimpse into the cluster's finer details allow astronomers to see its fainter helium-burning stars whose temperatures and brightnesses show that this cluster in Andromeda and the oldest Milky Way clusters have approximately the same age. These clusters probably were formed shortly after the beginning of the universe, providing astronomers with a record of the earliest era of galaxy formation. During the next two years, astronomers will use Hubble to study about 20 more globular clusters in Andromeda. The color picture was assembled from separate images taken in visible and near-infrared wavelengths taken in July of 1994. CREDIT: Michael Rich, Kenneth Mighell, and James D. Neill (Columbia University), and Wendy Freedman (Carnegie Observatories), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  8. On the cold denaturation of globular proteins

    NASA Astrophysics Data System (ADS)

    Ascolese, Eduardo; Graziano, Giuseppe

    2008-12-01

    The recent finding that yeast frataxin shows, at pH 7.0, cold denaturation at 274 K and hot denaturation at 303 K [A. Pastore, S.R. Martin, A. Politou, K.C. Kondapalli, T. Stemmler, P.A. Temussi, J. Am. Chem. Soc. 129 (2007) 5374] calls for a deeper rationalization of the molecular mechanisms stabilizing-destabilizing the native state of globular proteins. It is shown that the statistical thermodynamic model originally developed by Ikegami can reproduce in a more-than-qualitative manner the two conformational transitions of yeast frataxin, providing important clues on their molecular origin.

  9. Parkes Observations of Globular Cluster Pulsars

    NASA Astrophysics Data System (ADS)

    Bailes, M.; Zhu, J.; Richter, S.

    2005-07-01

    Follow-up observations of pulsars from the Swinburne intermediate latitude survey with the Parkes radio telescope have caused us to question the association of PSR B1718-19 with the globular cluster NGC 6342 given the proximity of PSR J1721-1939 to the cluster. We have also found that the millisecond pulsar near the core of NGC 6624 has a large period second derivative, which would change the sign of the first derivative in about 6000 years. This is consistent with the pulsar experiencing a large gravitational perturbation from the cluster core.

  10. Globular glial tauopathies (GGT): consensus recommendations

    PubMed Central

    Bigio, Eileen H.; Budka, Herbert; Dickson, Dennis W.; Ferrer, Isidro; Ghetti, Bernardino; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Holton, Janice L.; Josephs, Keith A.; Powers, James; Spina, Salvatore; Takahashi, Hitoshi; White, Charles L.; Revesz, Tamas

    2014-01-01

    Rrecent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunore-active globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and

  11. Population and Star Formation Histories from the Outer Limits Survey

    NASA Astrophysics Data System (ADS)

    Brondel, Brian Joseph; Saha, Abhijit; Olszewski, Edward

    2015-08-01

    The Outer Limits Survey (OLS) is a deep survey of selected fields in the outlying areas of the Magellanic Clouds based on the MOSAIC-II instrument on the Blanco 4-meter Telescope at CTIO. OLS is designed to probe the outer disk and halo structures of Magellanic System. The survey comprises ~50 fields obtained in Landolt R, I and Washington C, M and DDO51 filters, extending to a depth of about 24th magnitude in I. While qualitative examination of the resulting data has yielded interesting published results, we report here on quantitative analysis through matching of Hess diagrams to theoretical isochrones. We present analysis based on techniques developed by Dolphin (e.g., 2002, MNRAS, 332, 91) for fields observed by OLS. Our results broadly match those found by qualitative examination of the CMDs, but interesting details emerge from isochrone fitting.

  12. Study of Diffuse X-ray Emission in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1997-01-01

    This grant supported our analysis of ROSAT x-ray data on globular clusters. Although the grant title referred to our original ROSAT proposal (cycle 1) to study diffuse soft x-ray emission in three globulars (for which time was only granted in that original observing cycle for one cluster, 47 Tuc), the grant has also been maintained through several renewals and funding supplements to support our later ROSAT observations of point sources in globulars. The primary emphasis has been on the study of the dim sources, or low liuminosity globular cluster x-ray sources, which we had originally discovered with the Einstein Observatory and for which ROSAT provided the logical followup. In this Final Report, we summarize the Scientific Objectives of this investigation of both diffuse emission and dim sources in globular clusters and the Results Achieved; and finally the Papers Published.

  13. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Ray, Alak

    2016-01-01

    Globular clusters are bound groups of about a million stars and stellar remnants. They are old, largely isolated, and very dense. We consider what each of these special features can mean for the development of life, the evolution of intelligent life, and the long-term survival of technological civilizations. We find that, if they house planets, globular clusters provide ideal environments for advanced civilizations that can survive over long times. We therefore propose methods to search for planets in globular clusters. If planets are found and if our arguments are correct, searches for intelligent life are most likely to succeed when directed toward globular clusters. Globular clusters may be the first places in which distant life is identified in our own or in external galaxies.

  14. Haloes seen in UVIS reflectance

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Bradley, E. T.; Colwell, J. E.; Sremcevic, M.

    2012-12-01

    UVIS SOI reflectance spectra show bright 'haloes' around the locations of some of the strongest resonances in Saturn's A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances can cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities at particular azimuths greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. Diffusion can explain the morphology of these haloes, although they are not well-resolved spatially by UVIS. Spectra determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  15. Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Nishimichi, Takahiro; Sasaki, Shin; Suto, Yasushi

    2016-10-01

    We revisit the non-sphericity of cluster-mass-scale halos from cosmological N-body simulation on the basis of triaxial modeling. In order to understand the difference between the simulation results and the conventional ellipsoidal collapse model (EC), we first consider the evolution of individual simulated halos. The major difference between EC and the simulation becomes appreciable after the turnaround epoch. Moreover, it is sensitive to the individual evolution history of each halo. Despite such strong dependence on individual halos, the resulting non-sphericity of halos exhibits weak but robust mass dependence in a statistical fashion; massive halos are more spherical up to the turnaround, but gradually become less spherical by z = 0. This is clearly inconsistent with the EC prediction: massive halos are usually more spherical. In addition, at z = 0, inner regions of the simulated halos are less spherical than outer regions; that is, the density distribution inside the halos is highly inhomogeneous and therefore not self-similar (concentric ellipsoids with the same axis ratio and orientation). This is also inconsistent with the homogeneous density distribution that is commonly assumed in EC. Since most of previous fitting formulae for the probability distribution function (PDF) of the axis ratio of triaxial ellipsoids have been constructed under the self-similarity assumption, they are not accurate. Indeed, we compute the PDF of the projected axis ratio a1/a2 directly from the simulation data without the self-similarity assumption, and find that it is very sensitive to the assumption. The latter needs to be carefully taken into account in direct comparison with observations, and therefore we provide an empirical fitting formula for the PDF of a1/a2. Our preliminary analysis suggests that the derived PDF of a1/a2 roughly agrees with the current weak-lensing observations. More importantly, the present results will be useful for future exploration of the non

  16. THE PSEUDO-EVOLUTION OF HALO MASS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-03-20

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M{sub 200{rho}-bar} Less-Than-Or-Equivalent-To 10{sup 12} h{sup -1} M{sub Sun} and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  17. The Extended GMRT Radio Halo Survey. I. New upper limits on radio halos and mini-halos

    NASA Astrophysics Data System (ADS)

    Kale, R.; Venturi, T.; Giacintucci, S.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Macario, G.; Athreya, R.

    2013-09-01

    Context. A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. These are associated with the relativistic electrons and magnetic fields present on ~Mpc scales in the intra-cluster medium. Aims: We aim to carry out a systematic radio survey of all luminous galaxy clusters selected from the REFLEX and eBCS X-ray catalogues with the Giant Metrewave Radio Telescope, to understand the statistical properties of the diffuse radio emission in galaxy clusters. Methods: We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS), which is an extension of the GMRT Radio Halo Survey (GRHS, Venturi et al. 2007, 2008). Analysis of radio data at 610/ 235/ 325 MHz on 12 galaxy clusters are presented. Results: We report the detection of a newly discovered mini-halo in the cluster RX J1532.9+3021 at 610 MHz. The presence of a small-scale relic (~200 kpc) is suspected in the cluster Z348. We do not detect cluster-scale diffuse emission in 11 clusters. Robust upper limits on the detection of radio halo of size of 1 Mpc are determined. We also present upper limits on the detections of mini-halos in a sub-sample of cool-core clusters. The upper limits for radio halos and mini-halos are plotted in the radio power- X-ray luminosity plane and the correlations are discussed. Diffuse extended emission that is not related to the target clusters, but detected as by-products in the sensitive images of two of the cluster fields (A689 and RX J0439.0+0715) is also reported. Conclusions: Based on the information about the presence of radio halos (or upper limits), available on 48 clusters out of the total sample of 67 clusters (EGRHS+GRHS), we find that 23 ± 7% of the clusters host radio halos. The radio halo fraction rises to 31 ± 11%, when only the clusters with X-ray luminosities >8 × 1044 erg s-1 are considered. Mini-halos are found in ~50% of cool-core clusters. A qualitative examination of the X-ray images of

  18. The DRAGON simulations: globular cluster evolution with a million stars

    NASA Astrophysics Data System (ADS)

    Wang, Long; Spurzem, Rainer; Aarseth, Sverre; Giersz, Mirek; Askar, Abbas; Berczik, Peter; Naab, Thorsten; Schadow, Riko; Kouwenhoven, M. B. N.

    2016-05-01

    Introducing the DRAGON simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with NBODY6++GPU and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour-magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived `dark' nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core - commonly observed in the (luminous) surface brightness profiles - shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs.

  19. Edades relativas de cúmulos globulares

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, M.; Forte, J. C.

    El trabajo de Rossemberg et al (1999), estudia las edades relativas de cúmulos globulares galácticos mediante el análisis de ciertos parámetros morfológicos de los diagramas color-magnitud de dichos cúmulos. Este trabajo se centra en tres puntos: analizar la consistencia de los resultados obtenidos por Rossemberg et al (1999) al emplear observaciones en el sistema fotométrico de Washington, más precisamente, las magnitudes C y T1 en lugar de las magnitudes V e I utilizadas por dichos autores. De la existencia de colores integrados, metalicidad y edad (relativa) para 21 de los cúmulos utilizados en dicho trabajo, se analiza la consistencia de estos resultados con las dependencias de color integrado como función de la edad y la metalicidad que se desprenden de los modelos teóricos de luz integrada por Worthey (1994), Schulz (2002) y Lee et al (2002). Por último se lleva a cabo una breve comparación de la morfología de los diagramas color-magnitud de los cúmulos globulares y de las isocronas utilizadas, a fin de intentar identificar algunas de las posibles causas de las diferencias observadas en los incisos anteriores.

  20. Mapping the differential reddening in globular clusters.

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Campos, F.; Kepler, S. O.

    Differential-reddening maps for 66 Galactic globular clusters (GCs) are built with archival HST WFC/ACS F606W and F814W photometry. We divide the WFC/ACS field of view across each cluster in a regular cell grid and extract the stellar-density Hess diagram from each cell. Shifts in colour and magnitude along the reddening vector are applied until a match with the mean diagram is obtained. The maps correspond to the internal dispersion of the reddening around the mean. We detect spatially-variable extinction in the 66 globular clusters studied, with mean values ranging from mbox {łangle{\\dEBV}\\rangle}approx0.018 (NGC 6981) up to mbox {łangle{\\dEBV}\\rangle}approx0.16 (Palomar 2). Differential-reddening correction decreases the observed foreground reddening and the apparent distance modulus but, since they are related to the same value of E(B-V), the distance to the Sun is conserved. While the foreground E(B-V) increases rather steeply towards the Galactic plane, <{dEBV >} does the same with a much flatter slope, thus suggesting that part of the measured DR originates inside the clusters. However, the lack of systematic variations of <{dEBV >} with the sampled cluster area indicates that most of the differential reddening is interstellar.

