Sample records for outer membrane permeability

  1. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability

    PubMed Central

    Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki

    2017-01-01

    ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is markedly less permeable to organic nutrients, with >20-fold lower permeability than the outer membrane of Escherichia coli. Such permeability appears to fit the cyanobacterial lifestyle, in which the diffusion pathway for inorganic solutes may suffice to sustain the autotrophic physiology, illustrating a link between outer membrane permeability and the cellular lifestyle. PMID:28696278

  2. Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines.

    PubMed

    Grancara, Silvia; Ohkubo, Shinji; Artico, Marco; Ciccariello, Mauro; Manente, Sabrina; Bragadin, Marcantonio; Toninello, Antonio; Agostinelli, Enzo

    2016-10-01

    Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.

  3. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.

  4. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.

    PubMed

    Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R

    2018-05-23

    We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.

  5. Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes.

    PubMed

    Croce, Robert A; Vaddiraju, Santhisagar; Papadimitrakopoulos, Fotios; Jain, Faquir C

    2012-10-01

    The performance of implantable electrochemical glucose sensors is highly dependent on the flux-limiting (glucose, H(2)O(2), O(2)) properties of their outer membranes. A careful understanding of the diffusion profiles of the participating species throughout the sensor architecture (enzyme and membrane layer) plays a crucial role in designing a robust sensor for both in vitro and in vivo operation. This paper reports the results from the mathematical modeling of Clark's first generation amperometric glucose sensor coated with layer-by-layer assembled outer membranes in order to obtain and compare the diffusion profiles of various participating species and their effect on sensor performance. Devices coated with highly glucose permeable (HAs/Fe(3+)) membranes were compared with devices coated with PSS/PDDA membranes, which have an order of magnitude lower permeability. The simulation showed that the low glucose permeable membrane (PSS/PDDA) sensors exhibited a 27% higher amperometric response than the high glucose permeable (HAs/Fe(3+)) sensors. Upon closer inspection of H(2)O(2)diffusion profiles, this non-typical higher response from PSS/PDDA is not due to either a larger glucose flux or comparatively larger O(2) concentrations within the sensor geometry, but rather is attributed to a 48% higher H(2)O(2) concentration in the glucose oxidase enzyme layer of PSS/PDDA coated sensors as compared to HAs/Fe(3+) coated ones. These simulated results corroborate our experimental findings reported previously. The high concentration of H(2)O(2) in the PSS/PDDA coated sensors is due to the low permeability of H(2)O(2) through the PSS/PDDA membrane, which also led to an undesired increase in sensor response time. Additionally, it was found that this phenomenon occurs for all enzyme thicknesses investigated (15, 20 and 25 nm), signifying the need for a holistic approach in designing outer membranes for amperometric biosensors.

  6. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition.

    PubMed

    Petit, P X; Goubern, M; Diolez, P; Susin, S A; Zamzami, N; Kroemer, G

    1998-04-10

    Upon induction of permeability transition with different agents (Ca2+, tert-butyl hydroperoxide, atractyloside), mouse hepatocyte mitochondria manifest a disruption of outer membrane integrity leading to the release of cytochrome c and apoptosis-inducing factor (AIF), two proteins which are involved in programmed cell death (apoptosis). Chelation of Ca2+ shortly (within 2 min) after its addition to isolated mitochondria reestablished the mitochondrial transmembrane potential (deltapsi(m)), prevented induction of large amplitude swelling and release of both cytochrome c and AIF. In contrast, late Ca2+ chelation (10 min after addition of Ca2+) failed to affect these parameters. Cytochrome c appears to be released through a mechanically damaged outer mitochondrial membrane rather than via a specific release mechanism. These findings clarify the mechanisms through which irreversible permeability transition occurs with subsequent large amplitude swelling culminating in the release of intermembrane proteins from mitochondria. Moreover, they confirm the hypothesis formulated by Skulachev [FEBS Lett. 397 (1996) 7-10 and Q. Rev. Biophys. 29 (1996) 169-2021 linking permeability transition to activation of the apoptogenic catabolic enzymes.

  7. Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation.

    PubMed

    Hill, Warren G; Almasri, Eyad; Ruiz, W Giovanni; Apodaca, Gerard; Zeidel, Mark L

    2005-07-01

    Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85 +/- 0.41 x 10(-3) cm/s, a value 5-10 times higher than expected based on comparisons with other cholesterol and sphingolipid-enriched membranes. Permeabilities to urea, ammonia, and protons were measured and found to be moderately high for urea and ammonia at 8.85 +/- 2.40 x 10(-7)and 6.84 +/- 1.03 x 10(-2) respectively and high for protons at 8.84 +/- 3.06 x 10(-2) cm/s. To examine whether caveolin or other integral membrane proteins were responsible for high permeabilities, liposomes designed to mimic the lipids of the inner and outer leaflets of the caveolar membrane were made. Osmotic water permeability to both liposome compositions were determined and a combined inner/outer leaflet water permeability was calculated and found to be close to that of native caveolae at 1.58 +/- 1.1 x 10(-3) cm/s. In caveolae, activation energy for water flux was high (19.4 kcal/mol) and water permeability was not inhibited by HgCl2; however, aquaporin 1 was detectable by immunoblotting. Immunostaining of rat lung with AQP1 and caveolin antisera revealed very low levels of colocalization. We conclude that aquaporin water channels do not contribute significantly to the observed water flux and that caveolae have relatively high water and solute permeabilities due to the high degree of unsaturation in their fatty acyl chains.

  8. Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae.

    PubMed

    Velkov, Tony; Deris, Zakuan Z; Huang, Johnny X; Azad, Mohammad A K; Butler, Mark; Sivanesan, Sivashangarie; Kaminskas, Lisa M; Dong, Yao-Da; Boyd, Ben; Baker, Mark A; Cooper, Matthew A; Nation, Roger L; Li, Jian

    2014-05-01

    This study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR. LPS from the polymyxin-resistant strain displayed a reduced binding affinity for polymyxins B and colistin in comparison with the wild type LPS. The outer membrane NPN permeability of the resistant strain was greater compared with the susceptible strain. Polymyxin exposure enhanced the permeability of the outer membrane of the wild type strain to lysozyme and deoxycholate, whereas polymyxin concentrations up to 32 mg/ml failed to permeabilize the outer membrane of the resistant strain. Zeta potential measurements revealed that mid-logarithmic phase wild type cells exhibited a greater negative charge than the mid-logarithmic phase-resistant cells. Taken together, our findings suggest that the resistant derivative of K. pneumoniae can block the electrostatically driven first stage of polymyxin action, which thereby renders the hydrophobically driven second tier of polymyxin action on the outer membrane inconsequential.

  9. Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis.

    PubMed Central

    Chamberland, S; Bayer, A S; Schollaardt, T; Wong, S A; Bryan, L E

    1989-01-01

    Mechanisms of resistance to quinolones were characterized in Pseudomonas aeruginosa strains isolated after Tn5 insertional mutagenesis and in resistant strains that emerged during pefloxacin therapy of experimental aortic endocarditis. Quinolone resistance achieved in in vitro-selected mutants Qr-1 and Qr-2 was associated with cross-resistance to several groups of antimicrobial agents, including beta-lactams, tetracycline, and chloramphenicol. A significant reduction of norfloxacin uptake was also observed. After ether permeabilization of the cells, DNA synthesis of these two isolates was as susceptible to norfloxacin as DNA synthesis of the parent strain (PAO1). These results indicate that alteration of outer membrane permeability is the primary determinant of resistance in these isolates. This altered cell permeability was correlated with reduction of outer membrane protein G (25.5 kilodaltons) and loss of a 40-kilodalton outer membrane protein in strain Qr-1. Resistance to quinolones that emerged during experimental endocarditis therapy was associated with both modification of outer membrane permeability (decreased uptake of norfloxacin) and decreased susceptibility of DNA synthesis to norfloxacin. Resistance was limited to quinolones and chloramphenicol. For these strains, norfloxacin inhibitory doses (50%) for DNA synthesis were identical to the drug MICs, suggesting that despite the identification of a permeability change, perhaps due to changes of lipopolysaccharide, the alteration of the quinolone intracellular target(s) susceptibility constitutes the primary determinant of resistance. Also, two distinct levels of norfloxacin resistance of DNA synthesis were found in these isolates, indicating that at least two distinct alterations of the drug target(s) are possible in P. aeruginosa. Images PMID:2502066

  10. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  11. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  12. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    PubMed

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  13. The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport.

    PubMed

    May, Janine M; Owens, Tristan W; Mandler, Michael D; Simpson, Brent W; Lazarus, Michael B; Sherman, David J; Davis, Rebecca M; Okuda, Suguru; Massefski, Walter; Ruiz, Natividad; Kahne, Daniel

    2017-12-06

    Novobiocin is an orally active antibiotic that inhibits DNA gyrase by binding the ATP-binding site in the ATPase subunit. Although effective against Gram-positive pathogens, novobiocin has limited activity against Gram-negative organisms due to the presence of the lipopolysaccharide-containing outer membrane, which acts as a permeability barrier. Using a novobiocin-sensitive Escherichia coli strain with a leaky outer membrane, we identified a mutant with increased resistance to novobiocin. Unexpectedly, the mutation that increases novobiocin resistance was not found to alter gyrase, but the ATPase that powers lipopolysaccharide (LPS) transport. Co-crystal structures, biochemical, and genetic evidence show novobiocin directly binds this ATPase. Novobiocin does not bind the ATP binding site but rather the interface between the ATPase subunits and the transmembrane subunits of the LPS transporter. This interaction increases the activity of the LPS transporter, which in turn alters the permeability of the outer membrane. We propose that novobiocin will be a useful tool for understanding how ATP hydrolysis is coupled to LPS transport.

  14. Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes.

    PubMed

    Barker, Robert D; McKinley, Laura E; Titmuss, Simon

    2016-01-01

    The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.

  15. Antibacterial and antigelatinolytic effects of Satureja hortensis L. essential oil on epithelial cells exposed to Fusobacterium nucleatum.

    PubMed

    Zeidán-Chuliá, Fares; Keskin, Mutlu; Könönen, Eija; Uitto, Veli-Jukka; Söderling, Eva; Moreira, José Cláudio Fonseca; Gürsoy, Ulvi K

    2015-04-01

    The present report examined the effects of essential oils (EOs) from Satureja hortensis L. and Salvia fruticosa M. on the viability and outer membrane permeability of the periodontopathogen Fusobacterium nucleatum, a key bacteria in oral biofilms, as well as the inhibition of matrix metalloproteinase (MMP-2 and MMP-9) activities in epithelial cells exposed to such bacteria. Membrane permeability was tested by measuring the N-phenyl-1-naphthylamine uptake and bacterial viability by using the commercially available Live/Dead BacLight kit. In addition, gelatin zymography was performed to analyze the inhibition of F. nucleatum-induced MMP-2 and MMP-9 activities in HaCaT cells. We showed that 5, 10, and 25 μL/mL of Sat. hortensis L. EO decreased the ratio of live/dead bacteria and increased the outer membrane permeability in a range of time from 0 to 5 min. Treatments with 10 and 25 μL/mL of Sal. fruticosa M. also increased the membrane permeability and 5, 10, and 25 μL/mL of both EOs inhibited MMP-2 and MMP-9 activities in keratinocytes induced after exposure of 24 h to F. nucleatum. We conclude that antibacterial and antigelatinolytic activities of Sat. hortensis L. EO have potential for the treatment of periodontal inflammation.

  16. Effect of cultivation medium on some physicochemical parameters of outer bacterial membrane.

    PubMed

    Horská, E; Pokorný, J; Labajová, M

    1995-01-01

    The changes of surface charge and hydrophobicity of the outer bacterial membrane in relation to utilization of n-hexadecane were studied. For this spectrophotometric study adsorption of methylene blue and transport of gentian violet were used. The decrease in the negative charge of the bacterial strains Pseudomonas putida CCM 3423, P. aeruginosa, and P. fluorescens CCM 2115, depended on the type of growth medium. The decrease of surface charge was in the order: meat extract peptone broth > mineral medium with glucose > mineral medium with n-hexadecane. The highest permeability of the bacterial membrane for gentian violet was determined in the case of P. fluorescens grown in meat extract peptone broth. This effect can be explained by a greater hydrophobicity of the bacterial surface for this strain. In other strains a lower permeability was observed. P. fluorescens showed a greater adherence to hexadecane.

  17. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  18. Importance of Real-Time Assays To Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli.

    PubMed

    Misra, Rajeev; Morrison, Keith D; Cho, Hyun Jae; Khuu, Thanh

    2015-08-01

    The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine β-naphthylamide (PAβN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAβN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAβN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAβN. Strong action of PAβN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAβN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAβN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAβN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAβN on membrane integrity are compounded in cells unable to extrude PAβN. The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance of employing real-time fluorescence-based assays in differentiating multidrug efflux-inhibitory and outer membrane-destabilizing activities of antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Resurrecting Inactive Antimicrobial Peptides from the Lipopolysaccharide Trap

    PubMed Central

    Mohanram, Harini

    2014-01-01

    Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, “trapped” by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding β-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action. PMID:24419338

  20. Effect of Leptospira interrogans outer membrane proteins LipL32 on HUVEC.

    PubMed

    Sun, Zhan; Bao, Lang; Li, DaoKun; Huang, Bi; Wu, Bingting

    2010-09-01

    Leptospira cause disease through a toxin-mediated process by inducing vascular injury, particularly a small-vessel vasculitis. Breakdown of vessel endothelial cell integrity may increase vessel permeability which is correlated with the changes of tight junction and/or apoptosis in vessel endothelial cells. The specific toxin responsible remains unidentified. In this study, we amplified outer membrane protein LipL32 from the genome of Leptospira interrogans serovar Lai, and it was subcloned in pET32a(+) vector to express thioredoxin(Trx)-LipL32 fusion protein in Escherichia coli BL21(DE3). The protein was expressed and purified, and Trx-LipL32 was administered to culture with human umbilical vein endothelial cells (HUVEC) to elucidate the role of leptospiral outer membrane proteins in vessel endothelial cell. The purified recombinant protein was capable to increase the permeability of HUVECs. And the protein was able to decrease the expression of ZO-1 and induce F-actin in HUVECs display thickening and clustering. Moreover, apoptosis of HUVEC was significantly accelerated. But the fusion partner had no effect in these regards. It is possible that LipL32 is involved in the vessel lesions. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    PubMed

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  2. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation.

    PubMed

    Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine

    2013-01-01

    Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate.

    PubMed

    Morono, Yuki; Takano, Suguru; Miyanaga, Kazuhiko; Tanji, Yasunori; Unno, Hajime; Hori, Katsutoshi

    2004-03-01

    Staining of esterase-active bacteria with carboxyfluorescein diacetate (CFDA) has been used to evaluate the viability of various types of cell. However, the outer membrane of Gram-negative bacteria prevents CFDA from permeating into the cell. Although EDTA can increase the permeability of the outer membrane allowing CFDA to enter the cells, it was experimentally confirmed that there is still considerable difficulty in visualizing viable cells due to passive diffusion of carboxyfluorescein (CF), a hydrolyzed product of CFDA, out of the cells. We found that glutaraldehyde enhances the discriminative recognition of esterase-active Gram-negative bacteria under microscopic observation by improving the efficacy of staining. We believe the successful staining in the presence of glutaraldehyde is due to two separate effects: an increase in the permeability of CFDA into the cell and prevention of leakage of CF out of the cell.

  5. The voltage-dependent anion channel as a biological transistor: theoretical considerations.

    PubMed

    Lemeshko, V V; Lemeshko, S V

    2004-07-01

    The voltage-dependent anion channel (VDAC) is a porin of the mitochondrial outer membrane with a bell-shaped permeability-voltage characteristic. This porin restricts the flow of negatively charged metabolites at certain non-zero voltages, and thus might regulate their flux across the mitochondrial outer membrane. Here, we have developed a mathematical model illustrating the possibility of interaction between two steady-state fluxes of negatively charged metabolites circulating across the VDAC in a membrane. The fluxes interact by contributing to generation of the membrane electrical potential with subsequent closure of the VDAC. The model predicts that the VDAC might function as a single-molecule biological transistor and amplifier, because according to the obtained calculations a small change in the flux of one pair of different negatively charged metabolites causes a significant modulation of a more powerful flux of another pair of negatively charged metabolites circulating across the same membrane with the VDAC. Such transistor-like behavior of the VDAC in the mitochondrial outer membrane might be an important principle of the cell energy metabolism regulation under some physiological conditions.

  6. Outer membrane defect and stronger biofilm formation caused by inactivation of a gene encoding for heptosyltransferase I in Cronobacter sakazakii ATCC BAA-894.

    PubMed

    Wang, L; Hu, X; Tao, G; Wang, X

    2012-05-01

    To investigate the role of lipopolysaccharide (LPS) structure in the stability of outer membrane and the ability of biofilm formation in Cronobacter sakazakii. A C. sakazakii mutant strain LWW02 was constructed by inactivating the gene ESA_04107 encoding for heptosyltransferase I. LPS were purified from LWW02, and changes in their structure were confirmed by thin-layer chromatography and electrospray ionization mass spectrometry. Comparing with the wild-type strain BAA-894, slower growth, higher membrane permeability, higher surface hydrophobicity, stronger ability of autoaggregation and biofilm formation were observed for the mutant strain LWW02. The gene ESA_04107 encodes heptosyltransferase I in C. sakazakii ATCC BAA-894. The cleavage of LPS in C. sakazakii could cause its outer membrane defects and increase its ability to form biofilms. The study is important for understanding the pathogenic mechanism and efficient control of C. sakazakii. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  7. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    PubMed

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease.

    PubMed

    Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos

    2003-06-01

    Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release induced by the inner membrane permeability transition. These advances in the knowledge of mitochondrial cell death mechanisms and their inhibitors may lead to neuroprotective interventions applicable to Parkinsons's disease.

  9. Membrane of Candida albicans as a target of berberine.

    PubMed

    Zorić, Nataša; Kosalec, Ivan; Tomić, Siniša; Bobnjarić, Ivan; Jug, Mario; Vlainić, Toni; Vlainić, Josipa

    2017-05-17

    We investigated the mechanisms of anti-Candida action of isoquinoline alkaloid berberine, active constituent of medically important plants of Barberry species. The effects on membrane, morphological transition, synthesis of ergosterol and the consequent changes in membrane permeability have been studied. Polarization and lipid peroxidation level of the membrane following berberine treatment have been addressed. Minimal inhibitory concentration (MIC) of berberine against C. albicans was 17.75 μg/mL. Cytotoxic effect of berberine was concentration dependent, and in sub-MIC concentrations inhibit morphological transition of C. albicans cells to its filamentous form. Results showed that berberine affects synthesis of membrane ergosterol dose-dependently and induces increased membrane permeability causing loss of intracellular material to the outer space (DNA/protein leakage). Berberine also caused membrane depolarization and lipid peroxidation of membrane constituents indicating its direct effect on the membrane. Moreover, ROS levels were also increased following berberine treatment indicating further the possibility of membrane damage. Based on the obtained results it seems that berberine achieves its anti-Candida activity by affecting the cell membrane.

  10. Polyester polymer alloy as a high-performance membrane.

    PubMed

    Igoshi, Tadaaki; Tomisawa, Narumi; Hori, Yoshinori; Jinbo, Yoichi

    2011-01-01

    Polyester polymer alloy (PEPA) membrane is developed as a synthetic polymermembrane. It consists of two polymers - polyethersulfone (PES) and polyarylate (PAR).The pore size in membrane can be controlled by a blend ratio of PES and PAR. One unique characteristic is that PEPA membrane has three layers of a skin layer on the inner surface, a porous layer in the membrane, and a skin layer on the outer surface, respectively. The permeability of water and substances is controlled by the skin layer on the inner surface. PEPA membrane dialyzer can be adequately considered as a high-performance dialyzer. Furthermore, the skin layer on the outer surface can block endotoxin from the dialysis fluid side. PEPA membrane can therefore be used as an endotoxin-retentive filter. The other unique characteristic is that each amount of albumin loss or β2-microglobulin removal can be controlled by an additive amount of polyvinylpyrrolidone. This means that the PEPA dialyzer can be clinically used to meet the conditions of the patient. Copyright © 2011 S. Karger AG, Basel.

  11. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    NASA Astrophysics Data System (ADS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  12. Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO2 Separation.

    PubMed

    Zhang, Haiyang; Guo, Ruili; Hou, Jinpeng; Wei, Zhong; Li, Xueqin

    2016-10-26

    In this study, a carbon nanotubes composite coated with N-isopropylacrylamide hydrogel (NIPAM-CNTs) was synthesized. Mixed-matrix membranes (MMMs) were fabricated by incorporating NIPAM-CNTs composite filler into poly(ether-block-amide) (Pebax MH 1657) matrix for efficient CO 2 separation. The as-prepared NIPAM-CNTs composite filler mainly plays two roles: (i) The extraordinary smooth one-dimensional nanochannels of CNTs act as the highways to accelerate CO 2 transport through membranes, increasing CO 2 permeability; (ii) The NIPAM hydrogel layer coated on the outer walls of CNTs acts as the super water absorbent to increase water content of membranes, appealing both CO 2 permeability and CO 2 /gas selectivity. MMM containing 5 wt % NIPAM-CNTs exhibited the highest CO 2 permeability of 567 barrer, CO 2 /CH 4 selectivity of 35, and CO 2 /N 2 selectivity of 70, transcending 2008 Robeson upper bound line. The improved CO 2 separation performance of MMMs is mainly attributed to the construction of the efficient CO 2 transport pathways by NIPAM-CNTs. Thus, MMMs incorporated with NIPAM-CNTs composite filler can be used as an excellent membrane material for efficient CO 2 separation.

  13. Process for making ceramic hot gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  14. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  15. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  16. Synergistic effect of EDTA and boric acid on corneal penetration of CS-088.

    PubMed

    Kikuchi, Takayuki; Suzuki, Masahiko; Kusai, Akira; Iseki, Ken; Sasaki, Hitoshi

    2005-02-16

    In order to investigate the effects of EDTA and boric acid (EDTA/boric acid) on the corneal penetration of CS-088, an ophthalmic agent, the apparent permeability coefficient of CS-088 in the presence of EDTA/boric acid across the isolated corneal membranes of rabbits was measured using an in vitro penetration chamber system. FITC-dextran (M.W. 4400) and an electrical method based on membrane resistance were used to provide a quantitative assessment of the enhancing effect of EDTA/boric acid. The corneal penetration of CS-088 was significantly enhanced in the presence of EDTA/boric acid by approximately 1.6-fold. The permeability-enhancing effect of EDTA/boric acid was apparently synergistic and concentration-dependent on both EDTA and boric acid. The penetration of FITC-dextran, a paracellular marker, and electrical resistance of corneal membranes were not affected in the presence of EDTA/boric acid. Furthermore, no enhancing effect of EDTA/boric acid was observed in de-epithelialized corneas, although de-epithelialized corneas exhibited a markedly higher permeability of CS-088 that was 24-fold greater than that for intact corneas. In conclusion, EDTA/boric acid synergistically enhances the transcellular permeability of CS-088 in the outer layer but not in the inner layers of the corneal membrane.

  17. Mitochondrial respiratory control is lost during growth factor deprivation.

    PubMed

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  18. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    PubMed

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  19. How to Design a Biosensor

    PubMed Central

    Ward, W. Kenneth

    2007-01-01

    Amperometric sensors for continuous glucose monitoring could prevent acute and chronic complications of diabetes, but research is needed to improve accuracy and stability. In designing sensors, interference from non-glucose analytes can be minimized by use of filtration membranes or electron transfer mediators that allow polarization at low potentials. If oxygen is required for the enzymatic reaction with glucose, then the outer permselective membrane must have substantial oxygen permeability. For this reason, during development of permselective membranes, permeability studies (such as performed by Tipnis and colleagues in this issue) can be used to measure transport of glucose and oxygen and optimize membrane structure. Tipnis and colleagues present a novel biosensor based with separate layers for glucose-oxygen permselectivity, enzymatic conversion, and avoidance of interference. They also address sensor stability, in part by comparing sensor function during ascending vs descending glucose levels. By measuring the difference, they were able to minimize this aspect of instability (hysterisis), which assisted them in selecting a promising permselective membrane based on iron and humic acid. PMID:19888407

  20. How to design a biosensor.

    PubMed

    Ward, W Kenneth

    2007-03-01

    Amperometric sensors for continuous glucose monitoring could prevent acute and chronic complications of diabetes, but research is needed to improve accuracy and stability. In designing sensors, interference from non-glucose analytes can be minimized by use of filtration membranes or electron transfer mediators that allow polarization at low potentials. If oxygen is required for the enzymatic reaction with glucose, then the outer permselective membrane must have substantial oxygen permeability. For this reason, during development of permselective membranes, permeability studies (such as performed by Tipnis and colleagues in this issue) can be used to measure transport of glucose and oxygen and optimize membrane structure. Tipnis and colleagues present a novel biosensor based with separate layers for glucose-oxygen permselectivity, enzymatic conversion, and avoidance of interference. They also address sensor stability, in part by comparing sensor function during ascending vs descending glucose levels. By measuring the difference, they were able to minimize this aspect of instability (hysterisis), which assisted them in selecting a promising permselective membrane based on iron and humic acid.

  1. Outer-membrane translocation of bulky small molecules by passive diffusion

    PubMed Central

    van den Berg, Bert; Prathyusha Bhamidimarri, Satya; Dahyabhai Prajapati, Jigneshkumar; Kleinekathöfer, Ulrich; Winterhalter, Mathias

    2015-01-01

    The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an “OM size-exclusion limit,” and the uptake of bulky molecules with molecular masses of more than ∼600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM. PMID:26015567

  2. Cell water balance of white button mushrooms (Agaricus bisporus) during its post-harvest lifetime studied by quantitative magnetic resonance imaging.

    PubMed

    Donker, H C; Van As, H

    1999-04-19

    A combination of quantitative water density and T2 MRI and changes therein observed after infiltration with 'invisible' Gd-DTPA solution was used to study cell water balances, cell water potentials and cell integrity. This method was applied to reveal the evolution and mechanism of redistribution of water in harvested mushrooms. Even when mushrooms did not lose water during the storage period, a redistribution of water was observed from stipe to cap and gills. When the storage condition resulted in a net loss of water, the stipe lost more water than the cap. The water density in the gill increased, probably due to development of spores. Deterioration effects (i.e. leakage of cells, decrease in osmotic water potential) were found in the outer stipe. They were not found in the cap, even at prolonged storage at 293 K and R.H.=70%. The changes in osmotic potential were partly accounted for by changes in the mannitol concentration. Changes in membrane permeability were also indicated. Cells in the cap had a constant low membrane (water) permeability. They developed a decreasing osmotic potential (more negative), whereas the osmotic potential in the outer stipe increased, together with the permeability of cells.

  3. Controlling the hydration of the skin though the application of occluding barrier creams

    PubMed Central

    Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard

    2013-01-01

    The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration. PMID:23269846

  4. Controlling the hydration of the skin though the application of occluding barrier creams.

    PubMed

    Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard

    2013-03-06

    The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration.

  5. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins.

    PubMed

    Sundara Baalaji, N; Mathew, M K; Krishnaswamy, S

    2006-10-01

    The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.

  6. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli*

    PubMed Central

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H.; Pessi, Gabriella; Eberl, Leo; Robinson, John A.

    2016-01-01

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837

  7. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.

    PubMed

    Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B

    2017-06-07

    This study investigated the kinetics and mechanism of chlorine dioxide (ClO 2 ) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10 5 -10 7 cfu/mL). The effects of ClO 2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the C avg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO 2 indicated very little observable morphological damage to the outer membranes of the cells. ClO 2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.

  8. Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae.

    PubMed

    Jiménez-Castellanos, Juan-Carlos; Wan Ahmad Kamil, Wan Nur Ismah; Cheung, Ching Hei Phoebe; Tobin, Maryann S; Brown, James; Isaac, Sophie G; Heesom, Kate J; Schneiders, Thamarai; Avison, Matthew B

    2016-07-01

    In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae. Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR. Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific. RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Mitochondrial respiratory control is lost during growth factor deprivation

    PubMed Central

    Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.

    2002-01-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733

  10. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-En; Lin, Chi-Wen; Hwang, Bing-Joe

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO 3H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 × 10 -2 S cm -1 at room temperature from one of the synthesized membranes, higher than that of the Nafion ® membrane. Methanol permeability of the synthesized membranes measures about 1 × 10 -7 cm 2 S -1, about one order of magnitude lower than that of the Nafion ® membrane.

  11. A stable planar bilayer membrane of phospholipid supported by cellulose sheets.

    PubMed

    Setaka, M; Yamamoto, T; Sato, N; Yano, M; Kwan, T

    1982-01-01

    A new method is reported for preparing a thin planar membrane of 1,2-distearoylsn-glycero-3-phosphocholine and egg yolk lecithin-cholesterol (molar ratio of 1:1) between a pair of cellulose sheets. This technique, developed from the method of the multilayer planar membrane preparation (Setaka, M., et al. (1979) J. Biochem. 86, 355-362; 1619-1622; (1980) J. Biochem. 88, 1819-1829), consisted of three experimental processes. First, a phospholipid monolayer was prepared at an air-water interface, then taken up on a stretched cellulose sheet. A thin lipid membrane, supported from both sides by cellulose sheets, was constructed by combining two of these lipid monolayer-cellulose sheets. The permeability coefficient of the thin lipid membrane was estimated by removing the effect of two outer cellulose sheets, and this permeability was found to be larger than those of other model membranes of a lipid bilayer, indicating that the present lipid membrane is not a perfect single lipid bilayer. However, certain experimental evidence suggests that the bulk of the phospholipids formed a bilayer between the two cellulose sheets. Since this lipid membrane is particularily stable, larger membranes can be prepared by the present method than other planar bilayer membranes of lipid, which are usually constructed inside a pin hole in a thin teflon sheet.

  12. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences.

    PubMed

    Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J

    2010-03-01

    The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.

  13. Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion

    PubMed Central

    Papanicolaou, Kyriakos N.; Phillippo, Matthew M.

    2012-01-01

    Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5′-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival. PMID:22636681

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatinmore » for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.« less

  15. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    PubMed

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  16. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    PubMed

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  18. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species

    PubMed Central

    Webster, Keith A

    2013-01-01

    Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed. PMID:23176689

  19. Determination of Urea Permeability in Red Cells by Minimum Method

    PubMed Central

    Sha'afi, R. I.; Rich, G. T.; Mikulecky, D. C.; Solomon, A. K.

    1970-01-01

    A new method has been developed for measuring the permeability coefficient, ω, of small nonelectrolytes. The method depends upon a mathematical analysis of the time course of cell volume changes in the neighborhood of the minimum volume following addition of a permeating solute to an isosmolal buffer. Coefficients determined by the minimum volume method agree with those obtained using radioactive tracers. ω for urea in human red cells was found to decrease as the volume flow, Jv, into the cell increased. Such behavior is entirely unexpected for a single uniform rate-limiting barrier on the basis of the linear phenomenological equations derived from irreversible thermodynamics. However, the present findings are consonant with a complex membrane system consisting of a tight barrier on the outer face of the human red cell membrane and a somewhat less restrictive barrier behind it closer to the inner membrane face. A theoretical analysis of such a series model has been made which makes predictions consistent with the experimental findings. PMID:5435779

  20. Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza

    2012-03-01

    In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.

  1. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.

    PubMed

    Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F

    2014-01-01

    A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  2. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices

    PubMed Central

    Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.

    2011-01-01

    Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706

  3. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    PubMed

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  4. Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

    PubMed Central

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2015-01-01

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892

  5. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains.

    PubMed

    Villa, Riccardo; Martorana, Alessandra M; Okuda, Suguru; Gourlay, Louise J; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel; Polissi, Alessandra

    2013-03-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.

  6. The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains

    PubMed Central

    Villa, Riccardo; Martorana, Alessandra M.; Okuda, Suguru; Gourlay, Louise J.; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel

    2013-01-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components. PMID:23292770

  7. Escherichia coli K1 invasion increases human brain microvascular endothelial cell monolayer permeability by disassembling vascular-endothelial cadherins at tight junctions.

    PubMed

    Sukumaran, Sunil K; Prasadarao, Nemani V

    2003-11-01

    We investigated the permeability changes that occur in the human brain microvascular endothelial cell (HBMEC) monolayer, an in vitro model of the blood-brain barrier, during Escherichia coli K1 infection. An increase in permeability of HBMECs and a decrease in transendothelial electrical resistance were observed. These permeability changes occurred only when HBMECs were infected with E. coli expressing outer membrane protein A (OmpA) and preceded the traversal of bacteria across the monolayer. Activated protein kinase C (PKC)-alpha interacts with vascular-endothelial cadherins (VECs) at the tight junctions of HBMECs, resulting in the dissociation of beta-catenins from VECs and leading to the increased permeability of the HBMEC monolayer. Overexpression of a dominant negative form of PKC-alpha in HBMECs blocked the E. coli-induced increase in permeability of HBMECs. Anti-OmpA and anti-OmpA receptor antibodies exerted inhibition of E. coli-induced permeability of HBMEC monolayers. This inhibition was the result of the absence of PKC-alpha activation in HBMECs treated with the antibodies.

  8. Treatment of Gram-negative bacterial infections by potentiation of antibiotics.

    PubMed

    Zabawa, Thomas P; Pucci, Michael J; Parr, Thomas R; Lister, Troy

    2016-10-01

    Infections caused by antibiotic-resistant pathogens, particularly Gram-negative bacteria, represent significant treatment challenges for physicians resulting in high rates of morbidity and mortality. The outer membrane of Gram-negative bacteria acts as a permeability barrier to many compounds that would otherwise be effective antibacterial agents, including those effective against Gram-positive pathogens. Potentiator molecules disrupt this barrier allowing entry of otherwise impermeant molecules, thus providing a strategy to render multi-drug resistant pathogens susceptible to a broader range of antibiotics. Potentiator molecules are cationic and the mechanism of disruption involves interaction with the negatively charged outer membrane. This physical attribute, along with an often high degree of lipophilicity typically endears these molecules with unacceptable toxicity. Presented herein are examples of advanced potentiator molecules being evaluated for use in combination therapy for the treatment of resistant Gram-negative infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Method for determining the three-dimensional structure of a protein

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2004-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes/cm.sup.2 at the interface. By placing the microcapsules in a high osmotic dewatering solution, the protein solution is gradually made saturated and then supersaturated, and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged, protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D structure of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  10. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    PubMed

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  11. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    PubMed Central

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  12. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  13. Molecular Mechanism of Uptake of Cationic Photoantimicrobial Phthalocyanine across Bacterial Membranes Revealed by Molecular Dynamics Simulations.

    PubMed

    Orekhov, Philipp S; Kholina, Ekaterina G; Bozdaganyan, Marine E; Nesterenko, Alexey M; Kovalenko, Ilya B; Strakhovskaya, Marina G

    2018-04-12

    Phthalocyanines are aromatic macrocyclic compounds, which are structurally related to porphyrins. In clinical practice, phthalocyanines are used in fluorescence imaging and photodynamic therapy of cancer and noncancer lesions. Certain forms of the substituted polycationic metallophthalocyanines have been previously shown to be active in photodynamic inactivation of both Gram-negative and Gram-positive bacteria; one of them is zinc octakis(cholinyl)phthalocyanine (ZnPcChol 8+ ). However, the molecular details of how these compounds translocate across bacterial membranes still remain unclear. In the present work, we have developed a coarse-grained (CG) molecular model of ZnPcChol 8+ within the framework of the popular MARTINI CG force field. The obtained model was used to probe the solvation behavior of phthalocyanine molecules, which agreed with experimental results. Subsequently, it was used to investigate the molecular details of interactions between phthalocyanines and membranes of various compositions. The results demonstrate that ZnPcChol 8+ has high affinity to both the inner and the outer model membranes of Gram-negative bacteria, although this species does not show noticeable affinity to the 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphatidylcholine membrane. Furthermore, we found out that the process of ZnPcChol 8+ penetration toward the center of the outer bacterial membrane is energetically favorable and leads to its overall disturbance and formation of the aqueous pore. Such intramembrane localization of ZnPcChol 8+ suggests their twofold cytotoxic effect on bacterial cells: (1) via induction of lipid peroxidation by enhanced production of reactive oxygen species (i.e., photodynamic toxicity); (2) via rendering the bacterial membrane more permeable for additional Pc molecules as well as other compounds. We also found that the kinetics of penetration depends on the presence of phospholipid defects in the lipopolysaccharide leaflet of the outer membrane and the type of counterions, which stabilize it. Thus, the results of our simulations provide a detailed molecular view of ZnPcChol 8+ "self-promoted uptake", the pathway previously proposed for some small molecules crossing the outer bacterial membrane.

  14. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    PubMed

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  15. Membrane Permeability of Fatty Acyl Compounds Studied via Molecular Simulation

    DOE PAGES

    Vermaas, Josh V.; Beckham, Gregg T.; Crowley, Michael F.

