Science.gov

Sample records for outer halo stars

  1. CHEMICAL COMPOSITIONS OF KINEMATICALLY SELECTED OUTER HALO STARS

    SciTech Connect

    Zhang Lan; Zhao Gang; Ishigaki, Miho; Chiba, Masashi; Aoki, Wako E-mail: zhanglan@bao.ac.c E-mail: chiba@astr.tohoku.ac.j

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including alpha-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [alpha/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens and Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy.

  2. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    SciTech Connect

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-12-10

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  3. Very Metal-poor Outer-halo Stars with Round Orbits

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-01

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  4. VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-20

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  5. CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Kennedy, Catherine R.; Bovy, Jo; Sivarani, Thirupathi; Aoki, Wako E-mail: kcf@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: kenne257@msu.edu E-mail: sivarani@iiap.res.in

    2012-01-10

    Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ({sup c}arbonicity{sup )} in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] <-1.5 is 8%, for [Fe/H] <-2.0 it is 12%, and for [Fe/H] <-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from ([C/Fe]) {approx}+1.0 at [Fe/H] =-1.5 to ([C/Fe]) {approx}+1.7 at [Fe/H] =-2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, |Z|. For |Z| <5 kpc, relatively few CEMP stars are identified. For distances |Z| >5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with -2.0 < [Fe/H] <-1.5, the frequency grows from 5% at |Z| {approx}2 kpc to 10% at |Z| {approx}10 kpc. For stars with [Fe/H] <-2.0, the frequency grows from 8% at |Z| {approx}2 kpc to 25% at |Z| {approx}10 kpc. For stars with -2.0 < [Fe/H] <-1.5, the mean carbonicity is ([C/Fe]) {approx}+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <-2.0, ([C/Fe]) {approx}+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components-the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components-the inner halo has a greater portion of stars with modest carbon

  6. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  7. The Outer Galactic Halo As Probed By RR Lyr Stars From the Palomar Transient Facility + Keck

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Sesar, Branimir; Banholzer, Sophianna

    2016-08-01

    We present initial results from our study of the outer halo of the Milky Way using a large sample of RR Lyr(ab) variables datamined from the archives of the Palomar Transient Facility. Of the 464 RR Lyr in our sample with distances exceeding 50 kpc, 62 have been observed spectroscopically at the Keck Observatory. vr and σ(vr ) are given as a function of distance between 50 and 110 kpc, and a very preliminary rather low total mass for the Milky Way out to 110 kpc of ~7+/-1.5×1011 M ⊙ is derived from our data.

  8. The structure of star clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A.; Read, J. I.; Lewis, G. F.; Irwin, M. J.; Chapman, S.; Ibata, R.; Wilkinson, M. I.; McConnachie, A. W.; Martin, N. F.; Davies, M. B.; Bridges, T. J.

    2012-05-01

    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ˜20 parsec core radii and ˜100 parsec photometric tidal radii, or by Sérsic profiles of index ˜1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ˜2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.

  9. The Outer Halo Metallicity Distribution

    NASA Astrophysics Data System (ADS)

    MA, ZHIBO; Morrison, H.; Harding, P.; Xue, X.; Rix, H.; Rockosi, C.; Johnson, J.; Lee, Y.; Cudworth, K.

    2012-01-01

    We present a new determination of the metallicity distribution function in the Milky Way halo, based on an in situ sample of more than 5000 K giants from SDSS/SEGUE. We have also measured the metallicity gradient in the halo, using our sample which stretches from 5 kpc to more than 100 kpc from the galactic center. The halo metallicity gradient has been a controversial topic in recent studies, but our in-situ study overcomes the problems caused in these studies by their extrapolations from local samples to the distant halo. We also describe our extensive checks of the log g and [Fe/H] measurements from the SEGUE Stellar Parameters pipeline, using globular and open cluster stars and SEGUE stars with follow-up high-resolution analysis. In addition, we present a new Bayesian estimate of distances to the K giants, which avoids the distance bias introduced by the red giant branch luminosity function.

  10. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  11. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  12. The outer haloes of massive, elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Das, Payel; Gerhard, Ortwin; de Lorenzi, Flavio; McNeil, Emily; Churazov, Eugene; Coccato, Lodovico

    2010-11-01

    The outer haloes of massive elliptical galaxies are dark-matter dominated regions where stellar orbits have longer dynamical timescales than the central regions and therefore better preserve their formation history. Dynamical models out to large radii suffer from a degeneracy between mass and orbital structure, as the outer kinematics are unable to resolve higher moments of the line-of-sight velocity distribution. We mitigate this degeneracy for a sample of quiescent, massive, nearby ellipticals by determining their mass distributions independently using a non-parametric method on X-ray observations of the surrounding hot interstellar medium. We then create dynamical models using photometric and kinematic constraints consisting of integral-eld, long-slit and planetary nebulae (PNe) data extending to ~50 kpc. The rst two galaxies of our sample, NGC 5846 and NGC 1399, were found to have very shallow pro jected light distributions with a power law index of ~1.5 and a dark matter content of 70-80% at 50 kpc. Spherical Jeans models of the data show that, in the outer haloes of both galaxies, the pro jected velocity dispersions are almost inde- pendent of the anisotropy and that the PNe prefer the lower end of the range of mass distributions consistent with the X-ray data. Using the N-body code NMAGIC, we cre- ated axisymmetric models of NGC 5846 using the individual PNe radial velocities in a likelihood method and found them to be more constraining than the binned velocity dispersions. Characterising the orbital structure in terms of spherically averaged proles of the velocity dispersions we nd σψ > σr > σθ.

  13. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N. E-mail: harris@physics.mcmaster.ca

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  14. The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?

    NASA Astrophysics Data System (ADS)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  15. A MegaCam Survey of Outer Halo Satellites. VI. The Spatially Resolved Star-formation History of the Carina Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Santana, Felipe A.; Muñoz, Ricardo R.; de Boer, T. J. L.; Simon, Joshua D.; Geha, Marla; Côté, Patrick; Guzmán, Andrés E.; Stetson, Peter; Djorgovski, S. G.

    2016-10-01

    We present the spatially resolved star-formation history (SFH) of the Carina dwarf spheroidal galaxy, obtained from deep, wide-field g and r imaging and a metallicity distribution from the literature. Our photometry covers ˜2 deg2, reaching up to ˜10 times the half-light radius of Carina with a completeness higher than 50% at g ˜ 24.5, more than one magnitude fainter than the oldest turnoff. This is the first time a combination of depth and coverage of this quality has been used to derive the SFH of Carina, enabling us to trace its different populations with unprecedented accuracy. We find that Carina’s SFH consists of two episodes well separated by a star-formation temporal gap. These episodes occurred at old (\\gt 10 Gyr) and intermediate (2-8 Gyr) ages. Our measurements show that the old episode comprises the majority of the population, accounting for 54 ± 5% of the stellar mass within 1.3 times the King tidal radius, while the total stellar mass derived for Carina is 1.60+/- 0.09× {10}6 {M}⊙ , and the stellar mass-to-light ratio is 1.8 ± 0.2. The SFH derived is consistent with no recent star formation, which hints that the observed blue plume is due to blue stragglers. We conclude that the SFH of Carina evolved independently of the tidal field of the Milky Way, since the frequency and duration of its star-formation events do not correlate with its orbital parameters. This result is supported by the age-metallicity relation observed in Carina and the gradients calculated indicating that outer regions are older and more metal-poor. Based on observations obtained with the MegaCam imager on the Magellan II-Clay telescope at Las Campanas Observatory in the Atacama Region, Chile. This telescope is operated by a consortium consisting of the Carnegie Institution of Washington, Harvard University, MIT, the University of Michigan, and the University of Arizona.

  16. TRACING THE OUTER HALO IN A GIANT ELLIPTICAL TO 25 R {sub eff}

    SciTech Connect

    Rejkuba, M.; Harris, W. E.; Greggio, L.; Harris, G. L. H.; Jerjen, H.; Gonzalez, O. A.

    2014-08-10

    We have used the Advanced Camera for Surveys and Wide Field Camera 3 cameras on board the Hubble Space Telescope to resolve stars in the halo of the nearest giant elliptical (gE) galaxy NGC 5128 out to a projected distance of 140 kpc (25 effective radii, R {sub eff}) along the major axis and 90 kpc (16 R {sub eff}) along the minor axis. This data set provides an unprecedented radial coverage of the stellar halo properties in any gE galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128, even in our most distant fields. The star counts demonstrate increasing flattening of the outer halo, which is elongated along the major axis of the galaxy. The V – I colors of the red giants enable us to measure the metallicity distribution in each field and so map the gradient out to ∼16 R {sub eff} from the galaxy center along the major axis. A median metallicity is obtained even for the outermost fields along both axes. We observe a smooth transition from a metal-rich ([M/H] ∼0.0) inner galaxy to lower metallicity in the outer halo, with the metallicity gradient slope along the major axis of Δ[M/H]/ΔR ≅ –0.0054 ± 0.0006 dex kpc{sup –1}. In the outer halo, beyond ∼10 R {sub eff}, the number density profile follows a power law, but also significant field-to-field metallicity and star count variations are detected. The metal-rich component dominates in all observed fields, and the median metallicity is [M/H] >–1 dex in all fields.

  17. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  18. Mass segregation in the outer halo globular cluster Palomar 14

    NASA Astrophysics Data System (ADS)

    Frank, Matthias J.; Grebel, Eva K.; Küpper, Andreas H. W.

    2014-09-01

    We present evidence for mass segregation in the outer halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope imaging, we analyse the radial dependence of the stellar mass function in the cluster's inner 39.2 pc in the mass range of 0.53 ≤ m ≤ 0.80 M⊙, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6 ± 0.2 in the cluster's core to a slope of 1.6 ± 0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al., who interpret the cluster's non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the cluster's expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.

  19. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  20. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  1. Kinematic and Chemical Constraints on the Formation of M31's Inner and Outer Halo

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Rich, R. Michael; Reitzel, David B.; Martin, Nicolas F.; Ibata, Rodrigo A.; Chapman, Scott C.; Majewski, Steven R.; Mori, Masao; Loh, Yeong-Shang; Ostheimer, James C.; Tanaka, Mikito

    2008-12-01

    The halo of M31 shows a wealth of substructures, some of which are consistent with assembly from satellite accretion. Here we report on kinematic and abundance results from Keck DEIMOS spectroscopy in the near-infrared calcium triplet region of over 3500 red giant star candidates along the minor axis and in off-axis spheroid fields of M31. These data reach out to large radial distances of about 160 kpc. The derived radial velocity distributions show an indication of a kinematically cold substructure around ~17 kpc, which has been reported before. We devise a new and improved method to measure spectroscopic metallicities from the calcium triplet in low signal-to-noise ratio spectra using a weighted co-addition of the individual lines. The resulting distribution (accurate to ~0.3 dex down to signal-to-noise ratios of 5) leads us to note an even stronger gradient in the abundance distribution along M31's minor axis and in particular toward the outer halo fields than previously detected. The mean metallicity in the outer fields reaches below -2 dex, with individual values as low as lesssim-2.6 dex. This is the first time such a metal-poor halo has been detected in M31. In the fields toward the inner spheroid, we find a sharp decline of ~0.5 dex in metallicity in a region at ~20 kpc, which roughly coincides with the edge of an extended disk, previously detected from star count maps. A large fraction of red giants that we detect in the most distant fields are likely members of M33's overlapping halo. A comparison of our velocities with those predicted by new N-body simulations argues that the event responsible for the Giant Stream is most likely not responsible for the full population of the inner halo. We show further that the abundance distribution of the Stream is different from that of the inner halo, from which it becomes evident, in turn, that the merger event that formed the Stream and the outer halo cannot have contributed any significant material to the inner

  2. The outer profile of dark matter haloes: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-07-01

    A steepening feature in the outer density profiles of dark matter haloes indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  3. STAR FORMATION HISTORY OF THE MILKY WAY HALO TRACED BY THE OOSTERHOFF DICHOTOMY AMONG GLOBULAR CLUSTERS

    SciTech Connect

    Jang, Sohee; Lee, Young-Wook

    2015-06-22

    In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation histories are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the “population-shift” effect within the instability strip, for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.

  4. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20halo red giants from foreground Milky Way dwarf stars, faint compact background galaxies, and M31 disk giants. The observed distribution of radial velocities is well fitted by an equal mix of foreground Milky Way dwarf stars, drawn from a standard Galactic model and with velocities v<~0 km s-1, and M31 halo giants represented by a Gaussian of width σM31v~150 km s-1 centered on its systemic velocity of vM31sys~-300 km s-1. A secure sample of 29 M31 red giant stars is identified on the basis of radial velocity (v<-220 km s-1) and, in the case of four intermediate-velocity stars (-160halo giants has an rms spread of at least 0.6 dex and spans the >~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are

  5. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  6. The outer halo globular cluster system of M31 - I. The final PAndAS catalogue

    NASA Astrophysics Data System (ADS)

    Huxor, A. P.; Mackey, A. D.; Ferguson, A. M. N.; Irwin, M. J.; Martin, N. F.; Tanvir, N. R.; Veljanoski, J.; McConnachie, A.; Fishlock, C. K.; Ibata, R.; Lewis, G. F.

    2014-08-01

    We report the discovery of 59 globular clusters (GCs) and two candidate GCs in a search of the halo of M31, primarily via visual inspection of Canada-France-Hawaii Telescope/MegaCam imagery from the Pan-Andromeda Archaeological Survey (PAndAS). The superior quality of these data also allows us to check the classification of remote objects in the Revised Bologna Catalogue (RBC), plus a subset of GC candidates drawn from Sloan Digital Sky Survey (SDSS) imaging. We identify three additional new GCs from the RBC, and confirm the GC nature of 11 SDSS objects (8 of which appear independently in our remote halo catalogue); the remaining 188 candidates across both lists are either foreground stars or background galaxies. Our new catalogue represents the first uniform census of GCs across the M31 halo - we find clusters to the limit of the PAndAS survey area at projected radii of up to Rproj ˜ 150 kpc. Tests using artificial clusters reveal that detection incompleteness cuts in at luminosities below MV = -6.0; our 50 per cent completeness limit is MV ≈ -4.1. We construct a uniform set of PAndAS photometric measurements for all known GCs outside Rproj = 25 kpc, and any new GCs within this radius. With these data, we update results from Huxor et al., investigating the luminosity function (LF), colours and effective radii of M31 GCs with a particular focus on the remote halo. We find that the GCLF is clearly bimodal in the outer halo (Rproj > 30 kpc), with the secondary peak at MV ˜ -5.5. We argue that the GCs in this peak have most likely been accreted along with their host dwarf galaxies. Notwithstanding, we also find, as in previous surveys, a substantial number of GCs with above-average luminosity in the outer M31 halo - a population with no clear counterpart in the Milky Way.

  7. Star formation in the outer disks of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate Lynn

    of the outer stellar disk and halo of M83 to determine the mass of the tidal stream and discuss formation scenarios for the stellar, gaseous, and extended ultraviolet (XUV) star forming disk.

  8. The Chemical Composition of Halo Stars on Extreme Orbits

    NASA Astrophysics Data System (ADS)

    Stephens, Alex

    1999-04-01

    Presented within is a fine spectroscopic analysis of 11 metal-poor (-2.15<[Fe/H]<-1.00) dwarf stars on orbits that penetrate the outermost regions of the Galactic halo. Abundances for a select group of light metals (Na, Mg, Si, Ca, and Ti), Fe-peak nuclides (Cr, Fe, and Ni), and neutron-capture elements (Y and Ba) were calculated using line strengths measured from high-resolution (R~48,000), high signal-to-noise ratio (S/N~110pixel^-1) echelle spectra acquired with the Keck I 10 m telescope and HIRES spectrograph. Ten of the stars have apogalactica, a proxy for stellar birthplace, which stretch between 25 and 90 kpc; however, these ``outer halo'' stars exhibit strikingly uniform abundances. The average, Fe-normalized abundances-<[Mg/Fe]>=+0.23+/-0.09, <[Si/Fe]>=+0.24+/-0.10, <[Ca/Fe]>=+0.22+/-0.07, <[Ti/Fe]>=+0.20+/-0.08, <[Cr/Fe]>=0.02+/-0.07, <[Ni/Fe]>=-0.09+/-0.07, and <[Ba/Fe]>=+0.01+/-0.12-exhibit little intrinsic scatter; moreover, the evolution of individual ratios (as a function of [Fe/H]) is generally consistent with the predictions of galactic chemical evolution models dominated by the ejecta of core-collapse supernovae. Only <[Y/Fe]>=-0.13+/-0.21 exhibits a dispersion larger than observational uncertainties, which suggests a different nucleosynthesis site for this element. It has been conjectured that stars on high-energy orbits-either those that penetrate the remote halo or ones with extreme retrograde velocities-were once associated with a cannibalized satellite galaxy. Such stars, as shown here, are indistinguishable from metal-poor dwarfs of the inner Galactic halo. The uniformity of the abundances, regardless of kinematic properties, suggests that physically, spatially, and temporally distinct star-forming regions within (or near) the growing Milky Way experienced grossly similar chemical evolution histories. Implications for galaxy formation scenarios are discussed.

  9. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    SciTech Connect

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.; Placco, Vinicius M.; Tumlinson, Jason; Martell, Sarah L. E-mail: kcf@mso.anu.edu.au E-mail: vplacco@gemini.edu E-mail: smartell@aao.gov.au

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner- and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.

  10. Exploring the Milky Way outer halo globular clusters AM 1 and Pyxis

    NASA Astrophysics Data System (ADS)

    Pohl, Brian L.

    In order to probe the origins and history of the Milky Way halo, I executed a photometric survey of the outer halo globular clusters AM 1 and Pyxis using the southern astrophysical research (SOAR) telescope. The principal goal of this investigation was to determine the ages of these clusters, but the techniques employed in this process revealed other intrinsic properties such as chemical composition. A total of 32.2 hours of data were obtained on the program clusters, and observations of 22 stars from the Landolt (1992) catalogue were used to transform the clusters to the Johnson-Cousins BV standard system. The resultant color-magnitude diagrams are used in conjunction with the reference globular cluster M5 to determine the intrinsic properties of the program clusters. Three independent age determination techniques show agreement, consistent to within the error of the techniques, that AM 1 is --1.0 Gyr younger than, and that Pyxis is coeval to, the reference cluster M5. The chemical properties of both clusters are found to be the same for both clusters, [Fe/H] = --1.40 and [alpha/Fe] = +0.4, similar to M5. The results are presented in terms of two outstanding issues regarding the outer halo; the second parameter problem and the issue of accretion vs. in-situ formation.

  11. Two New Ultra-Faint Star Clusters in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2016-08-01

    Kim 1 & 2 are two new star clusters discovered in the Stromlo Missing Satellite Survey. Kim 1, located at a heliocentric distance of 19.8 +/- 0.9 kpc, features an extremely low total luminosity (M V = 0.3 +/- 0.5 mag) and low star concentration. Together with the large ellipticity (ɛ = 0.42 +/- 0.10) and irregular isophotes, these properties suggest that Kim 1 is an intermediate mass star cluster being stripped by the Galactic tidal field. Kim 2 is a rare ultra-faint outer halo globular cluster located at a heliocentric distance of 104.7 +/- 4.1 kpc. The cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. Kim 2 is likely to follow an orbit confined to the peripheral region of the Galactic halo, and/or to have formed in a dwarf galaxy that was later accreted into the Galactic halo.

  12. Characterizing stellar halo populations II: The age gradient in blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Das, Payel; Williams, Angus; Binney, James

    2016-08-01

    The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitted using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ˜70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ˜2 kpc to -4 in the outer halo, with an axis ratio ˜0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with βs varying from isotropic to between ˜0.1 and ˜0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc-1, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.

  13. Lithium in halo stars from standard stellar evolution

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.

    1990-01-01

    A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.

  14. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY

    SciTech Connect

    De Propris, Roberto; Harrison, Craig D.; Mares, Peter J.

    2010-08-20

    We use 666 blue horizontal branch stars from the 2Qz Redshift Survey to map the Galactic halo in four dimensions (position, distance, and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index {approx}-2.5 in two different directions separated by about 150{sup 0} on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds, or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase toward large radii while the stellar velocity distribution is non-Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  15. Discovery of solar system-size halos around young stars

    NASA Technical Reports Server (NTRS)

    Beckwith, S.; Skrutskie, M. F.; Zuckerman, B.; Dyck, H. M.

    1984-01-01

    Near-infrared speckle interferometric observations of five pre-main-sequence stars reveal a core-halo structure around two of these stars: HL Tau and R Mon. The halo light distribution is shown to arise from scattered light from small circumstellar particles. Halo sizes of 320 x 200 AU (alpha x delta FWHM) and 1300 x 1300 AU are deduced for HL Tau and R Mon, respectively, and the halo light is substantially bluer than the stellar light. The minimum mass of small particles in the scattering regions is comparable to the earth's mass in HL Tau and ten times greater in R Mon. Mass loss from the stars is almost certainly insufficient to produce the halo matter. The halos probably consist of relatively slowly moving matter bound gravitationally to the stars. From the size and mass of the circumstellar matter, it appears likely that these halos are in the early stage in the formation of planet-forming disks around the young stars.

  16. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar build-up of galaxies

  17. Resolving the outer density profile of dark matter halo in Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao

    2013-08-01

    Large-scale faint structure detected by the recent observations in the halo of the Andromeda galaxy (M31) provides an attractive window to explore the structure of outer cold dark matter (CDM) halo in M31. Using an N-body simulation of the interaction between an accreting satellite galaxy and M31, we investigate the mass-density profile of the CDM halo. We find the sufficient condition of the outer density profile of CDM halo in M31 to reproduce the Andromeda giant stream and the shells at the east and west sides of M31. The result indicates that the density profile of the outer dark matter halo of M31 is a steeper than the prediction of the theory of the structure formation based on the CDM model.

  18. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  19. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  20. DUST-SCATTERED ULTRAVIOLET HALOS AROUND BRIGHT STARS

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn

    2011-06-10

    We have discovered ultraviolet (UV) halos extending as far as 5 deg. around four (of six) bright UV stars using data from the Galaxy Evolution Explorer satellite. These halos are due to scattering of the starlight from nearby thin, foreground dust clouds. We have placed limits of 0.58 {+-} 0.12 and 0.72 {+-} 0.06 on the phase function asymmetry factor (g) in the FUV (1521 A) and NUV (2320 A) bands, respectively. We suggest that these halos are a common feature around bright stars and may be used to explore the scattering function of interstellar grains at small angles.

  1. Deep CCD Photometry and RR Lyrae Survey for the Outer-Halo Globular Cluster NGC 6229

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Borissova, J.; Spassova, N.; Ferraro, F. R.; Buonanno, R.; Sweigart, A. V.

    1997-12-01

    Deep BV CCD photometry for a large field covering the outer-halo Galactic globular cluster NGC 6229 is presented. For the first time, a color-magnitude diagram (CMD) reaching below the main-sequence turnoff has been obtained for this cluster. Previous results regarding the overall morphology of the horizontal and giant branches are confirmed. In addition, several candidate blue straggler stars are identified. However, a preliminary analysis of the cluster's CMD suggests that the putative extreme horizontal branch population suggested by Borissova et al. (1997, AJ, 113, 692) may not be present. Unfortunately, the innermost cluster regions could not be studied due to crowding. Comparison of the cluster CMD locus with the latest isochrones from VandenBerg (1997, private communication) is also presented, as is a study of the cluster age relative to a few well-studied reference globulars, using both the ``horizontal" and ``vertical" methods. We also report on an investigation of the variable stars in NGC 6229. We obtained new light curves and re-derived the periods, amplitudes and mean V and B-V magnitudes for 17 RR Lyrae stars listed in Sawyer Hogg's (1973, Publ. David Dunlap Obs., 3, No. 6) catalog. We obtained the first light curves for the RR Lyrae candidates No. 155 and No. 88 (Carney et al. 1991, AJ, 101, 1699), and confirm variability of their star No. 134, as well as of the RR Lyrae stars V3, V8 and V12 suspected by Borissova et al. (1997). A search for variable stars in our 5 x 5 arcmin field does not lead to any new variable candidates.

  2. The Newly-Discovered Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, D.; Huxor, A.; Ferguson, A.

    2012-08-01

    In this contribution we describe the discovery of a large number of globular clusters in the outer halo of M31 from the Pan-Andromeda Archaeological Survey (PAndAS). New globular clusters have also been found in the outskirts of M33, and NGC 147 and 185. Many of the remote M31 clusters are observed to preferentially project onto tidal debris streams in the stellar halo, suggesting that much of the outer M31 globular cluster system has been assembled via the accretion of satellite galaxies. We briefly discuss the global properties of the M31 halo globular cluster system.

  3. Age determination of metal-poor halo stars using nucleochronometry

    NASA Astrophysics Data System (ADS)

    Christlieb, N.

    2016-09-01

    I describe the method of nucleochronometry for determining individual ages of stars, and report on results of the application of this method to old, metal-poor stars belonging to the Galactic halo population. I discuss uncertainties and caveats of this age determination method.

  4. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    SciTech Connect

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: wbrown@cfa.harvard.edu E-mail: skenyon@cfa.harvard.edu

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  5. Outer atmospheres of giant and supergiant stars

    NASA Technical Reports Server (NTRS)

    Brown, A.

    1984-01-01

    The properties of the chromospheres, transition regions and coronas of cool evolved stars are reviewed based primarily on recent ultraviolet and X-ray studies. Determinations of mass loss rates using new observational techniques in the ultraviolet and radio spectral regions are discussed and observations indicating general atmospheric motions are considered. The techniques available for the quantitative modeling of these atmospheres are outlined and recent results discussed. Finally, the current rudimentary understanding of the evolution of these outer atmospheres and its causes are considered.

  6. STELLAR POPULATIONS IN THE OUTER HALO OF THE MASSIVE ELLIPTICAL M49

    SciTech Connect

    Mihos, J. Christopher; Harding, Paul; Rudick, Craig S.; Feldmeier, John J. E-mail: paul.harding@case.edu E-mail: jjfeldmeier@ysu.edu

    2013-02-20

    We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49's stellar halo out to {approx}100 kpc (7r{sub e}), where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B - V {approx} 0.7); if this is purely a metallicity effect, it argues for extremely metal-poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxy's surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49's outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49's halo. Thus the extremely metal-poor nature of M49's extended halo provides some tension against current models for elliptical galaxy formation.

  7. Visibility of stars, halos, and rainbows during solar eclipses.

    PubMed

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible. PMID:19037334

  8. Visibility of stars, halos, and rainbows during solar eclipses.

    PubMed

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible.

  9. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  10. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  11. Carbon Stars in the Satellites and Halo of M31

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine; Beaton, Rachael L.; Guhathakurta, Puragra; Gilbert, Karoline M.; Tollerud, Erik J.; Boyer, Martha L.; Rockosi, Constance M.; Smith, Graeme H.; Majewski, Steven R.; Howley, Kirsten

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color-color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  12. Carbon Stars in the Satellites and Halo of M31

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine; Beaton, Rachael L.; Guhathakurta, Puragra; Gilbert, Karoline M.; Tollerud, Erik J.; Boyer, Martha L.; Rockosi, Constance M.; Smith, Graeme H.; Majewski, Steven R.; Howley, Kirsten

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color–color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  13. The binary populations of eight globular clusters in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Bedin, L. R.; Dotter, A.; Jerjen, H.; Kim, D.; Nardiello, D.; Piotto, G.; Cong, J.

    2016-01-01

    We analyse colour-magnitude diagrams of eight globular clusters (GCs) in the outer Galactic halo. Images were taken with the Wide Field Channel of the Advanced Camera for Survey and the Ultraviolet and Visual Channel of the Wide Field Camera 3 on board of the Hubble Space Telescope. We have determined the fraction of binary stars along the main sequence and combined results with those of a recent paper where some of us have performed a similar analysis on 59 Galactic GCs. In total, binaries have been now studied homogeneously in 67 GCs. We studied the radial and luminosity distributions of the binary systems, the distribution of their mass ratios and investigated univariate relations with several parameters of the host GCs. We confirm the anticorrelation between the binary fraction and the luminosity of the host cluster, and find that low-luminosity clusters can host a large population in excess of ˜40 per cent in the cluster core. However, our results do not support a significant correlation with the cluster age as suggested in the literature. In most GCs, binaries are more centrally concentrated than single stars. If the fraction of binaries is normalized to the core binary fraction the radial density profiles follow a common trend. It has a maximum in the centre and declines by a factor of 2 at a distance of about two core radii from the cluster centre. After dropping to its minimum at a radial distance of ˜5 core radii it stays approximately constant at larger radii. We also find that the mass ratio and the distribution of binaries as a function of the mass of the primary star is almost flat.

  14. The kinematics of globular clusters systems in the outer halos of the Aquarius simulations

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Helmi, A.

    2016-07-01

    Stellar halos and globular cluster (GC) systems contain valuable information regarding the assembly history of their host galaxies. Motivated by the detection of a significant rotation signal in the outer halo GC system of M 31, we investigate the likelihood of detecting such a rotation signal in projection, using cosmological simulations. To this end we select subsets of tagged particles in the halos of the Aquarius simulations to represent mock GC systems, and analyse their kinematics. We find that GC systems can exhibit a non-negligible rotation signal provided the associated stellar halo also has a net angular momentum. The ability to detect this rotation signal is highly dependent on the viewing perspective, and the probability of seeing a signal larger than that measured in M 31 ranges from 10% to 90% for the different halos in the Aquarius suite. High values are found from a perspective such that the projected angular momentum of the GC system is within ≲40 deg of the rotation axis determined via the projected positions and line-of-sight velocities of the GCs. Furthermore, the true 3D angular momentum of the outer stellar halo is relatively well aligned, within 35 deg, with that of the mock GC systems. We argue that the net angular momentum in the mock GC systems arises naturally when the majority of the material is accreted from a preferred direction, namely along the dominant dark matter filament of the large-scale structure that the halos are embedded in. This, together with the favourable edge-on view of M 31's disk suggests that it is not a coincidence that a large rotation signal has been measured for its outer halo GC system.

  15. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  16. The abundance of boron in three halo stars

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Lambert, David L.; Lemke, Michael

    1992-01-01

    B abundances for three halo stars: HD 140283, HD 19445, and HD 201891 are presented. Using recent determinations of the Be abundance in HD 140283, B/Be of 10 +5/-4 is found for this star, and similar ratios are inferred for HD 19445 and HD 201891. This ratio is equal to the minimum value of 10 expected from a synthesis of B and Be by high-energy cosmic-ray spallation reactions in the interstellar medium. It is shown that the accompanying synthesis of Li by alpha on alpha fusion reactions is probably a minor contributor to the observed 'primordial' Li of halo stars. The observed constant ratios of B/O and Be/O are expected if the principal channel of synthesis involves cosmic-ray CNO nuclei from the supernovae colliding with interstellar protons.

  17. Major substructure in the M31 outer halo: the South-West Cloud

    NASA Astrophysics Data System (ADS)

    Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.

    2014-02-01

    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.

  18. Puzzling outer-density profile of the dark matter halo in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao

    2014-12-01

    The cold dark matter (CDM) cosmology, which is the standard theory of the structure formation in the universe, predicts that the outer density profile of dark matter halos decreases with the cube of distance from the center. However, so far not much effort has been expended in examining this hypothesis. In the halo of the Andromeda galaxy (M 31), large-scale stellar structures detected by the recent observations provide a potentially suitable window to investigate the mass-density distribution of the dark matter halo. We explore the density structure of the dark matter halo in M 31 using an N-body simulation of the interaction between an accreting satellite galaxy and M 31. To reproduce the Andromeda Giant Southern Stream and the stellar shells at the east and west sides of M 31, we find the sufficient condition for the power-law index α of the outer density distribution of the dark matter halo. The best-fitting parameter is α = -3.7, which is steeper than the CDM prediction.

  19. The outer halo of the nearest giant elliptical: a VLT/VIMOS survey of the resolved stellar populations in Centaurus A to 85 kpc

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Ferguson, A. M. N.; Irwin, M. J.; Bernard, E. J.; Arimoto, N.; Jablonka, P.; Kobayashi, C.

    2013-06-01

    We present the first survey of resolved stellar populations in the remote outer halo of our nearest giant elliptical (gE), Centaurus A (D = 3.8 Mpc). Using the VIsible Multi Object Spectrograph (VIMOS)/Very Large Telescope (VLT) optical camera, we obtained deep photometry for four fields along the major and minor axes at projected elliptical radii of ˜30-85 kpc (corresponding to ˜5-14Reff). We use resolved star counts to map the spatial and colour distribution of red giant branch (RGB) stars down to ˜2 mag below the RGB tip. We detect an extended halo out to the furthermost elliptical radius probed (˜85 kpc or ˜14Reff), demonstrating the vast extent of this system. We detect a localized substructure in these parts, visible in both (old) RGB and (intermediate-age) luminous asymptotic giant branch stars, and there is some evidence that the outer halo becomes more elliptical and has a shallower surface brightness profile. We derive photometric metallicity distribution functions for halo RGB stars and find relatively high median metallicity values (<[Fe/H]>med ˜ -0.9 to -1.0 dex) that change very little with radius over the extent of our survey. Radial metallicity gradients are measured to be ≈ -0.002-0.004 dex kpc-1, and the fraction of metal-poor stars (defined as [Fe/H] < -1.0) is ≈40-50 per cent at all radii. We discuss these findings in the context of galaxy formation models for the buildup of gE haloes.

  20. The lithium abundance in halo stars

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Duncan, Douglas K.

    1987-01-01

    Spectroscopic observations are reported for 23 population II subdwarfs (selected for age homogeneity) and 31 other stars (mainly population I F and G dwarfs). The spectra were obtained in the 670.7-nm line of Li I using coude spectrographs on the 2.7-m reflector at McDonald Observatory, the 3.0-m reflector at Lick Observatory, and the 4-m Mayall reflector at KPNO during 1983-1985. The results are presented (along with selected published data) in extensive tables and graphs and analyzed. For 12 stars with space velocities v(LSR) = 160 km/s or greater and Fe/H = -1.4 or less, the atmospheric Li/H abundance is shown to depend on T(e), the mean value for T(e) = 5600 K or more being Li/H = (1.2 + or - 0.3) x 10 to the -10th. This result, also found for many of the population I stars, is interpreted as a significant constraint on the cosmic baryon/photon ratio.

  1. RADIAL VELOCITIES OF GALACTIC HALO STARS IN VIRGO

    SciTech Connect

    Brink, Thomas G.; Mateo, Mario; Martinez-Delgado, David E-mail: mmateo@umich.ed

    2010-11-15

    We present multi-slit radial velocity measurements for 111 stars in the direction of the Virgo Stellar Stream (VSS). The stars were photometrically selected to be probable main-sequence stars in the Galactic halo. When compared with the radial velocity distribution expected for the halo of the Milky Way, as well as the distribution seen in a control field, we observe a significant excess of negative velocity stars in the field, which can likely be attributed to the presence of a stellar stream. This kinematic excess peaks at a Galactic standard of rest radial velocity of -75 km s{sup -1}. A rough distance estimate suggests that this feature extends from {approx}15 kpc out to, and possibly beyond, the {approx}30 kpc limit of the study. The mean velocity of these stars is incompatible with those of the VSS itself (V{sub gsr} {approx} 130 km s{sup -1}), which we weakly detect, but it is consistent with radial velocity measurements of nearby 2MASS M-giants and SDSS+SEGUE K/M-giants and blue horizontal branch stars that constitute the leading tidal tail of the Sagittarius dwarf spheroidal galaxy. Some oblate models for the shape of the Milky Way's dark matter halo predict that the leading arm of the Sagittarius Stream should pass through this volume, and have highly negative (V{sub gsr} {approx}< -200 km s{sup -1}) radial velocities, as it descends down from the northern Galactic hemisphere toward the Galactic plane. The kinematic feature observed in this study, if it is in fact Sagittarius debris, is not consistent with these predictions, and instead, like other leading stream radial velocity measurements, is consistent with a recently published triaxial halo model, or, if axisymmetry is imposed, favors a prolate shape for the Galactic halo potential. However, a rough distance estimate to the observed kinematic feature places it somewhat closer (D {approx} 15-30 kpc) than the Sagittarius models predict (D {approx} 35-45 kpc).

  2. Star Formation in the Outer Disk of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate L.; van Zee, Liese; Côté, Stéphanie; Schade, David

    2012-09-01

    We combine new deep and wide field of view Hα imaging of a sample of eight nearby (d ≈ 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of ~10-5 to 10-6 M ⊙ yr-1 kpc-2. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically gsim85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of ~2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  3. Infrared Halo Frames a Newborn Star

    NASA Astrophysics Data System (ADS)

    2003-08-01

    Summary: Observations with the VLT of a star-forming cloud have revealed, for the first time, a ring of infrared light around a nascent star. The images also show the presence of jets that emanate from the young object and collide with the surrounding cloud. ESO PR Photo 26a/03 ESO PR Photo 26a/03 [Preview - JPEG: 974 x 400 pix - 404k [Normal - JPEG: 1947 x 800 pix - 1M] The DC303.8-14.2 globule A small and dark interstellar cloud with the rather cryptic name of DC303.8-14.2 is located in the inner part of the Milky Way galaxy. It is seen in the southern constellation Chamaeleon and consists of dust and gas. Astronomers classify it as a typical example of a "globule". As many other globules, this cloud is also giving birth to a star. Some years ago, observations in the infrared spectral region with the ESA IRAS satellite observatory detected the signature of a nascent star at its centre. Subsequent observations with the Swedish ESO Submillimetre Telescope (SEST) at La Silla (Chile) were carried out by Finnish astronomer Kimmo Lehtinen . He revealed that DC303.8-14.2 is collapsing under its own gravity, a process which will ultimately result in the birth of a new star from the gas and dust in this cloud. Additional SEST observations of the millimetre emission of carbon monoxide (CO) molecules demonstrated a strong outflow from the nascent star. A small part of the gas that falls inward onto the central object is re-injected into the surrounding via this outward-bound "bipolar stream" . The structure of DC303.8-14.2 The left panel in PR Photo 26a/03 shows the DC303.8-14.2 globule as it looks in red light. This image was obtained at wavelength 700 nm and has been reproduced from the Digitized Sky Survey (DSS) [1]. It covers a sky region of 20 x 20 arcmin 2 , or about 50% of the area of the full moon. The dust particles in the cloud reflect the light from stars, causing the cloud to appear brighter than the adjacent sky. The brightness distribution over the cloud

  4. Dependence of the outer density profiles of halos on their mass accretion rate

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2014-07-01

    We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.

  5. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    SciTech Connect

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Chapman, S. C.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.

  6. CHEMICAL ABUNDANCES OF THE MILKY WAY THICK DISK AND STELLAR HALO. I. IMPLICATIONS OF [{alpha}/Fe] FOR STAR FORMATION HISTORIES IN THEIR PROGENITORS

    SciTech Connect

    Ishigaki, Miho N.; Aoki, Wako; Chiba, Masashi E-mail: aoki.wako@nao.ac.jp

    2012-07-01

    We present the abundance analysis of 97 nearby metal-poor (-3.3 < [Fe/H] <-0.5) stars having kinematic characteristics of the Milky Way (MW) thick disk and inner and outer stellar halos. The high-resolution, high-signal-to-noise optical spectra for the sample stars have been obtained with the High Dispersion Spectrograph mounted on the Subaru Telescope. Abundances of Fe, Mg, Si, Ca, and Ti have been derived using a one-dimensional LTE abundance analysis code with Kurucz NEWODF model atmospheres. By assigning membership of the sample stars to the thick disk, inner halo, or outer halo components based on their orbital parameters, we examine abundance ratios as a function of [Fe/H] and kinematics for the three subsamples in wide metallicity and orbital parameter ranges. We show that, in the metallicity range of -1.5 < [Fe/H] {<=}-0.5, the thick disk stars show constantly high mean [Mg/Fe] and [Si/Fe] ratios with small scatter. In contrast, the inner and the outer halo stars show lower mean values of these abundance ratios with larger scatter. The [Mg/Fe], [Si/Fe], and [Ca/Fe] for the inner and the outer halo stars also show weak decreasing trends with [Fe/H] in the range [Fe/H] >-2. These results favor the scenarios that the MW thick disk formed through rapid chemical enrichment primarily through Type II supernovae of massive stars, while the stellar halo has formed at least in part via accretion of progenitor stellar systems having been chemically enriched with different timescales.

  7. Using accurate phase space coordinates of ~100,00 halo field stars to constrain the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-08-01

    The current cosmological paradigm predicts that dark matter halos are triaxial overall, but oblate in regions where baryons dominate. However recent measurements of the shape of the Milky Way dark matter halo find it to be very triaxial with a shape and orientation that are significantly at odds with theoretical predictions. The ESA’s Gaia satellite will soon map the entire Milky Way giving us six phase-space coordinates, ages and abundances for hundreds of thousands of halo stars. I will report progress on a new code based on the Schwarzschild orbit superposition method and orbital frequency mapping, to determine the global shape of the Milky Way's dark matter halo using field stars from Gaia. This technique will simultaneously yield the self-consistent phase-space distribution function of the stellar halo in the inner 20-30kpc region. Detailed analysis of correlations between the chemical abundances, ages and orbits of halo stars in this distribution function will enable us to extract clues to the formation history of the Milky Way that are encoded in orbital properties of halo stars.

  8. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  9. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  10. Fragmentation in Dusty Low-metallicity Star-forming Halos

    NASA Astrophysics Data System (ADS)

    Meece, Gregory R.; Smith, Britton D.; O'Shea, Brian W.

    2014-03-01

    The first stars in the universe, termed Population III, are thought to have been very massive compared to the stars that form in the present epoch. As feedback from the first generation of stars altered the contents of the interstellar medium, the universe switched to a low-mass mode of star formation, which continues in the high-metallicity stars formed in the present era. Several studies have investigated the transition between metal-free and metal-enriched star formation, with tentative evidence being found for a metallicity threshold near 10-3.5 Z ⊙ due to atomic and molecular transitions and another threshold near 10-5.5 Z ⊙ due to dust. In this work, we simulate the fragmentation of cooling gas in idealized, low-metallicity halos using the adaptive mesh refinement code Enzo. We conduct several simulations of 106 M ⊙ and 107 M ⊙ halos at z = 20 in which the metal content, initial rotation, and degree of turbulence are varied in order to study the effect of these properties on gas fragmentation over a range of densities. We find tentative support for the idea of a critical metallicity, but the effect of varying metallicity on the gas we observe is not as dramatic as what has been reported in earlier studies. It is theorized that at lower redshifts with a lower cosmic microwave background temperature, variations in metallicity might have a larger effect on cooling and fragmentation. We find no clear relation between the initial spin or the initial level of turbulence in the halo and the final properties of the gas contained therein. Additionally, we find that the degree to which the Jeans length is refined, the initial density profile of the gas, and the inclusion of deuterium chemistry each have a significant effect on the evolution and fragmentation of the gas in the halo—in particular, we find that at least 64 grid cells are needed to cover the Jeans length in order to properly resolve the fragmentation.