  1. Tides, Rotation Or Anisotropy? Self-consistent Nonspherical Models For Globular Clusters

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Bertin, G.

    2011-01-01

    Spherical models of quasi-relaxed stellar systems provide a successful zeroth-order description of globular clusters. Yet, the great progress made in recent years in the acquisition of detailed information of the structure of these stellar systems calls for a renewed effort on the side of modeling. In particular, more general analytical models would allow to address the long-standing issue of the physical origin of the deviations from spherical symmetry of the globular clusters, that now can be properly measured. In fact, it remains to be established which is the cause of the observed flattening, among external tides, internal rotation, and pressure anisotropy. In this paper we focus on the first two physical ingredients. We start by briefly describing a recently studied family of triaxial models that incorporate in a self-consistent way the tidal effects of the host galaxy, as a collisionless analogue of the Roche problem (Varri & Bertin ApJ 2009). We then present two new families of axisymmetric models in which the deviations from spherical symmetry are induced by the presence of internal rotation. The first one is an extension of the well-known family of King models to the case of axisymmetric equilibria flattened by solid-body rotation. The second family is characterized by differential rotation, designed to be rigid in the center and to vanish in the outer parts, where the imposed truncation in phase space becomes effective. For possible application to globular clusters, models of interest should be those, in both families, characterized by low values of the rotation strength parameter and quasi-spherical shape. For general interest in stellar dynamics, we show that, for high values of that parameter, the differentially rotating models may exhibit unexpected morphologies, even with a toroidal core.

  2. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  3. Outer atmospheric research

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability.

  4. Galactic evolution of sulphur as traced by globular clusters

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.

    2015-05-01

    Context. Sulphur is an important volatile α element, but its role in the Galactic chemical evolution is still uncertain, and more observations constraining the sulphur abundance in stellar photospheres are required. Aims: We derive the sulphur abundances in red giant branch (RGB) stars in three Galactic halo globular clusters (GC) that cover a wide metallicity range (-2.3 < [Fe/H] < -1.2): M 4 (NGC 6121), M 22 (NGC 6656), and M 30 (NGC 7099). The halo field stars show a large scatter in the [S/Fe] ratio in this metallicity span, which is inconsistent with canonical chemical evolution models. To date, very few measurements of [S/Fe] exist for stars in GCs, which are good tracers of the chemical enrichment of their environment. However, some light and α elements show star-to-star variations within individual GCs, and it is as yet unclear whether the α element sulphur also varies between GC stars. Methods: We used the infrared spectrograph CRIRES to obtain high-resolution (R ~ 50 000), high signal-to-noise (S/N ~ 200 per px) spectra in the region of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the literature (six stars in M 4,six stars in M 22, and three stars in M 30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920 nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity. Results: We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]LTE = 0.58 ± 0.01 ± 0.20 dex (statistical and systematic error) for M 4, [S/Fe]LTE = 0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]LTE = 0.55 ± 0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. We do not detect star-to-star variations of the S abundance in any of the observed GCs, with the possible exception of two individual stars, one in M 22 and one in M

  5. Kinematic Mass Measurements of Inner and Outer Spiral Disks

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Ciardullo, R.

    2010-01-01

    Our knowledge of the structure and kinematics of galactic disks and halos is quite limited. While integrated light spectroscopy has provided a large amount of information on inner disks, once outside 2.5 disk scale lengths, almost nothing is known. Does the mass-to-light ratio (M/L) stay constant in the outer regions? Does the stellar scale height stay constant or do disks flare? Are galactic disks really maximal and could there be any trends with Hubble type? Are dark matter halos fit better by NFW or pseudo-isothermal models? We have been using planetary nebulae (PNe) to probe the kinematic structure of face-on spiral disks by identifying large ( 100) samples of these objects via narrow-band imaging, and then measuring their radial velocities with follow-up, high-precision ( 5 km/s) spectroscopy. Our results for IC 342, M74, M83, M94, and M101 are quite interesting. With one exception (M101) the z-velocity dispersion (sigmaz) of galactic disks declines exponentially with the light out to 3 disk scale lengths. This is exactly as expected for a constant M/L, constant scale height disk. However, in the two galaxies with significant data past this radius, the values of sigmaz asymptote out at 20 km/s. Moreover, our analysis finds kinematic evidence for significant flaring in the outer regions, especially in M94. These observations are in excellent agreement with predictions derived from models of disk heating by halo substructure, and demonstrate how kinematic surveys in the outer disks of spirals can be used to test hierarchical models of galaxy formation. We also find that the disks of late-type galaxies are far from maximal, that the disks of early type spirals have higher M/L ratios than the disks of later-type objects, and that the unseen inner halos of spiral galaxies are better fit by pseudo-isothermal laws than by NFW models.

  6. The leptospiral outer membrane.

    PubMed

    Haake, David A; Zückert, Wolfram R

    2015-01-01

    The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able to survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H.Factor H. On the other hand, the OM must enable leptospires to evade detection by the host's immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane outer membrane proteins (OMPs) in many cases are better understood, thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis.

  7. Predator-Prey Model for Haloes in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Colwell, Joshua; Sremcevic, Miodrag; Madhusudhanan, Prasanna

    Particles in Saturn’s rings have a tripartite nature: (1) a broad distribution of fragments from the disruption of a previous moon that accrete into (2) transient aggregates, resembling piles of rubble, covered by a (3) regolith of smaller grains that result from collisions and meteoritic grinding. Evidence for this triple architecture of ring particles comes from a multitude of Cassini observations. In a number of ring locations (including Saturn’s F ring, the shepherded outer edges of rings A and B and at the locations of the strongest density waves) aggregation and dis-aggregation are operating now. ISS, VIMS, UVIS spectroscopy and occultations show haloes around the strongest density waves. Based on a predator-prey model for ring dynamics, we offer the following explanation: •Cyclic velocity changes cause the perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; •This forms a bright halo around the ILR, if the forcing is strong enough; •Surrounding particles diffuse back too slowly to erase the effect; they diffuse away to form the halo. The most rapid time scale is for forcing/aggregate growth/disaggregation; then irreversible regolith erosion; diffusion and/or ballistic transport; and slowest, meteoritic pollution/darkening. We observe both smaller and larger particles at perturbed regions. Straw, UVIS power spectral analysis, kittens and equinox objects show the prey (mass aggregates); while the haloes’ VIMS spectral signature, correlation length and excess variance are created by the predators (velocity dispersion) in regions stirred in the rings. Moon forcing triggers aggregation to create longer-lived aggregates that protect their interiors from meteoritic darkening and recycle the ring material to maintain the current purity of the rings. It also provides a mechanism for creation of new moons at resonance locations in the Roche zone, as proposed by Charnoz etal and

  8. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  9. Gas accretion from halos to disks: observations, curiosities, and problems

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-08-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  10. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  11. Smooth halos in the cosmic web

    SciTech Connect

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  12. Halo formation in three-dimensional bunches

    NASA Astrophysics Data System (ADS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S.; Ryne, R.

    1998-10-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large.

  13. THE GLOBULAR CLUSTER SYSTEM OF THE VIRGO GIANT ELLIPTICAL GALAXY NGC 4636. II. KINEMATICS OF THE GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Lee, Myung Gyoon; Park, Hong Soo; Hwang, Ho Seong; Arimoto, Nobuo; Tamura, Naoyuki; Onodera, Masato E-mail: hspark@astro.snu.ac.k E-mail: masato.onodera@cea.f E-mail: naoyuki@subaru.naoj.or

    2010-02-01

    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs (108 blue GCs and 130 red GCs) at the galactocentric radius 0.'39 < R < 15.'43, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R < 4.'3 (=2.9R{sub eff} = 18.5 kpc). The velocity dispersion for all the GCs is derived to be sigma{sub p} = 225{sup +12}{sub -9} km s{sup -1}. The velocity dispersion for the blue GCs (sigma{sub p} = 251{sup +18}{sub -12} km s{sup -1}) is slightly larger than that for the red GCs (sigma{sub p} = 205{sup +11}{sub -13} km s{sup -1}). The velocity dispersions for the blue GCs about the mean velocity and about the best-fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles (VDPs) with the VDPs calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC VDPs and the VDPs calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.

  14. Ultraviolet properties of individual hot stars in globular cluster cores. I - NGC 1904 (M79)

    NASA Technical Reports Server (NTRS)

    Altner, B.; Matilsky, T. A.

    1993-01-01

    As part of an observing program using the IUE satellite to investigate the properties of stars within the cores of Galactic globular clusters, we have obtained three spectra of the cluster NGC 1904 (M79). All three were long-integration-time, short-wavelength (SWP) spectra obtained at the so-called 'center-of-light', and all three showed evidence of multiple sources within the IUE large aperture. We describe the analysis of these spectra and present evidence that the UV sources represent individual hot stars in the post-horizontal-branch stage of evolution. We see more UV-bright objects in the core of this cluster than expected from surveys of similar objects discovered in the outer regions of other globulars, leading us to conclude that dynamical effects in the core may significantly alter the path of evolution off the horizontal branch. The spectra also appear to be fitted more closely by models using Population I metal abundances than by Population II abundance models.

  15. THE RESOLVED STELLAR HALO OF NGC 253

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Chappell, Samantha N.; Radburn-Smith, David J.; De Jong, Roelof S.

    2011-07-20

    We have obtained Magellan/IMACS and Hubble Space Telescope (HST)/Advanced Camera for Surveys imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a {approx} 0.35 {+-} 0.1. The total stellar mass of the halo is estimated to be M{sub halo} {approx} (2.5 {+-} 1.5) x 10{sup 9} M{sub sun}, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 {+-} 0.6, corresponding to a three-dimensional power-law index of {approx} - 4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.

  16. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guo, Michelle; Zhang, Andrew J.; Deng, Michelle; Cohen, Judith G.; Guhathakurta, Puragra; Shetrone, Matthew D.; Lee, Young Sun; Rizzi, Luca

    2015-03-01

    We present carbon abundances of red giants in Milky Way (MW) globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log (L/{{L}})≃ 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of SNe Ia at higher metallicities. We also identified 11 very carbon-rich giants (eight previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the MW stellar halo. Nonetheless, the stars with [C/Fe]\\lt +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] “knee” adds to the evidence from [α/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. Inflow of halo gas from the direction of the Galactic north pole

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1984-01-01

    A far-UV echelle spectrum has been obtained of the UV-bright star vZ1128 in the globular cluster M3. This cluster lies in a direction 11 deg off the Galactic north pole at a distance of about 10 kpc. Only the usually strong interstellar lines are recognizable in the faint spectrum, and they show absorption at velocities from near +40 km/s to -100 km/s. Since in the direction observed the line-of-sight component of the Milky Way rotation is negligible, the detected velocities demonstrate for this direction the motion of gas from the Milky Way halo toward the disk. Gas returning to the disk in a galactic fountainlike flow may explain the observations.

  18. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  19. The SAGES Legacy Unifying Globulars and Galaxies survey (SLUGGS): sample definition, methods, and initial results

    SciTech Connect

    Brodie, Jean P.; Romanowsky, Aaron J.; Jennings, Zachary G.; Pota, Vincenzo; Kader, Justin; Roediger, Joel C.; Villaume, Alexa; Arnold, Jacob A.; Woodley, Kristin A.; Strader, Jay; Forbes, Duncan A.; Pastorello, Nicola; Usher, Christopher; Blom, Christina; Kartha, Sreeja S.; Foster, Caroline; Spitler, Lee R.

    2014-11-20

    We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin{sup 2} field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ∼8 R {sub e}, and to ∼15 R {sub e} in some cases. New techniques to extract integrated stellar kinematics and metallicities to large radii (∼2-3 R {sub e}) are used in concert with GC data to create two-dimensional (2D) velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in situ formation modes at high redshifts for metal-poor and metal-rich GCs.