    2017-10-17

    Interest in fatty acid-derived products as fuel and chemical precursors has grown substantially. Microbes can be genetically engineered to produce fatty acid-derived products that are able to cross host membranes and can be extracted into an applied organic overlay. This process is thought to be passive, with a rate dependent on the chemistry of the crossing compound. The relationship between the chemical composition and the energetics and kinetics of product accumulation within the overlay is not well understood. Through biased and unbiased molecular simulation, we compute the membrane permeability coefficients from production to extraction for different fatty acyl products, includingmore » fatty acids, fatty alcohols, fatty aldehydes, alkanes, and alkenes. These simulations identify specific interactions that accelerate the transit of aldehydes across the membrane bilayer relative to other oxidized products, specifically the lack of hydrogen bonds to the surrounding membrane environment. However, since extraction from the outer membrane leaflet into the organic phase is found to be rate limiting for the entire process, we find that fatty alcohols and fatty aldehydes would both manifest similar fluxes into a dodecane overlay under equivalent conditions, outpacing the accumulation of acids or alkanes into the organic phase. Since aldehydes are known to be highly reactive as well as toxic in high quantities, the findings suggest that indeed fatty alcohols are the optimal long-tail fatty acyl product for extraction.« less

  16. Membrane Permeability of Fatty Acyl Compounds Studied via Molecular Simulation.

    PubMed

    Vermaas, Josh V; Beckham, Gregg T; Crowley, Michael F

    2017-12-21

    Interest in fatty acid-derived products as fuel and chemical precursors has grown substantially. Microbes can be genetically engineered to produce fatty acid-derived products that are able to cross host membranes and can be extracted into an applied organic overlay. This process is thought to be passive, with a rate dependent on the chemistry of the crossing compound. The relationship between the chemical composition and the energetics and kinetics of product accumulation within the overlay is not well understood. Through biased and unbiased molecular simulation, we compute the membrane permeability coefficients from production to extraction for different fatty acyl products, including fatty acids, fatty alcohols, fatty aldehydes, alkanes, and alkenes. These simulations identify specific interactions that accelerate the transit of aldehydes across the membrane bilayer relative to other oxidized products, specifically the lack of hydrogen bonds to the surrounding membrane environment. However, since extraction from the outer membrane leaflet into the organic phase is found to be rate limiting for the entire process, we find that fatty alcohols and fatty aldehydes would both manifest similar fluxes into a dodecane overlay under equivalent conditions, outpacing the accumulation of acids or alkanes into the organic phase. Since aldehydes are known to be highly reactive as well as toxic in high quantities, the findings suggest that indeed fatty alcohols are the optimal long-tail fatty acyl product for extraction.

  17. Membrane Permeability of Fatty Acyl Compounds Studied via Molecular Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermaas, Josh V.; Beckham, Gregg T.; Crowley, Michael F.

    Interest in fatty acid-derived products as fuel and chemical precursors has grown substantially. Microbes can be genetically engineered to produce fatty acid-derived products that are able to cross host membranes and can be extracted into an applied organic overlay. This process is thought to be passive, with a rate dependent on the chemistry of the crossing compound. The relationship between the chemical composition and the energetics and kinetics of product accumulation within the overlay is not well understood. Through biased and unbiased molecular simulation, we compute the membrane permeability coefficients from production to extraction for different fatty acyl products, includingmore » fatty acids, fatty alcohols, fatty aldehydes, alkanes, and alkenes. These simulations identify specific interactions that accelerate the transit of aldehydes across the membrane bilayer relative to other oxidized products, specifically the lack of hydrogen bonds to the surrounding membrane environment. However, since extraction from the outer membrane leaflet into the organic phase is found to be rate limiting for the entire process, we find that fatty alcohols and fatty aldehydes would both manifest similar fluxes into a dodecane overlay under equivalent conditions, outpacing the accumulation of acids or alkanes into the organic phase. Since aldehydes are known to be highly reactive as well as toxic in high quantities, the findings suggest that indeed fatty alcohols are the optimal long-tail fatty acyl product for extraction.« less

  18. Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli.

    PubMed

    Sutterlin, Holly A; Zhang, Sisi; Silhavy, Thomas J

    2014-09-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Characterization of Ciprofloxacin Permeation Pathways across the Porin OmpC Using Metadynamics and a String Method.

    PubMed

    Prajapati, Jigneshkumar Dahyabhai; Fernández Solano, Carlos José; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2017-09-12

    The rapid spreading of antimicrobial resistance in Gram-negative bacteria has become a major threat for humans as well as animals. As one of the main factors involved, the permeability of the outer membrane has attracted a great deal of attention recently. However, the knowledge regarding the translocation mechanisms for most available antibiotics is so far rather limited. Here, a theoretical study concerning the diffusion route of ciprofloxacin across the outer membrane porin OmpC from E. coli is presented. To this end, we establish a protocol to characterize meaningful permeation pathways by combining metadynamics with the zero-temperature string method. It was found that the lowest-energy pathway requires a reorientation of ciprofloxacin in the extracellular side of the porin before reaching the constriction region with its carboxyl group ahead. Several affinity sites have been identified, and their metastability has been evaluated using unbiased simulations. Such a detailed understanding is potentially very helpful in guiding the development of next generation antibiotics.

  20. Toward the rational design of carbapenem uptake in Pseudomonas aeruginosa.

    PubMed

    Isabella, Vincent M; Campbell, Arthur J; Manchester, John; Sylvester, Mark; Nayar, Asha S; Ferguson, Keith E; Tommasi, Ruben; Miller, Alita A

    2015-04-23

    Understanding how compound penetration occurs across the complex cell walls of Gram-negative bacteria is one of the greatest challenges in discovering new drugs to treat the infections they cause. A combination of next-generation transposon sequencing, computational metadynamics simulations (CMDS), and medicinal chemistry was used to define genetic and structural elements involved in facilitated carbapenem entry into Pseudomonas aeruginosa. Here we show for the first time that these compounds are taken up not only by the major outer membrane channel OccD1 (also called OprD or PA0958) but also by a closely related channel OccD3 (OpdP or PA4501). Transport-mediating molecular interactions predicted by CMDS for these channels were first confirmed genetically, then used to guide the design of carbapenem analogs with altered uptake properties. These results bring us closer to the rational design of channel transmissibility and may ultimately lead to improved permeability of compounds across bacterial outer membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling.

    PubMed

    May, Kerrie L; Silhavy, Thomas J

    2018-03-20

    The outer membrane (OM) bilayer of Gram-negative bacteria is biologically unique in its asymmetrical organization of lipids, with an inner leaflet composed of glycerophospholipids (PLs) and a surface-exposed outer leaflet composed of lipopolysaccharide (LPS). This lipid organization is integral to the OM's barrier properties. Perturbations of the outer leaflet by antimicrobial peptides or defects in LPS biosynthesis or transport to the OM cause a compensatory flipping of PLs to the outer leaflet. As a result, lipid asymmetry is disrupted and OM integrity is compromised. Recently, we identified an Escherichia coli mutant that exhibits aberrant accumulation of surface PLs accompanied by a cellular increase in LPS production. Remarkably, the observed hyperproduction of LPS is PldA dependent. Here we provide evidence that the fatty acids generated by PldA at the OM are transported into the cytoplasm and simultaneously activated by thioesterification to coenzyme A (CoA) by FadD. The acyl-CoAs produced ultimately inhibit LpxC degradation by FtsH. The increased levels of LpxC, the enzyme that catalyzes the first committed step in LPS biosynthesis, increases the amount of LPS produced. Our data suggest that PldA acts as a sensor for lipid asymmetry in the OM. PldA protects the OM barrier by both degrading mislocalized PLs and generating lipid second messengers that enable long-distance signaling that prompts the cell to restore homeostasis at a distant organelle. IMPORTANCE The outer membrane of Gram-negative bacteria is an effective permeability barrier that protects the cell from toxic agents, including antibiotics. Barrier defects are often manifested by phospholipids present in the outer leaflet of this membrane that take up space normally occupied by lipopolysaccharide. We have discovered a signaling mechanism that operates across the entire cell envelope used by the cell to detect these outer membrane defects. A phospholipase, PldA, that functions to degrade these mislocalized phospholipids has a second, equally important function as a sensor. The fatty acids produced by hydrolysis of the phospholipids act as second messengers to signal the cell that more lipopolysaccharide is needed. These fatty acids diffuse across the periplasm and are transported into the cytoplasm by a process that attaches coenzyme A. The acyl-CoA molecule produces signals to inhibit the degradation of the critical enzyme LpxC by the ATP-dependent protease FtsH, increasing lipopolysaccharide production. Copyright © 2018 May and Silhavy.

  2. Effect of heterogeneity on the characterization of cell membrane compartments: I. Uniform size and permeability.

    PubMed

    Hall, Damien

    2010-03-15

    Observations of the motion of individual molecules in the membrane of a number of different cell types have led to the suggestion that the outer membrane of many eukaryotic cells may be effectively partitioned into microdomains. A major cause of this suggested partitioning is believed to be due to the direct/indirect association of the cytosolic face of the cell membrane with the cortical cytoskeleton. Such intimate association is thought to introduce effective hydrodynamic barriers into the membrane that are capable of frustrating molecular Brownian motion over distance scales greater than the average size of the compartment. To date, the standard analytical method for deducing compartment characteristics has relied on observing the random walk behavior of a labeled lipid or protein at various temporal frequencies and different total lengths of time. Simple theoretical arguments suggest that the presence of restrictive barriers imparts a characteristic turnover to a plot of mean squared displacement versus sampling period that can be interpreted to yield the average dimensions of the compartment expressed as the respective side lengths of a rectangle. In the following series of articles, we used computer simulation methods to investigate how well the conventional analytical strategy coped with heterogeneity in size, shape, and barrier permeability of the cell membrane compartments. We also explored questions relating to the necessary extent of sampling required (with regard to both the recorded time of a single trajectory and the number of trajectories included in the measurement bin) for faithful representation of the actual distribution of compartment sizes found using the SPT technique. In the current investigation, we turned our attention to the analytical characterization of diffusion through cell membrane compartments having both a uniform size and permeability. For this ideal case, we found that (i) an optimum sampling time interval existed for the analysis and (ii) the total length of time for which a trajectory was recorded was a key factor. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  3. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens.

    PubMed

    Randall, Christopher P; Mariner, Katherine R; Chopra, Ian; O'Neill, Alex J

    2013-01-01

    Antistaphylococcal agents commonly lack activity against Gram-negative bacteria like Escherichia coli owing to the permeability barrier presented by the outer membrane and/or the action of efflux transporters. When these intrinsic resistance mechanisms are artificially compromised, such agents almost invariably demonstrate antibacterial activity against Gram negatives. Here we show that this is not the case for the antibiotic daptomycin, whose target appears to be absent from E. coli and other Gram-negative pathogens.

  4. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yijia; Chen, Baowei; Shi, Liang

    2011-10-14

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) atmore » its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are consistent with the inherent complexity associated with correct heme insertion and acylation of MtrC that occurs in the periplasm prior to its targeting to the outer membrane. These latter results suggest that MtrC protein trafficking to the outer membrane and its subsequent degradation are tightly regulated, which is consistent with cellular processing pathways that target MtrC to extracellular structures and their possible role in promoting electron transfer from Shewanella to extracellular acceptors.« less

  5. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-08-06

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  6. Preparation and characterization of glass hollow fiber membrane for water purification applications.

    PubMed

    Makhtar, Siti Nurfatin Nadhirah Mohd; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana

    2017-07-01

    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min -1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m -2  h -1  bar -1 . The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.

  7. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    PubMed

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  8. P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways.

    PubMed

    Qu, Yan; Dubyak, George R

    2009-06-01

    Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.

  9. The influence of a non-occlusive bi-layer composite membrane on skin barrier properties. A non-invasive evaluation with a right-left intra-individual pre/post comparison study.

    PubMed

    Brazzelli, V; Berardesca, E; Rona, C; Borroni, G

    2008-01-01

    The purpose of this placebo-controlled right-left intra-individual pre/post comparison study was to evaluate the efficacy of a new bi-layer composite membrane, composed of a layer of knitted cotton and a layer of semi-permeable polyurethane, developed in order to improve skin hydration. Eighteen healthy subjects entered the study. A T-shirt, dedicated to this study, was prepared and it was worn for 8 h, mimicking overnight wearing. Before and at the removal of the T-shirt an objective quantification of skin parameters was performed by measuring hydration, transepidermal water loss (TEWL) and skin surface pH, bilaterally, on the inner side of the forearm. Measurements were performed both at the interface between the skin and the bi-layer composite membrane or cotton and on the outer side of the membrane (to assess permeation of water and occlusive properties of the product) with and without a single application of a moisturizer. A statistically significant improvement of skin hydration, recorded on the stratum corneum underneath the bi-layer membrane versus cotton alone, was measured both with (p < 0.0001) and without application of the moisturizer (p < 0.002). TEWL was shown to decrease significantly on the side of the bi-layer membrane, if compared with cotton (p < 0.008), after application of the moisturizer. TEWL through the membrane showed no significant differences as compared to placebo, confirming the permeability of the fabric. Our data suggest that this bi-layer composite membrane can promote the hydration process of the stratum corneum, increasing the hydrating properties of the moisturizer agent. (c) 2007 S. Karger AG, Basel

  10. Membrane stress increases cation permeability in red cells.

    PubMed

    Johnson, R M

    1994-11-01

    The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.

  11. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  12. Molecular basis of antimicrobial resistance in non-typable Haemophilus influenzae.

    PubMed

    Sánchez, L; Leranoz, S; Puig, M; Lorén, J G; Nikaido, H; Viñas, M

    1997-09-01

    Strains of the facultative anaerobe Haemophilus influenzae, both type b and non typable strains, are frequently multiresistant. The measurement of the antibiotic permeability of Haemophilus influenzae outer membrane (OM) shows that antibiotics can cross through the OM easily. Thus, enzymatic activity or efflux pumps could be responsible for multiresistance. An efflux system closely related to AcrAB of Escherichia coli is present in Haemophilus influenzae. However, their role in multiresistance seems irrelevant. Classical mechanisms such as plasmid exchange seems to be playing a major role in the multidrug resistance in Haemophilus influenzae.

  13. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    PubMed

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa.

  14. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens.

    PubMed

    Yi, Shumin; Wang, Wei; Bai, Fengling; Zhu, Junli; Li, Jianrong; Li, Xuepeng; Xu, Yongxia; Sun, Tong; He, Yutang

    2014-02-01

    In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.

  15. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c

    PubMed Central

    Mootha, Vamsi K.; Wei, Michael C.; Buttle, Karolyn F.; Scorrano, Luca; Panoutsakopoulou, Vily; Mannella, Carmen A.; Korsmeyer, Stanley J.

    2001-01-01

    Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases. PMID:11179211

  16. Calculating the permeability coefficients of mixed matrix membranes of polydimethylsiloxane and silicalite crystals to various ethanol-water solutions using molecular simulations.

    EPA Science Inventory

    The permeability coefficients of mixed matrix membranes of polydimethylsiloxane (PDMS) and silicalite crystal are taken as the sum of the permeability coefficients of membrane components each weighted by their associated mass fraction. The permeability coefficient of a membrane c...

  17. Inhibition of Bcl-2 Sensitizes Mitochondrial Permeability Transition Pore (MPTP) Opening in Ischemia-Damaged Mitochondria

    PubMed Central

    Chen, Qun; Xu, Haishan; Xu, Aijun; Ross, Thomas; Bowler, Elizabeth; Hu, Ying; Lesnefsky, Edward J.

    2015-01-01

    Background Mitochondria are critical to cardiac injury during reperfusion as a result of damage sustained during ischemia, including the loss of bcl-2. We asked if bcl-2 depletion not only leads to selective permeation of the outer mitochondrial membrane (MOMP) favoring cytochrome c release and programmed cell death, but also favors opening of the mitochondrial permeability transition pore (MPTP). An increase in MPTP susceptibility would support a role for bcl-2 depletion mediated cell death in the calcium overload setting of early reperfusion via MPTP as well as later in reperfusion via MOMP as myocardial calcium content normalizes. Methods Calcium retention capacity (CRC) was used to reflect the sensitivity of the MPTP opening in isolated cardiac mitochondria. To study the relationship between bcl-2 inhibition and MPTP opening, mitochondria were incubated with a bcl-2 inhibitor (HA14-1) and CRC measured. The contribution of preserved bcl-2 content to MPTP opening following ischemia-reperfusion was explored using transgenic bcl-2 overexpressed mice. Results CRC was decreased in mitochondria following reperfusion compared to ischemia alone, indicating that reperfusion further sensitizes to MPTP opening. Incubation of ischemia-damaged mitochondria with increasing HA14-1concentrations increased calcium-stimulated MPTP opening, supporting that functional inhibition of bcl-2 during simulated reperfusion favors MPTP opening. Moreover, HA14-1 sensitivity was increased by ischemia compared to non-ischemic controls. Overexpression of bcl-2 attenuated MPTP opening in following ischemia-reperfusion. HA14-1 inhibition also increased the permeability of the outer membrane in the absence of exogenous calcium, indicating that bcl-2 inhibition favors MOMP when calcium is low. Conclusions The depletion and functional inhibition of bcl-2 contributes to cardiac injury by increasing susceptibility to MPTP opening in high calcium environments and MOMP in the absence of calcium overload. Thus, ischemia-damaged mitochondria with decreased bcl-2 content are susceptible to MPTP opening in early reperfusion and MOMP later in reperfusion when cytosolic calcium has normalized. PMID:25756500

  18. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  19. Aspirin increases susceptibility of Helicobacter pylori to metronidazole by augmenting endocellular concentrations of antimicrobials.

    PubMed

    Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang

    2009-02-28

    To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. H pylori reference strain 26695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-(3)H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression.

  20. Charge Inversion in semi-permeable membranes

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Sinha, Shayandev; Jing, Haoyuan

    Role of semi-permeable membranes like lipid bilayer is ubiquitous in a myriad of physiological and pathological phenomena. Typically, lipid membranes are impermeable to ions and solutes; however, protein channels embedded in the membrane allow the passage of selective, small ions across the membrane enabling the membrane to adopt a semi-permeable nature. This semi-permeability, in turn, leads to electrostatic potential jump across the membrane, leading to effects such as regulation of intracellular calcium, extracellular-vesicle-membrane interactions, etc. In this study, we theoretically demonstrate that this semi-permeable nature may trigger the most remarkable charge inversion (CI) phenomenon in the cytosol-side of the negatively-charged lipid bilayer membrane that are selectively permeable to only positive ions of a given salt. This CI is manifested as the changing of the sign of the electrostatic potential from negative to positive from the membrane-cytosol interface to deep within the cytosol. We study the impact of the parameters such as the concentration of this salt with selectively permeable ions as well as the concentration of an external salt in the development of this CI phenomenon. We anticipate such CI will profoundly influence the interaction of membrane and intra-cellular moieties (e.g., exosome or multi-cellular vesicles) having implications for a host of biophysical processes.

  1. Ultrasonic isolation of the outer membrane of Escherichia coli with autodisplayed Z-domains.

    PubMed

    Bong, Ji-Hong; Yoo, Gu; Park, Min; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2014-11-01

    The outer membrane of Escherichia coli was previously isolated as a liposome-like outer membrane particle using an enzymatic treatment for lysozymes; for immunoassays, the particles were subsequently layered on solid supports via hydrophobic interactions. This work presents an enzyme-free isolation method for the E. coli outer membrane with autodisplayed Z-domains using ultrasonication. First, the properties of the outer membrane particle, such as the particle size, zeta potential, and total protein, were compared with the properties of particles obtained using the previous preparation methods. Compared with the conventional isolation method using an enzyme treatment, the ultrasonic method exhibited a higher efficiency at isolating the outer membrane and less contamination by cytosolic proteins. The isolated outer membrane particles were layered on a gold surface, and the roughness and thickness of the layered outer membrane layers were subsequently analyzed using AFM analysis. Finally, the antibody-binding activity of two outer membrane layers with autodisplayed Z-domains created from particles that were isolated using the enzymatic and ultrasonic isolation methods was measured using fluorescein-labeled antibody as a model analyte, and the activity of the outer membrane layer that was isolated from the ultrasonic method was estimated to be more than 20% higher than that from the conventional enzymatic method. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The permeability of the cGMP-activated channel to organic cations in retinal rods of the tiger salamander.

    PubMed Central

    Picco, C; Menini, A

    1993-01-01

    1. The permeability of the channel activated by guanosine 3',5'-cyclic monophosphate (cGMP) to many organic monovalent cations was determined by recording macroscopic currents in excised inside-out patches of plasma membrane from isolated retinal rod outer segments of the tiger salamander. 2. Current-voltage relations were measured when the NaCl of the bathing medium was replaced by salts of organic cations. Permeability ratios relative to Na+ ions were calculated with the Goldman-Hodgkin-Katz potential equation from the measured changes of reversal potentials. 3. Hydroxylammonium+, hydrazinium+ and methylammonium+, which are molecules of very similar shape and size, permeate the channel with very different permeability ratios: 5.92, 1.99 and 0.60 respectively. 4. Methylated and ethylated ammonium+ compounds were investigated. It was found that, not only methylammonium+, but also dimethylammonium+ and ethylammonium+ were permeant with permeability ratios of 0.6, 0.14 and 0.16 respectively. Trimethylammonium+, tetramethylammonium+, diethylammonium+, triethylammonium+, and tetraethylammonium+ were not permeant. 5. Guanidinium+ and its derivatives formamidinium+, aminoguanidinium+, acetamidinium+ and methylguanidinium+ were all permeant with permeability ratios 1.12, 1.00, 0.63, 0.36 and 0.33 respectively. 6. The cGMP-activated channel was found to be permeable to at least thirteen organic cations. Molecular models of the permeant cations indicate that the cross-section of the narrowest part of the pore must be at least as large as a rectangle of 0.38 x 0.5 nm dimensions. PMID:7683718

  3. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  4. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  5. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris.

    PubMed

    Kuddus, Md Ruhul; Rumi, Farhana; Tsutsumi, Motosuke; Takahashi, Rika; Yamano, Megumi; Kamiya, Masakatsu; Kikukawa, Takashi; Demura, Makoto; Aizawa, Tomoyasu

    2016-06-01

    Snakin-1 (SN-1) is a small cysteine-rich plant antimicrobial peptide with broad spectrum antimicrobial activity which was isolated from potato (Solanum tuberosum). Here, we carried out the expression of a recombinant SN-1 in the methylotrophic yeast Pichia pastoris, along with its purification and characterization. A DNA fragment encoding the mature SN-1 was cloned into pPIC9 vector and introduced into P. pastoris. A large amount of pure recombinant SN-1 (approximately 40 mg/1L culture) was obtained from a fed-batch fermentation culture after purification with a cation exchange column followed by RP-HPLC. The identity of the recombinant SN-1 was verified by MALDI-TOF MS, CD and (1)H NMR experiments. All these data strongly indicated that the recombinant SN-1 peptide had a folding with six disulfide bonds that was identical to the native SN-1. Our findings showed that SN-1 exhibited strong antimicrobial activity against test microorganisms and produced very weak hemolysis of mammalian erythrocytes. The mechanism of its antimicrobial action against Escherichia coli was investigated by both outer membrane permeability assay and cytoplasmic membrane depolarization assay. These assays demonstrated that SN-1 is a membrane-active antimicrobial peptide which can disrupt both outer and cytoplasmic membrane integrity. This is the first report on the recombinant expression and purification of a fully active SN-1 in P. pastoris. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Biomass properties and permeability in an immersed hollow fibre membrane bioreactor at high sludge concentrations.

    PubMed

    Wang, Z Z; Zsirai, T; Connery, K; Fabiyi, M; Larrea, A; Li, J; Judd, S J

    2014-01-01

    This study aimed to investigate the influence of biomass properties and high mixed liquor suspended solids (MLSS) concentrations on membrane permeability in a pilot-scale hollow fibre membrane bioreactor treating domestic wastewater. Auxiliary molasses solution was added to maintain system operation at constant food-to-microorganisms ratio (F/M = 0.13). Various physicochemical and biological biomass parameters were measured throughout the trial, comprising pre-thickening, thickening and post-thickening periods with reference to the sludge concentration and with aerobic biotreatment continuing throughout. Correlations between dynamic changes in biomass characteristics and membrane permeability decline as well as permeability recovery were further assessed by statistical analyses. Results showed the MLSS concentration to exert the greatest influence on sustainable membrane permeability, with a weaker correlation with particle size distribution. The strong dependence of absolute recovered permeability on wet accumulated solids (WACS) concentration, or clogging propensity, revealed clogging to deleteriously affect membrane permeability decline and recovery (from mechanical declogging and chemical cleaning), with WACS levels increasing with increasing MLSS. Evidence from the study indicated clogging may permanently reduce membrane permeability post declogging and chemical cleaning, corroborating previously reported findings.

  7. Structural and Kinetic Characterization of the LPS Biosynthetic Enzyme D-alpha,beta-D-heptose-1,7-bisphosphate Phosphatase (GmhB) from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.; Sugiman-Marangos, S; Zhang, K

    2010-01-01

    Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-{alpha},{beta}-D-Heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis.more » This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting Gram-negative bacterial infection.« less

  8. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    PubMed

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  9. Preparation of Low fouling Polyethersulfone Membranes by Simultaneously Phase Separation and Redox Polymerization

    NASA Astrophysics Data System (ADS)

    Roihatin, A.; Susanto, H.

    2017-05-01

    This paper presents preparation of low fouling PES membranes by non solvent induced phase separation (NIPS) coupled with redox polymerization. The membrane characterization included water permeability, morphology structure (by SEM) and surface chemistry (by FTIR). Water permeability measurements showed thatthe membranes have water permeability within the range 10-50 L/h.m2.bar. Addition of PEG dan PEGMA intopolymer solution increased water permeability, whereas blending redox initiator and crosslinker, MBAA in polymer solution decreased water permeability. Surface morfology of membranes by SEM showed that unmodified PES membrane had smaller pore size than PEG or PEGMA modified PES membranes. Furthermore, PES-PEG or PES-PEGMA membranes modified by blending with redox initiator and MBAA as crosslinker showed smaller pore size than unmodified membrane. FTIR analysis showed that all membranes have typical spectraof PES polymer; however no additional peak was observed forthe membranes prepared with addition of PEG/PEGMA, initiator redox and also crosslinker. The addition of PEG/PEGMA, redox initiator and crosslinker resulted in membranes with high rejection and an acceptable flux as well as more stable due to relatively high fouling resistance.

  10. Evaluation of the membrane permeability (PAMPA and skin) of benzimidazoles with potential cannabinoid activity and their relation with the Biopharmaceutics Classification System (BCS).

    PubMed

    Alvarez-Figueroa, M Javiera; Pessoa-Mahana, C David; Palavecino-González, M Elisa; Mella-Raipán, Jaime; Espinosa-Bustos, Cristián; Lagos-Muñoz, Manuel E

    2011-06-01

    The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log P(oct) value <3.0. In contrast, transdermal permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability).

  11. Hyper-Cross-Linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration.

    PubMed

    Cheng, Xi Quan; Konstas, Kristina; Doherty, Cara M; Wood, Colin D; Mulet, Xavier; Xie, Zongli; Ng, Derrick; Hill, Matthew R; Shao, Lu; Lau, Cher Hon

    2017-04-26

    Membrane materials with high permeability to solvents while rejecting dissolved contaminants are crucial to lowering the energy costs associated with liquid separations. However, the current lack of stable high-permeability materials require innovative engineering solutions to yield high-performance, thin membranes using stable polymers with low permeabilities. Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) is one of the most permeable polymers but is extremely susceptible to physical aging. Despite recent developments in anti-aging polymer membranes, this research breakthrough has yet to be demonstrated on thin PTMSP films supported on porous polymer substrates, a crucial step toward commercializing anti-aging membranes for industrial applications. Here we report the development of scalable, thin film nanocomposite membranes supported on polymer substrates that are resistant to physical aging while having high permeabilities to alcohols. The selective layer is made up of PTMSP and nanoporous polymeric additives. The nanoporous additives provide additional passageways to solvents, enhancing the high permeability of the PTMSP materials further. Through intercalation of polyacetylene chains into the sub-nm pores of organic additives, physical aging in the consequent was significantly hindered in continuous long-term operation. Remarkably we also demonstrate that the additives enhance both membrane permeability and rejection of dissolved contaminants across the membranes, as ethanol permeability at 5.5 × 10 -6 L m m -2 h -1 bar -1 with 93% Rose Bengal (1017.6 g mol -1 ) rejection, drastically outperforming commercial and state-of-the-art membranes. These membranes can replace energy-intensive separation processes such as distillation, lowering operation costs in well-established pharmaceutical production processes.

  12. Importance of Porins for Biocide Efficacy against Mycobacterium smegmatis▿

    PubMed Central

    Frenzel, Elrike; Schmidt, Stefan; Niederweis, Michael; Steinhauer, Katrin

    2011-01-01

    Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N′-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides. PMID:21398489

  13. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  14. Polysulfone - CNT composite membrane with enhanced water permeability

    NASA Astrophysics Data System (ADS)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  15. Differential Permeabilization Effects of Ca2+ and Valinomycin on the Inner and Outer Mitochondrial Membranes as Revealed by Proteomics Analysis of Proteins Released from Mitochondria*S⃞

    PubMed Central

    Yamada, Akiko; Yamamoto, Takenori; Yamazaki, Naoshi; Yamashita, Kikuji; Kataoka, Masatoshi; Nagata, Toshihiko; Terada, Hiroshi; Shinohara, Yasuo

    2009-01-01

    It is well established that cytochrome c is released from mitochondria when the permeability transition (PT) of this organelle is induced by Ca2+. Our previous study showed that valinomycin also caused the release of cytochrome c from mitochondria but without inducing this PT (Shinohara, Y., Almofti, M. R., Yamamoto, T., Ishida, T., Kita, F., Kanzaki, H., Ohnishi, M., Yamashita, K., Shimizu, S., and Terada, H. (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur. J. Biochem. 269, 5224–5230). These results indicate that cytochrome c may be released from mitochondria with or without the induction of PT. In the present study, we examined the protein species released from valinomycin- and Ca2+-treated mitochondria by LC-MS/MS analysis. As a result, the proteins located in the intermembrane space were found to be specifically released from valinomycin-treated mitochondria, whereas those in the intermembrane space and in the matrix were released from Ca2+-treated mitochondria. These results were confirmed by Western analysis. Furthermore to examine how the protein release occurred, we examined the correlation between the species of released proteins and those of the abundant proteins in mitochondria. Consequently most of the proteins released from mitochondria treated with either agent were highly expressed proteins in mitochondria, indicating that the release occurred not selectively but in a manner dependent on the concentration of the proteins. Based on these results, the permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes are discussed. PMID:19218587

  16. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less

  17. Aspirin increases susceptibility of Helicobacter pylori to metronidazole by augmenting endocellular concentrations of antimicrobials

    PubMed Central

    Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang

    2009-01-01

    AIM: To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. METHODS: H pylori reference strain 26 695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-3H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26 695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. RESULTS: The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. CONCLUSION: Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression. PMID:19248190

  18. BvrR/BvrS-Controlled Outer Membrane Proteins Omp3a and Omp3b Are Not Essential for Brucella abortus Virulence▿

    PubMed Central

    Manterola, Lorea; Guzmán-Verri, Caterina; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; de Miguel, María-Jesús; Moriyón, Ignacio; Grilló, María-Jesús; López-Goñi, Ignacio; Moreno, Edgardo

    2007-01-01

    The Brucella abortus two-component regulatory system BvrR/BvrS controls the expression of outer membrane proteins (Omp) Omp3a (Omp25) and Omp3b (Omp22). Disruption of bvrS or bvrR generates avirulent mutants with altered cell permeability, higher sensitivity to microbicidal peptides, and complement. Consequently, the role of Omp3a and Omp3b in virulence was examined. Similar to bvrS or bvrR mutants, omp3a and omp3b mutants displayed increased attachment to cells, indicating surface alterations. However, they showed unaltered permeability; normal expression of Omp10, Omp16, Omp19, Omp2b, and Omp1; native hapten polysaccharide; and lipopolysaccharide and were resistant to complement and polymyxin B at ranges similar to those of the wild-type (WT) counterpart. Likewise, omp3a and omp3b mutants were able to replicate in murine macrophages and in HeLa cells, were resistant to the killing action of human neutrophils, and persisted in mice, like the WT strain. Murine macrophages infected with the omp3a mutant generated slightly higher levels of tumor necrosis factor alpha than the WT, whereas the bvrS mutant induced lower levels of this cytokine. Since the absence of Omp3a or Omp3b does not result in attenuation, it can be concluded that BvrR/BvrS influences additional Brucella properties involved in virulence. Our results are discussed in the light of previous works suggesting that disruption of omp3a generates attenuated Brucella strains, and we speculate on the role of group 3 Omps. PMID:17664262

  19. NASA In-step: Permeable Membrane Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on the Permeable Membrane Experiment are presented. An experiment overview is given. The Membrane Phase Separation Experiment, Membrane Diffusion Interference Experiment, and Membrane Wetting Experiment are described. Finally, summary and conclusions are discussed.

  20. Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.

    2006-01-01

    Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

  1. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    PubMed

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ).

  2. Permeability modes in fluctuating lipid membranes with DNA-translocating pores.

    PubMed

    Moleiro, L H; Mell, M; Bocanegra, R; López-Montero, I; Fouquet, P; Hellweg, Th; Carrascosa, J L; Monroy, F

    2017-09-01

    Membrane pores can significantly alter not only the permeation dynamics of biological membranes but also their elasticity. Large membrane pores able to transport macromolecular contents represent an interesting model to test theoretical predictions that assign active-like (non-equilibrium) behavior to the permeability contributions to the enhanced membrane fluctuations existing in permeable membranes [Maneville et al. Phys. Rev. Lett. 82, 4356 (1999)]. Such high-amplitude active contributions arise from the forced transport of solvent and solutes through the open pores, which becomes even dominant at large permeability. In this paper, we present a detailed experimental analysis of the active shape fluctuations that appear in highly permeable lipid vesicles with large macromolecular pores inserted in the lipid membrane, which are a consequence of transport permeability events occurred in an osmotic gradient. The experimental results are found in quantitative agreement with theory, showing a remarkable dependence with the density of membrane pores and giving account of mechanical compliances and permeability rates that are compatible with the large size of the membrane pore considered. The presence of individual permeation events has been detected in the fluctuation time-series, from which a stochastic distribution of the permeation events compatible with a shot-noise has been deduced. The non-equilibrium character of the membrane fluctuations in a permeation field, even if the membrane pores are mere passive transporters, is clearly demonstrated. Finally, a bio-nano-technology outlook of the proposed synthetic concept is given on the context of prospective uses as active membrane DNA-pores exploitable in gen-delivery applications based on lipid vesicles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  4. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    PubMed

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Molecular mechanisms of membrane impermeability in clinical isolates of Enterobacteriaceae exposed to imipenem selective pressure.

    PubMed

    Pavez, Monica; Vieira, Camila; de Araujo, Maria Rita; Cerda, Alvaro; de Almeida, Lara Mendes; Lincopan, Nilton; Mamizuka, Elsa Masae

    2016-07-01

    Intrinsic mechanisms leading to carbapenem-induced membrane impermeability and multidrug resistance are poorly understood in clinical isolates of Enterobacteriaceae. In this study, molecular behaviours during the establishment of membrane impermeability in members of the Enterobacteriaceae family under imipenem selective pressure were investigated. Clinical isolates (n = 22) exhibiting susceptibility to multiple antibiotics or characterised as extended-spectrum β-lactamase (ESBL)- or AmpC-producers were submitted to progressive passages on Mueller-Hinton agar plates containing subclinical concentrations of imipenem [0.5 × the minimum inhibitory concentration (MIC)]. Changes in outer membrane permeability were evaluated by determination of antimicrobial MICs, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and gene expression analysis related to membrane permeability (i.e. omp35-like, omp36-like and acrA) and regulatory mechanisms (i.e. marA and ompR) by quantitative reverse transcription PCR. Following imipenem induction, 73% of isolates showed increased carbapenem MICs by ≥2 doubling dilutions. At an early stage of treatment, imipenem modulated the expression of porins and efflux pump genes, represented by a reduction of 78% in omp36-like and a two-fold increase in acrA expression. Transcriptional factors marA and ompR were also affected by imipenem induction, increasing mRNA expression by 14- and 4-fold, respectively. High marA expression levels were associated with higher values of acrA expression. These results suggest that imipenem is an important factor in the development of an adaptive response to carbapenems by regulating key genes involved in the control of efflux pumps and porins, which could lead to a multidrug-resistant profile in clinical isolates, contributing to possible treatment failure. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Antibacterial action mode of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core-shell nanoparticles against Escherichia coli correlated with molecular chain conformation.

    PubMed

    Wen, Yan; Yao, Fanglian; Sun, Fang; Tan, Zhilei; Tian, Liang; Xie, Lei; Song, Qingchao

    2015-03-01

    The action mode of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core-shell nanoparticles (CM-HTCC/PAMAM) against Escherichia coli (E. coli) was investigated via a combination of approaches including measurements of cell membrane integrity, outer membrane (OM) and inner membrane (IM) permeability, and scanning electron microscopy (SEM). CM-HTCC/PAMAM dendrimer nanoparticles likely acted in a sequent event-driven mechanism, beginning with the binding of positively charged groups from nanoparticle surface with negative cell surface, thereby causing the disorganization of cell membrane, and subsequent leakage of intracellular components which might ultimately lead to cell death. Moreover, the chain conformation of polymers was taken into account for a better understanding of the antibacterial action mode by means of viscosity and GPC measurements. High utilization ratio of positive charge and large specific surface area generated from a compacted conformation of CM-HTCC/PAMAM, significantly different from the extended conformation of HTCC, were proposed to be involved in the antibacterial action. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane.