  11. Fragmentation in dusty low-metallicity star-forming halos

    SciTech Connect

    Meece, Gregory R.; Smith, Britton D.; O'Shea, Brian W.

    2014-03-10

    The first stars in the universe, termed Population III, are thought to have been very massive compared to the stars that form in the present epoch. As feedback from the first generation of stars altered the contents of the interstellar medium, the universe switched to a low-mass mode of star formation, which continues in the high-metallicity stars formed in the present era. Several studies have investigated the transition between metal-free and metal-enriched star formation, with tentative evidence being found for a metallicity threshold near 10{sup –3.5} Z {sub ☉} due to atomic and molecular transitions and another threshold near 10{sup –5.5} Z {sub ☉} due to dust. In this work, we simulate the fragmentation of cooling gas in idealized, low-metallicity halos using the adaptive mesh refinement code Enzo. We conduct several simulations of 10{sup 6} M {sub ☉} and 10{sup 7} M {sub ☉} halos at z = 20 in which the metal content, initial rotation, and degree of turbulence are varied in order to study the effect of these properties on gas fragmentation over a range of densities. We find tentative support for the idea of a critical metallicity, but the effect of varying metallicity on the gas we observe is not as dramatic as what has been reported in earlier studies. It is theorized that at lower redshifts with a lower cosmic microwave background temperature, variations in metallicity might have a larger effect on cooling and fragmentation. We find no clear relation between the initial spin or the initial level of turbulence in the halo and the final properties of the gas contained therein. Additionally, we find that the degree to which the Jeans length is refined, the initial density profile of the gas, and the inclusion of deuterium chemistry each have a significant effect on the evolution and fragmentation of the gas in the halo—in particular, we find that at least 64 grid cells are needed to cover the Jeans length in order to properly resolve the

  12. An extremely primitive star in the Galactic halo.

    PubMed

    Caffau, Elisabetta; Bonifacio, Piercarlo; François, Patrick; Sbordone, Luca; Monaco, Lorenzo; Spite, Monique; Spite, François; Ludwig, Hans-G; Cayrel, Roger; Zaggia, Simone; Hammer, François; Randich, Sofia; Molaro, Paolo; Hill, Vanessa

    2011-09-01

    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium; almost all other elements were subsequently created in stars and supernovae. The mass fraction of elements more massive than helium, Z, is known as 'metallicity'. A number of very metal-poor stars has been found, some of which have a low iron abundance but are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with Z < 1.5 × 10(-5), it has been suggested that low-mass stars cannot form from the primitive interstellar medium until it has been enriched above a critical value of Z, estimated to lie in the range 1.5 × 10(-8) to 1.5 × 10(-6) (ref. 8), although competing theories claiming the contrary do exist. (We use 'low-mass' here to mean a stellar mass of less than 0.8 solar masses, the stars that survive to the present day.) Here we report the chemical composition of a star in the Galactic halo with a very low Z (≤ 6.9 × 10(-7), which is 4.5 × 10(-5) times that of the Sun) and a chemical pattern typical of classical extremely metal-poor stars--that is, without enrichment of carbon, nitrogen and oxygen. This shows that low-mass stars can be formed at very low metallicity, that is, below the critical value of Z. Lithium is not detected, suggesting a low-metallicity extension of the previously observed trend in lithium depletion. Such lithium depletion implies that the stellar material must have experienced temperatures above two million kelvin in its history, given that this is necessary to destroy lithium. PMID:21886158

  13. Carbon stars in the outer spheroid of NGC 6822

    NASA Astrophysics Data System (ADS)

    Demers, S.; Battinelli, P.; Artigau, E.

    2006-09-01

    Context: .From a 2°× 2° of NGC 6822 survey we have previously established that this Local Group dwarf irregular galaxy possesses a huge spheroid having more than one degree in length. This spheroid is in rotation but its rotation curve is known only within ~ 15' from the center. It is therefore critical to identify bright stars belonging to the spheroid to characterize, as far as possible, its outer kinematics. Aims: .We use the new wide field near infrared imager CPAPIR, operated by the SMARTS consortium, to acquire J, Ks images of two 34.8'× 34.8' areas in the outer spheroid to search for C stars. Methods: .The colour diagram of the fields allows the identification of 192 C stars candidates but a study of the FWHM of the images permits the rejection of numerous non-stellar objects with colours similar to C stars. Results: . We are left with 75 new C stars, their mean Ks magnitude and mean colour are similar to the bulk of known NGC 6822 C stars. Conclusions: .This outer spheroid survey confirms that the intermediate-age AGB stars are a major contributor to the stellar populations of the spheroid. The discovery of some 50 C stars well beyond the limit of the previously known rotation curve calls for a promising spectroscopic follow-up to a major axis distance of 40'.

  14. Armchair cartography - A map of the Galactic halo based on observations of local, metal-poor stars

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper; Zhen, Chen

    1990-01-01

    The velocity distribution of metal-poor halo stars in the solar neighborhood is studied to extract data on the global spatial and kinematic properties of the Galactic stellar halo. A global model of the solar neighborhood stars is constructed from observed positions and three-dimensional velocity of local, metal-poor halo stars in terms of a discrete sum of orbits. The characteristics of the reconstructed halo are examined and used to study the evolution of the halo subsystems.

  15. On the outer atmospheres of hybrid stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.; Dupree, A. K.; Jordan, C.; Brown, A.

    1985-01-01

    Deep exposures with the IUE satellite have been obtained in order to search for high-temperature emission from stars with cool winds. Iota Aur and Theta Her are confirmed as hybrid stars, and an additional hybrid object, Gamma Aql, has been discovered. The emission line fluxes of the hybrid stars are analyzed to establish the emission measure distribution and, as far as possible, the electron density. The discovery of variable, high-velocity Mg II circumstellar absorption in Gamma Aql, Theta Her, and Alpha TrA is reported. Very long exposure of the latter show that cool material is being accelerated to velocities of at least 180 km/s. These observations suggest that high-velocity mass loss is more common than previously thought.

  16. PROGRESSIVELY MORE PROLATE DARK MATTER HALO IN THE OUTER GALAXY AS TRACED BY FLARING H I GAS

    SciTech Connect

    Banerjee, Arunima; Jog, Chanda J. E-mail: cjjog@physics.iisc.ernet.in

    2011-05-01

    A galactic disk in a spiral galaxy is generally believed to be embedded in an extended dark matter halo, which dominates its dynamics in the outer parts. However, the shape of the halo is not clearly understood. Here we show that the dark matter halo in the Milky Way is prolate in shape. Further, it is increasingly more prolate at larger radii, with the vertical-to-planar axis ratio monotonically increasing to 2.0 at 24 kpc. This is obtained by modeling the observed steeply flaring atomic hydrogen gas layer in the outer Galactic disk, where the gas is supported by pressure against the net gravitational field of the disk and the halo. The resulting prolate-shaped halo can explain several long-standing puzzles in galactic dynamics, for example, it permits long-lived warps thus explaining their ubiquitous nature.

  17. Light dark matter scattering in outer neutron star crusts

    NASA Astrophysics Data System (ADS)

    Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph

    2016-09-01

    We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.

  18. Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  19. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    SciTech Connect

    Crosby, Brian D.; O'Shea, Brian W.; Smith, Britton D.; Turk, Matthew J.; Hahn, Oliver

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  20. The horizontal branch morphology of M 31 globular clusters. Extreme second parameter effect in outer halo clusters

    NASA Astrophysics Data System (ADS)

    Perina, S.; Bellazzini, M.; Buzzoni, A.; Cacciari, C.; Federici, L.; Fusi Pecci, F.; Galleti, S.

    2012-10-01

    We use deep, high quality color magnitude diagrams obtained with the Hubble Space Telescope to compute a simplified version of the Mironov index (SMI; B/(B+R)) to parametrize the horizontal branch (HB) morphology for 23 globular clusters in the M 31 galaxy (Sample A), all located in the outer halo at projected distances between 10 kpc and 100 kpc. This allows us to compare them with their Galactic counterparts, for which we estimated the SMI exactly in the same way, in the SMI vs. [Fe/H] plane. We find that the majority of the considered M 31 clusters lie in a significantly different locus, in this plane, with respect to Galactic clusters lying at any distance from the center of the Milky Way. In particular they have redder HB morphologies at a given metallicity, or, in other words, clusters with the same SMI value are ≈ 0.4 dex more metal rich in the Milky Way than in M 31. We discuss the possible origin of this difference and we conclude that the most likely explanation is that many globular clusters in the outer halo of M 31 formed ≈1-2 Gyr later than their counterparts in the outer halo of the Milky Way, while differences in the cluster-to-cluster distribution of He abundance of individual stars may also play a role. The analysis of another sample of 25 bright M 31 clusters (eighteen of them with MV ≤ -9.0, Sample B), whose SMI estimates are much more uncertain as they are computed on shallow color magnitude diagrams, suggests that extended blue HB tails can be relatively frequent among the most massive M 31 globular clusters, possibly hinting at the presence of multiple populations. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). STScI is operated by the Association of Universities for

  1. Investigating the outer density profile of the dark matter halo of M31

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu

    2015-08-01

    In the context of the hierarchical structure formation in the universe, cosmological N -body simulations predict that cold dark matter (CDM) halos have a universal mass-density profile(Navarro et al. 1996; Fukushige & Makino 1997; Moore et al. 1998).Especially, the density profile of CDM outer halos decreases with the cube of the radius from the galactic center. However, so far, not much effort has examined this hypothesis because it is extremely difficult to measure the mass distribution of the outer region of a galaxy.On the other hand, a recent observation discovered a giant stellar stream (GSS) and stellar shells in the halo of the Andromeda galaxy (M31). The GSS extends over 120 kpc further away along the line of sight from M31, and its spatial and velocity structure have been observed in detail. So far, N -body simulations of a galaxy merger between a satellite dwarf galaxy and M31 nicely reproduced these structures (Fardal et al. 2007; Mori & Rich 2008).We present the result of the N -body simulation of the galaxy merger to investigate the mass distribution of the DM halo in M31. We vary the power-law index of the outer-density profile and the total mass of the CDM halo of M31. To reproduce the observed structures, we find the sufficient condition for the power-law index x. The best-fit parameter is x=-3.7, which is steeper than the CDM prediction (x=-3).In addition, we also focus on the morphology of the progenitor galaxy. We perform large parameter surveys of the galaxy merger varying thickness and rotation velocity of a disk-like component of the progenitor. The result suggests that a rotating component of the progenitor is required to reproduce an asymmetric internal structure of the GSS. Using the parameter that reproduces the observed structures in detail, we discuss the evolution and relaxation of the dark matter component that initially associated with the progenitor.

  2. Contributions to the Galactic halo from in-situ, kicked-out, and accreted stars

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Johnston, Kathryn V.; Cunha, Katia; Smith, Verne V.; Majewski, Steven R.

    2016-08-01

    We report chemical abundances for a sample of 66 M giants with high S/N high-resolution spectroscopy in the inner halo of the Milky Way. The program giant stars have radial velocities that vary significantly from those expected for stars moving on uniform circular orbits in the Galactic disk. Thus, based on kinematics, we expect a sample dominated by halo stars. Abundances are derived for α-elements and neutron capture elements. By analyzing the multi-dimensional abundance space, the formation site of the halo giants - in-situ or accreted - can be assessed. Of particular interest are a class of stars that form in-situ, deep in the Milky Way's gravitational potential well, but are ``kicked out'' of the disk into the halo due to a perturbation event. We find: (1) our sample is dominated by accreted stars and (2) tentative evidence of a small kicked-out population in our Milky Way halo sample.

  3. Outer atmospheres of late-type stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1981-01-01

    Recent observational results concerning chromospheres and coronae in late-type stars are described. In particular, it is indicated where in the cool half of the HR diagram chromospheres, transition regions, coronae, and large mass loss occur and what the important parameters determining the energy balance of these layers are. The chromospheric modelling process is summarized and models of the late-type supergiants Beta Dra, Epsilon Gem, and Alpha Ori recently computed by Basri and Linsky (1980) are detailed.

  4. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    SciTech Connect

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Leo; and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  5. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  6. Fractional Yields Inferred from Halo and Thick Disk Stars

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  7. Deep SDSS optical spectroscopy of distant halo stars. II. Iron, calcium, and magnesium abundances

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Schlesinger, K. J.; Beers, T. C.; Robin, A. C.; Schneider, D. P.; Lee, Y. S.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.

    2015-05-01

    Aims: We analyze a sample of 3944 low-resolution (R ~ 2000) optical spectra from the Sloan Digital Sky Survey (SDSS), focusing on stars with effective temperatures 5800 ≤ Teff ≤ 6300 K, and distances from the Milky Way plane in excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. Methods: We followed the same methodology as in the previous paper in this series, deriving atmospheric parameters by χ2 minimization, but this time we obtained the abundances of individual elements by fitting their associated spectral lines. Distances were calculated from absolute magnitudes obtained by a statistical comparison of our stellar parameters with stellar-evolution models. Results: The observations reveal a decrease in the abundances of iron, calcium, and magnesium at large distances from the Galactic center. The median abundances for the halo stars analyzed are fairly constant up to a Galactocentric distance r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to significantly lower values at larger distances, consistent with previous studies. In addition, we examine [Ca/Fe] and [Mg/Fe] as a function of [Fe/H] and Galactocentric distance. Our results show that the most distant parts of the halo show a steeper variation of [Ca/Fe] and [Mg/Fe] with iron. We found that at the range -1.6 < [Fe/H] < -0.4, [Ca/Fe] decreases with distance, in agreement with earlier results based on local stars. However, the opposite trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the halo are more metal-poor than the inner regions, based on in situ observations of distant stars, agrees with recent results based on inferences from the kinematics of more local stars, and with predictions of recent galaxy formation simulations for galaxies similar to the Milky Way. Table 1 and beginning of Tables 2 and 3 are available in electronic form at http://www.aanda.orgFull Tables 2 and 3 are only available at the CDS via anonymous ftp to http

  8. Population and Star Formation Histories from the Outer Limits Survey

    NASA Astrophysics Data System (ADS)

    Brondel, Brian Joseph; Saha, Abhijit; Olszewski, Edward

    2015-08-01

    The Outer Limits Survey (OLS) is a deep survey of selected fields in the outlying areas of the Magellanic Clouds based on the MOSAIC-II instrument on the Blanco 4-meter Telescope at CTIO. OLS is designed to probe the outer disk and halo structures of Magellanic System. The survey comprises ~50 fields obtained in Landolt R, I and Washington C, M and DDO51 filters, extending to a depth of about 24th magnitude in I. While qualitative examination of the resulting data has yielded interesting published results, we report here on quantitative analysis through matching of Hess diagrams to theoretical isochrones. We present analysis based on techniques developed by Dolphin (e.g., 2002, MNRAS, 332, 91) for fields observed by OLS. Our results broadly match those found by qualitative examination of the CMDs, but interesting details emerge from isochrone fitting.

  9. The lithium content of the Galactic Halo stars

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Primas, F.

    2005-11-01

    Thanks to the accurate determination of the baryon density of the universe by the recent cosmic microwave background experiments, updated predictions of the standard model of Big Bang nucleosynthesis now yield the initial abundance of the primordial light elements with unprecedented precision. In the case of ^7Li, the CMB+SBBN value is significantly higher than the generally reported abundances for Pop II stars along the so-called Spite plateau. In view of the crucial importance of this disagreement, which has cosmological, galactic and stellar implications, we decided to tackle the most critical issues of the problem by revisiting a large sample of literature Li data in halo stars that we assembled following some strict selection criteria on the quality of the original analyses. In the first part of the paper we focus on the systematic uncertainties affecting the determination of the Li abundances, one of our main goal being to look for the "highest observational accuracy achievable" for one of the largest sets of Li abundances ever assembled. We explore in great detail the temperature scale issue with a special emphasis on reddening. We derive four sets of effective temperatures by applying the same colour {T}_eff calibration but making four different assumptions about reddening and determine the LTE lithium values for each of them. We compute the NLTE corrections and apply them to the LTE lithium abundances. We then focus on our "best" (i.e. most consistent) set of temperatures in order to discuss the inferred mean Li value and dispersion in several {T}_eff and metallicity intervals. The resulting mean Li values along the plateau for [Fe/H] ≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075 when the lowest effective temperature considered is taken equal to 5700 K and 6000 K respectively. This is a factor of 2.48 to 2.81 (depending on the adopted SBBN model and on the effective temperature range chosen to delimit the plateau) lower than the CMB

  10. THE CENTRAL BLUE STRAGGLER POPULATION IN FOUR OUTER-HALO GLOBULAR CLUSTERS

    SciTech Connect

    Beccari, Giacomo; Luetzgendorf, Nora; Olczak, Christoph; Ferraro, Francesco R.; Lanzoni, Barbara; Carraro, Giovanni; Boffin, Henri M. J.; Stetson, Peter B.; Sollima, Antonio

    2012-08-01

    Using Hubble Space Telescope/Wide Field Planetary Camera 2 data, we have performed a comparative study of the Blue Straggler Star (BSS) populations in the central regions of the globular clusters (GCs) AM 1, Eridanus, Palomar 3, and Palomar 4. Located at distances R{sub GC} > 50 kpc from the Galactic center, these are (together with Palomar 14 and NGC 2419) the most distant clusters in the halo. We determine their color-magnitude diagrams and centers of gravity. The four clusters turn out to have similar ages (10.5-11 Gyr), significantly smaller than those of the inner-halo globulars, and similar metallicities. By exploiting wide-field ground-based data, we build the most extended radial density profiles from resolved star counts ever published for these systems. These are well reproduced by isotropic King models of relatively low concentration. BSSs appear to be significantly more centrally segregated than red giants in all GCs, in agreement with the estimated core and half-mass relaxation times which are smaller than the cluster ages. Assuming that this is a signature of mass segregation, we conclude that AM 1 and Eridanus are slightly dynamically more evolved than Pal 3 and Pal 4.

  11. The Frequency of Field Blue-Straggler Stars in the Thick Disk and Halo System of the Galaxy

    NASA Astrophysics Data System (ADS)

    Santucci, Rafael M.; Placco, Vinicius M.; Rossi, Silvia; Beers, Timothy C.; Reggiani, Henrique M.; Lee, Young Sun; Xue, Xiang-Xiang; Carollo, Daniela

    2015-03-01

    We present an analysis of a new, large sample of field blue-straggler stars (BSSs) in the thick disk and halo system of the Galaxy, based on stellar spectra obtained during the Sloan Digital Sky Survey (SDSS) and the Sloan Extension for Galactic Understanding and Exploration (SEGUE). Using estimates of stellar atmospheric parameters obtained from application of the SEGUE Stellar Parameter Pipeline, we obtain a sample of some 8000 BSSs, which are considered along with a previously selected sample of some 4800 blue horizontal-branch (BHB) stars. We derive the ratio of BSSs to BHB stars, FBSS/BHB, as a function of Galactocentric distance and distance from the Galactic plane. The maximum value found for FBSS/BHB is ∼ 4.0 in the thick disk (at 3 kpc\\lt |Z|\\lt 4 kpc), declining to on the order of ∼ 1.5-2.0 in the inner-halo region; this ratio continues to decline to ∼1.0 in the outer-halo region. We associate a minority of field BSSs with a likely extragalactic origin; at least 5% of the BSS sample exhibit radial velocities, positions, and distances commensurate with membership in the Sagittarius Stream.

  12. Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Beers, Timothy C.

    2000-06-01

    -abundance stars close to the Galactic plane are, in part, affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a vertical velocity gradient on the order of Δ/Δ|Z|=-30+/-3 km s-1 kpc-1) and velocity ellipsoid (σU, σV, σW)=(46+/-4, 50+/-4, 35+/-3) km s-1. The fraction of low-metallicity stars in the solar neighborhood that are members of the thick disk population is estimated as ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1. We obtain an estimate of the radial scale length of the metal-weak thick disk of 4.5+/-0.6 kpc. We also analyze the global kinematics of the stars constituting the halo component of the Galaxy. The outer part of the halo, which we take to be represented by local stars on orbits reaching more than 5 kpc from the Galactic plane, exhibits no systematic rotation. In particular, we show that previous suggestions of the presence of a ``counter-rotating high halo'' are not supported by our analysis. The density distribution of the outer halo is nearly spherical and exhibits a power-law profile that is accurately described as ρ~R-3.55+/-0.13. The inner part of the halo is characterized by a prograde rotation and a highly flattened density distribution. We find no distinct boundary between the inner and outer halo. We confirm the clumping in angular-momentum phase space of a small number of local metal-poor stars noted in 1999 by Helmi et al. We also identify an additional elongated feature in angular-momentum phase space extending from the clump to regions with high azimuthal rotation. The number of members in the detected clump is not significantly increased from that reported by Helmi et al., even though the total number of the sample stars we consider is almost triple that of the previous investigation. We conclude that the fraction of halo stars that may have arisen from the precursor object of this clump may be smaller than 10% of the present Galactic halo, as previously suggested. The implications

  13. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  14. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  15. Observational probes of the connection between Star Formation Efficiency and Dark Matter halo mass of galaxies

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; Colombo, Dario; Rosolowsky, Erik

    2015-08-01

    Modern simulations predict that the stellar mass and the star formation efficiency of a galaxy are tightly linked to the dark matter (DM) halo mass of that galaxy. This prediction relies on a specific model of galaxy evolution and so testing this prediction directly tests our best models of galaxy formation and evolution. Recent DM numerical studies propose relationships between star formation efficiency and the DM halo mass with two domains based on SF feedback (low-mass) vs. AGN feedback (high-mass), see Moster et al. (2013). The observational probe of such parameters in the relationship imply globally important physics that are fundamental as, e.g., the star formation law (e.g., Kennicutt et al., 1998), the universal depletion time (Leroy et al. 2008), and the origin of the cold gas phase with respect to the stellar disc (Davis et al.2011). Thus, we can directly measure whether this parameterization is correct by estimating the stellar mass, star formation efficiency and dynamical (DM) mass for a set of galaxies at strategically selected points to test if they fall on the predicted relationship.We use CO data from the Extragalactic Database for Galaxy Evolution survey (EDGE) in conjunction with archival 21-cm data and spectroscopic data from Calar Alto Legacy Integral Field spectroscopy Area survey (CALIFA) to measure the stellar vs. halo mass and star-formation-efficiency vs. halo mass relations of the galaxies. We also analyze archival 21-cm spectra to estimate rotation speeds, atomic gas masses and halo masses for a set of EDGE galaxies. Data from CALIFA are used for high quality star formation efficiency and stellar mass measurements. By linking these three parameters - stellar mass, star formation efficiency (SFE) and DM halo mass - we can test the simulation models of how the gas is cooling in the potential wells of the dark matter halos and then forms stars.

  16. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    SciTech Connect

    Cohen, Judith G.; Kirby, Evan N. E-mail: enk@astro.caltech.edu

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  17. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  18. Formation Rates of Population III Stars and Chemical Enrichment of Halos during the Reionization Era

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Stiavelli, Massimo

    2009-04-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ≈ 106 M sun, cooled via molecular hydrogen) to that in more massive halos (M gsim 2 × 107 M sun, where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe—at redshift z ≈ 25—even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  19. PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; Belokurov, V.; Koposov, S. E.; Prieto, J. L.; Larson, S.; Christensen, E.; Beshore, E.

    2013-01-20

    We present analysis of 12,227 type-ab RR Lyraes (RRLs) found among the 200 million public light curves in Catalina Surveys Data Release 1. These stars span the largest volume of the Milky Way ever surveyed with RRLs, covering {approx}20,000 deg{sup 2} of the sky (0 Degree-Sign < {alpha} < 360 Degree-Sign , -22 Degree-Sign < {delta} < 65 Degree-Sign ) to heliocentric distances of up to 60 kpc. Each of the RRLs is observed between 60 and 419 times over a six-year period. Using period finding and Fourier fitting techniques we determine periods and apparent magnitudes for each source. We find that the periods are generally accurate to {sigma} = 0.002% in comparison to 2842 previously known RRLs and 100 RRLs observed in overlapping survey fields. We photometrically calibrate the light curves using 445 Landolt standard stars and show that the resulting magnitudes are accurate to {approx}0.05 mag using Sloan Digital Sky Survey (SDSS) data for {approx}1000 blue horizontal branch stars and 7788 RRLs. By combining Catalina photometry with SDSS spectroscopy, we analyze the radial velocity and metallicity distributions for >1500 of the RRLs. Using the accurate distances derived for the RRLs, we show the paths of the Sagittarius tidal streams crossing the sky at heliocentric distances from 20 to 60 kpc. By selecting samples of Galactic halo RRLs, we compare their velocity, metallicity, and distance with predictions from a recent detailed N-body model of the Sagittarius system. We find that there are some significant differences between the distances and structures predicted and our observations.

  20. 2MASS J06164006-6407194: THE FIRST OUTER HALO L SUBDWARF

    SciTech Connect

    Cushing, Michael C.; Looper, Dagny; Burgasser, Adam J.; Sanderson, Robyn E.; Kirkpatrick, J. Davy; Cruz, Kelle L.; Sweet, Anne

    2009-05-01

    We present the serendipitous discovery of an L subdwarf in the Two Micron All Sky Survey (2MASS) J06164006-6407194, in a search of the 2MASS for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressure-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H{sub 2}O, and enhanced collision induced absorption of H{sub 2}. We assign 2MASS J0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion ({mu} = 1.''405 {+-} 0.008 yr{sup -1}), large radial velocity (V {sub rad} = 454 {+-} 15 km s{sup -1}), estimated u, v, w velocities (94, -573, 125) km s{sup -1} and Galactic orbit with an apogalacticon at {approx}29 kpc are indicative of membership in the outer halo making 2MASS J0616-6407 the first ultracool member of this population.

  1. Young accreted globular clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2013-02-01

    We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.

  2. Duration of the Early Galactic Formation Epoch: HST Photometry for Red-Horizontal Branch Clusters in the Outer Halo

    NASA Astrophysics Data System (ADS)

    Hesser, J. E.; Stetson, P. B.; McClure, R. D.; van den Bergh, S.; Bolte, M.; Harris, W. E.; van den Berg, D. A.; Bell, R. A.; Fahlman, G. G.; Richer, H. B.; Bond, H. E.

    1997-12-01

    Last year we presented evidence from HST photometry of the low-metallicity cluster NGC 2419 (M_V = -9.5, R_⊙ ~ 90 kpc, [Fe/H] = -2.2) that globular cluster formation began at essentially the same time throughout a region of the Galactic halo now almost 200 kpc in diameter (Harris et al. 1997 AJ 114, 1030). We now turn to the time spread of halo formation, with the ultimate aim of addressing the relative roles of mergers over the first 4 or more Gyrs (Searle & Zinn 1978, ApJ, 225, 357; Lee, Demarque & Zinn 1994 ApJ, 423, 248) versus models favoring a rapid collapse (Eggen, Lynden-Bell & Sandage 1962, ApJ, 236, 748; Stetson, VandenBerg & Bolte 1996, PASP, 108, 560), or some combination of those and other processes. We provide the first reliable measurements from the giant branch through the main-sequence turnoffs of red-horizontal-branch clusters in the outer halo, which are frequently postulated to be younger than most other globular clusters. From WFPC2 F555W (`V') and F814W (`I') photometry for Pal 3 (M_V = -5.2, R_⊙ ~ 87 kpc), Pal 4 (M_V = -5.8, R_⊙ ~ 98 kpc), and Eridanus (M_V = -4.8, R_⊙ ~ 78 kpc), all with [Fe/H] ~ -1.5, we estimate their relative ages by making differential comparisons among them and with respect to inner-halo objects of, presumably, comparable chemical compositions. It seems likely at this stage of our analysis that (a) the three clusters are the same age to our measurement precision of ~ 1 Gyr, and, (b) the CMDs of all three outer halo clusters differ from those of M 3 and M 5 (our template clusters of similar metallicity), in the sense that the outer halo clusters are younger by ~ 3 Gyr, or they are ~ 0.5 dex more metal-rich than currently thought. Large uncertainties in chemical compositions (He, [alpha /Fe], [CNO/Fe]) for outer halo and template clusters alike mask the true interpretation.

  3. VizieR Online Data Catalog: Model SDSS colors for halo stars (Allende Prieto+, 2014)

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernandez-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-06-01

    We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that best reproduces each observed spectrum. We use an optimization algorithm and evaluate model fluxes by means of interpolation in a pre-computed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars at logg (cgs units) lower than 2.5. An analysis of stars in the globular cluster M13 reveals a dependence of the inferred metallicity on surface gravity for stars with logg<2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with that expected from a dual halo system in the Milky Way. (1 data file).

  4. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  5. Is main-sequence galaxy star formation controlled by halo mass accretion?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Behroozi, Peter; Faber, S. M.

    2016-01-01

    The galaxy stellar-to-halo mass relation (SHMR) is nearly time-independent for z < 4. We therefore construct a time-independent SHMR model for central galaxies, wherein the in situ star formation rate (SFR) is determined by the halo mass accretion rate (MAR), which we call stellar halo accretion rate coevolution (SHARC). We show that the ˜0.3 dex dispersion of the halo MAR matches the observed dispersion of the SFR on the star formation main sequence (MS). In the context of `bathtub'-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. Despite its simplicity and the simplified treatment of mass growth from mergers, the SHARC model is likely to be a good approximation for central galaxies with M* = 109-1010.5 M⊙ that are on the MS, representing most of the star formation in the Universe. SHARC predictions agree with observed SFRs for galaxies on the MS at low redshifts, agree fairly well at z ˜ 4, but exceed observations at z ≳ 4. Assuming that the interstellar gas mass is constant for each galaxy (the `equilibrium condition' in bathtub models), the SHARC model allows calculation of net mass loading factors for inflowing and outflowing gas. With assumptions about preventive feedback based on simulations, SHARC allows calculation of galaxy metallicity evolution. If galaxy SFRs indeed track halo MARs, especially at low redshifts, that may help explain the success of models linking galaxy properties to haloes (including age-matching) and the similarities between two-halo galaxy conformity and halo mass accretion conformity.

  6. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-05-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] < -4, while the latter represents the majority of EMP stars with {approx}<[Fe/H]> - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  7. From First Stars to the Spite Plateau: A Possible Reconciliation of Halo Stars Observations with Predictions from Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Piau, L.; Beers, T. C.; Balsara, D. S.; Sivarani, T.; Truran, J. W.; Ferguson, J. W.

    2006-12-01

    Since the pioneering observations of Spite & Spite in 1982, the constant lithium abundance of metal-poor ([Fe/H]<-1.3) halo stars near the turnoff has been attributed to a cosmological origin. Closer analysis, however, revealed that the observed abundance lies at Δ7Li~0.4 dex below the predictions of big bang nucleosynthesis (BBN). The measurements of deuterium abundances along the lines of sight toward quasars, and the recent data from the Wilkinson Microwave Anisotropy Probe (WMAP), have independently confirmed this gap. We suggest here that part of the discrepancy (from 0.2 to 0.3 dex) is explained by a first generation of stars that efficiently depleted lithium. Assuming that the models for lithium evolution in halo turnoff stars, as well as the Δ7Li, estimates are correct, we infer that between one-third and one-half of the baryonic matter of the early halo (i.e., ~109 Msolar) was processed through Population III stars. This new paradigm proposes a very economical solution to the lingering difficulty of understanding the properties of the Spite plateau and its lack of star-to-star scatter down to [Fe/H]=-2.5. It is moreover in agreement both with the absence of lithium in the most iron-poor turnoff star currently known (HE 1327-2326) and also with new trends of the plateau suggesting its low-metallicity edge may be reached around [Fe/H]=-2.5. We discuss the role of turbulent mixing associated with enhanced supernovae explosions in the early interstellar medium in this picture. We suggest how it may explain the small scatter and also other recent observational features of the lithium plateau. Finally, we show that other chemical properties of the extremely metal-poor stars (such as carbon enrichment) are also in agreement with significant Population III processing in the halo, provided these models include mass loss and rotationally induced mixing.

  8. Post Asymptotic Giant Branch and Central Stars of Planetary Nebulae in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Weston, Simon

    2012-01-01

    Post asymptotic giant branch (post-AGB) stars, central stars of planetary nebulae (CSPNe) and planetary nebulae (PNe) are important phases of stellar evolution as the material they feedback is the seed of subsequent star formation in a galaxy. The majority of low and intermediate mass stars are expected to evolve through these channels, however, it is uncertain how many actually do, and at what rate. The Galactic halo, with its older population, provides a direct test of evolutionary models for low mass stars. Birthrate estimates of PNe are uncertain and worse still, are in contradiction with accepted white dwarf (WD) birthrate estimates. Much of the uncertainty stems from the lack of complete samples and poorly determined distance estimates. New surveys such as the Sloan Digital Sky Survey (SDSS), Galaxy Evolutionary Explorer (GALEX) and the INT Photometric Ha Survey (IPHAS) have discovered many new PNe and have observed the far edges of the Galaxy. Improved methods of determining distances to CSPNe are presented here, using model atmospheres, evolutionary tracks and high resolution reddening maps utilising these revolutionary surveys. Locating the CSPN is non-trivial particularly for evolved PNe, as they are extended with their central star often displaced from the centre of the nebula. Therefore, photometric criteria are required to locate the CSPN in the nebula's field. Synthetic photometry of the CSPNe is derived from spectral energy distributions (SEDs) computed from a grid of model atmospheres covering the parameter range of CSPNe. The SEDs are convolved with filter transmission curves to compute synthetic magnitudes for a given photometric system which are then calibrated with standard stars and WDs. A further project borne out of a search for luminous central stars of faint PNe, resulted in a systematic search for post-AGB stars in the Galactic halo. In this work, new candidate halo post-AGB stars are discovered from a search through the SDSS spectroscopic

  9. Attribution of halo merger mass ratio and star formation rate density

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Jo, Jeong-woon; Hwang, Jihe; Youn, Soyoung; Park, Boha

    2016-06-01

    We have used codes for implementing the merger tree algorithm by Cole et al. (2007) and Parkinson et al. (2008) and derived the halo merger mass ratio of protocluster of galaxies across the cosmic time. The authors compare the observed and simulated star formation rates reported by the various groups and derive the star formation rate densities at different red-shifts. This study implies that an investigation of different mass variables should be incorporated into the analysis in order to accurately estimate cumulative star formation rates of galaxies and star formation rate densities as a function of red-shifts.

  10. A giant stream of metal-rich stars in the halo of the galaxy M31.

    PubMed

    Ibata, R; Irwin, M; Lewis, G; Ferguson, A M; Tanvir, N

    2001-07-01

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes.

  11. Kinematics of the Stellar Halo and the Mass Distribution of the Milky Way Using Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2012-12-01

    Here, we present a kinematic study of the Galactic halo out to a radius of ~60 kpc, using 4664 blue horizontal branch stars selected from the SDSS/SEGUE survey to determine key dynamical properties. Using a maximum likelihood analysis, we determine the velocity dispersion profiles in spherical coordinates (σ r , σθ, σphi) and the anisotropy profile (β). The radial velocity dispersion profile (σ r ) is measured out to a galactocentric radius of r ~ 60 kpc, but due to the lack of proper-motion information, σθ, σphi, and β could only be derived directly out to r ~ 25 kpc. From a starting value of β ≈ 0.5 in the inner parts (9 < r/kpc < 12), the profile falls sharply in the range r ≈ 13-18 kpc, with a minimum value of β = -1.2 at r = 17 kpc, rising sharply at larger radius. In the outer parts, in the range 25 < r/kpc < 56, we predict the profile to be roughly constant with a value of β ≈ 0.5. The newly discovered kinematic anomalies are shown not to arise from halo substructures. We also studied the anisotropy profile of simulated stellar halos formed purely by accretion and found that they cannot reproduce the sharp dip seen in the data. From the Jeans equation, we compute the stellar rotation curve (v circ) of the Galaxy out to r ~ 25 kpc. The mass of the Galaxy within r <~ 25 kpc is determined to be 2.1 × 1011 M ⊙, and with a three-component fit to v circ(r), we determine the virial mass of the Milky Way dark matter halo to be M vir = 0.9+0.4 -0.3 × 1012 M ⊙ (R vir = 249+34 -31 kpc).

  12. La and Eu Abundances in Metal-poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Cardillo, Harrison; Burris, Debra L.

    2016-01-01

    Elements with atomic number greater than Z=26 (the Iron Peak) cannot be formed through fusion in a star's core; the majority of these elements are produced through one of two neutron-capture processes. Early in the history of the Galaxy, the rapid neutron-capture process (r-process) is believed to be responsible for the production of elements Z=56 and beyond. These elements require at least one generation of stars to have completed their life cycle in order to be synthesized. Therefore, if we observe the heavy metal abundances in what are called Population II stars (metal-poor stars), then we can begin to make inferences about the chemistry of the earliest stars in the Galaxy. To contribute to this picture of the early universe, the Lanthanum and Europium abundances of low-metallicity stars will be measured and trends in these abundances based on comparisons to existing related literature will be sought.

  13. THE CLUSTERING AND HALO MASSES OF STAR-FORMING GALAXIES AT z < 1

    SciTech Connect

    Dolley, Tim; Brown, Michael J. I.; Pimbblet, Kevin A.; Palamara, David P.; Beare, Richard; Weiner, Benjamin J.; Jannuzi, Buell T.; Brodwin, Mark; Kochanek, C. S.; Dey, Arjun; Atlee, David W.

    2014-12-20

    We present clustering measurements and halo masses of star-forming galaxies at 0.2 < z < 1.0. After excluding active galactic nuclei (AGNs), we construct a sample of 22,553 24 μm sources selected from 8.42 deg{sup 2} of the Spitzer MIPS AGN and Galaxy Evolution Survey of Boötes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors that are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L {sub TIR} > 10{sup 11} L {sub ☉}) and is composed entirely of LIRGs and ultraluminous infrared galaxies (ULIRGs, L {sub TIR} > 10{sup 12} L {sub ☉}) at z > 0.6. We observe weak clustering of r {sub 0} ≈ 3-6 h {sup –1} Mpc for almost all of our star-forming samples. We find that the clustering and halo mass depend on L {sub TIR} at all redshifts, where galaxies with higher L {sub TIR} (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M {sub halo} ≈ 10{sup 12.9} h {sup –1} M {sub ☉}. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star-forming galaxy samples to their local descendants. Most star-forming galaxies at z < 1.0 are the progenitors of L ≲ 2.5 L {sub *} blue galaxies in the local universe, but star-forming galaxies with the highest SFRs (L {sub TIR} ≳ 10{sup 11.7} L {sub ☉}) at 0.6 < z < 1.0 are the progenitors of early-type galaxies in denser group environments.

  14. Contributions to the Galactic Halo from In-Situ, Kicked-Out, and Accreted Stars

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Johnston, Kathryn V.; Cunha, Katia; Smith, Verne; Majewski, Steven

    2015-08-01

    The chemical and kinematical properties of stars in the Galactic halo provide a means to study the formation history of the Milky Way. Stars formed within a satellite galaxy will bear the imprint of their host dark matter subhalo: star formation is less efficient in less massive protogalactic clumps, so we should observe a specific pattern in [Fe/H] as a function of α-elements and slow/rapid neutron capture elements that reflects this efficiency. Due to their formation in Type II supernovae, α-elements probe the relative timescale of formation for populations of stars. The addition of s- and r-process elements gives a more complete evolutionary picture of the Galaxy. The yields of s- and r-process elements, which are synthesized in Type II supernovae and thermally pulsating AGB stars, respectively, are coupled to the Fe seed nuclei present in the formation site; thus, neutron capture element yields vary with metallicity and provide further constraints on the subhalo’s star formation history.We will report chemical abundances for a sample of 109 M giants in the nearby halo of the Milky Way. The stars were selected for high-resolution spectroscopy based upon their radial velocities: the radial velocities vary significantly from those expected for stars moving on uniform circular orbits in the Galactic disk. Thus, we expect a sample dominated by halo stars. Abundances are derived for α-elements and neutron capture elements. By analyzing the multi-dimensional abundance space, the formation site of the halo giants can be assessed. Of particular interest are a class of stars that form in situ, deep in the Milky Way’s gravitational potential well, but are “kicked out” of the disk into the halo due to a perturbation event. A kicked-out population has recently been identified in Andromeda. N-body simulations predict a range in the percentage of stars belonging to the kicked-out disk population in galaxies. We will present our results within the context of

  15. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  16. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia; Arnaboldi, Magda; Gerhard, Ortwin; Hanuschik, Reinhard

    2015-07-01

    -8NPN L⊙,bol-1, respectively. The M 87 halo PNLF has fewer bright PNs and a steeper slope towards faint magnitudes than the ICPNLF, and both are steeper than the standard PNLF for the M 31 bulge. Moreover, the ICPNLF has a dip at ~1-1.5 mag fainter than the bright cut-off, reminiscent of the PNLFs of systems with extended star formation history, such as M 33 or the Magellanic clouds. Conclusions: The BCG halo of M 87 and the Virgo ICL are dynamically distinct components with different density profiles and velocity distributions. Moreover, the different α-parameter values and PNLF shapes of the halo and ICL indicate distinct parent stellar populations, consistent with the existence of a gradient towards bluer colours at large radii. These results reflect the hierarchical build-up of the Virgo cluster. Based on observations made with the VLT at Paranal Observatory under programs 088.B-0288(A) and 093.B-066(A), and with the SUBARU Telescope under program S10A-039.

  17. Structure of the outer layers of cool standard stars

    NASA Astrophysics Data System (ADS)

    Dehaes, S.; Bauwens, E.; Decin, L.; Eriksson, K.; Raskin, G.; Butler, B.; Dowell, C. D.; Ali, B.; Blommaert, J. A. D. L.