  20. ISOTHERMAL DISTRIBUTIONS IN MONDian GRAVITY AS A SIMPLE UNIFYING EXPLANATION FOR THE UBIQUITOUS{rho}{proportional_to}r {sup -3} DENSITY PROFILES IN TENUOUS STELLAR HALOS

    SciTech Connect

    Hernandez, X.; Jimenez, M. A.; Allen, C.

    2013-06-20

    That the stellar halo of the Milky Way has a density profile which, to first approximation, satisfies{rho}{proportional_to}r {sup -3} and has been known for a long time. More recently, it has become clear that M31 also has such an extended stellar halo, which approximately follows the same radial scaling. Studies of distant galaxies have revealed the same phenomenology. Also, we now know that the density profiles of the globular cluster systems of our Galaxy and Andromeda to first approximation follow{rho}{proportional_to}r {sup -3},{Sigma}{proportional_to}R {sup -2} in projection. Recently, diffuse populations of stars have been detected spherically surrounding a number of Galactic globular clusters, extending much beyond the Newtonian tidal radii, often without showing any evidence of tidal features. Within the standard Newtonian and general relativity scenario, numerous and diverse particular explanations have been suggested, individually tailored to each of the different classes of systems described above. Here we show that in a MONDian gravity scenario any isothermal tenuous halo of tracer particles forming a small perturbation surrounding a spherically symmetric mass distribution will have an equilibrium configuration which to first approximation satisfies a{rho}{proportional_to}r {sup -3} scaling.

  1. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  2. Galaxy Kinematics with VIRUS-P: The Dark Matter Halo of M87

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy D.; Gebhardt, Karl; Adams, Joshua J.

    2011-03-01

    We present two-dimensional stellar kinematics of M87 out to R = 238'' taken with the integral field spectrograph VIRUS-P. We run a large set of axisymmetric, orbit-based dynamical models and find clear evidence for a massive dark matter halo. While a logarithmic parameterization for the dark matter halo is preferred, we do not constrain the dark matter scale radius for a Navarro-Frenk-White (NFW) profile and therefore cannot rule it out. Our best-fit logarithmic models return an enclosed dark matter fraction of 17.2+5.0 -5.0% within one effective radius (Re cong 100''), rising to 49.4+7.2 -8.8% within 2 Re . Existing SAURON data (R <=13''), and globular cluster (GC) kinematic data covering 145'' <= R <= 554'' complete the kinematic coverage to R = 47 kpc (~5 Re ). At this radial distance, the logarithmic dark halo comprises 85.3+2.5 -2.4% of the total enclosed mass of 5.7+1.3 -0.9 × 1012 M sun making M87 one of the most massive galaxies in the local universe. Our best-fit logarithmic dynamical models return a stellar mass-to-light ratio (M/L) of 9.1+0.2 -0.2 (V band), a dark halo circular velocity of 800+75 -25 km s-1, and a dark halo scale radius of 36+7 -3 kpc. The stellar M/L, assuming an NFW dark halo, is well constrained to 8.20+0.05 -0.10 (V band). The stars in M87 are found to be radially anisotropic out to R cong0.5 Re , then isotropic or slightly tangentially anisotropic to our last stellar data point at R = 2.4 Re where the anisotropy of the stars and GCs are in excellent agreement. The GCs then become radially anisotropic in the last two modeling bins at R = 3.4 Re and R = 4.8 Re . As one of the most massive galaxies in the local universe, constraints on both the mass distribution of M87 and anisotropy of its kinematic components strongly inform our theories of early-type galaxy formation and evolution in dense environments.

  3. The Century Survey Galactic Halo Project. II. Global Properties and the Luminosity Function of Field Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Allende Prieto, Carlos; Beers, Timothy C.; Wilhelm, Ronald

    2005-09-01

    We discuss a 175 deg2 spectroscopic survey for blue horizontal branch (BHB) stars in the Galactic halo. We use the Two Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) to select BHB candidates, and we find that the 2MASS and SDSS color selection is 38% and 50% efficient, respectively, for BHB stars. Our samples include one likely runaway B7 star 6 kpc below the Galactic plane. The global properties of the BHB samples are consistent with membership in the halo population: the median metallicity is [Fe/H]=-1.7, the velocity dispersion is 108 km s-1, and the mean Galactic rotation of the BHB stars 3 kpc<|z|<15 kpc is -4+/-30 km s-1. We discuss the theoretical basis of the Preston, Shectman, and Beers MV-color relation for BHB stars and conclude that the intrinsic shape of the BHB MV-color relation results from the physics of stars on the horizontal branch. We calculate the luminosity function for the field BHB star samples using the maximum likelihood method of Efstathiou and coworkers, which is unbiased by density variations. The field BHB luminosity function exhibits a steep rise at bright luminosities, a peak between 0.8globular cluster BHBs. Kolmogorov-Smirnov tests suggest that field BHB stars and BHB stars in globular clusters share a common distribution of luminosities, with the exception of globular clusters with extended BHBs.

  4. Ophthalmic halo reduced lenses design

    NASA Astrophysics Data System (ADS)

    Limon, Ofer; Zalevsky, Zeev

    2015-05-01

    The halo effect is a very problematic visual artifact occurring in extended depth of focus or multi-focal ophthalmic lenses such as e.g. intra-ocular (after cataract surgery) or contact lenses when used in dark illumination conditions. This artifact is generated due to surface structures added on top of those lenses in order to increase their depth of focus or to realize multiple focal lengths. In this paper we present novel solution that can resolve this major problem of ophthalmic lenses. The proposed solution involves modification to the surface structure that realizes the extended depth of focus. Our solution is fabricated and numerically and experimentally validated also in preliminary in-vivo trials.

  5. Ultraviolet Spectra of Globular Clusters in Andromeda

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    1999-05-01

    As part of a NASA-funded effort with Ben Dorman of Goddard Space Flight Center, I am engaged in calculating spectra from first principles of solar-type stars of a wide range of metallicity. This paper reports on an extension of this work funded by the Hubble Space Telescope archival program, the derivation of fundamental parameters for several globular clusters in Andromeda (M31). Properties of the underlying stellar population are derived by matching archival HST spectra with composite spectra constructed by weighted coaddition of the calculated spectra for stars of appropriate spectral types. Armed with these ab initio calculations, this work explores the degeneracy in age and metallicity in the ultraviolet, and the affect of unknowns such as the relative abundance of light elements versus iron and the possible presence of blue stragglers or blue horizontal branch stars.

  6. New 2MASS near-infrared photometry for globular clusters in M31

    SciTech Connect

    Wang, Song; Ma, Jun; Wu, Zhenyu; Zhou, Xu

    2014-07-01

    We present Two Micron All Sky Survey JHK {sub s} photometry for 913 star clusters and candidates in the field of M31, which are selected from the latest Revised Bologna Catalog of M31 globular clusters (GCs) and candidates. The photometric measurements in this paper supplement this catalog, and provide the most comprehensive and homogeneous photometric catalog for M31 GCs in the JHK {sub s} bandpasses. In general, our photometry is consistent with previous measurements. The globular cluster luminosity function (GCLF) peaks for the confirmed GCs derived by fitting a t {sub 5} distribution using the maximum likelihood method are J{sub 0}=15.348{sub −0.208}{sup +0.206}, H{sub 0}=14.703{sub −0.180}{sup +0.176}, and K{sub s0}=14.534{sub −0.146}{sup +0.142}, all of which agree well with previous studies. The GCLFs are different between metal-rich (MR) and metal-poor (MP), and between inner and outer subpopulations, as MP clusters are fainter than their MR counterparts and the inner clusters are brighter than the outer ones, which confirm previous results. The NIR colors of the GC candidates are on average redder than those of the confirmed GCs, which leads to an obscure bimodal distribution of color indices. The relation of (V – K {sub s}){sub 0} and metallicity shows a notable departure from linearity, with a shallower slope toward the redder end. The color-magnitude diagram (CMD) and color-color diagram show that many GC candidates are located out of the evolutionary tracks, suggesting that some of them may be false M31 GC candidates. The CMD also shows that the initial mass function of M31 GCs covers a large range, and the majority of the clusters have initial masses between 10{sup 3} and 10{sup 6} M {sub ☉}.

  7. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Grant, John (Technical Monitor)

    2003-01-01

    This grant has supported work by T. Owen and B. A. Smith on planetary and satellite nomenclature, carried out under the general auspices of the International Astronomical Union (IAU). The IAU maintains a Working Group on Planetary and Satellite Nomenclature (WGPSN) whose current chair is Prof.Kaare Aksnes of the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway. Both Owen and Smith are members of the WGPSN; Owen as chair of the Outer Solar System Task Group, and Smith as chair of the Mars Task Group. The major activity during the last grant period (2002) was the approval of several new names for features on Mars by Smith's group and features on Jovian satellites plus new names for satellites of Jupiter, Saturn and Uranus by Owen's group. Much of this work was accomplished by e-mail exchanges, but the new nomenclature was formally discussed and approved at a meeting of the WGPSN held in conjunction with the Division for Planetary Sciences meeting in Birmingham, Alabama in October 2002.

  8. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. Models of globular proteins in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wentzel, Nathaniel James

    Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of

  10. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  11. Subsuns, Bottlinger's rings, and elliptical halos.

    PubMed

    Lynch, D K; Gedzelman, S D; Fraser, A B

    1994-07-20

    Subsuns, Bottlinger's rings, and elliptical halos are simulated by the use of a Monte Carlo model; reflection of sunlight from almost horizontal ice crystals is assumed. Subsuns are circular or elliptical spots seen at the specular reflection point when one flies over cirrus or cirrostratus clouds. Bottlinger's rings are rare, almost elliptical rings centered about the subsun. Elliptical halos are small rings of light centered around the Sun or the Moon that rarely occur with other halo phenomena. Subsuns and Bottlinger's rings can be explained by reflection from a single crystal, whereas elliptical halos require reflection from two separate crystals. All three phenomena are colorless and vertically elongated with an eccentricity that increases with increasing solar zenith angle. For several cases of Bottlinger's rings the simulations are compared with density scans of photographs. Clouds that consist of large swinging or gyrating plates and dendritic crystals, which form near -15 °C, seem the most likely ca didates to produce the rings and elliptical halos. Meteorological evidence is presented that supports these conditions for elliptical halos. Simulations suggest that the most distinct elliptical halos may be produced by hybrid clouds that contain both horizontal and gyrating crystals.

  12. Globular Cluster Streams as Galactic High-Precision Scales—the Poster Child Palomar 5

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio X.

    2015-04-01

    Using the example of the tidal stream of the Milky Way globular cluster Palomar 5 (Pal 5), we demonstrate how observational data on tidal streams can be efficiently reduced in dimensionality and modeled in a Bayesian framework. Our approach combines detection of stream overdensities by a Difference-of-Gaussians process with fast streakline models of globular cluster streams and a continuous likelihood function built from these models. Inference is performed with Markov chain Monte Carlo. By generating ≈ {{10}7} model streams, we show that the unique geometry of the Pal 5 debris yields powerful constraints on the solar position and motion, the Milky Way and Pal 5 itself. All 10 model parameters were allowed to vary over large ranges without additional prior information. Using only readily available SDSS data and a few radial velocities from the literature, we find that the distance of the Sun from the Galactic Center is 8.30 ± 0.25 kpc, and the transverse velocity is 253 ± 16 km s-1. Both estimates are in excellent agreement with independent measurements of these two quantities. Assuming a standard disk and bulge model, we determine the Galactic mass within Pal 5's apogalactic radius of 19 kpc to be (2.1+/- 0.4)× {{10}11} {{M}⊙ }. Moreover, we find the potential of the dark halo with a flattening of {{q}z}=0.95-0.12+0.16 to be essentially spherical—at least within the radial range that is effectively probed by Pal 5. We also determine Pal 5's mass, distance, and proper motion independently from other methods, which enables us to perform vital cross-checks. Our inferred heliocentric distance of Pal 5 is 23.6-0.7+0.8 kpc, in perfect agreement with, and more precise than, estimates from isochrone fitting of deep Hubble Space Telescope (HST) imaging data. We conclude that finding and modeling more globular cluster streams is an efficient way to map out the structure of our Galaxy to high precision. With more observational data and by using additional prior

  13. Proper motions and membership probabilities of stars in the region of globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Yadav, R. K. S.