    PubMed

    Wenz, Lena-Sophie; Opaliński, Lukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-06-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. © 2014 The Authors.

  8. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Gas-permeable membrane technology is useful to recover ammonia from liquid manures. In this study, phosphorus (P) recovery via magnesium chloride precipitation was enhanced by combining it with ammonia recovery through gas-permeable membranes. Anaerobically digested swine effluent containing approx...

  9. Intestinal Membrane Permeability and Hypersensitivity In the Irritable Bowel Syndrome

    PubMed Central

    Zhou, QiQi; Zhang, Buyi; Verne, G. Nicholas

    2009-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder in which the underlying pathophysiology is poorly understood; however, increased intestinal permeability in diarrhea-predominant IBS patients has been reported. Here we demonstrate diarrhea-predominant IBS patients (D-IBS) that display increased intestinal permeability. We have also found that increased intestinal membrane permeability is associated with visceral and thermal hypersensitivity in this subset of D-IBS patients. We evaluated 54 D-IBS patients and 22 controls for intestinal membrane permeability using the lactulose / mannitol method. All subjects ingested 5 g laclulose and 2 g mannitol in 100 ml of water after which their urine was collected. We also evaluated the mean mechanical visual analogue (MVAS) pain rating to nociceptive thermal and visceral stimulation in all subjects. All study participants also completed the FBDSI scale. Approximately 39% of diarrhea-predominant IBS patients have increased intestinal membrane permeability as measured by the lactulose / mannitol ratio. These IBS patients also demonstrated higher M-VAS pain intensity reading scale. Interestingly, the IBS patients with hypersensitivity and increased intestinal permeability had a higher FBDSI score (100.8±5.4) compared to IBS patients with normal membrane permeability and sensitivity (51.6±12.7) and controls (6.1 ± 5.6) (p<0.001). A subset of D-IBS patients have increased intestinal membrane permeability that is associated with an increased FBDSI score and increased hypersensitivity to visceral and thermal nociceptive pain stimuli. Thus, increased intestinal membrane permeability in D-IBS patients may lead to more severe IBS symptoms and hypersensitivity to somatic and visceral stimuli. PMID:19595511

  10. New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides

    PubMed Central

    Sautrey, Guillaume; Zimmermann, Louis; Deleu, Magali; Delbar, Alicia; Souza Machado, Luiza; Jeannot, Katy; Van Bambeke, Françoise; Buyck, Julien M.; Decout, Jean-Luc

    2014-01-01

    The development of novel antimicrobial agents is urgently required to curb the widespread emergence of multidrug-resistant bacteria like colistin-resistant Pseudomonas aeruginosa. We previously synthesized a series of amphiphilic neamine derivatives active against bacterial membranes, among which 3′,6-di-O-[(2″-naphthyl)propyl]neamine (3′,6-di2NP), 3′,6-di-O-[(2″-naphthyl)butyl]neamine (3′,6-di2NB), and 3′,6-di-O-nonylneamine (3′,6-diNn) showed high levels of activity and low levels of cytotoxicity (L. Zimmermann et al., J. Med. Chem. 56:7691–7705, 2013). We have now further characterized the activity of these derivatives against colistin-resistant P. aeruginosa and studied their mode of action; specifically, we characterized their ability to interact with lipopolysaccharide (LPS) and to alter the bacterial outer membrane (OM). The three amphiphilic neamine derivatives were active against clinical colistin-resistant strains (MICs, about 2 to 8 μg/ml), The most active one (3′,6-diNn) was bactericidal at its MIC and inhibited biofilm formation at 2-fold its MIC. They cooperatively bound to LPSs, increasing the outer membrane permeability. Grafting long and linear alkyl chains (nonyl) optimized binding to LPS and outer membrane permeabilization. The effects of amphiphilic neamine derivatives on LPS micelles suggest changes in the cross-bridging of lipopolysaccharides and disordering in the hydrophobic core of the micelles. The molecular shape of the 3′,6-dialkyl neamine derivatives induced by the nature of the grafted hydrophobic moieties (naphthylalkyl instead of alkyl) and the flexibility of the hydrophobic moiety are critical for their fluidifying effect and their ability to displace cations bridging LPS. Results from this work could be exploited for the development of new amphiphilic neamine derivatives active against colistin-resistant P. aeruginosa. PMID:24867965

  11. Dense, layered membranes for hydrogen separation

    DOEpatents

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  12. CO2 Permeability of Biological Membranes and Role of CO2 Channels

    PubMed Central

    Endeward, Volker; Arias-Hidalgo, Mariela; Al-Samir, Samer; Gros, Gerolf

    2017-01-01

    We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability; (c) the mechanisms by which membrane CO2 permeability is modulated; (d) the role of the intracellular diffusivity of CO2 for the quantitative significance of cell membrane CO2 permeability; (e) the available evidence for the existence of CO2 channels in mammalian and artificial systems, with a brief view on CO2 channels in fishes and plants; and, (f) the possible significance of CO2 channels in mammalian systems. PMID:29064458

  13. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile.

    PubMed Central

    Brand, M D; Couture, P; Else, P L; Withers, K W; Hulbert, A J

    1991-01-01

    Standard metabolic rate is 7-fold greater in the rat (a typical mammal) than in the bearded dragon, Amphibolurus vitticeps (a reptile with the same body mass and temperature). Rat hepatocytes respire 4-fold faster than do hepatocytes from the lizard. The inner membrane of isolated rat liver mitochondrial has a proton permeability that is 4-5-fold greater than the proton permeability of the lizard liver mitochondrial membrane per mg of mitochondrial protein. The greater permeability of rat mitochondria is not caused by differences in the surface area of the mitochondrial inner membrane, but differences in the fatty acid composition of the mitochondrial phospholipids may be involved in the permeability differences. Greater proton permeability of the mitochondrial inner membrane may contribute to the greater standard metabolic rate of mammals. PMID:1850242

  14. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  15. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.

    PubMed

    Ben-Hail, Danya; Palty, Raz; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.

  16. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    PubMed

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  17. Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM2.5 with Repetitive Usage Capability.

    PubMed

    Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung

    2017-09-05

    Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.

  18. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.

    PubMed

    Qiu, Wulin; Zhang, Kuang; Li, Fuyue Stephanie; Zhang, Ke; Koros, William J

    2014-04-01

    6FDA-mPDA/DABA (3:2) polyimide was synthesized and characterized for uncross-linked, thermally crosslinked, and carbon molecular sieve (CMS) membranes. The membranes were characterized with thermogravimetric analysis, FTIR spectroscopy, wide-angle X-ray diffraction, and gas permeation tests. Variations in the d spacing, the formation of pore structures, and changes in the pore sizes of the CMS membranes were discussed in relation to pyrolysis protocols. The uncross-linked polymer membranes showed high CO2 /CH4 selectivity, whereas thermally crosslinked membranes exhibited significantly improved CO2 permeability and excellent CO2 plasticization resistance. The CMS membranes showed even higher CO2 permeability and CO2 /CH4 selectivity. An increase in the pyrolysis temperature resulted in CMS membranes with lower gas permeability but higher selectivity. The 550 °C pyrolyzed CMS membranes showed CO2 permeability as high as 14 750 Barrer with CO2 /CH4 selectivity of approximately 52. Even 800 °C pyrolyzed CMS membranes still showed high CO2 permeability of 2610 Barrer with high CO2 /CH4 selectivity of approximately 118. Both polymer membranes and the CMS membranes are very attractive in aggressive natural gas purification applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Peroxisomal membrane permeability and solute transfer.

    PubMed

    Antonenkov, Vasily D; Hiltunen, J Kalervo

    2006-12-01

    The review is dedicated to recent progress in the study of peroxisomal membrane permeability to solutes which has been a matter of debate for more than 40 years. Apparently, the mammalian peroxisomal membrane is freely permeable to small solute molecules owing to the presence of pore-forming channels. However, the membrane forms a permeability barrier for 'bulky' solutes including cofactors (NAD/H, NADP/H, CoA, and acetyl/acyl-CoA esters) and ATP. Therefore, peroxisomes need specific protein transporters to transfer these compounds across the membrane. Recent electrophysiological studies have revealed channel-forming activities in the mammalian peroxisomal membrane. The possible involvement of the channels in the transfer of small metabolites and in the formation of peroxisomal shuttle systems is described.

  20. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  1. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori

    PubMed Central

    Liechti, George; Goldberg, Joanna B.

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual targeting of these pathways would have the net effect of severely limiting the delivery/transport of components to the OM and preventing the bacterium's ability to infect its human host. PMID:22919621

  2. Hydrogen purifier module with membrane support

    DOEpatents

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  3. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.

    PubMed

    Savage, M K; Reed, D J

    1994-11-15

    Treatment of isolated mitochondria with calcium and inorganic phosphate induces inner membrane permeability that is thought to be mediated through a non-selective, calcium-dependent pore. The inner membrane permeability results in the rapid efflux of small matrix solutes such as glutathione and calcium, loss of coupled functions, and large amplitude swelling. We have identified conditions of permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing calcium and inorganic phosphate abolished large-amplitude swelling of mitochondria but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial glutathione and calcium. The release of both glutathione and calcium was inhibited by the addition of cyclosporin A, a potent inhibitor of permeability transition. Transmission electron microscopy analysis, combined with the glutathione and calcium release data, indicate that permeability transition can be observed in the absence of large-amplitude swelling. Permeability transition occurring both with and without large-amplitude swelling was accompanied by a collapse of the membrane potential. We conclude that cyclosporin A-sensitive permeability transition can occur without obvious morphological changes such as large-amplitude swelling. Monitoring the cyclosporin A-sensitive release of concentrated endogenous matrix solutes, such as GSH, may be a sensitive and useful indicator of permeability transition.

  4. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification and Characterization of the Major Porin of Desulfovibrio vulgaris Hildenborough

    DOE PAGES

    Zeng, Lucy; Wooton, Etsuko; Stahl, David A.; ...

    2017-09-05

    Due in large part to their ability to facilitate the diffusion of a diverse range of solutes across the outer membrane (OM) of Gram-negative bacteria, the porins represent one of the most prominent and important bacterial membrane protein superfamilies. Notably, for the Gram-negative bacterium Desulfovibrio vulgaris Hildenborough, a model organism for studies of sulfate-reducing bacteria, no genes for porins have been identified or proposed in its annotated genome. Results from initial biochemical studies suggested that the product of the DVU0799 gene, which is one of the most abundant proteins of the D. vulgaris Hildenborough OM and purified as a homotrimericmore » complex, was a strong porin candidate. To investigate this possibility, this protein was further characterized biochemically and biophysically. Structural analyses via electron microscopy of negatively stained protein identified trimeric particles with stain-filled depressions and structural modeling suggested a β-barrel structure for the monomer, motifs common among the known porins. Functional studies were performed in which crude OM preparations or purified DVU0799 was reconstituted into proteoliposomes and the proteoliposomes were examined for permeability against a series of test solutes. The results obtained establish DVU0799 to be a pore-forming protein with permeability properties similar to those observed for classical bacterial porins, such as those of Escherichia coli. Taken together, these findings identify this highly abundant OM protein to be the major porin of D. vulgaris Hildenborough. Classification of DVU0799 in this model organism expands the database of functionally characterized porins and may also extend the range over which sequence analysis strategies can be used to identify porins in other bacterial genomes. Porins are membrane proteins that form transmembrane pores for the passive transport of small molecules across the outer membranes of Gram-negative bacteria. The present study identified and characterized the major porin of the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, observing its preference for anionic sugars over neutral ones. Its predicted architecture appears to be novel for a classical porin, as its core β-barrel structure is of a type typically found in solute-specific channels. Broader use of the methods employed here, such as assays for channel permeability and electron microscopy of purified samples, is expected to help expand the database of confirmed porin sequences and improve the range over which sequence analysis-based strategies can be used to identify porins in other Gram-negative bacteria. Functional characterization of these critical gatekeeping proteins from divergent Desulfovibrio species should offer an improved understanding of the physiological features that determine their habitat range and supporting activities.« less

  6. Identification and Characterization of the Major Porin of Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Lucy; Wooton, Etsuko; Stahl, David A.

    Due in large part to their ability to facilitate the diffusion of a diverse range of solutes across the outer membrane (OM) of Gram-negative bacteria, the porins represent one of the most prominent and important bacterial membrane protein superfamilies. Notably, for the Gram-negative bacterium Desulfovibrio vulgaris Hildenborough, a model organism for studies of sulfate-reducing bacteria, no genes for porins have been identified or proposed in its annotated genome. Results from initial biochemical studies suggested that the product of the DVU0799 gene, which is one of the most abundant proteins of the D. vulgaris Hildenborough OM and purified as a homotrimericmore » complex, was a strong porin candidate. To investigate this possibility, this protein was further characterized biochemically and biophysically. Structural analyses via electron microscopy of negatively stained protein identified trimeric particles with stain-filled depressions and structural modeling suggested a β-barrel structure for the monomer, motifs common among the known porins. Functional studies were performed in which crude OM preparations or purified DVU0799 was reconstituted into proteoliposomes and the proteoliposomes were examined for permeability against a series of test solutes. The results obtained establish DVU0799 to be a pore-forming protein with permeability properties similar to those observed for classical bacterial porins, such as those of Escherichia coli. Taken together, these findings identify this highly abundant OM protein to be the major porin of D. vulgaris Hildenborough. Classification of DVU0799 in this model organism expands the database of functionally characterized porins and may also extend the range over which sequence analysis strategies can be used to identify porins in other bacterial genomes. Porins are membrane proteins that form transmembrane pores for the passive transport of small molecules across the outer membranes of Gram-negative bacteria. The present study identified and characterized the major porin of the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, observing its preference for anionic sugars over neutral ones. Its predicted architecture appears to be novel for a classical porin, as its core β-barrel structure is of a type typically found in solute-specific channels. Broader use of the methods employed here, such as assays for channel permeability and electron microscopy of purified samples, is expected to help expand the database of confirmed porin sequences and improve the range over which sequence analysis-based strategies can be used to identify porins in other Gram-negative bacteria. Functional characterization of these critical gatekeeping proteins from divergent Desulfovibrio species should offer an improved understanding of the physiological features that determine their habitat range and supporting activities.« less

  7. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes.

    PubMed

    Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M; Awasthi, Kamlendra; Vijay, Y K

    2010-10-01

    The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30microm found to be optimum thickness for fast hydrogen gas permeates.

  8. Drug discovery strategies to outer membrane targets in Gram-negative pathogens.

    PubMed

    Brown, Dean G

    2016-12-15

    This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Outer Membrane Targeting of Passenger Proteins by the Vacuolating Cytotoxin Autotransporter of Helicobacter pylori

    PubMed Central

    Fischer, Wolfgang; Buhrdorf, Renate; Gerland, Elke; Haas, Rainer

    2001-01-01

    Helicobacter pylori produces a number of proteins associated with the outer membrane, including adhesins and the vacuolating cytotoxin. These proteins are supposed to integrate into the outer membrane by β-barrel structures, characteristic of the family of autotransporter proteins. By using the SOMPES (shuttle vector-based outer membrane protein expression) system for outer membrane protein production, we were able to functionally express in H. pylori the cholera toxin B subunit genetically fused to the C-terminal VacA domain. We demonstrate that the fusion protein is translocated to the H. pylori outer membrane and that the CtxB domain is exposed on the H. pylori surface. Thus, we provide the first experimental evidence that the C-terminal β-domain of VacA can transport a foreign passenger protein to the H. pylori surface and hence acts as a functional autotransporter. PMID:11598049

  10. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.

    PubMed

    Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C

    2017-06-06

    Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Recovery of ammonia and production of high-grade phosphates from side-stream digester effluents using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus recovery was combined with ammonia recovery using gas-permeable membranes. In a first step, the ammonia and alkalinity were removed from municipal side-stream wastewater using low-rate aeration and a gas-permeable membrane manifold. In a second step, the phosphorus was removed using magne...

  12. A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics

    PubMed Central

    Delgado, Fernanda; Umans, Benjamin D.; Gerding, Matthew A.; Davis, Brigid M.

    2016-01-01

    Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions. PMID:27216069

  13. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  14. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  15. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J.

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less

  16. Graphene oxide membranes with high permeability and selectivity for dehumidification of air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit

    Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was belowmore » the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications« less

  17. Evaluation of the artificial membrane permeability of drugs by digital simulation.

    PubMed

    Nakamura, Mayumi; Osakai, Toshiyuki

    2016-08-25

    A digital simulation method has been developed for evaluating the membrane permeability of drugs in the parallel artificial membrane permeation assay (PAMPA). The simulation results have shown that the permeability coefficient (log Ppampa) of drugs is linearly increased with increasing their distribution coefficient (log KD,M) to the lipid membrane, i.e., the hydrophobicity of the drug molecules. However, log Ppampa shows signs of leveling off for highly hydrophobic drugs. Such a dependence of log Ppampa is in harmony with the reported experimental data, and has been well explained in terms of the change in the rate-determining step from the diffusion in the membrane to that in the unstirred water layer (UWL) on both sides of the membrane. Additionally, the effects of several factors, including lag time, diffusion coefficient, pH, and pKa, on the permeability coefficient have been well simulated. It has thus been suggested that the proposed method should be promising for in silico evaluation of the membrane permeability of drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Iodination of Escherichia coli with chloramine T: selective labeling of the outer membrane lipoprotein.

    PubMed Central

    Munford, R S; Gotschlich, E C

    1977-01-01

    Iodination of Escherichia coli cells with chloramine T preferentially labels the free and murein-bound forms of the outer membrane lipoprotein. Iodination for 15 s at 15 degrees C labels the two forms of the lipoprotein almost exclusively, whereas iodination for 60 s at 25 degrees C also labels the other major outer membrane proteins. Chloramine T iodination is a rapid, simple technique for labeling the outer membrane lipoprotein. PMID:400793

  19. An intelligent detecting system for permeability prediction of MBR.

    PubMed

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  20. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis[W][OA

    PubMed Central

    Duncan, Owen; Taylor, Nicolas L.; Carrie, Chris; Eubel, Holger; Kubiszewski-Jakubiak, Szymon; Zhang, Botao; Narsai, Reena; Millar, A. Harvey; Whelan, James

    2011-01-01

    The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction. PMID:21896887

  1. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization.

    PubMed

    Neuspiel, Margaret; Zunino, Rodolfo; Gangaraju, Sandhya; Rippstein, Peter; McBride, Heidi

    2005-07-01

    Mitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase. Although steady-state mitochondrial fusion required the conserved intermembrane space tryptophan residue, this requirement was overcome within the context of the hydrolysis-deficient mutant. Furthermore, the punctate localization of Mfn2 is lost in the dominant active mutants, indicating that these sites are functionally controlled by changes in the nucleotide state of Mfn2. Upon staurosporine-stimulated cell death, activated Bax is recruited to the Mfn2-containing puncta; however, Bax activation and cytochrome c release are inhibited in the presence of the dominant active mutants of Mfn2. The dominant active form of Mfn2 also protected the mitochondria against free radical-induced permeability transition. In contrast to staurosporine-induced outer membrane permeability transition, pore opening induced through the introduction of free radicals was dependent upon the conserved intermembrane space residue. This is the first evidence that Mfn2 is a signaling GTPase regulating mitochondrial fusion and that the nucleotide-dependent activation of Mfn2 concomitantly protects the organelle from permeability transition. The data provide new insights into the critical relationship between mitochondrial membrane dynamics and programmed cell death.

  2. Permeability of C2C12 myotube membranes is influenced by stretch velocity.

    PubMed

    Burkholder, Thomas J

    2003-05-30

    Mechanical signals are critical to the growth and maintenance of skeletal muscle, but the mechanism by which these signals are transduced by the cell remains unknown. This work examined the hypothesis that stretch conditions influence membrane permeability consistent with a role for membrane permeability in mechanotransduction. C2C12 myotubes were grown in conditions that encourage uniform alignment and subjected to uniform mechanical deformation in the presence of fluorescein labeled dextran to evaluate membrane permeability as a function of stretch amplitude and velocity. Within a physiologically relevant range of conditions, a complex interaction between the two aspects of stretch was observed, with velocity contributing most strongly at large stretch amplitudes. This suggests that membrane viscosity could contribute to mechanotransduction.

  3. Tunable water desalination across Graphene Oxide Framework membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolai, Adrien; Sumpter, Bobby G; Meunier, V.

    2014-01-01

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increasesmore » when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.« less

  4. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  5. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import.

    PubMed Central

    Hönlinger, A; Bömer, U; Alconada, A; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Pfanner, N

    1996-01-01

    The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase. Images PMID:8641278

  6. The effect of abnormal hemoglobins on the membrane regulation of cell hydration.

    PubMed

    Clark, M R; Shohet, S B

    Several hemoglobinopathies are associated with abnormalities in the permeability of the red cell membrane, in some cases leading to permanent alterations of the intracellular milieu. Homozygous sickle cell disease is the most thoroughly studied example. Deoxygenation of sickle cells causes a transient increase in the permeability to monovalent cations and Ca; prolonged deoxygenation can lead to a permanent accumulation of Ca and loss of total cations and water. Although the mechanisms for the permeability changes are not yet defined, mechanical stress on the membrane, with subsequent damages by excess Ca or membrane-associated hemoglobin have been suggested to play a role. Loss of cell water and increase in mean cell hemoglobin concentration causes massive reduction of cell deformability in the oxygenated state and makes the hemoglobin more likely to undergo sickling because of the strong concentration dependence of the sickling process. Limited evidence suggests the occurrence of permeability defects in other hemoglobinopathies and the thalassemias. The suggested alterations range from a slight increase in K permeability of incubated thalassemia cells to substantial dehydration of cells from patients with homozygous hemoglobin C disease. Oxidative damage to the membrane, involving an abnormal hemoglobin-membrane association, may underly the permeability changes in these cells.

  7. Study of the internal morphology of cation-exchange membranes by means of electroosmotic permeability relaxations.

    PubMed

    Barragán, V M; Izquierdo-Gil, M A; Godino, M P; Villaluenga, J P G

    2009-10-01

    The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed to the usual dc applied electric voltage difference on the electroosmotic flow through three cation-exchange membranes with different morphology has been studied. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three membranes investigated, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. These characteristic frequency values, which are related to relaxation processes in heterogeneous media, depend on the membrane system and permit to obtain information about the different structures of the membrane system. Thus, the study of the electroosmotic permeability relaxation can be used as a method to study the internal morphology of a cation-exchange membrane in a given electrolyte medium.

  8. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination

    PubMed Central

    Thomas, Michael; Corry, Ben

    2016-01-01

    Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639

  9. Role of the Fast Kinetics of Pyroglutamate-Modified Amyloid-β Oligomers in Membrane Binding and Membrane Permeability

    PubMed Central

    2015-01-01

    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer’s disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1–40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3–42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3–42 and Aβ1–42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3–42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3–42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3–42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability. PMID:24950761

  10. Electrophoretic characterisation of the outer membrane proteins of Yersinia pestis isolated in north-east Brazil.

    PubMed Central

    Abath, F. G.; Almeida, A. M.; Ferreira, L. C.

    1989-01-01

    The outer membrane proteins of 38 Yersinia pestis isolates from all known plague foci of north-east Brazil were analysed by SDS-PAGE. Approximately 20 bands were consistently found in all strains analysed and 11 were selected for comparative studies. Although qualitative differences among the electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates were not observed, quantitative alterations were clearly noted for most of these proteins. No particular quantitative alteration of the electrophoretic profile of outer membrane proteins could be associated with the period of isolation and geographic origin of the isolates. The 64 kDa outer membrane protein was significantly expressed in higher amounts among Y. pestis strains isolated from a recent plague outbreak. The possible use of electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates as a tool for epidemiological studies and for the analysis of virulence determinants is discussed. Images Fig. 2 PMID:2606164

  11. Living with death: The evolution of the mitochondrial pathway of apoptosis in animals

    PubMed Central

    Oberst, Andrew; Bender, Cheryl; Green, Douglas R.

    2008-01-01

    The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeablization (MOMP), release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis. PMID:18451868

  12. On the Reverse Asymmetric Gas Transport Effect in the Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Skuridin, I. E.

    In this paper, change of gas permeability value, depending on orientation of polymer gas membrane, in a wide pressure range was investigated. Consistent patterns of asymmetric gas transfer through the PVTMS-membrane were established experimentally. Reverse asymmetric transport effect was observed, wherein the permeability from the direction of porous support prevails at the permeability from the direction of selective non-porous layer.

  13. Regulation of necrotic cell death p53, PARP1 and Cyclophilin D -overlapping pathways of regulated necrosis?

    PubMed Central

    Ying, Yuan; Padanilam, Babu J.

    2017-01-01

    In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator (ANT) and the phosphate carrier (PiC) are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury. PMID:27048819

  14. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?

    PubMed

    Ying, Yuan; Padanilam, Babu J

    2016-06-01

    In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.

  15. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries.

    PubMed

    Ashraf Gandomi, Yasser; Aaron, Doug S; Mench, Matthew M

    2017-06-06

    One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol -1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol -1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB.

  16. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries

    PubMed Central

    Ashraf Gandomi, Yasser; Aaron, Doug S.; Mench, Matthew M.

    2017-01-01

    One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol−1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol−1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB. PMID:28587268

  17. A Deficiency in Arabinogalactan Biosynthesis Affects Corynebacterium glutamicum Mycolate Outer Membrane Stability▿

    PubMed Central

    Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas

    2010-01-01

    Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942

  18. Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli

    PubMed Central

    Martorana, Alessandra M.; Benedet, Mattia; Maccagni, Elisa A.; Sperandeo, Paola; Villa, Riccardo; Dehò, Gianni

    2016-01-01

    ABSTRACT The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a transenvelope complex. Here, we show that increased expression of the membrane-associated ABC protein LptB can suppress defects of LptC, which participates in the formation of the periplasmic bridge. This reveals functional interactions between these two components and supports a role of LptB in the assembly of the Lpt machine. PMID:27246575

  19. Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection.

    PubMed

    Wu, Yuqiu; Kazumura, Kimiko; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2015-10-01

    Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca(2+)) and superoxide (O2(-)) (Ishibashi et al. in Biochem Biophys Res Commun 344:571-580, 2006). The association of the pore opening with Ca(2+) efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca(2+) was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca(2+) or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca(2+) efflux through the mitochondrial permeability transition pore dose dependently. Ca(2+) efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca(2+) efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca(2+) efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca(2+) release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed.

  20. cGMP signalling in pre- and post-conditioning: the role of mitochondria.

    PubMed

    Costa, Alexandre D T; Pierre, Sandrine V; Cohen, Michael V; Downey, James M; Garlid, Keith D

    2008-01-15

    Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.

  1. Hydrogen-permeable composite metal membrane and uses thereof

    DOEpatents

    Edlund, D.J.; Friesen, D.T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  2. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    PubMed

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  3. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.

    PubMed

    Dražević, Emil; Košutić, Krešimir; Freger, Viatcheslav

    2014-02-01

    Membrane swelling governs both rejection of solutes and permeability of polymeric membranes, however very few data have been available on swelling in water of salt-rejecting reverse osmosis (RO) membranes. This study assesses swelling, thickness and their relation to water permeability for four commercial polyamide (PA) RO membranes (SWC4+, ESPA1, XLE and BW30) using atomic force microscopy (AFM) and attenuated total reflection Fourier transform IR spectroscopy (ATR-FTIR). ATR-FTIR offered a significantly improved estimate of the actual barrier thickness of PA, given AFM is biased by porosity ("fluffy parts") or wiggling of the active layer or presence of a coating layer. Thus obtained intrinsic permeability (permeability times thickness) and selectivity of aromatic polyamides plotted versus swelling falls well on a general trend, along with previously reported data on several common materials showing RO and NF selectivity. The observed general trend may be rationalized by viewing the polymers as a random composite medium containing molecularly small pores. The results suggest that the combination of a rigid low dielectric matrix, limiting the pore size, with multiple hydrophilic H-bonding sites may be a common feature of RO/NF membranes, allowing both high permeability and selectivity. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.

    PubMed

    Itel, Fabian; Al-Samir, Samer; Öberg, Fredrik; Chami, Mohamed; Kumar, Manish; Supuran, Claudiu T; Deen, Peter M T; Meier, Wolfgang; Hedfalk, Kristina; Gros, Gerolf; Endeward, Volker

    2012-12-01

    Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.

  5. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins.

    PubMed

    Skerlavaj, B; Romeo, D; Gennaro, R

    1990-11-01

    Bactenecins are a class of arginine-rich antibacterial peptides of bovine neutrophil granules. Two bactenecins with approximate molecular weights of 5,000 and 7,000 designated Bac5 and Bac7, respectively, exert in vitro a potent bactericidal activity toward several gram-negative bacteria (R. Gennaro, B. Skerlavaj, and D. Romeo, Infect. Immun. 57:3142-3146, 1989). We have now found that this activity shows an inverse relationship to the ionic strength of the medium and is inhibited by divalent cations and greatly potentiated by lactoferrin. Under conditions supporting marked bactericidal activity, the two peptides cause a rapid increase in the permeability of both the outer and inner membranes of Escherichia coli, as shown by unmasking of periplasmic beta-lactamase and of cytoplasmic beta-galactosidase. In addition, the two bactenecins inhibit the respiration of E. coli and Klebsiella pneumoniae but not of Bac5- and Bac7-resistant Staphylococcus aureus. Furthermore, they induce a drop in ATP content in E. coli, K. pneumoniae, and Salmonella typhimurium and a marked decrease in the rates of transport and incorporation of [3H]leucine and [3H]uridine into E. coli protein and RNA, respectively. In general, all these effects become evident within 1 to 2 min and reach their maximal expression within about 5 min. Overall, these data strongly suggest that the decrease in bacterial viability is causally related to the increase in membrane permeability and the subsequent fall in respiration-linked proton motive force, with the attendant loss of cellular metabolites and macromolecular biosynthesis ability.

  6. Surface Properties and Permeability of Poly(Vinylidene Fluoride)-Clays (PVDF/Clays) Composite Membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

  7. Assembly of β-barrel proteins in the mitochondrial outer membrane.

    PubMed

    Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils

    2015-01-01

    Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  9. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  10. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  11. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly.

    PubMed

    Soltes, Garner R; Martin, Nicholas R; Park, Eunhae; Sutterlin, Holly A; Silhavy, Thomas J

    2017-10-15

    Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process. IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics. Copyright © 2017 American Society for Microbiology.

  12. Site-directed mutagenesis studies to probe the role of specific residues in the external loop (L3) of OmpF and OmpC porins in susceptibility of Serratia marcescens to antibiotics.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2007-06-01

    Serratia marcescens is a nosocomial bacterium with natural resistance to a broad spectrum of antibiotics, making treatment challenging. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, controlled in part by OmpF and OmpC porin proteins. To investigate the direct role of these porins in the diffusion of antibiotics across the outer membrane, we have created an ompF-ompC porin-deficient strain of S. marcescens. A considerable similarity between the S. marcescens porins and those from other members of Enterobacteriaceae was detected by sequence alignment, with the exception of a change in a conserved region of the third external loop (L3) of the S. marcescens OmpC protein. Serratia marcescens OmpC has aspartic acid instead of glycine in position 112, methionine instead of aspartic acid in position 114, and glutamine in position 124, while in S. marcescens OmpF this is a glycine at position 124. To investigate the role of amino acid positions 112, 114, and 124 and how the observed changes within OmpC porin may play a part in pore permeability, 2 OmpC sites were altered in the Enterobacteriaceae consensus (D112G and M114D) through site-directed mutagenesis. Also, Q124G in OmpC, G124Q in OmpF, and double mutants of these amino acid residues were constructed. Antibiotic accumulation assays and minimal inhibitory concentrations of the strains harboring the mutated porins were performed, while liposome swelling experiments were performed on purified porins. Our results demonstrate that the amino acid at position 114 is not responsible for either antibiotic size or ionic selection, the amino acid at position 112 is responsible for size selection only, and position 124 is involved in both size and ionic selection.

  13. Duration of ultrasound-mediated enhanced plasma membrane permeability.

    PubMed

    Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens

    2015-03-30

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investigated systematically using an endothelial- and two breast cancer cell lines. Model drug uptake was measured as a function of time after sonication, in the presence of SonoVue™ microbubbles, in HUVEC, MDA-MB-468 and 4T1 cells. In addition, US pressure amplitude was varied in MDA-MB-468 cells to investigate its effect on the temporal window. Cell membrane permeability of HUVEC and MDA-MB-468 cells returned to control level within 1-2 h post-sonication, while 4T1 cells needed over 3h. US pressure affected the number of cells with increased membrane permeability, as well as the temporal window in MDA-MB-468 cells. This study shows that the duration of increased membrane permeability differed between the cell lines and US pressures used here. However, all were consistently in the order of 1-3 h after sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    PubMed

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  15. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  16. Hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju [Orland Park, IL; Lee, Tae H [Naperville, IL; Chen, Ling [Woodridge, IL; Dorris, Stephen E [LaGrange Park, IL; Balachandran, Uthamalingam [Hinsdale, IL

    2011-06-14

    A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  17. Significantly enhanced high-frequency permeability for composites with amorphous-membrane-fillers prepared using an infiltration method

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Yang, Z. H.

    2016-03-01

    Amorphous-membrane-filler composites have been fabricated using an infiltration method. The composites are able to significantly increase the permeability by 200%, as compared to general amorphous flake composites. SEM and magnetic measurement show that the amorphous flakes in membrane are in-plane arrangement. A model, which considers the effect of flake arrangement on demagnetizing factor Nd and permeability, is proposed. The effect of the arrangement of flakes is equivalent to an effective Nd, which is equal to 1/3 and zero for random and complete in-plane arrangements, respectively. Due to in-plane arrangement of amorphous flakes, the decreased Nd leads to significantly enhanced permeability for the amorphous-membrane-filler composites, based on the Maxwell-Garret mixing law.

  18. Ionic currents of outer hair cells isolated from the guinea-pig cochlea.

    PubMed

    Housley, G D; Ashmore, J F

    1992-03-01

    1. Whole-cell currents were measured in outer hair cells isolated from each turn of the organ of Corti of the guinea-pig. 2. The slope input conductances at -70 mV of the cells ranged from 3.6 to 51 nS depending on the length of the cell. Shorter cells from the basal turns of the cochlea had the highest values. The membrane time constant of the cells varied from 3 to 0.2 ms from the apex to the base. 3. Irrespective of the position of the cells along the cochlea, three distinct currents were found. Each type of current was found in approximately the same proportion in all cells. 4. An outward K+ current was present which activated at potentials more positive than -35 mV. The current was sensitive to tetraethylammonium (30 mM), quinidine (100 microM) and nifedipine (50 microM). It could be removed by replacing external Ca2+ with Ba2+ or Mg2+. The current was also removed by substituting Nai+ or Csi+ for Ki+ pipette solution. This outwardly rectifying current appears similar to the calcium-activated K+ current described in other hair cells. 5. The main current present at membrane potentials from -90 mV to -50 mV was a second voltage-activated K+ current. It was 50% activated at -80 mV, and relaxed with a time constant of 20-40 ms on hyperpolarization to -120 mV. Near rest the kinetics were essentially time-dependent , but depended upon the external K+ concentration. The current was blocked by 5 mM external Cs+. 6. This current was highly selective for K+. Measured from reversal of the tail currents, the permeability ratio PK:PNa was approximately 30:1. Depolarization of the cell, presumed to lead to an elevation of intracellular calcium, produced a prolonged activation of the current. 7. A third current found in the cells was a cation current. By external ion replacement, the selectivity sequence was determined to be Ca2+ greater than Na+ approximately equal to K+ greater than choline+ greater than NMDG+ (respective permeabilities relative to Na: 2.9, 1.0, 0.99, 0.63 and 0.37). This current was reduced by external Ba2+ (3 mM) and by nifedipine (50 microM). The activation of this current appeared to depend upon raised levels of Cai2+. 8. These currents account for reported in vivo properties of cochlear outer hair cells as cells permeable to potassium at large negative resting potentials. The consequences for sound detection in the cochlea are briefly discussed.

  19. A nonlinear cochlear model with the outer hair cell piezoelectric activity

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoai; Grosh, Karl

    2003-10-01

    In this paper we present a simple cochlear model which captures the most important aspect of nonlinearity in the cochlea-the nonlinearity caused by the piezoelectric-like activity of outer hair cells and the variable conductance of the outer hair cell stereocilia. A one-dimensional long-wave model is built to simulate the dynamic response of the fluid-loaded basilar membrane. The basilar membrane is simulated as isolated linear oscillators along the cochlear length, and its motion is coupled with the fluid pressure and the nonlinear force produced by the outer hair cells. As the basilar membrane moves, the fluid shears stereocilia, and the resulting ion flow changes the transmembrane potential of the outer hair cells and subsequently their length, leading to further movement of the basilar membrane. The piezoelectric-like activity of the outer hair cell is simulated by a current source, and stereocilia motion is modeled as a varying conductance that changes as the basilar membrane moves. A solution in the time domain will be presented. [Work supported by NIH.

  20. [The mechanical properties and moisture permeability of eudragit L100/S100 free films affected by plasticizers and membrane materials ratio].