    2011-09-01

    Context. Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims: Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. The goal of this study is to assess wether a set of standard near-infrared calibration sources are fiducial calibrators in the far-infrared, beyond 50 μm. Methods: The observational spectral energy distributions were compared with the theoretical model predictions for a sample of nine K- and M-giants. The discrepancies found are explained using basic models for flux emission originating in a chromosphere or an ionised wind. Results: For seven out of nine sample stars, a clear flux excess is detected at (sub)millimetre and/or centimetre wavelengths, while only observational upper limits are obtained for the other two. The precise start of the excess depends upon the star under consideration. For six sources the flux excess starts beyond 210 μm and they can be considered as fiducial calibrators for Herschel/PACS (60-210 μm). Out of this sample, four sources show no flux excess in the Herschel/SPIRE wavelength range (200-670 μm) and are good calibration sources for this instrument as well. The flux at wavelengths shorter than ~1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionised wind is the main flux contributor at longer wavelengths. Conclusions: Although the optical to mid-infrared spectrum of the studied K- and M-type infrared standard stars is represented well by a radiative equilibrium atmospheric model, a chromosphere and/or ionised stellar wind at higher altitudes dominates the spectrum in the (sub)millimetre and centimetre wavelength ranges

  18. The first Population II stars formed in externally enriched mini-haloes

    NASA Astrophysics Data System (ADS)

    Smith, Britton D.; Wise, John H.; O'Shea, Brian W.; Norman, Michael L.; Khochfar, Sadegh

    2015-09-01

    We present a simulation of the formation of the earliest Population II stars, starting from cosmological initial conditions and ending when metals created in the first supernovae are incorporated into a collapsing gas cloud. This occurs after a supernova blast-wave collides with a nearby mini-halo, inducing further turbulence that efficiently mixes metals into the dense gas in the centre of the halo. The gas that first collapses has been enriched to a metallicity of Z ˜ 2 × 10-5 Z⊙. Due to the extremely low metallicity, collapse proceeds similarly to metal-free gas until dust cooling becomes efficient at high densities, causing the cloud to fragment into a large number of low-mass objects. This external enrichment mechanism provides a plausible origin for the most metal-poor stars observed, such as SMSS J031300.36-670839.3, that appear to have formed out of gas enriched by a single supernova. This mechanism operates on shorter time-scales than the time for low-mass mini-haloes (M ≤ 5 × 105 M⊙) to recover their gas after experiencing a supernova. As such, metal-enriched stars will likely form first via this channel if the conditions are right for it to occur. We identify a number of other externally enriched haloes that may form stars in this manner. These haloes have metallicities as high as 0.01 Z⊙, suggesting that some members of the first generation of metal-enriched stars may be hiding in plain sight in current stellar surveys.

  19. Evidence for a dispersion in the lithium abundances of extreme halo stars

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, M. H.; Duncan, Douglas K.

    1993-01-01

    Evidence is presented to the effect that there exists a small dispersion in the lithium abundances of extreme halo dwarfs. This dispersion cannot be accounted for by standard stellar models alone, particularly toward the turnoff, and would thus require early differential Galactic Li enrichment, perhaps independent of metallicity. The magnitude of the dispersion is also consistent with the predictions of evolutionary models of halo stars with rotation, which do not require, but do not rule out either, early Galactic enrichment. These rotational models also predict a significant depletion in the lithium abundance during the stars' lifetime. The rotational models predict that stars which formed with very low initial angular momentum will have lithium abundances measurably above the plateau.

  20. Highly-Ionized Gas in the Galactic Halo: A FUSE Survey of O 6 Absorption toward 22 Halo Stars

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Sembach, K. R.; Howk, J. C.; Savage, B. D.

    2002-12-01

    Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of 22 Galactic halo stars are studied to determine the amount of O 6 in the Galactic halo between ~0.3 and ~10 kpc from the Galactic mid-plane. Strong O 6 λ 1031.93 absorption was detected toward 21 stars, and a reliable 3 σ upper limit was obtained toward HD 97991. The weaker member of the O 6 doublet at 1037.62 Å could be studied toward only six stars. The observed columns are reasonably consistent with a patchy exponential O 6 distribution with a mid-plane density of 1.7x10-8 cm-3 and scale height between 2.3 and 4 kpc. We do not see clear signs of strong high-velocity components in O 6 absorption along the Galactic sight lines, which indicates the general absence of high velocity O 6 within 2-5 kpc of the Galactic mid-plane. The correlation between the H 1 and O 6 intermediate velocity absorption is also poor. The O 6 velocity dispersions are much larger than the value of ~18 km/s expected from thermal broadening for gas at T ~ 3x105 K, the temperature at which O 6 is expected to reach its peak abundance in collisional ionization equilibrium. Turbulence, inflow, and outflow must have an effect on the shape of the O 6 profiles. Kinematical comparisons of O 6 with Ar 1 reveal that 9 of 21 sight lines are closely aligned in LSR velocity (|Δ VLSR| <=5 km/s ), while 8 of 21 exhibit significant velocity differences (|Δ VLSR| >= 15 km/s ). This dual behavior may indicate the presence of two different types of O 6-bearing environments toward the Galactic sight lines. Comparison of O 6 with other highly-ionized species suggests that the high ions are produced primarily by cooling hot gas in the Galactic fountain flow, and that turbulent mixing also has a significant contribution. The role of turbulent mixing is most important toward sight lines that sample supernova remnants like Loop I and IV. We are also able to show that the O 6 enhancement toward the Galactic center region that was observed in the FUSE

  1. Runaway Stars in the Galactic Halo: Their Origin and Kinematics

    NASA Astrophysics Data System (ADS)

    Duarte de Vasconcelos Silva, Manuel

    2012-03-01

    Star formation in the Milky Way is confined to star-forming regions (OB associ- ation, HII regions, and open clusters) in the Galactic plane. It is usually assumed that these regions are found preferably along spiral arms, as is observed in other spiral galaxies. However, young early-type stars are often found at high Galactic latitudes, far away from their birthplaces in the Galactic disc. These stars are called runaway stars, and it is believed that they were ejected from their birth- places early in their lifetimes by one of two mechanisms: ejection from a binary system following the destruction of the massive companion in a supernova type II event (the binary ejection mechanism), or ejection from a dense cluster following a close gravitational encounter between two close binaries (the dynamical ejection mechanism). The aims of our study were: to improve the current understanding of the nature of high Galactic latitude runaway stars, in particular by investigating whether the theoretical ejection mechanisms could explain the more extreme cases; to show the feasibility of using high Galactic latitude stars as tracers of the spiral arms. The main technique used in this investigation was the tracing of stellar orbits back in time, given their present positions and velocities in 3D space. This technique allowed the determination of the ejection velocities, flight times and birthplaces of a sample of runaway stars. In order to obtain reasonable velocity estimates several recent catalogues of proper motion data were used. We found that the evolutionary ages of the vast majority of runaway stars is consistent with the disc ejection scenario. However, we identified three outliers which would need flight times much larger then their estimated ages in order to reach their present positions in the sky. Moreover, the ejection velocity distribution appears to be bimodal, showing evidence for two populations of runaway stars: a "low" velocity population (89 per cent of the

  2. r-Process Elements in EMP stars: Indicators of Inhomogeneous Early Halo Enrichment

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Nordström, Birgitta; Thidemann Hansen, Terese

    2015-08-01

    Extremely metal-poor (EMP) halo stars with [Fe/H] below ~ -3 are considered to be fossil records of conditions in the early halo. In the simplest picture where iron is a proxy for overall metallicity and indirectly for time, EMP stars formed before the oldest and most metal-poor Galactic globular clusters. High-resolution spectroscopy with 8m-class telescopes has shown the detailed abundance pattern of these stars to be surprisingly uniform (e.g. Bonifacio+ 2012) and essentially Solar, apart from the α-enhancement typical of SN II nucleosynthesis. A small fraction (~3%) of EMP stars, however, is strongly enhanced in the heaviest (r-process) neutron-capture elements, highlighting that the periodic system of elements was fully populated already this early.These striking departures from the general chemical homogeneity could be produced by local or distant sources. The former case is simple - mass transfer from a binary companion that evolved to produce a highly neutron-rich environment (one or more NS). Alternatively, the r-process elements were formed in a site at interstellar distance and preferentially seeded into the natal clouds of the present-day EMP-r stars. Our long-term, precise monitoring of the radial velocities of a sample of such stars (Hansen+ 2011) disproved the binary hypothesis, which would in fact also fail to explain the existence of r-process poor stars, such as HD 122653. We thus conclude that the chemical enrichment of the early halo was far more complex, patchy and likely anisotropic than assumed in current models of Galactic chemical evolution: The EMP-r stars are not just peculiarities to be ignored, but indicate that a new level of complexity must be invoked. That r-process elements have not (yet) been observed in high-redshift DLA systems is readily explained by their low abundance relative to the lighter species and the rarity of strong enrichment events.

  3. The Evolution of Pristine Gas: Implications for Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard J.; Scannapieco, Evan; Pan, Liubin

    2016-06-01

    We implement a new subgrid model for turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). This allows us to account for the fraction of Z < Zcrit stars formed throughout the simulation volume, even in regions in which the average metallicity is well above Zcrit. Further, as a result of modeling the pristine fraction of gas, we also improve our modeling of the metallicity of the polluted fraction, fpol, of both the gas and stars.Additionally, we track the evolution of the “primordial metals” generated by Pop III supernovae. These metals are taken up by second-generation stars and are likely to lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller at al (2014) to explain the source of metals in the star SMSS J031300.36- 670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H] and [Mg/Ca] ratios in CEMP Milky Way (MW) halo stars.

  4. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ∼9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ∼13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  5. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernández-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-08-01

    Aims: We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Methods: Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with log g (cgs units) lower than 2.5. Results: An analysis of stars in the globular cluster M 13 reveals a dependence of the inferred metallicity on surface gravity for stars with log g < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system

  6. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    SciTech Connect

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-08-10

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100 Degree-Sign -117 Degree-Sign , within 30 Degree-Sign of the Galactic plane. For |b| < 15 Degree-Sign , we observe a symmetric RM distribution about the Galactic plane. This is consistent with a disk field in the Perseus arm of even parity across the Galactic mid-plane. In the range 15 Degree-Sign < |b| < 30 Degree-Sign , we find median RMs of -15 {+-} 4 rad m{sup -2} and -62 {+-} 5 rad m{sup -2} in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 {mu}G (7 {mu}G) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  7. Hot subdwarf stars in the Galactic halo Tracers of prominent events in late stellar evolution

    NASA Astrophysics Data System (ADS)

    Geier, Stephan; Kupfer, Thomas; Schaffenroth, Veronika; Heber, Ulrich

    2016-08-01

    Hot subdwarf stars (sdO/Bs) are the stripped cores of red giants located at the bluest extension of the horizontal branch. They constitute the dominant population of UV-bright stars in old stellar environments and are most likely formed by binary interactions. We perform the first systematic, spectroscopic analysis of a sample of those stars in the Galactic halo based on data from SDSS. In the course of this project we discovered 177 close binary candidates. A significant fraction of the sdB binaries turned out to have close substellar companions, which shows that brown dwarfs and planets can significantly influence late stellar evolution. Close hot subdwarf binaries with massive white dwarf companions on the other hand are good candidates for the progenitors of type Ia supernovae. We discovered a hypervelocity star, which not only turned out to be the fastest unbound star known in our Galaxy, but also the surviving companion of such a supernova explosion.

  8. r-Process abundances in metal-poor Galactic halo stars

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Barbuy, B.; Spite, M.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; François, P.; Bonifacio, P.; Cayrel, R.

    The site of the r-process is not completely defined, and several models try to explain the origin of the trans-Fe elements. Observed abundances are the best clues to bring some light to this multiplicity of possible mechanisms, and the extremely metal-poor (EMP) Galactic halo stars have a special role in this problem. In this contribution we present the solution of a long-standing problem about the origin of the heavy elements in the metal-poor halo subgiant star HD 140283, and its correlation with the Truran's theory. Next, we describe the results obtained with the EMP r-II star CS 31082-001 in the frame of the ESO Large Program ``First Stars''. Using STIS/HST observations we provide abundances for elements never presented before in this stars, making CS 31082-001 the most complete r-II object studied, with a total of 37 detections of neutron-capture elements. Finally, we present the results obtained from a sample of seven r-I stars, showing how those objects can help us solving the heavy elements problem. Conclusions are also described.

  9. The Century Survey Galactic Halo Project III: A Complete 4300 DEG2 Survey of Blue Horizontal Branch Stars in the Metal-Weak Thick Disk and Inner Halo

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Beers, Timothy C.; Wilhelm, Ronald; Allende Prieto, Carlos; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.

    2008-02-01

    We present a complete spectroscopic survey of 2414 2MASS-selected blue horizontal branch (BHB) candidates selected over 4300 deg2 of the sky. We identify 655 BHB stars in this non-kinematically selected sample. We calculate the luminosity function of field BHB stars, and find evidence for very few hot BHB stars in the field. The BHB stars located at a distance from the Galactic plane |Z| < 4 kpc trace what is clearly a metal-weak thick disk population, with a mean metallicity of [Fe/H] = -1.7, a rotation velocity gradient of dvrot/d|Z| = -28 ± 3.4 km s-1 in the region |Z| < 6 kpc, and a density scale height of hZ = 1.26 ± 0.1 kpc. The BHB stars located at 5 < |Z| < 9 kpc are a predominantly inner-halo population, with a mean metallicity of [Fe/H] = -2.0 and a mean Galactic rotation of -4 ± 31 km s-1. We infer the density of halo and thick disk BHB stars is 104 ± 37 kpc-3 near the Sun, and the relative normalization of halo to thick-disk BHB stars is 4 ± 1% near the Sun.

  10. OXYGEN ABUNDANCES IN LOW- AND HIGH-{alpha} FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS

    SciTech Connect

    Ramirez, I.; Melendez, J.

    2012-10-01

    Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and {alpha}-element (Mg, Si, Ca, Ti) abundances: thick disk, high-{alpha} halo, and low-{alpha} halo. We find the oxygen abundance trends of thick-disk and high-{alpha} halo stars very similar. The low-{alpha} stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the {alpha} elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% {+-} 2% of the local field metal-poor star population was born in GCs.

  11. Long GRBs as a tool to investigate star formation in dark matter halos

    NASA Astrophysics Data System (ADS)

    Wei, Jun-Jie; Hao, Jing-Meng; Wu, Xue-Feng; Yuan, Ye-Fei

    2016-03-01

    First stars can only form in structures that are suitably dense, which can be parametrized by the minimum dark matter halo mass Mmin. Mmin must play an important role in star formation. The connection of long gamma-ray bursts (LGRBs) with the collapse of massive stars has provided a good opportunity for probing star formation in dark matter halos. We place some constraints on Mmin using the latest Swift LGRB data. We conservatively consider that LGRB rate is proportional to the cosmic star formation rate (CSFR) and an additional evolution parametrized as (1 + z) α, where the CSFR model is a function of Mmin. Using the χ2 statistic, the contour constraints on the Mmin-α plane show that at the 1σ confidence level, we have Mmin <1010.5M⊙ from 118 LGRBs with redshift z < 4 and luminosity Liso > 1.8 ×1051 ergs-1. We also find that adding 12 high-z (4 < z < 5) LGRBs (consisting of 104 LGRBs with z < 5 and Liso > 3.1 ×1051 ergs-1) could result in much tighter constraints on Mmin, for which, 107.7M⊙ star formation in dark matter halos.

  12. IUE observations of blue halo high luminosity stars

    NASA Technical Reports Server (NTRS)

    Hack, M.; Franco, M. L.; Stalio, R.

    1981-01-01

    Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.

  13. EFFECTS OF HOT HALO GAS ON STAR FORMATION AND MASS TRANSFER DURING DISTANT GALAXY–GALAXY ENCOUNTERS

    SciTech Connect

    Hwang, Jeong-Sun; Park, Changbom E-mail: cbp@kias.re.kr

    2015-06-01

    We use N-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 and the closest approach distance of ∼100 kpc. We find that the dynamics of the cold disk gas in the tidal bridge and the amount of the newly formed stars depend strongly on the existence of a gas halo. In the run of interacting galaxies not having a hot gas halo, the gas and stars accreted into the ETG do not include newly formed stars. However, in the run using the ETG with a gas halo and the LTG without a gas halo, a shock forms along the disk gas tidal bridge and induces star formation near the closest approach. The shock front is parallel to a channel along which the cold gas flows toward the center of the ETG. As a result, the ETG can accrete star-forming cold gas and newly born stars at and near its center. When both galaxies have hot gas halos, a shock is formed between the two gas halos somewhat before the closest approach. The shock hinders the growth of the cold gas bridge to the ETG and also ionizes it. Only some of the disk stars transfer through the stellar bridge. We conclude that the hot halo gas can give significant hydrodynamic effects during distant encounters.

  14. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    SciTech Connect

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E.; Tolstoy, Eline; Salaris, Maurizio; Bernard, Edouard J.

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  15. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  16. The Fraction of Globular Cluster Second-generation Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2010-08-01

    Many observational studies have revealed the presence of multiple stellar generations in Galactic globular clusters. These studies suggest that second-generation stars make up a significant fraction of the current mass of globular clusters, with the second-generation mass fraction ranging from ~50% to 80% in individual clusters. In this Letter, we carry out hydrodynamical simulations to explore the dependence of the mass of second-generation stars on the initial mass and structural parameters and stellar initial mass function (IMF) of the parent cluster. We then use the results of these simulations to estimate the fraction f SG,H of the mass of the Galactic stellar halo composed of second-generation stars that originated in globular clusters. We study the dependence of f SG,H on the parameters of the IMF of the Galactic globular cluster system. For a broad range of initial conditions, we find that the fraction of mass of the Galactic stellar halo in second-generation stars is always small, f SG,H < 4%-6% for a Kroupa-1993 IMF and f SG,H < 7%-9% for a Kroupa-2001 IMF.

  17. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  18. The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hernández-Monteagudo, C.; Sunyaev, R. A.

    2008-02-01

    Context: Future observations of CMB anisotropies will be able to probe high multipole regions of the angular power spectrum, corresponding to a resolution of a few arcminutes. Dust emission from merging haloes is one of the foregrounds that will affect such very small scales. Aims: We estimate the contribution to CMB angular fluctuations from objects that are bright in the sub-millimeter band due to intense star formation bursts following merging episodes. Methods: We base our approach on the Lacey-Cole merger model and on the Kennicutt relation which connects the star formation rate in galaxies with their infrared luminosity. We set the free parameters of the model in order to not exceed the SCUBA source counts, the Madau plot of star formation rate in the universe and COBE/FIRAS data on the intensity of the sub-millimeter cosmic background radiation. Results: We show that the angular power spectrum arising from the distribution of such star-forming haloes will be one of the most significant foregrounds in the high frequency channels of future CMB experiments, such as PLANCK, ACT and SPT. The correlation term, due to the clustering of multiple haloes at redshift z ~ 2-6, is dominant in the broad range of angular scales 200 ⪉ l ⪉ 3000. Poisson fluctuations due to bright sub-millimeter sources are more important at higher l, but since they are generated from the bright sources, such contribution could be strongly reduced if bright sources are excised from the sky maps. The contribution of the correlation term to the angular power spectrum depends strongly on the redshift evolution of the escape fraction of UV photons and the resulting temperature of the dust. The measurement of this signal will therefore give important information about the sub-millimeter emission and the escape fraction of UV photons from galaxies, in the early stage of their evolution.

  19. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  20. Lithium abundance in a turnoff halo star on an extreme orbit

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P.

    2015-10-01

    Context. The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8 < [Fe/H] < -2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. Aims: The recently identified very high velocity star, WISE J0725-2351 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. Methods: The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined. Results: The abundance ratios in WISE J0725-2351 are those typical of old turnoff stars. The lithium abundance in this star is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars. Based on observations obtained at the ESO Paranal Observatory, Chile Programmes 093.D-0127, PI: S. Geier and 189.B-0925, PI: S. Trager.Table 2 (line by line abundances of the elements) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74

  1. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  2. Chronography of the Milky Way's Halo System with Field Blue Horizontal-Branch Stars

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Placco, Vinicius M.; Carollo, Daniela; Santucci, Rafael; Rossi, Siliva; Lee, Young Sun; Denissenkov, Pavel; Tumlinson, Jason; Tissera, Patricia; Lentner, Geoffrey

    2016-01-01

    In a pioneering effort, Preston et al. (1991, AJ 375, 121) reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated variation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first "chronographic map" of the halo of the Galaxy.We demonstrate that the mean de-reddened g-r color increases outward in the Galaxy from -0.22 to -0.08 (over a color window spanning [-0.3:0.0]) from regions close to the Galactic center to ~40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyrs, with the oldest stars concentrated in the central ~15 kpc of the Galaxy. Within this centralregion, which we refer to as the Ancient Chronographic Sphere (ACS), the age difference spans a mean color range of about 0.05 mag (~0.8 Gyrs). Interestingly, the ACS extends far enough to include the Solar Neighborhood, suggesting that ancient metal-poor stars should be readily detectable in the vicinity of the Sun. Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  3. Erratum: Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo

    NASA Astrophysics Data System (ADS)

    Capriotti, E. R.; Hawley, S. L.

    1997-07-01

    In § 2 of the recent paper ``Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo'' by E. R. Capriotti and S. L. Hawley (ApJ, 464, 765 [1996]), equation (1) contains a misprint. It should read rt=2r/3 [(Mc)/(AMH(r))]1/3/[1-r/(AMH(r)) (dMH(r))/dr]1/3 , (1)where the difference from the published version is that an A replaces the 3 in the denominator of the last term. The authors regret the error.

  4. Abundances of D, O, and other species towards the Halo Star HD 93521

    NASA Astrophysics Data System (ADS)

    Kruk, J. W.; Oliveira, C.; Sembach, K. R.; Savage, B. D.

    2006-06-01

    FUSE spectra of the halo star HD 93521 have been analyzed to determine column densities of D I, O I, N I, Ar I, Fe II, and H2 in the intermediate velocity cloud (IVC) along the line of sight. Combining these results with those from GHRS and ground-based spectra provides a comprehensive inventory of abundances in the IVC. We find a relatively high value for D/H (17.4 ppm), near solar abundances and low depletions for refractory elements, and a very low molecular fraction.

  5. Constraints of the Origin of the Remarkable Lithium Abundance in the Halo Star BD+23 3912

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.; Deliyannis, Constantine P.; Boesgaard, Ann Merchant

    1996-12-01

    The Li abundance of the halo star BD+23 3912 ([Fe/H]=-1.5) lies a factor of 2 - 3 above the Spite plateau. This remarkable difference could reflect either less-than-average stellar Li depletion from a higher primordial Li abundance (as predicted by the Yale rotational stellar evolutionary models), which may have interesting implications for Big Bang nucleosynthesis, or the extraordinary action of Galactic Li production mechanisms. It is also possible that both processes have acted. We use our high resolution, high S/N Keck HIRES spectrum of BD+23 3912 to determine the s-process element abundances and 6Li/7Li ratio in this star. These values serve as signatures for two possible Li production scenarios: the 7Be transport mechanism in AGB stars, and cosmic ray interactions with the ISM. The unremarkable abundances of Y, Zr, Ba, La, Nd, and Sm that we derive argue against a significant contribution to this star' S excess Li from AGB production mechanisms carrying an s-process signature. Since halo subgiants like BD+23 3912 are expected to be particularly good 6Li preservers, our conservative upper limit of 6Li/7Li≤0.15 (compared to 0.25-0.50 expected from cosmic ray production) argues against cosmic ray + ISM interactions as the source for the excess Li, unless Li depletion from an even higher abundance has occurred with preferential 6Li depletion. Highly speculative RGB production scenarios also seem unlikely given the normal Na and M abundances we find and the normal C and 0 abundances determined by others. The totality of Li data on halo subgiants argues against possible diffusion scenarios, in which all such stars dredge up Li that diffused during the main sequence. While the high Li abundance in BD+23 3912 is consistent with that expected from Yale rotational models having a lower-than-average initial angular momentum, future observations of -process elements (particularly 11B) produced in supernovae should provide additional constraints on any enrichment

  6. OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO

    SciTech Connect

    Ramirez, I.; Lambert, D. L.; Allende Prieto, C.

    2013-02-10

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P {sub 1}), thick-disk (P {sub 2}), and halo (P {sub 3}) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P {sub 2} > 0.5) relative to thin-disk (P {sub 1} > 0.5) stars with [Fe/H] {approx}< -0.2, as well as a 'knee' that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] {approx}> -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with 'intermediate' kinematics (P {sub 1} < 0.7, P {sub 2} < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P {sub 3} > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s{sup -1}; halo stars with V > -200 km s{sup -1} follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with 'ambiguous' kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  7. Estimating Gaia's performance for O stars in the Outer Galactic plane using Herschel data

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Molinari, S.; Prusti, T.; Antoja, T.; Elia, D.; de Bruijne, J.

    2014-07-01

    It is in the less dense Outer Galaxy where Gaia can contribute much to stellar studies of the Galactic Plane. As O stars are by definition young objects, their positions and kinematics can still be related to their formation site and history. O star astrometry will not only be important for studies of high-mass star formation, such as triggered star-formation in shells, but also an interesting complement to the radio maser astrometry of star-forming regions and the structure of spiral arms. With the TLUSTY (Lanz & Hubeny 2013) model atmospheres and the nominal Gaia parallax uncertainty, we estimate the parallax uncertainty for all subtypes of main sequence O stars given a visual extinction. The expected extinction is an important limitation for Gaia's astrometric performance and we estimate the extinction from the column density maps calculated from the Herschel Infrared Galactic Plane survey (Molinari et al. 2010), a thermal cold dust emission survey of unprecedented angular resolution and sensitivity. In the 10∘ strip, taken to represent the first estimate of the average extinction in the Outer Galaxy, we find that most of the visual extinction is less than 10 mag. Only the most dense parts of the clouds have AV > 10 mag. Given these extinctions toward the Outer Galaxy, Gaia will provide accurate (5σ) astrometry for O stars in the Outer Galaxy up to distances of at least 4-6 kpc, which means that Gaia's O star astrometry will be able to transgress the Perseus arm and reach the less-known Outer Arm of the Milky Way (Rygl et al.https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_Rygl%2cK.pdf).

  8. Deep HST/ACS Photometry of an Arc of Young Stars in the Southern Halo of M82

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong

    2016-01-01

    We present deep HST/ACS photometry of an arclike, overdense region of stars in the southern halo of M82, located approximately 5 kpc from its disk. This arc feature was originally identified about a decade ago. The early ground-based studies suggested that it contains young stars with ages and metallicities similar to those that formed in the tidal tails between M81, M82, and NGC3077 during their interactions. The arc is clearly presented in the spatial distribution of stars in our field with significantly higher stellar density than the background M82 halo stars. The location of the tip of the red giant branch (RGB) reveals the arc to have a similar distance to M81 and M82, therefore confirming that it belongs to this interacting system. Combining our data with those from the ACS Nearby Galaxy Survey Treasury (ANGST), we construct a color-magnitude diagram (CMD) for the arc. A sequence of young stars is clearly presented on its CMD. This young main sequence is not seen in other parts of the M82 halo. Single-metallicity isochrones are used to derive the age of the young stars in the arc. We confirm that these stars exhibit ages consistent with young stars found in the HI bridges between M81, M82 and NGC3077. Furthermore, the mean metallicity of the RGB stars is also derived from their metallicity distribution function and found to be similar to that found in the HI bridges.

  9. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. II. TRACING THE INNER M31 HALO WITH BLUE HORIZONTAL BRANCH STARS

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Rosenfield, Philip; Bell, Eric F.; Guhathakurta, Puragra; Seth, Anil C.; Kalirai, Jason S.; Girardi, Leo E-mail: jd@astro.washington.edu E-mail: philrose@astro.washington.edu E-mail: raja@uco.lick.org E-mail: aseth@astro.utah.edu E-mail: lgirardi@pd.astro.it

    2012-11-01

    We attempt to constrain the shape of M31's inner stellar halo by tracing the surface density of blue horizontal branch (BHB) stars at galactocentric distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury survey, supplemented by several archival Hubble Space Telescope observations. We find that the ratio of BHB to red giant stars is relatively constant outside of 10 kpc, suggesting that the BHB is as reliable a tracer of the halo population as the red giant branch. In the inner halo, we do not expect BHB stars to be produced by the high-metallicity bulge and disk, making BHB stars a good candidate to be a reliable tracer of the stellar halo to much smaller galactocentric distances. If we assume a power-law profile r {sup -{alpha}} for the two-dimensional (2D) projected surface density BHB distribution, we obtain a high-quality fit with a 2D power-law index of {alpha} = 2.6{sup +0.3} {sub -0.2} outside of 3 kpc, which flattens to {alpha} < 1.2 inside of 3 kpc. This slope is consistent with previous measurements but is anchored to a radial baseline that extends much farther inward. Finally, assuming azimuthal symmetry and a constant mass-to-light ratio, the best-fitting profile yields a total halo stellar mass of 2.1{sup +1.7} {sub -0.4} Multiplication-Sign 10{sup 9} M {sub Sun }. These properties are comparable with both simulations of stellar halo formation by satellite disruption alone and simulations that include some in situ formation of halo stars.

  10. A Peculiar Faint Satellite in the Remote Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Martin, N. F.; Ferguson, A. M. N.; Dotter, A.; McConnachie, A. W.; Ibata, R. A.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Tanvir, N. R.; Venn, K. A.

    2013-06-01

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age >~ 10 Gyr and [Fe/H] lsim -2.3. Our inferred distance modulus (m - M)0 = 24.57 ± 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149^{+19}_{-8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r_h=26^{+4}_{-3} pc, integrated luminosity MV = -4.8 ± 0.5, and ellipticity \\epsilon =0.30^{+0.08}_{-0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 12515.

  11. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    SciTech Connect

    Mackey, A. D.; Dotter, A.; Huxor, A. P.; Martin, N. F.; Ibata, R. A.; Ferguson, A. M. N.; McConnachie, A. W.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Venn, K. A.; Tanvir, N. R.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.

  12. Gemini spectroscopy of the outer disk star cluster BH176

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  13. The Effects of Episodic Star Formation on the FUV-NUV Colors of Star Forming Regions in Outer Disks

    NASA Astrophysics Data System (ADS)

    Barnes, Kate L.; van Zee, Liese; Dowell, Jayce D.

    2013-09-01

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10-8 to 4 × 10-9 yr-1. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L_{H_{\\alpha }}/L_{FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ~2 × 10-6 M ⊙ yr-1, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical evolution of spiral galaxies.

  14. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Dowell, Jayce D. E-mail: vanzee@astro.indiana.edu

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical

  15. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    SciTech Connect

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. We find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  16. THE DUAL ORIGIN OF STELLAR HALOS

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Brook, Chris B.; Stinson, Greg E-mail: bwillman@haverford.edu

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surrounded by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.

  17. An IUE's eye view of cool-star outer atmospheres

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1981-01-01

    Three topics are discussed which together demonstrate the power of the IUE to probe the occurrences of chromospheres and coronas in the cool half of the HR diagram. These are: (1) the complementary low dispersion and echelle observing modes; (2) Mg II h and k: chromospheric cooling and width luminosity correlation; and (3) empirical correlations among chromospheric, transition region, and coronal emission. The spectra of alpha Centauri (G2 V + K1 V) and Capella (G6 III + F9 III) are compared with that of the Sun and recent low dispersion surveys of cool star emission in the 1150 A to 2000 A short wavelength region are summarized.

  18. Outer Atmospheres of Low Mass Stars — Flare Characteristics.

    NASA Astrophysics Data System (ADS)

    Lalitha, S.; Schmitt, J. H. M. M.

    2013-04-01

    We compare the coronal properties during flares on active low mass stars CN Leonis, AB Doradus A and Proxima Centauri observed with XMM-Newton. From the X-ray data we analyze the temporal evolution of temperature, emission measure and coronal abundance. The nature of these flares are with secondary events following the first flare peak in the light curve, raising the question regarding the involved magnetic structure. We infer from the plasma properties and the geometry of the flaring structure that the flare originates from a compact arcade rather than in a single loop.

  19. Young Star Clusters in the Outer Disks of LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Elmegreen, Bruce G.; Gehret, Elizabeth

    2016-06-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1-8 disk scale lengths and have ages of ≤slant 20 Myr and masses of 20 M{}⊙ to 1 × 105M{}⊙ . The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the H i surface density is ˜1 M{}⊙ pc-2, though both the H i and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the average rates expected at their radii and beyond from the observed gas, using the conventional correlation for gas-rich regions. The localized rates are typically 10% of the expected average rates for the outer disks. Either star formation in dIrrs at surface densities \\lt 1 {M}⊙ pc-2 occurs without forming distinct associations, or the Kennicutt-Schmidt relation over-predicts the rate beyond this point. In the latter case, the stellar disks in the far-outer parts of dIrrs result from scattering of stars from the inner disk.

  20. Major substructure in the M31 outer halo: distances and metallicities along the giant stellar stream

    NASA Astrophysics Data System (ADS)

    Conn, A. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Ferguson, A. M. N.; Irwin, M. J.; Elahi, P. J.; Venn, K. A.; Mackey, A. D.

    2016-05-01

    We present a renewed look at M31's giant stellar stream along with the nearby structures streams C and D, exploiting a new algorithm capable of fitting to the red giant branch (RGB) of a structure in both colour and magnitude space. Using this algorithm, we are able to generate probability distributions in distance, metallicity and RGB width for a series of subfields spanning these structures. Specifically, we confirm a distance gradient of approximately 20 kpc per degree along a 6 deg extension of the giant stellar stream, with the farthest subfields from M31 lying ˜120 kpc more distant than the innermost subfields. Further, we find a metallicity that steadily increases from -0.7^{+0.1}_{-0.1} to -0.2^{+0.2}_{-0.1} dex along the inner half of the stream before steadily dropping to a value of -1.0^{+0.2}_{-0.2} dex at the farthest reaches of our coverage. The RGB width is found to increase rapidly from 0.4^{+0.1}_{-0.1} to 1.1^{+0.2}_{-0.1} dex in the inner portion of the stream before plateauing and decreasing marginally in the outer subfields of the stream. In addition, we estimate stream C to lie at a distance between 794 and 862 kpc and stream D between 758 and 868 kpc. We estimate the median metallicity of stream C to lie in the range -0.7 to -1.6 dex and a metallicity of -1.1^{+0.3}_{-0.2} dex for stream D. RGB widths for the two structures are estimated to lie in the range 0.4-1.2 dex and 0.3-0.7 dex, respectively. In total, measurements are obtained for 19 subfields along the giant stellar stream, four along stream C, five along stream D and three general M31 spheroid fields for comparison. We thus provide a higher resolution coverage of the structures in these parameters than has previously been available in the literature.

  1. Deep CCD Field Surveys: Numbers of Very Low Mass Stars in the Halo and Disk

    NASA Astrophysics Data System (ADS)

    Boeshaar, Patricia C.; Tyson, Tony; Bernstein, Gary

    1994-12-01

    Deep three band (B_J < 27.5, R < 26.4, I < 25 mag) CCD images of 12 high galactic latitude fields covering a total of 144 arcmin(2) on the sky have been obtained as part of a 4-m survey done at CTIO over the past decade. Together with a single 2048(2) CCD field covering 48 sq. arcmin on the sky obtained at KPNO, these data have been analyzed to search for M dwarfs near the halo and disk hydrogen burning limits. Our color data have been carefully calibrated using stars of different luminosities which have spectroscopically determined metallicities, in order to separate out the different population types. We find no evidence for a population of very low mass M dwarfs sufficient to account for an important fraction of the halo dark matter. For the least luminous halo M subdwarfs (M_V ~ 15) our survey is complete out to 3000 pc, covering a volume of approx. 205,000 pc(3) . We detect 6 objects having colors consistent with M subdwarfs of M_V = 13.5 -- 15, though this sample may be contaminated by 1--2 misclassified compact high redshift galaxies of similar color which appear stellar. Our finding is consistent with the halo luminosity function determined in the solar neighborhood by Dahn and Liebert (1994 Proceedings of the ESO workshop: "The Bottom of the Main Sequence and Beyond"). They predict that we should find 5 +/- 3 of the least luminous subdwarfs within our volume. By comparison, the halo luminosity function of Richer and Fahlman (1992, Nature 358, 383) would predict over five times as many low mass M subdwarfs than we find in our surveys. Moreover, with a completeness limit of 500 pc, we find no excess of the least luminous disk M dwarfs (dM8-9, M_V ~ 18 -- 19) beyond that predicted by the luminosity function determined from a large area CCD Transit Instrument Survey (Kirpatrick et al 1994, ApJS 94, 749). Our data similarly suggest that the latest M dwarfs have a scale height much smaller than the 350 pc. value widely used for earlier M dwarfs.

  2. Mass, radius and composition of the outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen

    2008-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.

  3. The Structure of the Outer Atmosphere of Cool Stars

    NASA Astrophysics Data System (ADS)

    Short, Christopher Ian

    1995-01-01

    Models of the K2 III star Arcturus computed with the latest model atmosphere code and line lists, those of scATLAS9, and with the latest values for the stellar parameters predict twice as much flux in the violet and near ultra-violet spectral regions as is observed. The models also predict line profiles in these regions that are much too strong. The addition of an approximately gray continuous absorption opacity in this spectral region that is approximately equal to that which is already included in scATLAS9 and that has the same depth distribution as n_{rm H} eliminates both the flux and the line profile discrepancy. A comparison of the violet spectrum of Arcturus with that of other K2 III standard stars indicates that this additional opacity is a general feature of early K giants. Although we have not identified this hitherto undiscovered source of opacity, we present evidence that it is molecular in origin. The addition of this continuous opacity in the violet spectral region decreases the relative strength of the predicted Ca II K line. We present a chromospheric model of Arcturus based on this line with the additional opacity included. The value of T_{ rm min} in this model is 300 K lower and lies at a column mass density that is almost an order of magnitude smaller than that of the only other chromospheric model of Arcturus in the literature. As a result, proposed chromospheric heating mechanisms and thermally bifurcated models of Arcturus need to be re-considered.

  4. The Effect of Feedback and Reionization on Star Formation in Low-mass Dwarf Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Bryan, G.; Johnston, K. V.; Smith, B. D.; Mac Low, M.; Sharma, S.; Tumlinson, J.

    2013-01-01

    I will present a set of high resolution simulations of a 109 M⊙ dark matter halo in a cosmological setting done with an adaptive-mesh refinement code as a mass analogue to local low-luminosity dwarf spheroidal galaxies. The primary goal of our simulations is to investigate the roles of reionization and supernova feedback in determining the star formation histories of low mass dwarf galaxies. We include a wide range of physical effects, including metal cooling, molecular hydrogen formation and cooling, photoionization and photodissociation from a metagalactic (but not local) background, a simple prescription for self-shielding, star formation, and a simple model for supernova driven energetic feedback. We find that reionization is primarily responsible for expelling most of the gas in our simulations, but that supernova feedback is required to disperse the dense, cold gas in the core of the halo. Moreover, we show that the timing of reionization can produce an order of magnitude difference in the final stellar mass of the system. For our full physics run with reionization at z=9, we find a stellar mass of about 105 M⊙ at z=0, and a mass-to-light ratio within the half-light radius of approximately 130 M⊙/L⊙, consistent with observed low-luminosity dwarfs. However, the resulting median stellar metallicity is 0.06 Z⊙, considerably larger than observed systems. In addition, we find star formation is truncated between redshifts 4 and 7, at odds with the observed late time star formation in isolated dwarf systems but in agreement with Milky Way ultrafaint dwarf spheroidals. We investigate the efficacy of energetic feedback in our simple thermal-energy driven feedback scheme, and suggest that it may still suffer from excessive radiative losses, despite reaching stellar particle masses of about 100 M⊙, and a comoving spatial resolution of 11 pc. This has led us to pursue improvements in our supernova feedback model to include kinetic as well as thermal energy in

  5. An Extremely Fast Halo Hot Subdwarf Star in a Wide Binary System

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Ziegerer, Eva; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-04-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: {T}{{eff}}=30\\600+/- 500 K, {log}g=5.57+/- 0.06 cm s‑2, and He abundance {log}(n{{He}}/n{{H}})=-3.0+/- 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [{{Fe}}/{{H}}]=-1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d=5.5+/- 0.5 {{kpc}}, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

  6. On the Origin of the High Lithium Abundance in the Halo Star BD+23{\\ }3912

    NASA Astrophysics Data System (ADS)

    Deliyannis, C. P.; King, J. R.; Boesgaard, A. M.

    1996-09-01

    The Li abundance of the halo star BD+23{\\ }3912 ([Fe/H]=-1.5) lies a factor of 2-3 above the Spite plateau. This remarkable difference could reflect either less-than-average stellar Li depletion from a higher primordial Li abundance (as predicted by the Yale rotational stellar evolutionary models), which may have interesting implications for Big Bang nucleosynthesis, or the extraordinary action of Galactic Li production mechanisms (or both). We use our high resolution, high S/N Keck HIRES spectrum of BD+23{\\ }3912 to determine the s-process element abundances and (6) Li/(7) Li ratio in this star. These values serve as signatures for two possible Li production scenarios: {\\ }the (7) Be transport mechanism in AGB stars, and cosmic ray interactions with the ISM. The unremarkable abundances of Y, Zr, Ba, La, Nd, and Sm that we derive argue against a significant contribution to this star's excess Li from AGB production mechanisms carrying an s-process signature. Our conservative upper limit of (6) Li/(7) Li{<=}0.15 (compared to 0.25-0.50 expected from cosmic ray production) argues against cosmic ray + ISM interactions as the source for the excess Li, unless Li depletion from an even higher abundance has occurred with preferential (6) Li depletion. Highly speculative RGB production scenarios also seem unlikely given the normal Na and Al abundances we find and the normal C and O abundances determined by others. While the high Li abundance in BD+23{\\ }3912 is consistent with that expected from Yale rotational models having a lower-than-average initial angular momentum, future observations of ν-process elements (particularly (11) B) produced in supernovae should provide additional constraints on any enrichment scenarios seeking to explain the large Li abundance of this interesting star.

  7. Constraints on the Origin of the Remarkable Lithium Abundance of the Halo Star BD+23 3912

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.; Deliyannis, Constantine P.; Boesgaard, Ann M.

    1997-02-01

    The Li abundance of the halo star BD+23 3912 ([Fe/(H)] = -1.5) lies a factor of 2 - 3 above the Spite Plateau. This remarkable difference could reflect either less-than-average stellar Li depletion from a higher primordial Li abundance (as predicted by the Yale rotational stellar evolutionary models) having interesting implications for Big Bang nucleosynthesis, or the extraordinary action of Galactic Li production mechanisms. It is also possible that both mechanisms have acted. We use our high resolution, high S/(N) Keck HIRES spectrum of BD+23 3912 to determine the n-capture abundances and 6Li/(7Li) ratio in this star. These values serve as signatures for two possible Li production scenarios: the 7Be transport mechanism in AGB stars and cosmic ray interactions with the ISM. The unremarkable abundances of Y, Zr, Ba, La, Nd, and Sm that we derive argue against a significant contribution to this star's excess Li from AGB production mechanisms carrying an s-process signature. Our conservative upper limit of 6Li/(7Li)<=0.15, compared to 0.25 - 0.50 expected from cosmic ray production, argues against cosmic ray + ISM interactions as the source for the excess Li, unless Li depletion from an even higher abundance has occurred with preferential 6Li depletion. Highly speculative RGB production scenarios also seem unlikely given the normal Na and Al abundances we find and the normal C and O abundances determined by others. While the high Li abundance in BD+23 3912 is consistent with that expected from Yale rotational models having a lower-than-average initial angular momentum, future observations of ν-process elements (particularly 11B) produced in supernovae should provide additional constraints on any enrichment scenarios seeking to explain the large Li abundance of this interesting star.

  8. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Demarque, P.

    1994-01-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in T(sub eff) which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing T(sub eff) which is not present in the observations. Possible causes for this discrepancy are discussed.