    2015-12-01

    Context. NGC 6366 is a metal-rich globular cluster that is relatively unstudied. It is a kinematically interesting cluster, reported as belonging to the slowly rotating halo system, which is unusual given its metallicity and spatial location in the Galaxy. Aims: The purpose of this research is to determine the relative proper motion and membership probability of the stars in the region of globular cluster NGC 6366. To target cluster members reliably during spectroscopic surveys without including field stars, a good proper motion and membership probability catalogue of NGC 6366 is needed. Methods: To derive relative proper motions, the archival data from the Wide Field Imager mounted on the ESO 2.2 m telescope have been reduced using a high precision astrometric software. The images used are in the B,V, and I photometric bands with an epoch gap of ~3.2 yr. The calibrated BVI magnitudes have been determined using recent data for secondary standard stars. Results: We determined relative proper motions and cluster membership probabilities for 2530 stars in the field of globular cluster NGC 6366. The median proper motion rms errors for stars brighter than V ~ 18 mag is ~2 mas yr-1, which gradually increases to ~5 mas yr-1 for stars having magnitudes V ~ 20 mag. Based on the membership catalogue, we checked the membership status of the X-ray sources and variable stars of NGC 6366 mentioned in the literature. We also provide the astronomical community with an electronic catalogue that includes B, V, and I magnitudes; relative proper motions; and membership probabilities of the stars in the region of NGC 6366. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 71.D-0220(A) and the archive material.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A59

  14. The Chemical Composition of Halo Stars on Extreme Orbits

    NASA Astrophysics Data System (ADS)

    Stephens, Alex

    1999-04-01

    Presented within is a fine spectroscopic analysis of 11 metal-poor (-2.15<[Fe/H]<-1.00) dwarf stars on orbits that penetrate the outermost regions of the Galactic halo. Abundances for a select group of light metals (Na, Mg, Si, Ca, and Ti), Fe-peak nuclides (Cr, Fe, and Ni), and neutron-capture elements (Y and Ba) were calculated using line strengths measured from high-resolution (R~48,000), high signal-to-noise ratio (S/N~110pixel^-1) echelle spectra acquired with the Keck I 10 m telescope and HIRES spectrograph. Ten of the stars have apogalactica, a proxy for stellar birthplace, which stretch between 25 and 90 kpc; however, these ``outer halo'' stars exhibit strikingly uniform abundances. The average, Fe-normalized abundances-<[Mg/Fe]>=+0.23+/-0.09, <[Si/Fe]>=+0.24+/-0.10, <[Ca/Fe]>=+0.22+/-0.07, <[Ti/Fe]>=+0.20+/-0.08, <[Cr/Fe]>=0.02+/-0.07, <[Ni/Fe]>=-0.09+/-0.07, and <[Ba/Fe]>=+0.01+/-0.12-exhibit little intrinsic scatter; moreover, the evolution of individual ratios (as a function of [Fe/H]) is generally consistent with the predictions of galactic chemical evolution models dominated by the ejecta of core-collapse supernovae. Only <[Y/Fe]>=-0.13+/-0.21 exhibits a dispersion larger than observational uncertainties, which suggests a different nucleosynthesis site for this element. It has been conjectured that stars on high-energy orbits-either those that penetrate the remote halo or ones with extreme retrograde velocities-were once associated with a cannibalized satellite galaxy. Such stars, as shown here, are indistinguishable from metal-poor dwarfs of the inner Galactic halo. The uniformity of the abundances, regardless of kinematic properties, suggests that physically, spatially, and temporally distinct star-forming regions within (or near) the growing Milky Way experienced grossly similar chemical evolution histories. Implications for galaxy formation scenarios are discussed.

  15. THE ACCRETION OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Masters, Craig E.; Ashman, Keith M. E-mail: ashmank@umkc.ed

    2010-12-10

    The question of where the low-metallicity globular clusters in early-type galaxies came from has profound implications for the formation of those galaxies. Our work supports the idea that the metal-poor globular cluster systems of giant early-type galaxies formed in dwarf galaxies that have been subsumed by the giants. To support this hypothesis, two linear relations, one involving globular cluster metallicity versus host galaxy luminosity and one involving metallicity versus velocity dispersion were studied. Tentatively, these relations show that the bright ellipticals do not obey the same trend as the dwarfs, suggesting that the low-metallicity globular clusters did not form within their parent bright ellipticals.

  16. Microlensing in Globular Clusters: the First Confirmed Lens

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe

    2015-01-01

    Microlensing observations toward globular clusters could be very useful to probe their low mass star and brown dwarf content. Using the large set of microlensing events detected so far toward the Galactic centre we investigated whether for some of the observed events the lenses are located in the Galactic globular clusters. Indeed, we found that in four cases some events might be due to lenses located in the globular clusters themselves. Moreover, we discuss a microlensing event found in M22. Using the adaptive optics system NACO at ESO VLT it was possible to identify the lens, which turned out to be a low mass star of about 0.18 solar masses in the globular cluster M22 itself.

  17. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  18. Fractional Yields Inferred from Halo and Thick Disk Stars

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  19. Newly discovered globular clusters in NGC 147 and NGC 185 from PAndAS

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Ferguson, A. M. N.; Huxor, A. P.; Mackey, A. D.; Fishlock, C. K.; Irwin, M. J.; Tanvir, N.; Chapman, S. C.; Ibata, R. A.; Lewis, G. F.; McConnachie, A.

    2013-11-01

    Using data from the Pan-Andromeda Archaeological Survey (PAndAS), we have discovered four new globular clusters (GCs) associated with the M31 dwarf elliptical (dE) satellites NGC 147 and NGC 185. Three of these are associated with NGC 147 and one with NGC 185. All lie beyond the main optical boundaries of the galaxies and are the most remote clusters yet known in these systems. Radial velocities derived from low-resolution spectra are used to argue that the GCs are bound to the dwarfs and are not part of the M31 halo population. Combining PAndAS with United Kingdom Infrared Telescope (UKIRT)/WFCAM (Wide-Field Camera) data, we present the first homogeneous optical and near-IR photometry for the entire GC systems of these dEs. Colour-colour plots and published colour-metallicity relations are employed to constrain GC ages and metallicities. It is demonstrated that the clusters are in general metal poor ([Fe/H] < -1.25 dex), while the ages are more difficult to constrain. The mean (V - I)0 colours of the two GC systems are very similar to those of the GC systems of dEs in the Virgo and Fornax clusters, as well as the extended halo GC population in M31. The new clusters bring the GC-specific frequency (SN) to ˜9 in NGC 147 and ˜5 in NGC 185, consistent with values found for dEs of similar luminosity residing in a range of environments.

  20. Symmetry in halo displays and symmetry in halo-making crystals.

    PubMed

    Können, Gunther P

    2003-01-20

    The relation between the symmetry in halo displays and crystal symmetry is investigated for halo displays that are generated by ensembles of crystals. It is found that, regardless of the symmetry of the constituent crystals, such displays are always left-right (L-R) symmetric if the crystals are formed from the surrounding vapor. L-R symmetry of a halo display implies here that the cross sections for formation of a halo arc on the left-hand side of the solar vertical and its right-hand side mirror image are equal. This property leaves room for two types of halo display only: a full symmetric one (mmm-symmetric), and a partial symmetric one (mm2-symmetric) in which halo constituents lack their counterparts on the other side of the parhelic circle. A partial symmetric display can occur only for point halos. Its occurrence implies that a number of symmetry elements are not present in the shape of the halo-making crystals. These elements are a center of inversion, any rotatory-inversion axis that is parallel to the crystal spin axis P, a mirror plane perpendicular to the P axis, and a twofold rotation axis perpendicular to the P axis. A simple conceptual method is presented to reconstruct possible shapes of the halo-generating crystals from the halos in the display. The method is illustrated in two examples. Halos that may occur on the Saturnian satellite Titan are discussed. The possibilities for the Huygens probe to detect these halos during its descent through the Titan clouds in 2005 are detailed. PMID:12570252

  1. Symmetry in halo displays and symmetry in halo-making crystals.

    PubMed

    Können, Gunther P

    2003-01-20

    The relation between the symmetry in halo displays and crystal symmetry is investigated for halo displays that are generated by ensembles of crystals. It is found that, regardless of the symmetry of the constituent crystals, such displays are always left-right (L-R) symmetric if the crystals are formed from the surrounding vapor. L-R symmetry of a halo display implies here that the cross sections for formation of a halo arc on the left-hand side of the solar vertical and its right-hand side mirror image are equal. This property leaves room for two types of halo display only: a full symmetric one (mmm-symmetric), and a partial symmetric one (mm2-symmetric) in which halo constituents lack their counterparts on the other side of the parhelic circle. A partial symmetric display can occur only for point halos. Its occurrence implies that a number of symmetry elements are not present in the shape of the halo-making crystals. These elements are a center of inversion, any rotatory-inversion axis that is parallel to the crystal spin axis P, a mirror plane perpendicular to the P axis, and a twofold rotation axis perpendicular to the P axis. A simple conceptual method is presented to reconstruct possible shapes of the halo-generating crystals from the halos in the display. The method is illustrated in two examples. Halos that may occur on the Saturnian satellite Titan are discussed. The possibilities for the Huygens probe to detect these halos during its descent through the Titan clouds in 2005 are detailed.

  2. ON THE DIFFUSE Lyα HALO AROUND Lyα EMITTING GALAXIES

    SciTech Connect

    Lake, Ethan; Zheng, Zheng; Sadoun, Raphael; Cen, Renyue; Momose, Rieko; Ouchi, Masami E-mail: zhengzheng@astro.utah.edu

    2015-06-10

    Lyα photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Lyα emission around galaxies. Such low surface brightness Lyα halos (LAHs) have been detected by stacking Lyα images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine z = 3.1 Lyα emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Lyα surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Lyα surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Lyα emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultraviolet halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.

  3. Binding of chara Myosin globular tail domain to phospholipid vesicles.

    PubMed

    Nunokawa, Shun-Ya; Anan, Hiromi; Shimada, Kiyo; Hachikubo, You; Kashiyama, Taku; Ito, Kohji; Yamamoto, Keiichi

    2007-11-01

    Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.

  4. STRUCTURE AND POPULATION OF THE ANDROMEDA STELLAR HALO FROM A SUBARU/SUPRIME-CAM SURVEY

    SciTech Connect

    Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka; Iye, Masanori; Guhathakurta, Puragra

    2010-01-10

    We present a photometric survey of the stellar halo of the nearest giant spiral galaxy, Andromeda (M31), using Suprime-Cam on the Subaru Telescope. A detailed analysis of VI color-magnitude diagrams of the resolved stellar population is used to measure properties such as line-of-sight distance, surface brightness, metallicity, and age. These are used to isolate and characterize different components of the M31 halo: (1) the giant southern stream (GSS); (2) several other substructures; and (3) the smooth halo. First, the GSS is characterized by a broad red giant branch (RGB) and a metal-rich/intermediate-age red clump (RC). The I magnitude of the well-defined tip of the RGB suggests that the distance to the observed GSS field is (m - M){sub 0} = 24.73 +- 0.11 (883 +- 45 kpc) at a projected radius of R approx 30 kpc from M31's center. The GSS shows a high metallicity peaked at [Fe/H]approx>-0.5 with a mean (median) of -0.7 (-0.6), estimated via comparison with theoretical isochrones. Combined with the luminosity of the RC, we estimate the mean age of its stellar population to be approx8 Gyr. The mass of its progenitor galaxy is likely in the range of 10{sup 7}-10{sup 9} M{sub sun}. Second, we study M31's halo substructure along the northwest/southeast minor axis out to R approx 100 kpc and the southwest major-axis region at R approx 60 kpc. We confirm two substructures in the southeast halo reported by Ibata et al. and discover two overdense substructures in the northwest halo. We investigate the properties of these four substructures as well as other structures including the western shelf and find that differences in stellar populations among these systems, thereby suggesting each has a different origin. Our statistical analysis implies that the M31 halo as a whole may contain at least 16 substructures, each with a different origin, so its outer halo has experienced at least this many accretion events involving dwarf satellites with mass 10{sup 7}-10{sup 9} M{sub sun

  5. Genesis Halo Orbit Station Keeping Design

    NASA Technical Reports Server (NTRS)

    Lo, M.; Williams, K.; Wilson, R.; Howell, K.; Barden, B.