    PubMed

    Zhang, Guo-song; Feng, Chuan-hua; Jiang, Wei; Hu, Peng-yi; Deng, Ping; Zhang, Yao; Luo, Xiao-jian

    2011-09-01

    The free membrane of Eudragit L100/S100 which is pH-sensitive, colon-specific was prepared by plane casting films. The film humidity, species and amount of plasticizers, the ratio of membrane material was investigated. The rate of membrane permeability and mechanical properties were used as indicators of orthogonal experiment, and its related properties were studied. The results show that the mechanical properties of the membrane and phragmoid capacity are the best when 30% TEC was used as plasticizer; the ratio of membrane material have little effect on the rate of membrane permeability and mechanical properties. By adjusting the species and amount of plasticizers, the ratio of Eudragit L100/S100, the free membrane which is colon-specific can be obtained.

  1. Photo-switchable membrane and method

    DOEpatents

    Marshall, Kenneth L; Glowacki, Eric

    2013-05-07

    Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

  2. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: membrane permeability and fouling control.

    PubMed

    Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin

    2015-05-01

    In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Role of mitochondrial permeability transition pores in mitochondrial autophagy.

    PubMed

    Rodriguez-Enriquez, Sara; He, Lihua; Lemasters, John J

    2004-12-01

    During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca(2+) overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.

  4. Nano filter from sintered rice husk silica membrane.

    PubMed

    Lee, Soo Young; Han, Chong Soo

    2006-11-01

    A nano filter showing the Knudsen flow was demonstrated by a modification of a membrane constructed from rice husk silica. The membrane was prepared by pressing and sintering micron sized rice husk silica with 4 nm pores. The membrane showed a permeability of 5.2 x 10(-8) mol m(-1) sec(-1) Pa(-1) for H2 and ratios of gas permeability 2.1 and 3.2 for k(H2)/k(CH4) and k(H2)/k(CO2), respectively. When the membrane was treated by filtration of approximately 100 nm sized rice husk silica particles, the permeability decreased to 4.9 x 10(-8) mol m(-1) sec(-1) Pa(-1) and the ratios increased to 2.2 and 3.4. In the case of the membrane after treatments with the dispersion and chemical deposition of tetraethylorthosilicate (TEOS), the corresponding permeability and ratios of the membrane were 1.8 x 10(-8) mol m(-1) sec(-1) Pa(-1), and 2.9 and 4.5, respectively. From the change of the ratio of gas permeability for the membrane with modifications, it is suggested that approximately 100 nm sized rice husk silica particles pack the large pores among the micron sized rice husk silica particles while the chemical deposition of tetraethylorthosilicate (TEOS) reveals the gas flow through 4 nm pores in the rice husk silica by blocking large pores.

  5. Detergent Induction of HEK 293A Cell Membrane Permeability Measured under Quiescent and Superfusion Conditions Using Whole Cell Patch Clamp

    PubMed Central

    2015-01-01

    Detergents have several biological applications but present cytotoxicity concerns, since they can solubilize cell membranes. Using the IonFlux 16, an ensemble whole cell planar patch clamp, we observed that anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and cationic, fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of exposure, under superfusion conditions. Increased permeability was irreversible for 15 min. At subsolubilizing detergent concentrations, patched cells showed increased membrane currents that reached a steady state and were intact when imaged using fluorescence microscopy. SDS solubilized cells at concentrations of 2 mM (2× CMC), while CTAB did not solubilize cells even at concentrations of 10 mM (1000× CMC). The relative activity for plasma membrane current induction was 1:20:14 for SDS, CTAB, and ORB, respectively. Under quiescent conditions, the relative ratio of lipid to detergent in cell membranes at the onset of membrane permeability was 1:7:5 for SDS, CTAB, and ORB, respectively. The partition constants (K) for SDS, CTAB, and ORB were 23000, 55000, and 39000 M–1, respectively. Combining the whole cell patch clamp data and XTT viability data, SDS ≤ 0.2 mM and CTAB and ORB ≤ 1 mM induced cell membrane permeability without causing acute toxicity. PMID:24548291

  6. Pyroelectricity as a possible mechanism for cell membrane permeabilization.

    PubMed

    García-Sánchez, Tomás; Muscat, Adeline; Leray, Isabelle; Mir, Lluis M

    2018-02-01

    The effects of pyroelectricity on cell membrane permeability had never been explored. Pyroelectricity consists in the generation of an electric field in the surface of some materials when a change in temperature is produced. In the present study, tourmaline microparticles, which are known to display pyroelectrical properties, were subjected to different changes in temperature upon exposure to cells in order to induce an electric field at their surface. Then, the changes in the permeability of the cell membrane to a cytotoxic agent (bleomycin) were assessed by a cloning efficacy test. An increase in the permeability of the cell membrane was only detected when tourmaline was subjected to a change in temperature. This suggests that the apparition of an induced pyroelectrical electric field on the material could actually be involved in the observed enhancement of the cell membrane permeability as a result of cell electropermeabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles

    NASA Astrophysics Data System (ADS)

    Yadav, Pramod Kumar

    2018-01-01

    The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy's law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0, discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

  8. Time-Dependent Influence of Cell Membrane Permeability on MR Diffusion Measurements

    PubMed Central

    Li, Hua; Jiang, Xiaoyu; Xie, Jingping; McIntyre, J. Oliver; Gore, John C.; Xu, Junzhong

    2015-01-01

    Purpose To investigate the influence of cell membrane permeability on diffusion measurements over a broad range of diffusion times. Methods Human myelogenous leukemia K562 cells were cultured and treated with saponin to selectively alter cell membrane permeability, resulting in a broad physiologically relevant range from 0.011 μm/ms to 0.044 μm/ms. Apparent diffusion coefficient (ADC) values were acquired with the effective diffusion time (Δeff) ranging from 0.42 to 3000 ms. Cosine-modulated oscillating gradient spin echo (OGSE) measurements were performed to achieve short Δeff from 0.42 to 5 ms, while stimulated echo acquisitions (STEAM) were used to achieve long Δeff from 11 to 2999 ms. Computer simulations were also performed to support the experimental results. Results Both computer simulations and experiments in vitro showed that the influence of membrane permeability on diffusion MR measurements is highly dependent on the choice of diffusion time, and it is negligible only when the diffusion time is at least one order of magnitude smaller than the intracellular exchange lifetime. Conclusion The influence of cell membrane permeability on the measured ADCs is negligible in OGSE measurements at moderately high frequencies. By contrast, cell membrane permeability has a significant influence on ADC and quantitative diffusion measurements at low frequencies such as those sampled using conventional pulsed gradient methods. PMID:26096552

  9. Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion.

    PubMed

    Van Ommen Kloeke, F; Bryant, R D; Laishley, E J

    1995-12-01

    A protocol was developed whereby the outer and cytoplasmic membranes of the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) were isolated and partially characterized. The isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by SDS-PAGE electrophoresis, and showed that several protein bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 kDa. Outer membrane isolated from low iron cultured cells was found to contain two proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme-specific stain and were referred to as high molecular weight cytochromes. Studies conducted on the low iron isolated outer membrane by a phosphate/mild steel hydrogen evolution system showed that addition of the membrane fraction caused an immediate acceleration in H2 production. A new model for the anaerobic biocorrosion of mild steel is proposed.

  10. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  11. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  12. Membrane hydraulic permeability changes during cooling of mammalian cells.

    PubMed

    Akhoondi, Maryam; Oldenhof, Harriëtte; Stoll, Christoph; Sieme, Harald; Wolkers, Willem F

    2011-03-01

    In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Whole-Cell-Based Assay To Evaluate Structure Permeation Relationships for Carbapenem Passage through the Pseudomonas aeruginosa Porin OprD.

    PubMed

    Iyer, Ramkumar; Sylvester, Mark A; Velez-Vega, Camilo; Tommasi, Ruben; Durand-Reville, Thomas F; Miller, Alita A

    2017-04-14

    The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Discovery of novel classes of antibiotics with activity against these pathogens has been impeded by a fundamental lack of understanding of the molecular drivers underlying small molecule uptake. Although it is well-known that outer membrane porins represent the main route of entry for small, hydrophilic molecules across the Gram-negative cell envelope, the structure-permeation relationship for porin passage has yet to be defined. To address this knowledge gap, we developed a sensitive and specific whole-cell approach in Escherichia coli called titrable outer membrane permeability assay system (TOMAS). We used TOMAS to characterize the structure porin-permeation relationships of a set of novel carbapenem analogues through the Pseudomonas aeruginosa porin OprD. Our results show that small structural modifications, especially the number and nature of charges and their position, have dramatic effects on the ability of these molecules to permeate cells through OprD. This is the first demonstration of a defined relationship between specific molecular changes in a substrate and permeation through an isolated porin. Understanding the molecular mechanisms that impact antibiotic transit through porins should provide valuable insights to antibacterial medicinal chemistry and may ultimately allow for the rational design of porin-mediated uptake of small molecules into Gram-negative bacteria.

  14. Gas phase fractionation method using porous ceramic membrane

    DOEpatents

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  15. Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation

    PubMed Central

    Sedláková, Zuzana; Clarizia, Gabriele; Bernardo, Paola; Jansen, Johannes Carolus; Slobodian, Petr; Svoboda, Petr; Kárászová, Magda; Friess, Karel; Izak, Pavel

    2014-01-01

    Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance. PMID:24957119

  16. Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins.

    PubMed

    Sanjuán Szklarz, Luiza K; Kozjak-Pavlovic, Vera; Vögtle, F-Nora; Chacinska, Agnieszka; Milenkovic, Dusanka; Vogel, Sandra; Dürr, Mark; Westermann, Benedikt; Guiard, Bernard; Martinou, Jean-Claude; Borner, Christoph; Pfanner, Nikolaus; Meisinger, Chris

    2007-04-20

    The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.

  17. [In vitro function of outer membrane protease T of Escherichia coli K1 pathogenic strain].

    PubMed

    Hui, Changye; Guo, Yan; Wu, Shuchi; Peng, Liang; Cao, Hong; Huang, Shenghe

    2010-01-01

    Plasminogen activation and antimicrobial peptide hydrolysis contribute to pathogens invasion and survival in vivo. To demonstrate the expression of outer membrane protease T in E. coli K1 pathogenic strain E44, its activity of plasminogen activator and protamine hydrolysis. After Benzamidine Sepharose Fast Flow and SOURCE 30Q chromatography, we got E44 outer membrane mixed fraction, and examined its activity of plasminogen activation with chromogenic substrate S-2251 method. An ompT deletion mutant of E44 was constructed by using the suicide vector pCVD442, termed as E44ompT. We examined 0.1 mg/mL cationic antimicrobial peptide protamine susceptibility of E44, ompT mutant strain E44ompT and E44ompT harboring pUCT, which was constructed by inserting complete ompT open reading frame into pUC13. We got about 37 kDa E44 membrane extract, which could activate plasminogen, and activation was membrane extract dose dependent. This confirmed the expression of outer membrane protease T in the outer membrane of E44. E44ompT was, more susceptible to 0.1 mg/mL protamine than E44, and E440mpT was partially complemented by pUCT. Outer membrane protease T is expressed in E. coli K1 pathogenic strain E44, and can activate plasminogen and hydrolyze protamine.

  18. Method of retrieving a liquid sample, a suction lysimeter, a portable suction lysimeter, a lysimeter system, and a deep lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2003-08-26

    A method of retrieving a liquid sample comprises providing a portable lysimeter including a semi-permeable membrane and a chamber in fluid communication with the semi-permeable membrane; making a hole at a site from which a liquid sample is desired; evacuating the chamber by applying a vacuum to the chamber; lowering the portable lysimeter into the hole; obtaining a sample in the chamber; and retrieving the lysimeter from the bore; wherein it is not necessary to backfill the bore. A portable lysimeter includes a semi-permeable member and a chamber in fluid communication with the semi-permeable membrane.

  19. Cardiolipin Synthesis and Outer Membrane Localization Are Required for Shigella flexneri Virulence.

    PubMed

    Rossi, Rachael M; Yum, Lauren; Agaisse, Hervé; Payne, Shelley M

    2017-08-29

    Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro , and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA , which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface. IMPORTANCE The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15%. Antibiotic treatment of Shigella infections is compromised by increasing antibiotic resistance, and there is no approved vaccine to prevent future infections. This has created a growing need to understand Shigella pathogenesis and identify new targets for antimicrobial therapeutics. Here we show a previously unknown role of phospholipids in S. flexneri pathogenesis. We demonstrate that cardiolipin is required in the outer membrane for proper surface localization of IcsA and in the inner membrane for cell division during growth in the host cell cytoplasm. Copyright © 2017 Rossi et al.

  20. Sensitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds.

    PubMed Central

    Tsuchido, T; Takano, M

    1988-01-01

    The sensitivities of intact and heat-injured cells of Escherichia coli K-12 to several antibacterial compounds were measured by the prolongation of growth delay. Cells exposed to sublethal heat became more sensitive to various hydrophobic compounds, such as medium-chain fatty acids, alkyl esters of p-hydroxybenzoic acid, and some kinds of antibiotics or dyes, than unheated cells; but there was a smaller or no increase in sensitivity to short-chain fatty acids, chloramphenicol, and vancomycin. The destruction by heat of a permeability barrier of the outer membrane may have sensitized the cells to hydrophobic compounds. The sensitization was much lower for a strain defective in lipopolysaccharide, which is important as a barrier against hydrophobic compounds. PMID:3075437

  1. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  2. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.

  3. 2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability

    PubMed Central

    Obregón-Henao, Andrés; Ackart, David F.; Podell, Brendan K.; Belardinelli, Juan M.; Jackson, Mary; Nguyen, Tuan V.; Blackledge, Meghan S.; Melander, Roberta J.; Melander, Christian; Johnson, Benjamin K.; Abramovitch, Robert B.

    2017-01-01

    There is an urgent need to develop new drug treatment strategies to control the global spread of drug-sensitive and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). The ß-lactam class of antibiotics is among the safest and most widely prescribed antibiotics, but they are not effective against M. tuberculosis due to intrinsic resistance. This study shows that 2-aminoimidazole (2-AI)-based small molecules potentiate ß-lactam antibiotics against M. tuberculosis. Active 2-AI compounds significantly reduced the minimal inhibitory and bactericidal concentrations of ß-lactams by increasing M. tuberculosis cell envelope permeability and decreasing protein secretion including ß-lactamase. Metabolic labeling and transcriptional profiling experiments revealed that 2-AI compounds impair mycolic acid biosynthesis, export and linkage to the mycobacterial envelope, counteracting an important defense mechanism reducing permeability to external agents. Additionally, other important constituents of the M. tuberculosis outer membrane including sulfolipid-1 and polyacyltrehalose were also less abundant in 2-AI treated bacilli. As a consequence of 2-AI treatment, M. tuberculosis displayed increased sensitivity to SDS, increased permeability to nucleic acid staining dyes, and rapid binding of cell wall targeting antibiotics. Transcriptional profiling analysis further confirmed that 2-AI induces transcriptional regulators associated with cell envelope stress. 2-AI based small molecules potentiate the antimicrobial activity of ß-lactams by a mechanism that is distinct from specific inhibitors of ß-lactamase activity and therefore may have value as an adjunctive anti-TB treatment. PMID:28749949

  4. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability.

    PubMed

    Zhang, Xiaolin; Jiang, Anmin; Yu, Hao; Xiong, Youyi; Zhou, Guoliang; Qin, Meisong; Dou, Jinfeng; Wang, Jianfei

    2016-10-28

    Metronidazole (MNZ) is an effective agent that has been employed to eradicate Helicobacter pylori ( H. pylori ). The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC), plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS) was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1- N -phenyl-naphthylamine (NPN) and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori . Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori , and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  5. Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor.

    PubMed

    Kim, Jungmin; Shin, Jaewon; Kim, Hyemin; Lee, Jung-Yeol; Yoon, Min-Hyuk; Won, Seyeon; Lee, Byung-Chan; Song, Kyung Guen

    2014-11-01

    Despite significant research efforts over the last few decades, membrane fouling in anaerobic membrane bioreactors (AnMBRs) remains an unsolved problem that increases the overall operational costs and obstructs the industrial applications. Herein, we developed a method for effectively controlling the membrane fouling in a sponge-submerged AnMBRs using an anaerobic rotary disk MBR (ARMBR). The disk rotation led the effective collision between the sponge and membrane surface; thus successfully enhanced the membrane permeability in the ARMBR. The effect of the disk rotational speed and sponge volume fraction on the membrane permeability and the relationship between the water flow direction and membrane permeability were investigated. The long-term feasibility was tested over 100days of synthetic wastewater treatment. As a result, stable and economical performance was observed without membrane replacement and washing. The proposed integrated rotary disk-supporting media appears to be a feasible and even beneficial option in the AnMBR technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    PubMed

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.

  7. Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals.

    PubMed

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Yang, Fenglin

    2017-10-15

    Cellulose nanocrystals (CNCs) were introduced into cellulose diacetate (CDA) matrix via immerged phase-inversion process, aiming to improve the filtration and antifouling performance of CNCs/CDA blending membrane. The effects of CNCs on membrane morphologies, hydrophilicity, permeability and antifouling property were investigated. Results showed that the incorporation of CNCs into CDA membrane could effectively enhance the permeability and antifouling property of CNCs/CDA blending membrane by optimizing membrane microstructure and improving membrane hydrophilicity. A high pure water flux of 173.8L/m 2 h was achieved for the CNCs/CDA blending membrane at 200KPa, which is 24 times that of the CDA membrane (7.2L/m 2 h). The bovine serum albumin (BSA) adsorption amount of the CNCs/CDA blending membrane decreased about 48% compared to that of the CDA membrane. Additionally, the CNCs/CDA blending membrane exhibited better antifouling performance with the flux recovery ratio (FRR) of 89.5% after three fouling cycles, compared to 59.7% for the CDA membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanisms of membrane toxicity of hydrocarbons.

    PubMed Central

    Sikkema, J; de Bont, J A; Poolman, B

    1995-01-01

    Microbial transformations of cyclic hydrocarbons have received much attention during the past three decades. Interest in the degradation of environmental pollutants as well as in applications of microorganisms in the catalysis of chemical reactions has stimulated research in this area. The metabolic pathways of various aromatics, cycloalkanes, and terpenes in different microorganisms have been elucidated, and the genetics of several of these routes have been clarified. The toxicity of these compounds to microorganisms is very important in the microbial degradation of hydrocarbons, but not many researchers have studied the mechanism of this toxic action. In this review, we present general ideas derived from the various reports mentioning toxic effects. Most importantly, lipophilic hydrocarbons accumulate in the membrane lipid bilayer, affecting the structural and functional properties of these membranes. As a result of accumulated hydrocarbon molecules, the membrane loses its integrity, and an increase in permeability to protons and ions has been observed in several instances. Consequently, dissipation of the proton motive force and impairment of intracellular pH homeostasis occur. In addition to the effects of lipophilic compounds on the lipid part of the membrane, proteins embedded in the membrane are affected. The effects on the membrane-embedded proteins probably result to a large extent from changes in the lipid environment; however, direct effects of lipophilic compounds on membrane proteins have also been observed. Finally, the effectiveness of changes in membrane lipid composition, modification of outer membrane lipopolysaccharide, altered cell wall constituents, and active excretion systems in reducing the membrane concentrations of lipophilic compounds is discussed. Also, the adaptations (e.g., increase in lipid ordering, change in lipid/protein ratio) that compensate for the changes in membrane structure are treated. PMID:7603409

  9. Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli.

    PubMed Central

    Luckey, M; Nikaido, H

    1980-01-01

    The lamB protein, the receptor for phage lambda, was purified from the outer membrane of Escherichia coli K-12 by extraction with Triton X-100 and EDTA, chromatography on DEAE-Sephacel in Triton X-100, exchange of Triton for cholate by gel filtration, and chromatography on Sephacryl S-200 in cholate, NaCl, and EDTA. The purified protein appeared to exist as several oligomeric species. In an equilibrium retention assay with reconstituted vesicles containing phospholipids and lipopolysaccharide, the lamB protein conferred permeability for disaccharides. In a liposome swelling assay designed to measure rates of diffusion, the lamB protein conferred permeability to phospholipid liposomes for a variety of substrates. The rates obtained indicate the permeation facilitated by the lamB protein is specific, discriminating among substrates by both size and configuration. For example, maltose diffused into liposomes 40 times faster than sucrose, about 8 times faster than cellobiose, and about 12 times faster than maltoheptaose. The results suggest that the lamB protein forms a transmembrane channel containing a site (or sites) that loosely interacts with the solutes. Images PMID:6444720

  10. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    NASA Astrophysics Data System (ADS)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  11. Captura de amonio procedente de estiercol mediante membranas permeables de gases (capture of ammonnia from turkey manure using gas-permeable membranes)

    USDA-ARS?s Scientific Manuscript database

    This paper, written in Spanish, describes the capture and recovery of gaseous ammonia from turkey manure using gas-permeable membranes technology with formation of stabilized ammonium salts. Bench experiments were carried out in Maryland using a pilot prototype system with turkey litter inside contr...

  12. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  13. Expanded polytetrafluoroethylene membrane alters tissue response to implanted Ahmed glaucoma valve.

    PubMed

    DeCroos, Francis Char; Ahmad, Sameer; Kondo, Yuji; Chow, Jessica; Mordes, Daniel; Lee, Maria Regina; Asrani, Sanjay; Allingham, R Rand; Olbrich, Kevin C; Klitzman, Bruce

    2009-07-01

    Long-term intraocular pressure control by glaucoma drainage implants is compromised by the formation of an avascular fibrous capsule that surrounds the glaucoma implant and increases aqueous outflow resistance. It is possible to alter this fibrotic tissue reaction and produce a more vascularized and potentially more permeable capsule around implanted devices by enclosing them in a porous membrane. Ahmed glaucoma implants modified with an outer 5-microm pore size membrane (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) and unmodified glaucoma implants were implanted into paired rabbit eyes. After 6 weeks, the devices were explanted and subject to histological analysis. A tissue response containing minimal vascularization, negligible immune response, and a thick fibrous capsule surrounded the unmodified Ahmed glaucoma implant. In comparison, the tissue response around the PRIME-Ahmed demonstrated a thinner fibrous capsule (46.4 +/- 10.8 microm for PRIME-Ahmed versus 94.9 +/- 21.2 microm for control, p < 0.001) and was highly vascularized near the tissue-material interface. A prominent chronic inflammatory response was noted as well. Encapsulating the aqueous outflow pathway with a porous membrane produces a more vascular tissue response and thinner fibrous capsule compared with a standard glaucoma implant plate. Enhanced vascularity and a thinner fibrous capsule may reduce aqueous outflow resistance and improve long-term glaucoma implant performance.

  14. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1.

    PubMed

    Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il

    2017-01-01

    Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.

  15. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model.

    PubMed

    Heisig, M; Lieckfeldt, R; Wittum, G; Mazurkevich, G; Lee, G

    1996-03-01

    The diffusion equation should be solved for the non-steady-state problem of drug diffusion within a two-dimensional, biphasic stratum corneum membrane having homogeneous lipid and corneocyte phases. A numerical method was developed for a brick-and-mortar SC-geometry, enabling an explicit solution for time-dependent drug concentration within both phases. The lag time and permeability were calculated. It is shown how the barrier property of this model membrane depends on relative phase permeability, corneocyte alignment, and corneocyte-lipid partition coefficient. Additionally, the time-dependent drug concentration profiles within the membrane can be observed during the lag and steady-state phases. The model SC-membrane predicts, from purely morphological principles, lag times and permeabilities that are in good agreement with experimental values. The long lag times and very small permeabilities reported for human SC can only be predicted for a highly-staggered corneocyte geometry and corneocytes that are 1000 times less permeable than the lipid phase. Although the former conclusion is reasonable, the latter is questionable. The elongated, flattened corneocyte shape renders lag time and permeability insensitive to large changes in their alignment within the SC. Corneocyte/lipid partitioning is found to be fundamentally different to SC/donor partitioning, since increasing drug lipophilicity always reduces both lag time and permeability.

  16. USE OF SEMI-PERMEABLE MEMBRANE DEVICES TO MONITOR POLLUTANTS IN WATER AND ASSESS THEIR EFFECTS: A LABORATORY TEST AND FIELD VERIFICATION. (U915464)

    EPA Science Inventory

    Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in th...

  17. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    NASA Astrophysics Data System (ADS)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  18. Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains.

    PubMed

    Han, Mee-Jung; Lee, Sang Yup; Hong, Soon Ho

    2012-04-01

    Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane beta-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.

  19. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    PubMed

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  20. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR.

    PubMed

    Dickinson, Elizabeth; Arnold, John R P; Fisher, Julie

    2017-02-01

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19 F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  1. Mechanisms and significance of eryptosis.

    PubMed

    Lang, Florian; Lang, Karl S; Lang, Philipp A; Huber, Stephan M; Wieder, Thomas

    2006-01-01

    Suicidal death of erythrocytes (eryptosis) is characterized by cell shrinkage, membrane blebbing, activation of proteases, and phosphatidylserine exposure at the outer membrane leaflet. Exposed phosphatidylserine is recognized by macrophages that engulf and degrade the affected cells. Eryptosis is triggered by erythrocyte injury after several stressors, including oxidative stress. Besides caspase activation after oxidative stress, two signaling pathways converge to trigger eryptosis: (a) formation of prostaglandin E(2) leads to activation of Ca(2+)-permeable cation channels, and (b) the phospholipase A(2)-mediated release of platelet-activating factor activates a sphingomyelinase, leading to formation of ceramide. Increased cytosolic Ca(2+) activity and enhanced ceramide levels lead to membrane scrambling with subsequent phosphatidylserine exposure. Moreover, Ca(2+) activates Ca(2+)-sensitive K(2+) channels, leading to cellular KCl loss and cell shrinkage. In addition, Ca(2+) stimulates the protease calpain, resulting in degradation of the cytoskeleton. Eryptosis is inhibited by erythropoietin, which thus extends the life span of circulating erythrocytes. Eryptosis may be a mechanism of defective erythrocytes to escape hemolysis. Conversely, excessive eryptosis favors the development of anemia. Conditions with excessive eryptosis include iron deficiency, lead or mercury intoxication, sickle cell anemia, thalassemia, glucose 6- phosphate dehydrogenase deficiency, malaria, and infection with hemolysin-forming pathogens.

  2. Freeze-fracture studies of photoreceptor membranes: new observations bearing upon the distribution of cholesterol

    PubMed Central

    1983-01-01

    We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin- binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze- fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested higher cholesterol in the inner segment than in the outer segment plasma membrane may help direct newly inserted photopigment molecules to the outer segment. PMID:6411740

  3. A dominant sulfhydryl-containing protein in the outer membrane of Neisseria gonorrhoeae.

    PubMed Central

    Norrod, E P; Browne, S L; Feldweg, A; Leonard, J

    1993-01-01

    By using a method that labels sulfhydryl-containing proteins in situ, we have detected a major outer membrane protein of Neisseria gonorrhoeae at 41 kDa. A protein of this molecular mass has not previously been shown to be a major outer membrane protein in gonococci. In addition, a minor protein rich in cysteinyl residues was detected at 31.5 kDa. Images PMID:8432710

  4. The presence of OMP inclusion bodies in a Escherichia coli K-12 mutated strain is not related to lipopolysaccharide structure.

    PubMed

    Corsaro, M Michela; Parrilli, Ermenegilda; Lanzetta, Rosa; Naldi, Teresa; Pieretti, Giuseppina; Lindner, Buko; Carpentieri, Andrea; Parrilli, Michelangelo; Tutino, M Luisa

    2009-08-01

    The role of lipopolysaccharides (LPSs) in the biogenesis of outer membrane proteins have been investigated in several studies. Some of these analyses showed that LPS is required for correct and efficient folding of outer membrane proteins; other studies support the idea of independence of outer membrane proteins biogenesis from LPS structure. In this article, we investigated the involvement of LPS structure in the anomalous aggregation of outer membrane proteins in a E. coli mutant strain (S17-1(lambdapir)). To achieve this aim, the LPS structure of the mutant strain was carefully determined and compared with the E. coli K-12 one. It turned out that LPS of these two strains differs in the inner core for the absence of a heptose residue (HepIII). We demonstrated that this difference is due to a mutation in waaQ, a gene encoding the transferase for the branch heptose HepIII residue. The mutation was complemented to find out if the restoration of LPS structure influenced the observed outer membrane proteins aggregation. Data reported in this work demonstrated that, in E. coli S17-1(lambdapir) there is no influence of LPS structure on the outer membrane proteins inclusion bodies formation.

  5. Predicting A Drug'S Membrane Permeability: Evolution of a Computational Model Validated with in Vitro Permeability Assay Data

    DOE PAGES

    Carpenter, Timothy S.; McNerney, M. Windy; Be, Nicholas A.; ...

    2016-02-16

    Membrane permeability is a key property to consider in drug design, especially when the drugs in question need to cross the blood-brain barrier (BBB). A comprehensive in vivo assessment of the BBB permeability of a drug takes considerable time and financial resources. A current, simplified in vitro model to investigate drug permeability is a Parallel Artificial Membrane Permeability Assay (PAMPA) that generally provides higher throughput and initial quantification of a drug's passive permeability. Computational methods can also be used to predict drug permeability. Our methods are highly advantageous as they do not require the synthesis of the desired drug, andmore » can be implemented rapidly using high-performance computing. In this study, we have used umbrella sampling Molecular Dynamics (MD) methods to assess the passive permeability of a range of compounds through a lipid bilayer. Furthermore, the permeability of these compounds was comprehensively quantified using the PAMPA assay to calibrate and validate the MD methodology. And after demonstrating a firm correlation between the two approaches, we then implemented our MD method to quantitatively predict the most permeable potential drug from a series of potential scaffolds. This permeability was then confirmed by the in vitro PAMPA methodology. Therefore, in this work we have illustrated the potential that these computational methods hold as useful tools to help predict a drug's permeability in a faster and more cost-effective manner. Release number: LLNL-ABS-677757.« less

  6. Predicting A Drug'S Membrane Permeability: Evolution of a Computational Model Validated with in Vitro Permeability Assay Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Timothy S.; McNerney, M. Windy; Be, Nicholas A.

    Membrane permeability is a key property to consider in drug design, especially when the drugs in question need to cross the blood-brain barrier (BBB). A comprehensive in vivo assessment of the BBB permeability of a drug takes considerable time and financial resources. A current, simplified in vitro model to investigate drug permeability is a Parallel Artificial Membrane Permeability Assay (PAMPA) that generally provides higher throughput and initial quantification of a drug's passive permeability. Computational methods can also be used to predict drug permeability. Our methods are highly advantageous as they do not require the synthesis of the desired drug, andmore » can be implemented rapidly using high-performance computing. In this study, we have used umbrella sampling Molecular Dynamics (MD) methods to assess the passive permeability of a range of compounds through a lipid bilayer. Furthermore, the permeability of these compounds was comprehensively quantified using the PAMPA assay to calibrate and validate the MD methodology. And after demonstrating a firm correlation between the two approaches, we then implemented our MD method to quantitatively predict the most permeable potential drug from a series of potential scaffolds. This permeability was then confirmed by the in vitro PAMPA methodology. Therefore, in this work we have illustrated the potential that these computational methods hold as useful tools to help predict a drug's permeability in a faster and more cost-effective manner. Release number: LLNL-ABS-677757.« less

  7. Some Results Bearing on the Value of Improvements of Membranes for Reverse Osmosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamont, A

    2006-03-08

    This analysis evaluates the potential economic benefits that could result from the improvements in the permeability of membranes for reverse osmosis. The discussion provides a simple model of the operation of a reverse osmosis plant. It examines the change in the operation that might result from improvements in the membrane and computes the cost of water as a function of the membrane permeability.

  8. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore.

    PubMed

    Panjwani, Anusha; Strauss, Mike; Gold, Sarah; Wenham, Hannah; Jackson, Terry; Chou, James J; Rowlands, David J; Stonehouse, Nicola J; Hogle, James M; Tuthill, Tobias J

    2014-08-01

    Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.

  9. Intracellular localization of a group II chaperonin indicates a membrane-related function

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

  10. Mapping Cd²⁺-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy.

    PubMed

    Filice, Fraser P; Li, Michelle S M; Henderson, Jeffrey D; Ding, Zhifeng

    2016-02-18

    Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd(2+)-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd(2+) in varying concentrations. It is experimentally observed that 50 and 100 μM Cd(2+) caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd(2+) concentration. The Cd(2+) was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd(2+) stress is realized by the methodology presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Proton conductivity and methanol permeability of Nafion-SiO2/SiWA composite membranes

    NASA Astrophysics Data System (ADS)

    Thiam, Hui San; Chia, Min Yan; Cheah, Qiao Rou; Koo, Charlene Chai Hoon; Lai, Soon Onn; Chong, Kok Chung

    2017-04-01

    Proton exchange membranes for a direct methanol fuel cell (DMFC) were prepared by incorporating silica/silicotungstic acid (SiO2/SiWA) inorganic composite into a Nafion polymer. The effects of SiO2/SiWA content on proton conductivity of membranes were investigated by using a four-probe conductivity cell. Methanol permeability of composite membrane was also determined by using a homemade diffusion cell and gas chromatography technique. It was found that proton conductivity of the composite membranes decreased with SiO2/SiWA content, however the highest proton conductivity achieved was 11% greater than the pure recast Nafion membrane. The methanol permeability of composite membrane was much lower than that of pure recast Nafion, in a reduction of 58% which indicated a better resistance to fuel crossover. Nafion-SiO2/SiWA composite membrane showed promising advantages over pure Nafion on electrochemical properties such as proton conductivity and fuel crossover and it is potentially attractive for use in DMFC.

  12. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

    PubMed Central

    Benedet, Mattia; Falchi, Federica A.; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra

    2016-01-01

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine. PMID:27529623

  13. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter.

    PubMed

    Benedet, Mattia; Falchi, Federica A; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra; Dehò, Gianni

    2016-01-01

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.

  14. Insights into PG-binding, conformational change, and dimerization of the OmpA C-terminal domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi: Characterization of OmpA C-Terminal Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Kemin; Deatherage Kaiser, Brooke L.; Wu, Ruiying

    S. Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins of the bacterium. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded -barrel membrane domain and a C-terminal so-called OmpA C-terminal domain (OmpACTD). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the outer membrane. Here we present the structures of two forms of the OmpACTD of S. Typhimurium (STOmpACTD)more » and one structure of the less-studied OmpACTD of Borrelia burgdorferi (BbOmpACTD). In the open form of STOmpACTD, an aspartic acid residue from a long 2-3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD, a sulfate group from the crystallization buffer is tightly bound at the equivalent site. The differences between the closed and open forms of STOmpACTD, suggest a large conformational change that includes an extension of 3 helix by ordering a part of 2-3 loop. We suggest that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD, or possibly that of full length STOmpA.« less

  15. Identification of a cell epitope that is globally conserved among outer membrane proteins (OMPs) OMP7, OMP8, and OMP9 of anaplasma marginale strains and with OMP7 from the A. marginale subsp. centrale vaccine strain

    USDA-ARS?s Scientific Manuscript database

    Within the protective outer membrane fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of outer membrane proteins (OMPs) 7-9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. ...

  16. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton conductivity, even with blends of these and blends with Nafion membranes. Other alternative studied was the functionalization of the membranes SIBS with metallic cations, which decreased the methanol permeability in the membranes containing the cations Mg2+, Zn2+ and Al 3+, while the proton conductivity was maintained more or less constant. The permeation of methanol vapor was investigated and the behavior through the membranes studied followed a pattern of Fick's Law, while the pattern shown by the permeation in liquid phase was non-Fickian.

  17. Permeability of serpentinites and implication for the oceanic mantle hydration along the outer rise faults

    NASA Astrophysics Data System (ADS)

    Hatakeyama, K.; Katayama, I.

    2016-12-01

    Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction (e.g., Fujie et al., 2013, Shilington et al., 2015). The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes (e.g., Seno and Yamanaka, 1996) and the subduction water flux (e.g., Hacker, 2008). Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures (Martin and Fyfe, 1970), the rate of water delivery to the reaction front likely controls the extent of serpentinization (Macdonald and Fyfe, 1985). Because the water through existing serpentinite is supplied to reaction front, permeability of serpentinite has important role of the extent of serpentinization along the outer-rise fault. In this study, we measured permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the extent of serpentinization along an outer-rise fault from Darcy's law. Our experimental results show that the permeability of serpnetinites decreases with increasing confining pressure, and reaches to 10-19 m2 to 10-21 m2 at confining pressure of 100 MPa. In extrapolating our experimental results to pressure of oceanic mantle, permeability of serpentinite can be as low as 10-22 m2 at the top of oceanic mantle (7 km depth beneath seafloor). If we assume that the time scale of water supply to the reaction front of 1.0 My, the lateral extent of serpentinization is approximately 9 km along the outer-rise fault in the uppermost oceanic mantle. Based on these estimate, we calculated the global water flux carried by serpentinized oceanic mantle to be 3.4×1012 kg/year, which is markedly higher than the water flux of hydrated oceanic crust (1.3×1012 kg/year). Since the subduction water flux is much greater than the output flux through magmatic degassing, the amount of present-day ocean might be decreasing, and this may result in the disappearance of the Earth's oceans in the future.

  18. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  19. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics.