  9. Star formation efficiency in the outer filaments of Centaurus A

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I.

    2015-12-01

    We present a multi-wavelength study of the northern filaments of Centaurus A (at a distance of ˜ 20 kpc from the galaxy center) based on FUV (GALEX), FIR (Herschel) and CO (SEST and ALMA) emission. We also searched for HCN and HCO^+ (ATCA) and observed optical emission lines (VLT/MUSE) in different places of the filament. An upper limit of the dense gas of L'_{HCN}<4.8× 10^3 K.km.s^{-1}.pc^2 at 3σ leads to a dense-to-molecular gas fraction <23% in this region. We compared the CO masses with the SFR estimates and found very long depletion times (11 Gyr on 730 pc scales) and a large scatter in the KS-relation with a standard conversion factor. Applying a metallicity correction to the CO/H_2 conversion factor would lead to even more massive clouds with higher depletion times. Using ALMA archive data, we found 3 unresolved CO(2-1) clumps of size <37× 21 pc and masses around 10^4 M_⊙. The 3 clumps show resolved line profiles (Δ v˜ 10 km.s^{-1}) and are all three dynamically clearly separated by ˜ 10-20 km.s^{-1}. We derived a virial parameter α_{vir}˜ 10-16 which indicates that the clumps are not gravitationally bound and input of energy likely inhibits star formation.

  10. Microscopic vortex velocity in the inner crust and outer core of neutron stars

    NASA Astrophysics Data System (ADS)

    Gügercinoğlu, Erbil; Alpar, M. Ali

    2016-10-01

    Treatment of the vortex motion in the superfluids of the inner crust and the outer core of neutron stars is a key ingredient in modelling a number of pulsar phenomena, including glitches and magnetic field evolution. After recalculating the microscopic vortex velocity in the inner crust, we evaluate the velocity for the vortices in the outer core for the first time. The vortex motion between pinning sites is found to be substantially faster in the inner crust than in the outer core, v_0^crust ˜ 107{ cm s^{-1}} ≫ v_0^core ˜ 1{ cm s^{-1}}. One immediate result is that vortex creep is always in the nonlinear regime in the outer core in contrast to the inner crust, where both nonlinear and linear regimes of vortex creep are possible. Other implications for pulsar glitches and magnetic field evolution are also presented.

  11. On the Contribution of Fluorescence to Lyα Halos around Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Mas-Ribas, Lluís; Dijkstra, Mark

    2016-05-01

    We quantify the contribution of Lyα fluorescence to observed spatially extended Lyα halos around Lyα emitters at redshift z = 3.1. The key physical quantities that describe the fluorescent signal include (i) the distribution of cold gas in the circumgalactic medium (CGM); we explore simple analytic models and fitting functions to recent hydrodynamical simulations; and (ii) local variations in the ionizing background due to ionizing sources that cluster around the central galaxy. We account for clustering by boosting the observationally inferred volumetric production rate of ionizing photons, {ɛ }{{LyC}}, by a factor of 1+{ξ }{{LyC}}(r), in which {ξ }{{LyC}}(r) quantifies the clustering of ionizing sources around the central galaxy. We compute {ξ }{{LyC}}(r) by assigning an “effective” bias parameter to the ionizing sources. This novel approach allows us to quantify our ignorance of the population of ionizing sources in a simple parametrized form. We find a maximum enhancement in the local ionizing background in the range 50–200 at r ˜ 10 physical kpc. For spatially uncorrelated ionizing sources and fluorescing clouds we find that fluorescence can contribute up to ˜ 50%–60% of the observed spatially extended Lyα emission. We briefly discuss how future observations can shed light on the nature of Lyα halos around star-forming galaxies.

  12. On the Contribution of Fluorescence to Lyα Halos around Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Mas-Ribas, Lluís; Dijkstra, Mark

    2016-05-01

    We quantify the contribution of Lyα fluorescence to observed spatially extended Lyα halos around Lyα emitters at redshift z = 3.1. The key physical quantities that describe the fluorescent signal include (i) the distribution of cold gas in the circumgalactic medium (CGM); we explore simple analytic models and fitting functions to recent hydrodynamical simulations; and (ii) local variations in the ionizing background due to ionizing sources that cluster around the central galaxy. We account for clustering by boosting the observationally inferred volumetric production rate of ionizing photons, {ɛ }{{LyC}}, by a factor of 1+{ξ }{{LyC}}(r), in which {ξ }{{LyC}}(r) quantifies the clustering of ionizing sources around the central galaxy. We compute {ξ }{{LyC}}(r) by assigning an “effective” bias parameter to the ionizing sources. This novel approach allows us to quantify our ignorance of the population of ionizing sources in a simple parametrized form. We find a maximum enhancement in the local ionizing background in the range 50-200 at r ˜ 10 physical kpc. For spatially uncorrelated ionizing sources and fluorescing clouds we find that fluorescence can contribute up to ˜ 50%-60% of the observed spatially extended Lyα emission. We briefly discuss how future observations can shed light on the nature of Lyα halos around star-forming galaxies.

  13. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan M.; Becker, Andrew C.; Stuart, J. Scott; Sharma, Sanjib; Palaversa, Lovro; Juric, Mario; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-08-01

    We present a sample of {approx}5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over {approx}8000 deg{sup 2} of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of {approx}4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.

  14. Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star

    NASA Astrophysics Data System (ADS)

    Ganushkina, Natalia; Dandouras, Iannis; Reme, Henri

    The locations of boundaries of outer and inner radiation belts were obtained using the measure-ments of background radiation by Cluster and Double Star CIS instruments. We have analysed the Cluster CIS instrument data during the period between April 2007 and June 2009, when Cluster was deep in the radiation belts coming to Earth as close as L = 2. The boundaries of radiation belts were determined based on the appearance and disappearance of a strong back-ground measured by HIA and CODIF sensors. Depending of the orbit, we were able to detect the outer belt boundaries and the outer boundary of the inner belt. Double Star HIA data were analysed for the period between May and September 2007, when data were still available, and the satellite came very close to the Earth at L = 1. Using these data we determined the inner boundaries of the outer belt and outer and inner boundaries of the inner belt based similarly on the background measured. We have studied the locations of the boundaries and the position of the slot dependent on the activity index such as Dst, and solar wind and IMF parameters. The obtained information on the locations of radiation belt boundaries is very useful for radiation belts studies, both modeling and data analysis.

  15. Probing star formation in the dense environments of z ˜ 1 lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Welikala, N.; Béthermin, M.; Guery, D.; Strandet, M.; Aird, K. A.; Aravena, M.; Ashby, M. L. N.; Bothwell, M.; Beelen, A.; Bleem, L. E.; de Breuck, C.; Brodwin, M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Dole, H.; Doré, O.; Everett, W.; Flores-Cacho, I.; Gonzalez, A. H.; González-Nuevo, J.; Greve, T. R.; Gullberg, B.; Hezaveh, Y. D.; Holder, G. P.; Holzapfel, W. L.; Keisler, R.; Lagache, G.; Ma, J.; Malkan, M.; Marrone, D. P.; Mocanu, L. M.; Montier, L.; Murphy, E. J.; Nesvadba, N. P. H.; Omont, A.; Pointecouteau, E.; Puget, J. L.; Reichardt, C. L.; Rotermund, K. M.; Scott, D.; Serra, P.; Spilker, J. S.; Stalder, B.; Stark, A. A.; Story, K.; Vanderlinde, K.; Vieira, J. D.; Weiß, A.

    2016-01-01

    We probe star formation in the environments of massive (˜1013 M⊙) dark matter haloes at redshifts of z ˜ 1. This star formation is linked to a submillimetre clustering signal which we detect in maps of the Planck High Frequency Instrument that are stacked at the positions of a sample of high redshift (z > 2) strongly lensed dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope (SPT) 2500 deg2 survey. The clustering signal has submillimetre colours which are consistent with the mean redshift of the foreground lensing haloes (z ˜ 1). We report a mean excess of star formation rate (SFR) compared to the field, of (2700 ± 700) M⊙ yr-1 from all galaxies contributing to this clustering signal within a radius of 3.5 arcmin from the SPT DSFGs. The magnitude of the Planck excess is in broad agreement with predictions of a current model of the cosmic infrared background. The model predicts that 80 per cent of the excess emission measured by Planck originates from galaxies lying in the neighbouring haloes of the lensing halo. Using Herschel maps of the same fields, we find a clear excess, relative to the field, of individual sources which contribute to the Planck excess. The mean excess SFR compared to the field is measured to be (370 ± 40) M⊙ yr-1 per resolved, clustered source. Our findings suggest that the environments around these massive z ˜ 1 lensing haloes host intense star formation out to about 2 Mpc. The flux enhancement due to clustering should also be considered when measuring flux densities of galaxies in Planck data.

  16. RR Lyrae to understand the Galactic halo

    NASA Astrophysics Data System (ADS)

    Fiorentino, Giuliana

    2016-08-01

    We present recent results obtained using old variable RR Lyrae stars on the Galactic halo structure and its connection with nearby dwarf galaxies. We compare the period and period-amplitude distributions for a sizeable sample of fundamental mode RR Lyrae stars (RRab) in dwarf spheroidals (~1300 stars) with those in the Galactic halo (~16'000 stars) and globular clusters (~1000 stars). RRab in dwarfs -as observed today- do not appear to follow the pulsation properties shown by those in the Galactic halo, nor they have the same properties as RRab in globulars. Thanks to the OGLE experiment we extended our comparison to massive metal-rich satellites like the dwarf irregular Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf spheroidal. These massive and more metal-rich stellar systems likely have contributed to the Galactic halo formation more than classical dwarf spheroidals. Finally, exploiting the intrinsic nature of RR Lyrae as distance indicators we were able to study the period and period amplitude distributions of RRab within the Halo. It turned out that the inner and the outer Halo do show a difference that may suggest a different formation scenario (in situ vs accreted).

  17. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2010-07-01

    We investigate star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the {Lambda} cold dark matter scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars, made available by the recent large-scale surveys and by the follow-up high-resolution spectroscopy. We demonstrate that (1) the hierarchical structure formation can explain the characteristics of the observed metallicity distribution function including a break around [Fe/H] = -4; (2) a high-mass initial mass function (IMF) of peak mass {approx}10 M{sub sun} with the contribution of binaries, derived from the statistics of carbon-enhanced EMP stars, predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4 {approx_lt} [Fe/H] {approx_lt} -2.5; (3) the stars formed from primordial gas before the first supernova (SN) explosions in their host mini-halos are assigned to the hyper metal-poor (HMP) stars with [Fe/H] {approx} -5; and (4) there is no indication of significant changes in the IMF and the binary contribution at metallicities -4 {approx_gt} [Fe/H] {approx_gt} -2.5, or even larger, as far as the field stars of the Galactic halo are concerned. We further study the effects of surface pollution through the accretion of interstellar matter (ISM) along the chemical and dynamical evolution of the Galaxy for low-mass Population III and EMP survivors. Because of the shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos are taken into account. We also study the feedback effect from the very massive Population III stars. The metal pre-pollution by pair-instability SNe is shown to be

  18. PARALLAXES OF STAR-FORMING REGIONS IN THE OUTER SPIRAL ARM OF THE MILKY WAY

    SciTech Connect

    Hachisuka, K.; Choi, Y. K.; Reid, M. J.; Dame, T. M.; Brunthaler, A.; Menten, K. M.; Sanna, A.

    2015-02-10

    We report parallaxes and proper motions of three water maser sources in high-mass star-forming regions in the Outer Spiral Arm of the Milky Way. The observations were conducted with the Very Long Baseline Array as part of Bar and Spiral Structure Legacy Survey and double the number of such measurements in the literature. The Outer Arm has a pitch angle of 14.°9 ± 2.°7 and a Galactocentric distance of 14.1 ± 0.6 kpc toward the Galactic anticenter. The average motion of these sources toward the Galactic center is 10.7 ± 2.1 km s{sup –1} and we see no sign of a significant fall in the rotation curve out to 15 kpc from the Galactic center. The three-dimensional locations of these star-forming regions are consistent with a Galactic warp of several hundred parsecs from the plane.

  19. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    SciTech Connect

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie; Renzini, Alvio

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  20. SEGUE 3: AN OLD, EXTREMELY LOW LUMINOSITY STAR CLUSTER IN THE MILKY WAY's HALO

    SciTech Connect

    Fadely, Ross; Willman, Beth; Geha, Maria; Munoz, Ricardo R.; Vargas, Luis C.; Walsh, Shane

    2011-09-15

    We investigate the kinematic and photometric properties of the Segue 3 Milky Way companion using Keck/DEIMOS spectroscopy and Magellan/IMACS g- and r-band imaging. Using maximum likelihood methods to analyze the photometry, we study the structure and stellar population of Segue 3. We find that the half-light radius of Segue 3 is 26'' {+-} 5'' (2.1 {+-} 0.4 pc, for a distance of 17 kpc) and the absolute magnitude is a mere M{sub V} = 0.0 {+-} 0.8 mag, making Segue 3 the least luminous old stellar system known. We find Segue 3 to be consistent with a single stellar population, with an age of 12.0{sup +1.5}{sub -0.4} Gyr and an [Fe/H] of -1.7{sup +0.07}{sub -0.27}. Line-of-sight velocities from the spectra are combined with the photometry to determine a sample of 32 stars which are likely associated with Segue 3. The member stars within three half-light radii have a velocity dispersion of 1.2 {+-} 2.6 km s{sup -1}. Photometry of the members indicates that the stellar population has a spread in [Fe/H] of {approx}< 0.3 dex. These facts, together with the small physical size of Segue 3, imply the object is likely an old, faint stellar cluster which contains no significant dark matter. We find tentative evidence for stellar mass loss in Segue 3 through the 11 candidate member stars outside of three half-light radii, as expected from dynamical arguments. Interpretation of the data outside of three half-light radii is complicated by the object's spatial coincidence with a previously known halo substructure, which may enhance contamination of our member sample.

  1. Segue 3: An Old, Extremely Low Luminosity Star Cluster in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Fadely, Ross; Willman, Beth; Geha, Marla; Walsh, Shane; Muñoz, Ricardo R.; Jerjen, Helmut; Vargas, Luis C.; Da Costa, Gary S.

    2011-09-01

    We investigate the kinematic and photometric properties of the Segue 3 Milky Way companion using Keck/DEIMOS spectroscopy and Magellan/IMACS g- and r-band imaging. Using maximum likelihood methods to analyze the photometry, we study the structure and stellar population of Segue 3. We find that the half-light radius of Segue 3 is 26'' ± 5'' (2.1 ± 0.4 pc, for a distance of 17 kpc) and the absolute magnitude is a mere MV = 0.0 ± 0.8 mag, making Segue 3 the least luminous old stellar system known. We find Segue 3 to be consistent with a single stellar population, with an age of 12.0+1.5 - 0.4 Gyr and an [Fe/H] of -1.7+0.07 - 0.27. Line-of-sight velocities from the spectra are combined with the photometry to determine a sample of 32 stars which are likely associated with Segue 3. The member stars within three half-light radii have a velocity dispersion of 1.2 ± 2.6 km s-1. Photometry of the members indicates that the stellar population has a spread in [Fe/H] of <~ 0.3 dex. These facts, together with the small physical size of Segue 3, imply the object is likely an old, faint stellar cluster which contains no significant dark matter. We find tentative evidence for stellar mass loss in Segue 3 through the 11 candidate member stars outside of three half-light radii, as expected from dynamical arguments. Interpretation of the data outside of three half-light radii is complicated by the object's spatial coincidence with a previously known halo substructure, which may enhance contamination of our member sample.

  2. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY

    SciTech Connect

    Balbinot, E.; Santiago, B. X.; Da Costa, L.; Maia, M. A. G.; Rocha-Pinto, H. J.; Majewski, S. R.; Nidever, D.; Thomas, D.; Wechsler, R. H.; Yanny, B.

    2013-04-20

    We report on the discovery of a new Milky Way (MW) companion stellar system located at ({alpha}{sub J2000,}{delta}{sub J2000}) = (22{sup h}10{sup m}43{sup s}.15, 14 Degree-Sign 56 Prime 58 Double-Prime .8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using Canada-France-Hawaii-Telescope/MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9{sup +1.0}{sub -1.6} kpc, with a half-light radius of r{sub h}= 7.24{sup +1.94}{sub -1.29} pc and a concentration parameter of c = log{sub 10}(r{sub t} /r{sub c} ) = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log (age yr{sup -1}) = 10.07{sup +0.05}{sub -0.03} and [Fe/H] = -1.58{sup +0.08}{sub -0.13}. These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 95 {+-} 6 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of M{sub V} = -1.21 {+-} 0.66. The resulting surface brightness is {mu}{sub V} = 25.90 mag arcsec{sup -2}. Its position in the M{sub V} versus r{sub h} diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster-one of the faintest and lowest mass systems yet identified.

  3. Core-Halo Structure of a Chemically Homogeneous Massive Star and Bending of the Zero-Age Main Sequence

    NASA Astrophysics Data System (ADS)

    Ishii, Mie; Ueno, Munetaka; Kato, Mariko

    1999-08-01

    We have recalculated the interior structure of very massive stars of uniform chemical composition with the OPAL opacity. Very massive stars are found to develop a core-halo structure with an extended radiative-envelope. With the core-halo structure, because a more massive star has a more extended envelope, the track of the upper zero-age main-sequence (ZAMS) curves redward in the H-R diagram at > 100 MO (Z=0.02), >70 MO (Z=0.05), and > 15 MO for helium ZAMS (X=0, Z=0.02). Therefore, the effective temperatures of very massive ZAMS stars are rather low: e.g., for a 200 MO star, log T_eff=4.75 (Z=0.004), 4.60 (Z=0.02), 4.46 (Z=0.05), and 4.32 (Z=0.10). The effective temperatures of very luminous stars (> 120 MO ) found in the LMC, the SMC, and the Galaxy are discussed in relation to this metal dependence of a curving upper main-sequence.

  4. The Century Survey Galactic Halo Project. II. Global Properties and the Luminosity Function of Field Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Allende Prieto, Carlos; Beers, Timothy C.; Wilhelm, Ronald

    2005-09-01

    We discuss a 175 deg2 spectroscopic survey for blue horizontal branch (BHB) stars in the Galactic halo. We use the Two Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) to select BHB candidates, and we find that the 2MASS and SDSS color selection is 38% and 50% efficient, respectively, for BHB stars. Our samples include one likely runaway B7 star 6 kpc below the Galactic plane. The global properties of the BHB samples are consistent with membership in the halo population: the median metallicity is [Fe/H]=-1.7, the velocity dispersion is 108 km s-1, and the mean Galactic rotation of the BHB stars 3 kpc<|z|<15 kpc is -4+/-30 km s-1. We discuss the theoretical basis of the Preston, Shectman, and Beers MV-color relation for BHB stars and conclude that the intrinsic shape of the BHB MV-color relation results from the physics of stars on the horizontal branch. We calculate the luminosity function for the field BHB star samples using the maximum likelihood method of Efstathiou and coworkers, which is unbiased by density variations. The field BHB luminosity function exhibits a steep rise at bright luminosities, a peak between 0.8stars and BHB stars in globular clusters share a common distribution of luminosities, with the exception of globular clusters with extended BHBs.

  5. Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Latif, M. A.; Grassi, T.; Schleicher, D. R. G.

    2014-07-01

    While Population III (Pop III) stars are typically thought to be massive, pathways towards lower mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter haloes. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background temperature. In this paper, we investigate the merging of mini-haloes with masses of a few 105 M⊙ and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to ˜60 K triggering fragmentation. Based on Jeans estimates, the expected stellar masses are about 10 M⊙. Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.

  6. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  7. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    SciTech Connect

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  8. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.

    PubMed

    Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R

    2011-11-18

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.

  9. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.

    PubMed

    Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R

    2011-11-18

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution. PMID:22096191

  10. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ~ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ~ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙),more » and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  11. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ∼ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ∼ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < ‑2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  12. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (˜2%-5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (˜40%-80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  13. Mapping the outer bulge with RRab stars from the VVV Survey

    NASA Astrophysics Data System (ADS)

    Gran, F.; Minniti, D.; Saito, R. K.; Zoccali, M.; Gonzalez, O. A.; Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Elorrieta, F.; Eyheramendy, S.; Jordán, A.

    2016-07-01

    Context. The VISTA Variables in the Vía Láctea (VVV) is a near-IR time-domain survey of the Galactic bulge and southern plane. One of the main goals of this survey is to reveal the 3D structure of the Milky Way through their variable stars. In particular, enormous numbers of RR Lyrae stars have been discovered in the inner regions of the bulge (-8° ≲ b ≲ -1°) by optical surveys such as OGLE and MACHO, but leaving an unexplored window of more than ~47 sq deg (-10.0° ≲ ℓ ≲ + 10.7° and - 10.3° ≲ b ≲ -8.0°) observed by the VVV Survey. Aims: Our goal is to characterize the RR Lyrae stars in the outer bulge in terms of their periods, amplitudes, Fourier coefficients, and distances in order to evaluate the 3D structure of the bulge in this area. The distance distribution of RR Lyrae stars will be compared to that of red clump stars, which is known to trace a X-shaped structure, in order to determine whether these two different stellar populations share the same Galactic distribution. Methods: A search for RR Lyrae stars was performed in more than ~47 sq deg at low Galactic latitudes (-10.3° ≲ b ≲ -8.0°). In the procedure the χ2 value and analysis of variance (AoV) statistic methods were used to determine the variability and periodic features of the light curves, respectively. To prevent misclassifications, the analysis was performed only on the fundamental mode RR Lyrae stars (RRab) owing to similarities found in the near-IR light curve shapes of contact eclipsing binaries (W UMa) and first overtone RR Lyrae stars (RRc). On the other hand, the red clump stars of the same analyzed tiles were selected, and cuts in the color-magnitude diagram were applied and the maximum distance restricted to ~20 kpc in order to construct a similar catalog in terms of distances and covered area compared to the RR Lyrae stars. Results: We report the detection of more than 1000 RR Lyrae ab-type stars in the VVV Survey located in the outskirts of the Galactic bulge

  14. A reinterpretation of the Triangulum-Andromeda stellar clouds: a population of halo stars kicked out of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.; Sheffield, Allyson A.; Laporte, Chervin F. P.; Sesar, Branimir

    2015-09-01

    The Triangulum-Andromeda stellar clouds (TriAnd1 and TriAnd2) are a pair of concentric ring- or shell-like overdensities at large R (≈30 kpc) and Z (≈-10 kpc) in the Galactic halo that are thought to have been formed from the accretion and disruption of a satellite galaxy. This paper critically reexamines this formation scenario by comparing the number ratio of RR Lyrae to M giant stars associated with the TriAnd clouds with other structures in the Galaxy. The current data suggest a stellar population for these overdensities (fRR: MG < 0.38 at 95 per cent confidence) quite unlike any of the known satellites of the Milky Way (fRR: MG ≈ 0.5 for the very largest and fRR: MG ≫ 1 for the smaller satellites) and more like the population of stars born in the much deeper potential well inhabited by the Galactic disc (fRR: MG < 0.01). N-body simulations of a Milky Way-like galaxy perturbed by the impact of a dwarf galaxy demonstrate that, in the right circumstances, concentric rings propagating outwards from that Galactic disc can plausibly produce similar overdensities. These results provide dramatic support for the recent proposal by Xu et al. that, rather than stars accreted from other galaxies, the TriAnd clouds could represent stars kicked out from our own disc. If so, these would be the first populations of disc stars to be found in the Galactic halo and a clear signature of the importance of this second formation mechanism for stellar haloes more generally. Moreover, their existence at the very extremities of the disc places strong constraints on the nature of the interaction that formed them.

  15. Constraints on First-Stars Models From Observations of Local Low-Mass Dwarf Galaxies and Galactic Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Yung, Long Yan; Venkatesan, A.

    2014-01-01

    The first metal-free stars in the universe had hard ionizing photon spectra and unique element yields from their supernovae, leaving signatures in the reionization of the intergalactic medium and in the metal enrichment of gas in the early universe. Here, we examine the metal abundances in a variety of systems in the local universe, from very metal-poor Galactic halo stars to ultra-faint dwarf spheroidal galaxies, and compare them with the latest theoretical models of massive stars with and without rotation. We confirm the similar abundance patterns found in the ultra-faint dwarfs and metal-poor halo stars by recent studies, and find new trends of interest in a variety of individual elements spanning metallicity values of [Fe/H] from about -2 to -5. We also compare our results with the abundances found in the very metal-deficient nearby dwarf irregular galaxy Leo P, which was recently discovered in the Arecibo ALFALFA survey. We comment on the similarities and differences between abundance trends in gas-rich dwarf galaxy systems like Leo P versus gas-poor ones like the ultra-faint dwarf spheroidals, and on the possibility of such systems hosting populations of the first stars. This work has been supported by NSF grant AST-1211005 and by Research Corporation through the Cottrell College Science Award.

  16. Isotropic at the Break? 3D Kinematics of Milky Way Halo Stars in the Foreground of M31

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Toloba, Elisa; Gilbert, Karoline M.; Sohn, Sangmo Tony; Dorman, Claire E.

    2016-03-01

    We present the line-of-sight (LOS) velocities for 13 distant main sequence Milky Way halo stars with published proper motions (PMs). The PMs were measured using long baseline (5-7 years) multi-epoch Hubble Space Telescope/Advanced Camera for Surveys photometry, and the LOS velocities were extracted from deep (5-6 hr integrations) Keck II/DEIMOS spectra. We estimate the parameters of the velocity ellipsoid of the stellar halo using a Markov chain Monte Carlo ensembler sampler method. The velocity second moments in the directions of the Galactic (l, b, LOS) coordinate system are {< {v}l2> }1/2={138}-26+43 km s-1, {< {v}b2> }1/2={88}-17+28 {\\text{km s}}-1, and {< {v}{{LOS}}2> }1/2={91}-14+27 {\\text{km s}}-1. We use these ellipsoid parameters to constrain the velocity anisotropy of the stellar halo. Ours is the first measurement of the anisotropy parameter β using 3D kinematics outside of the solar neighborhood. We find β =-{0.3}-0.9+0.4, consistent with isotropy and lower than solar neighborhood β measurements by 2σ (βSN ˜ 0.5-0.7). We identify two stars in our sample that are likely members of the known TriAnd substructure, and excluding these objects from our sample increases our estimate of the anisotropy to β ={0.1}-1.0+0.4, which is still lower than solar neighborhood measurements by 1σ. The potential decrease in β with Galactocentric radius is inconsistent with theoretical predictions, though consistent with recent observational studies, and may indicate the presence of large, shell-type structure (or structures) at r ˜ 25 kpc. The methods described in this paper will be applied to a much larger sample of stars with 3D kinematics observed through the ongoing HALO7D program.

  17. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    Context. Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Aims: Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Methods: We have systematically monitored the radial velocities of a sample of 22 CEMP-s stars for several years with ~monthly, high-resolution, low S/N échelle spectra obtained at the Nordic Optical Telescope (NOT) at La Palma, Spain. From these spectra, radial velocities with an accuracy of ≈100 m s-1 were determined by cross-correlation with optimised templates. Results: Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82 ± 10%, while four stars appear to be single (18 ± 10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for eleven of the binaries and provisional orbits for six long-period systems (P > 3000 days), and orbital circularisation timescales are discussed. Conclusions: The conventional scenario of local mass transfer from a former asymptotic giant branch (AGB) binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their

  18. CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Martell, Sarah L.; Beers, Timothy C.; Freeman, Ken C. E-mail: smartell@aao.gov.au E-mail: kcf@mso.anu.edu.au

    2013-06-01

    We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

  19. Light versus dark in strong-lens galaxies: dark matter haloes that are rounder than their stars

    NASA Astrophysics Data System (ADS)

    Bruderer, Claudio; Read, Justin I.; Coles, Jonathan P.; Leier, Dominik; Falco, Emilio E.; Ferreras, Ignacio; Saha, Prasenjit

    2016-02-01

    We measure the projected density profile, shape and alignment of the stellar and dark matter mass distribution in 11 strong-lens galaxies. We find that the projected dark matter density profile - under the assumption of a Chabrier stellar initial mass function - shows significant variation from galaxy to galaxy. Those with an outermost image beyond ˜10 kpc are very well fit by a projected Navarro-Frenk-White (NFW) profile; those with images within 10 kpc appear to be more concentrated than NFW, as expected if their dark haloes contract due to baryonic cooling. We find that over several half-light radii, the dark matter haloes of these lenses are rounder than their stellar mass distributions. While the haloes are never more elliptical than edm = 0.2, their stars can extend to e* > 0.2. Galaxies with high dark matter ellipticity and weak external shear show strong alignment between light and dark; those with strong shear (γ ≳ 0.1) can be highly misaligned. This is reassuring since isolated misaligned galaxies are expected to be unstable. Our results provide a new constraint on galaxy formation models. For a given cosmology, these must explain the origin of both very round dark matter haloes and misaligned strong-lens systems.

  20. Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Lu, Limin

    1995-01-01

    We present Goddard High Resolution Spectrograph intermediate-resolution measurements of the 1233-1256 A spectral region of HD 156396, a halo star at l = 328.7 deg, b = -14.5 deg in the inner Galaxy with a line-of sight distance of 11.1 kpc and a z-distance of -2.8 kpc. The data have a resolution of 18 km/s Full Width at Half Maximum (FWHM) and a signal-to-noise ratio of approximately 50:1. We detect interstellar lines of Mg II, S II, S II, Ge II, and N V and determine log N/(Mg II) = 15.78 +0.25, -0.27, log N(Si II) greater than 13.70, log N(S II) greater than 15.76, log N(Ge II) = 12.20 +0.09,-0.11, and log N(N v) = 14.06 +/- 0.02. Assuming solar reference abundances, the diffuse clouds containing Mg, S, and Ge along the sight line have average logarithmic depletions D(Mg) = -0.6 +/- 0.3 dex, D(S) greater than -0.2 dex, and D(Ge) = -0.2 +/- 0.2 dex. The Mg and Ge depletions are approximately 2 times smaller than is typical of diffuse clouds in the solar vicinity. Galactic rotational modeling of the N v profiles indicates that the highly ionized gas traced by this ion has a scale height of approximately 1 kpc if gas at large z-distances corotates with the underlying disk gas. Rotational modeling of the Si iv and C iv profiles measured by the IUE satellite yields similar scale height estimates. The scale height results contrast with previous studies of highly ionized gas in the outer Milky Way that reveal a more extended gas distribtion with h approximately equals 3-4 kpc. We detect a high-velocity feature in N v and Si II v(sub LSR) approximately equals + 125 km/s) that is probably created in an interface between warm and hot gas.

  1. Physical properties of star clusters in the outer LMC as observed by the DES

    NASA Astrophysics Data System (ADS)

    Pieres, A.; Santiago, B.; Balbinot, E.; Luque, E.; Queiroz, A.; da Costa, L. N.; Maia, M. A. G.; Drlica-Wagner, A.; Roodman, A.; Abbott, T. M. C.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-09-01

    The Large Magellanic Cloud (LMC) harbours a rich and diverse system of star clusters, whose ages, chemical abundances and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey (DES) to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalogue. We quantify the crowding effect for the stellar sample produced by the DES Data Management pipeline and conclude that the stellar completeness is <10 per cent inside typical LMC cluster cores. We therefore reanalysed the DES co-add images around each candidate cluster and remeasured positions and magnitudes for their stars. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal rich than [Fe/H] ≃ -0.7 beyond 8 kpc from the LMC centre. The age distribution has two peaks at ≃1.2 and ≃2.7 Gyr.

  2. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material.

  3. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material. PMID:21868626

  4. The role of primary 16O as a neutron poison in AGB stars and fluorine primary production at halo metallicities.

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Bisterzo, S.; Cristallo, S.; Straniero, O.

    The discovery of a historical bug in the s-post-process AGB code obtained so far by the Torino group forced us to reconsider the role of primary 16O in the 13C-pocket, produced by the 13C(alpha , n)16O reaction, as important neutron poison for the build up of the s-elements at Halo metallicities. The effect is noticeable only for the highest 13C-pocket efficiencies (cases ST*2 and ST). For Galactic disc metallicities, the bug effect is negligible. A comparative analysis of the neutron poison effect of other primary isotopes (12C, 22Ne and its progenies) is presented. The effect of proton captures, by 14N(n, p)14C, boosts a primary production of fluorine in halo AGB stars, with [F/Fe] comparable to [C/Fe], without affecting the s-elements production.

  5. The star formation history and dust content in the far outer disc of M31

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Ferguson, Annette M. N.; Barker, Michael K.; Hidalgo, Sebastian L.; Ibata, Rodrigo A.; Irwin, Michael J.; Lewis, Geraint F.; McConnachie, Alan W.; Monelli, Matteo; Chapman, Scott C.

    2012-03-01

    We present a detailed analysis of two fields located 26 kpc (˜5 radial scalelengths) from the centre of M31 along the south-west semimajor axis of the disc. One field samples the major axis populations - the Outer Disc field - while the other is offset by ˜18 arcmin and samples the warp in the stellar disc - the warp field. The colour-magnitude diagrams (CMDs) based on Hubble Space Telescope Advanced Camera for Surveys imaging reach old main-sequence turn-offs (˜12.5 Gyr). We apply the CMD-fitting technique to the warp field to reconstruct the star formation history (SFH). We find that after undergoing roughly constant star formation until about 4.5 Gyr ago, there was a rapid decline in activity and then a ˜1.5 Gyr lull, followed by a strong burst lasting 1.5 Gyr and responsible for 25 per cent of the total stellar mass in this field. This burst appears to be accompanied by a decline in global metallicity which could be a signature of the inflow of metal-poor gas. The onset of the burst (˜3 Gyr ago) corresponds to the last close passage of M31 and M33 as predicted by detailed N-body modelling, and may have been triggered by this event. We reprocess the deep M33 outer disc field data of Barker et al. in order to compare consistently derived SFHs. This reveals a similar duration burst that is exactly coeval with that seen in the M31 warp field, lending further support to the interaction hypothesis. We reliably trace star formation as far back as 12-13 Gyr ago in the outer disc of M31, while the onset of star formation occurred about 2 Gyr later in M33, with median stellar ages of 7.5 and 4.5 Gyr, respectively. The complex SFHs derived, as well as the smoothly varying age-metallicity relations, suggest that the stellar populations observed in the far outer discs of both galaxies have largely formed in situ rather than migrated from smaller galactocentric radii. The strong differential reddening affecting the CMD of the Outer Disc field prevents derivation of the

  6. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  7. The SEGUE K Giant Survey. III. Quantifying Galactic Halo Substructure

    NASA Astrophysics Data System (ADS)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Rockosi, Constance; Starkenburg, Else; Xue, Xiang Xiang; Rix, Hans-Walter; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (˜33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  8. Physical properties of star clusters in the outer LMC as observed by the Dark Energy Survey

    DOE PAGES

    Pieres, A.; et al.

    2016-05-26

    The Large Magellanic Cloud (LMC) harbors a rich and diverse system of star clusters, whose ages, chemical abundances, and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalog. We quantify the crowding effect for the stellar sample producedmore » by the DES Data Management pipeline and conclude that the stellar completeness is < 10% inside typical LMC cluster cores. We therefore develop a pipeline to sample and measure stellar magnitudes and positions around the cluster candidates using DAOPHOT. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal-rich than [Fe/H] ~ -0.7 beyond 8 kpc from the LMC center. The age distribution has two peaks at ~ 1.2 Gyr and ~ 2.7 Gyr.« less

  9. Physical properties of star clusters in the outer LMC as observed by the DES

    DOE PAGES

    Pieres, A.; Santiago, B.; Balbinot, E.; Luque, E.; Queiroz, A.; da Costa, L. N.; Maia, M. A. G.; Drlica-Wagner, A.; Roodman, A.; Abbott, T. M. C.; et al

    2016-05-26

    The Large Magellanic Cloud (LMC) harbors a rich and diverse system of star clusters, whose ages, chemical abundances, and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalog. We quantify the crowding effect for the stellar sample producedmore » by the DES Data Management pipeline and conclude that the stellar completeness is < 10% inside typical LMC cluster cores. We therefore develop a pipeline to sample and measure stellar magnitudes and positions around the cluster candidates using DAOPHOT. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal-rich than [Fe/H] ~ -0.7 beyond 8 kpc from the LMC center. Furthermore, the age distribution has two peaks at ≃ 1.2 Gyr and ≃ 2.7 Gyr.« less

  10. Linking Galaxies to Dark Matter Halos at z ~ 1 : Dependence of Galaxy Clustering on Stellar Mass and Specific Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Im, Myungshin; Lee, Seong-Kook; Edge, Alastair C.; Wake, David A.; Merson, Alexander I.; Jeon, Yiseul

    2015-06-01

    We study the dependence of angular two-point correlation functions on stellar mass (M*) and specific star formation rate (sSFR) of {M}*\\gt {10}10{M}ȯ galaxies at z∼ 1. The data from the UK Infrared Telescope Infrared Deep Sky Survey Deep eXtragalactic Survey and Canada–France–Hawaii Telescope Legacy Survey cover 8.2 deg2 sample scales larger than 100 {h}-1 {Mpc} at z∼ 1, allowing us to investigate the correlation between clustering, M*, and star formation through halo modeling. Based on halo occupation distributions (HODs) of M* threshold samples, we derive HODs for M* binned galaxies, and then calculate the {M}*/{M}{halo} ratio. The ratio for central galaxies shows a peak at {M}{halo}∼ {10}12{h}-1{M}ȯ , and satellites predominantly contribute to the total stellar mass in cluster environments with {M}*/{M}{halo} values of 0.01–0.02. Using star-forming galaxies split by sSFR, we find that main sequence galaxies ({log} {sSFR}/{{yr}}-1∼ -9) are mainly central galaxies in ∼ {10}12.5{h}-1{M}ȯ halos with the lowest clustering amplitude, while lower sSFR galaxies consist of a mixture of both central and satellite galaxies where those with the lowest M* are predominantly satellites influenced by their environment. Considering the lowest {M}{halo} samples in each M* bin, massive central galaxies reside in more massive halos with lower sSFRs than low mass ones, indicating star-forming central galaxies evolve from a low M*–high sSFR to a high M*–low sSFR regime. We also find that the most rapidly star-forming galaxies ({log} {sSFR}/{{yr}}-1\\gt -8.5) are in more massive halos than main sequence ones, possibly implying galaxy mergers in dense environments are driving the active star formation. These results support the conclusion that the majority of star-forming galaxies follow secular evolution through the sustained but decreasing formation of stars.

  11. Dual Stellar Halos in Early-type Galaxies and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. It is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. We present photometry and metallicity of the resolved stars in the inner and outer regions of M105. These provide strong evidence that there are two distinct stellar halos in this galaxy, a metal-poor (blue) halo and a metal-rich (red) halo. Then we compare them with those in other early-type galaxies and use the dual halo mode formation scenario to describe how massive galaxies formed.

  12. Probing the outer limits of a galactic halo - deep imaging of exceptionally remote globular clusters in M31

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2011-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the formation and growth of galaxies. As part of the ongoing Pan-Andromeda Archaeological Survey {PAndAS} we have discovered a group of exceptionally remote GCs in the M31 halo, spanning a range in projected galactocentric distance of 85-145 kpc. Here we apply for deep ACS imaging of 13 such targets, which will allow us to study their constituent stellar populations, line-of-sight distances, and structural parameters. Our measurements will facilitate the use of these GCs as a unique set of probes of the exceptionally remote halo of a large disk galaxy, opening up a completely new area of parameter space to observational constraint. Comparing the properties of our targets with more centrally-located objects will provide a much clearer picture of the M31 GC population than is presently available, while comparison with the outermost Milky Way GCs will further elucidate well-known disparities between the two systems and offer vital clues to differences in their assembly. In addition, our measurements will substantially augment a broad swathe of science that is presently underway - including probing the dark mass distribution in M31 at very large radii, and investigating the detailed chemical composition of M31 GCs via high-resolution integrated-light spectroscopy.

  13. DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES

    SciTech Connect

    Amorisco, N. C.; Zavala, J.; De Boer, T. J. L.

    2014-02-20

    We combine the detailed star formation histories of the Fornax and Sculptor dwarf spheroidals with the mass assembly history of their dark matter (DM) halo progenitors to estimate if the energy deposited by Type II supernovae (SNe II) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNe II into DM particles is ε{sub gc} = 0.05, we find that a single early episode, z ≳ z {sub infall}, that combines the energy of all SNe II due to explode over 0.5 Gyr is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in cold dark matter (CDM) halos via early episodic gas outflows triggered by SNe II. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size halos.

  14. The r- and s-process contributions to heavy-element abundances in the halo star HD 29907

    NASA Astrophysics Data System (ADS)

    Sitnova, T. M.; Mashonkina, L. I.

    2011-07-01

    The abundances of 22 heavy elements from Sr to Pb have been determined for the halo star HD 29907 ( T eff = 5500 K, log g = 4.64) with [Fe/H] = -1.55 using high-quality VLT/UVES spectra (ESO, Chile). The star has a moderate enhancement of r-process elements (Eu-Tm) with [ r/Fe] = 0.63. In the range from Ba to Yb, the derived abundance pattern agrees well with those for strongly r-process enhanced stars (r-II stars with [Eu/Fe] > 1 and [Ba/Eu] < 0), such as CS 22892-052 and CS 31082-001, as well as with the scaled solar r-process curve and the r-process model HEW. Thus, Ba-Yb in HD 29907 originate in the r-process. Just as other moderately r-process enhanced stars studied in the literature, HD 29907 exhibits higher Sr, Y, and Zr abundances than those for r-II stars. These results confirm the assumption by other authors about the existence of an additional Sr-Zr synthesis mechanism in the early Galaxy before the onset of nucleosynthesis in asymptotic giant branch (AGB) stars. The same mechanism can be responsible for the enhancement of Mo-Ag in the star being investigated compared to r-II stars. There are no grounds to suggest the presence of s-nuclei of lead in the material of the star being investigated, because its measured abundance ratio log ɛ(Pb/Eu) = 1.20 lies within the range for the comparison stars: from log ɛ(Pb/Eu) = 0.17 (CS 31082-001) to < 1.55 (HE 1219-0312). Thus, even if there was a contribution of AGB stars to the heavy-element enrichment of the interstellar medium at the epoch with [Fe/H] = -1.55, it was small, at the level of the abundance error.

  15. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-enhanced metal-poor stars: CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-02-01

    Context. The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon; these are the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Aims: Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Methods: High-resolution, low S/N spectra of the stars were obtained at roughly monthly intervals over a time span of up to eight years with the FIES spectrograph at the Nordic Optical Telescope. Radial velocities of ~100 m s-1 precision were determined by cross-correlation after each observing night, allowing immediate, systematic follow-up of any variable object. Results: Most programme stars exhibit no statistically significant radial-velocity variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2000 days and normal eccentricity; the binary frequency for the sample is 17 ± 9%. The single stars mostly belong to the recently identified low-C band, while the binaries have higher absolute carbon abundances. Conclusions: We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic interstellar

  16. Ultraviolet photometry with the Astronomical Netherlands Satellite /ANS/ - Faint blue stars in the halo

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Wesselius, P. R.