    2000-01-01

    As the fifth mission of NASA's Directory Program, Genesis is designed to collect solar wind samples for approximately two years in a halo orbit near the Sun-Earth L(sub 1) Lagrange point for return to the Earth.

  6. The Gaseous Halo of NGC 891

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund

    2014-08-01

    The halos of disk galaxies contain a substantial mass of diffuse gas whose properties (temperature, density, structure, and metallicity) are important to understanding how the intergalactic medium was enriched and the long-term star-formation potential of the galaxy. However, we still do not know whether most of the halo material was expelled from the galaxy in a 'galactic fountain' or is fresh infall from the circum/intergalactic medium. NGC 891 is a nearby (D=10 Mpc), edge-on Milky Way analog whose halo has been intensively studied. I will present our recent work in the X-ray and UV bands aimed at trying to determine the origin of the hot and cool components of the halo gas by measuring their metal content, and discuss whether results from NGC 891 can be generalized to other galaxies.

  7. Solar Back-sided Halo CME

    NASA Video Gallery

    The Sun erupted with several CMEs (coronal mass ejections) during a period just over a day (Nov. 8-9, 2012), the largest of which was a halo CME. This CME appears to have originated from an active ...

  8. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  9. Dark matter particles in the galactic halo

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-01

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  10. Simulating rainbows and halos in color.

    PubMed

    Gedzelman, S D

    1994-07-20

    Geometric optics rainbows and ice-crystal halos that include some effects of a Rayleigh-scattering atmosphere and a cloud of finite optical thickness are simulated in color by the use of a Monte Carlo approach. PMID:20935829

  11. Understanding the Milky Way Halo through Large Surveys

    NASA Astrophysics Data System (ADS)

    Koposov, Sergey

    This thesis presents an extensive study of stellar substructure in the outskirts of the Milky Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure, either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar streams are powerful diagnostics of the Milky Way's dynamics and formation history. I have developed an algorithmic technique of searching for stellar overdensities in the MW halo, based on SDSS catalogs. This led to the discovery of unusual ultra-faint ~ (1000Lsun) globular clusters with very compact sizes and relaxation times << t_Hubble. The detailed analysis of a known stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object along 60 degrees on the sky. By modeling the stream's orbit I could place strong constraints on the Galactic potential, e.g. Vcirc(R0)= 224+/-13 km/s. The application of the algorithmic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to quantify SDSS's severe radial incompleteness in its search for ultra-faint dwarf galaxies and to determine the luminosity function of MW satellites down to luminosities of M_V ~ -3. I used the semi-analytical model in order to compare the CDM model predictions for the MW satellite population with the observations; this comparison has shown that the recently increased census of MW satellites, better understanding of the radial incompleteness and the suppression of star formation after the reionization can fully solve the "Missing satellite problem".

  12. The Leptospiral Outer Membrane

    PubMed Central

    Haake, David A; Zückert, Wolfram R

    2015-01-01

    The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H. On the other hand, the OM must enable leptospires to evade detection by the host’s immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane OMPs in many cases are better understood thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña Moctezuma

  13. The mass of spiral galaxy halos

    NASA Technical Reports Server (NTRS)

    Zaritsky, Dennis

    1992-01-01

    A discussion is presented of previous and current work on the determination of the mass distribution of spiral galaxy halos. The two most common tools utilized to determine the mass of spiral galaxies, i.e., companion galaxies and rotation curves are discussed. The most recent research of companion galaxies, which probes the potential to larger distances and utilizes more accurate dynamic modeling, demonstrates that isolated late-type galaxies do have very large dark-matter halos.

  14. The renal halo sign in pancreatitis

    SciTech Connect

    Susman, N.; Hammerman, A.M.; Cohen, E.

    1982-02-01

    Three cases of pancreatitis are presented in which the diagnosis can be suggested by the appearance of a distinct radiolucent halo about the left kidney on the plain radiograph of the abdomen. This halo is produced by apparent enhancement of the perirenal fat by an adjacent retroperitoneal exudate in the left anterior pararenal space, as demonstrated by subsequent abdominal computed tomographic scans. Although striking in appearance, the sign may be ignored if its significance is not understood.

  15. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  16. TIDAL STREAM MORPHOLOGY AS AN INDICATOR OF DARK MATTER HALO GEOMETRY: THE CASE OF PALOMAR 5

    SciTech Connect

    Pearson, Sarah; Johnston, Kathryn V.; Price-Whelan, Adrian M.; Küpper, Andreas H. W.

    2015-01-20

    This paper presents an example where the morphology of a single stellar stream can be used to rule out a specific galactic potential form without the need for velocity information. We investigate the globular cluster Palomar 5 (Pal 5), which is tidally disrupting into a cold, thin stream mapped over 22 deg on the sky with a typical width of 0.7 deg. We generate models of this stream by fixing Pal 5's present-day position, distance, and radial velocity via observations, while allowing its proper motion to vary. In a spherical dark matter halo we easily find models that fit the observed morphology. However, no plausible Pal 5 model could be found in the triaxial potential of Law and Majewski, which has been proposed to explain the properties of the Sagittarius stream. In this case, the long, thin, and curved morphology of the Pal 5 stream alone can be used to rule out such a potential configuration. Pal 5-like streams in this potential are either too straight, missing the curvature of the observations, or show an unusual morphology which we dub stream-fanning: a signature sensitive to the triaxiality of a potential. We conclude that the mere existence of other thin tidal streams must provide broad constraints on the orientation and shape of the dark matter halo they inhabit.

  17. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  18. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    SciTech Connect

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A.

    2013-05-20

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  19. Beam halo studies in LEHIPA DTL

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  20. Bringing the Galaxy's dark halo to life

    NASA Astrophysics Data System (ADS)

    Piffl, T.; Penoyre, Z.; Binney, J.

    2015-07-01

    We present a new method to construct fully self-consistent equilibrium models of multicomponent disc galaxies similar to the Milky Way. We define distribution functions for the stellar disc and dark halo that depend on phase-space position only through action coordinates. We then use an iterative approach to find the corresponding gravitational potential. We study the adiabatic response of the initially spherical dark halo to the introduction of the baryonic component and find that the halo flattens in its inner regions with final minor-major axis ratios q = 0.75-0.95. The extent of the flattening depends on the velocity structure of the halo particles with radially biased models exhibiting a stronger response. In this latter case, which is according to cosmological simulations the most likely one, the new density structure resembles a `dark disc' superimposed on a spherical halo. We discuss the implications of these results for our recent estimate of the local dark matter (DM) density. The velocity distribution of the DM particles near the Sun is very non-Gaussian. All three principal velocity dispersions are boosted as the halo contracts, and at low velocities a plateau develops in the distribution of vz. For models similar to a state-of-the-art Galaxy model, we find velocity dispersions around 180 km s-1 for vz and the tangential velocity, vϕ, and 150-205 km s-1 for the in-plane radial velocity, vR, depending on the anisotropy of the model.

  1. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  2. CHEMICAL ABUNDANCES OF THE MILKY WAY THICK DISK AND STELLAR HALO. I. IMPLICATIONS OF [{alpha}/Fe] FOR STAR FORMATION HISTORIES IN THEIR PROGENITORS

    SciTech Connect

    Ishigaki, Miho N.; Aoki, Wako; Chiba, Masashi E-mail: aoki.wako@nao.ac.jp

    2012-07-01

    We present the abundance analysis of 97 nearby metal-poor (-3.3 < [Fe/H] <-0.5) stars having kinematic characteristics of the Milky Way (MW) thick disk and inner and outer stellar halos. The high-resolution, high-signal-to-noise optical spectra for the sample stars have been obtained with the High Dispersion Spectrograph mounted on the Subaru Telescope. Abundances of Fe, Mg, Si, Ca, and Ti have been derived using a one-dimensional LTE abundance analysis code with Kurucz NEWODF model atmospheres. By assigning membership of the sample stars to the thick disk, inner halo, or outer halo components based on their orbital parameters, we examine abundance ratios as a function of [Fe/H] and kinematics for the three subsamples in wide metallicity and orbital parameter ranges. We show that, in the metallicity range of -1.5 < [Fe/H] {<=}-0.5, the thick disk stars show constantly high mean [Mg/Fe] and [Si/Fe] ratios with small scatter. In contrast, the inner and the outer halo stars show lower mean values of these abundance ratios with larger scatter. The [Mg/Fe], [Si/Fe], and [Ca/Fe] for the inner and the outer halo stars also show weak decreasing trends with [Fe/H] in the range [Fe/H] >-2. These results favor the scenarios that the MW thick disk formed through rapid chemical enrichment primarily through Type II supernovae of massive stars, while the stellar halo has formed at least in part via accretion of progenitor stellar systems having been chemically enriched with different timescales.

  3. IONIZATION SOURCE OF A MINOR-AXIS CLOUD IN THE OUTER HALO OF M82

    SciTech Connect

    Matsubayashi, K.; Taniguchi, Y.; Kajisawa, M.; Shioya, Y.; Sugai, H.; Shimono, A.; Hattori, T.; Ozaki, S.; Yoshikawa, T.; Nagao, T.; Bland-Hawthorn, J.

    2012-12-10

    The M82 ''cap'' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well-known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, H{alpha}, [N II]{lambda}6583/H{alpha}, and [S II]{lambda}{lambda}6716,6731/H{alpha} maps were obtained with subarcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright H{alpha} emitting clouds within the cap. The emission line widths ({approx}< 100 km s{sup -1} FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v{sub shock} 40-80 km s{sup -1}) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f{sub esc} > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.

  4. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    NASA Astrophysics Data System (ADS)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  5. Galaxy structure from multiple tracers - I. A census of M87's globular cluster populations

    NASA Astrophysics Data System (ADS)

    Oldham, L. J.; Auger, M. W.

    2016-01-01

    We present a new photometric catalogue of the rich globular cluster (GC) system around M87, the brightest cluster galaxy in Virgo. Using archival Next Generation Virgo Cluster Survey images in the ugriz bands, observed with Canada-France-Hawaii Telescope/MegaPrime, we perform a careful subtraction of the galaxy's halo light in order to detect objects at small galactocentric radii as well as in the wider field, and find 17 620 GC candidates over a radius range from 1.3 to 445 kpc with g < 24 mag. By inferring their colour, radial and magnitude distributions in a Bayesian way, we find that they are well described as a mixture of two GC populations and two distinct contaminant populations, but confirm earlier findings of radius-dependent colour gradients in both GC populations. This is consistent with a picture in which the more enriched GCs reside deeper in the galaxy's potential well, indicating a role for dissipative collapse in the formation of both the red and the blue GCs.