    PubMed

    Školová, Barbora; Kováčik, Andrej; Tesař, Ondřej; Opálka, Lukáš; Vávrová, Kateřina

    2017-05-01

    Ceramides based on phytosphingosine, sphingosine and dihydrosphingosine are essential constituents of the skin lipid barrier that protects the body from excessive water loss. The roles of the individual ceramide subclasses in regulating skin permeability and the reasons for C4-hydroxylation of these sphingolipids are not completely understood. We investigated the chain length-dependent effects of dihydroceramides, sphingosine ceramides (with C4-unsaturation) and phytoceramides (with C4-hydroxyl) on the permeability, lipid organization and thermotropic behavior of model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesteryl sulfate. Phytoceramides with very long C24 acyl chains increased the permeability of the model lipid membranes compared to dihydroceramides or sphingosine ceramides with the same chain lengths. Either unsaturation or C4-hydroxylation of dihydroceramides induced chain length-dependent increases in membrane permeability. Infrared spectroscopy showed that C4-hydroxylation of the sphingoid base decreased the relative ratio of orthorhombic chain packing in the membrane and lowered the miscibility of C24 phytoceramide with lignoceric acid. The phase separation in phytoceramide membranes was confirmed by X-ray diffraction. In contrast, phytoceramides formed strong hydrogen bonds and highly thermostable domains. Thus, the large heterogeneity in ceramide structures and in their aggregation mechanisms may confer resistance towards the heterogeneous external stressors that are constantly faced by the skin barrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  1. 110 Years of the Meyer–Overton Rule: Predicting Membrane Permeability of Gases and Other Small Compounds

    PubMed Central

    Missner, Andreas; Pohl, Peter

    2010-01-01

    The transport of gaseous compounds across biological membranes is essential in all forms of life. Although it was generally accepted that gases freely penetrate the lipid matrix of biological membranes, a number of studies challenged this doctrine as they found biological membranes to have extremely low gas-permeability values. These observations led to the identification of several membrane-embedded “gas” channels, which facilitate the transport of biological active gases, such as carbon dioxide, nitric oxide, and ammonia. However, some of these findings are in contrast to the well-established solubility–diffusion model (also known as the Meyer–Overton rule), which predicts membrane permeabilities from the molecule's oil–water partition coefficient. Herein, we discuss recently reported violations of the Meyer–Overton rule for small molecules, including carboxylic acids and gases, and show that Meyer and Overton continue to rule. PMID:19514034

  2. Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages.

    PubMed

    He, XiaoCong; Qu, ZhiGuo; Xu, Feng; Lin, Min; Wang, JiuLing; Shi, XingHua; Lu, TianJian

    2014-01-07

    Studying dendrimer-biomembrane interactions is important for understanding drug and gene delivery. In this study, coarse-grained molecular dynamics simulations were performed to investigate the behaviors of polyamidoamine (PAMAM) dendrimers (G4 and G5) as they interacted with asymmetric membranes from different sides of the bilayer, thus mimicking different dendrimer transport stages. The G4 dendrimer could insert into the membrane during an equilibrated state, and the G5 dendrimer could induce pore formation in the membrane when the dendrimers interacted with the outer side (outer interactions) of an asymmetric membrane [with 10% dipalmitoyl phosphatidylserine (DPPS) in the inner leaflet of the membrane]. During the interaction with the inner side of the asymmetric membrane (inner interactions), the G4 and G5 dendrimers only adsorbed onto the membrane. As the membrane asymmetry increased (e.g., increased DPPS percentage in the inner leaflet of the membrane), the G4 and G5 dendrimers penetrated deeper into the membrane during the outer interactions and the G4 and G5 dendrimers were adsorbed more tightly onto the membrane for the inner interactions. When the DPPS content reached 50%, the G4 dendrimer could completely penetrate through the membrane from the outer side to the inner side. Our study provides molecular understanding and reference information about different dendrimer transport stages during drug and gene delivery.

  3. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis

    PubMed Central

    Elgass, Kirstin D.; Gabriel, Kipros; Dougan, Gordon; Lithgow, Trevor; Heinz, Eva

    2018-01-01

    Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity. PMID:29601598

  4. Microencapsulation and Electrostatic Processing Method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  5. Lenticular mitoprotection. Part B: GSK-3β and regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen

    PubMed Central

    Brooks, Morgan M.; Neelam, Sudha

    2013-01-01

    Purpose Loss of integrity of either the inner or outer mitochondrial membrane results in the dissipation of the mitochondrial electrochemical gradient that leads to mitochondrial membrane permeability transition (mMPT). This study emphasizes the role of glycogen synthase kinase 3beta (GSK-3β) in maintaining mitochondrial membrane potential, thus preventing mitochondrial depolarization (hereafter termed mitoprotection). Using 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), an inhibitor of GSK-3β, and drawing a distinction between it and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), an inhibitor of extracellular-signal-regulated kinase (ERK) phosphorylation, the means by which GSK-3β influences mitoprotection in cultured human lens epithelial (HLE-B3) cells and normal, secondary cultures of bovine lens epithelial cells, maintained in atmospheric oxygen, was investigated. Methods Virally transfected human lens epithelial cells (HLE-B3) and normal cultures of bovine lens epithelial cells were exposed to acute hypoxic conditions (about 1% O2) followed by exposure to atmospheric oxygen (about 21% O2). Specific antisera and western blot analysis was used to examine the state of phosphorylation of ERK and GSK-3β, as well as the phosphorylation of a downstream substrate of GSK-3β, glycogen synthase (GS, useful in monitoring GSK-3β activity). The potentiometric dye, 1H-benzimidazolium-5,6-dichloro-2-[3-(5,6-dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-iodide (JC-1), was used to monitor mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Caspase-3 activation was scrutinized to determine whether mitochondrial depolarization inevitably leads to apoptosis. Results Treatment of HLE-B3 cells with SB216763 (12 µM) inactivated GSK-3β activity as verified by the enzyme’s inability to phosphorylate its substrate, GS. SB216763-treated cells were not depolarized relative to the control cells as demonstrated with JC-1 fluorescent dye analysis. The HLE-B3 cells treated with UO126, which similarly blocked phosphorylation of GS, were nevertheless prone to mMPT relative to the control cells. Western blot analysis determined that Bcl-2-associated X (BAX) levels were unchanged for SB216763-treated or UO126-treated HLE-B3 cells when compared to their respective control cells. However, unlike the SB216763-treated cells, the UO126-treated cells showed a marked absence of Bcl-2, as well as phosphorylated Bcl-2 relative to the controls. UO126 treatment of bovine lens epithelial cells showed similar results with pBcl-2 levels, while the Bcl-2 content appeared unchanged relative to the control cells. HLE-B3 and normal bovine lens cell cultures showed susceptibility to mMPT associated with the loss of pBcl-2 by UO126 treatment. Conclusions Mitochondrial depolarization may occur by one of two key occurrences: interruption of the electrochemical gradient across the inner mitochondrial membrane resulting in mMPT or by disruption of the integrity of the inner or outer mitochondrial membrane. The latter scenario is generally tightly regulated by members of the Bcl-2 family of proteins. Inhibition of GSK-3β activity by SB216763 blocks mMPT by preventing the opening of the mitochondrial permeability transition pore. UO126, likewise, inhibits GSK-3β activity, but unlike SB216763, inhibition of ERK phosphorylation induces the loss of intracellular pBcl-2 levels under conditions where intracellular BAX levels remain constant. These results suggest that the lenticular mitoprotection normally afforded by the inactivation of GSK-3β activity may, however, be bypassed by a loss of pBcl-2, an anti-apoptotic member of the Bcl-2 family. Bcl-2 prevents the translocation of BAX to the mitochondrial outer membrane inhibiting depolarization by disrupting the normal electrochemical gradient leading to mMPT. PMID:24319338

  6. Lenticular mitoprotection. Part B: GSK-3β and regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen.

    PubMed

    Brooks, Morgan M; Neelam, Sudha; Cammarata, Patrick R

    2013-01-01

    Loss of integrity of either the inner or outer mitochondrial membrane results in the dissipation of the mitochondrial electrochemical gradient that leads to mitochondrial membrane permeability transition (mMPT). This study emphasizes the role of glycogen synthase kinase 3beta (GSK-3β) in maintaining mitochondrial membrane potential, thus preventing mitochondrial depolarization (hereafter termed mitoprotection). Using 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), an inhibitor of GSK-3β, and drawing a distinction between it and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), an inhibitor of extracellular-signal-regulated kinase (ERK) phosphorylation, the means by which GSK-3β influences mitoprotection in cultured human lens epithelial (HLE-B3) cells and normal, secondary cultures of bovine lens epithelial cells, maintained in atmospheric oxygen, was investigated. Virally transfected human lens epithelial cells (HLE-B3) and normal cultures of bovine lens epithelial cells were exposed to acute hypoxic conditions (about 1% O2) followed by exposure to atmospheric oxygen (about 21% O2). Specific antisera and western blot analysis was used to examine the state of phosphorylation of ERK and GSK-3β, as well as the phosphorylation of a downstream substrate of GSK-3β, glycogen synthase (GS, useful in monitoring GSK-3β activity). The potentiometric dye, 1H-benzimidazolium-5,6-dichloro-2-[3-(5,6-dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-iodide (JC-1), was used to monitor mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Caspase-3 activation was scrutinized to determine whether mitochondrial depolarization inevitably leads to apoptosis. Treatment of HLE-B3 cells with SB216763 (12 µM) inactivated GSK-3β activity as verified by the enzyme's inability to phosphorylate its substrate, GS. SB216763-treated cells were not depolarized relative to the control cells as demonstrated with JC-1 fluorescent dye analysis. The HLE-B3 cells treated with UO126, which similarly blocked phosphorylation of GS, were nevertheless prone to mMPT relative to the control cells. Western blot analysis determined that Bcl-2-associated X (BAX) levels were unchanged for SB216763-treated or UO126-treated HLE-B3 cells when compared to their respective control cells. However, unlike the SB216763-treated cells, the UO126-treated cells showed a marked absence of Bcl-2, as well as phosphorylated Bcl-2 relative to the controls. UO126 treatment of bovine lens epithelial cells showed similar results with pBcl-2 levels, while the Bcl-2 content appeared unchanged relative to the control cells. HLE-B3 and normal bovine lens cell cultures showed susceptibility to mMPT associated with the loss of pBcl-2 by UO126 treatment. MITOCHONDRIAL DEPOLARIZATION MAY OCCUR BY ONE OF TWO KEY OCCURRENCES: interruption of the electrochemical gradient across the inner mitochondrial membrane resulting in mMPT or by disruption of the integrity of the inner or outer mitochondrial membrane. The latter scenario is generally tightly regulated by members of the Bcl-2 family of proteins. Inhibition of GSK-3β activity by SB216763 blocks mMPT by preventing the opening of the mitochondrial permeability transition pore. UO126, likewise, inhibits GSK-3β activity, but unlike SB216763, inhibition of ERK phosphorylation induces the loss of intracellular pBcl-2 levels under conditions where intracellular BAX levels remain constant. These results suggest that the lenticular mitoprotection normally afforded by the inactivation of GSK-3β activity may, however, be bypassed by a loss of pBcl-2, an anti-apoptotic member of the Bcl-2 family. Bcl-2 prevents the translocation of BAX to the mitochondrial outer membrane inhibiting depolarization by disrupting the normal electrochemical gradient leading to mMPT.

  7. Periplasmic quality control in biogenesis of outer membrane proteins.

    PubMed

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  8. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria.

    PubMed

    Majewski, Dorothy D; Worrall, Liam J; Strynadka, Natalie Cj

    2018-03-23

    The acquisition and evolution of customized and often highly complex secretion systems allows Gram-negative bacteria to efficiently passage large macromolecules across both inner and outer membranes and, in some cases, that of the infected host. Essential to the virulence and ultimate survival of the many pathogenic species that encode them, secretion systems export a wide variety of effector proteins and DNA as well as the downstream extracellular filaments of the secretion apparatus themselves. Although these customized secretion systems differ in their cytosolic and inner membrane components, several commonly rely on the secretin family of giant pores to allow these large substrates to traverse the outer membrane. Recently, several near-atomic resolution cryo-EM secretin structures have unveiled the first insights into the unique structural motifs required for outer membrane localization, assembly, hallmark ultrastable nature, spontaneous membrane insertion, and mechanism of action-including the requisite central gating needed to prevent deleterious passage of periplasmic contents to the extracellular space. Copyright © 2018. Published by Elsevier Ltd.

  9. Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.

    PubMed

    Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Kalyani, Dayanand; Pinelo, Manuel

    2014-12-24

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions.

  10. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  11. Considerations on the role of cardiolipin in cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Morris, Rachel L.; Azizuddin, Kashif; Berlin, Jeffrey C.; Burda, Clemens; Kenney, Malcolm E.; Samia, Anna C. S.; Oleinick, Nancy L.

    2004-06-01

    Cardiolipin is a unique phospholipid containing two phosphatidyl glycerol moieties and four fatty acids per molecule. It is found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. The acridine derivative, nonyl-acridine orange (NAO), is a highly specific probe of cardiolipin, with a binding affinity approximately two orders of magnitude greater than that for binding to other anionic phospholipids. We recently reported that when NAO is bound in the mitochondria of human prostate cancer PC-3 cells and activated at 488 nm, NAO could transfer fluorescence resonance energy to the phthalocyanine photosensitizer Pc 4. This observation indicates that one site of Pc 4 binding is very near to NAO and therefore very near to cardiolipin. The average distance between the two fluorophores was calculated to be 7 nm. In the present study, we have extended the observation to the endogenously synthesized photosensitizer, protoporphyrin IX, an intermediate in heme biosynthesis that is used for photodynamic therapy of several types of malignant and non-malignant conditions. Protoporphyrin IX is generated in the mitochondria but is known to bind to other cellular sites as well, especially the endoplasmic reticulum. The ability of this molecule to accept resonance energy from NAO in cells is consistent with a localization of at least some of the molecules in the mitochondria either on the inner membrane, the site of cardiolipin, or within about 10 nm of it. Since protoporphyrin IX binds with high affinity to the peripheral benzodiazepine receptor, a component of the permeability transition pore complex that forms at contact sites between the inner and outer membranes, our observations provide evidence for the close association of several critical molecules for mitochondrial functions and suggest that cardiolipin may be an early oxidative target during PDT with at least two photosensitizers.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Quazi Sohel; Department of Biochemistry, School of Medicine, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215; Ulziikhishig, Enkhbaatar

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated withmore » GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.« less

  13. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    PubMed

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  14. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    NASA Astrophysics Data System (ADS)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  15. Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes

    DTIC Science & Technology

    2008-07-03

    factors governing sorption and permeability ofphosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower olefins by means...membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...and chemical factors governing sorption and permeability of phosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower

  16. Diamine-Appended Mg 2 (dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO 2/N 2 Separations

    DOE PAGES

    Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.; ...

    2017-10-18

    Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less

  17. Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles

    DOE PAGES

    Paxton, Walter F.; McAninch, Patrick T.; Achyuthan, Komandoor E.; ...

    2017-08-01

    Controlling the traffic of molecules and ions across membranes is a critical feature in a number of biologically relevant processes and highly desirable for the development of technologies based on membrane materials. In this study, ion transport behavior of hybrid lipid/polymer membranes was studied in the absence and presence of ion transfer agents. A pH-sensitive fluorophore was used to investigate ion (H +/OH -) permeability across hybrid lipid/polymer membranes as a function of the fraction of amphiphilic block copolymer. It was observed that vesicles with intermediate lipid/polymer ratios tend to be surprisingly more permeable to ion transport than the puremore » lipid or pure polymer vesicles. Hybrid vesicle permeability could be further modulated with valinomycin, nigericin, or gramicidin A, which significantly expedite the dissipation of externally-imposed pH gradients by facilitating the transport of the rate-limiting co-ions (e.g. K +) ions across the membrane. For gramicidin A, ion permeability decreased with increasing polymer mole fraction, and the method of introduction of gramicidin A into the membrane played an important role. Finally, strategies to incorporate biofunctional molecules and facilitate their activity in synthetic systems are highly desirable for developing artificial organelles or other synthetic compartmentalized structures requiring control over molecular traffic across biomimetic membranes.« less

  18. Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli

    PubMed Central

    2015-01-01

    The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition. PMID:24927110

  19. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.

    PubMed

    Murphy, C K; Klebba, P E

    1989-11-01

    A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.

    Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less

  1. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes.

    PubMed

    Vanotti, M B; Dube, P J; Szogi, A A; García-González, M C

    2017-04-01

    Gas-permeable membrane technology is useful to recover ammonia (NH 3 ) from liquid manures. In this study, phosphorus (P) recovery via MgCl 2 precipitation was enhanced by combining it with NH 3 recovery through gas-permeable membranes. Anaerobically digested swine wastewater containing approximately 2300 mg NH 4 + -N L -1 and 450 mg P L -1 was treated using submerged membranes plus low-rate aeration to recover the NH 3 from within the liquid and MgCl 2 to precipitate the P. The experiments included a first configuration where N and P were recovered sequentially and a second configuration with simultaneous recovery. The low-rate aeration reduced the natural carbonate, increased pH and accelerated NH 3 uptake by the gas-permeable membrane system, which in turn benefited P recovery. Phosphorus removal efficiency was >90% and P recovery efficiency was about 100%. With higher NH 3 capture, the recovered P contained higher P 2 O 5 content (37-46%, >98% available), similar to the composition of the biomineral newberyite (MgHPO 4 ·3H 2 O). Published by Elsevier Ltd.

  2. Highly Permeable Oligo(ethylene oxide)- co-poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation

    DOE PAGES

    Hong, Tao; Lai, Sophia C.; Mahurin, Shannon Mark; ...

    2017-12-27

    Here, a series of cross–linked, freestanding oligo(ethylene oxide)– co–(polydimethylsiloxane–norbornene) membranes with varied composition is synthesized via in situ ring–opening metathesis polymerization. These membranes show remarkably high CO 2 permeabilities (3400 Barrer) and their separation performance approaches the Robeson upper bound. The excellent permeability of these copolymer membranes provides great potential for real–world applications where enormous volumes of gases must be separated. The gas transport properties of these films are found to be directly proportional to oligo(ethylene oxide) content incorporation, which stems from the increased solubility selectivity change within the copolymer matrix. This work provides a systematic study of how gasmore » separation performance in rubbery membranes can be enhanced by tuning the CO 2–philicity of their constituent monomeric subunits.« less

  3. Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance.

    PubMed

    Fang, Xiaofeng; Li, Jiansheng; Li, Xin; Pan, Shunlong; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun; Van der Bruggen, Bart

    2017-11-01

    In this work, an iron-tannin-framework (ITF) complex was introduced to a poly (ether sulfone) (PES) casting solution as a hydrophilic additive to fabricate ITF/PES ultrafiltration (UF) membranes via non-solvent-induced phase separation (NIPS). The structure and performance of the PES membranes with ITF concentrations ranging from 0 to 0.9wt.% were systematically investigated by scanning electron microscopy, water contact angle, permeability, protein rejection and fouling resistance measurements. The results indicate that the pore structure and surface properties of PES UF membranes can be regulated by incorporating the ITF complex. Compared with classical PES membranes, ITF/PES membranes were found to have an increased hydrophilicity and porosity and reduced surface pore size. Importantly, a simultaneous enhancement of permeability and separation performance was observed for the blend membranes, which indicates that the introduction of the ITF complex can break through the trade-off between permeability and selectivity of UF membranes.When the ITF content was 0.3wt.%, the permeability reached a maximum of 319.4(L/m 2 h) at 0.1MPa, which is 1.6 times higher than that of the classical PES membrane. Furthermore, the BSA rejection increased from 25.9% for the PES membrane to 95.9% for the enhanced membrane. In addition, the same membrane showed an improved fouling resistance (higher flux recovery and lower adhesion force) and stable hydrophilicity (unchanged after incubation in deionized water for 30days). The simple, green and cost-effective preparation process and the outstanding filtration performance highlight the potential of ITF/PES membranes for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Wirzal, M. D. H.; Nordin, N. A. H.; Halim, N. S. Abd

    2018-04-01

    Nowadays, the water shortage problem following the urbanization and increasing pollution of natural water source have increased the awareness to treat wastewater. Membrane filtration is often used in wastewater treatment plants to filter out more residual activated sludge from aeration process in the secondary stage. However, fouling is the main concern due to the fact it can happen to any membrane application. Antifouling properties in membrane can be improved by blending membranes with fillers or additives to make them more hydrophilic. This study aims to improve the antifouling properties in polyvinylidene fluoride (PVDF) membranes while optimizing the loading of Zeolitic imidazolate framework-8 (ZIF-8) fillers; at different loading (2.0 wt. %, 4.0 wt. %, 6.0 wt. %, 8.0 wt. % and 10.0 wt. %). Manual hand-casting of flat sheet membrane was done and the fabricated membranes were tested for their filterability against pure water and domestic wastewater. Both permeability tests showed that PVDF with 8% ZIF-8 membrane was the most permeable with a pure water and wastewater permeability of 150 L/m2.h.bar and 94 L/m2.h.bar, respectively. The pure water permeability of PVDF with 8% ZIF-8 membrane increases for about 130% compared to the pure PVDF membrane. The turbidity test of the initial feed and final permeate of wastewater, PVDF with 8% ZIF-8 membrane also gave out the highest reduction rate at 87%, which is 36% higher than that of pure PVDF membrane. It can be deduced that 8% of ZIF-8 is the ideal loading to PVDF in improving its antifouling properties to be used in domestic wastewater treatment.

  5. The casting and mechanism of formation of semi-permeable polymer membranes in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Vera, I.

    The National Electric Company of Venezuela, C.A.D.A.F.E., is sponsoring the development of this experiment which represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of polymer thin films will be contained in NASA's payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medecine, energy, and pharmaceuticals, and in general fluid separation processes such as reverse osmosis, ultra-filtration, and electro-dialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the strucutre of these membranes.

  6. Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta 2O 5 test study

    DOE PAGES

    Imbault, Alexander; Wang, Yue; Kruse, Peter; ...

    2015-09-25

    Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta 2O 5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Furthermore, different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitivemore » analytical systems operating at high temperatures and in harsh environments.« less

  7. Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension.

    PubMed

    Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R

    2009-02-15

    Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.

  8. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    PubMed

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  9. Insight into mitochondrial structure and function from electron tomography.

    PubMed

    Frey, T G; Renken, C W; Perkins, G A

    2002-09-10

    In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.

  10. How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods

    PubMed Central

    Endeward, Volker; Al-Samir, Samer; Itel, Fabian; Gros, Gerolf

    2013-01-01

    We review briefly how the thinking about the permeation of gases, especially CO2, across cell and artificial lipid membranes has evolved during the last 100 years. We then describe how the recent finding of a drastic effect of cholesterol on CO2 permeability of both biological and artificial membranes fundamentally alters the long-standing idea that CO2—as well as other gases—permeates all membranes with great ease. This requires revision of the widely accepted paradigm that membranes never offer a serious diffusion resistance to CO2 or other gases. Earlier observations of “CO2-impermeable membranes” can now be explained by the high cholesterol content of some membranes. Thus, cholesterol is a membrane component that nature can use to adapt membrane CO2 permeability to the functional needs of the cell. Since cholesterol serves many other cellular functions, it cannot be reduced indefinitely. We show, however, that cells that possess a high metabolic rate and/or a high rate of O2 and CO2 exchange, do require very high CO2 permeabilities that may not be achievable merely by reduction of membrane cholesterol. The article then discusses the alternative possibility of raising the CO2 permeability of a membrane by incorporating protein CO2 channels. The highly controversial issue of gas and CO2 channels is systematically and critically reviewed. It is concluded that a majority of the results considered to be reliable, is in favor of the concept of existence and functional relevance of protein gas channels. The effect of intracellular carbonic anhydrase, which has recently been proposed as an alternative mechanism to a membrane CO2 channel, is analysed quantitatively and the idea considered untenable. After a brief review of the knowledge on permeation of O2 and NO through membranes, we present a summary of the 18O method used to measure the CO2 permeability of membranes and discuss quantitatively critical questions that may be addressed to this method. PMID:24409149

  11. Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.

    PubMed

    Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D

    2017-02-01

    This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.

  12. Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell.

    PubMed

    Thuleau, P; Ward, J M; Ranjeva, R; Schroeder, J I

    1994-07-01

    Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.

  13. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status.

    PubMed

    Reed, D J; Savage, M K

    1995-05-24

    Treatment of isolated mitochondria with Ca2+ and inorganic phosphate (Pi) induces an inner membrane permeability that appears to be mediated through a cyclosporin A (CsA)-inhibitable Ca(2+)-dependent pore. Isolated mitochondria during inner membrane permeability undergo rapid efflux of matrix solutes such as glutathione as GSH and Ca2+, loss of coupled functions, and large amplitude swelling. Permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability, has been observed. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing Ca2+ and Pi abolished large amplitude swelling of mitochondria. The GSH status during a Ca(2+)- and Pi-dependent mechanism of mitochondrial GSH release in isolated mitochondria was influenced significantly by metabolic inhibitors of the respiratory chain but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial GSH and Ca2+. The release of GSH was inhibited by the addition of CsA, a potent inhibitor of permeability transition. Under these conditions we did not find GSSG; however, rapid oxidation of pyridine nucleotides and depletion of ATP and ADP with conversion to AMP occurred. The addition of CsA, prevented the oxidation of pyridine nucleotides and depletion of ATP and ADP. Since NADH and NADPH were extensively oxidized, protection against oxidative stress is reflected in maintenance of GSH and not observable lipid peroxidation. Evidence from transmission electron microscopy analysis, combined with the GSH release data, indicate that permeability transition can be observed in the absence of large amplitude swelling.

  14. Tunable Nanocomposite Membranes for Water Remediation and Separations

    NASA Astrophysics Data System (ADS)

    Sierra, Sebastian Hernandez

    Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes. Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these responsive materials prevent the loss of nanomaterials to the environment and improve reactivity due to their larger surface areas, expanding their range of applications. The present work describes different techniques used to create nanocomposites based on poly(vinylidene fluoride) (PVDF) hollow fiber and flat sheet membranes, both thick sponge-like and thin. Due to their hydrophobicity, hollow fiber membranes were hydrophilized by a water-based green process of cross-linking polyvinylpyrrolidone (PVP) onto their surface. Commercial hydrophilic and hydrophilized lab-prepared membranes were subsequently functionalized with a poly(acrylic acid) (PAA) hydrogel through free radical polymerizations. This work advanced membrane functionalization, specifically flat sheet membranes, from lab-scale to full-scale by modifications of the polymerization procedures. The hydrogel functionalized membranes by redox polymerization showed an expected responsive behavior, represented by permeability variation at various pH values (4.0 ≤ pH ≤ 9.0), from 53.9 to 3.4 L/(m2EhEbar) and a change in effective pore size from 222 to 111 nm, being 3800 L/(m 2EhEbar) and 650 nm the former permeability and pore size values of the non-functionalized membrane. Then, throughout a double ion exchange of sodium/iron and a subsequent reduction, bimetallic Fe/Pd nanoparticles were synthesized in-situ. Similarly, it was possible to use the reacted accelerants of the redox polymerization to synthesize Fe0 nanoparticles. These hydrogel-membrane systems with Fe/Pd nanoparticles were studied throughout the reduction of trichloroethylene (TCE). This work has demonstrated an effective improvement in TCE reduction by the variation of the supporting membrane types and the functionalization (polymerization and nanoparticle synthesis) processes. The TCE normalized dechlorination rates (k sa) are 3 times greater and 8 times for hollow fiber and sponge-like flat sheet membranes, respectively, than previous studies. For membrane supported Fe/Pd nanoparticles by redox functionalization, the dechlorination rates are similar to previous works in flat sheet membranes; and for the redox polymerized hydrogel, the dechlorination rates are the highest results with 1.3 times greater than the rates of solution-phase nanoparticles and 10 times the rate values of the membranes. All supports showed nonsignificant nanoparticle loss (up to 1%). Up to 80% of reduction was achieved within 2 hours with chloride production near to stoichiometric values (3:1), demonstrating absence of intermediates. As an extension of the membrane functionalization, it was possible to immobilize Outer membrane protein F precursor (OmpF) from Escherichia coli within the PVDF membrane pore structure, using layer-by-layer (LbL) assembly of polyeletrolytes. This LbL technique allows to reuse the membranes numerous times, having reproducibility and greater selective rejections of uncharged (organic species) over charged solutes (small ions) than similar functionalized membranes without OmpF: 1.7 times and 2.0 times higher for Organic/CaCl2 and Organic/NaCl, respectively. Additionally, the permeability of OmpFmembranes is almost double of the non-OmpF: 2.6 to 1.5 L/(m2˙h˙bar).

  15. The Human Metapneumovirus Small Hydrophobic Protein Has Properties Consistent with Those of a Viroporin and Can Modulate Viral Fusogenic Activity

    PubMed Central

    Masante, Cyril; El Najjar, Farah; Chang, Andres; Jones, Angela; Moncman, Carole L.

    2014-01-01

    ABSTRACT Human metapneumovirus (HMPV) encodes three glycoproteins: the glycoprotein, which plays a role in glycosaminoglycan binding, the fusion (F) protein, which is necessary and sufficient for both viral binding to the target cell and fusion between the cellular plasma membrane and the viral membrane, and the small hydrophobic (SH) protein, whose function is unclear. The SH protein of the closely related respiratory syncytial virus has been suggested to function as a viroporin, as it forms oligomeric structures consistent with a pore and alters membrane permeability. Our analysis indicates that both the full-length HMPV SH protein and the isolated SH protein transmembrane domain can associate into higher-order oligomers. In addition, HMPV SH expression resulted in increases in permeability to hygromycin B and alteration of subcellular localization of a fluorescent dye, indicating that SH affects membrane permeability. These results suggest that the HMPV SH protein has several characteristics consistent with a putative viroporin. Interestingly, we also report that expression of the HMPV SH protein can significantly decrease HMPV F protein-promoted membrane fusion activity, with the SH extracellular domain and transmembrane domain playing a key role in this inhibition. These results suggest that the HMPV SH protein could regulate both membrane permeability and fusion protein function during viral infection. IMPORTANCE Human metapneumovirus (HMPV), first identified in 2001, is a causative agent of severe respiratory tract disease worldwide. The small hydrophobic (SH) protein is one of three glycoproteins encoded by all strains of HMPV, but the function of the HMPV SH protein is unknown. We have determined that the HMPV SH protein can alter the permeability of cellular membranes, suggesting that HMPV SH is a member of a class of proteins termed viroporins, which modulate membrane permeability to facilitate critical steps in a viral life cycle. We also demonstrated that HMPV SH can inhibit the membrane fusion function of the HMPV fusion protein. This work suggests that the HMPV SH protein has several functions, though the steps in the HMPV life cycle impacted by these functions remain to be clarified. PMID:24672047

  16. Osmotic tolerance limits and membrane permeability characteristics of stallion spermatozoa treated with cholesterol.

    PubMed

    Glazar, Amanda I; Mullen, Steven F; Liu, Jun; Benson, James D; Critser, John K; Squires, Edward L; Graham, James K

    2009-10-01

    Stallion spermatozoa exhibit osmotic damage during the cryopreservation process. Recent studies have shown that the addition of cholesterol to spermatozoal membranes increases the cryosurvival of bull, ram and stallion spermatozoa, but the exact mechanism by which added cholesterol improves cryosurvival is not understood. The objectives of this study were to determine if adding cholesterol to stallion sperm membranes alters the osmotic tolerance limits and membrane permeability characteristics of the spermatozoa. In experiment one, stallion spermatozoa were treated with cholesterol-loaded cyclodextrin (CLC), subjected to anisotonic solutions and spermatozoal motility analyzed. The spermatozoa were then returned to isotonic conditions and the percentages of motile spermatozoa again determined. CLC treatment increased the osmotic tolerance limit of stallion spermatozoa in anisotonic solutions and when returned to isotonic conditions. The second and third experiments utilized an electronic particle counter to determine the plasma membrane characteristics of stallion spermatozoa. In experiment two, stallion spermatozoa were determined to behave as linear osmometers. In experiment three, spermatozoa were treated with CLC, incubated with different cryoprotectants (glycerol, ethylene glycol or dimethyl formamide) and their volume excursions measured during cryoprotectant removal at 5 degrees and 22 degrees C. Stallion spermatozoa were less permeable to the cryoprotectants at 5 degrees C than 22 degrees C. Glycerol was the least permeable cryoprotectant in control cells. The addition of CLC's to spermatozoa increased the permeability of stallion spermatozoa to the cryoprotectants. Therefore, adding cholesterol to spermatozoal membranes reduces the amount of osmotic stress endured by stallion spermatozoa during cryopreservation.

  17. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria.

    PubMed

    Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka

    2014-12-15

    Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. © 2014 Gornicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, H.D.; Kromhout, J.; Schachter, J.

    1981-03-01

    Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtainedmore » after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.« less

  19. Modulation of mitochondrial ion transport by inorganic polyphosphate - essential role in mitochondrial permeability transition pore.

    PubMed

    Baev, Artyom Y; Negoda, Alexander; Abramov, Andrey Y

    2017-02-01

    Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba 2+ and Ca 2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore - cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.

  20. A bioenergetic basis for membrane divergence in archaea and bacteria.

    PubMed

    Sojo, Víctor; Pomiankowski, Andrew; Lane, Nick

    2014-08-01

    Membrane bioenergetics are universal, yet the phospholipid membranes of archaea and bacteria-the deepest branches in the tree of life-are fundamentally different. This deep divergence in membrane chemistry is reflected in other stark differences between the two domains, including ion pumping and DNA replication. We resolve this paradox by considering the energy requirements of the last universal common ancestor (LUCA). We develop a mathematical model based on the premise that LUCA depended on natural proton gradients. Our analysis shows that such gradients can power carbon and energy metabolism, but only in leaky cells with a proton permeability equivalent to fatty acid vesicles. Membranes with lower permeability (equivalent to modern phospholipids) collapse free-energy availability, precluding exploitation of natural gradients. Pumping protons across leaky membranes offers no advantage, even when permeability is decreased 1,000-fold. We hypothesize that a sodium-proton antiporter (SPAP) provided the first step towards modern membranes. SPAP increases the free energy available from natural proton gradients by ∼60%, enabling survival in 50-fold lower gradients, thereby facilitating ecological spread and divergence. Critically, SPAP also provides a steadily amplifying advantage to proton pumping as membrane permeability falls, for the first time favoring the evolution of ion-tight phospholipid membranes. The phospholipids of archaea and bacteria incorporate different stereoisomers of glycerol phosphate. We conclude that the enzymes involved took these alternatives by chance in independent populations that had already evolved distinct ion pumps. Our model offers a quantitatively robust explanation for why membrane bioenergetics are universal, yet ion pumps and phospholipid membranes arose later and independently in separate populations. Our findings elucidate the paradox that archaea and bacteria share DNA transcription, ribosomal translation, and ATP synthase, yet differ in equally fundamental traits that depend on the membrane, including DNA replication.

  1. Study of permeability characteristics of membranes

    NASA Technical Reports Server (NTRS)

    Spiegler, K. S.; Messalem, R. M.; Moore, R. J.; Leibovitz, J.

    1971-01-01

    Pressure-permeation experiments were performed with the concentration-clamp cell. Streaming potentials and hydraulic permeabilities were measured for an AMF C-103 cation-exchange membrane bounded by 0.1 N NaCl solutions. The streaming potential calculated from the slope of the recorded potential differences versus the applied pressure, yields a value of 1.895 millivolt/dekabar. When comparison with other membranes of similar characteristics could be made, good agreement was found. The values of the hydraulic permeability varied somewhat with the applied pressure difference and are between 1.3 x 10 to the minus 8th power and 3.9 x 10 to the minus 8th power sq cm/dekabar-sec. The specific hydraulic permeabilities were also calculated and compared with data from the literature. Fair agreement was found. The diffusion coefficient of the chloride ion in the AMF C-103 membrane was calculated, using Fick's first law of diffusion based on ion concentrations calculated from the Donnan equilibrium concentration of Cl(-).

  2. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    PubMed

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the cytoplasmic membrane prior to transport to the cell surface. How ATP hydrolysis is coupled with LPS release from the membrane is not understood. We have identified residues at the interface between the ATPase and the transmembrane domains of this heteromeric ABC complex that are important for LPS transport, some of which coordinate ATPase activity with LPS release. Copyright © 2016 Simpson et al.

  3. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle.

    PubMed

    de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M

    2003-01-10

    The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.

  4. Optimized anion exchange membranes for vanadium redox flow batteries.

    PubMed

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance.

  5. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA).