    1980-01-01

    Blue stars at high galactic latitudes have been observed with the UV telescope on board ANS. In this paper a subset of the collected data pertaining to the cooler stars is discussed. Most of them have energy distributions in general agreement with the visual spectral type. One star is exceptionally blue, and of seven possible horizontal-branch stars, two have UV energy distributions distinct from main-sequence stars in the sense that they have an excess at 1550 A and a large Balmer jump.

  17. Global Properties of M31's Stellar Halo from the SPLASH Survey. II. Metallicity Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Beaton, Rachael L.; Geha, Marla C.; Kirby, Evan N.; Majewski, Steven R.; Patterson, Richard J.; Tollerud, Erik J.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ~100 kpc, with a magnitude of ~ - 0.01 dex kpc-1. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. Global properties of M31's stellar halo from the splash survey. II. Metallicity profile

    SciTech Connect

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Geha, Marla C.; Tollerud, Erik J.; Kirby, Evan N.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.

  19. SEGUE-2 LIMITS ON METAL-RICH OLD-POPULATION HYPERVELOCITY STARS IN THE GALACTIC HALO

    SciTech Connect

    Kollmeier, Juna A.; Gould, Andrew; Johnson, Jennifer A.; Rockosi, Constance; Beers, Timothy C.; Lee, Young Sun; Knapp, Gillian; Morrison, Heather; Harding, Paul; Weaver, Benjamin A.

    2010-11-01

    We present new limits on the ejection of metal-rich old-population hypervelocity stars (HVSs) from the Galactic center (GC) as probed by the SEGUE-2 survey. Our limits are a factor of 3-10 more stringent than previously reported, depending on stellar type. Compared to the known population of B-star ejectees, there can be no more than 30 times more metal-rich old-population F/G stars ejected from the GC. Because B stars comprise a tiny fraction of a normal stellar population, this places significant limits on the combination of the GC mass function and the ejection mechanism for HVSs. In the presence of a normal GC mass function, our results require an ejection mechanism that is about 5.5 times more efficient at ejecting B stars compared to low-mass F/G stars.

  20. THE CASE FOR THE DUAL HALO OF THE MILKY WAY

    SciTech Connect

    Beers, Timothy C.; Lee, Young Sun; Carollo, Daniela; Norris, John E.; Freeman, Ken C. E-mail: lee@pa.msu.edu E-mail: jen@mso.anu.edu.au; and others

    2012-02-10

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs to within 6%-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 {<=}log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  1. SMC west halo: a slice of the galaxy that is being tidally stripped?. Star clusters trace age and metallicity gradients

    NASA Astrophysics Data System (ADS)

    Dias, B.; Kerber, L.; Barbuy, B.; Bica, E.; Ortolani, S.

    2016-06-01

    Context. The evolution and structure of the Magellanic Clouds is currently under debate. The classical scenario in which both the Large and Small Magellanic Clouds (LMC, SMC) are orbiting the Milky Way has been challenged by an alternative in which the LMC and SMC are in their first close passage to our Galaxy. The clouds are close enough to us to allow spatially resolved observation of their stars, and detailed studies of stellar populations in the galaxies are expected to be able to constrain the proposed scenarios. In particular, the west halo (WH) of the SMC was recently characterized with radial trends in age and metallicity that indicate tidal disruption. Aims: We intend to increase the sample of star clusters in the west halo of the SMC with homogeneous age, metallicity, and distance derivations to allow a better determination of age and metallicity gradients in this region. Positions are compared with the orbital plane of the SMC from models. Methods: Comparisons of observed and synthetic V(B-V) colour-magnitude diagrams were used to derive age, metallicity, distance, and reddening for star clusters in the SMC west halo. Observations were carried out using the 4.1 m SOAR telescope. Photometric completeness was determined through artificial star tests, and the members were selected by statistical comparison with a control field. Results: We derived an age of 1.23 ± 0.07 Gyr and [Fe/H] = -0.87 ± 0.07 for the reference cluster NGC 152, compatible with literature parameters. Age and metallicity gradients are confirmed in the WH: 2.6 ± 0.6 Gyr/° and -0.19 ± 0.09 dex/°, respectively. The age-metallicity relation for the WH has a low dispersion in metallicity and is compatible with a burst model of chemical enrichment. All WH clusters seem to follow the same stellar distribution predicted by dynamical models, with the exception of AM-3, which should belong to the counter-bridge. Brück 6 is the youngest cluster in our sample. It is only 130 ± 40 Myr old and

  2. WFPC2 Imaging of Dust Structures and Star Formation in the Disk-Halo Interface of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Savage, Blair

    1999-07-01

    WFPC2 images of five edge-on spirals to study star formation and dusty interstellar clouds in the disk-halo interface of these galaxies. Ground-based and HST images of the nearby {9 Mpc} edge-on spiral NGC 891 show an unexpected web of hundreds of dust structures at heights 0.4 <= z <= 1.7 kpc {Howk & Savage 1997}. With masses >10^5-10^6 M{sun}, the more prominent extraplanar dust complexes may be sites of star formation at high-z, and there is evidence for H II regions associated with unresolved continuum sources far above the plane of NGC 891. We have established that such high-z dust features and H II regions are not unique to NGC 891. We propose to image five edge-on spiral galaxies {D 17 - 70 Mpc} with the WFPC2. The proposed BVI images will be used to identify sites of on- going star formation in the thick disks of these galaxies, all of which show evidence for high-z dust complexes, and with ground-based H Alpha images will be used to study the stellar content o f any such regions. The resolution and point-source sensitivity of the WFPC2 are crucial for studying these star-forming regions. We will also use these images to study interstellar matter in the thick disks of these galaxies with unprecedented detail and derive the fundamental properties of high-z dusty clouds-including sizes, extinctions, column densities, masses, and gravitational potential energies.

  3. Deep SDSS optical spectroscopy of distant halo stars. III. Chemical analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Beers, T. C.; Lee, Y. S.; Masseron, T.; Schneider, D. P.

    2016-09-01

    Aims: We present the results of an analysis of 107 extremely metal-poor (EMP) stars with metallicities lower than [Fe/H] =- 3.0, identified in medium-resolution spectra in the Sloan Digital Sky Survey (SDSS). Our analysis provides estimates of the stellar effective temperatures and surface gravities, as well as iron, calcium, and magnesium abundances. Methods: We followed the same method as in previous papers of this series. The method is based on comparisons of the observed spectra with synthetic spectra. The abundances of Fe, Ca, and Mg were determined by fitting spectral regions that are dominated by lines of each element. In addition, we present a technique to determine upper limits for elements whose features are not detected in a given spectrum. We also analyzed our sample with the SEGUE stellar parameter pipeline to obtain additional determinations of the atmospheric parameters and iron and alpha-element abundances, which we thend compare with ours. In addition, we used these parameters to infer [C/Fe] ratios. Results: Ca is typically the only element in these spectra with a moderate to low signal-to-noise ratio and medium resolution in this metallicity regime with lines that are sufficiently strong to reliably measure its abundance. Fe and Mg exhibit weaker features that in most cases only provide upper limits. We measured [Ca/Fe] and [Mg/Fe] for EMP stars in the SDSS spectra and conclude that most of the stars exhibit the typical enhancement level for α-elements, ~+0.4, although some stars for which only [Fe/H] upper limits could be estimated indicate higher [α/Fe] ratios. We also find that 26% of the stars in our sample can be classified as carbon-enhanced metal-poor (CEMP) stars and that the frequency of CEMP stars also increases with decreasing metallicity, as has been reported for previous samples. We identify a rare, bright (g = 11.90) EMP star, SDSS J134144.61+474128.6, with [Fe/H] =- 3.27, [C/Fe] = + 0.95, and elevated magnesium ([Mg/Fe] =+ 0

  4. Characterizing stellar halo populations - I. An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-08-01

    We fit an extended distribution function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex kpc-1, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex kpc-1, and a higher degree of radial anisotropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  5. GLOBULAR CLUSTERS IN THE OUTER GALACTIC HALO: NEW HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS IMAGING OF SIX GLOBULAR CLUSTERS AND THE GALACTIC GLOBULAR CLUSTER AGE-METALLICITY RELATION

    SciTech Connect

    Dotter, Aaron; Anderson, Jay; Sarajedini, Ata

    2011-09-01

    Color-magnitude diagrams (CMDs) derived from Hubble Space Telescope (HST) Advanced Camera for Surveys F606W, F814W photometry of six globular clusters (GCs) are presented. The six GCs form two loose groupings in Galactocentric distance (R{sub GC}): IC 4499, NGC 6426, and Ruprecht 106 at {approx}15-20 kpc and NGC 7006, Palomar 15, and Pyxis at {approx}40 kpc. The CMDs allow the ages to be estimated from the main-sequence turnoff in every case. In addition, the age of Palomar 5 (R{sub GC} {approx} 18 kpc) is estimated using archival HST Wide Field Planetary Camera 2 V, I photometry. The age analysis reveals the following: IC 4499, Ruprecht 106, and Pyxis are 1-2 Gyr younger than inner halo GCs with similar metallicities; NGC 7006 and Palomar 5 are marginally younger than their inner halo counterparts; NGC 6426 and Palomar 15, the two most metal-poor GCs in the sample, are coeval with all the other metal-poor GCs within the uncertainties. Combined with our previous efforts, the current sample provides strong evidence that the Galactic GC age-metallicity relation consists of two distinct branches. One suggests a rapid chemical enrichment in the inner Galaxy while the other suggests prolonged GC formation in the outer halo. The latter is consistent with the outer halo GCs forming in dwarf galaxies and later being accreted by the Milky Way.

  6. The rotation of the halo of NGC 6822 from the radial velocities of carbon stars

    NASA Astrophysics Data System (ADS)

    Thompson, Graham P.; Ryan, Sean G.; Sibbons, Lisette F.

    2016-11-01

    Using spectra taken with the AAOmega spectrograph, we measure the radial velocities of over 100 stars, many of which are intermediate age carbon stars, in the direction of the dwarf irregular galaxy NGC 6822. Kinematic analysis suggests that the carbon stars in the sample are associated with NGC 6822, and estimates of its radial velocity and galactic rotation are made from a star-by-star analysis of its carbon star population. We calculate a heliocentric radial velocity for NGC 6822 of -51 ± 3 km s-1 and show that the population rotates with a mean rotation speed of 11.2 ± 2.1 km s-1 at a mean distance of 1.1 kpc from the galactic centre, about a rotation axis with a position angle of 26° ± 13°, as projected on the sky. This is close to the rotation axis of the H I gas disc and suggests that NGC 6822 is not a polar ring galaxy, but is dynamically closer to a late-type galaxy. However, the rotation axis is not aligned with the minor axis of the AGB isodensity profiles and this remains a mystery.

  7. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.

    PubMed

    Dauphas, Nicolas

    2005-06-30

    Some heavy elements (with atomic number A > 69) are produced by the 'rapid' (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from approximately 0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way, to determine the U/Th production ratio very precisely (0.57(+0.037)(-0.031). This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations, to help determine the source of Galactic cosmic rays, and to date circumstellar grains. I also estimate the age of the Milky Way (14.5(+2.8)(-2.2)Gyr in a way that is independent of the uncertainties associated with fluctuations in the microwave background or models of stellar evolution.

  8. Variations of the orbital periods in semi-detached binary stars with radiative outer layers

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    1999-01-01

    A detailed analysis of the period changes of sixteen semi-detached binaries which contain only stars with radiative outer layers (ET-systems) has been performed and their respective O-C diagrams are brought and discussed. It was found that the course of the period variations is monotonic and in some systems the period is even constant. This detailed analysis of extensive sets of timings covering several decades brings a strong support to an earlier finding of te[Hall (1989)]{hal89} and develops it further. We show that all systems with the orbital periods shorter than nine days display constant period or its increase, with the exception of an uncertain case of V 337 Aql. The course of the period variations in TT Aur appears more complex but the cyclic term can be plausibly explained by the third body. A search for general relations between the parameters of the systems and the period changes was undertaken. The mass ratio q appears to play a role in the period variations. Clear changes in systems with orbital periods shorter than 9 days were detected only for q>0.4 while constant periods are common in systems with q<0.4 in this period range. The sense of the secular changes in most systems is in accordance with the dominant conservative mass transfer in evolved binary and corresponds to the slow phase. The role of the evolutionary scenarios (case A versus B) and the influence of changes of the rotational angular momenta of the components are discussed.

  9. The Evolving Mixture of Barium Isotopes in Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Choudhury, Zareen; Kirby, E. N.; Guhathakurta, P.

    2014-01-01

    Heavy metals in stars form through one of two types of neutron capture processes: the rapid r-process or slower s-process. The fraction of odd and even barium isotopes in stars can indicate which process predominantly contributed to a star’s heavy metals, since odd barium isotopes predominantly form through the r-process and even barium isotopes through the s-process. The “stellar model” predicts that older stars contain comparable amounts of odd and even barium isotopes, while the “classical model” states that they almost exclusively contain odd isotopes. This study investigated these competing models by analyzing high-resolution spectra of twelve Milky Way stars. These spectra were analyzed for the first time in this study. To quantify r- and s-process enrichment, we measured the odd barium isotope fraction in the stars by fitting models to the stars’ spectra. Generating models involved measuring the stars’ Doppler shift, resolution, and barium abundance. To reduce error margins we optimized resolution and barium abundance measurements by enhancing existing techniques through several rounds of revisions. Our results support the stellar model of heavy metal enrichment, and our proposed optimizations will enable future researchers to obtain a deeper understanding of chemical enrichment in the Universe. This research was supported by the Science Internship Program at the University of California Santa Cruz, Lick Observatory, and the National Science Foundation.

  10. A STATISTICAL ANALYSIS OF THE LATE-TYPE STELLAR CONTENT IN THE ANDROMEDA HALO

    SciTech Connect

    Koch, Andreas; Rich, R. Michael E-mail: rmr@astro.ucla.ed

    2010-06-15

    We present a statistical characterization of the carbon-star to M-giant (C/M) ratio in the halo of M31. Based on the application of pseudo-filter bandpasses to our Keck/DEIMOS spectra, we measure the 81 - 77 color index of 1288 stars in the giant stellar stream and in halo fields out to large distances. From this well-established narrow-band system, supplemented by V - I colors, we find only a low number (five in total) of C-star candidates. The resulting low C/M ratio of 10% is consistent with the values in the M31 disk and inner halo from the literature. Although our analysis is challenged by small number statistics and our sample selection, there is an indication that the oxygen-rich M-giants occur in similar number throughout the entire halo. We also find no difference in the C-star population of the halo fields compared to the giant stream. The very low C/M ratio is at odds with the observed low metallicities and the presence of intermediate-age stars at large radii. Our observed absence of a substantial carbon-star population in these regions indicates that the (outer) M31 halo cannot be dominated by the debris of disk-like or Small-Magellanic-Cloud-type galaxies, but rather resemble the dwarf elliptical NGC 147.

  11. Gas phase abundances and conditions along the sight line to the low-halo, inner galaxy star HD 167756

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Sembach, Kenneth R.; Savage, Blair D.

    1995-01-01

    We present high-resolution (3.5 km/s) Goddard High Resolution Spectrograph (GHRS) measurements of the Mg II, Si II, Cr II, Fe II, and Zn II lines toward HD 167756, a low-latitude halo star at a distance of 4 kpc in the direction l = 351.5 deg, b = -12.3 and at a Galactic altitude of z = -0.85 kpc. Supplemental Na I, Ca II, and H I data are also presented for comparison with the UV lines. Our analysis centers on converting the observed absoprtion-line data into measures of the apparent column density per unit velocity. N(sub a)(v), over the velocity range -25 less than or = v(sub lsr) less than 30 km/s for each species observed. We use these N(sub a)(v) profiles to construct logarithmic abundance ratios of Mg II, Si II, Cr II, Fe II, and Ca II relative to Zn II, normalized to solar abundances, as a function of velocity. Compared to Zn, these species show an underabundance relative to their solar values, with the largest underabundances occurring in the v(sub lsr) approximately equals 5 km/s component(s), for which we find logarithmic abundances A(sub Si/Zn) greater than -0.38, A(Mg/Zn) = -0.82, A(sub Cr/Zn) = -1.18, and A(sub Fe/Zn) greater than 1.40 dex. We show that ionization effects, abundance gradients, or intrinsic abundance variability cannot be significant sources for the underabundances observed. The most likely explanation is gas phase depletion of elements onto dust grains. Comparisons with the gas phase abundances along other diffuse, warm gas sight lines, like the halo sight line to HD 93521, support this interpretation as do the derived physical properties of the sight line.

  12. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  13. MACHO RR lyrae in the inner halo and bulge

    SciTech Connect

    Drake, A.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T.S.; Becker, A.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D.

    1998-10-01

    The RR Lyrse in the bulge have been proposed to be the oldest populations in the Milky Way, tracers of how the galaxy formed. We study here the distribution of ?{approximately}1600 bulge RR Lyrae stars found by the MACHO Project. The RR Lyrae with 0.4 ? R ? 3 kpc show a density law that is well fit by the extension of the metal-poor stellar halo present in the outer regions of the Milky Way.

  14. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    SciTech Connect

    Yong, David; Carney, Bruce W.; Friel, Eileen D. E-mail: bruce@physics.unc.edu

    2012-10-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [{alpha}/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance (<0.02 dex kpc{sup -1}), but for some elements, there is a hint that the local (R{sub GC} < 13 kpc) and distant (R{sub GC} > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age (<0.04 dex Gyr{sup -1}). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [{alpha}/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  15. Lick slit spectra of thirty-eight objective prism quasar candidates and low metallicity halo stars

    NASA Technical Reports Server (NTRS)

    Tytler, David; Fan, Xiao-Ming; Junkkarinen, Vesa T.; Cohen, Ross D.

    1993-01-01

    Lick Observatory slit spectra of 38 objects which were claimed to have pronounced UV excess and emission lines are presented. Eleven QSOs, four galaxies at z of about 0.1, 22 stars, and one unidentified object with a low S/N spectrum were found. Of 11 objects which Zhan and Chen (1987, 1989) suggested were QSO with z(prism) not greater than 2.8; eight are QSOs. Six of the QSOs show absorption systems, including Q0000+027A with a relatively strong associated C IV absorption system, and Q0008+008 with a damped Ly-alpha system with an H I column density of 10 exp 21/sq cm. The equivalent widths of the Ca II K line, the G band, and the Balmer lines in 10 stars with the best spectra are measured, and metallicities are derived. Seven of them are in the range -2.5 to -1.7, while the others are less metal-poor.

  16. PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK

    SciTech Connect

    Garmany, C. D.; Glaspey, J. W.; Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K.; Oey, M. S.; Bensby, T.

    2015-08-15

    We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.

  17. STRUCTURAL PROPERTIES OF NON-SPHERICAL DARK HALOS IN MILKY WAY AND ANDROMEDA DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2015-09-01

    We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of dark halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.

  18. On the structure of the outer layers of cool carbon stars

    NASA Astrophysics Data System (ADS)

    Querci, F.; Querci, M.; Wing, R. F.; Cassatella, A.; Heck, A.

    1982-07-01

    Exposures on the spectra of four late C-type stars have been made with the IUE satellite in the wavelength range of the LWR camera (1900-3200 A). Two Mira variables near maximum light and two semiregular variables were observed. Although the exposure times used, which range up to 240 min in the low-resolution mode, were more than sufficient to record the continuum and emission lines of Mg II, Fe II, and Al II in normal M stars of similar magnitude and temperature, no light was recorded. It is concluded that the far-ultraviolet continuum is strongly depressed in these cool carbon stars. The absence of UV emission lines implies either that the chromospheric lines observed in M stars require an ultraviolet flux for their excitation, or that cool carbon stars have no chromosphere at all or that the opacity source is located above even the emission-line-forming region. This opacity source, which is probably some carbon condensate since it is weak or absent in M stars while absorbing strongly in C stars, is discussed both in terms of the chromospheric interpretation of the emission lines and in terms of their shock-wave interpretation.

  19. Outer layers of a carbon star: The view from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Ensman, Lisa M.; Alexander, D. R.; Avrett, E. H.; Brown, A.; Carpenter, K. G.; Eriksson, K.; Gustafsson, B.; Jorgensen, U. G.; Judge, Philip D.

    1995-01-01

    To advance our understanding of the relationship between stellar chromospheres and mass loss, which is a common property of carbon stars and other asymptotic giant branch stars, we have obtained ultraviolet spectra of the nearby N-type carbon star UU Aur using the Hubble Space Telescope (HST). In this paper we describe the HST observations, identify spectral features in both absorption and emission, and attempt to infer the velocity field in the chromosphere, upper troposphere, and circumstellar envelope from spectral line shifts. A mechanism for producing fluoresced emission to explain a previously unobserved emission line is proposed. Some related ground-based observations are also described.

  20. Red giant stars from Sloan Digital Sky Survey. I. The general field

    SciTech Connect

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.; Nissen, P. E.; Wei, P. E-mail: pen@phys.au.dk

    2014-11-01

    We have obtained a sample of ∼22,000 red giant branch (RGB) stars based on stellar parameters, provided by the ninth data release of the Sloan Digital Sky Survey, and the CH(G)/MgH indices, measured from the included spectra. The Galactic rest-frame velocity of V {sub gsr} versus longitude for the sample shows the existence of several groups of stars from globular clusters and known streams. Excluding these substructures, a sample of ∼16,000 RGB stars from the general field is used to investigate the properties of the thick disk, the inner halo, and the outer halo of our Galaxy. The metallicity and rotational velocity distributions are investigated for stars at 0 kpc < |Z| < 10 kpc. It is found that the canonical thick disk dominates at 0 kpc < |Z| < 2 kpc and its contribution becomes negligible at |Z| > 3 kpc. The MWTD is present and overlaps with the inner halo at 1 kpc < |Z| < 3 kpc. The inner halo starts at 2 kpc < |Z| < 3 kpc and becomes the dominated population for 4 kpc < |Z| < 10 kpc. For halo stars with |Z| > 5 kpc, bimodal metallicity distributions are found for 20 kpc < |Z| < 25 kpc and 35 kpc < RR < 45 kpc, which suggests a dual halo, the inner and the outer halo, as reported in Carollo et al. at low |Z| values. The peak of metallicity for the inner halo is at [Fe/H] ∼ –1.6 and appears to be at [Fe/H] ∼ –2.3 for the outer halo. The transition point from the inner to the outer halo is located at |Z| ∼ 20 kpc and RR ∼ 35 kpc.

  1. The Hamburg/ESO R-process Enhanced Star survey (HERES). X. HE 2252-4225, one more r-process enhanced and actinide-boost halo star

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.; Christlieb, N.; Eriksson, K.

    2014-09-01

    dating results in a stellar age of τ = 1.5 ± 1.5 Gyr that is not expected for a very metal-poor halo star. Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal numbers 170.D-0010, and 280.D-5011).Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A43

  2. Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey

    SciTech Connect

    Miceli, A; Rest, A; Stubbs, C W; Hawley, S L; Cook, K H; Magnier, E A; Krisciunas, K; Bowell, E; Koehn, B

    2007-02-23

    We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg{sup 2} and span distances ranging from 3-30kpc from the Galactic Center. Object selection is based on phased, photometric data with 28-50 epochs. We use this large sample to explore the bulk properties of the stellar halo, including the spatial distribution. The period-amplitude distribution of this sample shows that the majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a significant fraction (26%) which have longer periods and appear to be Oosterhoff type II. We find that the radial distributions of these two populations have significantly different profiles ({rho}{sub OoI} {approx} R{sup -2.26{+-}0.07} and {rho}{sub OoII} {approx} R{sup -2.88{+-}0.11}). This suggests that the stellar halo was formed by at least two distinct accretion processes and supports dual-halo models.

  3. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic

  4. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    SciTech Connect

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  5. Relics of Galaxy Merging: Observational Predictions for a Wandering Massive Black Hole and Accompanying Star Cluster in the Halo of M31

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  6. THE DISTANCE TO A STAR-FORMING REGION IN THE OUTER ARM OF THE GALAXY

    SciTech Connect

    Hachisuka, K.; Brunthaler, A.; Menten, K. M.; Reid, M. J.; Hagiwara, Y.; Mochizuki, N.

    2009-05-10

    We performed astrometric observations with the Very Long Baseline Army of WB89-437, an H{sub 2}O maser source in the Outer spiral arm of the Galaxy. We measure an annual parallax of 0.167 {+-} 0.006 mas, corresponding to a heliocentric distance of 6.0 {+-} 0.2 kpc or a Galactocentric distance of 13.4 {+-} 0.2 kpc. This value for the heliocentric distance is considerably smaller than the kinematic distance of 8.6 kpc. This confirms the presence of a faint Outer arm toward l = 135 deg. We also measured the full space motion of the object and find a large peculiar motion of {approx}20 km s{sup -1} toward the Galactic center. This peculiar motion explains the large error in the kinematic distance estimate. We also find that WB89-437 has the same rotation speed as the LSR, providing more evidence for a flat rotation curve and thus the presence of dark matter in the outer Galaxy.

  7. HERSCHEL-RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS AROUND A-TYPE STARS: HD 70313, HD 71722, HD 159492, AND F-TYPE: HD 104860

    SciTech Connect

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R.

    2013-10-20

    We present dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions (SEDs) suggest two-ring disk architectures that mirror that of the asteroid-Kuiper Belt geometry of our own solar system. The Herschel observations at 100 μm spatially resolve the cold/outer-dust component for each star-disk system for the first time, finding evidence of planetesimals at >100 AU, i.e., a larger size than assumed from a simple blackbody fit to the SED. By breaking the degeneracy between the grain properties and the dust's radial location, the resolved images help constrain the dust grain-size distribution for each system. Three of the observed stars are A-type and one solar-type. On the basis of the combined Spitzer/IRS+MIPS (5-70 μm), the Herschel/PACS (100 and 160 μm) dataset, and under the assumption of idealized spherical grains, we find that the cold/outer belts of the three A-type stars are well fit with a mixed ice/rock composition rather than pure rocky grains, while the debris around the solar-type star is consistent with either rock or ice/rock grains. For the solar-type star HD 104860, we find that the minimum grain size is larger than expected from the threshold set by radiative blowout. The A-type stars HD 71722 and HD 159492, on the other hand, require minimum grain sizes that are smaller than blowout for inner- and outer-ring populations. In the absence of spectral features for ice, we find that the behavior of the continuum can help constrain the composition of the grains (of icy nature and not pure rocky material) given the Herschel-resolved locations of the cold/outer-dust belts.

  8. A panoramic VISTA of the stellar halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Greggio, L.; Rejkuba, M.; Gonzalez, O. A.; Arnaboldi, M.; Iodice, E.; Irwin, M.; Neeser, M. J.; Emerson, J.

    2014-02-01

    Context. Outskirts of large galaxies contain important information about galaxy formation and assembly. Resolved star count studies can probe the extremely low surface brightness of the outer halos. Aims: NGC 253 is a nearly edge-on disk galaxy in the Sculptor group, of which we resolved the halo stars from ground-based images, with the aim of studying its stellar population content, the structure and the overall extent of the halo. Methods: We use Z and J-band images from the VIRCAM camera mounted on the VISTA telescope to construct the spatially resolved J vs. Z-J color-magnitude diagrams (CMDs). The very deep photometry and the wide area covered allow us to trace the red giant branch (RGB) and asymptotic giant branch (AGB) stars that belong to the halo of NGC 253 out to 50 kpc along the galaxy's minor axis. Results: We confirm the existence of an extra-planar stellar component of the disk, with a very prominent southern shelf and a symmetrical feature on the north side. The only additional visible substructure is an overdensity in the north-west part of the halo ~28 kpc distant from the plane and extending over 20 kpc parallel with the disk of the galaxy. Our data are not deep enough to distinguish its stellar population from that of the surrounding halo, but the excess of stars above the smooth halo traces the mass of the parent population of ~7.5 × 106M⊙. From stellar counts, we measure the transition from the disk to the halo at a radial distance of about 25 kpc with a clear break in the number density profile. The isodensity contours show that the inner halo is a flattened structure that blends with a more extended, diffuse, rounder outer halo. Such external structure can be traced to the very edge of our image out to 50 kpc from the disk plane. The number density profile of the stars in the stellar halo follows a power law with index -1.6, as a function of radius. The CMD shows a very homogeneous stellar population across the field. By comparing

  9. Touching the void: A striking drop in stellar halo density beyond 50 kpc

    SciTech Connect

    Deason, A. J.; Rockosi, C. M.; Belokurov, V.; Koposov, S. E.

    2014-05-20

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 ≲ D {sub BS}/kpc ≲ 75, 40 ≲ D {sub BHB}/kpc ≲ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index α ∼ 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (α ∼ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  10. Touching The Void: A Striking Drop in Stellar Halo Density Beyond 50 kpc

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Belokurov, V.; Koposov, S. E.; Rockosi, C. M.

    2014-05-01

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 <~ D BS/kpc <~ 75, 40 <~ D BHB/kpc <~ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index α ~ 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (α ~ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  11. Magnetic structure in cool stars. XVI - Emissions from the outer atmosphere of M-type dwarfs

    NASA Technical Reports Server (NTRS)

    Rutten, R. G. M.; Zwaan, C.; Schrijver, C. J.; Duncan, D. K.; Mewe, R.

    1989-01-01

    Consideration is given to emission from the outer atmospheres of M-type dwarfs in several spectral lines originating from the chromosphere, the transition-region, and the soft X-ray emission from the corona. It is shown that M-type dwarfs systematically deviate from relations between flux densities in soft X-rays and chromospheric and transition-region emission lines. The quantitative relation between the equivalent width of H-alpha and the Ca II, H, and K emission index is determined. It is suggested that the emission in the Balmer spectrum may result from back heating by coronal soft X-rays.

  12. Effect of tidal fields on star clusters

    NASA Technical Reports Server (NTRS)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  13. The elusive stellar halo of the Triangulum galaxy

    NASA Astrophysics Data System (ADS)

    McMonigal, B.; Lewis, G. F.; Brewer, B. J.; Irwin, M. J.; Martin, N. F.; McConnachie, A. W.; Ibata, R. A.; Ferguson, A. M. N.; Mackey, A. D.; Chapman, S. C.

    2016-10-01

    The stellar haloes of large galaxies represent a vital probe of the processes of galaxy evolution. They are the remnants of the initial bouts of star formation during the collapse of the protogalactic cloud, coupled with imprint of ancient and ongoing accretion events. Previously, we have reported the tentative detection of a possible, faint, extended stellar halo in the Local Group spiral, the Triangulum galaxy (M33). However, the presence of substructure surrounding M33 made interpretation of this feature difficult. Here, we employ the final data set from the Pan-Andromeda Archaeological Survey, combined with an improved calibration and a newly derived contamination model for the region to revisit this claim. With an array of new fitting algorithms, fully accounting for contamination and the substantial substructure beyond the prominent stellar disc in M33, we reanalyse the surrounds to separate the signal of the stellar halo and the outer halo substructure. Using more robust search algorithms, we do not detect a large-scale smooth stellar halo and place a limit on the maximum surface brightness of such a feature of μV = 35.5 mag arcsec-2, or a total halo luminosity of L < 106 L⊙.

  14. RR Lyrae stars in the outer region of the globular cluster M 3: A shortage of long periods at r ˜ 3.5 to 6 arcmin?

    NASA Astrophysics Data System (ADS)

    Butler, D. J.

    2004-06-01

    An analysis of the radial distribution of ab-type RR Lyrae star periods in the outer region of the globular cluster M 3 at r ≥0.83' has been performed. That analysis points towards a real shortage of stars with long periods in the radial distance range 3.5' to 6' (or about 7 to 12 core radii). A brief discussion is presented. The origin of the phenomenon remains an open question.

  15. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ∼5 and ∼3 pc{sup –2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  16. The Outer Disks of Herbig Stars From the UV to NIR

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, M.; Muto, T.; Kotani, T.; Kusakabe, N.; Kudo, T.; Hayashi, M.; Ishii, M.; Iye, M.; Morino, J.-I.; Suenaga, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Takami, H.; Usuda, T.; Tamura, M.

    2014-01-01

    Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.

  17. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  18. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions to single

  19. The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A.

    2015-11-01

    Context. The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later (post-birth) mass transfer of chemically processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Aims: Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether local mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. Methods: High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over eight years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m s-1 were determined by cross-correlation against an optimized template. Results: Fourteen of the programme stars exhibit no significant radial-velocity variation over this temporal window, while three are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18 ± 6% for the sample. Conclusions: Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies

  20. Herschel-resolved Outer Belts of Two-belt Debris Disks around A-type Stars: HD 70313, HD 71722, HD 159492, and F-type: HD 104860

    NASA Astrophysics Data System (ADS)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R.

    2013-10-01

    We present dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions (SEDs) suggest two-ring disk architectures that mirror that of the asteroid-Kuiper Belt geometry of our own solar system. The Herschel observations at 100 μm spatially resolve the cold/outer-dust component for each star-disk system for the first time, finding evidence of planetesimals at >100 AU, i.e., a larger size than assumed from a simple blackbody fit to the SED. By breaking the degeneracy between the grain properties and the dust's radial location, the resolved images help constrain the dust grain-size distribution for each system. Three of the observed stars are A-type and one solar-type. On the basis of the combined Spitzer/IRS+MIPS (5-70 μm), the Herschel/PACS (100 and 160 μm) dataset, and under the assumption of idealized spherical grains, we find that the cold/outer belts of the three A-type stars are well fit with a mixed ice/rock composition rather than pure rocky grains, while the debris around the solar-type star is consistent with either rock or ice/rock grains. For the solar-type star HD 104860, we find that the minimum grain size is larger than expected from the threshold set by radiative blowout. The A-type stars HD 71722 and HD 159492, on the other hand, require minimum grain sizes that are smaller than blowout for inner- and outer-ring populations. In the absence of spectral features for ice, we find that the behavior of the continuum can help constrain the composition of the grains (of icy nature and not pure rocky material) given the Herschel-resolved locations of the cold/outer-dust belts. Herschel is an ESA space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA.

  1. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  2. Production and Recycling of Carbon in the Early Galactic Halo

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Thidemann Hansen, Terese; Nordström, Birgitta

    2015-08-01

    Extremely metal-poor (EMP) stars - [Fe/H] below ~ -3 - are fossil records of the conditions in the early halo. High-resolution 8m-class spectroscopy has shown that the detailed abundance pattern of EMP giant stars is surprisingly uniform and essentially Solar (e.g. Bonifacio+ 2012), apart from the usual α-enhancement in the halo. In the simplest picture, iron is a proxy for both overall metallicity and time, so the EMP stars should form before the oldest and most metal-poor Galactic globular clusters, notably at the lowest metallicities ([Fe/H] ≲ -3.5).It is thus striking that 20-40% of the EMP giants are strongly enhanced in carbon - the CEMP stars (Lucatello+ 2006). This is conventionally ascribed to mass transfer from a former AGB binary companion, and from a limited compilation of data, Lucatello+ (2005) concluded that most or all CEMP stars are indeed binaries, similar to the classical Ba and CH stars (e.g. Jorissen+ 1998). However, most of the sample was of the inner-halo CEMP-s variety (C and s-process elements both enhanced), while CEMP-no stars dominate the outer halo (Carollo+ 2014). Our precise radial velocity monitoring for CEMP stars over 8 years shed light on this issue.Our data suggest a normal binary frequency for the CEMP-no stars; i.e. the C was not produced in a binary companion, but in sites at interstellar distances, e.g. ‘faint’ SNe, and imprinted on the natal clouds of the low-mass stars we observe. This has immediate implications for the formation of dust in primitive, high-redshift galaxies (Watson+ 2015) and the origin of C-enhanced DLAs (Cooke+ 2011, 2012). The CEMP-s binary orbits are also revealing, with periods up to several decades and generally low amplitudes and eccentricities, suggesting that EMP AGB stars have very large radii, facilitating extensive mass loss. More work on faint SNe and EMP AGB envelopes is needed!

  3. Tracing the stellar halo of an early type galaxy out to 25 effective radii

    NASA Astrophysics Data System (ADS)

    Rejkuba, Marina

    2016-08-01

    We have used ACS and WFC3 cameras on board HST to resolve stars in the halo of NGC 5128 out to 140 kpc (25 effective radii, R eff) along the major axis and 70 kpc (13 R eff) along the minor axis. This dataset provides an unprecedented radial coverage of stellar halo properties in any galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128 even in the most distant fields. The V-I colors of the red giants enable us to measure the metallicity distribution in each field and so map the metallicity gradient over the sampled area. The stellar metallicity follows a shallow gradient and even out at 140 kpc (25 R eff) its median value does not go below [M/H]~-1 dex. We observe significant field-to-field metallicity and stellar density variations. The star counts are higher along the major axis when compared to minor axis field located 90 kpc from the galaxy centre, indicating flattening in the outer halo. These observational results provide new important constraints for the assembly history of the halo and the formation of this gE galaxy.

  4. The very wide-field gzK Galaxy Survey - II. The relationship between star-forming galaxies at z ˜ 2 and their host haloes based upon HOD modelling

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Hamana, Takashi; Toshikawa, Jun; Onoue, Masafusa

    2016-05-01

    We present the results of an halo occupation distribution (HOD) analysis of star-forming galaxies at z ˜ 2. We obtained high-quality angular correlation functions based on a large sgzK sample, which enabled us to carry out the HOD analysis. The mean halo mass and the HOD mass parameters are found to increase monotonically with increasing K-band magnitude, suggesting that more luminous galaxies reside in more massive dark haloes. The luminosity dependence of the HOD mass parameters was found to be the same as in the local Universe; however, the masses were larger than in the local Universe over all ranges of magnitude. This implies that galaxies at z ˜ 2 tend to form in more massive dark haloes than in the local Universe, a process known as downsizing. By analysing the dark halo mass evolution using the extended Press-Schechter formalism and the number evolution of satellite galaxies in a dark halo, we find that faint Lyman break galaxies at z ˜ 4 could evolve into the faintest sgzKs (22.0 < K ≤ 23.0) at z ˜ 2 and into the Milky-Way-like galaxies or elliptical galaxies in the local Universe, whereas the most luminous sgzKs (18.0 ≤ K ≤ 21.0) could evolve into the most massive systems in the local Universe. The stellar-to-halo mass ratio (SHMR) of the sgzKs was found to be consistent with the prediction of the model, except that the SHMR of the faintest sgzKs was smaller than the prediction at z ˜ 2. This discrepancy may be explained by the confinement of our samples to star-forming galaxies.

  5. A Classification Scheme for Young Stellar Objects Using the WIDE-FIELD INFRARED SURVEY EXPLORER ALLWISE Catalog: Revealing Low-Density Star Formation in the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Koening, X. P.; Leisawitz, D. T.

    2014-01-01

    We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  6. THE GALACTIC CENTER S-STARS AND THE HYPERVELOCITY STARS IN THE GALACTIC HALO: TWO FACES OF THE TIDAL BREAKUP OF STELLAR BINARIES BY THE CENTRAL MASSIVE BLACK HOLE?

    SciTech Connect

    Zhang Fupeng; Lu Youjun; Yu Qingjuan

    2013-05-10

    In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the Galactic center (GC) S-stars, under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up dynamical evolution. We find that many statistical properties of the detected HVSs and GC S-stars could be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope {approx} - 1.6). The total number of the captured companions is {approx}50 that have masses in the range {approx}3-7 M{sub Sun} and semimajor axes {approx}< 4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis {approx}300-1500 AU and a pericenter distance {approx}10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a close star would offer an important test to general relativity. The majority of the surviving ejected companions of the GC S-stars are expected to be located at Galactocentric distances {approx}< 20 kpc, and have heliocentric radial velocities {approx} - 500-1500 km s{sup -1} and proper motions up to {approx}5-20 mas yr{sup -1}. Future detection of these HVSs may provide evidence for the tidal breakup formation mechanism of the GC S-stars.

  7. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "cannibalized" other nearby dwarf galaxies and clusters, and that this process is still going on. Some astronomers have even speculated that many of the globular clusters now observed may originally have been the particularly dense, central regions ("nuclei") of unfortunate, small galaxies whose more tenuous outer structures have since been dissipated into the Galactic halo. If this is the case, then the Milky Way halo may now contain fossil structures, left over from this process (referred to as "accretion"). A study of the halo and the objects therein may therefore provide very useful information about the formation and evolution of the Milky Way, our home galaxy. The VLT observations In order to investigate this basic issue in more detail, CCD images obtained with the Test Camera at the first 8.2-m VLT Unit Telescope (UT1) have been used to study one of the old globular clusters in the Milky Way. NGC 6712 [2] is an enormous swarm of stars in the southern constellation Scutum (The Shield). It is located at a distance of about 23,000 light-years, in the direction towards the Galactic Center. This cluster is of spherical form and contains somewhat fewer than 1 million stars, all of which are lighter than our Sun. NGC 6712 is one of about 150 globular clusters now known in the Milky Way. They all move in extended elliptical orbits that periodically take them through the densely populated main plane of our Galaxy in which the stars and nebulae form the well-known spiral structure. From there they move into the halo regions high above the plane and then down again. The orbit of NGC 6712 is comparatively small and the cluster passes particularly close to the Galactic Center. The orbital period is in the short range so this happens rather frequently. In fact, it appears that NGC 6712 crossed the Galactic plane just a few million years ago. ESO PR Photo 06a/99 ESO PR Photo 06a/99 [Preview - JPEG: 800 x 494 pix - 344k] [High-Res - JPEG: 3000 x 1851 pix - 2.3M] Caption to PR Photo 06a

  8. ON THE DIFFUSE Lyα HALO AROUND Lyα EMITTING GALAXIES

    SciTech Connect

    Lake, Ethan; Zheng, Zheng; Sadoun, Raphael; Cen, Renyue; Momose, Rieko; Ouchi, Masami E-mail: zhengzheng@astro.utah.edu

    2015-06-10

    Lyα photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Lyα emission around galaxies. Such low surface brightness Lyα halos (LAHs) have been detected by stacking Lyα images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine z = 3.1 Lyα emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Lyα surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Lyα surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Lyα emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultraviolet halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.

  9. Evolutionary models of halo stars with rotation. II - Effects of metallicity on lithium depletion, and possible implications for the primordial lithium abundance

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Deliyannis, Constantine P.; Demarque, P.

    1992-01-01

    Models of metal-poor stars with rotation were computed and their lithium depletion was compared with observations of halo stars. The models that have turn-off ages compatible with the observations have a nearly flat Li-T(eff) relationship in the region of the Spite lithium 'plateau'. Depending on the initial angular momentum, the models have a depletion factor ranging between a factor of 5 and a factor of 10 at fixed T(eff), implying a maximum initial lithium abundance of 3.1. Both the dispersion and the overall depletion factor are much smaller for metal-poor models than for solar metallicity ones. The factors that determine lithium depletion in rotational models are discussed and the different depletion patterns in solar metallicity and metal-poor models are traced to differences in their structure and evolution. The dependence of the lithium depletion on age, mass, initial angular momentum, and metallicity is also discussed. The dispersion predicted from these models is not inconsistent with the observations.