  6. A DIFFERENTIAL CHEMICAL ABUNDANCE SCALE FOR THE GLOBULAR CLUSTER M5

    SciTech Connect

    Koch, Andreas; McWilliam, Andrew E-mail: andy@obs.carnegiescience.ed

    2010-06-15

    We present LTE chemical abundances for five red giants and one AGB star in the Galactic globular cluster (GC) M5 based on high-resolution spectroscopy using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus. The stars in our sample that overlap with existing studies in the literature are consistent with published values for [Fe/H] and agree to within typically 0.04 dex for the {alpha}-elements. Most deviations can be assigned to varying analysis techniques in the literature. This strengthens our newly established differential GC abundance scale and advocates future use of this method. In particular, we confirm a mean [Fe I/H] of -1.33 {+-} 0.03 (stat.) {+-}0.03 (sys.) dex and also reproduce M5's enhancement in the {alpha}-elements (O, Mg, Si, Ca, Ti) at +0.4 dex, rendering M5 a typical representative of the Galactic halo. Over-ionization of Fe I in the atmospheres of these stars by non-LTE effects is found to be less than 0.07 dex. Five of our six stars show O-Na-Al-Mg abundance patterns consistent with pollution by proton-capture nucleosynthesis products.

  7. Na-O abundances in M53: A Mostly First Generation Globular Cluster

    NASA Astrophysics Data System (ADS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch (RGB) stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the WIYN 3.5- meter telescope. M53 is of interest because previous studies based on the morphology of the cluster's horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs withmultiple populations, which have been found to be dominated by second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previouslypublished results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find thatthe Na-O anti-correlation is not as extended as other GCs with similarly high masses. The fraction of SG to FG stars in our sample is approximately 1:3 and the SG is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  8. Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1994-01-01

    The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.

  9. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  10. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernández-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-08-01

    Aims: We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Methods: Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with log g (cgs units) lower than 2.5. Results: An analysis of stars in the globular cluster M 13 reveals a dependence of the inferred metallicity on surface gravity for stars with log g < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system

  11. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    NASA Technical Reports Server (NTRS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at

  12. r-Process Elements in EMP stars: Indicators of Inhomogeneous Early Halo Enrichment

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Nordström, Birgitta; Thidemann Hansen, Terese

    2015-08-01

    Extremely metal-poor (EMP) halo stars with [Fe/H] below ~ -3 are considered to be fossil records of conditions in the early halo. In the simplest picture where iron is a proxy for overall metallicity and indirectly for time, EMP stars formed before the oldest and most metal-poor Galactic globular clusters. High-resolution spectroscopy with 8m-class telescopes has shown the detailed abundance pattern of these stars to be surprisingly uniform (e.g. Bonifacio+ 2012) and essentially Solar, apart from the α-enhancement typical of SN II nucleosynthesis. A small fraction (~3%) of EMP stars, however, is strongly enhanced in the heaviest (r-process) neutron-capture elements, highlighting that the periodic system of elements was fully populated already this early.These striking departures from the general chemical homogeneity could be produced by local or distant sources. The former case is simple - mass transfer from a binary companion that evolved to produce a highly neutron-rich environment (one or more NS). Alternatively, the r-process elements were formed in a site at interstellar distance and preferentially seeded into the natal clouds of the present-day EMP-r stars. Our long-term, precise monitoring of the radial velocities of a sample of such stars (Hansen+ 2011) disproved the binary hypothesis, which would in fact also fail to explain the existence of r-process poor stars, such as HD 122653. We thus conclude that the chemical enrichment of the early halo was far more complex, patchy and likely anisotropic than assumed in current models of Galactic chemical evolution: The EMP-r stars are not just peculiarities to be ignored, but indicate that a new level of complexity must be invoked. That r-process elements have not (yet) been observed in high-redshift DLA systems is readily explained by their low abundance relative to the lighter species and the rarity of strong enrichment events.

  13. Self-consistent nonspherical isothermal halos embedding zero-thickness disks

    NASA Astrophysics Data System (ADS)

    Amorisco, N. C.; Bertin, G.

    2010-09-01

    Context. That the rotation curves of spiral galaxies are generally flat in the outer regions is commonly considered an indication that galaxy disks are embedded in quasi-isothermal halos. In practice, disk-halo decompositions of galaxy rotation curves are performed in a parametric way by modeling the halo force contribution by means of expressions that approximately describe the properties of the regular isothermal sphere or other spherical density distributions suggested by cosmological simulations. Aims: In this paper we construct self-consistent models of nonspherical isothermal halos embedding a zero-thickness disk, by assuming that the halo distribution function is a Maxwellian. The general method developed here can also be used to study the properties of other physically-based choices for the halo distribution function and to the case of a disk accompanied by a bulge. Methods: The construction was performed by means of an iterative procedure that generalizes a method introduced in the past to construct spheroidal models of rotating elliptical galaxies. In a preliminary investigation, which set the empirical framework to study the self-consistent models developed in this paper, we note the existence of a fine tuning between the scalelengths RΩ and h, respectively characterizing the rise of the rotation curve and the luminosity profile of the disk, which surprisingly applies to both high surface brightness and low surface brightness galaxies in similar ways. We show that this empirical correlation identifies a much stronger conspiracy than the one required by the smoothness and flatness of the rotation curve and often referred to as disk-halo conspiracy. Results: As a natural property, the self-consistent models presented in this paper are found to be characterized by smooth and flat rotation curves for very different disk-to-halo mass ratios, hence suggesting that conspiracy is not as dramatic as often imagined. For a typical, observed rotation curve, with

  14. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  15. Population Models for Massive Globular Clusters

    NASA Astrophysics Data System (ADS)

    Lee, Young-Wook; Joo, Seok-Joo; Han, Sang-Il; Na, Chongsam; Lim, Dongwook; Roh, Dong-Goo

    2015-03-01

    Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ω Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y 2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).

  16. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  17. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

    SciTech Connect

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R. E-mail: rwechsler@stanford.edu

    2013-01-20

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  18. FIRST EVIDENCE OF GLOBULAR CLUSTER FORMATION FROM THE EJECTA OF PROMPT TYPE Ia SUPERNOVAE

    SciTech Connect

    Tsujimoto, Takuji; Bekki, Kenji

    2012-06-01

    Recent spectroscopic observations of globular clusters (GCs) in the Large Magellanic Cloud (LMC) have discovered that one of the intermediate-age GCs, NGC 1718, with [Fe/H] = -0.7 has an extremely low [Mg/Fe] ratio of {approx}-0.9. We propose that NGC 1718 was formed from the ejecta of Type Ia supernovae mixed with very metal-poor ([Fe/H] <-1.3) gas about {approx}2 Gyr ago. The proposed scenario is shown to be consistent with the observed abundances of Fe-group elements such as Cr, Mn, and Ni. In addition, compelling evidence for asymptotic giant branch stars playing a role in chemical enrichment during this GC formation is found. We suggest that the origin of the metal-poor gas is closely associated with efficient gas transfer from the outer gas disk of the Small Magellanic Cloud to the LMC disk. We anticipate that the outer part of the LMC disk contains field stars exhibiting significantly low [Mg/Fe] ratios, formed through the same process as NGC 1718.

  19. The properties of warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Frenk, Carlos S.; Eke, Vincent R.; Jenkins, Adrian; Gao, Liang; Theuns, Tom

    2014-03-01

    Well-motivated elementary particle candidates for the dark matter, such as the sterile neutrino, behave as warm dark matter (WDM). For particle masses of the order of a keV, free streaming produces a cutoff in the linear fluctuation power spectrum at a scale corresponding to dwarf galaxies. We investigate the abundance and structure of WDM haloes and subhaloes on these scales using high resolution cosmological N-body simulations of galactic haloes of mass similar to the Milky Way's. On scales larger than the free-streaming cutoff, the initial conditions have the same power spectrum and phases as one of the cold dark matter (CDM) haloes previously simulated by Springel et al. as part of the Virgo consortium Aquarius project. We have simulated four haloes with WDM particle masses in the range 1.5-2.3 keV and, for one case, we have carried out further simulations at varying resolution. N-body simulations in which the power spectrum cutoff is resolved are known to undergo artificial fragmentation in filaments producing spurious clumps which, for small masses (<107 M⊙ in our case) outnumber genuine haloes. We have developed a robust algorithm to identify these spurious objects and remove them from our halo catalogues. We find that the WDM subhalo mass function is suppressed by well over an order magnitude relative to the CDM case for masses <109 M⊙. Requiring that there should be at least as many subhaloes as there are observed satellites in the Milky Way leads to a conservative lower limit to the (thermal equivalent) WDM particle mass of ˜ 1.5 keV. WDM haloes and subhaloes have cuspy density distributions that are well described by Navarro-Frenk-White or Einasto profiles. Their central densities are lower for lower WDM particle masses and none of the models we have considered suffering from the `too big to fail' problem recently highlighted by Boylan-Kolchin et al.

  20. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-04-01

    Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  1. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  2. PROPERTIES OF THE MAGNETO-IONIC MEDIUM IN THE HALO OF M51 REVEALED BY WIDE-BAND POLARIMETRY

    SciTech Connect

    Mao, S. A.; Ott, J.; Zweibel, E.; Fletcher, A.; Tabatabaei, F.

    2015-02-20

    We present a study of the magneto-ionic medium in the Whirlpool galaxy (M51) using new wide-band multi-configuration polarization data at L band (1-2 GHz) obtained at the Karl G. Jansky Very Large Array. By fitting the observed diffuse complex polarization Q+iU as a function of wavelength directly to various depolarization models, we find that polarized emission from M51 at 1-2 GHz originates from the top of the synchrotron disk and then experiences Faraday rotation in the near-side thermal halo of the galaxy. Thus, the scale height of the thermal gas must exceed that of the synchrotron emitting gas at L band. The observed Faraday depth distribution at L band is consistent with a halo field that is comprised of a plane-parallel bisymmetric component and a vertical component that produces a Faraday rotation of ∼–9 rad m{sup –2}. The derived rotation measure (RM) structure functions indicate a characteristic scale of RM fluctuations of less than 560 pc in the disk and approximately 1 kpc in the halo. The outer scale of turbulence of 1 kpc found in the halo of M51 is consistent with superbubbles and the Parker instability being the main energy injection mechanisms in galactic halos.

  3. Properties of the Magneto-ionic Medium in the Halo of M51 Revealed by Wide-band Polarimetry

    NASA Astrophysics Data System (ADS)

    Mao, S. A.; Zweibel, E.; Fletcher, A.; Ott, J.; Tabatabaei, F.

    2015-02-01

    We present a study of the magneto-ionic medium in the Whirlpool galaxy (M51) using new wide-band multi-configuration polarization data at L band (1-2 GHz) obtained at the Karl G. Jansky Very Large Array. By fitting the observed diffuse complex polarization Q+iU as a function of wavelength directly to various depolarization models, we find that polarized emission from M51 at 1-2 GHz originates from the top of the synchrotron disk and then experiences Faraday rotation in the near-side thermal halo of the galaxy. Thus, the scale height of the thermal gas must exceed that of the synchrotron emitting gas at L band. The observed Faraday depth distribution at L band is consistent with a halo field that is comprised of a plane-parallel bisymmetric component and a vertical component that produces a Faraday rotation of ~-9 rad m-2. The derived rotation measure (RM) structure functions indicate a characteristic scale of RM fluctuations of less than 560 pc in the disk and approximately 1 kpc in the halo. The outer scale of turbulence of 1 kpc found in the halo of M51 is consistent with superbubbles and the Parker instability being the main energy injection mechanisms in galactic halos.