    PubMed

    Petit, Charlotte; Bujard, Alban; Skalicka-Woźniak, Krystyna; Cretton, Sylvian; Houriet, Joëlle; Christen, Philippe; Carrupt, Pierre-Alain; Wolfender, Jean-Luc

    2016-03-01

    At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay is one of the most frequently used in vitro models to predict transcellular passive absorption. While thousands of new chemical entities have been screened with the parallel artificial membrane permeability assay, in general, permeation properties of natural products have been scarcely evaluated. In this study, the parallel artificial membrane permeability assay through a hexadecane membrane was used to predict the passive intestinal absorption of a representative set of frequently occurring natural products. Since natural products are usually ingested for medicinal use as components of complex extracts in traditional herbal preparations or as phytopharmaceuticals, the applicability of such an assay to study the constituents directly in medicinal crude plant extracts was further investigated. Three representative crude plant extracts with different natural product compositions were chosen for this study. The first extract was composed of furanocoumarins (Angelica archangelica), the second extract included alkaloids (Waltheria indica), and the third extract contained flavonoid glycosides (Pueraria montana var. lobata). For each medicinal plant, the effective passive permeability values Pe (cm/s) of the main natural products of interest were rapidly calculated thanks to a generic ultrahigh-pressure liquid chromatography-UV detection method and because Pe calculations do not require knowing precisely the concentration of each natural product within the extracts. The original parallel artificial membrane permeability assay through a hexadecane membrane was found to keep its predictive power when applied to constituents directly in crude plant extracts provided that higher quantities of the extract were initially loaded in the assay in order to ensure suitable detection of the individual constituents of the extracts. Such an approach is thus valuable for the high-throughput, cost-effective, and early evaluation of passive intestinal absorption of active principles in medicinal plants. In phytochemical studies, obtaining effective passive permeability values of pharmacologically active natural products is important to predict if natural products showing interesting activities in vitro may have a chance to reach their target in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  6. Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing

    PubMed Central

    Xue, Rui; Liu, Yalong; Liang, Congcong; Qin, Huazhen; Liu, Pengfei; Wang, Ke; Zhang, Xiaoyong; Chen, Li

    2016-01-01

    ABSTRACT To verify the interaction mechanism between sericin and Escherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin against E. coli as a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin on E. coli and the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for an in vivo study of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing of E. coli cells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. When E. coli cells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction of E. coli. Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels. IMPORTANCE The specific relationship and interaction mechanism between sericin and E. coli cells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing of E. coli cells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequent in vivo results demonstrate that the sericin-poly(N-isopropylacrylamide-N,N′-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries. PMID:27235427

  7. On the targeting and membrane assembly of the Escherichia coli outer membrane porin, PhoE.

    PubMed

    Phoenix, D A

    1996-12-01

    Within gram-negative bacteria such as Escherichia coli, the outer membrane porins provide a relatively non-specific uptake route which is utilised by a wide range of solutes including many antibiotics. Understanding the targeting and membrane assembly of these proteins is therefore of importance and this mini review aims to discuss this process in light of present knowledge.

  8. A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377.

    PubMed

    Teng, Da; Wang, Xiumin; Xi, Di; Mao, Ruoyu; Zhang, Yong; Guan, Qingfeng; Zhang, Jun; Wang, Jianhua

    2014-10-01

    The food-borne bacterial gastrointestinal infection is a serious public health threat. Defensins are evolutionarily conserved innate immune components with broad-spectrum antibacterial activity that do not easily induce resistance. AvBD103b, an avian defensin with potent activity against Salmonella enteritidis, was isolated from the stomach contents of the king penguin (Aptenodytes patagonicus). To elucidate further the antibacterial mechanism of AvBD103b, its effect on the S. enteritidis CVCC3377 cell membrane and intracellular DNA was researched. The cell surface hydrophobicity and a N-phenyl-1-naphthylamine uptake assay demonstrated that AvBD103b treatment increased the cell surface hydrophobicity and outer membrane permeability. Atomic absorption spectrometry, ultraviolet spectrophotometry, flow cytometry, and transmission electron microscopy (TEM) indicated that AvBD103b treatment can lead to the release of the cellular contents and cell death through damage of the membrane. DNA gel retardation and circular dichroism analysis demonstrated that AvBD103b interacted with DNA and intercalated into the DNA base pairs. A cell cycle assay demonstrated that AvBD103b affected cellular functions, such as DNA synthesis. Our results confirmed that AvBD103b exerts its antibacterial activity by damaging the cell membrane and interfering with intracellular DNA, ultimately causing cell death, and suggested that AvBD103b may be a promising candidate as an alternative to antibiotics against S. enteritidis.

  9. Molecular Dynamics Simulations of Hydration Effects on Solvation, Diffusivity, and Permeability in Chitosan/Chitin Films.

    PubMed

    McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J

    2016-09-01

    The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability.

  10. Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol.

    PubMed

    Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival

    2016-10-10

    To ensure the optimal performance of oral controlled release formulations, drug colon permeability is one of the critical parameters. Consequently developing this kind of formulations for low permeability molecules requires strategies to increase their ability to cross the colonic membrane. The objective of this work is to show if an ion-pair formation can improve the colon permeability of atenolol as a low permeability drug model. Two counter ions have been tested: brilliant blue and bromophenol blue. The Distribution coefficients at pH7.00 (DpH7) of atenolol, atenolol + brilliant blue and atenolol + bromophenol blue were experimentally determined in n-octanol. Moreover, the colonic permeability was determined in rat colon using in situ closed loop perfusion method based in Doluisio's Technique. To check the potential effects of the counter ions on the membrane integrity, a histological assessment of colonic tissue was done. The results of the partitioning studies were inconclusive about ion-pair formation; nevertheless colon permeability was significantly increased by both counter ions (from 0.232±0.021cm/s to 0.508±0.038cm/s in the presence of brilliant blue and to 0.405±0.044cm/s in the presence of bromophenol blue). Neither damage on the membrane was observed on the histological studies, nor any change on paracellular permeability suggesting that the permeability enhancement could be attributed to the ion-pair formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  12. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    PubMed Central

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982

  13. Pb2+ Modulates Ca2+ Membrane Permeability In Paramecium

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega Soto, Arturo

    2004-09-01

    Intracellular recording experiments in current clamp configuration were done to evaluate whether Pb2+ modulates ionic membrane permeability in the fresh water Paramecium tetraurelia. It was found that Pb2+ triggers in a dose-dependent manner, a burst of spontaneous action potentials followed by a robust and sustained after hyper-polarization. In addition, Pb2+ increased the frequency of firing the spontaneous Ca2+-Action Potential and also, the duration of Ca2+-Action Potential, in a dose and reversibly-dependent manner. These results suggest that Pb2+ increases calcium membrane permeability of Paramecium and probably activates a calcium-dependent-potassium conductance in the ciliate.

  14. Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Horowitz, N. H.

    1974-01-01

    Neurospora crassa conidia incubating in buffer at low water activities release a germination-essential component as well as 260-nm absorbing and ninhydrin-positive materials, regardless of whether an electrolyte or nonelectrolyte is used to reduce water activity. Chloroform and antibiotics known to increase cell-membrane permeability have a similar effect. This suggests that membrane damage occurs in media of low water activity and that an increase in permeability is responsible for the release of cellular components. The damage caused in media of low water activity is nonlethal in most cases, and the conidia recover when transferred to nutrient medium.

  15. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  16. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and approximately inversely proportional to an effective radius of the annular space. For a given FBE geometry, one could increase the maximum rate at which gas could be removed by increasing the rate of flow to obtain more centripetal acceleration. In experiments and calculations oriented toward the original microgravitational application, centripetal accelerations between 0.001 and 0.012 g [where g normal Earth gravitation (.9.8 m/s2)] were considered. For operation in normal Earth gravitation, it would likely be necessary to choose the FBE geometry and the rate of flow to obtain centripetal acceleration comparable to or greater than g.

  17. Role of membrane contact sites in protein import into mitochondria

    PubMed Central

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-01-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture. PMID:25514890

  18. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE PAGES

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    2016-08-12

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  19. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  20. Development of multi-membrane near-infrared diode mass spectrometer for field analysis of aromatic hydrocarbons.

    PubMed

    Mach, Phillip M; Wright, Kenneth C; Verbeck, Guido F

    2015-02-01

    Membrane Inlet Mass Spectrometry (MIMS) is a technique that incorporates a semi-permeable membrane selective for differing organic molecules and chemistries. This eliminates the need for time-consuming sample preparation and facilitates near instantaneous analysis. This study will examine how the front end of MIMS incorporates three dual inlet ports, allowing for differing MIMS materials and selectivity for specific environments. Polydimethylsiloxane (PDMS) membranes have proven to be selective of benzene, toluene, and xylene (BTX) as well as aromatic hydrocarbons that are common in petroleum products while remaining selective against the aliphatic chains. PDMS has proven to be a successful choice of membrane with high permeability in atmospheric environments. In addition, polycyclic aromatic hydrocarbons (PAHs) such as acenaphthene, acenapthylene, naphthalene, and fluorene have recently been detected to the 5 ppb level in a nitrogen atmosphere with our current configuration. This preliminary work provides proof of concept using near-infrared laser diodes that act upon the membrane to increase its permeability and provide higher sensitivity of aromatic samples.

  1. Zea mays Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance[W

    PubMed Central

    Laohavisit, Anuphon; Mortimer, Jennifer C.; Demidchik, Vadim; Coxon, Katy M.; Stancombe, Matthew A.; Macpherson, Neil; Brownlee, Colin; Hofmann, Andreas; Webb, Alex A.R.; Miedema, Henk; Battey, Nicholas H.; Davies, Julia M.

    2009-01-01

    Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+]cyt) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+]cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+]cyt, and may function as peroxidases in vitro. PMID:19234085

  2. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca²+- and K+-permeable conductance in root cells.

    PubMed

    Laohavisit, Anuphon; Shang, Zhonglin; Rubio, Lourdes; Cuin, Tracey A; Véry, Anne-Aliénor; Wang, Aihua; Mortimer, Jennifer C; Macpherson, Neil; Coxon, Katy M; Battey, Nicholas H; Brownlee, Colin; Park, Ohkmae K; Sentenac, Hervé; Shabala, Sergey; Webb, Alex A R; Davies, Julia M

    2012-04-01

    Plant cell growth and stress signaling require Ca²⁺ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²⁺-permeable conductance that permits Ca²⁺ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²⁺-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²⁺- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²⁺ in response to OH•. An OH•-activated Ca²⁺ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²⁺-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²⁺ in plants.

  3. Numerical simulation model of hyperacute/acute stage white matter infarction.

    PubMed

    Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko

    2008-01-01

    Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.

  4. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).

    PubMed

    Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan

    2017-06-05

    Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.

  5. Recovery of [CO2]T from Aqueous Bicarbonate using a Gas Permeable Membrane

    DTIC Science & Technology

    2008-06-25

    pores as a function of differential partial gas pressures. Therefore it has been assumed for gas/ liquid systems that only the dissolved carbon dioxide...and pressure [10]. Gas permeable membranes are available commercially for the removal or addition of gases to liquids . Most of these applications...measurements were conducted with a standardized Fisher combination glass electrode. A microporous polypropylene membrane commercially designated as 2400

  6. The development of polymer membranes and modules for air separation

    NASA Astrophysics Data System (ADS)

    Vinogradov, N. E.; Kagramanov, G. G.

    2016-09-01

    Technology of hollow fiber membrane and modules for air separation was developed. Hollow fibers from the polyphenylene oxide (PPO) having a diameter of 500 μm were obtained. The permeability of the fibers by oxygen was up to 250 Ba, while the separation factor by O2/N2 was 4.3. The membrane module has been made by using these fibers and tested for permeability of individual gases.

  7. Identification of outer membrane proteins with emulsifying activity by prediction of beta-barrel regions.

    PubMed

    Walzer, Gil; Rosenberg, Eugene; Ron, Eliora Z

    2009-01-01

    Microbial bioemulsifiers are secreted by many bacteria and are important for bacterial interactions with hydrophobic substrates or nutrients and for a variety of biotechnological applications. We have recently shown that the OmpA protein in several members of the Acinetobacter family has emulsifying properties. These properties of OmpA depend on the amino acid composition of four putative extra-membrane loops, which in various strains of Acinetobacter, but not in E. coli, are highly hydrophobic. As many Acinetobacter strains can utilize hydrophobic carbon sources, such as oil, the emulsifying activity of their OmpA may be important for the utilization and uptake of hydrocarbons. We assumed that if outer membrane proteins with emulsifying activity are physiologically important, they may exist in additional oil degrading bacteria. In order to identify such proteins, it was necessary to obtain bioinformatics-based predictions for hydrophobic extra-membrane loops. Here we describe a method for using protein sequence data for predicting the hydrophobic properties of the extra-membrane loops of outer membrane proteins. The feasibility of this method is demonstrated by its use to identify a new microbial bioemulsifier - OprG - an outer membrane protein of the oil degrading Pseudomonas putida KT2440.

  8. Labyrinthine flows across multilayer graphene-based membranes

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki

    Graphene-based materials have recently found extremely wide applications for fluidic purposes thanks to remarkable developments in micro-/nano-fabrication techniques. In particular, high permeability and specific selectivity have been reported for these graphene-based membranes, such as the graphene-oxide membranes, with however controversial experimental results. There is therefore an urgent need to propose a theoretical framework of fluid transport in these architectures in order to rationalize the experimental results.In this presentation, we report a theoretical study of mass transport across multilayer graphene based membranes, which we benchmark by atomic-scale molecular dynamics. Specifically, we consider the water flow across multiple graphene layers with an inter-layer distance ranging from sub-nanometer to a few nanometers. The graphene layers have nanoslits aligned in a staggered fashion, and thus the water flows involve multiple twists and turns. We compare the continuum model predictions for the permeability with the lattice Boltzmann calculations and molecular dynamics simulations. The highlight is that, in spite of extreme confinement, the permeability across the graphene-based membrane is quantitatively predicted on the basis of a properly designed continuum model. The framework of this study constitutes a benchmark to which we compare favourably published experimental data.In addition, flow properties of a water-ethanol mixture are presented, demonstrating the possibility of a novel separation technique. While the membrane is permeable to both pure liquids, it exhibits a counter-intuitive ``self-semi-permeability'' to water in the presence of the mixture. This suggests a robust and versatile membrane-based separation method built on a pressure-driven reverse-osmosis process, which is considerably less energy consuming than distillation processes. The author acknowledges the ERC project Micromegas and the ANR projects BlueEnergy and Equip@Meso.

  9. Impact of blood manufacturing and donor characteristics on membrane water permeability and in vitro quality parameters during hypothermic storage of red blood cells.

    PubMed

    Alshalani, Abdulrahman; Howell, Anita; Acker, Jason P

    2018-02-01

    Several factors have been proposed to influence the red blood cell storage lesion including storage duration, blood component manufacturing methodology, and donor characteristics [1,18]. The objectives of this study were to determine the impact of manufacturing method and donor characteristics on water permeability and membrane quality parameters. Red blood cell units were obtained from volunteer blood donors and grouped according to the manufacturing method and donor characteristics of sex and age. Membrane water permeability and membrane quality parameters, including deformability, hemolysis, osmotic fragility, hematologic indices, supernatant potassium, and supernatant sodium, were determined on day 5 ± 2, day 21, and day 42. Regression analysis was applied to evaluate the contribution of storage duration, manufacturing method, and donor characteristics on storage lesion. This study found that units processed using a whole blood filtration manufacturing method exhibited significantly higher membrane water permeability throughout storage compared to units manufactured using red cell filtration. Additionally, significant differences in hemolysis, supernatant potassium, and supernatant sodium were seen between manufacturing methods, however there were no significance differences between donor age and sex groups. Findings of this study suggest that the membrane-related storage lesion is initiated prior to the first day of storage with contributions by both blood manufacturing process and donor variability. The findings of this work highlight the importance of characterizing membrane water permeability during storage as it can be a predictor of the biophysical and chemical changes that affect the quality of stored red blood cells during hypothermic storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems

    PubMed Central

    Pauly, Anja C; Schöller, Katrin; Baumann, Lukas; Rossi, René M; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F; Scherer, Lukas J

    2015-01-01

    The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET–ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing. PMID:27877791

  11. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems

    NASA Astrophysics Data System (ADS)

    Pauly, Anja C.; Schöller, Katrin; Baumann, Lukas; Rossi, René M.; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F.; Scherer, Lukas J.

    2015-06-01

    The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.

  12. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    PubMed

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  13. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....

  14. Recovery of ammonia from swine manure using gas-permeable membranes: effect of waste strength and pH.

    PubMed

    Garcia-González, M C; Vanotti, M B

    2015-04-01

    Nitrogen recovery from swine manure was investigated using gas-permeable membranes. The process involved a continuous recirculation of an acidic solution through a gas-permeable membrane submerged in manure. Ammonia from manure was concentrated in the acidic solution increasing its pH, while pH decreased in manure. In the first set of experiments, nitrogen recovery efficiency was evaluated with no pH adjustment of manure; whereas in the second, manure with three different ammonia (NH3) concentrations (from 1070 to 2290 mg/L) was used adjusting their pH to 9 whenever pH decreased below 7.7. With no pH adjustment, NH3 recovery from manure was 55%, while NH3 recovery averaged 81% when pH of manure was adjusted. This work showed that as waste strength and available NH3 content increased in manure, more N was captured by the membrane. These results suggested that the gas-permeable membranes are a useful technology for NH3 recovery from manure, reducing environmental pollution whilst converting NH3 into a valuable ammonium (NH4(+)) salt fertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes

    PubMed Central

    Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2017-01-01

    Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794

  16. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    DOE PAGES

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; ...

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-lm-thickmore » inserts with 0.4-lm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. In conclusion, the data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch’s membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.« less

  17. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    PubMed

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  18. Additivity vs Synergism: Investigation of the Additive Interaction of Cinnamon Bark Oil and Meropenem in Combinatory Therapy.

    PubMed

    Yang, Shun-Kai; Yusoff, Khatijah; Mai, Chun-Wai; Lim, Wei-Meng; Yap, Wai-Sum; Lim, Swee-Hua Erin; Lai, Kok-Song

    2017-11-04

    Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.

  19. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    PubMed Central

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.

    2017-01-01

    Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236

  20. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-lm-thickmore » inserts with 0.4-lm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. In conclusion, the data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch’s membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.« less

  1. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    PubMed

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  2. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32.

    PubMed

    Eshghi, Azad; Pinne, Marija; Haake, David A; Zuerner, Richard L; Frank, Ami; Cameron, Caroline E

    2012-03-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.

  3. Photoreceptor change and visual outcome after idiopathic epiretinal membrane removal with or without additional internal limiting membrane peeling.

    PubMed

    Ahn, Seong Joon; Ahn, Jeeyun; Woo, Se Joon; Park, Kyu Hyung

    2014-01-01

    To compare the postoperative photoreceptor status and visual outcome after epiretinal membrane removal with or without additional internal limiting membrane (ILM) peeling. Medical records of 40 eyes from 37 patients undergoing epiretinal membrane removal with residual ILM peeling (additional ILM peeling group) and 69 eyes from 65 patients undergoing epiretinal membrane removal without additional ILM peeling (no additional peeling group) were reviewed. The length of defects in cone outer segment tips, inner segment/outer segment junction, and external limiting membrane line were measured using spectral domain optical coherence tomography images of the fovea before and at 1, 3, 6, and 12 months after the surgery. Cone outer segment tips and inner segment/outer segment junction line defects were most severe at postoperative 1 month and gradually restored at 12 months postoperatively. The cone outer segment tips line defect in the additional ILM peeling group was significantly greater than that in the no additional peeling group at postoperative 1 month (P = 0.006), and best-corrected visual acuity was significantly worse in the former group at the same month (P = 0.001). There was no significant difference in the defect size and best-corrected visual acuity at subsequent visits and recurrence rates between the two groups. Patients who received epiretinal membrane surgery without additional ILM peeling showed better visual and anatomical outcome than those with additional ILM peeling at postoperative 1 month. However, surgical outcomes were comparable between the two groups, thereafter. In terms of visual outcome and photoreceptor integrity, additional ILM peeling may not be an essential procedure.

  4. Preliminary study on gas separation performance of flat sheet mixed matrix (PVDF/Zeolite)

    NASA Astrophysics Data System (ADS)

    Rahman, Sunarti Abd; Abdalla Suliman Haron, Gamal; Krishna Roshan Kanasan, Raj; Hasbullah, Hasrinah

    2018-04-01

    Membrane separation has attracted a lot of attention over the last years mainly due to its separation ability, operational capability and economical viability. Mixed matrix membrane (MMM) combines the superior transport and selectivity properties of inorganic membrane materials and the excellent fabrication properties of organic polymers. This emerging technology can be utilized to purify biogas which can be used in a variety of applications. In this study, flat sheet mixed matrix membranes were synthesized with different percentages of N-Mehtyl-2-pyrrolidone (NMP) as solvent, Polyvinylidene Fluoride (PVDF) as the polymer matrix and zeolite 4A as the dispersed fine particles, membrane A (80: 20: 0), membrane B (80: 18: 2), membrane C (80: 15: 5), and membrane D (75: 15: 10) respectively. The membranes were fabricated using dry/wet phase inversion method. The membrane’s performance in terms of permeability and selectivity was examined using the single gas permeation device. The general trend was that, the permeability of the two gases (CO2/CH4) decreased with the increase of the pressure (0.5, 1, 1.5) bar. Membrane D was found to be suitable to separate the pair gas (CO2/CH4) as the permeability was 65623.412, Barrer and 15587.508, Barrer respectively, and its selectivity for was 4.21 at 0.5 bar.

  5. Porous poly(benzimidazole) membrane for all vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Luo, Tao; David, Oana; Gendel, Youri; Wessling, Matthias

    2016-04-01

    Porous poly(benzimidazole) (PBI) membranes of low vanadium ions permeability are described for an all vanadium redox flow battery (VRFB). The PBI membrane was prepared by a water vapour induced phase inversion process of a PBI polymer solution. The membrane has a symmetrical cross-sectional morphology. A low water permeability of 16.5 L (m2 h bar)-1 indicates the high hydraulic resistance stemming from a closed cell morphology with nanoporous characteristics. The PBI membrane doped with 2.5 M H2SO4 shows a proton conductivity of 16.6 mS cm-1 and VO2+ permeability as low as 4.5 × 10-8 cm2 min-1. The stability test of dense PBI membrane in VO2+ solution indicates good chemical stability. An all vanadium redox flow battery (VRFB) operated with the porous PBI membrane shows 98% coulombic efficiency and more than 10% higher energy efficiency compared to VRFB operated with Nafion 112 at applied current densities of 20-40 mA cm-2. High in situ stability of the porous PBI membrane was confirmed by about 50 cycles of continuous charge and discharge operation of the battery.

  6. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors.

    PubMed

    Zhang, Pengfei; Zawadzki, Robert J; Goswami, Mayank; Nguyen, Phuong T; Yarov-Yarovoy, Vladimir; Burns, Marie E; Pugh, Edward N

    2017-04-04

    The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors' subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gα t ), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gα t the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s -1 Analyzing swelling as osmotically driven water influx, we find the H 2 O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10 -5 cm⋅s -1 , comparable to that of other cells lacking aquaporin expression. Application of Van't Hoff's law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H 2 O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity.

  7. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  8. A nitrogen-doped carbon nanotube enhanced polyethersulfone membrane system for water treatment

    NASA Astrophysics Data System (ADS)

    Phao, Neo; Nxumalo, Edward N.; Mamba, Bhekie B.; Mhlanga, Sabelo D.

    Water quality in South Africa and around the world continues to deteriorate due to contamination by organic, inorganic and microbial substances. While many efforts have been done to address water quality problems, current drinking water treatment technologies remain costly and do not effectively remove pollutants to acceptable levels. In this work nitrogen doped carbon nanotubes/polyethersulfone (N-CNT/PES) blend membranes were synthesized via a modified phase inversion method and assessed for suitability in drinking water treatment. The N-CNTs with outer diameters of 30-45 nm and 3% N content were prepared using a conventional chemical vapour deposition method and functionalized by refluxing in HNO3. The confirmation and degree of functionalization with -OH and -COOH groups was determined using Fourier-transform infrared (FTIR) spectroscopy and zeta potential analysis. FTIR studies confirmed the successful incorporation of functionalized N-CNTs (N-CNTs) in the membrane matrix. Atomic force microscopy (AFM) analysis revealed that the addition of N-CNTs leads to reduced surface roughness, suggesting a good dispersion of the N-CNTs in the matrix. Permeability studies revealed that the addition of N-CNTs to the polyethersulfone (PES) solution increased the water flux of the blend membrane by up to 70%. N-CNT loadings of 0.04 wt% in the blend membranes gave low surface contact angle of 55° and high fluxes. In addition, inclusion of N-CNTs enhanced the mechanical properties of the N-CNT/PES blend membranes. The use of N-CNTs in mixed matrix PES membranes is reported for the first time here. The result already suggests superior compatibility of the N-CNTs with PES compared to undoped CNTs, due to the high surface reactivity of the N-CNTs.

  9. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    DOE PAGES

    Liu, Yimo; Wang, Zheming; Liu, Juan; ...

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pccmore » protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Finally, complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.« less

  10. Organization of K88ac-encoded polypeptides in the Escherichia coli cell envelope: use of minicells and outer membrane protein mutants for studying assembly of pili.

    PubMed

    Dougan, G; Dowd, G; Kehoe, M

    1983-01-01

    Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.

  11. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  12. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability.

    PubMed

    Bröde, Peter; Kuklane, Kalev; Candas, Victor; Den Hartog, Emiel A; Griefahn, Barbara; Holmér, Ingvar; Meinander, Harriet; Nocker, Wolfgang; Richards, Mark; Havenith, George

    2010-01-01

    The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective suit were combined with different number and types of dry and pre-wetted underwear layers. Under radiant stress, whole body heat loss decreased, i.e., heat gain occurred compared to the reference. This heat gain increased with radiation intensity, and decreased with air velocity and clothing insulation. Except for the reflective outer layer that showed only minimal heat gain over the whole range of radiation intensities, the influence of the outer garments' material and colour was small with dry clothing. Wetting the underclothing for simulating sweat accumulation, however, caused differing effects with higher heat gain in less permeable garments.

  13. Modeling and Design Optimization of Multifunctional Membrane Reactors for Direct Methane Aromatization

    PubMed Central

    Fouty, Nicholas J.; Carrasco, Juan C.; Lima, Fernando V.

    2017-01-01

    Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m2·atm1/4) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor models and designs for natural gas utilization and other chemical reaction systems. PMID:28850068

  14. Recovery of ammonia nitrogen in livestock and industrial wastes using gas permeable membranes

    USDA-ARS?s Scientific Manuscript database

    New waste management methods are needed that can protect the environment and allow manure management to switch back to a recycling view of manure handling. We investigated the use of gas-permeable membranes as components of new processes to capture and recover the ammonia in the liquid manures or in...

  15. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Gas-permeable membranes coupled with low-rate aeration are useful to recover ammonium from livestock effluents. In this study, the role of inorganic carbon (bicarbonate) to enhance the nitrogen (N) recovery process was evaluated using synthetic effluents with various ammonium to bicarbonate molar ra...

  16. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration

    USDA-ARS?s Scientific Manuscript database

    Gas-permeable membranes can recover ammonia from manure, reducing pollution whilst converting ammonia into ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali. In this study a new strategy to avoid the...

  17. Gas-permeable membrane technology coupled with anaerobic digestion for swine manure treatment

    USDA-ARS?s Scientific Manuscript database

    This study was aimed at evaluating gas-permeable membrane technology (N-recovery) coupled to anaerobic digestion for the treatment of swine manure. For this purpose, 69 percent (%) of the initial ammonium contained in centrifuged swine manure (SM) (i.e. 3.5 g N-NH4 per liter (L) was firstly recovere...

  18. [The nature of pacemaker activity].

    PubMed

    Kabakov, A Iu

    1991-01-01

    A general equation of the membrane resting potential (RP) has been derived for closed cell membrane (CM) model. It is shown that Na,K-ATPase of cardiomyocytes is in the antielectrogenic phase. A hypothesis is proposed: a pacemaker cell is an excitable cell, which has RP corresponding to the given activity of Na,K-ATPase and non-activated cationic conductivities of CM higher than the activation threshold of Na-channels. The equation of the equipotential levels of the membrane RP on the surface of the cationic conductivities has been derived. It is shown that the substances (e. g. neuromediator) that change the membrane cation permeability are able to depolarize or to hyperpolarize CM. The direction of polarization is dependent on the state of the cell electrogenic system. The following factors promote the hyperpolarizing effect of the magnifying cation permeability substances: 1) high activity of Na,K-ATPase, 2) low background cation permeability of CM (among their number the integrity of CM) and 3) high ratio of the potassium permeability alteration in respect to that of sodium which is evoked by the substance (delta gK/delta gNa).

  19. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.

    PubMed

    Yong, Yang-Chun; Yu, Yang-Yang; Yang, Yun; Liu, Jing; Wang, Jing-Yuan; Song, Hao

    2013-02-01

    The microbial fuel cell (MFC), is a promising environmental biotechnology for harvesting electricity energy from organic wastes. However, low bacterial membrane permeability of electron shuttles is a limiting factor that restricts the electron shuttle-mediated extracellular electron transfer (EET) from bacteria to electrodes, thus the electricity power output of MFCs. To this end, we heterologously expressed a porin protein OprF from Pseudomonas aeruginosa PAO1 into Escherichia coli, which dramatically increased its membrane permeability, delivering a much higher current output in MFCs than its parental strain (BL21). We found that the oprF-expression strain showed more efficient EET than its parental strain. More strikingly, the enhanced membrane permeability also rendered the oprF-expression strain an efficient usage of riboflavin as the electron shuttle, whereas its parental strain was incapable of. Our results substantiated that membrane permeability is crucial for the efficient EET, and indicated that the expression of synthetic porins could be an efficient strategy to enhance bioelectricity generation by microorganisms (including electrogenic bacteria) in MFCs. Copyright © 2012 Wiley Periodicals, Inc.

  20. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.

    PubMed

    Raju, Muralikrishna; Govindaraju, Pavan B; van Duin, Adri C T; Ihme, Matthias

    2018-02-22

    Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous single-layer graphene. However, creating and controlling the size and distribution of nanometer-scale pores pose significant challenges to application of these membranes for water desalination. Graphyne and hydrogenated graphyne have tremendous potential as ultra-permeable membranes for desalination and wastewater reclamation due to their uniform pore-distribution, atomic thickness and mechano-chemical stability. Using molecular dynamics (MD) simulations and upscale continuum analysis, the desalination performance of bare and hydrogenated α-graphyne and γ-{2,3,4}-graphyne membranes is evaluated as a function of pore size, pore geometry, chemical functionalization and applied pressure. MD simulations show that pores ranging from 20 to 50 Å 2 reject in excess of 90% of the ions for pressures up to 1 GPa. Water permeability is found to range up to 85 L cm -2 day -1 MPa -1 , which is up to three orders of magnitude larger than commercial seawater reverse osmosis (RO) membranes and up to ten times that of nanoporous graphene. Pore chemistry, functionalization and geometry are shown to play a critical role in modulating the water flux, and these observations are explained by water velocity, density, and energy barriers in the pores. The atomistic scale investigations are complemented by upscale continuum analysis to examine the performance of these membranes in application to cross-flow RO systems. This upscale analysis, however, shows that the significant increase in permeability, observed from MD simulations, does not fully translate to current RO systems due to transport limitations. Nevertheless, upscale calculations predict that the higher permeability of graphyne membranes would allow up to six times higher permeate recovery or up to 6% less energy consumption as compared to thin-film composite membranes at currently accessible operating conditions. Significantly higher energy savings and permeate recovery can be achieved if higher feed-flow rates can be realized.

  1. Long-term MBR performance of polymeric membrane modified with Bismuth-BAL chelate (BisBAL).

    PubMed

    Turken, Turker; Kose-Mutlu, Borte; Okatan, Selin; Durmaz, Gamze; Guclu, Mehmet C; Guclu, Serkan; Ovez, Suleyman; Koyuncu, Ismail

    2018-02-15

    An ultrafiltration membrane prepared by polyethersulfone (PES) was modified with Bismuth-BAL chelate (BisBAL) and was used in submerged membrane bioreactor system. Moreover, a control membrane reactor was also tasked to evaluate the effect of BisBAL on the membrane performance. The flux profile, transmembrane pressure, the effect of chemical treatment, cake layer formation, anti-fouling properties against extracellular polymeric substances (EPS) and soluble microbial products (SMP) were studied. The UF modified membrane demonstrated a sustained permeability, low cleaning frequency, and longer filtration time. In terms of anti-EPS and SMP accumulation, the modified membrane showed a lower membrane resistance. It can be illustrated from scanning electron microscopy and confocal laser scanning microscope images that the modified membrane had presented better properties than bare PES membrane, as it was looser and thinner. Thus, the UF membrane proved to be more efficient in terms of permeability and lifetime.

  2. In situ coagulation versus pre-coagulation for gravity-driven membrane bioreactor during decentralized sewage treatment: Permeability stabilization, fouling layer formation and biological activity.

    PubMed

    Ding, An; Wang, Jinlong; Lin, Dachao; Tang, Xiaobin; Cheng, Xiaoxiang; Li, Guibai; Ren, Nanqi; Liang, Heng

    2017-12-01

    Gravity-driven membrane filtration systems are promising for decentralized sewage treatment due to their low energy consumption and low maintenance. However, the low stable permeability/flux is currently limiting their wider application. With the ultimate goal of increasing permeability, the aim of this study was to evaluate the effect of coagulation (in situ coagulation and pre-coagulation) on the performance of a gravity-driven membrane bioreactor (GDMBR) during treatment of synthetic sewage. Results show that in situ coagulation significantly increased permeability (more than two-fold); however, no stabilization of permeability occurred over the whole operation, when non-coagulated and pre-coagulated reactors were compared. The high permeability observed was attributed to the accumulated aluminium floc in the reactor, which prevented formation of fluorescent microbial metabolites (aromatic and tryptophan proteins, as well as fulvic acids), and further avoided membrane pore blocking. In addition, the surface porosity of the fouling layer was improved (from 11.2% to 32.4% for non-coagulated and in situ coagulated reactors). The unstable permeability was possibly associated with lower biological processes within the fouling layer. These might include lower adenosine triphosphate (ATP) content and lower fluorescent metabolites from the extracellular polymeric substances (EPS) caused by the accumulated Al (compared with the control). On the other hand, pre-coagulation improved the level of stable permeability compared with the control (80 versus 40 L/m 2 h bar), mainly because pre-coagulation decreased the EPS content and also maintained high ATP content of the fouling layer. In addition, both coagulation processes reduced the total filtration resistance, mainly the hydraulically reversible resistance and cake layer resistance, which could lower the cleaning frequency. Overall, coagulation could greatly increase the removal efficiency and improve the GDMBR permeability, which would make the process suitable for decentralized wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    PubMed

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  5. [Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].

    PubMed

    Kuleshova, L G; Gordienko, E A; Kovalenko, I F

    2014-01-01

    We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.

  6. Water permeability of acinar cell membranes in the isolated perfused rabbit mandibular salivary gland.

    PubMed Central

    Steward, M C; Seo, Y; Rawlings, J M; Case, R M

    1990-01-01

    1. The diffusive water permeability of epithelial cell membranes in the perfused rabbit mandibular salivary gland was measured at 37 degrees C by a 1H nuclear magnetic resonance relaxation method using an extracellular relaxation reagent, gadolinium diethylenetriaminepentaacetic acid (Gd(DTPA)). 2. In glands perfused with a HEPES-buffered solution containing 10 mmol l-1 Gd(DTPA), the spin-lattice (T1) relaxation of the water protons showed two exponential components. The water compartment responsible for the slower component corresponded in magnitude to 71 +/- 5% of the wet weight of the gland, and was attributed to the exchangeable intracellular water of the acinar cells. 3. The rate constant for water efflux from the cells was estimated to be 4.1 +/- 0.1 s-1 which would be consistent with a diffusive membrane permeability (Pd) of approximately 3 x 10(-3) cm s-1. Stimulation with acetylcholine (10(-6) mol l-1) did not cause any detectable change in membrane water permeability. 4. Since the basolateral membrane probably provides the main pathway for water efflux, the osmotic water permeability of this barrier (expressed per gland) was estimated to be less than 6.2 cm3 s-1. This would be insufficient to account for the generation of a near-isosmotic fluid at the flow rates observed during secretion, and suggests that a substantial fraction of the flow of water occurs via a paracellular route. PMID:1966053

  7. Neisseria gonorrhoeae PIII has a role on NG1873 outer membrane localization and is involved in bacterial adhesion to human cervical and urethral epithelial cells.