  10. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-enhanced Metal-poor Stars with s-process Element Enhancement

    NASA Astrophysics Data System (ADS)

    Hollek, Julie K.; Frebel, Anna; Placco, Vinicius M.; Karakas, Amanda I.; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-12-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo Project. Its spectroscopic stellar parameters are Teff = 4863 K, {log}g=1.25,\\ξ = 2.20 km s-1, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has {{[C/Fe]}}=1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as a “CEMP-r/s” star. Based on abundance comparisons with asymptotic giant branch (AGB) star nucleosynthesis models, we suggest a new physically motivated origin and classification scheme for CEMP-s stars and the still poorly understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414-0343 to have arisen from a >1.3 M⊙ mass AGB star and a late-time mass transfer that transformed HE 0414-0343 into a CEMP-sC star. We also find that the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  11. Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-04-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance-rotation-age relations, and an important test bed for stellar dynamos and the resulting X-ray-UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray-UV effects on planets hosted by Kapteyn's Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn's Star's planets to coronal - chromospheric XUV emissions over time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13020. This work is also based on observations obtained with the Chandra X-ray Observatory, a NASA science mission, program #13200633.

  12. Volume filling factors of the ISM phases in star forming galaxies. I. The role of the disk-halo interaction

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Breitschwerdt, D.

    2004-10-01

    The role of matter circulation between the disk and halo in establishing the volume filling factors of the different ISM phases in the Galactic disk (|z|≤ 250 pc) is investigated, using a modified version of the three-dimensional supernova-driven ISM model of Avillez (\\cite{Avillez00}). We carried out adaptive mesh refinement simulations of the ISM with five supernova rates (in units of the Galactic value), σ/σGal=1, 2, 4, 8 and 16 (corresponding to starburst conditions) using three finer level resolutions of 2.5, 1.25 and 0.625 pc, allowing us to understand how resolution would affect the volumes of gas phases in pressure equilibrium. We find that the volume filling factors of the different ISM phases depend sensitively on the existence of a duty cycle between the disk and halo acting as a pressure release valve for the hot (T> 105.5 K) phase in the disk. The amount of cold gas (defined as the gas with T<103 K) picked up in the simulations varies from a value of 19% for σ/σGal=1 to ˜ 5% for σ/σGal =4 and ≤ 1% for higher SN rates. Background heating prevents the cold gas from immediate collapse and thus ensures the stability of the cold gas phase. The mean occupation fraction of the hot phase varies from about 17% for the Galactic SN rate to ˜ 28%, for σ/σGal=4, and to 44% for σ/σGal=16. Overall the filling factor of the hot gas does not increase much as we move towards higher SN rates, following a power law of < fv, hot> ∝ (σ/σGal)0.363. Such a modest dependence on the SN rate is a consequence of the evacuation of the hot phase into the halo through the duty cycle. This leads to volume filling factors of the hot phase considerably smaller than those predicted in the three-phase model of McKee & Ostriker (\\cite{McKee77}) even in the absence of magnetic fields.

  13. Fluorescence Processes in the Outer Atmospheres of the Evolved M-Stars Alpha Ori (M2 Iab) and Gamma Cru (M3.4 III)

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth; Kober, Gladys; Nielsen, Krister; Ayres, Thomas; Wahlgren, Glenn

    2015-08-01

    The prototypical M-giant and M-supergiant stars, Gamma Cru (M3.4 III)) and Alpha Ori (M2Iab), have been observed as part of the "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres). "ASTRAL-Cool Stars" is an HST Cycle 18 Treasury Program designed to collect, using the Space Telescope Imaging Spectrograph (STIS), a definitive set of representative, high-resolution (R~46,000 in the FUV up to ~1700 Å, R~30,000 for 1700-2150 Å, and R~114,000 >2150 Å) and high signal/noise (S/N>100) UV spectra of eight F-M evolved cool stars. These extremely high-quality UV echelle spectra are available from the HST archive and through the University of Colorado (http://casa.colorado.edu/~ayres/ASTRAL/). In this paper, we use the very rich emission-line spectra of the two evolved M stars in the sample, Gamma Cru (GaCrux) and Alpha Ori (Betelgeuse), to study the fluorescence processes operating in their outer atmospheres. We summarize the pumping transitions and fluorescent line products known on the basis of previous work and newly identified in our on-going analysis of these extraordinary new “Treasury” spectra. Detailed descriptions of selected processes are given to illustrate their operation. The wide variety of fluorescence processes in operation in these outer atmospheres, both molecular and atomic, suggest that there is a mixture of warm and cool plasmas present and that H I Ly-alpha in particular is locally very strong, even though, in the case of Alpha Ori, no flux is seen at earth due to strong circumstellar absorption at that wavelength. Many new fluorescence line products and several new processes have been identified in these spectra, which are more complete and of higher S/N than previously available for these stars.

  14. Gas infall into atomic cooling haloes: on the formation of protogalactic discs and supermassive black holes at z > 10

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Jimenez, Raul; Haiman, Zoltán

    2013-12-01

    We have performed hydrodynamical simulations from cosmological initial conditions using the Adaptive Mesh Refinement (AMR) code RAMSES to study atomic cooling haloes (ACHs) at z = 10 with masses in the range 5 × 107 M⊙ ≲ M ≲ 2 × 109 M⊙. We assume the gas has primordial composition and H2-cooling and prior star formation in the haloes have been suppressed. We present a comprehensive analysis of the gas and dark matter (DM) properties of 19 haloes at a spatial resolution of ˜10 (proper) pc, selected from simulations with a total volume of ˜2000 (comoving) Mpc3. This is the largest statistical hydro-simulation study of ACHs at z > 10 to date. We examine the morphology, angular momentum, thermodynamical state and turbulent properties of these haloes, in order to assess the prevalence of discs and massive overdensities that may lead to the formation of supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the angular momentum of the gas and its parent DM halo. Only three of the haloes form rotationally supported cores. Two of the most massive haloes, however, form massive, compact overdense blobs, which migrate to the outer region of the halo. These blobs have an accretion rate between ˜10-1 and 10-3 M⊙ yr-1 (at a distance of 100 pc from their centre), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes that form overdense blobs are located at knots of the cosmic web, cooled their gas early on (z > 17) and experienced many mergers. The gas in these haloes is thus lumpy and highly turbulent, with Mach numbers M≳ 5. In contrast, the haloes forming rotationally supported cores are relatively more isolated, located mid-way along filaments of the cosmic web, cooled their gas more recently and underwent fewer mergers. As a result, the

  15. The GHOSTS survey - II. The diversity of halo colour and metallicity profiles of massive disc galaxies

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Bailin, Jeremy; de Jong, Roelof S.; Holwerda, Benne; Streich, David; Silverstein, Grace

    2016-04-01

    We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar outskirts out to projected distances of ˜50-70 kpc from their galactic centre along the minor axis. The 50 per cent completeness levels of the colour-magnitude diagrams are typically at 2 mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar haloes out to ˜50 kpc and two out to ˜70 kpc. We determined the halo colour distribution and colour profile for each galaxy using the median colours of stars in the RGB. Within each galaxy, we find variations in the median colours as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other have no significant colour or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo colour/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent in the assembling history of galaxies.

  16. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  17. Broken degeneracies: the rotation curve and velocity anisotropy of the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Belokurov, V.; Evans, N. W.; An, J.

    2012-07-01

    We use distant blue horizontal branch stars with Galactocentric distances 16 < r < 48 kpc as kinematic tracers of the Milky Way dark halo. We model the tracer density as an oblate, power law embedded within a spherical power-law potential. Using a distribution function method, we estimate the overall power-law potential and the velocity anisotropy of the halo tracers. We measure the slope of the potential to be γ˜ 0.4, and the overall mass within 50 kpc is ˜4 × 1011 M⊙. The tracer velocity anisotropy is radially biased with β˜ 0.5, which is in good agreement with local solar neighbourhood studies. Our results provide an accurate outer circular velocity profile for the Milky Way and suggest a relatively high-concentration dark matter halo (cvir˜ 20).

  18. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "cannibalized" other nearby dwarf galaxies and clusters, and that this process is still going on. Some astronomers have even speculated that many of the globular clusters now observed may originally have been the particularly dense, central regions ("nuclei") of unfortunate, small galaxies whose more tenuous outer structures have since been dissipated into the Galactic halo. If this is the case, then the Milky Way halo may now contain fossil structures, left over from this process (referred to as "accretion"). A study of the halo and the objects therein may therefore provide very useful information about the formation and evolution of the Milky Way, our home galaxy. The VLT observations In order to investigate this basic issue in more detail, CCD images obtained with the Test Camera at the first 8.2-m VLT Unit Telescope (UT1) have been used to study one of the old globular clusters in the Milky Way. NGC 6712 [2] is an enormous swarm of stars in the southern constellation Scutum (The Shield). It is located at a distance of about 23,000 light-years, in the direction towards the Galactic Center. This cluster is of spherical form and contains somewhat fewer than 1 million stars, all of which are lighter than our Sun. NGC 6712 is one of about 150 globular clusters now known in the Milky Way. They all move in extended elliptical orbits that periodically take them through the densely populated main plane of our Galaxy in which the stars and nebulae form the well-known spiral structure. From there they move into the halo regions high above the plane and then down again. The orbit of NGC 6712 is comparatively small and the cluster passes particularly close to the Galactic Center. The orbital period is in the short range so this happens rather frequently. In fact, it appears that NGC 6712 crossed the Galactic plane just a few million years ago. ESO PR Photo 06a/99 ESO PR Photo 06a/99 [Preview - JPEG: 800 x 494 pix - 344k] [High-Res - JPEG: 3000 x 1851 pix - 2.3M] Caption to PR Photo 06a

  19. Extremely faint, diffuse satellite systems in the M31 halo: exceptional star clusters or tiny dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Recent years have seen the discovery of a variety of low surface brightness, diffuse stellar systems in the Local Group. Of particular prominence are the ultra-faint dwarf satellites of the Milky Way and the extended globular clusters seen in M31, M33, and NGC 6822. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered several very faint and diffuse stellar satellites in the M31 halo. In Cycle 19 we obtained ACS/WFC imaging for one of these, PAndAS-48, which has revealed it to be a puzzling and unusual object. On the size-luminosity plane it falls between the extended clusters and ultra-faint dwarfs; however, its characteristics do not allow us to unambiguously class it as either type of system. If PAndAS-48 is an extended cluster then it is the most elliptical, isolated, metal-poor, and lowest-luminosity example yet uncovered. Conversely, while its properties are generally consistent with those observed for the faint dwarf satellites of the Milky Way, it would be a factor 2-3 smaller in spatial extent than its Galactic counterparts at comparable luminosity. Here we propose deep resolved imaging of the remaining five similar objects in our sample, with the aim of probing this hitherto poorly-explored region of parameter space in greater detail. If we are able to confirm any of these objects as faint dwarfs, they will provide the first insight into the behaviour of this class of object in a galaxy other than the Milky Way.

  20. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  1. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  2. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  3. Very extended cold gas, star formation and outflows in the halo of a bright quasar at z > 6

    NASA Astrophysics Data System (ADS)

    Cicone, C.; Maiolino, R.; Gallerani, S.; Neri, R.; Ferrara, A.; Sturm, E.; Fiore, F.; Piconcelli, E.; Feruglio, C.

    2015-02-01

    Past observations of quasar host galaxies at z> 6 have found cold gas and star formation on compact scales of a few kiloparsecs. We present new high sensitivity IRAM Plateau de Bure Interferometer follow-up observations of the [C ii] 158 μm emission line and far-infrared (FIR) continuum in the host galaxy of SDSS J1148+5251, a luminous quasar at redshift 6.4189. We find that a large portion of the gas traced by [C ii] is at high velocities, up to ~1400 km s-1relative to the systemic velocity, confirming the presence of a major outflow as indicated by previous observations. The outflow has a complex morphology and reaches a maximum projected radius of ≃30 kpc. The extreme spatial extent of the outflow allows us, for the first time in an external galaxy, to estimate mass-loss rate, kinetic power, and momentum rate of the outflow as a function of the projected distance from the nucleus and the dynamical time scale. These trends reveal multiple outflow events during the past 100 Myr, although the bulk of the mass, energy, and momentum appear to have been released more recently within the past ~20 Myr. Surprisingly, we discover that the quiescent gas at systemic velocity is also extremely extended. More specifically, we find that, while 30% of the [C ii] within v ∈(-200, 200) km s-1 traces a compact component that is not resolved by our observations, 70% of the [C ii] emission in this velocity range is extended with a projected full width at half maximum (FWHM) size of 17.4 ± 1.4 kpc. We detect FIR continuum emission associated with both the compact and the extended [C ii] components, although the extended FIR emission has a FWHM of 11 ± 3 kpc, thus smaller than the extended [C ii] source. Overall, our results indicate that the cold gas traced by [C ii] is distributed up to r ~ 30 kpc in the host galaxy of SDSS J1148+5251. A large amount of extended [C ii] is likely to be associated with star formation occurring on large scales, but the [C ii] source extends well

  4. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  5. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon. PMID:26560034

  6. Alignments of galaxies and halos in hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Libeskind, Noam I.

    2016-10-01

    We use a 200 h -1Mpc cosmological hydrodynamical simulation to examine the alignments of galaxies with respect to the host halo. We do separate study for the different components of the halo, such as stars, gas and dark matter. We show that angular momentum of gas is more aligned with the angular momentum of host halo compared with the stellar component.

  7. Mapping Baryons in the Halo of NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2012-10-01

    We propose observing 5 background QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 53-183 kpc. NGC 1097 is a bright {-21.1} spiral galaxy that has the highest surface density of background, UV-bright QSOs in the nearby Universe. The galaxy hosts a low luminosity AGN at its core, surrounded by a ring of intense star-forming regions; there is also evidence from stellar tidal streams that the galaxy has recently cannibalized a number of dwarf galaxies, and a companion dwarf elliptical is still clearly merging with the outer disk. We aim to examine the physical conditions of gas that fills the halo of such an active galaxy. We will search primarily for Lya and SiIV absorption lines in the spectra of the background QSOs, as well as weak NV from hot gas. At the lowest impact parameters, we may also be able to find absorption lines from low ionization species. Our goals are to test whether the halo of NGC 1097 contains the same distribution of Lyman-alpha forest clouds seen at higher redshifts out to large distances from galaxies, and determine how the HI column density, covering fraction, and temperature of the gas decline with radius in a single galaxy halo. We will examine whether the velocities of the absorbers are consistent with those expected from gas co-rotating in the dark matter halo of the galaxy, or whether there exists a distribution of velocities that might indicate outflows from the galactic disk or from the central AGN, or, alternatively, from inflows from the IGM. Our map of Lya and SiIV around NGC 1097 will provide an important template for understanding the origin of higher redshift QSO absorption line systems.

  8. The dark halo of the milky Way

    PubMed

    Alcock

    2000-01-01

    Most of the matter in the Milky Way is invisible to astronomers. Precise numbers are elusive, but it appears that the dark component is 20 times as massive as the visible disk of stars and gas. This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars. The composition of this dark halo is unknown, but it may comprise a mixture of ancient, degenerate dwarf stars and exotic, hypothetical elementary particles.

  9. The Stellar Halos of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' × 107''), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 pixel-1 in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions σ* > 150 km s-1, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between σ* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are ~ an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 Re , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high α-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  10. Light-element abundance variations in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  11. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  12. The complex structure of stars in the outer galactic disk as revealed by Pan-STARRS1

    SciTech Connect

    Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Martin, Nicolas F.; Rix, Hans-Walter; Morganson, Eric; Peñarrubia, Jorge; Bernard, Edouard J.; Ferguson, Annette M. N.; Martinez-Delgado, David; Wyse, Rosemary F. G.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Magnier, Eugene A.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-08-10

    We present a panoptic view of the stellar structure in the Galactic disk's outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = –25° and b = +35° and covering over 130° in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations—the tidal stream predicts material at larger distances that is not detected while in the distorted disk model, the midplane is warped to an excessive degree—future tuning of the models to accommodate these latest data may yield better agreement.

  13. Star formation history at the centers of lenticular galaxies with bars and purely exponential outer disks from SAURON data

    NASA Astrophysics Data System (ADS)

    Sil'Chenko, O. K.; Chilingarian, I. V.

    2011-01-01

    We have investigated the stellar population properties in the central regions of a sample of lenticular galaxies with bars and single-exponential outer stellar disks using the data from the SAURON integral-field spectrograph retrieved from the open Isaac Newton Group Archive. We have detected chemically decoupled compact stellar nuclei with a metallicity twice that of the stellar population in the bulges in seven of the eight galaxies. A starburst is currently going on at the center of the eighth galaxy and we have failed to determine the stellar population properties from its spectrum. The mean stellar ages in the chemically decoupled nuclei found range from 1 to 11 Gyr. The scenarios for the origin of both decoupled nuclei and lenticular galaxies as a whole are discussed.

  14. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  15. Spitzer/IRAC view of Sh 2-284. Searching for evidence of triggered star formation in an isolated region in the outer Milky Way

    NASA Astrophysics Data System (ADS)

    Puga, E.; Hony, S.; Neiner, C.; Lenorzer, A.; Hubert, A.-M.; Waters, L. B. F. M.; Cusano, F.; Ripepi, V.

    2009-08-01

    Aims: Using Spitzer/IRAC observations of a region to be observed by the CoRoT satellite, we have unraveled a new complex star-forming region at low metallicity in the outer Galaxy. We perform a study of S284 in order to outline the chain of events in this star-forming region. Methods: We used four-band Spitzer/IRAC photometry as well as Hα imaging obtained with INT/WFC. Combining these data with the optical photometry obtained in the frame of CoRoTs preparation and the 2MASS catalog we analysed the properties and distribution of young stellar objects (YSOs) associated with point-like sources. We also studied the SEDs of regions of extended emission, complementing our dataset with IRAS and MSX data. Results: We find that S284 is unique in several ways: it is very isolated at the end of a spiral arm and both the diffuse dust and ionized emission are remarkably symmetric. We have partially resolved the central clusters of the three bubbles present in this region. Despite the different scales observed in its multiple-bubble morphology, our study points to a very narrow spread of ages among the powering high-mass clusters. In contrast, the particular sawtooth structure of the extended emission at the rim of each ionized bubble harbours either small lower-mass clusters with a younger stellar population or individual young reddened protostars. In particular, triggered star formation is considered to be at work in these regions. Based on data obtained with IRAC onboard Spitzer (Program ID 3340) and the WFC at Isaac Newton Telescope at La Palma. Tables 3 and 4 are only available in electronic form at http://www.aanda.org

  16. THE MOST DISTANT STARS IN THE MILKY WAY

    SciTech Connect

    Bochanski, John J.; Willman, Beth; Caldwell, Nelson; Brown, Warren; Sanderson, Robyn; West, Andrew A.; Strader, Jay

    2014-07-20

    We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72+015549.6 and ULAS J074417.48+253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of proper motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72+015549.6 at 274 ± 74 kpc and ULAS J074417.48+253233.0 at 238 ± 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72+015549.6 and ULAS J074417.48+253233.0 are both moving away from the Galactic center at 52 ± 10 km s{sup –1} and 24 ± 10 km s{sup –1}, respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MW's disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxy's outer halo.

  17. High-velocity pulsars in the galactic halo

    SciTech Connect

    Eichler, D. ); Silk, J. )

    1992-08-14

    A common origin is proposed for high-velocity pulsars and for gamma-ray bursters. This source is a subdominant population of neutron stars that are in a spatially extended halo around our galaxy. Theoretical speculations and especially recent observations suggest the possible existence of a halo population of neutron stars. Specifically, recent reports of diskward-moving, high-latitude pulsars and of a nearly isotropic distribution of gamma-ray bursters motivate the authors to propose a source of neutron stars in the halo. They suggest that neutron stars could form by mergers of white dwarfs.

  18. Resolved Stellar Halos of M87 and NGC 5128

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Harris, William; Flynn, Chris; Blakeslee, John P.; Valtonen, Mauri

    2015-08-01

    We search halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We resolve thousands of red-giant-branch stars in these stellar halo fields using V and I filters, and, in addition, measure the metallicity using stellar isochrones. In Cen A, we find that the density of metal-rich and metal-poor halo stars falls off with the same slope in the de Vaucouleurs' law profile, from the inner halo of 8 kpc out to 70 kpc, with no sign of a transition to dominance by metal-poor stars. We also find that the metallicity distribution of the inner stellar halo of M87 is most similar to that of NGC 5128's inner stellar halo.

  19. Mapping the Galactic Halo. I. The ``Spaghetti'' Survey

    NASA Astrophysics Data System (ADS)

    Morrison, Heather L.; Mateo, Mario; Olszewski, Edward W.; Harding, Paul; Dohm-Palmer, R. C.; Freeman, Kenneth C.; Norris, John E.; Morita, Miwa

    2000-05-01

    We describe a major survey of the Milky Way halo designed to test for kinematic substructure caused by destruction of accreted satellites. We use the Washington photometric system to identify halo stars efficiently for spectroscopic follow-up. Tracers include halo giants (detectable out to more than 100 kpc), blue horizontal-branch (BHB) stars, halo stars near the main-sequence turnoff, and the ``blue metal-poor stars'' of Preston, Beers, & Shectman. We demonstrate the success of our survey by showing spectra of stars we have identified in all these categories, including giants as distant as 75 kpc. We discuss the problem of identifying the most distant halo giants. In particular, extremely metal-poor halo K dwarfs are present in approximately equal numbers to the distant giants for V>18, and we show that our method will distinguish reliably between these two groups of metal-poor stars. We plan to survey 100 deg2 at high Galactic latitude and expect to increase the numbers of known halo giants, BHB stars, and turnoff stars by more than an order of magnitude. In addition to the strong test that this large sample will provide for the question, Was the Milky Way halo accreted from satellite galaxies? we will improve the accuracy of mass measurements of the Milky Way beyond 50 kpc via the kinematics of the many distant giants and BHB stars we find. We show that one of our first data sets constrains the halo density law over Galactocentric radii of 5-20 kpc and z-heights of 2-15 kpc. The data support a flattened power-law halo with b/a of 0.6 and exponent -3.0. More complex models with a varying axial ratio may be needed with a larger data set.

  20. Outer radiation belt dynamics following the arrival of an interplanetary shock : What the Cluster-CIS and Double Star-HIA data can tell us

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Ganushkina, Natalia; Rème, Henri

    2014-05-01

    Following the launch by NASA of the Radiation Belt Storm Probes (RBSP) twin spacecraft, now named the Van Allen Probes, the discovery of a storage ring was announced: Baker et al., Science, 2013. This transient feature was observed during September 2012, following the arrival of an interplanetary shock, was located between L=3.0 and L=3.5 and consisted of about 4 to 6 MeV electrons. During that period the Cluster spacecraft had a high-inclination orbit, with a perigee just above 2 Re. The CIS experiment onboard Cluster is sensitive to penetrating energetic electrons (E > 2 MeV), which produce background counts and thus allow to localise the boundaries of the outer and inner radiation belts (Ganushkina et al., JGR, 2011). A search was undertaken in the September 2012 CIS data for eventual signatures of the storage ring, and indeed a small increase of the instrument background was observed between L=3.0 and L=3.5. This is clearly separated from the main outer radiation belt, which presents a much stronger background due to higher fluxes of relativistic electrons. A mono-energetic ion drift band was also observed by CIS inside the storage ring, at about 5 keV for He+ and O+ ions. This result provides an independent confirmation for the storage ring. In addition, it allows also to examine Cluster and Double Star data from earlier years, covering a solar cycle, for other such signatures of a transient storage ring. It results that this 3-belt structure is seen several times, following the arrival of an interplanetary shock and if the orbital configuration is suitable.

  1. SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS

    SciTech Connect

    Helmi, Amina; Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Navarro, J. F.

    2011-05-20

    We characterize the substructure in the simulated stellar halos of Cooper et al. which were formed by the disruption of satellite galaxies within the cosmological N-body simulations of galactic halos of the Aquarius project. These stellar halos exhibit a wealth of tidal features: broad overdensities and very narrow faint streams akin to those observed around the Milky Way. The substructures are distributed anisotropically on the sky, a characteristic that should become apparent in the next generation of photometric surveys. The normalized RMS of the density of stars on the sky appears to be systematically larger for our halos compared with the value estimated for the Milky Way from main-sequence turnoff stars in the Sloan Digital Sky Survey. We show that this is likely to be due in part to contamination by faint QSOs and redder main-sequence stars, and might suggest that {approx}10% of the Milky Way halo stars have formed in situ.

  2. Gas accretion from halos to disks: observations, curiosities, and problems

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-08-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  3. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the discs of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of 33° in both cases. While the centrals are better aligned with the inner 10 kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central-satellite alignment is weak (median misalignment angle of 52°) and we find that around 20 per cent of systems have a misalignment angle larger than 78°, which is the value for the Milky Way. The central-satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central-halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disc) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  4. The Surface Brightness Profile of the Bulge and Halo of the Andromeda Spiral Galaxy (M31) from R = 10 to 165 kiloparsecs

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Gilbert, K.; Kalirai, J.; Ostheimer, J.; Majewski, S.; Patterson, R.; Geha, M.; Cooper, M.; Reitzel, D.; Rich, R.

    2006-12-01

    Understanding the formation of galaxies and their structural subcomponents is a key goal of modern cosmology. Large spiral galaxies like our own consist of a flattened rotating disk, a centrally concentrated bulge whose density decreases exponentially with increasing radius, and an extended halo whose density scales as an inverse power law in radius. Our internal vantage point is disadvantageous for investigating the structure of our own Galaxy. By contrast, the Andromeda spiral galaxy (M31), the Milky Ways neighbour, offers us a global external perspective and yet is close enough for individual stars to be resolved. Over several decades, structural studies of M31 have generally concluded that its outer spheroid is an extension of its inner bulge, displaying the characteristic exponential cut-off out to a distance of about 20 kpc from the center, and/or that its halo is undetected or absent. We report here on the discovery of a halo of red giant stars in M31 extending beyond a radius of 150 kpc. Our finding shows that previous studies of the spheroid of M31 spanning the last few decades have been sampling its extended bulge instead of the pristine metal-poor halo. Characterizing the dynamics, metallicity, substructure, and age of M31's halo will provide unique tests of galaxy formation theories. This research was supported by funds from the NSF and NASA/STScI.

  5. Two stellar components in the halo of the Milky Way.

    PubMed

    Carollo, Daniela; Beers, Timothy C; Lee, Young Sun; Chiba, Masashi; Norris, John E; Wilhelm, Ronald; Sivarani, Thirupathi; Marsteller, Brian; Munn, Jeffrey A; Bailer-Jones, Coryn A L; Fiorentin, Paola Re; York, Donald G

    2007-12-13

    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components--an inner and an outer halo--that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.

  6. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  7. GHRS Observations of Cool, Low-Gravity Stars. 5; The Outer Atmosphere and Wind of the Nearby K Supergiant Lambda Velorum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J.

    1999-01-01

    UV spectra of lambda Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 lb-II supergiant. VLA radio observations at lambda = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations, Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log N(sub e) approximately equal 8.9 +/- 0.2 /cc. The profiles of these lines indicate a chromospheric turbulence (v(sub 0) approximately equal 25-36 km/s), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self

  8. ORIGAMI: Delineating Halos Using Phase-space Folds

    NASA Astrophysics Data System (ADS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  9. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    SciTech Connect

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  10. Binary white dwarfs in the halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g < 6) and reach luminosities log (L/L⊙) > 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  11. The rotation curve conspiracy and neutron star/asteroid models for Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Salpeter, Edwin E.; Wasserman, Ira

    1993-01-01

    Gamma Ray Bursts (GRB) were analyzed using new GRO/BATSE results in conjunction with older PVO and KONUS data. It is suggested that the distribution in space of the GRB sources must have an outer bounding surface which is approximately a sphere centered on the location. Neutron stars in some kind of extended halo around the Galaxy with the required mass of an infalling object of order about 10 exp 21 to 10 exp 23 gm are considered.

  12. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  13. STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO

    SciTech Connect

    Bell, Eric F.; Xue Xiangxiang; Rix, Hans-Walter; Ruhland, Christine; Hogg, David W.

    2010-12-15

    If the stellar halos of disk galaxies are built up from the disruption of dwarf galaxies, models predict highly structured variations in the stellar populations within these halos. We test this prediction by studying the ratio of blue horizontal branch stars (BHB stars; more abundant in old, metal-poor populations) to main-sequence turn-off stars (MSTO stars; a feature of all populations) in the stellar halo of the Milky Way using data from the Sloan Digital Sky Survey. We develop and apply an improved technique to select BHB stars using ugr color information alone, yielding a sample of {approx}9000 g < 18 candidates where {approx}70% of them are BHB stars. We map the BHB/MSTO ratio across {approx}1/4 of the sky at the distance resolution permitted by the absolute magnitude distribution of MSTO stars. We find large variations of the BHB/MSTO star ratio in the stellar halo. Previously identified, stream-like halo structures have distinctive BHB/MSTO ratios, indicating different ages/metallicities. Some halo features, e.g., the low-latitude structure, appear to be almost completely devoid of BHB stars, whereas other structures appear to be rich in BHB stars. The Sagittarius tidal stream shows an apparent variation in the BHB/MSTO ratio along its extent, which we interpret in terms of population gradients within the progenitor dwarf galaxy. Our detection of coherent stellar population variations between different stellar halo substructures provides yet more support to cosmologically motivated models for stellar halo growth.

  14. A classification scheme for young stellar objects using the wide-field infrared survey explorer AllWISE catalog: revealing low-density star formation in the outer galaxy

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.

    2014-08-20

    We present an assessment of the performance of WISE and the AllWISE data release for a section of the Galactic Plane. We lay out an approach to increasing the reliability of point-source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near- and mid-infrared colors and magnitudes and test it in a section of the outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star-forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  15. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Shen, Sijing; Wadsley, James E-mail: bwillman@haverford.ed

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.

  16. X-Raying the Star Formation History of the Universe.

    PubMed

    Cavaliere; Giacconi; Menci

    2000-01-10

    The current models of early star and galaxy formation are based upon the hierarchical growth of dark matter halos, within which the baryons condense into stars after cooling down from a hot diffuse phase. The latter is replenished by infall of outer gas into the halo potential wells; this includes a fraction previously expelled and preheated because of momentum and energy fed back by the supernovae which follow the star formation. We identify such an implied hot phase with the medium known to radiate powerful X-rays in clusters and in groups of galaxies. We show that the amount of the hot component required by the current star formation models is enough to be observable out to redshifts z approximately 1.5 in forthcoming deep surveys from Chandra and X-Ray Multimirror Mission, especially in case the star formation rate is high at such and earlier redshifts. These X-ray emissions constitute a necessary counterpart and will provide a much-wanted probe of the star formation process itself (in particular, of the supernova feedback) to parallel and complement the currently debated data from optical and IR observations of the young stars.

  17. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  18. Signatures of Kinematic Substructure in the Galactic Stellar Halo

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Spergel, David N.; Madau, Piero

    2015-07-01

    Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on a class of substructure that is purely kinematic in nature, with no accompanying spatial features. To study its properties, we use a simulated stellar halo created by dynamically populating the Via Lactea II high-resolution N-body simulation with stars. A significant fraction of the stars in the inner halo of Via Lactea share a common speed and metallicity, despite the fact that they are spatially diffuse. We argue that this kinematic substructure is a generic feature of tidal debris from older mergers and may explain the detection of radial-velocity substructure in the inner halo made by the Sloan Extension for Galactic Understanding and Exploration. The GAIA satellite, which will provide the proper motions of an unprecedented number of stars, should further characterize the kinematic substructure in the inner halo. Our study of the Via Lactea simulation suggests that the stellar halo can be used to map the speed distribution of the local dark matter (DM) halo, which has important consequences for DM direct-detection experiments.

  19. QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO

    SciTech Connect

    Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance

    2011-09-01

    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r{sub gc} < 20 kpc.

  20. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-06-01

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo. PMID:22678285

  1. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-05-30

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.

  2. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  3. THE RESOLVED STELLAR HALO OF NGC 253

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Chappell, Samantha N.; Radburn-Smith, David J.; De Jong, Roelof S.

    2011-07-20

    We have obtained Magellan/IMACS and Hubble Space Telescope (HST)/Advanced Camera for Surveys imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a {approx} 0.35 {+-} 0.1. The total stellar mass of the halo is estimated to be M{sub halo} {approx} (2.5 {+-} 1.5) x 10{sup 9} M{sub sun}, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 {+-} 0.6, corresponding to a three-dimensional power-law index of {approx} - 4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.

  4. The Gaseous Halo of NGC 891

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund

    2014-08-01

    The halos of disk galaxies contain a substantial mass of diffuse gas whose properties (temperature, density, structure, and metallicity) are important to understanding how the intergalactic medium was enriched and the long-term star-formation potential of the galaxy. However, we still do not know whether most of the halo material was expelled from the galaxy in a 'galactic fountain' or is fresh infall from the circum/intergalactic medium. NGC 891 is a nearby (D=10 Mpc), edge-on Milky Way analog whose halo has been intensively studied. I will present our recent work in the X-ray and UV bands aimed at trying to determine the origin of the hot and cool components of the halo gas by measuring their metal content, and discuss whether results from NGC 891 can be generalized to other galaxies.

  5. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  6. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  7. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  8. DETECTION OF A DISTINCT METAL-POOR STELLAR HALO IN THE EARLY-TYPE GALAXY NGC 3115

    SciTech Connect

    Peacock, Mark B.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.

    2015-02-10

    We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC 3115. Using deep Hubble Space Telescope observations, we analyze stars 2 mag fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37, and 54 kpc from its center—corresponding to 7, 14, and 21 effective radii (r{sub e} ). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ∼ –0.5 to –0.65. The fraction of metal-poor stars ([Z/H] < –0.95) increases from 17% at 16-37 kpc to 28% at ∼54 kpc. We observe a distinct low-metallicity population (peaked at [Z/H] ∼ –1.3 and with total mass 2 × 10{sup 10} M {sub ☉} ∼ 14% of the galaxy's stellar mass) and argue that this represents the detection of an underlying low-metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late-type galaxies, including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC 3115 are consistent with the galaxy's globular cluster system, which has a similar low-metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemodynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC 3115 of 30.05 ± 0.05 ± 0.10{sub sys} (10.2 ± 0.2 ± 0.5{sub sys} Mpc)

  9. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  10. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  11. Dearth of dark matter or massive dark halo? Mass-shape-anisotropy degeneracies revealed by NMAGIC dynamical models of the elliptical galaxy NGC 3379

    NASA Astrophysics Data System (ADS)

    de Lorenzi, F.; Gerhard, O.; Coccato, L.; Arnaboldi, M.; Capaccioli, M.; Douglas, N. G.; Freeman, K. C.; Kuijken, K.; Merrifield, M. R.; Napolitano, N. R.; Noordermeer, E.; Romanowsky, A. J.; Debattista, V. P.

    2009-05-01

    Recent results from the Planetary Nebula Spectrograph (PNS) survey have revealed a rapidly falling velocity dispersion profile in the nearby elliptical galaxy NGC 3379, casting doubts on whether this intermediate-luminosity galaxy has the kind of dark matter (DM) halo expected in Λ cold dark matter (ΛCDM) cosmology. We present a detailed dynamical study of this galaxy, combining ground based long-slit spectroscopy, integral-field data from the Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) instrument and PNS data reaching to more than seven effective radii. We construct dynamical models with the flexible χ2-made-to-measure (χ2M2M) particle method implemented in the NMAGIC code. We fit spherical, axisymmetric and some triaxial models to the photometric and combined kinematic data in a sequence of gravitational potentials whose circular velocity curves at large radii vary between a near-Keplerian decline and the nearly flat shapes generated by massive haloes. We find that models with a range of halo masses, anisotropies, shapes and inclinations are good representations of the data. In particular, the data are consistent both with near-isotropic systems dominated by the stellar mass and with models in moderately massive haloes with strongly radially anisotropic outer parts (β >~ 0.8 at 7Re). Formal likelihood limits would exclude (at 1σ) the model with stars only, as well as halo models with vcirc(7Re) >~ 250kms-1. All valid models fitting all the data are dynamically stable over gigayears, including the most anisotropic ones. Overall the kinematic data for NGC 3379 out to 7Re are consistent with a range of mass distributions in this galaxy. NGC 3379 may well have a DM halo as predicted by recent merger models within ΛCDM cosmology, provided its outer envelope is strongly radially anisotropic.

  12. Dependence of the Sr-to-Ba and Sr-to-Eu Ratio on the Nuclear Equation of State in Metal-poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Famiano, M. A.; Kajino, T.; Aoki, W.; Suda, T.

    2016-10-01

    A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclear EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.

  13. MMT Hypervelocity Star Survey. II. Five New Unbound Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-05-01

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  14. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    SciTech Connect

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: mgeller@cfa.harvard.edu

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  15. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  16. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  17. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  18. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  19. The Outer Ejecta

    NASA Astrophysics Data System (ADS)

    Weis, Kerstin

    η Carinae is surrounded by a complex circumstellar nebula ejected during more than one eruption, the great eruption in the 1840s and the second or lesser eruption in the 1890s. Beyond the well-defined edges of its famous bipolar nebula are additional nebulous features and ejecta referred to as the outer ejecta. The outer ejecta includes a variety of structures of very different sizes and morphologies distributed in a region 0.67 pc in diameter with a mass of > 2-4 M⊙. Some individual features in the outer ejecta are moving extremely fast, up to 3,200 km/s, with most of the expansion velocities between 400-900 km/s. As a consequence of these high velocities, structures in the outer ejecta interact with the surrounding medium and with each other. The strong shocks that arise from these interactions give rise to soft X-ray emission. The global expansion pattern of the outer ejecta reveals an overall bipolar distribution, giving a symmetric structure to its morphologically more irregular appearance. The long, highly collimated filaments, called strings, are particularly unusual. The material in the strings follow a Hubble-flow and appear to originate at the central star. The properties of the nebulae associated with other LBVs also are described and compared with η Car. HR Car and AG Car show similar bipolar morphologies but are much older; HR Car's nebula may be η Car's older twin. The larger, extended nebulae detected around the giant eruption LBV P Cygni, and the extended nebulosity associated with AG Car and HR Car could be either from previous eruptions or facsimiles to η Car's outer ejecta.

  20. Inhomogeneous chemical enrichment in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2016-08-01

    In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances originate from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relation. This means that the most metal-poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant branch stars or neutron star mergers can contribute at low metallicities. The intrinsic variation of yields are important in the early Universe or metal-poor systems such as in the Galactic halo. The carbon enhancement of extremely metal-poor (EMP) stars can be best explained by faint supernovae, the low [α/Fe] ratios in some EMP stars naturally arise from low-mass (~ 13 - 15M ⊙) supernovae, and finally, the [α/Fe] knee in dwarf spheroidal galaxies can be produced by subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions.

  1. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2015-08-01

    This talk will review ideas about the formation of stellar halos. It will include discussion of the observational evidence for stellar populations formed "in situ" (meaning formed in orbits close to their current ones), "kicked-out" (meaning formed in the inner galaxy in orbits unlike their current ones) and "accreted" (meaning formed in a dark matter halo other than the one they currently occupy). The properties of these (and other) populations seen in simulations of stellar halo formation will also be examined.

  2. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  3. Outer atmospheres of cool stars. XIV - A model for the chromosphere and transition region of Beta Ceti (G9.5 III)

    NASA Technical Reports Server (NTRS)

    Eriksson, K.; Linsky, J. L.; Simon, T.

    1983-01-01

    In the present chromospheric and transition region model for Beta Ceti, which is consistent with IUE spectra of the Mg II, C II, and C IV resonance lines, the Mg II h and k lines are treated in partial redistribution and the C II and C IV lines in complete redistribution. Computed line fluxes are presented for a range of models to show the range of permitted temperature structures. A comparison of the Beta Ceti model to models previously computed in a similar way for other stars shows a trend of decreasing chromospheric pressures and increasing geometric scales as single stars evolve across the transition region boundary. The present analysis also suggests that transition region pressures drastically decrease and geometric scales rapidly increase as single giant stars evolve to the right, toward the boudnary. Beta Ceti's exceptional X-ray brightness is discussed.

  4. An aligned stream of low-metallicity clusters in the halo of the Milky Way.

    PubMed

    Yoon, Suk-Jin; Lee, Young-Wook

    2002-07-26

    One of the long-standing problems in modern astronomy is the curious division of Galactic globular clusters, the "Oosterhoff dichotomy," according to the properties of their RR Lyrae stars. Here, we find that most of the lowest metallicity ([Fe/H] < -2.0) clusters, which are essential to an understanding of this phenomenon, display a planar alignment in the outer halo. This alignment, combined with evidence from kinematics and stellar population, indicates a captured origin from a satellite galaxy. We show that, together with the horizontal-branch evolutionary effect, the factor producing the dichotomy could be a small time gap between the cluster-formation epochs in the Milky Way and the satellite. The results oppose the traditional view that the metal-poorest clusters represent the indigenous and oldest population of the Galaxy.

  5. Building Blocks of the Milky Way's Stellar Halo

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Starkenburg, Else; Helmi, Amina; Nelemans, Gijs

    2016-08-01

    We study the assembly history of the stellar halo of Milky Way-like galaxies using the six high-resolution Aquarius dark matter simulations combined with the Munich-Groningen semi-analytic galaxy formation model. Our goal is to understand the stellar population contents of the building blocks of the Milky Way halo, including their star formation histories and chemical evolution, as well as their internal dynamical properties. We are also interested in how they relate or are different from the surviving satellite population. Finally, we will use our models to compare to observations of halo stars in an attempt to reconstruct the assembly history of the Milky Way's stellar halo itself.

  6. The Mass of the Galaxy from Large Samples of Field Horizontal-Branch Stars in the SDSS Early Data Release

    NASA Astrophysics Data System (ADS)

    Beers, T. C.; Chiba, M.; Sakamoto, T.; Wilhelm, R.; Allende Prieto, C.; Sommer-Larsen, J.; Newberg, H. J.; Yanny, B.; Marsteller, B.; Pier, J. R.