  4. Low-Velocity Halo Clouds

    NASA Astrophysics Data System (ADS)

    Peek, J. E. G.; Heiles, Carl; Putman, M. E.; Douglas, Kevin

    2009-02-01

    Models that reproduce the observed high-velocity clouds (HVCs) also predict clouds at lower radial velocities that may easily be confused with Galactic disk (|z|< 1 kpc) gas. We describe the first search for these low-velocity halo clouds (LVHCs) using Infrared Astronomical Satellite (IRAS) data and the initial data from the Galactic Arecibo L-band Feed Array survey in H I. The technique is based upon the expectation that such clouds should, like HVCs, have very limited infrared (IR) thermal dust emission as compared to their H I column density. We describe our "displacement-map" technique for robustly determining the dust-to-gas ratio (DGR) of clouds and the associated errors that take into account the significant scatter in the IR flux from the Galactic disk gas. We find that there exist lower-velocity clouds that have extremely low DGRs, consistent with being in the Galactic halo—candidate LVHCs. We also confirm the lack of dust in many HVCs with the notable exception of complex M, which we consider to be the first detection of dust in HVCs. We do not confirm the previously reported detection of dust in complex C. In addition, we find that most intermediate- and low-velocity clouds that are part of the Galactic disk have a higher 60 μm/100 μm flux ratio than is typically seen in Galactic H I, which is consistent with a previously proposed picture in which fast-moving Galactic clouds have smaller, hotter dust grains.

  5. Orbit determination for Fomalhaut b and the origin of the debris belt halo

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2011-10-01

    HST has a unique capability to detect tenuous debris disks and exosolar planets at optical wavelengths. Using the ACS/HRC in 2004-2006, we imaged the debris belt surrounding Fomalhaut, finding evidence for a planetary system in the structure of the belt, and then directly imaging a planet candidate, Fomalhaut b {Fom b}. New STIS data recover Fom b in 2010 with the expected flux and near its expected position. We also discover a tenuous belt halo extending 30 AU beyond the previously measured outer belt edge. These grains may be driven outward by radiation pressure or dynamically perturbed by Fom b.We propose a long-term GO program dedicated to the study of the orbit of Fom b and its interaction with this newly discovered halo. The goals are to constrain the orbital elements of Fom b and establish with confidence that it is bound. The proposed astrometry is designed to measure the eccentricity with sufficient precision to discriminate between a circular orbit and one that is nested within the belt with e 0.12. STIS is the only instrument demonstrated able to make these astrometric observations.To pinpoint the origin of grains that comprise the belt halo, we propose to obtain the halo scattered light color by direct imaging in F336W and F814W using WFC3/UVIS. If the main belt and halo share the same color {as opposed to blue Rayleigh-scattering grains} then planetary dynamical perturbations will be suspected. The UVIS F336W observations leave open the possibility of detecting Fomalhaut b at short wavelengths, testing the hypothesis that Fom b is optically bright due to scattering from an extended circumplanetary ring system such as that found around Saturn.

  6. Enrichment by supernovae in globular clusters with multiple populations.

    PubMed

    Lee, Jae-Woo; Kang, Young-Woon; Lee, Jina; Lee, Young-Wook

    2009-11-26

    The most massive globular cluster in the Milky Way, omega Centauri, is thought to be the remaining core of a disrupted dwarf galaxy, as expected within the model of hierarchical merging. It contains several stellar populations having different heavy elemental abundances supplied by supernovae-a process known as metal enrichment. Although M 22 appears to be similar to omega Cen, other peculiar globular clusters do not. Therefore omega Cen and M 22 are viewed as exceptional, and the presence of chemical inhomogeneities in other clusters is seen as 'pollution' from the intermediate-mass asymptotic-giant-branch stars expected in normal globular clusters. Here we report Ca abundances for seven globular clusters and compare them to omega Cen. Calcium and other heavy elements can only be supplied through numerous supernovae explosions of massive stars in these stellar systems, but the gravitational potentials of the present-day clusters cannot preserve most of the ejecta from such explosions. We conclude that these globular clusters, like omega Cen, are most probably the relics of more massive primeval dwarf galaxies that merged and disrupted to form the proto-Galaxy. PMID:19940919

  7. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  8. H.E.S.S. OBSERVATIONS OF THE GLOBULAR CLUSTERS NGC 6388 AND M15 AND SEARCH FOR A DARK MATTER SIGNAL

    SciTech Connect

    Abramowski, A.; Acero, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Brucker, J.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Borrel, V.; Becker, J.; Behera, B.; Boisson, C.; Bolmont, J.

    2011-07-01

    Observations of the globular clusters (GCs) NGC 6388 and M15 were carried out by the High Energy Stereoscopic System array of Cherenkov telescopes for a live time of 27.2 and 15.2 hr, respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M15. In the primordial formation scenario, GCs are formed in a dark matter (DM) halo and DM could still be present in the baryon-dominated environment of GCs. This opens the possibility of observing a DM self-annihilation signal. The DM content of the GCs NGC 6388 and M15 is modeled taking into account the astrophysical processes that can be expected to influence the DM distribution during the evolution of the GC: the adiabatic contraction of DM by baryons, the adiabatic growth of a black hole in the DM halo, and the kinetic heating of DM by stars. Ninety-five percent confidence level exclusion limits on the DM particle velocity-weighted annihilation cross section are derived for these DM halos. In the TeV range, the limits on the velocity-weighted annihilation cross section are derived at the 10{sup -25} cm{sup 3} s{sup -1} level and a few 10{sup -24} cm{sup 3} s{sup -1} for NGC 6388 and M15, respectively.

  9. Why are halo coronal mass ejections faster?

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Min; Guo, Yang; Chen, Peng-Fei; Ding, Ming-De; Fang, Cheng

    2010-05-01

    Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loop-shaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523 km s-1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light intensity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of “detectable" halo CMEs is ~922 km s-1 very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.

  10. A UNIVERSAL MODEL FOR HALO CONCENTRATIONS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2015-01-20

    We present a numerical study of dark matter halo concentrations in ΛCDM and self-similar cosmologies. We show that the relation between concentration, c, and peak height, ν, exhibits the smallest deviations from universality if halo masses are defined with respect to the critical density of the universe. These deviations can be explained by the residual dependence of concentration on the local slope of the matter power spectrum, n, which affects both the normalization and shape of the c-ν relation. In particular, there is no well-defined floor in the concentration values. Instead, the minimum concentration depends on redshift: at fixed ν, halos at higher z experience steeper slopes n, and thus have lower minimum concentrations. We show that the concentrations in our simulations can be accurately described by a universal seven-parameter function of only ν and n. This model matches our ΛCDM results to ≲ 5% accuracy up to z = 6, and matches scale-free Ω{sub m} = 1 models to ≲ 15%. The model also reproduces the low concentration values of Earth-mass halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in halo mass. The predictions of our model differ significantly from all models previously proposed in the literature at high masses and redshifts. Our model is in excellent agreement with recent lensing measurements of cluster concentrations.

  11. Galactic spiral pattern beyond the optical size induced by the triaxial dark halo

    NASA Astrophysics Data System (ADS)

    Butenko, M.; Khoperskov, A.; Khoperskov, S.

    We suggest a possible mechanism for the formation of non-tidal gaseous structures in galactic outskirts. According to recent observations, extended spiral structures are detected beyond the optical radii Ropt in numerous disk galaxies. Such features can be clearly seen in deep HI and UV images (e.g., NGC 3198, NGC 3359, NGC 2841, NGC 3198). We argue, based on our gas-dynamical simulations, that such outer spirals could form as a result of the interaction of the galactic disk with the triaxial host dark matter halo.

  12. Universality of vibrational spectra of globular proteins

    NASA Astrophysics Data System (ADS)

    Na, Hyuntae; Song, Guang; ben-Avraham, Daniel

    2016-02-01

    It is shown that the density of modes of the vibrational spectrum of globular proteins is universal, i.e. regardless of the protein in question, it closely follows one universal curve. The present study, including 135 proteins analyzed with a full atomic empirical potential (CHARMM22) and using the full complement of all atoms Cartesian degrees of freedom, goes far beyond previous claims of universality, confirming that universality holds even in the frequency range that is well above 100 cm-1 (300-4000 cm-1), where peaks and turns in the density of states are faithfully reproduced from one protein to the next. We also characterize fluctuations of the spectral density from the average, paving the way to a meaningful discussion of rare, unusual spectra and the structural reasons for the deviations in such ‘outlier’ proteins. Since the method used for the derivation of the vibrational modes (potential energy formulation, set of degrees of freedom employed, etc) has a dramatic effect on the spectral density, another significant implication of our findings is that the universality can provide an exquisite tool for assessing and improving the quality of potential functions and the quality of various models used for NMA computations. Finally, we show that the input configuration also affects the density of modes, thus emphasizing the importance of simplified potential energy formulations that are minimized at the outset. In summary, our findings call for a serious two-way dialogue between theory and experiment: experimental spectra of proteins could now guide the fine tuning of theoretical empirical potentials, and the various features and peaks observed in theoretical studies—being universal, and hence now rising in importance—would hopefully spur experimental confirmation.

  13. Universality of vibrational spectra of globular proteins.

    PubMed

    Na, Hyuntae; Song, Guang; ben-Avraham, Daniel

    2016-02-23

    It is shown that the density of modes of the vibrational spectrum of globular proteins is universal, i.e. regardless of the protein in question, it closely follows one universal curve. The present study, including 135 proteins analyzed with a full atomic empirical potential (CHARMM22) and using the full complement of all atoms Cartesian degrees of freedom, goes far beyond previous claims of universality, confirming that universality holds even in the frequency range that is well above 100 cm(-1) (300-4000 cm(-1)), where peaks and turns in the density of states are faithfully reproduced from one protein to the next. We also characterize fluctuations of the spectral density from the average, paving the way to a meaningful discussion of rare, unusual spectra and the structural reasons for the deviations in such 'outlier' proteins. Since the method used for the derivation of the vibrational modes (potential energy formulation, set of degrees of freedom employed, etc) has a dramatic effect on the spectral density, another significant implication of our findings is that the universality can provide an exquisite tool for assessing and improving the quality of potential functions and the quality of various models used for NMA computations. Finally, we show that the input configuration also affects the density of modes, thus emphasizing the importance of simplified potential energy formulations that are minimized at the outset. In summary, our findings call for a serious two-way dialogue between theory and experiment: experimental spectra of proteins could now guide the fine tuning of theoretical empirical potentials, and the various features and peaks observed in theoretical studies--being universal, and hence now rising in importance--would hopefully spur experimental confirmation.

  14. Mapping the differential reddening in globular clusters

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Campos, Fabíola; Kepler, S. O.

    2013-10-01

    We build differential-reddening maps for 66 Galactic globular clusters (GCs) with archival Hubble Space Telescope WFC/ACS F606W and F814W photometry. Because of the different GC sizes (characterized by the half-light radius Rh) and distances to the Sun, the WFC/ACS field of view (200 arcsec × 200 arcsec) coverage (Robs) lies in the range 1 ≲ Robs/Rh ≲ 15 for about 85 per cent of the sample, with about 10 per cent covering only the inner (Robs ≲ Rh) parts. We divide the WFC/ACS field of view across each cluster in a regular cell grid and extract the stellar-density Hess diagram from each cell, shifting it in colour and magnitude along the reddening vector until matching the mean diagram. Thus, the maps correspond to the internal dispersion of the reddening around the mean. Depending on the number of available stars (i.e. probable members with adequate photometric errors), the angular resolution of the maps range from ≈ 7 arcsec × 7 arcsec to ≈ 20 arcsec × 20 arcsec. We detect spatially variable extinction in the 66 GCs studied, with mean values ranging from < δE(B-V)> ≡ 0.018 (NGC 6981) up to <δE(B-V)> ≡ 0.016 (Palomar 2). Differential-reddening correction decreases the observed foreground reddening and the apparent distance modulus but, since they are related to the same value of E(B - V), the distance to the Sun is conserved. Fits to the mean-ridge lines of the highly extincted and photometrically scattered GC Palomar 2 show that age and metallicity also remain unchanged after the differential-reddening correction, but measurement uncertainties decrease because of the reduced scatter. The lack of systematic variations of <δE(B-V)> with both the foreground reddening and the sampled cluster area indicates that the main source of differential reddening is interstellar.