    PubMed

    Leuzzi, Rosanna; Nesta, Barbara; Monaci, Elisabetta; Cartocci, Elena; Serino, Laura; Soriani, Marco; Rappuoli, Rino; Pizza, Mariagrazia

    2013-11-09

    Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species. The contribution of PIII in the membrane architecture and its role in the interaction with epithelial cells has never been investigated. We generated a ΔpIII knock-out mutant strain and evaluated the effects of the loss of PIII expression on bacterial morphology and on outer membrane composition. Deletion of the pIII gene does not cause any alteration in bacterial morphology or sensitivity to detergents. Moreover, the expression profile of the main membrane proteins remains the same for the wild-type and knock-out strains, with the exception of the NG1873 which is not exported to the outer membrane and accumulates in the inner membrane in the ΔpIII knock-out mutant strain.We also show that purified PIII protein is able to bind human cervical and urethral cells and that the ΔpIII knock-out mutant strain has a lower ability to adhere to human cervical and urethral cells. Here we demonstrated that the PIII protein does not play a key structural role in the membrane organization of gonococcus and does not induce major effects on the expression of the main outer membrane proteins. However, in the PIII knock-out strain, the NG1873 protein is not localized in the outer membrane as it is in the wild-type strain suggesting a possible interaction of PIII with NG1873. The evidence that PIII binds to human epithelial cells derived from the female and male genital tract highlights a possible role of PIII in the virulence of gonococcus and suggests that the structural homology to OmpA is conserved also at functional level.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straatsma, TP

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is alsomore » a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid bilayers. A few simulation studies of outer membrane proteins of Gram-negative bacteria have been reported using simple lipid bilayers, even though this is not a realistic representation of the outer membrane environment. This contribution describes our recent molecular simulation studies of the rough lipopolysaccharide membrane of P. aeruginosa, which are the first and only reported studies to date for a complete, periodic lipopolysaccharide outer membrane. This also includes our current efforts in building on our initial and unique experience simulating the lipopolysaccharide membrane in the development and application of novel computational procedures and tools that allow molecular simulation studies of outer membrane proteins of Gram-negative bacteria to be carried out in realistic membrane models.« less

  9. The CO 2 permeability and mixed gas CO 2/H 2 selectivity of membranes composed of CO 2-philic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barillas, Mary Katharine; Enick, Robert M.; O’Brien, Michael

    2011-04-01

    The objective of this work was to design polymeric membranes that have very high CO 2 permeability and high mixed gas selectivity toward CO 2 rather than hydrogen. Therefore the membranes were based on "CO 2-philic" polymers that exhibit thermodynamically favorable Lewis acid:Lewis base and hydrogen bonding interactions with CO 2. CO 2-philic polymers that are solid at ambient temperature include polyfluoroacrylate (PFA); polyvinyl acetate (PVAc); and amorphous polylactic acid (PLA). Literature CO 2 permeability values for PVAc and PLA are disappointingly low. The cast PFA membranes from this study had low permeabilities (45 barrers at 25º C) and verymore » low CO 2/H 2 selectivity of 1.4. CO 2-philic polymers that are liquid at ambient conditions include polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol with a linear -((CH 2) 4O)-repeat unit (i.e., polytetramethylene ether glycol (PTMEG)), polybutylene glycol (PBG) with a branched repeat unit, perfluoropolyether (PFPE), poly(dimethyl siloxane) (PDMS), and polyacetoxy oxetane (PAO). A small compound, glycerol triacetate (GTA) was also considered because it is similar in chemical structure to a trimer of PVAc. These liquids were tested as supported liquid membranes (SLM) and also (with the exception of PAD and GTA) as rubbery, crosslinked materials. Mixed gas permeability was measured using equimolar mixtures of CO 2 and H 2 feed streams at one atmosphere total pressure in steady-state flux experiments over the 298-423 K temperature range. The most promising SLMs were those composed of PEG, PTMEG, GTA, and PDMS. For example, at 37º C the PEG-, PTMEG-, GTA- and PDMS-based SLMs exhibited CO 2/H 2 selectivity values of ~11, 9, 9, and 3.5, respectively, and CO 2 permeability values of ~800, 900, 1900, and 2000 barrers, respectively. Crosslinked versions of the PEG, PTMEG and PDMS membranes at 37º C exhibited selectivity values of ~5, 6, and 3.5, respectively, and CO 2 permeability values of ~50, 300, and 3000 barrers, respectively.« less

  10. Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway

    PubMed Central

    Brigé, Ann; Motte, Bart; Borloo, Jimmy; Buysschaert, Géraldine; Devreese, Bart; Van Beeumen, Jozef J.

    2008-01-01

    Summary Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye‐containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR‐1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox‐active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin. PMID:21261820

  11. Electrically evoked reticular lamina and basilar membrane vibrations in mice with alpha tectorin C1509G mutation

    NASA Astrophysics Data System (ADS)

    Ren, Tianying; He, Wenxuan

    2015-12-01

    Mechanical coupling between the tectorial membrane and the hair bundles of outer hair cells is crucial for stimulating mechanoelectrical transduction channels, which convert sound-induced vibrations into electrical signal, and for transmitting outer hair cell-generated force back to the basilar membrane to boost hearing sensitivity. It has been demonstrated that the detached tectorial membrane in mice with C1509G alpha tectorin mutation caused hearing loss, but enhanced electrically evoked otoacoustic emissions. To understand how the mutated cochlea emits sounds, the reticular lamina and basilar membrane vibrations were measured in the electrically stimulated cochlea in this study. The results showed that the electrically evoked basilar membrane vibration decreased dramatically while the reticular lamina vibration and otoacoustic emissions exhibited no significant change in C1509G mutation mice. This result indicates that a functional cochlear amplifier and a normal basilar membrane vibration are not required for the outer hair cell-generated sound to exit the cochlea.

  12. Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.

    PubMed

    Nyitrai, Gabriella; Keszthelyi, Tamás; Bóta, Attila; Simon, Agnes; Tőke, Orsolya; Horváth, Gergő; Pál, Ildikó; Kardos, Julianna; Héja, László

    2013-08-01

    Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability

    PubMed Central

    Kedem, O.; Katchalsky, A.

    1961-01-01

    A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes. PMID:13752127

  14. Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures.

    PubMed

    Zhu, Haiyan; Jin, Hua; Pi, Jiang; Bai, Haihua; Yang, Fen; Wu, Chaomin; Jiang, Jinhuan; Cai, Jiye

    2016-07-01

    Apigenin has shown to have killing effects on some kinds of solid tumor cells. However, the changes in cell membrane induced by apigenin on subcellular- or nanometer-level were still unclear. In this work, human esophageal cancer cells (EC9706 and KYSE150 cells) were employed as cell model to detect the cytotoxicity of apigenin, including cell growth inhibition, apoptosis induction, membrane toxicity, etc. MTT assay showed that apigenin could remarkably inhibit the growth and proliferation in both types of cells. Annexin V/PI-based flow cytometry analysis showed that the cytotoxic effects of apigenin in KYSE150 cells were mainly through early apoptosis induction, while in EC9706 cells, necrosis, and apoptosis were both involved in cell death. The morphological and ultrastructural properties induced by apigenin were investigated at single cellular- or nanometer-level using atomic force microscopy (AFM). Additionally, lactate dehydrogenase (LDH) leakage was measured to assess the changes in membrane permeability. The results indicated that apigenin increased the membrane permeability and caused leakage of LDH, which was consistent with damages on membrane ultrastructure detected by AFM. Therefore, membrane toxicity, including membrane ultrastructure damages and enhanced membrane permeability, played vital roles in apigenin induced human esophageal cancer cell apoptosis. SCANNING 38:322-328, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  15. Studies of the permeation properties of glomerular basement membrane: cross-linking renders glomerular basement membrane permeable to protein.

    PubMed

    Walton, H A; Byrne, J; Robinson, G B

    1992-03-20

    Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.

  16. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  17. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed Central

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-01-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents. Images PMID:2543277

  18. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-03-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents.

  19. Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia trachomatis elicit broadly cross-reactive C. trachomatis-neutralizing antibodies.

    PubMed Central

    Murdin, A D; Su, H; Klein, M H; Caldwell, H D

    1995-01-01

    Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes from the variable domains of the major outer membrane protein are candidates for vaccine development. We have constructed hybrid polioviruses expressing sequences from major outer membrane protein variable domains I and IV. Antisera to the hybrids could, in combination, strongly neutralize 8 of the 12 C. trachomatis serovars most commonly associated with oculogenital infections and weakly neutralize the others. PMID:7532625

  20. Mantle hydration along outer-rise faults inferred from serpentinite permeability.

    PubMed

    Hatakeyama, Kohei; Katayama, Ikuo; Hirauchi, Ken-Ichi; Michibayashi, Katsuyoshi

    2017-10-24

    Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction. The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes and subduction water flux, thereby promoting arc volcanism. Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures, the flux of water delivery to the reaction front appears to control the lateral extent of serpentinization. In this study, we measured the permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the lateral extent of serpentinization along an outer-rise fault based on Darcy's law. The experimental results indicate that serpentinization extends to a region several hundred meters wide in the direction normal to the outer-rise fault in the uppermost oceanic mantle. We calculated the global water flux carried by serpentinized oceanic mantle ranging from 1.7 × 10 11 to 2.4 × 10 12  kg/year, which is comparable or even higher than the water flux of hydrated oceanic crust.

  1. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    PubMed

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Impact of tuning CO 2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation

    DOE PAGES

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.; ...

    2017-02-22

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  3. Processing and Pretreatment Effects on Vanadium Transport in Nafion Membranes

    DOE PAGES

    Xie, Wei; Darling, Robert M.; Perry, Mike L.

    2015-10-13

    Here, this work describes how manufacturing processes and pretreatments affect the proton conductivity and vanadyl permeability of Nafion® and how these properties are altered by running in a cell. Five Nafion membranes were examined: reinforced XL100, dispersion cast NR211 and NR212, and extruded N115 and N117. The membranes were subjected to pretreatments that included annealing at 120°C and immersing in ambient temperature and boiling water and sulfuric acid. Vanadyl permeability varied by ~15X with pretreatment and ~3X with manufacturing process. Variations in ionic conductivity were comparatively modest: ~1.5X with pretreatment and ~1.2X with processing. Differences in permeability can be eliminatedmore » by annealing the extruded membranes above their glass-transition temperature or by immersing in boiling sulfuric acid. The differences induced by processing and pretreatments were largely absent from membranes removed from vanadium redox cells subjected to repeated charge/discharge cycles.« less

  4. Transmembrane protein diffusion in gel-supported dual-leaflet membranes.

    PubMed

    Wang, Chih-Ying; Hill, Reghan J

    2014-11-18

    Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed permeability and solvent viscosity. For asymmetric configurations, i.e., supports with contrasting permeability, as realized for cells in contact with hydrogel scaffolds or culture media, the diffusion coefficient can reflect interleaflet friction. Reasonable approximations, for sufficiently large tracers on low-permeability supports, are furnished by a recent phenomenological theory from the literature. Interpreting literature data, albeit for hard-supported membranes, provides a theoretical basis for the phenomenological Stokes drag law as well as strengthening assertions that nonhydrodynamic interactions are important in supported bilayer systems, possibly leading to overestimates of the membrane/leaflet viscosity. Our theory provides a theoretical foundation for future experimental studies of tracer diffusion in gel-supported membranes.

  5. A system to measure minute hydraulic permeability of nanometer scale devices in a non-destructive manner

    NASA Astrophysics Data System (ADS)

    Smith, Ross A.; Fleischman, Aaron J.; Fissell, William H.; Zorman, Christian A.; Roy, Shuvo

    2011-04-01

    We report an automated system for measuring the hydraulic permeability of nanoporous membranes in a tangential-flow configuration. The system was designed and built specifically for micromachined silicon nanoporous membranes (SNM) with monodisperse slit-shaped pores. These novel membranes are under development for water filtration, artificial organ and drug delivery applications. The filtration cell permits non-destructive testing of the membrane over many remove-modify-replace testing cycles, allowing for direct experiments into the effects of surface modifications on such membranes. The experimental apparatus was validated using microfluidic tubing with circular cross sections that provided similar fluidic resistances to SNM. Further validation was performed with SNM chips for which the pore dimensions were known from scanning electron microscopy measurements. The system was then used to measure the hydraulic permeability of nanoporous membranes before and after surface modification. The system yields measurements with low variance and excellent agreement with predicted values, providing a platform for determining pore sizes in micro/nanofluidic systems with tight pore size distributions to a higher degree of precision than can be achieved with traditional techniques.

  6. Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes.

    PubMed

    Sakuma, Shinji; Suita, Masaya; Yamamoto, Takafumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Nakajima, Noriko; Shinkai, Norihiro; Yamauchi, Hitoshi; Hiwatari, Ken-Ichiro; Hashizume, Akio; Tachikawa, Hiroyuki; Kimura, Ryoji; Ishimaru, Yuki; Kasai, Atsushi; Maeda, Sadaaki

    2012-05-01

    We are investigating a new class of penetration enhancers that enable poorly membrane-permeable molecules physically mixed with them to effectively penetrate cell membranes without their concomitant cellular uptake. Since we previously revealed that poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, significantly enhanced the nasal absorption of insulin, we examined the performance of the polymers on cell membranes. When Caco-2 cells were incubated with 5(6)-carboxyfluorescein (CF) for 30 min, approximately 0.1% of applied CF was internalized into the cells. This poor membrane permeability was dramatically enhanced by d-octaarginine-linked polymers; a 25-fold increase in the cellular uptake of CF was observed when the polymer concentration was adjusted to 0.2mg/mL. None of the individual components, for example, d-octaarginine, had any influence on CF uptake, demonstrating that only d-octaarginine anchored chemically to the polymeric platform enhanced the membrane permeation of CF. The polymer-induced CF uptake was consistently high even when the incubation time was extended to 120 min. Confocal laser scanning microphotographs of cells incubated with d-octaarginine-linked polymers bearing rhodamine red demonstrated that the cell outline was stained with red fluorescence. The polymer-induced CF uptake was significantly suppressed by 5-(N-ethyl-N-isopropyl)amiloride, which is an inhibitor of macropinocytosis. Results indicated that d-octaarginine-linked polymers remained on the cell membrane and poorly membrane-permeable CF was continuously internalized into cells mainly via macropinocytosis repeated for the individual peptidyl branches in the polymer backbone. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  8. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  9. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface.

    PubMed

    Härle, C; Kim, I; Angerer, A; Braun, V

    1995-04-03

    Transport of ferric citrate into cells of Escherichia coli K-12 involves two energy-coupled transport systems, one across the outer membrane and one across the cytoplasmic membrane. Previously, we have shown that ferric citrate does not have to enter the cytoplasm of E. coli K-12 to induce transcription of the fec ferric citrate transport genes. Here we demonstrate that ferric citrate uptake into the periplasmic space between the outer and the cytoplasmic membranes is not required for fec gene induction. Rather, FecA and the TonB, ExbB and ExbD proteins are involved in induction of the fec transport genes independent of their role in ferric citrate transport across the outer membrane. The uptake of ferric citrate into the periplasmic space of fecA and tonB mutants via diffusion through the porin channels did not induce transcription of fec transport genes. Point mutants in FecA displayed the constitutive expression of fec transport genes in the absence of ferric citrate but still required TonB, with the exception of one FecA mutant which showed a TonB-independent induction. The phenotype of the FecA mutants suggests a signal transduction mechanism across three compartments: the outer membrane, the periplasmic space and the cytoplasmic membrane. The signal is triggered upon the interaction of ferric citrate with FecA protein. It is postulated that FecA, TonB, ExbB and ExbD transfer the signal across the outer membrane, while the regulatory protein FecR transmits the signal across the cytoplasmic membrane to FecI in the cytoplasm. FecI serves as a sigma factor which facilitates binding of the RNA polymerase to the fec transport gene promoter upstream of fecA.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Perturbation of host-cell membrane is a primary mechanism of HIV cytopathology.

    PubMed

    Cloyd, M W; Lynn, W S

    1991-04-01

    Cytopathic viruses injure cells by a number of different mechanisms. The mechanism by which HIV-1 injures T cells was studied by temporally examining host-cell macromolecular syntheses, stages of the cell cycle, and membrane permeability following acute infection. T cells cytopathically infected at an m.o.i. of 1-5 grew normally for 24-72 hr, depending on the cell line, followed by the first manifestation of cell injury, slowing of cell division. At that time significant amounts of unintegrated HIV DNA and p24 core protein became detectable, and acridine orange flow cytometric cell cycle studies demonstrated the presence of fewer cells in the G2/M stage of the cell cycle. There was no change in the frequency of cells in the S-stage, and metabolic pulsing with radioactive precursors demonstrated that host-cell DNA, RNA, and protein syntheses were normal at that time and normal up to the time cells started to die (approximately 24 hr later), when all three decreased. Cellular lipid synthesis, however, was perturbed when cell multiplication slowed, with phospholipid synthesis reduced and neutral lipid synthesis enhanced. Permeability of the host-cell membrane to small molecules, such as Ca2+ and sucrose, was slightly enhanced early postinfection, and by the time of slowing of cell division, host membrane permeability was greatly increased to both Ca2+ and sucrose (Stokes radius 5.2 A) but not to inulin (Stokes radium 20 A). These changes in host-cell membrane permeability and phospholipid synthesis were not observed in acutely infected H9 cells, which are not susceptible to HIV cytopathology. Thus, HIV-1 appeared to predominantly injure T cells by perturbing host-cell membrane permeability and lipid synthesis, which is similar to the cytopathic mechanisms of paramyxoviruses.

  11. Decreased membrane potassium permeability and transport in human chronic leukemic and tonsillar lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segel, G.B.; Lichtman, M.A.

    Human blood T-lymphocytes increase their potassium (K/sup +/) permeability and active K/sup +/ transport following lectin or antigen stimulation. We have studied the permeability and active transport of K/sup +/ by lymphocytes in chronic lymphocytic leukemia (CLL) to determine if their membrane K/sup +/ transport was similar to resting or lectin-stimulated normal blood lymphocytes. K/sup +/ transport was assessed both by the rate of isotopic /sup 42/K/sup +/ uptake and by the rate of change in cell K/sup +/ concentration after inhibition of the K/sup +/ transport system with ouabain. CLL lymphocytes had a marked decrease in membrane K/sup +/more » permeability and active transport of K/sup +/ when compared to blood T lymphocytes. K/sup +/ transport in five subjects with CLL (10 mmol . 1 cell water/sup -1/ . h/sup -1/) was half that in normal blood T-lymphocytes (20 mmol . 1 cell water/sup -1/ h/sup -1/). Phytohemagglutinin (PHA) treatment of CLL lymphocytes did not increase significantly their active K/sup +/ transport, whereas K/sup +/ transport by normal T-lymphocytes increased by 100%. Since there were 73% T-lymphocytes in normal blood and 14% in CLL blood, the difference in membrane K/sup +/ turnover could be related either to neoplasia or to the proposed B-lymphocyte origin of CLL. We studied human tonsillar lymphocytes which contained a mean of 34% T-cells. In five studies of tonsils, K/sup +/ transport was 14 mmol . 1 cell water/sup -1/ . h/sup -1/ and treatment with PHA increased K/sup +/ transport only 30%. The intermediate values for basal K/sup +/ transport and K/sup +/ transport in response to PHA in tonsillar lymphocytes were consistent with the proportion of T-lymphocytes present. These data sugges t that B-lymphocytes have reduced membrane permeability and active transport of K/sup +/. Thus the marked decrease in CLL lymphocyte membrane K/sup +/ permeability and transport may be a reflection of its presumed B-cell origin, rather than a membrane alteration related to malignant transformation.« less

  12. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    PubMed Central

    Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2017-01-01

    Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  14. Change in permeability of the plasma membrane of blood cells in irradiated animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, A.S.; Kobyalko, V.O.; Lazarev, N.M.

    1994-11-01

    The Chernobyl nuclear disaster showed the exposure of the thyroid gland to radioactive iodine is an important factor of radiation damage to animals. Examination of domestic animals showed a marked inhibition of thyroid hormone secretion and changes in red cell membrane permeability for calcium in the absence of marked hematological shifts. At the same time the disturbed thyroid statis is associated with changes in some structural and functional parameters of blood cells. This research on calves shows that radiation damage to the thyroid produces a modifying effect on blood cell membrane permeability for calcium during both the acute and latemore » periods following exposure to 131I. 15 refs., 2 figs., 1 tab.« less

  15. "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2).

    PubMed

    Guo, Hailing; Zhu, Guangshan; Hewitt, Ian J; Qiu, Shilun

    2009-02-11

    In this communication, the copper net supported Cu(3)(BTC)(2) membranes have been successfully synthesized by means of a "twin copper source" technique. Separation studies on gaseous mixtures (H(2)/CO(2), H(2)/CH(4), and H(2)/N(2)) using the membrane revealed that the membrane possesses high permeability and selectivity for H(2) over CO(2), N(2), and CH(4). Compared with the conventional zeolite membranes, the copper net supported Cu(3)(BTC)(2) membrane exhibited high permeation flux in gas separation. Such highly efficient copper net supported Cu(3)(BTC)(2) membranes could be used to separate, recycle, and reuse H(2) exhausted from steam reforming natural gas.

  16. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal

    NASA Astrophysics Data System (ADS)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Zhao, Chuanqi; Yang, Fenglin

    2018-05-01

    Hydrophilic cellulose nanocrystal (CNC) was incorporated into hydrophobic poly(vinylidene fluoride) (PVDF) membrane via phase inversion process to improve membrane antifouling property. The effects of CNC on membrane morphology, hydrophilicity, permeability and antifouling property were investigated in-detail. Results indicated that the introduction of CNC into PVDF membrane enhanced the permeability by optimizing membrane microstructure and improving membrane hydrophilicity. A higher pure water flux of 206.9 L m-2 h-1 was achieved for CNC/PVDF membrane at 100 kPa, which was 20 times that of PVDF membrane (9.8 L m-2 h-1). In bovine serum albumin filtration measurements, the permeation flux and flux recovery ratio of CNC/PVDF membrane were increased remarkably, while the irreversible fouling-resistance of CNC/PVDF membrane decreased by 48.8%. These results indicated that the CNC/PVDF membrane possessed superior antifouling property due to the hydrophilicity of CNC that formed a hydration layer on the membrane surface to effectively reduce contaminants adsorption/deposition.

  17. Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae.

    PubMed

    Xie, Fang; Li, Gang; Zhang, Wanjiang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2016-02-01

    The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments

    PubMed Central

    Sollich, Miriam; Yoshinaga, Marcos Y.; Häusler, Stefan; Price, Roy E.; Hinrichs, Kai-Uwe; Bühring, Solveig I.

    2017-01-01

    Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems. PMID:28878741

  19. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage.

    PubMed

    Garmiri, Penelope; Coles, Karen E; Humphrey, Tom J; Cogan, Tristan A

    2008-04-01

    The ability to survive desiccation between hosts is often essential to the success of pathogenic bacteria. The bacterial outer membrane is both the cellular interface with hostile environments and the focus of much of the drying-induced damage. This study examined the contribution of outer membrane-associated polysaccharides to the survival of Salmonella enterica serovar Typhimurium in air-dried blood droplets following growth in high and low osmolarity medium and under conditions known to induce expression of these polysaccharides. Strains lacking the O polysaccharide (OPS) element of the outer membrane lipopolysaccharide were more sensitive to desiccation. Lipopolysaccharide core mutation further to OPS loss did not result in increased susceptibility to drying. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed lipopolysaccharide profiles that supported the hypothesis that OPS expression is required for optimal drying resistance in S. Typhimurium. The role of O antigen in Salmonella spp. in maintaining a hydrated layer around the dried cell or in slowing the rate of dehydration and rehydration is discussed.

  20. Carbon membranes for efficient water-ethanol separation.

    PubMed

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-28

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  1. Carbon membranes for efficient water-ethanol separation

    NASA Astrophysics Data System (ADS)

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  2. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  3. Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, David J.; Edwards, Marcus; White, Gaye F.

    2012-06-01

    Many species of the bacterial Shewanella genus are notable for their ability to respire in anoxic environments utilizing insoluble minerals of Fe(III) and Mn(IV) as extracellular electron acceptors. In Shewanella oneidensis, the process is dependent on the decahaem electron-transport proteins that lie at the extracellular face of the outer membrane where they can contact the insoluble mineral substrates. These extracellular proteins are charged with electrons provided by an inter-membrane electron-transfer pathway that links the extracellular face of the outer membrane with the inner cytoplasmic membrane and thereby intracellular electron sources. In the present paper, we consider the common structural featuresmore » of two of these outermembrane decahaem cytochromes, MtrC and MtrF, and bring this together with biochemical, spectroscopic and voltammetric data to identify common and distinct properties of these prototypical members of different clades of the outer-membrane decahaem cytochrome superfamily.« less

  4. TOF-SIMS imaging of protein adsorption on dialysis membrane

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Hayama, Msayo; Hasegawa, Urara; Sakai, Kiyotaka; Hoshi, Takahiro; Kudo, Masahiro

    2004-06-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples such as hollow-fiber dialysis membranes. Albumin loss and a lowering of diffusive permeability caused by protein adsorption on dialysis membranes should be reduced in order to enhance dialysis adequacy of the patients. Bovine serum albumin (BSA)-adsorbed hollow-fiber dialysis membranes were tested in the present study. TOF-SIMS images and spectra of both native membranes and BSA-adsorbed membranes were compared in order to identify secondary ions related to BSA and membranes. Peaks of secondary ions related to BSA and each membrane were selected by means of information theory, and they are characterized by principal component analysis (PCA). Chemical images of BSA adsorption on both native and treated membranes were obtained to find that BSA permeability and interaction between the membranes and BSA definitely depend on the properties of a membrane. TOF-SIMS imaging obtained with information theory is a powerful tool to estimate protein adsorption on the dialysis membranes.

  5. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  6. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells.

    PubMed

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan

    2018-05-01

    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  7. Protein secretion through autotransporter and two-partner pathways.

    PubMed

    Jacob-Dubuisson, Françoise; Fernandez, Rachel; Coutte, Loic

    2004-11-11

    Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.

  8. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana.

    PubMed

    Kelly, Amélie A; Kalisch, Barbara; Hölzl, Georg; Schulze, Sandra; Thiele, Juliane; Melzer, Michael; Roston, Rebecca L; Benning, Christoph; Dörmann, Peter

    2016-09-20

    Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.

  9. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions

    PubMed Central

    Schwechheimer, Carmen; Kuehn, Meta J.

    2017-01-01

    Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles. PMID:26373371

  10. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex.

    PubMed

    Chng, Shu-Sin; Gronenberg, Luisa S; Kahne, Daniel

    2010-06-08

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential lipopolysaccharide transport (Lpt) proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes and that they copurify. This constitutes the first evidence that the Lpt proteins form a transenvelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope.

  11. Proteins required for lipopolysaccharide assembly in Escherichia coli form a trans-envelope complex†

    PubMed Central

    Chng, Shu-Sin; Gronenberg, Luisa S.; Kahne, Daniel

    2010-01-01

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential Lpt proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes, and that they co-purify. This constitutes the first evidence that the Lpt proteins form a trans-envelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope. PMID:20446753

  12. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  13. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers.

    PubMed

    Wang, Bing; Navath, Raghavendra S; Menjoge, Anupa R; Balakrishnan, Bindu; Bellair, Robert; Dai, Hui; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M

    2010-08-16

    Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in vitro, in vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 microg of generation-4 neutral dendrimer (G(4)-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis. Amniotic fluid collected from different gestational sacs of infected guinea pigs posttreatment showed absence of E. coli growth in the cultures plated with it. The cytokine level [tumor necrosis factor (TNFalpha) and interleukin (IL-6 and IL-1beta)] in placenta of the G(4)-PAMAM-OH treated animals were comparable to those in healthy animals while these were notably high in infected animals. Since, antibacterial activity of amine-terminated PAMAM dendrimers is known, the activity of hydroxyl and carboxylic acid terminated PAMAM dendrimers was compared with it. Though the G(4)-PAMAM-NH(2) shows superior antibacterial activity, it was found to be cytotoxic to human cervical epithelial cell line above 10 microg/mL, while the G(4)-PAMAM-OH was non-cytotoxic up to 1mg/mL concentration. Cell integrity, outer (OM) and inner (IM) membrane permeabilization assays showed that G(4)-PAMAM-OH dendrimer efficiently changed the OM permeability, while G(4)-PAMAM-NH(2) and G(3.5)-PAMAM-COOH damaged both OM and IM causing the bacterial lysis. The possible antibacterial mechanism are G(4)-PAMAM-NH(2) acts as polycation binding to the polyanionic lipopolysaccharide in E. coli, the G(4)-PAMAM-OH forms hydrogen bonds with the hydrophilic O-antigens in E. coli membrane and the G(3.5)-PAMAM-COOH acts as a polyanion, chelating the divalent ions in outer cell membrane of E. coli. This is the first study which shows that G(4)-PAMAM-OH dendrimer acts as an antibacterial agent. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Tracking live cell response to cadmium (II) concentrations by scanning electrochemical microscopy.

    PubMed

    Henderson, Jeffrey D; Filice, Fraser P; Li, Michelle S M; Ding, Zhifeng

    2016-05-01

    The biological chemistry of toxic heavy metals, such as Cd (II), has become an active area of research due to connections with increased oxidative stress, cytotoxicity, and human/animal carcinogenicity. In this study, scanning electrochemical microscopy (SECM) was used as a noninvasive technique to monitor membrane permeability of single live human bladder cancer cells (T24) subjected to exposure of Cd (II) at various concentrations. The addition of a membrane permeable redox mediator, ferrocenemethanol (FcMeOH), in combination with depth scan imaging provided probe approach curves (PACs) to reveal changes in membrane homeostasis. To demonstrate the strength of SECM as a bioanalytical technique for cell physiology and pathology, we tested responses of live cells after 1h incubations with various concentrations of Cd (II). For the first time, a trend in membrane permeability of Cd (II) treated live T24 cells was discovered. Dependent on the incubation concentration, the trend displayed an initial decrease in membrane permeability coefficient from 75μm/s for control cells to 25μm/s for cells incubated with 75μM Cd (II). This was followed by an eventual return to the permeability coefficient of control cells (75μm/s) with further increases in Cd (II) exposure. The cells were found to respond at as little as 10μM Cd (II) concentrations. This work further demonstrates the use of SECM as a bioanalytical technique to monitor cell physiology and topography. A greater insight into the complex mechanisms behind Cd (II) toxicity is anticipated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

    PubMed

    Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred

    2014-02-01

    The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  17. Understanding Mircrobial Sensing in Inflammatory Bowel Disease Using Click Chemistry

    DTIC Science & Technology

    2016-10-01

    limitation, we have developed an expanded metabolic labeling approach that chemically tags lipopolysaccharide, capsular polysaccharide , and peptidoglycan...click-chemistry, bacterial cell wall, bacterial outer membrane, peptidoglycan, lipopolysaccharide, endotoxin, capsular polysaccharide , inflammatory...bacterial outer membrane, peptidoglycan, lipopolysaccharide, endotoxin, capsular polysaccharide , inflammatory bowel disease, microbiome, microbiota

  18. 2,4-Dichlorophenoxyacetic Acid Inhibits the Outer Membrane NADH Dehydrogenase of Plant Mitochondria 1

    PubMed Central

    Mannella, Carmen A.; Bonner, Walter D.

    1978-01-01

    The NADH dehydrogenase of potato (Solanum tuberosum) and mung bean (Phaseolus aureus) outer mitochondrial membranes is specifically inhibited by both 2,4-dichlorophenoxyacetic and 2,4,5-trichlorophenoxyacetic acids but not by the natural auxin indole-3-acetic acid. PMID:16660539

  19. Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing.

    PubMed

    Xue, Rui; Liu, Yalong; Zhang, Qingsong; Liang, Congcong; Qin, Huazhen; Liu, Pengfei; Wang, Ke; Zhang, Xiaoyong; Chen, Li; Wei, Yen

    2016-08-01

    To verify the interaction mechanism between sericin and Escherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin against E. coli as a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin on E. coli and the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for an in vivo study of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing of E. coli cells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. When E. coli cells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction of E. coli Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels. The specific relationship and interaction mechanism between sericin and E. coli cells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing of E. coli cells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequent in vivo results demonstrate that the sericin-poly(N-isopropylacrylamide-N,N'-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Temperature shock, injury and transient sensitivity to nisin in Gram negatives.

    PubMed

    Boziaris, I S; Adams, M R

    2001-10-01

    The effect of thermal stresses on survival, injury and nisin sensitivity was investigated in Salmonella Enteritidis PT4, PT7 and Pseudomonas aeruginosa. Heating at 55 degrees C, rapid chilling to 0.5 degrees C or freezing at -20 degrees C produced transient sensitivity to nisin. Cells were only sensitive if nisin was present during stress. Resistance recovered rapidly afterwards, though some cells displayed residual injury. Injury was assessed by SDS sensitivity, hydrophobicity changes, lipopolysaccharide release and NPN uptake. LPS release and hydrophobicity were not always associated with transient nisin sensitivity. Uptake of NPN correlated better but persisted longer after treatment. Thermal shocks produce transient injury to the outer membrane, allowing nisin access. After treatment, the permeability barrier is rapidly restored by a process apparently involving reorganization rather than biosynthetic repair. Inclusion of nisin during food treatments that impose sub-lethal stress on Gram negatives could increase process lethality, enhancing microbiological safety and stability.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, TN; Park, AHA; Bantat, S

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilitiesmore » (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.« less

  2. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  3. Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module

    PubMed Central

    Selkrig, Joel; Belousoff, Matthew J.; Headey, Stephen J.; Heinz, Eva; Shiota, Takuya; Shen, Hsin-Hui; Beckham, Simone A.; Bamert, Rebecca S.; Phan, Minh-Duy; Schembri, Mark A.; Wilce, Matthew C.J.; Scanlon, Martin J.; Strugnell, Richard A.; Lithgow, Trevor

    2015-01-01

    The biogenesis of membranes from constituent proteins and lipids is a fundamental aspect of cell biology. In the case of proteins assembled into bacterial outer membranes, an overarching question concerns how the energy required for protein insertion and folding is accessed at this remote location of the cell. The translocation and assembly module (TAM) is a nanomachine that functions in outer membrane biogenesis and virulence in diverse bacterial pathogens. Here we demonstrate the interactions through which TamA and TamB subunits dock to bridge the periplasm, and unite the outer membrane aspects to the inner membrane of the bacterial cell. We show that specific functional features in TamA have been conserved through evolution, including residues surrounding the lateral gate and an extensive surface of the POTRA domains. Analysis by nuclear magnetic resonance spectroscopy and small angle X-ray scattering document the characteristic structural features of these POTRA domains and demonstrate rigidity in solution. Quartz crystal microbalance measurements pinpoint which POTRA domain specifically docks the TamB subunit of the nanomachine. We speculate that the POTRA domain of TamA functions as a lever arm in order to drive the activity of the TAM, assembling proteins into bacterial outer membranes. PMID:26243377

  4. [Mechanisms of the therapeutic effect of bemitil in neuromuscular diseases].

    PubMed

    Lobzin, V S; Saĭkova, L A; Chukhlovina, M L; Pustozerov, V G

    1991-01-01

    Studies into the mechanism of the therapeutic action of bemitil were carried out in 21 patients with neuromuscular diseases. Measurements of lipid peroxidation and permeability of the erythrocytic membranes demonstrated the drug to influence carbohydrate and lipid metabolism, lipid peroxidation, and permeability of the cellular membranes. It is recommended that bemitil be used for the treatment of neuromuscular diseases.

  5. Carbon dioxide and water transport through plant aquaporins.

    PubMed

    Groszmann, Michael; Osborn, Hannah L; Evans, John R

    2017-06-01

    Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO 2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO 2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency. © 2016 John Wiley & Sons Ltd.

  6. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers.

    PubMed

    Ho, Norman F H; Nielsen, James; Peterson, Michelle; Burton, Philip S

    2016-02-01

    An approach to characterizing P-glycoprotein (Pgp) interaction potential for sparingly water-soluble compounds was developed using bidirectional transport kinetics in MDR1-MDCK cell monolayers. Paclitaxel, solubilized in a dilute polysorbate 80 (PS80) micellar solution, was used as a practical example. Although the passage of paclitaxel across the cell monolayer was initially governed by the thermodynamic activity of the micelle-solubilized drug solution, Pgp inhibition was sustained by the thermodynamic activity (i.e., critical micelle concentration) of the PS80 micellar solution bathing the apical (ap) membrane. The mechanistic understanding of the experimental strategies and treatment of data was supported by a biophysical model expressed in the form of transport events occurring at the ap and basolateral (bl) membranes in series whereas the vectorial directions of the transcellular kinetics were accommodated. The derived equations permitted the stepwise quantitative delineation of the Pgp efflux activity (inhibited and uninhibited by PS80) and the passive permeability coefficient of the ap membrane, the passive permeability at the bl membrane and, finally, the distinct coupling of these with efflux pump activity to identify the rate-determining steps and mechanisms. The Jmax/KM(∗) for paclitaxel was in the order of 10(-4) cm/s and the ap- and bl-membrane passive permeability coefficients were asymmetric, with bl-membrane permeability significantly greater than ap. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    PubMed

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of membrane characteristics on the performance of membrane bioreactors for oily wastewater treatment.

    PubMed

    Mafirad, S; Mehrnia, M R; Sarrafzadeh, M H

    2011-01-01

    Influence of membrane material and pore size on the performance of a submerged membrane bioreactor (sMBR) for oily wastewater treatment was investigated. The sMBR had a working volume of about 19 L with flat sheet modules at the same hydrodynamic conditions. Five types of micro- and ultra-polymeric membranes containing cellulose acetate (CA), cellulose nitrate (CN), polyamide (PA), polyvinylidene difluoride (PVDF) and polyethersulfone (PES) were used and their filtration performance in terms of permeability, permeate quality and fouling intensity were evaluated. Characterization of the membranes was done by performing some analysis such as pore size distribution; contact angle and scanning electronic microscopy (SEM) microphotograph on all membranes. The quality of permeates from each membrane was identified by measuring chemical oxygen demand (COD). The results showed more irreversible fouling intensity for membranes with larger pore size which can be due to more permeation of bioparticles and colloids inside the pores. Membrane characteristics have a major role in the preliminary time of the filtration before cake layer formation so that the PA with the highest hydrophilicity had the lowest permeability decline by fouling in this period. Also, the PVDF and PES membranes had better performance according to better permeate quality in the preliminary time of the filtration related to smaller pore size and also their better fouling resistance and chemical stability properties. However, all membranes resulted in the same permeability and permeate quality after cake layer formation. An overall efficiency of about 95% in COD removal was obtained for oily wastewater treatment by the membranes used in this study.