    2004-07-01

    We present a new estimate of the mass of the Milky Way, making use of a large sample of 955 field horizontal-branch (FHB) stars from the Early Data Release of the Sloan Digital Sky Survey. This sample of stars has been classified on the basis of an automated analysis approach, in combination with other methods, in order to obtain estimates of the physical parameters of the stars, i.e., T_eff, log g, [Fe/H], and should be relatively free of contamination from halo blue stragglers. The stars all have measured radial velocities and photometric distance estimates, and the sample includes objects as distant as ˜ 75 kpc from the Galactic center. Application of a Bayesian likelihood method, for a specific model of the Galaxy, indicates that the total mass of the Galaxy lies in the range 1.5-4.0 x 1012 M⊙. Our sample appears to reveal a clear signature of a dual halo population of FHB stars, with the boundary between the inner and outer halo around 20 kpc, and the possibility of rather striking differences in the rotational properties of the Galaxy at low metallicity.

  7. THE GROWTH OF GALAXY STELLAR MASS WITHIN DARK MATTER HALOS

    SciTech Connect

    Zehavi, Idit; Patiri, Santiago; Zheng Zheng

    2012-02-20

    We study the evolution of stellar mass in galaxies as a function of host halo mass, using the 'MPA' and 'Durham' semi-analytic models, implemented on the Millennium Run simulation. For both models, the stellar mass of the central galaxies increases rapidly with halo mass at the low-mass end and more slowly in halos of larger masses at the three redshifts probed (z {approx} 0, 1, 2). About 45% of the stellar mass in central galaxies in present-day halos less massive than {approx}10{sup 12} h{sup -1} M{sub Sun} is already in place at z {approx} 1, and this fraction increases to {approx}65% for more massive halos. The baryon conversion efficiency into stars has a peaked distribution with halo mass, and the peak location shifts toward lower mass from z {approx} 1 to z {approx} 0. The stellar mass in low-mass halos grows mostly by star formation since z {approx} 1, while in high-mass halos most of the stellar mass is assembled by mergers, reminiscent of 'downsizing'. We compare our findings to empirical results from the Sloan Digital Sky Survey and DEEP2 surveys utilizing galaxy clustering measurements to study galaxy evolution. The theoretical predictions are in qualitative agreement with these phenomenological results, but there are large discrepancies. The most significant one concerns the number of stars already in place in the progenitor galaxies at z {approx} 1, which is about a factor of two larger in both semi-analytic models. We demonstrate that methods studying galaxy evolution from the galaxy-halo connection are powerful in constraining theoretical models and can guide future efforts of modeling galaxy evolution. Conversely, semi-analytic models serve an important role in improving such methods.

  8. Linking the Halo to its Surroundings

    NASA Astrophysics Data System (ADS)

    Arimoto, N.

    The Galactic halo is unlikely built up from galaxy populations similar to the dwarf spheroidal galaxies (dSph's) in the Local Group, but it is possible that the halo was formed by accreted dwarf galaxies that had much larger mass and higher star formation rates such as the Saggitarius dSph. Cosmological simulations show that dSph galaxies formed via hierarchical clustering of numerous smaller building blocks. Stars formed at the galaxy centre tend to form from metal-rich infall gas, which builds up the metallicity gradients. Infalling gas has larger rotational velocity and smaller velocity dispersion due to the dissipative processes, resulting the two distinct old stellar populations of different chemical and kinematic properties, which are recently discovered in the Sculptor dSph galaxy.

  9. Outer density profiles of 19 Galactic globular clusters from deep and wide-field imaging

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Gieles, Mark; Sollima, Antonio; Koposov, Sergey; Martínez-Delgado, David; Peñarrubia, Jorge

    2012-01-01

    Using deep photometric data from Wide Field Camera at the Isaac Newton Telescope and Wide Field Imager at the ESO 2.2-m telescope we measure the outer number density profiles of 19 stellar clusters located in the inner region of the Milky Way halo (within a Galactocentric distance range of 10-30 kpc) in order to assess the impact of internal and external dynamical processes on the spatial distribution of stars. Adopting power-law fitting templates, with index -γ in the outer region, we find that the clusters in our sample can be divided in two groups: a group of massive clusters (≥105 M⊙) that has relatively flat profiles with 2.5 < γ < 4, and a group of low-mass clusters (≤105 M⊙), with steep profiles (γ > 4) and clear signatures of interaction with the Galactic tidal field. We refer to these two groups as 'tidally unaffected' and 'tidally affected', respectively. Our results also show a clear trend between the slope of the outer parts and the half-mass density of these systems, which suggests that the outer density profiles may retain key information on the dominant processes driving the dynamical evolution of globular clusters.

  10. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  11. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  12. Halo Stream candidates in the LAMOST DR2

    NASA Astrophysics Data System (ADS)

    Zhao, Jingkun

    2015-08-01

    We have detected eight stellar halo stream candidates in the solar neighborhood using a sample including 64,819 FGK metal-poor ([Fe/H] < -0.7) dwarfs extracted from the cross-match among the LAMOST DR2, WISE, 2MASS and PPMXL catalogues. With the strategy of halo stream detection in Klement et al, several significant ‘phase-space overdensi- ties” of stars on very similar orbits are identified. Three structures are known previously. Five new halo stream candidates are also found. The kinematics and metallicity of these stream candidates are then analyzed. Detailed element abundance are needed to better know the ori-gin of these streams.

  13. Are ancient dwarf satellites the building blocks of the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.; Romano, D.

    2016-05-01

    According to the current cosmological cold dark matter paradigm, the Galactic halo could have been the result of the assemblage of smaller structures. Here we explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [α/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. The α elements deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio, the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [α/Fe] ratios. Moreover, for the first time we consider the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time-scale, and the presence of a threshold in the gas for star formation. In particular, in models with an infall time-scale for the halo around 0.8 Gyr coupled with a threshold in the surface gas density for the star formation (4 M⊙ pc-2), and the enriched infall from dwarf spheroidal satellites, the first halo stars formed show [Fe/H]>-2.4 dex. In this case, to explain [α/Fe] data for stars with [Fe/H]<-2.4 dex, we need stars formed in dSph systems.

  14. Formation of in situ stellar haloes in Milky Way-mass galaxies

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew P.; Parry, Owen H.; Lowing, Ben; Cole, Shaun; Frenk, Carlos

    2015-12-01

    We study the formation of stellar haloes in three Milky Way-mass galaxies using cosmological smoothed particle hydrodynamics simulations, focusing on the subset of halo stars that form in situ, as opposed to those accreted from satellites. In situ stars in our simulations dominate the stellar halo out to 20 kpc and account for 30-40 per cent of its total mass. We separate in situ halo stars into three straightforward, physically distinct categories according to their origin: stars scattered from the disc of the main galaxy (`heated disc'), stars formed from gas smoothly accreted on to the halo (`smooth' gas) and stars formed in streams of gas stripped from infalling satellites (`stripped' gas). We find that most belong to the stripped gas category. Those originating in smooth gas outside the disc tend to form at the same time and place as the stripped-gas population, suggesting that their formation is associated with the same gas-rich accretion events. The scattered disc star contribution is negligible overall but significant in the solar neighbourhood, where ≳90 per cent of stars on eccentric orbits once belonged to the disc. However, the distinction between halo and thick disc in this region is highly ambiguous. The chemical and kinematic properties of the different components are very similar at the present day, but the global properties of the in situ halo differ substantially between the three galaxies in our study. In our simulations, the hierarchical buildup of structure is the driving force behind not only the accreted stellar halo, but also those halo stars formed in situ.

  15. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Wu, Hong; Zhang, Tian-Meng; Zhao, Yong-Heng

    2011-11-01

    We present spectroscopic observations for 11 confirmed globular clusters (GCs) of M31 with the OMR spectrograph on the 2.16 m telescope at the Xinglong site of National Astronomical Observatories, Chinese Academy of Sciences. Nine of our sample clusters are located in the halo of M31 and the most remote one is out to a projected radius of 78.75 kpc from the galactic center. For all our sample clusters, we measured the Lick absorption-line indices and radial velocities. It is noted that most GCs in our sample are distinct from the HI rotation curve of galaxy M31, especially for B514, MCGC5, H12 and B517, suggesting that most of our sample clusters do not have a kinematic association with the star-forming young disk of the galaxy. We separately fitted the absorption line indices from the updated stellar population model of Thomas et al. with two different tracks of Cassisi and Padova, by applying the χ2—minimization method. The fitting results show that all our sample clusters are older than 10Gyr, and metal-poor (-2.38 <= [Fe/H] <= -0.91dex). After merging the spectroscopic metallicity of our work with the previously published ones, we extended the cluster sample out to a projected radius of 117 kpc from the galaxy's center. We found the metallicity gradient exists for all the confirmed clusters with a slope of -0.028 ± 0.001 dex kpc-1. However, the slope turns out to be -0.018 ± 0.001 dex kpc-1 for all the halo clusters, which is much shallower. If we only consider the outer halo clusters with rp > 25 kpc, the slope becomes -0.010 ± 0.002 dex kpc-1 and if one cluster G001 is excluded from the outer halo sample, the slope is -0.004 ± 0.002 dex kpc-1. Thus, we conclude that the metallicity gradient for M31's outer halo clusters is not significant, which agrees well with previous findings.

  16. Creating mock catalogues of stellar haloes from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Lowing, Ben; Wang, Wenting; Cooper, Andrew; Kennedy, Rachel; Helly, John; Cole, Shaun; Frenk, Carlos

    2015-01-01

    We present a new technique for creating mock catalogues of the individual stars that make up the accreted component of stellar haloes in cosmological simulations and show how the catalogues can be used to test and interpret observational data. The catalogues are constructed from a combination of methods. A semi-analytic galaxy formation model is used to calculate the star formation history in haloes in an N-body simulation and dark matter particles are tagged with this stellar mass. The tags are converted into individual stars using a stellar population synthesis model to obtain the number density and evolutionary stage of the stars, together with a phase-space sampling method that distributes the stars while ensuring that the phase-space structure of the original N-body simulation is maintained. A set of catalogues based on the Λ cold dark matter Aquarius simulations of Milky Way mass haloes have been created and made publicly available on a website. Two example applications are discussed that demonstrate the power and flexibility of the mock catalogues. We show how the rich stellar substructure that survives in the stellar halo precludes a simple measurement of its density profile and demonstrate explicitly how pencil-beam surveys can return almost any value for the slope of the profile. We also show that localized variations in the abundance of particular types of stars, a signature of differences in the composition of stellar populations, allow streams to be easily identified.

  17. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  18. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  19. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  20. AHF: AMIGA'S HALO FINDER

    SciTech Connect

    Knollmann, Steffen R.; Knebe, Alexander

    2009-06-15

    Cosmological simulations are the key tool for investigating the different processes involved in the formation of the universe from small initial density perturbations to galaxies and clusters of galaxies observed today. The identification and analysis of bound objects, halos, is one of the most important steps in drawing useful physical information from simulations. In the advent of larger and larger simulations, a reliable and parallel halo finder, able to cope with the ever-increasing data files, is a must. In this work we present the freely available MPI parallel halo finder AHF. We provide a description of the algorithm and the strategy followed to handle large simulation data. We also describe the parameters a user may choose in order to influence the process of halo finding, as well as pointing out which parameters are crucial to ensure untainted results from the parallel approach. Furthermore, we demonstrate the ability of AHF to scale to high-resolution simulations.

  1. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  2. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same

  3. GAS CONDENSATION IN THE GALACTIC HALO

    SciTech Connect

    Joung, M. Ryan; Bryan, Greg L.; Putman, Mary E.

    2012-02-01

    Using adaptive mesh refinement (AMR) hydrodynamic simulations of vertically stratified hot halo gas, we examine the conditions under which clouds can form and condense out of the hot halo medium to potentially fuel star formation in the gaseous disk. We find that halo clouds do not develop from linear isobaric perturbations. This is a regime where the cooling time is longer than the Brunt-Vaeisaelae time, confirming previous linear analysis. We extend the analysis into the nonlinear regime by considering mildly or strongly nonlinear perturbations with overdensities up to 100, also varying the initial height, the cloud size, and the metallicity of the gas. Here, the result depends on the ratio of cooling time to the time required to accelerate the cloud to the sound speed (similar to the dynamical time). If the ratio exceeds a critical value near unity, the cloud is accelerated without further cooling and gets disrupted by Kelvin-Helmholtz and/or Rayleigh-Taylor instabilities. If it is less than the critical value, the cloud cools and condenses before disruption. Accreting gas with overdensities of 10-20 is expected to be marginally unstable; the cooling fraction will depend on the metallicity, the size of the incoming cloud, and the distance to the galaxy. Locally enhanced overdensities within cold streams have a higher likelihood of cooling out. Our results have implications on the evolution of clouds seeded by cold accretion that are barely resolved in current cosmological hydrodynamic simulations and absorption line systems detected in galaxy halos.

  4. Identification of an Extensive Luminous Halo Around the Ringed Spiral Galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.

    1993-12-01

    The isolated spiral galaxy NGC 7217 is characterized by flocculent spiral structure and three optical ring-like zones: a stellar nuclear ring, a weak inner pseudoring, and a bright patchy outer ring. The rings all have nearly the same shape and position angle in projection. To understand this kind of ringed galaxy, we have obtained deep CCD BVRI surface photometry and mapping of the CO and HI gas distributions and kinematics. Our images reveal something that was missed in previous studies: a large, nearly round halo of light extending far beyond the outer ring. We interpret this as bulge light which comes back to dominate the luminosity distribution at large radii. Ellipse fits to isophotes out to 240('') radius reveal a minimum axis ratio of 0.83 just outside the outer ring at 90('') , and then a rise to 0.96 at about 140('') . The luminosity profiles are well-fitted by a combined r({1/) 4} bulge and exponential disk model. In all filters, the bulge dominates at all radii, and the bulge-to-total disk ratio is about 2.3 (B). If the minimum axis ratio of 0.83 approximates the apparent flattening of the disk, then NGC 7217 is remarkably axisymmetric. Nevertheless, the I-band image reveals a tightly-wrapped, two-armed spiral pattern in the outer ring region. The outer ring includes 4.5% of the total B luminosity and is the locus of most of the recent star formation in the galaxy; it is also where the HI gas is concentrated. An additional noteworthy feature is a circumnuclear dust ring 1.2 kpc in diameter. Other dust lanes are seen only on the near side of the galaxy. The rings of NGC 7217 could be resonances with a very weak internal perturbation. We are attempting to simulate the structure using the I-band light distribution to help define the potential. But most interesting is the recent discovery of a substantial population of counter-rotating stars in the galaxy (Kuijken 1993, PASP, 105, 1016). One possible explanation for these stars is that the bulge is more

  5. The Halo of the Milky Way

    SciTech Connect

    Newberg, Heidi Jo; Yanny, Brian; /Rensselaer Poly. /Fermilab

    2005-02-01

    The authors show that the star counts in the spheroid of the Milky Way are not symmetric about the l = 0{sup o}, l = 180{sup o} plane. The minimum counts are found towards l = 155{sup o}. The Galactic longitude of maximum star counts depends on the magnitude and color selection of the halo stars. They interpret this as evidence that the spheroid population is triaxial with a major axis oriented 65{sup o} from the line of sight from the Sun to the Galactic center, and approximately perpendicular to the Galactic bar. Large local star concentrations from tidal debris and possible tidal debris are also observed. A full understanding of the Galactic spheroid population awaits position information and three dimensional space velocities for a representative set of stars in every substructure. Tangential velocities for many stars will be provided by current and planned astrometry missions, but no planned mission will measure stars faint enough to unravel the more distant parts of the spheroid, which contain the majority of the spatial substructure. This paper uses data from the Sloan Digital Sky Survey (SDSS) public data release DR3.

  6. Is the dark halo of the Milky Way prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-07-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  7. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  8. Summary of the 2014 Beam-Halo Monitoring Workshop

    SciTech Connect

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  9. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  10. High energy radiation from neutron stars

    SciTech Connect

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs. (GHT)

  11. Population III Stars Around the Milky Way

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka; Suda, Takuma; Fujimoto, Masayuki Y.

    2016-03-01

    We explore the possibility of observing Population III (Pop III) stars, born of primordial gas. Pop III stars with masses below 0.8 M⊙ should survive to date though are not yet observed, but the existence of stars with low metallicity as [{{Fe}}/{{H}}]\\lt -5 in the Milky Way halo suggests the surface pollution of Pop III stars with accreted metals from the interstellar gas after birth. In this paper, we investigate the runaway of Pop III stars from their host mini-halos, considering the ejection of secondary members from binary systems when their massive primaries explode as supernovae. These stars save them from surface pollution. By computing the star formation and chemical evolution along with the hierarchical structure formation based on the extended Press-Schechter merger trees, we demonstrate that several hundreds to tens of thousands of low-mass Pop III stars escape from the building blocks of the Milky Way. The second and later generations of extremely metal-poor stars also escaped from the mini-halos. We discuss the spatial distributions of these escaped stars by evaluating the distances between the mini-halos in the branches of merger trees under the spherical collapse model of dark matter halos. It is demonstrated that the escaped stars distribute beyond the stellar halo with a density profile close to the dark matter halo, while Pop III stars are slightly more centrally concentrated. 6%-30% of the escaped stars leave the Milky Way and go out into the intergalactic space. Based on the results, we discuss the feasibility of observing the Pop III stars with the pristine surface abundance.

  12. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  13. Absorption by halo gas in the direction of M13

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1983-01-01

    A high velocity cloud in the direction 1 = 59 degrees, b = 41 degrees is detected in absorption at approximately -80 km/s in high dispersion IUE spectra of the blue star Barnard 29 in the globular cluster M13. The cloud is also seen in the H I 21 cm emission data of Kerr and Knapp (1972). Its radial velocity agrees with Giovanelli's data (1980, 1981) for high velocity clouds seen in this general direction of the sky. The cloud's motion is incompatible with the suggestions that neutral halo gas corotates with disk gas. The motion could be explained if neutral halo gas rotates more slowly than disk gas with increasing distance from the galactic plane. Because of our very limited understanding of the actual motions of halo gas, the scale height of this gas is best derived from plots of N sin b versus z for galactic and extragalactic stars.

  14. The LMC geometry and outer stellar populations from early DES data

    SciTech Connect

    Balbinot, Eduardo; Plazas, A.; Santiago, B. X.; Girardi, L.; Pieres, A.; da Costa, L. N.; Maia, M. A. G.; Gruendl, R. A.; Walker, A. R.; Yanny, B.; Drlica-Wagner, A.; Benoit-Levy, A.; Abbott, T. M. C.; Allam, S. S.; Annis, J.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; March, M.; Marshall, J. L.; Miller, C.; Miquel, R.; Ogando, R.; Peoples, J.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D. L.; Wechsler, R.; Zuntz, J.

    2015-03-20

    The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. We find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4Gyr = 1.41 ± 0.01 kpc, while the younger population has R<4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is ≃24+9–6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.

  15. The LMC geometry and outer stellar populations from early DES data

    DOE PAGES

    Balbinot, Eduardo; Plazas, A.; Santiago, B. X.; Girardi, L.; Pieres, A.; da Costa, L. N.; Maia, M. A. G.; Gruendl, R. A.; Walker, A. R.; Yanny, B.; et al

    2015-03-20

    The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. Wemore » find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4Gyr = 1.41 ± 0.01 kpc, while the younger population has R<4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is ≃24+9–6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.« less

  16. The Young Outer Disk of M83

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2010-08-01

    Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have M K >= -8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages <=1 Gyr. The specific star formation rate (SFR) during the past few Gyr estimated from AGB star counts is consistent with that computed from mid-infrared observations of star clusters at similar radii, and it is concluded that the disruption timescale for star clusters in the outer disk is Lt1 Gyr. The LF and specific frequency of AGB stars vary with galactocentric radius, in a manner that is indicative of lower luminosity-weighted ages at larger radii. Modest numbers of red supergiants are also found, indicating that there has been star formation during the past 100 Myr, while the ratio of C stars to M giants is consistent with that expected for a solar metallicity system that has experienced a constant SFR for the past few Gyr. The results drawn from the properties of resolved AGB stars are broadly consistent with those deduced from integrated light observations in the UV. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a co-operative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), the Ministerio da Ciencia e Technologia (Brazil), and the Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina).

  17. Dark Matter Halos with VIRUS-P

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.

    2010-05-01

    We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.

  18. GHRS observations of cool, low-gravity star. 2: Flow and turbulent velocities in the outer atmosphere of gamma CRU CIS (M3.4 III)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Judge, Philip G.

    1995-01-01

    The Goddard High Resoulution Spectrograph (GHRS) on the Hubble Space Telescope (HST) has been used to obtain medium (R = 20,000) and high (R = 85,000) resoultion UV spectra of chromosphere emission features for the M3.4 III star gamma Cru. Small Science Aperture (SSA) G270M and Echelle-B spectra of selected regions in the 2300-2850 A range were obtained to determine the kinematics of the chromosphere using lines of C2), Fe2, Co2, Si1/2), Ni2, Mn2, and Mg2. Profiles of C2) (UV 0.01) lines and fluorescently excited lines of low optical depth indicate average turbulent velocities (Doppler FWHM) of 30.2 +/- 1.3 and 28.8 +/- 1.3 km/s, respectively. The fluorescent emission lines (mean RV = 21.3 +/- 0.9 km/s) and the wings of the emission components of Fe2 lines (mean RV = 22.8 +/- 0.4 km/s) are approximately at rest relative to the radial velocity of the star (21 km/s), while the C2) lines show a modest inflow (mean RV = 23.1 +/- 0.9 km/s). The more opaque lines of Fe2 and Mg2 exhibit complex profiles resulting from line formation in an optically thick, extended expanding atmosphere. The emission wings of these lines are broadened by multiple scattering, and they are centered near the photospheric radial velocity. Closer to line center, these strong lines show a strong blueshifted self-absorption feature (already seen in IUE data), indicative of formation in an expanding chromosphere, and a previously unseen dip in the profiles on the red side of line center. The absorption components, when extracted using simple Gaussian fits, show strong correlations with the relative optical depths of the lines. The derived absorption flow velocities converge to the photospheric velocity as one examines spectra features formed deeper in the atmosphere. The blueward abosrption velocity increases in magnitude from about 7 to 14 km/s with increasing line optical depth - the strong absorptions directly map the acceleration of the outflowing stellar wind, while the interpretation of the

  19. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-han; Allen, R. J.; Hu, Fu-xing

    1987-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  20. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-Han; Allen, R. J.; Hu, Fu-Xing

    1986-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  1. Resolved Stellar Halos of M87 and NGC 5128: Metallicities from the Red-Giant Branch

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.

    2016-08-01

    We have searched halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the galactic center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We have resolved thousands of red-giant-branch (RGB) stars in these stellar halo fields using V and I filters, and, in addition, measured the metallicity using stellar isochrones. The metallicity distribution function (MDF) of the inner stellar halo of M87 is similar to that of NGC 5128's stellar halo.

  2. Stochastic Evolution of Halo Spin

    NASA Astrophysics Data System (ADS)

    Kim, Juhan

    2015-08-01

    We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.

  3. Homogeneous Photometry VI: Variable Stars in the Leo I Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Stetson, Peter B.; Fiorentino, Giuliana; Bono, Giuseppe; Bernard, Edouard J.; Monelli, Matteo; Iannicola, Giacinto; Gallart, Carme; Ferraro, Ivan

    2014-07-01

    From archival ground-based images of the Leo I dwarf spheroidal galaxy, we have identified and characterized the pulsation properties of 164 candidate RR Lyrae variables and 55 candidate anomalous and/or short-period Cepheids. We have also identified 19 candidate long-period variable stars and 13 other candidate variables whose physical nature is unclear, but due to the limitations of our observational material we are unable to estimate reliable periods for them. On the basis of its RR Lyrae star population, Leo I is confirmed to be an Oosterhoff-intermediate type galaxy, like several other dwarf spheroidals. From the RR Lyrae stars we have derived a range of possible distance moduli for Leo I : 22.06 ± 0.08 lsim μ0 lsim 22.25 ± 0.07 mag depending on the metallicity assumed for the old population ([Fe/H] from -1.43 to -2.15). This is in agreement with previous independent estimates. We show that in their pulsation properties, the RR Lyrae stars—representing the oldest stellar population in the galaxy—are not significantly different from those of five other nearby, isolated dwarf spheroidal galaxies. A similar result is obtained when comparing them to RR Lyrae stars in recently discovered ultra-faint dwarf galaxies. We are able to compare the period distributions and period-amplitude relations for a statistically significant sample of ab-type RR Lyrae stars in dwarf galaxies (~1300 stars) with those in the Galactic halo field (~14,000 stars) and globular clusters (~1000 stars). Field RRLs show a significant change in their period distribution when moving from the inner (dG lsim 14 kpc) to the outer (dG gsim 14 kpc) halo regions. This suggests that the halo formed from (at least) two dissimilar progenitors or types of progenitor. Considered together, the RR Lyrae stars in classical dwarf spheroidal and ultra-faint dwarf galaxies—as observed today—do not appear to follow the well defined pulsation properties shown by those in either the inner or the outer

  4. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    SciTech Connect

    Elia, D.; Molinari, S.; Schisano, E.; Pestalozzi, M.; Benedettini, M.; Di Giorgio, A. M.; Pezzuto, S.; Rygl, K. L. J.; Fukui, Y.; Hayakawa, T.; Yamamoto, H.; Olmi, L.; Veneziani, M.; Schneider, N.; Piazzo, L.; Mizuno, A.; Onishi, T.; Polychroni, D.; Maruccia, Y.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.

  5. Observation and analysis of halo current in EAST

    NASA Astrophysics Data System (ADS)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  6. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  7. The extended disc and halo of the Andromeda galaxy observed with Spitzer-IRAC

    NASA Astrophysics Data System (ADS)

    Rafiei Ravandi, Masoud; Barmby, Pauline; Ashby, Matthew L. N.; Laine, Seppo; Davidge, T. J.; Zhang, Jenna; Bianchi, Luciana; Babul, Arif; Chapman, S. C.

    2016-06-01

    We present the first results from an extended survey of the Andromeda galaxy (M31) using 41.1 h of observations by Spitzer-IRAC at 3.6 and 4.5 µm. This survey extends previous observations to the outer disc and halo, covering total lengths of 4.4° and 6.6° along the minor and major axes, respectively. We have produced surface brightness profiles by combining the integrated light from background-corrected maps with stellar counts from a new catalogue of point sources. Using auxiliary catalogues, we have carried out a statistical analysis in colour-magnitude space to discriminate M31 objects from foreground Milky Way stars and background galaxies. The catalogue includes 426 529 sources, of which 66 per cent have been assigned probability values to identify M31 objects with magnitude depths of [3.6] = 19.0 ± 0.2, [4.5] = 18.7 ± 0.2. We discuss applications of our data for constraining the stellar mass and characterizing point sources in the outer radii.

  8. A Search for a Near-Infrared Halo Around NGC 4565

    NASA Technical Reports Server (NTRS)

    Uemizu, Kazunori; Bock, James J.; Kawada, Mitsunobu; Lange, Andrew E.; Matsumoto, Toshio; Watabe, Toyoki; Yost, Sarah A.

    1998-01-01

    We present a near-infrared (3.5-5 micron) search for the integrated emission from low-mass stars and/or brown dwarfs in the halo of the nearby edge-on spiral galaxy NGC 4565. The observation was made with a liquid-helium-cooled rocket-borne telescope using a 256 x 256 InSb array with a pixel scale of 17". Images of NGC 4565 were successfully obtained with sensitivity near the natural background limit. Our search reveals no evidence of a faint halo around the galaxy, in contrast with the previous reports of a halo around NGC 5907. The lower limit of the mass-to-light ratio for the halo of NGC 4565 is 260 (2 delta) in solar units at 3.5-5 microns. This implies that hydrogen-burning stars do not contribute significantly to the mass of the dark halo in NGC 4565.

  9. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is

  10. Stellar orbital properties as diagnostics of the origin of the stellar halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Loebman, Sarah R.; Bailin, Jeremy; Clarke, Adam; Debattista, Victor P.; Stinson, Greg

    2016-08-01

    We examine metallicities, ages and orbital properties of halo stars in a Milky-Way like disk galaxy formed in the cosmological hydrodynamical MaGICC simulations. Halo stars were either accreted from satellites or they formed in situ in the disk or bulge of the galaxy and were then kicked up into the halo (``in situ/kicked-up'' stars). Regardless of where they formed both types show surprisingly similar orbital properties: the majority of both types are on short-axis tubes with the same sense of rotation as the disk - implying that a large fraction of satellites are accreted onto the halo with the same sense of angular momentum as the disk.

  11. Centaurus A: Stellar Metallicity Transition in the Halo

    NASA Astrophysics Data System (ADS)

    Bird, Sarah; Flynn, C.; Harris, W. E.; Valtonen, M.

    2013-01-01

    The very earliest stars in giant galaxies - the most metal-poor halo stars and globular clusters - may have formed before the onset of hierarchical merging, within small pregalactic dwarfs that populated the large-scale dark-matter potential well. Today, these relic stars should be found in a sparse and extremely extended “outermost-halo” component. Finding clear traces of this component in other giant galaxies, and deconvolving it from the more obvious and metal-rich spheroid component generated later by mergers, has been extraordinarily difficult. Now, striking new evidence discovered in M 31 and NGC 3379 suggests that the metal-poor outermost halo can be isolated at very large radii, R > 12Reff . We now have a new deep imaging study with ESO VLT of the nearest giant elliptical and merger remnant, Centaurus A, to search for this extended remnant of the galaxy’s earliest history.

  12. Could wormholes form in dark matter galactic halos?

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Shit, G. C.; Sen, Banashree; Ray, Saibal

    2016-01-01

    We estimate expression for velocity as a function of the radial coordinate r by using polynomial interpolation based on the experimental data of rotational velocities at distant outer regions of galaxies. The interpolation technique has been used to estimate fifth degree polynomial followed by cubic spline interpolation. This rotational velocity is used to find the geometry of galactic halo regions within the framework of Einstein's general relativity. In this paper we have analyzed features of galactic halo regions based on two possible choices for the dark matter density profile, viz. Navarro, Frenk & White (NFW) type (Navarro et al. in Astrophys. J. 462:563, 1996) and Universal Rotation Curve (URC) (Castignani et al. in Nat. Sci. 4:265, 2012). It is argued that spacetime of the galactic halo possesses some of the characteristics needed to support traversable wormholes.

  13. Variable Stars in the LMC Globular Cluster NGC 2257 New: Results Based on 2007-08 B, V Photometry

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Walker, Alistair R.; Jeon, Young-Beom

    2009-09-01

    The variable star population in the Large Magellanic Cloud outer-halo globular cluster NGC 2257 has been reinvestigated using photometry (to ~20th mag) of over 400 new B, V CCD images taken with the CTIO 0.9-m telescope on 14 nights in Dec'07 and Jan'08. The derived periods of most of the stars are consistent with the pulsation periods derived previously, and where there were discrepancies these have been resolved. Accurate Fourier coefficients and parameters were computed for the B and V light curves. Six new variable stars were discovered (V45-V50), including a bright candidate long-period variable star showing secondary oscillations (V45). Examination of archival HST images and previously-published photometry shows that the excess brightness of two bright RR Lyrae stars (V48, V50) is due to contamination from close red giant branch stars. Among the previously known variable stars three double-mode (RRd) RR Lyrae stars (V8, V16 and V34) and several Blazhko variables were discovered. The total number of cluster variable stars now stands at forty-seven: 23 RRab stars, four of which show Blazhko light-curve variations; 20 RRc stars, one showing clear Blazhko variations and another showing possible Blazhko variations; the three RRd stars, all having the dominant period ~0.36 day and period ratios P1/P0~0.7450, and the LPV located near the tip of the red giant branch. A comparison with similar stars in other environments shows that the RRd stars in NGC 2257 are most similar to those in IC 4499.

  14. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  15. Melanocyte halo explained.

    PubMed

    Tata, M; Sidhu, G S

    1994-01-01

    Electron microscopic examination was performed of skin biopsy specimens processed for electron microscopy directly after formaldehyde fixation, after retrieval from paraffin blocks, and as for paraffin embedding but with retrieval after clearing with xylene, the last step before paraffin infiltration. The halos surrounding melanocytes in the epidermis are a retraction artifact that develops during paraffin infiltration of the tissue. It is proposed that this artifact is related to the high temperature of the paraffin bath. PMID:8066827

  16. AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM

    SciTech Connect

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.; Frebel, Anna

    2010-10-10

    We report the analysis of high-resolution, high signal-to-noise ratio, spectra of an extremely metal-poor, extremely C-rich red giant, Seg 1-7, in Segue 1-described in the literature alternatively as an unusually extended globular cluster or an ultra-faint dwarf galaxy. The radial velocity of Seg 1-7 coincides precisely with the systemic velocity of Segue 1, and its chemical abundance signature of [Fe/H] = -3.52, [C/Fe] = +2.3, [N/Fe] = +0.8, [Na/Fe] = +0.53, [Mg/Fe] = +0.94, [Al/Fe] = +0.23, and [Ba/Fe] < -1.0 is similar to that of the rare and enigmatic class of Galactic halo objects designated CEMP-no (carbon-rich, extremely metal-poor with no enhancement (over solar ratios) of heavy neutron-capture elements). This is the first star in a Milky Way 'satellite' that unambiguously lies on the metal-poor, C-rich branch of the Aoki et al. bimodal distribution of field halo stars in the ([C/Fe], [Fe/H])-plane. Available data permit us only to identify Seg 1-7 as a member of an ultra-faint dwarf galaxy or as debris from the Sgr dwarf spheroidal galaxy. In either case, this demonstrates that at extremely low abundance, [Fe/H ] <-3.0, star formation and associated chemical evolution proceeded similarly in the progenitors of both the field halo and satellite systems. By extension, this is consistent with other recent suggestions that the most metal-poor dwarf spheroidal and ultra-faint dwarf satellites were the building blocks of the Galaxy's outer halo.

  17. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  18. HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY

    SciTech Connect

    Valluri, Monica; Debattista, Victor P.; Stinson, Gregory S.; Bailin, Jeremy; Quinn, Thomas R.; Couchman, H. M. P.; Wadsley, James

    2013-04-10

    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner {approx}20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes-the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity {approx}> 0.6. We find that randomly selected samples of halo stars show no substructure in 'integrals of motion' space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible.

  19. Moving Groups in the Milky Way Halo and Disk Induced by the Bar and Spiral Arms

    NASA Astrophysics Data System (ADS)

    Schuster, William John

    2015-08-01

    In a previous study (Moreno et al. 2015), the use of a detailed Milky Way potential (observationally and dynamically constrained) has shown that the Galactic bar is able to efficiently concentrate stars of the stellar halo and disk into several main resonances. With the tools introduced here, the Galactic bar is shown to produce significant phase-space structure attracting stars to several main resonances. This new study is dedicated to the study of known groups of the Galactic halo and disk, and their relation to these resonances. Stars belonging to some known halo and disk moving groups have settled down along these bar resonant families, showing, in some cases, a likely Galactic secular origin. In general, the 2D resonant orbits of the disk produced by the bar, seem to dominate at large scale-heights (several kiloparsecs) into the Galactic halo. In particular, provisionally six of the members of the Kapteyn halo moving group seem to be associated with one of these resonances, and also the Groombridge 1830 (Eggen 1996a; Eggen & Sandage 1959) and especially the newer halo moving groups G21-22 and G18-39 (Silva et al. 2012) show some correlation with these resonances suggesting possible secular origins, while the halo moving group Ross 451 (Eggen 1996b) does not show any such correlation, indicating a more probable cosmological (non-secular) ancestry. All Galactic disk moving groups (such as Arcturus, Hercules, Castor, IC 2391, Hyades, Pleiades, and Ursa Major) show considerable association with these resonances.

  20. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2014-11-01

    High-redshift quasar observations imply that supermassive black holes (SMBHs) larger than ˜109 M⊙ formed before z ˜ 6. That such large SMBHs formed so early in the history of the Universe remains an open theoretical problem. One possibility is that gas in atomic cooling haloes exposed to strong Lyman-Werner (LW) radiation forms 104-106 M⊙ supermassive stars which quickly collapse into black holes. We propose a scenario for direct collapse black hole (DCBH) formation based on synchronized pairs of pristine atomic cooling haloes. We consider haloes at very small separation with one halo being a subhalo of the other. The first halo to surpass the atomic cooling threshold forms stars. Soon after these stars are formed, the other halo reaches the cooling threshold and due to its small distance from the newly formed galaxy, it is exposed to the critical LW intensity required to form a DCBH. The main advantage of this scenario is that synchronization can potentially prevent photoevaporation and metal pollution in DCBH-forming haloes. We use N-body simulations and an analytic approximation to estimate the abundance of DCBHs formed in this way. The density of DCBHs formed in this scenario could explain the SMBHs implied by z ˜ 6 quasar observations. Metal pollution and photoevaporation could potentially reduce the abundance of DCBHs below that required to explain the observations in other models that rely on a high LW flux.

  1. Detecting Halo Substructure in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Mateu, C.; Aguilar, L.; Bruzual, G.; Brown, A.; Valenzuela, O.; Carigi, L.; Velázquez, H.; Hernández, F.

    2014-06-01

    The observational data expected to come from the Gaia astrometric mission represent an unrivaled opportunity to search for tidal streams using all-sky full phase-space information for nearly a billion stars in our Galaxy. In this contribution we will describe the Modified Great Circle Cell Count (mGC3) method devised for the detection of stellar streams in the galactic halo. This method is based on the GC3 method originally devised by Johnston, Hernquist, & Bolte (1996), modified to include velocity information in order to enhance the contrast of stream signatures with respect to the galactic halo background. We present our results on the efficiency of mGC3, tested by embedding tidal streams from N-body simulations in a mock Gaia catalogue of the galactic background, which includes a realistic realization of the photometric and kinematic properties, errors and completeness limits. We investigate mGC3's efficiency as a function of initial satellite luminosity, star formation history and orbital parameters and find that satellites in the range 10^8-10^9 L_⊙ can be recovered for streams as dynamically old as ~10 Gyr and up to galactocentric distances of ~40 kpc. For some combinations of dynamical ages and orbits, tidal streams with luminosities down to 4-5×10^7 L_⊙ can be recovered.

  2. Observational limits on the contribution of sub-stellar and stellar objects to the galactic halo.

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Cavalier, F.; Moniez, M.; Aubourg, E.; Bareyre, P.; Brehin, S.; Gros, M.; Lachieze-Rey, M.; Laurent, B.; Lesquoy, E.; Magneville, C.; Milsztajn, A.; Moscoso, L.; Queinnec, F.; Renault, C.; Rich, J.; Spiro, M.; Vigroux, L.; Zylberajch, S.; Beaulieu, J.-P.; Ferlet, R.; Grison, P.; Vidal-Madjar, A.; Guibert, J.; Moreau, O.; Tajahmady, F.; Maurice, E.; Prevot, L.; Gry, C.

    1996-10-01

    EROS (Experience de Recherche d'Objets Sombres) has been monitoring the luminosity of 4 million stars in the Large Magellanic Cloud in order to search for gravitational microlensing by unseen objects in the galactic halo. We present here the results from 3 years of EROS Schmidt plates data. Two stars exhibit light curves that are consistent with a sizeable microlensing effect. CCD data obtained later on revealed that one of these stars is an eclipsing binary system. Combining Schmidt plates data and the published results from our 16 CCD camera, we set upper limits on the number of unseen objects in the halo in the mass range [10^-7^,1]Msun_.

  3. The Catalina Surveys Periodic Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Graham, M. J.; Djorgovski, S. G.; Catelan, M.; Mahabal, A. A.; Torrealba, G.; García-Álvarez, D.; Donalek, C.; Prieto, J. L.; Williams, R.; Larson, S.; Christen sen, E.; Belokurov, V.; Koposov, S. E.; Beshore, E.; Boattini, A.; Gibbs, A.; Hill, R.; Kowalski, R.; Johnson, J.; Shelly, F.

    2014-07-01

    We present ~47,000 periodic variables found during the analysis of 5.4 million variable star candidates within a 20,000 deg2 region covered by the Catalina Surveys Data Release-1 (CSDR1). Combining these variables with type ab RR Lyrae from our previous work, we produce an online catalog containing periods, amplitudes, and classifications for ~61,000 periodic variables. By cross-matching these variables with those from prior surveys, we find that >90% of the ~8000 known periodic variables in the survey region are recovered. For these sources, we find excellent agreement between our catalog and prior values of luminosity, period, and amplitude as well as classification. We investigate the rate of confusion between objects classified as contact binaries and type c RR Lyrae (RRc's) based on periods, colors, amplitudes, metallicities, radial velocities, and surface gravities. We find that no more than a few percent of the variables in these classes are misidentified. By deriving distances for this clean sample of ~5500 RRc's, we trace the path of the Sagittarius tidal streams within the Galactic halo. Selecting 146 outer-halo RRc's with SDSS radial velocities, we confirm the presence of a coherent halo structure that is inconsistent with current N-body simulations of the Sagittarius tidal stream. We also find numerous long-period variables that are very likely associated within the Sagittarius tidal stream system. Based on the examination of 31,000 contact binary light curves we find evidence for two subgroups exhibiting irregular light curves. One subgroup presents significant variations in mean brightness that are likely due to chromospheric activity. The other subgroup shows stable modulations over more than a thousand days and thereby provides evidence that the O'Connell effect is not due to stellar spots.

  4. THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG

    SciTech Connect

    Drake, A. J.; Graham, M. J.; Djorgovski, S. G.; Mahabal, A. A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; García-Álvarez, D.; Prieto, J. L.; Beshore, E.; Larson, S.; Christen sen, E.; Boattini, A.; Gibbs, A.; Hill, R.; Kowalski, R.; Johnson, J.; Belokurov, V.; Koposov, S. E.; and others

    2014-07-01

    We present ∼47,000 periodic variables found during the analysis of 5.4 million variable star candidates within a 20,000 deg{sup 2} region covered by the Catalina Surveys Data Release-1 (CSDR1). Combining these variables with type ab RR Lyrae from our previous work, we produce an online catalog containing periods, amplitudes, and classifications for ∼61,000 periodic variables. By cross-matching these variables with those from prior surveys, we find that >90% of the ∼8000 known periodic variables in the survey region are recovered. For these sources, we find excellent agreement between our catalog and prior values of luminosity, period, and amplitude as well as classification. We investigate the rate of confusion between objects classified as contact binaries and type c RR Lyrae (RRc's) based on periods, colors, amplitudes, metallicities, radial velocities, and surface gravities. We find that no more than a few percent of the variables in these classes are misidentified. By deriving distances for this clean sample of ∼5500 RRc's, we trace the path of the Sagittarius tidal streams within the Galactic halo. Selecting 146 outer-halo RRc's with SDSS radial velocities, we confirm the presence of a coherent halo structure that is inconsistent with current N-body simulations of the Sagittarius tidal stream. We also find numerous long-period variables that are very likely associated within the Sagittarius tidal stream system. Based on the examination of 31,000 contact binary light curves we find evidence for two subgroups exhibiting irregular light curves. One subgroup presents significant variations in mean brightness that are likely due to chromospheric activity. The other subgroup shows stable modulations over more than a thousand days and thereby provides evidence that the O'Connell effect is not due to stellar spots.