  15. The scale-dependence of halo assembly bias

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Hearin, Andrew P.; Padmanabhan, Nikhil; Leauthaud, Alexie

    2016-05-01

    The two-point clustering of dark matter haloes is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, Vmax, as our secondary halo property, in this paper, we present the first study of the scale-dependence of assembly bias. In the large-scale linear regime, r ≥ 10 h-1 Mpc, our findings are in keeping with previous results. In particular, at the low-mass end (haloes with high Vmax show stronger large-scale clustering relative to haloes with low Vmax of the same mass; this trend weakens and reverses for Mvir ≳ Mcoll. In the non-linear regime, assembly bias in low-mass haloes exhibits a pronounced scale-dependent `bump' at 500 kpc h-1-5 Mpc h-1. This feature weakens and eventually vanishes for haloes of higher mass. We show that this scale-dependent signature can primarily be attributed to a special subpopulation of ejected haloes, defined as present-day host haloes that were previously members of a higher mass halo at some point in their past history. A corollary of our results is that galaxy clustering on scales of r ˜ 1-2 Mpc h-1 can be impacted by up to ˜15 per cent by the choice of the halo property used in the halo model, even for stellar mass-limited samples.

  16. Light-element abundance variations in globular clusters

    NASA Astrophysics Data System (ADS)

    Martell, S. L.

    2011-06-01

    Star-to-star variations in abundances of the light elements carbon, nitrogen, oxygen, and sodium have been observed in stars of all evolutionary phases in all Galactic globular clusters that have been thoroughly studied. The data available for studying this phenomenon, and the hypotheses as to its origin, have both co-evolved with observing technology; once high-resolution spectra were available even for main-sequence stars in globular clusters, scenarios involving multiple closely spaced stellar generations enriched by feedback from moderate- and high-mass stars began to gain traction in the literature. This paper briefly reviews the observational history of globular cluster abundance inhomogeneities, discusses the presently favored models of their origin, and considers several aspects of this problem that require further study. Highlight talk Astronomische Gesellschaft 2010

  17. Astronomers Ponder Lack of Planets in Globular Cluster

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This videotape has seven segments, discussing and showing the evidence for the proposition that the galactic clusters do not have many planets. Specifically the segments show: (1) Dr. Ron Gilliland discussing the process of looking for "Hot Jupiters" (i.e., planets about the size of Jupiter, which are hotter than Jupiter) in the globular clusters, (2) a zoom into 47 Tucanae globular cluster, (3) an animation of a planet passing between the host star and the earth with a brightness graph, (4) the same animation as before without the graph, (5) Ron Gilliland of the Space Telescope Science Institute (STScI) discussing possible interpretations of his findings in the 47 Tucanae globular cluster, (6) Ron Gilliland examining the images of 47 Tucanae, and (7) images of 47 Tucanae watching for variations in brightness.

  18. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  19. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  20. THE EFFECTS OF HALO-TO-HALO VARIATION ON SUBSTRUCTURE LENSING

    SciTech Connect

    Chen, Jacqueline; Koushiappas, Savvas M.; Zentner, Andrew R. E-mail: koushiappas@brown.edu

    2011-11-10

    We explore the halo-to-halo variation of dark matter (DM) substructure in galaxy-sized DM halos, focusing on its implications for strongly gravitational lensed systems. We find that the median value for projected substructure mass fractions within projected radii of 3% of the host halo virial radius is approximately f{sub sub} Almost-Equal-To 0.25%, but that the variance is large with a 95 percentile range of 0 {<=} f{sub sub} {<=} 1%. We quantify possible effects of substructure on quadruply imaged lens systems using the cusp relation and the simple statistic, R{sub cusp}. We estimate that the probability of obtaining the large values of the R{sub cusp} which have been observed from substructure effects is roughly {approx}10{sup -3} to {approx}10{sup -2}. We consider a variety of possible correlations between host halo properties and substructure properties in order to probe possible sample biases. In particular, low-concentration host DM halos have more large substructures and give rise to large values of R{sub cusp} more often. However, there is no known observational bias that would drive observed quadruply imaged quasars to be produced by low-concentration lens halos. Finally, we show that the substructure mass fraction is a relatively reliable predictor of the value of R{sub cusp}.

  1. Integrated UV fluxes and the HB morphology of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Landsman, W. B.; Catelan, M.; O'Connell, R. W.; Pereira, D.; Stecher, T. P.

    2001-12-01

    The UV ( ~ 1500 Å) flux of a globular cluster will be dominated by its blue horizontal branch (HB) population, provided that such a population is present. Thus, the integrated UV - V color of a globular cluster can provide an indication of its HB morphology, without the need to resolve the cluster into a color-magnitude diagram. To date, UV photometry of extragalactic clusters are available for only a few globulars in M31 (e.g. Bohlin et al. 1993, ApJ, 417, 127), but additional UV photometry of extragalactic globulars is soon expected from GALEX (Yi et al. 2001, AAS, 198, 5501), and from STIS FUV-MAMA observations of M87 (HST program 8643). Here we calibrate the relation between UV flux and HB morphology for Galactic globular clusters. The OAO-2 and ANS data tabulated by deBoer (1985, A&A, 142, 321) are supplemented with photometry of 14 globular clusters observed with the Ultraviolet Imaging Telescope (UIT), and a few cluster cores observed with the STIS FUV-MAMA. The UIT data is especially useful since its 40' diameter FOV was sufficient to completely encompass most of the observed clusters, while allowing isolation of hot field and UV-bright stars. We compare the observed Galactic UV color - HB morphology relation with synthetic HB models as a function of age and metallicity. We also estimate the effect of radiative levitation of heavy metals in hot HB stars (e.g. Moehler et al. 2000, , A&A, 360, 120) on the integrated UV flux. This work is funded by STScI grant GO-8358.01.

  2. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (i.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo

  3. Globular Clusters and the Milky Way Connected by Chemistry

    NASA Astrophysics Data System (ADS)

    Dias, B.; Saviane, I.; Barbuy, B.; Held, E. V.; Da Costa, G.; Ortolani, S.; Gullieuszik, M.

    2016-09-01

    There are two ways to study galaxy formation and evolution: one is to observe a large number of galaxies at a variety of redshifts, the other is to observe in detail just a few nearby galaxies. The precision achievable by the latter method enables the galactic history, including the formation and early evolution, to be studied. Globular clusters provide targets for the second method. We show how the chemical content of Milky Way globular clusters can be used to place them on a timeline charting the history of our Galaxy. The results suggest that different α-elements trace different processes of Milky Way chemical evolution.

  4. Photometry of Multiple Stellar Populations in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Milone, Antonino

    2012-05-01

    An increasing number of observations over the last years have shown the existence of distinct sub-populations in many (maybe all) globular clusters and shattered the paradigm of globulars hosting single, simple stellar populations. These multiple populations manifest themselves in a split of different evolutionary sequences in the cluster color-magnitude diagrams. Using filters covering an appropriate range of wavelengths, photometry splits the main sequence into two or more branches, and in many cases this bimodality is repeated in the subgiant and red giant regions, and on the horizontal branch. In this talk I will summarize the main results from photometric studies.

  5. Sistemas de cúmulos globulares extragalácticos

    NASA Astrophysics Data System (ADS)

    Forte, J. C.

    Se describen las características de los sistemas de cúmulos globulares asociados a galaxias elípticas en una variedad de medios y, en particular, aquellas vinculadas con la distribución espacial, frecuencia específica y composición química. Esta discusión se hace dentro de un conjunto de esquemas orientados a explicar las primeras fases de la formación de las galaxias dominantes en cúmulos y del rol de los sistemas de cúmulos globulares en esos procesos.

  6. A Guided Tour of Globular Clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Sarajedini, Ata

    2010-05-01

    I will lead a guided tour of the globular cluster systems of Local Group galaxies. Beginning with the Milky Way, I will attempt to compare and contrast the properties of the globular clusters in the Sagittarius and Fornax dwarf spheroidals, the LMC, M31, and M33. Along the way, I will concentrate on why these clusters are important and how our understanding of their properties has changed over time. Because of the limited time available, this tour will necessarily be incomplete, but I hope to give the audience a flavor for how active and vibrant this field continues to be.

  7. Simulations of Globular Clusters Merging in Galactic Nuclear Regions

    NASA Astrophysics Data System (ADS)

    Miocchi, P.; Dolcetta, R. Capuzzo; Matteo, P. Di

    We present the results of detailed N-body simulations regarding the interaction of four massive globular clusters in the central region of a triaxial galaxy. The systems undergo a full merging event, producing a sort of `Super Star Cluster' (SSC) whose features are close to those of a superposition of the individual initial mergers. In contrast with other similar simulations, the resulting SSC structural parameters are located along the observed scaling relations of globular clusters. These findings seem to support the idea that a massive SSC may have formed in early phases of the mother galaxy evolution and contributed to the growth of a massive nucleus.

  8. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  9. The dark halo of the milky Way

    PubMed

    Alcock

    2000-01-01

    Most of the matter in the Milky Way is invisible to astronomers. Precise numbers are elusive, but it appears that the dark component is 20 times as massive as the visible disk of stars and gas. This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars. The composition of this dark halo is unknown, but it may comprise a mixture of ancient, degenerate dwarf stars and exotic, hypothetical elementary particles.

  10. The Shape of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Olling, Robert Paul

    1995-01-01

    After reviewing our current knowledge of dark matter (DM) in spiral galaxies (Chapter 1), I present a new method of deriving the shape of these dark halos (Chapter 2). Such information, if obtained for a large number of systems, can provide important boundary conditions for theories of the formation of galaxies (Chapter 5). The halo-shape determination method relies on the comparison of model predictions of the thickness of the gas layer with observations of this flaring. Calculating the model gas layer widths from the observed gaseous velocity dispersion and the potential due to the total mass distribution of the galaxy we learn the following: (a) beyond the optical disk the thickness of the gas layer is sensitive to the shape of the DM halo, (b) the thickness of the gas layer is proportional to the ratio of the gaseous velocity dispersion and the rotation speed, (c) the self-gravity of the gas contributes significantly to the vertical force, (d) the derived shape of the DM halo is independent of the dark matter's radial density distribution, and is independent of the mass-to-light ratio of the stellar disk (f). In Chapter 3 I present a new method (usable for inclinations larger than 60^circ) to determine the thickness of the gas layer of spiral galaxies from high resolution H sc I observations. I use VLA H sc I observations of the almost edge-on Scd galaxy NGC 4244 to determine the gaseous velocity dispersion, and the flaring and rotation curves. From the Keplerian decline of the rotation curve beyond the stellar disks it follows that the dark-to-luminous mass ratio is at most two and a half. Combining the model predictions for the radial variation of the thickness of the gas layer with the measured flaring curve I find that the dark matter halo of NGC 4244 is highly flattened. The best fit occurs for a halo with an E8 shape (with a mass one-eight of an E0 halo), while the uncertainty (E5-E9) is dominated by the errors in the gaseous velocity dispersion: a round

  11. Halo phenomena modified by multiple scattering.

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Kuo-Nan, Liou

    1990-05-01

    Halo phenomena produced by horizontally oriented plate and column ice crystals are computed. Owing to the effect of multiple scattering, a number of optical features, in addition to the well-known halos and arcs caused by single scattering, can be produced in the sky. These include the parhelia, the anthelion, the uniform and white parhelic circle, and the uniform and white circumzenithal circle in the case of horizontally oriented plates. The anthelion is a result of double scattering that involves horizontally oriented columns that produce the Parry arc. The optical phenomena identified in the present study are compared with those of previous research and discussed.

  12. Enhanced subbarrier fusion for proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2014-02-01

    In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the n