  9. Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors.

    PubMed

    Becker, Thomas; Pfannschmidt, Sylvia; Guiard, Bernard; Stojanovski, Diana; Milenkovic, Dusanka; Kutik, Stephan; Pfanner, Nikolaus; Meisinger, Chris; Wiedemann, Nils

    2008-01-04

    The translocase of the outer membrane (TOM complex) is the central entry gate for nuclear-encoded mitochondrial precursor proteins. All Tom proteins are also encoded by nuclear genes and synthesized as precursors in the cytosol. The channel-forming beta-barrel protein Tom40 is targeted to mitochondria via Tom receptors and inserted into the outer membrane by the sorting and assembly machinery (SAM complex). A further outer membrane protein, Mim1, plays a less defined role in assembly of Tom40 into the TOM complex. The three receptors Tom20, Tom22, and Tom70 are anchored in the outer membrane by a single transmembrane alpha-helix, located at the N terminus in the case of Tom20 and Tom70 (signal-anchored) or in the C-terminal portion in the case of Tom22 (tail-anchored). Insertion of the precursor of Tom22 into the outer membrane requires pre-existing Tom receptors while the import pathway of the precursors of Tom20 and Tom70 is only poorly understood. We report that Mim1 is required for efficient membrane insertion and assembly of Tom20 and Tom70, but not Tom22. We show that Mim1 associates with SAM(core) components to a large SAM complex, explaining its role in late steps of the assembly pathway of Tom40. We conclude that Mim1 is not only required for biogenesis of the beta-barrel protein Tom40 but also for membrane insertion and assembly of signal-anchored Tom receptors. Thus, Mim1 plays an important role in the efficient assembly of the mitochondrial TOM complex.

  10. Systems, compositions, and methods for fluid purification

    DOEpatents

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  11. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  12. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface.

    PubMed

    Fleming, Patrick J; Patel, Dhilon S; Wu, Emilia L; Qi, Yifei; Yeom, Min Sun; Sousa, Marcelo Carlos; Fleming, Karen G; Im, Wonpil

    2016-06-21

    The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  14. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    NASA Astrophysics Data System (ADS)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  15. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  16. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria.

    PubMed

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-22

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI-Translocation consortium. The synergistic combination of structural data, in vitro assays and computer simulations has proven to give new insights towards the identification and description of physico-chemical properties modulating permeation. Once similar general rules are identified, we believe that the use of virtual screening techniques will be very helpful in searching for new molecular scaffolds with enhanced permeation, and that molecular modeling will be of fundamental assistance to the optimization stage.

  17. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI-Translocation consortium. The synergistic combination of structural data, in vitro assays and computer simulations has proven to give new insights towards the identification and description of physico-chemical properties modulating permeation. Once similar general rules are identified, we believe that the use of virtual screening techniques will be very helpful in searching for new molecular scaffolds with enhanced permeation, and that molecular modeling will be of fundamental assistance to the optimization stage.

  18. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  19. Linkage between anaplasma marginale outer membrane proteins enhances immunogenicity, but is not required for protection from challenge

    USDA-ARS?s Scientific Manuscript database

    Prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective; they are difficult and expensive to isolate and standardize, and thus often impractical for development and implementation in vaccination programs. In contrast, ind...

  20. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    USDA-ARS?s Scientific Manuscript database

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  1. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    NASA Astrophysics Data System (ADS)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08697c

  2. Polycation-induced Cell Membrane Permeability Does Not Enhance Cellular Uptake or Expression Efficiency of Delivered DNA

    PubMed Central

    Prevette, Lisa E.; Mullen, Douglas G.; Banaszak Holl, Mark M.

    2010-01-01

    Polycationic materials commonly used to delivery DNA to cells are known to induce cell membrane porosity in a charge-density dependent manner. It has been suggested that these pores may provide a mode of entry of the polymer-DNA complexes (polyplexes) into cells. To examine the correlation between membrane permeability and biological activity, we used two-color flow cytometry on two mammalian cell lines to simultaneously measure gene expression of a plasmid DNA delivered with four common nonviral vectors and cellular uptake of normally excluded fluorescent dye molecules of two different sizes, 668 Da and 2 MDa. We also followed gene expression in cells sorted based on the retention of endogenous fluorescein. We have found that cell membrane porosity caused by polycationic vectors does not enhance internalization or gene expression. Based on this single-cell study, membrane permeability is found to be an unwanted side effect that limits transfection efficiency, possibly through leakage of the delivered nucleic acid through the pores prior to transcription and translation and/or activation of cell defense mechanisms that restrict transgene expression. PMID:20349965

  3. Concentration dependence of the cell membrane permeability to cryoprotectant and water and implications for design of methods for post-thaw washing of human erythrocytes.

    PubMed

    Lahmann, John M; Benson, James D; Higgins, Adam Z

    2018-02-01

    For more than fifty years the human red blood cell (RBC) has been a widely studied model for transmembrane mass transport. Existing literature spans myriad experimental designs with varying results and physiologic interpretations. In this review, we examine the kinetics and mechanisms of membrane transport in the context of RBC cryopreservation. We include a discussion of the pathways for water and glycerol permeation through the cell membrane and the implications for mathematical modeling of the membrane transport process. In particular, we examine the concentration dependence of water and glycerol transport and provide equations for estimating permeability parameters as a function of concentration based on a synthesis of literature data. This concentration-dependent transport model may allow for design of improved methods for post-thaw removal of glycerol from cryopreserved blood. More broadly, the consideration of the concentration dependence of membrane permeability parameters may be important for other cell types as well, especially for design of methods for equilibration with the highly concentrated solutions used for vitrification. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification.

    PubMed

    Xu, Rong; Kanezashi, Masakoto; Yoshioka, Tomohisa; Okuda, Tetsuji; Ohshita, Joji; Tsuru, Toshinori

    2013-07-10

    Bis(triethoxysilyl)ethylene (BTESEthy) was used as a novel precursor to develop a microporous organosilica membrane via the sol-gel technique. Water sorption measurements confirmed that ethenylene-bridged BTESEthy networks had a higher affinity for water than that of ethane-bridged organosilica materials. High permeance of CO2 with high CO2/N2 selectivity was explained relative to the strong CO2 adsorption on the network with π-bond electrons. The introduction of polarizable and rigid ethenylene bridges in the network structure led to improved water permeability and high NaCl rejection (>98.5%) in reverse osmosis (RO). Moreover, the aqueous ozone modification promoted significant improvement in the water permeability of the membrane. After 60 min of ozone exposure, the water permeability reached 1.1 × 10(-12) m(3)/(m(2) s Pa), which is close to that of a commercial seawater RO membrane. Meanwhile, molecular weight cutoff measurements indicated a gradual increase in the effective pore size with ozone modification, which may present new options for fine-tuning of membrane pore sizes.

  5. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition

    PubMed Central

    Bamaga, Omar A.; Abdel-Aziz, M. H.

    2018-01-01

    In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability. PMID:29510555

  6. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    PubMed Central

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  7. Proton-conductive nanochannel membrane for fuel-cell applications.

    PubMed

    Oleksandrov, Sergiy; Lee, Jeong-Woo; Jang, Joo-Hee; Haam, Seungjoo; Chung, Chan-Hwa

    2009-02-01

    Novel design of proton conductive membrane for direct methanol fuel cells is based on proton conductivity of nanochannels, which is acquired due to the electric double layer overlap. Proton conductivity and methanol permeability of an array of nanochannels were studied. Anodic aluminum oxide with pore diameter of 20 nm was used as nanochannel matrix. Channel surfaces of an AAO template were functionalized with sulfonic groups to increase proton conductivity of nanochannels. This was done in two steps; at first -SH groups were attached to walls of nanochannels using (3-Mercaptopropyl)-trimethyloxysilane and then they were converted to -SO3H groups using hydrogen peroxide. Treatment steps were analyzed by Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy. Proton conductivity and methanol permeability were measured. The data show methanol permeability of membrane to be an order of magnitude lower, than that measured of Nafion. Ion conductivity of functionalized AAO membrane was measured by an impedance analyzer at frequencies ranging from 1 Hz to 100 kHz and voltage 50 mV to be 0.15 Scm(-1). Measured ion conductivity of Nafion membrane was 0.05 Scm(-1). Obtained data show better results in comparison with commonly used commercial available proton conductive membrane Nafion, thus making nanochannel membrane very promising for use in fuel cell applications.

  8. Convection due to an unstable density difference across a permeable membrane

    NASA Astrophysics Data System (ADS)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.

  9. Percutaneous absorption of sunscreen agents from liquid paraffin: self-association of octyl salicylate and effects on skin flux.

    PubMed

    Jiang, R; Roberts, M S; Prankerd, R J; Benson, H A

    1997-07-01

    This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (Kp') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and Kp' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.

  10. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    PubMed Central

    Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.

    2017-01-01

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658

  11. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  12. Failure of the Nernst-Einstein equation to correlate electrical resistances and rates of ionic self-exchange across certain fixed charge membranes.

    PubMed

    Gottlieb, M H; Sollner, K

    1968-05-01

    The electrical resistances and rates of self-exchange of univalent critical ions across several types of collodion matrix membranes of high ionic selectivity were studied over a wide range of conditions. The relationship which was observed between these quantities with membranes of a certain type, namely those activated with poly-2-vinyl-N-methyl pyridinium bromide, cannot be explained on the basis of current concepts of the movement of ions across ion exchange membranes. Rates of self-exchange across these membranes were several times greater than those calculated from the electrical resistances of the membranes on the basis of an expression derived by the use of the Nernst-Einstein equation. The magnitude of the discrepancy was greatest at low concentrations of the ambient electrolyte solution and was independent of the species of both critical and noncritical ions. The data obtained with other types of collodion matrix membranes were, at least approximately, in agreement with the predictions based on the Nernst-Einstein equation. Self-exchange rates across the anion permeable protamine collodion membranes, and across the cation permeable polystyrene sulfonic acid collodion membranes, were about 20% less than those calculated from the electrical resistances. The direction and magnitude of these differences, also observed by other investigators, are qualitatively understood as an electroosmotic effect. With cation permeable membranes prepared by the oxidation of preformed collodion membranes, almost exact agreement was obtained between measured and calculated self-exchange rates; the cause of the apparent absence of an electroosmotic effect with these membranes is unknown.

  13. Failure of the Nernst-Einstein Equation to Correlate Electrical Resistances and Rates of Ionic Self-Exchange across Certain Fixed Charge Membranes

    PubMed Central

    Gottlieb, Melvin H.; Sollner, Karl

    1968-01-01

    The electrical resistances and rates of self-exchange of univalent critical ions across several types of collodion matrix membranes of high ionic selectivity were studied over a wide range of conditions. The relationship which was observed between these quantities with membranes of a certain type, namely those activated with poly-2-vinyl-N-methyl pyridinium bromide, cannot be explained on the basis of current concepts of the movement of ions across ion exchange membranes. Rates of self-exchange across these membranes were several times greater than those calculated from the electrical resistances of the membranes on the basis of an expression derived by the use of the Nernst-Einstein equation. The magnitude of the discrepancy was greatest at low concentrations of the ambient electrolyte solution and was independent of the species of both critical and noncritical ions. The data obtained with other types of collodion matrix membranes were, at least approximately, in agreement with the predictions based on the Nernst-Einstein equation. Self-exchange rates across the anion permeable protamine collodion membranes, and across the cation permeable polystyrene sulfonic acid collodion membranes, were about 20% less than those calculated from the electrical resistances. The direction and magnitude of these differences, also observed by other investigators, are qualitatively understood as an electroosmotic effect. With cation permeable membranes prepared by the oxidation of preformed collodion membranes, almost exact agreement was obtained between measured and calculated self-exchange rates; the cause of the apparent absence of an electroosmotic effect with these membranes is unknown. PMID:5699793

  14. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane.

    PubMed

    Puech, V; Chami, M; Lemassu, A; Lanéelle, M A; Schiffler, B; Gounon, P; Bayan, N; Benz, R; Daffé, M

    2001-05-01

    With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.

  15. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors

    PubMed Central

    Nguyen, Phuong T.; Yarov-Yarovoy, Vladimir; Burns, Marie E.; Pugh, Edward N.

    2017-01-01

    The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors’ subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gαt), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gαt the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s−1. Analyzing swelling as osmotically driven water influx, we find the H2O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10−5 cm⋅s−1, comparable to that of other cells lacking aquaporin expression. Application of Van’t Hoff’s law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H2O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity. PMID:28320964

  16. Obstructed metabolite diffusion within skeletal muscle cells in silico.

    PubMed

    Aliev, Mayis K; Tikhonov, Alexander N

    2011-12-01

    Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).

  17. Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions

    PubMed Central

    Peng, Shaomin; Adelman, Ron A.

    2010-01-01

    Purpose. Bevacizumab and ranibizumab are currently used to treat age-related macular degeneration by neutralizing vascular endothelial growth factor (VEGF). In this study, the potential side effects on the outer blood–retinal barrier were examined. Methods. Human fetal RPE (hfRPE) cells were used because they are highly differentiated in culture. The claudin composition of RPE tight junctions was determined by RT-PCR, immunoblot analysis, and immunofluorescence. ELISA assays monitored the secretion and trafficking of VEGF and a fluid-phase marker, methylpolyethylene glycol (mPEG). Tight junction functions were assessed by the conductance of K+ and Na+ (derived from the transepithelial electrical resistance, TER) and the flux of NaCl and mPEG. Results. Claudin-3, claudin-10, and claudin-19 were detected in RPE tight junctions. VEGF was secreted in equal amounts across the apical and basolateral membranes, but the apical membrane was more active in endocytosing and degrading VEGF. Exogenous VEGF and mPEG crossed the RPE monolayer by transcytosis, predominantly in the apical-to-basal direction. RPE tight junctions were selective for K+, but did not discriminate between Na+ and Cl−. VEGF, bevacizumab, and ranibizumab had minimal effects on TER, permeation of mPEG, and selectivity for K+, Na+, and Cl−. They had minimal effects on the expression and distribution of the claudins. Conclusions. RPE has mechanisms for maintaining low concentrations of VEGF in the subretinal space that include endocytosis and degradation and fluid-phase transcytosis in the apical-to-basal direction. RPE tight junctions are selective for K+ over Na+ and Cl−. Permeability and selectivity of the junctions are not affected by VEGF, bevacizumab, or ranibizumab. PMID:20042644

  18. Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof

    DOEpatents

    Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

    2014-05-27

    A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

  19. Antioxidation performance of poly(vinyl alcohol) modified poly(vinylidene fluoride) membranes

    NASA Astrophysics Data System (ADS)

    Wang, Daohui; Li, Xianfeng; Li, Qing; Liu, Zhen; Li, Nana; Huang, Qinglin; Zhang, Yufeng; Xiao, Changfa

    2018-03-01

    Commercial poly(vinylidene fluoride) (PVDF) membranes were modified by dip-coating and crosslinking hydrophilic poly(vinyl alcohol) (PVA) on the membrane surface. The antioxidation performance of the modified PVDF membranes was evaluated via exposing the modified membranes to sodium hypochlorite and potassium permanganate solutions for 5-30 days, respectively. The evaluation was based on the influences of the two oxidants on the permeability, rejection, and hydrophility of the modified membranes, which were characterized by water flux, ink rejection, water contact angle, x-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and x-ray diffraction (XRD) measurements. The XPS and water contact angle results show that the hydrophilicity of PVDF membranes was significantly improved when PVA was crosslinked on the surface of PVDF membranes. When the modified membranes had been treated with sodium hypochlorite or potassium permanganate for 30 days, the permeability and hydrophilicity were basically maintained and the rejection was slightly decreased. XPS and XRD indicated that some of PVAs coated on the membrane surface could be oxidized and peeled.

  20. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  1. The Endoplasmic Reticulum Membrane Is Permeable to Small Molecules

    PubMed Central

    Le Gall, Sylvie; Neuhof, Andrea; Rapoport, Tom

    2004-01-01

    The lumen of the endoplasmic reticulum (ER) differs from the cytosol in its content of ions and other small molecules, but it is unclear whether the ER membrane is as impermeable as other membranes in the cell. Here, we have tested the permeability of the ER membrane to small, nonphysiological molecules. We report that isolated ER vesicles allow different chemical modification reagents to pass from the outside into the lumen with little hindrance. In permeabilized cells, the ER membrane allows the passage of a small, charged modification reagent that is unable to cross the plasma membrane or the lysosomal and trans-Golgi membranes. A larger polar reagent of ∼5 kDa is unable to pass through the ER membrane. Permeation of the small molecules is passive because it occurs at low temperature in the absence of energy. These data indicate that the ER membrane is significantly more leaky than other cellular membranes, a property that may be required for protein folding and other functions of the ER. PMID:14617815

  2. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    PubMed

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  3. Effects of PVDF concentration on the properties of PVDF membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Simamora, A. L.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Polyvinylideneflouride (PVDF) is a good polymeric material for preparing ultrafiltration and microfiltration membranes due to its high mechanical properties and chemical resistance. The objective of this work is to study the effects of PVDF concentration on the membrane properties such as mechanical strength, permeability of water and permselectivity of T-500 and T-2000 dextran solutions. These membranes were also characterized by contact angle determination and its morphology was observed by scanning electron microscopy (SEM). From the experimental data, it can be concluded that PVDF concentration affects the surface properties, permeability and permselectivity of the produced membranes. Higher PVDF concentrations results in higher hydrophobicity, mechanical properties and rejection towards T-500 and T-2000 dextrans, but lower water flux.

  4. The Acrosome Reaction: A Historical Perspective.

    PubMed

    Okabe, Masaru

    2016-01-01

    Acrosome reaction is often referred to as acrosomal exocytosis, but it differs significantly from normal exocytosis. While the vesicle membrane initially holding excreting molecules remains on the cell surface during exocytosis, the outer acrosomal membrane and plasma membrane are lost by forming vesicles during acrosome reaction. In this context, the latter process resembles a release of exosome. However, recent experimental data indicate that the most important roles of acrosome reaction lie not in the release of acrosomal contents (or "vesiculated" plasma and outer acrosomal membrane complexes) but rather in changes in sperm membrane. This review describes the mechanism of fertilization vis-a-vis sperm membrane change, with a brief historical overview of the half-century study of acrosome reaction.

  5. Octopus microvasculature: permeability to ferritin and carbon.

    PubMed

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  6. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one.

    PubMed

    Dahan, Arik; Beig, Avital; Lindley, David; Miller, Jonathan M

    2016-06-01

    Poor aqueous solubility is a major challenge in today's biopharmaceutics. While solubility-enabling formulations can significantly increase the apparent solubility of the drug, the concomitant effect on the drug's apparent permeability has been largely overlooked. The mathematical equation to describe the membrane permeability of a drug comprises the membrane/aqueous partition coefficient, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggesting that the solubility and the permeability are closely related, exhibit a certain interplay between them, and treating the one irrespectively of the other may be insufficient. In this article, an overview of this solubility-permeability interplay is provided, and the available data is analyzed in the context of the effort to maximize the overall drug exposure. Overall, depending on the type of solubility-permeability interplay, the permeability may decrease, remain unchanged, and even increase, in a way that may critically affect the formulation capability to improve the overall absorption. Therefore, an intelligent design of solubility-enabling formulation needs to consider both the solubility afforded by the formulation and the permeability in the new luminal environment resulting from the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells.

    PubMed

    de Ménorval, Marie-Amélie; Mir, Lluis M; Fernández, M Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.

  8. Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process.

    PubMed

    Siembida, B; Cornel, P; Krause, S; Zimmermann, B

    2010-07-01

    The research on fouling reduction and permeability loss in membrane bioreactors (MBRs) was carried out at two MBR pilot plants with synthetic and real wastewater. On the one hand, the effect of mechanical cleaning with an abrasive granular material on the performance of a submerged MBR process was tested. Additionally, scanning electron microscopy (SEM) measurements and integrity tests were conducted to check whether the membrane material was damaged by the granulate.The results indicate that the fouling layer formation was significantly reduced by abrasion using the granular material. This technique allowed a long-term operation of more than 600 days at a flux up to 40 L/(m2 h) without chemical cleaning of the membranes. Moreover, it was demonstrated that the membrane bioreactor (MBR) with granulate could be operated with more than 20% higher flux compared to a conventional MBR operation. SEM images and integrity tests showed that in consequence of abrasive cleaning, the granular material left brush marks on the membrane surface, however, the membrane function was not affected.In a parallel experimental set up, the impact of the operationally defined "truly soluble fraction" <0.04 microm from wastewater and activated sludge on the ultrafiltration membrane fouling characteristics was investigated. It was shown that the permeability loss was caused predominantly by the colloidal fraction >0.04 microm rather than by the dissolved fraction of wastewater and activated sludge.

  9. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    PubMed Central

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  10. Direct visualization of the arterial wall water permeability barrier using CARS microscopy

    PubMed Central

    Lucotte, Bertrand M.; Powell, Chloe; Knutson, Jay R.; Combs, Christian A.; Malide, Daniela; Yu, Zu-Xi; Knepper, Mark; Patel, Keval D.; Pielach, Anna; Johnson, Errin; Borysova, Lyudmyla; Balaban, Robert S.

    2017-01-01

    The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies. PMID:28373558

  11. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics.

    PubMed

    Karumathil, Deepti P; Nair, Meera Surendran; Gaffney, James; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2018-01-01

    Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii . This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans -cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii 's resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics ( blaP ), efflux pumps ( adeABC ), and multi-drug resistant protein ( mdrp ) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics ( P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC ( P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies.

  12. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation.

    PubMed

    Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K

    2010-01-01

    Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. Copyright 2009 American Institute of Chemical Engineers

  13. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwasmore » prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.« less

  14. Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans.

    PubMed

    Clock, Sarah A; Planet, Paul J; Perez, Brenda A; Figurski, David H

    2008-02-01

    Prokaryotic secretion relies on proteins that are widely conserved, including NTPases and secretins, and on proteins that are system specific. The Tad secretion system in Aggregatibacter actinomycetemcomitans is dedicated to the assembly and export of Flp pili, which are needed for tight adherence. Consistent with predictions that RcpA forms the multimeric outer membrane secretion channel (secretin) of the Flp pilus biogenesis apparatus, we observed the RcpA protein in multimers that were stable in the presence of detergent and found that rcpA and its closely related homologs form a novel and distinct subfamily within a well-supported gene phylogeny of the entire secretin gene superfamily. We also found that rcpA-like genes were always linked to Aggregatibacter rcpB- or Caulobacter cpaD-like genes. Using antisera, we determined the localization and gross abundances of conserved (RcpA and TadC) and unique (RcpB, RcpC, and TadD) Tad proteins. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, localized to the bacterial outer membrane. RcpA, RcpC, and TadD were also found in the inner membrane, while TadC localized exclusively to the inner membrane. The RcpA secretin was necessary for wild-type abundances of RcpB and RcpC, and TadC was required for normal levels of all three Rcp proteins. TadC abundance defects were observed in rcpA and rcpC mutants. TadD production was essential for wild-type RcpA and RcpB abundances, and RcpA did not multimerize or localize to the outer membrane without the expression of TadD. These data indicate that membrane proteins TadC and TadD may influence the assembly, transport, and/or function of individual outer membrane Rcp proteins.

  15. Heat stress dictates microbial lipid composition in hydrothermal marine sediments

    NASA Astrophysics Data System (ADS)

    Sollich, M.; Yoshinaga, M. Y.; Häusler, S.; Hinrichs, K. U.; Bühring, S. I.

    2016-02-01

    Abundant and diverse microbial communities inhabit hydrothermal marine sediments. Since ion permeability of membranes increases with temperature archaea and bacteria that use proton/sodium as coupling ions for bioenergetics must constantly adjust their cytoplasmic membrane permeability, which in turn is mostly controlled by the lipid composition. Here, we investigated a thermal gradient across a marine sediment field (ranging from 18 to over 100°C) and tested the concept that membrane lipids provide a major biochemical basis for cellular bioenergetics of archaea and bacteria under stressful conditions. Reflecting the lower ion permeability of the ether-linked isoprenoidal lipids, we found that archaea dominate over bacteria in sediments of >50 °C. Moreover, a detailed examination of the molecular lipid species revealed a quandary: low membrane permeability concomitantly with increased fluidity is required for energy conservation of both archaea and bacteria under heat stress. For instance, bacterial fatty acids were found to increase chain length in concert with a higher degree of unsaturation at elevated sediment temperatures while archaeal tetraethers were observed to show a higher degree of bulking (e.g. methylation and H-shaped) and fluidity (i.e. cyclization) under elevated temperatures. In addition, our data indicate that strong intermolecular hydrogen bonding at the headgroup level of archaeal glycolipids and bacterial sphingolipids may provide ideal membrane stability to attain the required balance between low permeability and a more fluidized configuration. For example, sphingolipids may stabilize bacterial phospholipids into lipid domains, enabling bacteria to thrive in heated sediments under unfavorable thermodynamic conditions. The scientific marriage of lipidomics and bioenergetics described here provides a new dimension for understanding microbial life in natural environments.

  16. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration.

    PubMed

    Issaoui, Mansour; Limousy, Lionel; Lebeau, Bénédicte; Bouaziz, Jamel; Fourati, Mohieddine

    2017-04-01

    Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone. It has been shown that the addition of an appropriate amount of starch to the ceramic paste leads to obtaining membrane supports with the desired porosity. Indeed, the water permeability increased significantly from 20 to 612 L h -1  m -2  bar -1 for samples without and with 20 wt% of starch, respectively, as well as the open porosity, the apparent porosity, and the pore size distribution. The bending strength decreased slightly and reached about 4 MPa for samples with the highest starch amounts. On the other hand, the incorporation of sand in a mixture of kaolin + 10 wt% starch increased the mechanical strength and the water permeability. The samples containing 3 wt% of sand exhibited a bending strength four times higher than the supports without sand; the water permeability measured was about 221 L h -1  m -2  bar -1 . These elaborated tubular supports for membrane are found to be suitable for solution concentration; they were applied for algal solution and are also easily cleaned by water.

  17. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  18. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria

    PubMed Central

    Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron

    2004-01-01

    Insertion of β-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38–Tob55 core complex binds precursors of β-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of β-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of β-barrel proteins of mitochondria. PMID:15205677

  19. An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export.

    PubMed

    Freudl, R; Schwarz, H; Stierhof, Y D; Gamon, K; Hindennach, I; Henning, U

    1986-08-25

    Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane.

  20. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  1. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  2. Global survey of Klebsiella pneumoniae major porins from ertapenem non-susceptible isolates lacking carbapenemases.

    PubMed

    Wise, Mark G; Horvath, Elizabeth; Young, Katherine; Sahm, Daniel F; Kazmierczak, Krystyna M

    2018-03-01

    To understand the diversity of porin disruption in Klebsiella pneumoniae, the major outer membrane protein (OMP) porins, OmpK35 and OmpK36, were examined in a set of isolates that did not harbour traditional carbapenem-hydrolysing enzymes, but nevertheless tested non-susceptible to ertapenem. A world-wide collection of Klebsiella pneumoniae isolates that were part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance project over the years 2008-2014 were characterised with regard to their β-lactamase gene carriage and potential permeability defects. Four hundred and eighty-seven isolates that did not carry carbapenemase genes, but were non-susceptible to ertapenem, were investigated by sequence analysis of the genes encoding OmpK35 and OmpK36. Isolates without obvious genetic lesions in either major porin gene were further examined by outer membrane protein SDS-PAGE. The majority of isolates, 83.0 % (404/487), exhibited clear genetic disruption in either or both of the ompK35 and ompK36 genes. Among the proportion of the collection with the highest ertapenem MIC value (>4 mg l -1 ), 60.5 % (115/190) showed mutation in both porin genes. Isolates without obvious genetic mutations were examined by SDS-PAGE, and 90.4 % (75/83) were found to lack or show altered expression of at least one of the major OMPs when compared to an ertapenem sensitive control strain. This study illustrates that porin deficiency in Klebsiella pneumoniae is a widespread phenomenon, and in combination with ESBLs and/or AmpC enzymes, likely accounts for the elevated ertapenem MICs observed in this study.

  3. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure.

    PubMed

    Anand, Arvind; Luthra, Amit; Dunham-Ems, Star; Caimano, Melissa J; Karanian, Carson; LeDoyt, Morgan; Cruz, Adriana R; Salazar, Juan C; Radolf, Justin D

    2012-05-01

    Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.

  4. Dust-tolerant electrical connector

    NASA Technical Reports Server (NTRS)

    Sadick, Shazad (Inventor); Herman, Jason (Inventor); Roberts, Dustyn (Inventor)

    2011-01-01

    A connector assembly includes releasably mateable plug and receptacle units. At least one socket is enclosed within the receptacle unit and is aligned with at least one permeable membrane disposed in the front end of the receptacle unit. The plug unit includes a body slidably mounted within a longitudinal bore therein. At least one pin extends from the front end of the body and is aligned with at least one permeable membrane disposed in the front end of the plug unit. The plug unit is biased toward a first, de-mate position in which the body is extended rearwardly such that the pin is enclosed with the plug unit and is slidable to a second, mate position in which the body is compressed forwardly such that the pin projects through the permeable membranes of the plug and receptacle units to electrically connect with the socket.

  5. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage

    PubMed Central

    Manni, Marco M; Tiberti, Marion L; Pagnotta, Sophie; Barelli, Hélène; Gautier, Romain

    2018-01-01

    Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions. PMID:29543154

  6. A Teorell oscillator system with fine pore membranes.

    PubMed Central

    Langer, P; Page, K R; Wiedner, G

    1981-01-01

    A Teorell membrane oscillator system has been investigated theoretically and experimentally. Instead of the broad pore (e.g., glass sinter) membranes used by Teorell and other investigators, we used membranes of a hydrodynamic permeability lower by factor of 10(3)-10(5) and a fixed ion concentration higher by a factor of 10(2)-10(5). A system with such membranes was thought to be a more adequate analogue of excitable biological tissues (for which the Teorell oscillator had been presented as a model). Stationary state voltage-current curves were recorded, and flip-flops were only found in membranes whose hydrodynamic permeability was above a certain value. A theoretical description, agreeing closely with the experimental findings, is given in terms of the Nernst-Planck-Schlögl equations; flip-flops are predicted only if the hydrodynamic permeability is above the fixed ion concentration is below a critical value. These values depend on the hydrostatic pressure and on the ratio of the cation and anion diffusion coefficient in the membrane, and they are found to be far beyond (approximately 3 orders of magnitude) the data for membranes used by others in similar experiments. Although our theoretical analysis demonstrates that the Teorell mechanism is ineligible as a source of excitability in those biological systems for which sufficient data ate available to permit comparison, the membrane properties for which the theory predicts flip-flops are such that it cannot be excluded a priori. PMID:7284557

  7. Distinct constrictive processes, separated in time and space, divide caulobacter inner and outer membranes.

    PubMed

    Judd, Ellen M; Comolli, Luis R; Chen, Joseph C; Downing, Kenneth H; Moerner, W E; McAdams, Harley H

    2005-10-01

    Cryoelectron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner membrane (IM) and then the outer membrane (OM) in a manner distinctly different from that of septum-forming bacteria. FLIP experiments had previously shown cytoplasmic compartmentalization (when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments) occurring 18 min before daughter cell separation in a 135-min cell cycle so the two constrictive processes are separated in both time and space. In the very latest stages of both IM and OM constriction, short membrane tether structures are observed. The smallest observed pre-fission tethers were 60 nm in diameter for both the inner and outer membranes. Here, we also used FLIP experiments to show that both membrane-bound and periplasmic fluorescent proteins diffuse freely through the FtsZ ring during most of the constriction procession.

  8. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  9. Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.

    PubMed

    Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L; Greenan, Garrett; Ovchinnikov, Sergey; Henderson, Ian R; Cox, Jeffery S; Vale, Ronald D

    2017-04-06

    How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Functional characterization of ExFadLO, an outer membrane protein required for exporting oxygenated long-chain fatty acids in Pseudomonas aeruginosa.

    PubMed

    Martínez, Eriel; Estupiñán, Mónica; Pastor, F I Javier; Busquets, Montserrat; Díaz, Pilar; Manresa, Angeles

    2013-02-01

    Bacterial proteins of the FadL family have frequently been associated to the uptake of exogenous hydrophobic substrates. However, their outer membrane location and involvement in substrate uptake have been inferred mainly from sequence similarity to Escherichia coli FadL, the first well-characterized outer membrane transporters of Long-Chain Fatty Acids (LCFAs) in bacteria. Here we report the functional characterization of a Pseudomonas aeruginosa outer membrane protein (ORF PA1288) showing similarities to the members of the FadL family, for which we propose the name ExFadLO. We demonstrate herein that this protein is required to export LCFAs 10-HOME and 7,10-DiHOME, derived from a diol synthase oxygenation activity on oleic acid, from the periplasm to the extracellular medium. Accumulation of 10-HOME and 7,10-DiHOME in the extracellular medium of P. aeruginosa was abolished by a transposon insertion mutation in exFadLO (ExFadLO¯ mutant). However, intact periplasm diol synthase activity was found in this mutant, indicating that ExFadLO participates in the export of these oxygenated LCFAs across the outer membrane. The capacity of ExFadLO¯ mutant to export 10-HOME and 7,10-DiHOME was recovered after complementation with a wild-type, plasmid-expressed ExFadLO protein. A western blot assay with a variant of ExFadLO tagged with a V5 epitope confirmed the location of ExFadLO in the bacterial outer membrane under the experimental conditions tested. Our results provide the first evidence that FadL family proteins, known to be involved in the uptake of hydrophobic substrates from the extracellular environment, also function as secretion elements for metabolites of biological relevance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    PubMed

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms.

  12. Permeability of DOPC bilayers under photoinduced oxidation: Sensitivity to photosensitizer.

    PubMed

    Bacellar, Isabel O L; Baptista, Mauricio S; Junqueira, Helena C; Wainwright, Mark; Thalmann, Fabrice; Marques, Carlos M; Schroder, André P

    2018-06-07

    The modification of lipid bilayer permeability is one of the most striking yet poorly understood physical transformations that follow photoinduced lipid oxidation. We have recently proposed that the increase of permeability of photooxidized 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers is controlled by the time required by the oxidized lipid species to diffuse and aggregate into pores. Here we further probe this mechanism by studying photosensitization of DOPC membranes by methylene blue (MB) and DO15, a more hydrophobic phenothiazinium photosensitizer, under different irradiation powers. Our results not only reveal the interplay between the production rate and the diffusion of the oxidized lipids, but highlight also the importance of photosensitizer localization in the kinetics of oxidized membrane permeability. Copyright © 2018. Published by Elsevier B.V.

  13. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  14. Consequences of Location-Dependent Organ of Corti Micro-Mechanics

    PubMed Central

    Liu, Yanju; Gracewski, Sheryl M.; Nam, Jong-Hoon

    2015-01-01

    The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location. PMID:26317521

  15. Plasma membrane aquaporins mediates vesicle stability in broccoli

    PubMed Central

    Martínez-Ballesta, Maria del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L.; Teruel, José A.

    2018-01-01

    The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability. PMID:29420651

  16. The amphiphilic action of vasopressin and analogues on the plasma membrane of Amoeba proteus.

    PubMed

    Mayers, P; Couillard, P

    1990-10-01

    Arginine (AVP) and lysine vasopressin induce a weak but statistically significant increase in the water permeability of Amoeba proteus plasmalemma. Vasotocin and deaminovasopressin, which share the hydroosmotic properties of AVP on classical vertebrate systems, are without effects on Amoeba while SKF 101926, a synthetic AVP antagonist, is even more effective than the parent compound. Theophyllin and dibutyryl-cAMP do not affect AVP action on Amoeba. Lithium, oxytocin, and carbachol are also without effect. Thus, it is unlikely that either V2 (cAMP) or V1 (phosphatidylinositol choline) receptors are involved. A clear correlation has been found between the amphiphilic character of tested peptides and their effect on Amoeba water permeability. Classical amphiphilic peptides, melittin, mastoparan, and fragment 1-8 of alpha-neoendorphin, also increased water permeability in Amoeba. It is known that vasopressin can interact with artificial lipid membranes, increasing their permeability to water. We propose that amphiphilic members of the AVP family interact directly with the lipid phase of the Amoeba membrane. Their incorporation within the lipid bilayer may cause local disruptions or may create micellar water channels as shown for other amphiphilic proteins. Our observations provide a model for the early evolution of peptide hormone systems, preceding the appearance of specific membrane receptors and associated second messenger amplifying mechanisms.

  17. Enhanced graphene oxide membranes and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Yongsoon; Gotthold, David W.; Fifield, Leonard S.

    A method for making a graphene oxide membrane and a resulting free-standing graphene oxide membrane that provides desired qualities of water permeability and selectivity at larger sizes, thinner cross sections, and with increased ruggedness as compared to existing membranes and processes.

  18. Prestin modulates mechanics and electromechanical force of the plasma membrane.

    PubMed

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A; Brownell, William E; Anvari, Bahman

    2007-07-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane.

  19. Prestin Modulates Mechanics and Electromechanical Force of the Plasma Membrane

    PubMed Central

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A.; Brownell, William E.; Anvari, Bahman

    2007-01-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane. PMID:17468166

  20. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-02

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.

Top