  5. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Astrophysics Data System (ADS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-04-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  6. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  7. Baryonic dark clusters in galactic halos and their observable consequences

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Salpeter, Edwin E.

    1994-01-01

    We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within

  8. The distribution function of the Galaxy's dark halo

    NASA Astrophysics Data System (ADS)

    Binney, J.; Piffl, T.

    2015-12-01

    Starting from the hypothesis that the Galaxy's dark halo responded adiabatically to the infall of baryons, we have constructed a self-consistent dynamical model of the Galaxy that satisfies a large number of observations, including measurements of gas terminal velocities and masers, the kinematics of 180 000 giant stars from the RAVE (RAdial Velocity Experiment) survey and star-count data from the Sloan Digital Sky Survey. The stellar disc and the dark halo are both specified by distribution functions of the action integrals. The model is obtained by extending the work of Piffl et al. from the construction of a single model to a systematic search of model space. Whereas the model of Piffl et al. violated constraints on the terminal-velocity curve, our model respects these constraints by adopting a long scalelength Rd = 3.66 kpc for the thin and thick discs. The model is, however, inconsistent with the measured optical depth for microlensing of bulge stars because it attributes too large a fraction of the density at R ≲ 3 kpc to dark matter rather than stars. Moreover, it now seems likely that the thick disc's scalelength is significantly shorter than the model implies. Shortening this scalelength would cause the constraints from the rotation curve to be violated anew. We conclude that we can now rule out adiabatic compression of our Galaxy's dark halo.

  9. Globular clusters in the halo of M31

    SciTech Connect

    Racine, R. Canada-France-Hawaii Telescope Corp., Kamuela, HI )

    1991-03-01

    The CFHT was used to obtain high-resolution CCD images of 82 cluster candidates in the halo of M31. These data, combined with radial velocities which cover an additional 27 candidates, are used to compile a catalog of 51 bona fide M31 halo globulars. The other candidates are found to be background galaxies (54) and field stars (4). The cluster sample appears to be incomplete for V greater than 18. The projected distribution of globulars follows an 1/r-squared law for r(kpc) between values of 6 and 22 and then drops faster, suggesting a cutoff at about 40 kpc. These trends are similar to those for globular clusters in the Milky Way halo. The total populaton of globulars in M31 is estimated to be larger than in the Milky Way by a factor of 1.8 + or - 0.3. 30 refs.

  10. The extent of the local hi halo

    NASA Technical Reports Server (NTRS)

    Lockman, F. J.; Hobbs, L. M.; Shull, J. M.

    1985-01-01

    Forty-five high-latitude, OB stars have been observed in the Ly alpha and 21 cm lines of HI in an effort to map out the vertical distribution and extent of the local HI halo. The 25 stars for which a reliable HI colum density can be obtained from Ly alpha lie between 60 and 3100 pc from the plane. The principal result is that the total column density of HI at z 1 kpc is, on the average, 5 + or - 3 x 10 the 19th power/sq cm, or 15% of the total sub HI. At relatively low z the data toward some stars suggest a low effective scale height and fairly high average foreground density, while toward others the effective scale height is large and the average density is low. This can be understood as the result of irregularities in the interstellar medium. A model with half of the HI mass in clouds having radii of a few pc and a Gaussian vertical distribution with sigma sub 2 = 135 pc, and half of the mass in an exponential component with a scale height of 500 pc, gives a satisfactory fit to the data. The technique of comparing Ly alpha and 21 cm column densities is also used to discuss the problem of estimating the distance to several possibly subluminous stars.

  11. HALO VELOCITY GROUPS IN THE PISCES OVERDENSITY

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Vivas, A. Katherina; Duffau, Sonia E-mail: zi@u.washington.ed E-mail: sonia.duffau@gmail.co

    2010-07-01

    We report spectroscopic observations of five faint (V {approx} 20) RR Lyrae stars associated with the Pisces overdensity conducted with the Gemini South Telescope. At a heliocentric and galactocentric distance of {approx}80 kpc, this is the most distant substructure in the Galactic halo known to date. We combined our observations with literature data and confirmed that the substructure is composed of two different kinematic groups. The main group contains eight stars and has (V{sub gsr}) = 50 km s{sup -1}, while the second group contains four stars at a velocity of (V{sub gsr}) = -52 km s{sup -1}, where V{sub gsr} is the radial velocity in the galactocentric standard of rest. The metallicity distribution of RR Lyrae stars in the Pisces overdensity is centered on [Fe/H] = -1.5 dex and has a width of 0.3 dex. The new data allowed us to establish that both groups are spatially extended making it very unlikely that they are bound systems, and are more likely to be debris of a tidally disrupted galaxy or galaxies. Due to small sky coverage, it is still unclear whether these groups have the same or different progenitors.

  12. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  13. Are Halo CMEs special events?

    NASA Astrophysics Data System (ADS)

    Lara, A.; Xie, H.; Mendoza, E.

    2005-12-01

    We re-visit the properties of wide coronal mass ejections (CMEs) called halo CMEs. Using the large LASCO/SOHO CMEs data set, from 1996 to 2004, we examine the statistical properties of (partial and full) halo CMEs and compare with the same properties of ``normal'' width (lower than 120°) CMEs, we found that halo CMEs have different properties than ``normal'' CMEs which can not be explained by the current geometric interpretation of halos, as CMEs traveling in the Sun Earth direction. We found that the CME width distribution is formed by, at least, three different populations. Two gaussians one narrow and one medium centered at ~17° and ~38°, respectively. It is highly probable, that the narrow population corresponds to ``true'' observed widths, whereas the medium width population is the product of projection effects. The number of wider CMEs (80° < W < 210°) decreases as a power law. After this width, i. e. partial and full halo CMEs, do not follow any particular distribution. This lack of regularity, may be due to the small number of such events. In particular, we found that the number of observed full halo CMEs is lower than the expected. The CME speed follows a log-normal distribution, except for the very low speed CME population, wich follows a gaussian distribution centered at ~100 km/s and probably is due to projection effects. When the CMEs are dividing by width into no, partial and full halo groups we found that the peak of the distributions are shifted towards higher speeds, ~300, ~400 and ~600 km/s for no, partial and full halo CMEs. This confirms that halo CMEs tend to be high speed CMEs. We introduce a new observational CME parameter: the final observed distance (FOD) which is the highest point, inside the coronograph field of view, where the CME can be distinguished from the background. In other words, the highest CME altitude measured. The FOD for no halo CMEs decreases exponentialy from ~5 to ~30 Ro˙ in the LASCO field of view. On the other

  14. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope II: dynamics, metallicity and age

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Zhao, Yong-Heng

    2012-07-01

    In Paper I, we performed spectroscopic observations on 11 confirmed globular clusters (GCs) in M31 with the Xinglong 2.16 m telescope. We mainly focused on the fitting method and the metallicity gradient for the M31 GC sample. Here, we analyze and further discuss the dynamics, metallicity and age, and their distributions, as well as the relationships between these parameters. In our work, eight more confirmed GCs in the halo of M31 were observed, most of which lack previous spectroscopic information. These star clusters are located far from the galactic center at a projected radius of ~ 14 to ~ 117 kpc, which is more spatially extended than that in the previous work. Firstly, we measured the Lick absorption-line indices and the radial velocities. Then the ages and metallicity values of [Fe/H] and [α/Fe] were fitted by comparing the observed spectral feature indices and the Single Stellar Population model of Thomas et al. in the Cassisi and Padova stellar evolutionary tracks, respectively. Our results show that most of the star clusters in our sample are older than 10 Gyr except B290, which is ~ 5.5 Gyr, and most of them are metal-poor with metallicity [Fe/H] < -1, suggesting that these clusters were born at the early stage of the galaxy's formation. We find that the metallicity gradient for the outer halo clusters with rp > 25 kpc may have an insignificant slope of -0.005 ± 0.005 dex kpc-1 and if the outliers G001 and H11 are excluded, the slope does not change significantly, with a value of -0.002 ± 0.003 dex kpc-1. We also find that the metallicity is not a function of age for the GCs with age < 7 Gyr, but for the old GCs with age > 7 Gyr, there seems to be a trend that the older ones have lower metallicity. Additionally, we plot metallicity distributions with the largest sample of M31 GCs so far and show the bimodality is not significant, and the number of metal-poor and metal-rich groups becomes comparable. The spatial distributions show that the metal

  15. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. IV. THE STAR FORMATION HISTORY OF NGC 2976

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Gilbert, Karoline M.; Roskar, Rok; Gogarten, Stephanie M.; Seth, Anil C.; Weisz, Daniel; Skillman, Evan; Dolphin, Andrew; Holtzman, Jon E-mail: jd@astro.washington.ed E-mail: stephanie@astro.washington.ed E-mail: dweisz@astro.umn.ed E-mail: dolphin@raytheon.co

    2010-01-20

    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or approx6 scale lengths. The outer disk was imaged to a depth of M{sub F606W} approx 1, and an inner field was imaged to the crowding limit at a depth of M{sub F606W} approx -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group approx>1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

  16. Approach to photorealistic halo simulations.

    PubMed

    Gedzelman, Stanley David

    2011-10-01

    A multiple-scattering Monte Carlo model that can produce near-photographic quality images is developed and used to simulate several dramatic halo displays. The model atmosphere contains an absorbing ozone layer plus two clear, molecular air layers with Rayleigh scattering surrounding a cloud layer and an atmospheric boundary layer with aerosol particles subject to Lorentz-Mie scattering. Halos are produced by right hexagonal or pyramidal crystals that reflect and refract according to geometric optics without diffraction, although "junk" crystals with a pronounced forward-scattering peak but no halo peaks may be included to simulate typical, faint halos. Model parameters include ozone height and content, surface and cloud pressure, cloud optical thickness, crystal shapes, orientations and abundances, atmospheric turbidity, aerosol radius, and albedo. Beams for each wavelength are sorted into small bins as halo beams if they have been scattered once only by a single crystal and otherwise as sky beams, which are smoothed and combined with the halo beams to produce images. Multiple scattering generally vitiates halos, but extremely rare halos, such as Kern's arc, can be produced if a significant fraction of crystals in optically thick clouds have identical shapes and are highly oriented. Albedo is a model by-product with potential value in climate studies.

  17. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  18. The influence of halo evolution on galaxy structure

    NASA Astrophysics Data System (ADS)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.

  19. Stellar orbital properties and abundances as diagnostics of the origin of the stellar halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-08-01

    We examine the properties of halo stars in Milky-Way like disk galaxies formed in cosmological hydrodynamical simulations. We identify two populations of halo stars: those that were formed in dwarf satellites and subsequently accreted into the halo of a disk galaxy and a second population that was formed in the main disk/bulge of the galaxy and subsequently kicked into the halo. At redshift zero the orbital properties, kinematics, metallicities and ages of these two populations are examined and are used to find criteria by which to distinguish between these two populations. This study yields insights into the whether or not future spectroscopic and astrometric data will enable us to disentangle the various accretion events that resulted in the formation of the Milky Way Galaxy.

  20. The Halo of NGC 2438 scrutinized

    NASA Astrophysics Data System (ADS)

    Oettl, Silvia; Kimeswenger, Stefan

    2015-08-01

    Haloes and multiple shells around planetary nebulae trace the mass-loss history of the central star. The haloes provide us with information about abundances, ionization or kinematics. Detailed investigations of these haloes can be used to study the evolution of the old stellar population in our galaxy and beyond.Different observations show structures in the haloes like radial rays, blisters and rings (e.g., Ramos-Larios et al. 2012, MNRAS 423, 3753 or Matsuura et al. 2009, ApJ, 700, 1067). The origin of these features has been associated with ionization shadows (Balick 2004, AJ, 127, 2262). They can be observed in regions, where dense knots are opaque to stellar ionizing photons. In this regions we can see leaking UV photons.In this work, we present a detailed investigation of the multiple shell PN NGC 2438. We derive a complete data set of the main nebula. This allows us to analize the physical conditions from photoionization models, such as temperature, density and ionization, and clumping.Data from ESO (3.6m telescope - EFOSC1 - direct imaging and long slit spectroscopy) and from SAAO (spectroscopic observations using a small slit) were available. These data were supplemented by imaging data from the HST archive and by archival VLA observations. The low-excitation species are found to be dominated by clumps. The emission line ratios show no evidence for shocks. We find the shell in ionization equilibrium: a significant amount of UV radiation infiltrates the inner nebula. Thus the shell still seems to be ionized.The photoionization code CLOUDY was used to model the nebular properties and to derive a more accurate distance and ionized mass. The model supports the hypothesis that photoionization is the dominant process in this nebula, far out into the shell.If we want to use extragalactic planetary nebulae as probes of the old stellar population, we need to assess the potential impact of a halo on the evolution. Also the connection of observations and models must

  1. HST/ACS PHOTOMETRY OF OLD STARS IN NGC 1569: THE STAR FORMATION HISTORY OF A NEARBY STARBURST

    SciTech Connect

    Grocholski, Aaron J.; Van der Marel, Roeland P.; Aloisi, Alessandra E-mail: marel@stsci.edu; and others

    2012-05-15

    We used Hubble Space Telescope/Advanced Camera for Surveys to obtain deep V- and I-band images of NGC 1569, one of the closest and strongest starburst galaxies in the universe. These data allowed us to study the underlying old stellar population, aimed at understanding NGC 1569's evolution over a full Hubble time. We focus on the less-crowded outer region of the galaxy, for which the color-magnitude diagram (CMD) shows predominantly a red giant branch (RGB) that reaches down to the red clump/horizontal branch feature (RC/HB). A simple stellar population analysis gives clear evidence for a more complicated star formation history (SFH) in the outer region. We derive the full SFH using a newly developed code, SFHMATRIX, which fits the CMD Hess diagram by solving a non-negative least-squares problem. Our analysis shows that the relative brightnesses of the RGB tip and RC/HB, along with the curvature and color of the RGB, provide enough information to ameliorate the age-metallicity-extinction degeneracy. The distance/reddening combination that best fits the data is E(B - V) = 0.58 {+-} 0.03 and D = 3.06 {+-} 0.18 Mpc. Star formation began {approx}13 Gyr ago, and this accounts for the majority of the mass in the outer region. However, the initial burst was followed by a relatively low, but constant, rate of star formation until {approx}0.5-0.7 Gyr ago when there may have been a short, low intensity burst of star formation. Stellar metallicity increases over time, consistent with chemical evolution expectations. The dominant old population shows a considerable spread in metallicity, similar to the Milky Way halo. However, the star formation in NGC 1569's outer region lasted much longer than in the Milky Way. The distance and line-of-sight velocity of NGC 1569 indicate that it has moved through the IC 342 group of galaxies, which may have caused this extended star formation. Comparison with other recent work provides no evidence for radial population gradients in the old

  2. Dynamical evolution of primordial dark matter haloes through mergers

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  3. Evidence for a Triaxial Milky Way Dark Matter Halo from the Sagittarius Stellar Tidal Stream

    NASA Astrophysics Data System (ADS)

    Law, David R.; Majewski, S. R.; Johnston, K. V.

    2010-01-01

    Observations of the lengthy tidal streams produced by the destruction of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) are capable of providing strong constraints on the shape of the Galactic gravitational potential. However, previous work, based on modeling different stream properties in axisymmetric Galactic models has yielded conflicting results: while the angular precession of the Sgr leading arm is most consistent with a spherical or slightly oblate halo, the radial velocities of stars in this arm are only reproduced by prolate halo models. We demonstrate that this apparent paradox can be resolved by instead adopting a triaxial potential. Our new Galactic halo model, which simultaneously fits all well-established phase space constraints from the Sgr stream, provides the first conclusive evidence for, and tentative measurement of, triaxiality in an individual dark matter halo. In this model, the minor axis of the dark halo is approximately coincident with the Galactic X axis connecting the Sun and the Galactic Center.

  4. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    SciTech Connect

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  5. Evolution of star clusters in a cosmological tidal field

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; Ishiyama, Tomoaki; Langelaan, Paul; Makino, Junichiro; McMillan, Stephen L. W.; Portegies Zwart, Simon

    2013-12-01

    We present a method to couple N-body star cluster simulations to a cosmological tidal field, using AMUSE (Astrophysical Multipurpose Software Environment). We apply this method to star clusters embedded in the CosmoGrid dark matter only Lambda cold dark matter simulation. Our star clusters are born at z = 10 (corresponding to an age of the universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32 000 stars on its location. We then follow the dynamical evolution of the star cluster within the cosmological environment. We compare the evolution of star clusters in two Milky Way size haloes with a different accretion history. The mass-loss of the star clusters is continuous irrespective of the tidal history of the host halo, but major merger events tend to increase the rate of mass-loss. From the selected two dark matter haloes, the halo that experienced the larger number of mergers tends to drive a smaller mass-loss rate from the embedded star clusters, even though the final masses of both haloes are similar. We identify two families of star clusters: native clusters, which become part of the main halo before its final major merger event, and the immigrant clusters, which are accreted upon or after this event; native clusters tend to evaporate more quickly than immigrant clusters. Accounting for the evolution of the dark matter halo causes immigrant star clusters to retain more mass than when the z = 0 tidal field is taken as a static potential. The reason for this is the weaker tidal field experienced by immigrant star clusters before merging with the larger dark matter halo.

  6. The Sizes of Globular Clusters as Tracers of Galactic Halo Potentials

    NASA Astrophysics Data System (ADS)

    Zonoozi, A. H.; Rabiee, M.; Haghi, H.; Küpper, A. H. W.

    2016-02-01

    We present N-body simulations of globular clusters, exploring the effect of different galactic potentials on cluster sizes, rh. For various galactocentric distances, RG, we assess how cluster sizes change when we vary the virial mass and concentration of the host galaxy’s dark-matter halo. We show that sizes of GCs are determined by the local galactic mass density rather than the virial mass of the host galaxy. We find that clusters evolving in the inner halos of less concentrated galaxies are significantly more extended than those evolving in more concentrated ones, while the sizes of those orbiting in the outer halo are almost independent of concentration. Adding a baryonic component to our galaxy models does not change these results much, since its effect is only significant in the very inner halo. Our simulations suggest that there is a relation between rh and RG, which systematically depends on the physical parameters of the halo. Hence, observing such relations in individual galaxies can put a new observational constraint on dark-matter halo characteristics. However, by varying the halo mass in a wide range of {10}9≤slant {M}{vir}/{M}⊙ ≤slant {10}13, we find that the rh - RG relationship will be nearly independent of halo mass, if one assumes Mvir and cvir as two correlated parameters, as is suggested by cosmological simulations.

  7. One hundred first stars: Protostellar evolution and the final masses

    SciTech Connect

    Hirano, Shingo; Umeda, Hideyuki; Hosokawa, Takashi; Yoshida, Naoki; Chiaki, Gen; Omukai, Kazuyuki; Yorke, Harold W.

    2014-02-01

    We perform a large set of radiation hydrodynamic simulations of primordial star formation in a fully cosmological context. Our statistical sample of 100 First Stars shows that the first generation of stars has a wide mass distribution M {sub popIII} = 10 ∼ 1000 M {sub ☉}. We first run cosmological simulations to generate a set of primordial star-forming gas clouds. We then follow protostar formation in each gas cloud and the subsequent protostellar evolution until the gas mass accretion onto the protostar is halted by stellar radiative feedback. The accretion rates differ significantly among the primordial gas clouds that largely determine the final stellar masses. For low accretion rates, the growth of a protostar is self-regulated by radiative feedback effects, and the final mass is limited to several tens of solar masses. At high accretion rates the protostar's outer envelope continues to expand, and the effective surface temperature remains low; such protostars do not exert strong radiative feedback and can grow in excess of 100 solar masses. The obtained wide mass range suggests that the first stars play a variety of roles in the early universe, by triggering both core-collapse supernovae and pair-instability supernovae as well as by leaving stellar mass black holes. We find certain correlations between the final stellar mass and the physical properties of the star-forming cloud. These correlations can be used to estimate the mass of the first star from the properties of the parent cloud or of the host halo without following the detailed protostellar evolution.

  8. Investigating the earliest epochs of the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Starkenburg

    2016-08-01

    Resolved stellar spectroscopy can obtain knowledge about chemical enrichment processes back to the earliest times, when the oldest stars were formed. In this contribution I will review the early (chemical) evolution of the Milky Way halo from an observational perspective. In particular, I will discuss our understanding of the origin of the peculiar abundance patterns in various subclasses of extremely metal-poor stars, taking into account new data from our abundance and radial velocity monitoring programs, and their implications for our understanding of the formation and early evolution of both the Milky Way halo and the satellite dwarf galaxies therein. I conclude by presenting the ``Pristine'' survey, a program on the Canada-France-Hawaii Telescope to study this intriguing epoch much more efficiently.

  9. Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo

    NASA Technical Reports Server (NTRS)

    Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.

    1993-01-01

    We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).

  10. Evolution of Dwarf Spheroidal Satellites in the Common Surface-density Dark Halos

    NASA Astrophysics Data System (ADS)

    Okayasu, Yusuke; Chiba, Masashi

    2016-08-01

    We investigate the growth histories of dark matter halos associated with dwarf satellites in Local Group galaxies and the resultant evolution of the baryonic component. Our model is based on the recently proposed property that the mean surface density of a dark halo inside a radius at maximum circular velocity {V}{{\\max }} is universal over a large range of {V}{{\\max }}. Given that a surface density of 20 M ⊙ pc-2 well explains dwarf satellites in the Milky Way and Andromeda, we find that the evolution of the dark halo in this common surface-density scale is characterized by the rapid increase of the halo mass assembled by the redshift {z}{{TT}} of the tidal truncation by its host halo, at early epochs of {z}{{TT}}≳ 6 or {V}{{\\max }}≲ 22 km s-1. This mass growth of the halo is slow at lower {z}{{TT}} or larger {V}{{\\max }}. Taking into account the baryon content in this dark halo evolution, under the influence of the ionizing background radiation, we find that the dwarf satellites are divided into roughly two families: those with {V}{{\\max }}≲ 22 km s-1 having high star formation efficiency and those with larger {V}{{\\max }} having less efficient star formation. This semianalytical model is in agreement with the high-resolution numerical simulation for galaxy formation and with the observed star formation histories for Fornax and Leo II. This suggests that the evolution of a dark halo may play a key role in understanding star formation histories in dwarf satellites.

  11. Compact binary mergers as the origin of r-process elements in the Galactic halo

    SciTech Connect

    Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    2014-05-02

    Compact binary mergers (of double neutron star and black hole-neutron star systems) are suggested to be the major site of the r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that estimated long lifetimes of compact binaries are in conflict with the presence of r-process-enhanced stars at the metallicity [Fe/H] ∼ −3. To resolve this problem, we examine the role of compact binary mergers in the early Galactic chemical evolution on the assumption that our Galactic halo was formed from merging sub-halos. The chemical evolutions are modeled for sub-halos with their total stellar masses between 10{sup 4}M{sub ⊙} and 2 × 10{sup 8}M{sub ⊙}. The lifetimes of compact binaries are assumed to be 100 Myr (95%) and 1 Myr (5%) according to recent binary population synthesis studies. We find that the r-process abundances (relative to iron; [r/Fe]) start increasing at [Fe/H] ≤ −3 if the star formation rates are smaller for less massive sub-halos. Our models also suggest that the star-to-star scatter of [r/Fe]'s observed in Galactic halo stars can be interpreted as a consequence of greater gas outflow rates for less massive sub-halos. In addition, the sub-solar [r/Fe]'s (observed as [Ba/Fe] ∼ −1.5 for [Fe/H] < −3) are explained by the contribution from the short-lived (∼ 1 Myr) binaries. Our result indicates, therefore, that compact binary mergers can be potentially the origin of the r-process elements throughout the Galactic history.

  12. Phase-space structure of cold dark matter halos

    SciTech Connect

    Sikivie, P.; Ipser, J.R.

    1991-12-31

    A galactic halo of cold dark matter particles has a sheet-like structure in phase-space. The energy and momentum spectra of such particles on earth has a set of peaks whose central values and intensities form a record of the formation of the Galaxy. Scattering of the dark matter particles by stars and globular clusters broadens the peaks but does not erase them entirely. The giant shells around some elliptical galaxies may be a manifestation of this structure.

  13. On the formation of dwarf galaxies and stellar haloes

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Pontzen, A. P.; Viel, M.

    2006-09-01

    Using analytic arguments and a suite of very high resolution (~103Msolar per particle) cosmological hydrodynamical simulations, we argue that high-redshift, z ~ 10, M ~ 108Msolar haloes, form the smallest `baryonic building block' (BBB) for galaxy formation. These haloes are just massive enough to efficiently form stars through atomic line cooling and to hold on to their gas in the presence of supernova (SN) winds and reionization. These combined effects, in particular that of the SN feedback, create a sharp transition: over the mass range 3-10 × 107Msolar, the BBBs drop two orders of magnitude in stellar mass. Below ~2 × 107Msolar, galaxies will be dark with almost no stars and no gas. Above this scale is the smallest unit of galaxy formation: the BBB. We show that the BBBs have stellar distributions which are spheroidal, of low rotational velocity, old and metal poor: they resemble the dwarf spheroidal galaxies (dSphs) of the Local Group (LG). Unlike the LG dSphs, however, they contain significant gas fractions. We connect these high-redshift BBBs to the smallest dwarf galaxies observed at z = 0 using linear theory. A small fraction (~100) of these gas-rich BBBs at high redshift fall in to a galaxy the size of the Milky Way (MW). We suggest that 10 per cent of these survive to become the observed LG dwarf galaxies at the present epoch. This is consistent with recent numerical estimates. Those infalling haloes on benign orbits which keep them far away from the MW or Andromeda manage to retain their gas and slowly form stars - these become the smallest dwarf irregular galaxies; those on more severe orbits lose their gas faster than they can form stars and become the dwarf spheroidals. The remaining 90 per cent of the BBBs will be accreted. We show that this gives a metallicity and total stellar mass consistent with the MW old stellar halo.

  14. The kinematics of Milky Way halo gas. I - Observations of low-ionization species

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1989-01-01

    Ultraviolet interstellar line day observed with the IUE toward 70 halo stars and four extragalactic sight lines are analyzed in a study of the large-scale kinematic properties of the Milky Way halo gas. The motions of the low-ionization gas is focused on. Large systematic velocities are found, and a pronounced asymmetry in the absorption characteristics of halo gas toward the Galactic poles is indicated. In the north, substantial amounts of material are falling toward the disk at velocities up to about 120 km/s in the most extreme case. Toward the south, low-ionization material shows no extreme or systematic motions.

  15. NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES

    SciTech Connect

    Thom, Christopher; Tumlinson, Jason; Sembach, Kenneth R.; Werk, Jessica K.; Xavier Prochaska, J.; Peeples, Molly S.; Tripp, Todd M.; Katz, Neal S.; O'Meara, John M.; Ford, Amanda Brady; Dave, Romeel; Weinberg, David H.

    2012-10-20

    We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 10{sup 16} cm{sup -2} is {approx}40%-50% within {approx}150 kpc. Line widths and kinematics of the detected material show it to be cold (T {approx}< 10{sup 5} K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized circumgalactic medium baryons may be up to 10{sup 9}-10{sup 11} M{sub Sun }. Contrary to some theoretical expectations, strong halo H I absorbers do not disappear as part of the quenching of star formation. Even passive galaxies retain significant reservoirs of halo baryons that could replenish the interstellar gas reservoir and eventually form stars. This halo gas may feed the diffuse and molecular gas that is frequently observed inside ETGs.

  16. Halo traction device.

    PubMed

    Manthey, D E

    1994-08-01

    A thorough understanding of the underlying diseases and of the halo pin traction device will allow for appropriate treatment of complications. Consultation or referral to the neurosurgeon is advised to prevent serious sequelae. The following points should be remembered: 1. Pins should only be tightened during the first 24-hour period after application. 2. Pin infection is treated by local wound care in most cases. 3. CT scan cannot completely exclude the presence of an abscess secondary to artifact, but MRI may be compatible with the newer devices. 4. Pin penetration of the inner table of the skull requires admission. 5. Any suspected loss of alignment or reduction of the cervical spine requires C-spine immobilization. 5. Nasotracheal or fiberoptic intubation or emergent cricothyroidotomy should be used if orotracheal intubation proves difficult due to the device. 7. The anterior portion of the vest is removable for cardiopulmonary resuscitation without compromising the stability of the device. PMID:8062799

  17. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect

    Cen Renyue

    2013-06-20

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  18. STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS

    SciTech Connect

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-10

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  19. The surface density of haloes

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Lee, Xi-Guo

    We study the correlation between the central surface density and the core radius of the dark matter haloes of galaxies and clusters of galaxies. We find that the surface density within the halo characteristic radius r* is not a universal quantity as claimed by some authors (e.g., Milgrom 2009), but it correlates with several physical quantities (e.g., the halo mass M200, and the magnitude MB). The slope of the surface density-mass relation is 0.18 ± 0.05, leaving small room to the possibility of a constant surface density. Finally, we compare the results with MOND predictions.

  20. Stellar Streams in the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2011-05-01

    The PAndAS survey detects RGB and AGB stars in our neighbor galaxy M31, out to 150 kpc from the galaxy center with an extension to M33. Maps of this survey display a spectacular collection of stellar streams extending tens to hundreds of kpc in length. Many of these streams overlap with each other or with M31's central regions, making it difficult to disentangle the different streams. I discuss what is currently known about the nature, origin, significance, and eventual fate of these stellar streams. Photometric observations from the PAndAS survey and follow-up work constrain the metallicity, age, luminosity, and stellar mass of the stellar population. I discuss scenarios for how some of these streams formed, while for others their origin remains a mystery. I present observationally constrained numerical simulations for the formation of some of the streams. The streams also are probes of the mass profile and lumpiness of M31's dark matter halo. Spectroscopic samples are used to constrain M31's halo mass at large radius.

  1. HOBBY-EBERLY TELESCOPE OBSERVATIONS OF THE DARK HALO IN NGC 821

    SciTech Connect

    Forestell, Amy D.; Gebhardt, Karl E-mail: gebhardt@astro.as.utexas.ed

    2010-06-10

    We present stellar line-of-sight velocity distributions (LOSVDs) of elliptical galaxy NGC 821 obtained to approximately 100'' (over two effective radii) with long-slit spectroscopy from the Hobby-Eberly Telescope. Our measured stellar LOSVDs are larger than the planetary nebulae measurements at similar radii. We fit axisymmetric orbit-superposition models with a range of dark halo density profiles, including two-dimensional kinematics at smaller radii from SAURON data. Within our assumptions, the best-fitted model gives a total enclosed mass of 2.0 x 10{sup 11} M {sub sun} within 100'', with an accuracy of 2%; this mass is equally divided between halo and stars. At 1 R{sub e} , the best-fitted dark matter halo accounts for 13% of the total mass in the galaxy. This dark halo is inconsistent with previous claims of little to no dark matter halo in this galaxy from planetary nebula measurements. We find that a power-law dark halo with a slope 0.1 is the best-fitted model; both the no dark halo and Navarro-Frenk-White models are worse fits at a greater than 99% confidence level. NGC 821 does not appear to have the expected dark halo density profile. The internal moments of the stellar velocity distribution show that the model with no dark halo is radially anisotropic at small radii and tangentially isotropic at large radii, while the best-fitted halo models are slightly radially anisotropic at all radii. We test the potential effects of model smoothing and find that there are no effects on our results within the errors. Finally, we run models using the planetary nebula kinematics and assuming our best-fitted halos and find that the planetary nebulae require radial orbits throughout the galaxy.

  2. Halo model and halo properties in Galileon gravity cosmologies

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Lombriser, Lucas; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: llo@roe.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-04-01

    We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies.

  3. Halo formation and evolution: unifying physical properties with structure

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  4. The formation of the smooth halo component

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge

    2016-08-01

    The detection and characterization of debris in the integral-of-motion space is a promising avenue to uncover the hierarchical formation of the Milky Way. Yet, the fact that the integrals do not remain constant during the assembly process adds considerable complexity to this approach. Indeed, in time-dependent potentials tidal substructures tend to be effaced from the integral-of-motion space through an orbital diffusion process, which naturally leads to the formation of a `smooth' stellar halo. In this talk I will introduce a new probability theory that describes the evolution of collisionless systems subject to a time-dependent potential. The new theory can be used to reconstruct the hierarchical assembly of our Galaxy through modelling the observed distribution of accreted stars in the integral-of-motion space.

  5. RADIATIVE AND KINETIC FEEDBACK BY LOW-MASS PRIMORDIAL STARS

    SciTech Connect

    Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.

    2010-03-20

    Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M{sub sun}. We extend our earlier survey of local UV feedback on star formation to 25-80 M{sub sun} stars and include kinetic feedback by SNe for 25-40 M{sub sun} stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.

  6. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  7. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown worlds in the…

  8. Outer planet satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon.

  9. Rotational signature of the Milky Way stellar halo

    NASA Astrophysics Data System (ADS)

    Fermani, Francesco; Schönrich, Ralph

    2013-07-01

    We measure the rotation of the Milky Way stellar halo on two samples of blue horizontal branch (BHB) field halo stars from the Sloan Digital Sky Survey (SDSS) with four different methods. The two samples comprise 1582 and 2563 stars, respectively, and reach out to ˜50 kpc in galactocentric distance. Two of the methods to measure rotation rely exclusively on line-of-sight (l.o.s.) velocities, namely the popular double power-law model and a direct estimate of the de-projected l.o.s. velocity. The other two techniques use the full 3D motions: the radial velocity based rotation estimator of Schönrich et al. and a simple 3D azimuthal velocity mean. In this context we (a) critique the popular model and (b) assess the reliability of the estimators. All four methods agree on a weakly prograde or non-rotating halo. Further, we observe no duality in the rotation of sub-samples with different metallicities or at different radii. We trace the rotation gradient across metallicity measured by Deason et al. on a similar sample of BHB stars back to the inclusion of regions in the apparent magnitude-surface gravity plane known to be contaminated. In the spectroscopically selected sample of Xue et al., we flag ˜500 hot metal-poor stars for their peculiar kinematics w.r.t. to both their cooler metal-poor counterparts and the metal-rich stars in the same sample. They show a seemingly retrograde behaviour in l.o.s. velocities, which is not confirmed by the 3D estimators. Their anomalous vertical motion hints at either a pipeline problem or a stream-like component rather than a smooth retrograde population.

  10. Identifying Contributions to the Stellar Halo from Accreted, Kicked-out, and In Situ Populations

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Majewski, Steven R.; Johnston, Kathryn V.; Cunha, Katia; Smith, Verne V.; Cheung, Andrew M.; Hampton, Christina M.; David, Trevor J.; Wagner-Kaiser, Rachel; Johnson, Marshall C.; Kaplan, Evan; Miller, Jacob; Patterson, Richard J.

    2012-12-01

    We present a medium-resolution spectroscopic survey of late-type giant stars at mid-Galactic latitudes of (30° < |b| < 60°), designed to probe the properties of this population to distances of ~9 kpc. Because M giants are generally metal-rich and we have limited contamination from thin disk stars by the latitude selection, most of the stars in the survey are expected to be members of the thick disk (lang[Fe/H]rang ~ -0.6) with some contribution from the metal-rich component of the nearby halo. Here we report first results for 1799 stars. The distribution of radial velocity (RV) as a function of l for these stars shows (1) the expected thick disk population and (2) local metal-rich halo stars moving at high speeds relative to the disk, which in some cases form distinct sequences in RV-l space. High-resolution echelle spectra taken for 34 of these "RV outliers" reveal the following patterns across the [Ti/Fe]-[Fe/H] plane: 17 of the stars have abundances reminiscent of the populations present in dwarf satellites of the Milky Way, 8 have abundances coincident with those of the Galactic disk and a more metal-rich halo, and 9 of the stars fall on the locus defined by the majority of stars in the halo. The chemical abundance trends of the RV outliers suggest that this sample consists predominantly of stars accreted from infalling dwarf galaxies. A smaller fraction of stars in the RV outlier sample may have been formed in the inner Galaxy and subsequently kicked to higher eccentricity orbits, but the sample is not large enough to distinguish conclusively between this interpretation and the alternative that these stars represent the tail of the velocity distribution of the thick disk. Our data do not rule out the possibility that a minority of the sample could have formed from gas in situ on their current orbits. These results are consistent with scenarios where the stellar halo, at least as probed by M giants, arises from multiple formation mechanisms; however, when

  11. On the (non-)universality of halo density profiles

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt

    We present a systematic study of the density profiles of dark matter halos in LambdaCDM cosmologies, focusing on the question whether these profiles are "universal", i.e., whether they follow the same functional form regardless of halo mass, redshift, cosmology, and other parameters. The inner profiles (r [special character omitted] R vir) can be described as a function of only mass and concentration, and we thus begin by investigating whether there is a universal, cosmology-independent relation between those two parameters. We propose a model in which concentration is a function only of a halo's peak height and the local slope of the matter power spectrum. This model matches the concentrations in LambdaCDM and scale-free simulations, correctly extrapolates over 16 orders of magnitude in halo mass, and differs significantly from all previously proposed models at high masses and redshifts. We find that the outer profiles (r [special character omitted] Rvir) are remarkably universal across redshifts when radii are rescaled by R200m, whereas the inner profiles are most universal in units of R200c, highlighting that universality depends upon the definition of the halo boundary. Furthermore, we discover that the profiles exhibit significant deviations from the supposedly universal analytic formulae previously suggested in the literature, such as the NFW and Einasto forms. In particular, the logarithmic slope of the profiles of massive or rapidly accreting halos steepens more sharply than predicted around r ≈ R200m, where the steepness increases with increasing peak height or mass accretion rate. We propose a new, accurate fitting formula that takes these dependencies into account. Finally, we demonstrate that the profile steepening corresponds to the caustic at the apocenter of infalling matter on its first orbit. We call the location of the caustic the splashback radius, Rsp, and propose this radius as a new, physically motivated definition of the halo boundary. We

  12. A Hero's Little Horse: Discovery of a Dissolving Star Cluster in Pegasus

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut

    2015-01-01

    We report the discovery of an ultra-faint stellar system in the constellation of Pegasus. This concentration of stars was detected by applying our overdensity detection algorithm to the Sloan Digital Sky Survey Data Release 10 and confirmed with deeper photometry from the Dark Energy Camera (DECam) at the 4 m Blanco telescope. The best-fitting model isochrone indicates that this stellar system, Kim 1, features an old (12 Gyr) and metal-poor ([Fe/H] ~ -1.7) stellar population at a heliocentric distance of 19.8 ± 0.9 kpc. We measure a half-light radius of 6.9 ± 0.6 pc using a Plummer profile. The small physical size and the extremely low luminosity are comparable to the faintest known star clusters Segue 3, Koposov 1 and 2, and Muñoz 1. However, Kim 1 exhibits a lower star concentration and is lacking a well-defined center. It also has an unusually high ellipticity and irregular outer isophotes, which suggests that we are seeing an intermediate mass star cluster being stripped by the Galactic tidal field. An extended search for evidence of an associated stellar stream within the 3 \\deg 2 DECam field remains inconclusive. The finding of Kim 1 is consistent with current overdensity detection limits and supports the hypothesis that there are still a substantial number of extreme low-luminosity star clusters undetected in the wider Milky Way halo.

  13. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  14. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  15. RUNAWAY STARS, HYPERVELOCITY STARS, AND RADIAL VELOCITY SURVEYS

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. E-mail: skenyon@cfa.harvard.ed E-mail: mgeller@cfa.harvard.ed

    2009-12-01

    Runaway stars ejected from the Galactic disk populate the halo of the Milky Way. To predict the spatial and kinematic properties of runaways, we inject stars into a Galactic potential, compute their trajectories through the Galaxy, and derive simulated catalogs for comparison with observations. Runaways have a flattened spatial distribution, with higher velocity stars at Galactic latitudes less than 30{sup 0}. Due to their shorter stellar lifetimes, massive runaway stars are more concentrated toward the disk than low mass runaways. Bound (unbound) runaways that reach the halo probably originate from distances of 6-12 kpc (10-15 kpc) from the Galactic center, close to the estimated origin of the unbound runaway star HD 271791. Because runaways are brighter and have smaller velocities than hypervelocity stars (HVSs), radial velocity surveys are unlikely to confuse runaway stars with HVSs. We estimate that at most one runaway star contaminates the current sample. We place an upper limit of 2% on the fraction of A-type main-sequence stars ejected as runaways.

  16. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline

    2016-08-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher fraction of carbon-enhanced stars, but we are also finding stars in dwarf galaxies that appear to be iron-rich. These are compared with yields from a variety of supernova predictions.

  17. THE DETAILED CHEMICAL PROPERTIES OF M31 STAR CLUSTERS. I. Fe, ALPHA AND LIGHT ELEMENTS

    SciTech Connect

    Colucci, Janet E.; Bernstein, Rebecca A.; Cohen, Judith G.

    2014-12-20

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc < R {sub M31} < 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ∼ – 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope.

  18. THE OUTER DISKS OF DWARF IRREGULAR GALAXIES

    SciTech Connect

    Hunter, Deidre A.; Massey, Philip; Wilsey, Nick; Riabokin, Malanka; Elmegreen, Bruce G.; Oh, Se-Heon; Anderson, Ed; Nordgren, Tyler E. E-mail: phil.massey@lowell.edu E-mail: riabokin@msu.edu E-mail: seheon-oh@ast.uct.ac.za E-mail: tyler_nordgren@redlands.edu

    2011-10-15

    In order to explore the properties of extreme outer stellar disks, we obtained ultra-deep V and GALEX ultraviolet (UV) images of four dwarf irregular galaxies and one blue compact dwarf galaxy, and ultra-deep B images of three of these. Our V-band surface photometry extends to 29.5 mag arcsec{sup -2}. We convert the FUV and V-band photometry, along with H{alpha} photometry obtained in a larger survey, into radial star formation rate profiles that are sensitive to timescales from 10 Myr to the lifetime of the galaxy. We also obtained H I-line emission data and compare the stellar distributions, surface brightness profiles, and star formation rate profiles to H I-line emission maps, gas surface density profiles, and gas kinematics. Our data lead us to two general observations. First, the exponential disks in these irregular galaxies are extraordinarily regular. We observe that the stellar disks continue to decline exponentially as far as our measurements extend. In spite of lumpiness in the distribution of young stars and H I distributions and kinematics that have significant unordered motions, sporadic processes that have built the disks-star formation, radial movement of stars, and perhaps even perturbations from the outside-have, nevertheless, conspired to produce standard disk profiles. Second, there is a remarkable continuity of star formation throughout these disks over time. In four out of five of our galaxies the star formation rate in the outer disk measured from the FUV tracks that determined from the V-band, to within factors of five, requiring star formation at a fairly steady rate over the galaxy's lifetime. Yet, the H I surface density profiles generally decline with radius more shallowly than the stellar light, and the gas is marginally gravitationally stable against collapse into clouds. Outer stellar disks are challenging our concepts of star formation and disk growth and provide a critical environment in which to understand processes that mold

  19. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  20. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S;