Sample records for outer meniscus cells

  1. Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus.

    PubMed

    Upton, Maureen L; Guilak, Farshid; Laursen, Tod A; Setton, Lori A

    2006-06-01

    The knee meniscus exhibits significant spatial variations in biochemical composition and cell morphology that reflect distinct phenotypes of cells located in the radial inner and outer regions. Associated with these cell phenotypes is a spatially heterogeneous microstructure and mechanical environment with the innermost regions experiencing higher fluid pressures and lower tensile strains than the outer regions. It is presently unknown, however, how meniscus tissue mechanics correlate with the local micromechanical environment of cells. In this study, theoretical models were developed to study mechanics of inner and outer meniscus cells with varying geometries. The results for an applied biaxial strain predict significant regional differences in the cellular mechanical environment with evidence of tensile strains along the collagen fiber direction of approximately 0.07 for the rounded inner cells, as compared to levels of 0.02-0.04 for the elongated outer meniscus cells. The results demonstrate an important mechanical role of extracellular matrix anisotropy and cell morphology in regulating the region-specific micromechanics of meniscus cells, that may further play a role in modulating cellular responses to mechanical stimuli.

  2. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    PubMed

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.

  3. Dynamic hydrostatic pressure enhances differentially the chondrogenesis of meniscal cells from the inner and outer zone.

    PubMed

    Zellner, J; Mueller, M; Xin, Y; Krutsch, W; Brandl, A; Kujat, R; Nerlich, M; Angele, P

    2015-06-01

    This study analyses the influence of dynamic hydrostatic pressure on chondrogenesis of human meniscus-derived fibrochondrocytes and explores the differences in chondrogenic differentiation under loading conditions between cells derived from the avascular inner zone and vascularized outer region of the meniscus. Aggregates of human fibrochondrocytes with cell origin from the inner region or with cell origin from the outer region were generated. From the two groups of either cell origin, aggregates were treated with dynamic hydrostatic pressure (1Hz for 4h; 0.55-5.03MPa, cyclic sinusoidal) from day 1 to day 7. The other aggregates served as unloaded controls. At day 0, 7, 14 and 21 aggregates were harvested for evaluation including histology, immunostaining and ELISA analysis for glycosaminoglycan (GAG) and collagen II. Loaded aggregates were found to be macroscopically larger and revealed immunohistochemically enhanced chondrogenesis compared to the corresponding controls. Loaded or non-loaded meniscal cells from the outer zone showed a higher potential and earlier onset of chondrogenesis compared to the cells from the inner part of the meniscus. This study suggests that intrinsic factors like cell properties in the different areas of the meniscus and their reaction on mechanical load might play important roles in designing Tissue Engineering strategies for meniscal repair in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells.

    PubMed

    Furumatsu, Takayuki; Ozaki, Toshifumi

    2017-01-01

    The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.

  5. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth

    PubMed Central

    Di Giancamillo, Alessia; Deponti, Daniela; Addis, Alessandro; Domeneghini, Cinzia; Peretti, Giuseppe M

    2014-01-01

    The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner–outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P < 0.01 both); moreover, this cartilaginous matrix strongly increases in the inner avascular and intermediate zone, as a consequence of a specific differentiation of meniscal cells towards a cartilaginous phenotype (collagen 2, P < 0.01). The obtained data add new information on the changes that accompany meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. PMID:25216283

  6. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth.

    PubMed

    Di Giancamillo, Alessia; Deponti, Daniela; Addis, Alessandro; Domeneghini, Cinzia; Peretti, Giuseppe M

    2014-10-01

    The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner-outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P < 0.01 both); moreover, this cartilaginous matrix strongly increases in the inner avascular and intermediate zone, as a consequence of a specific differentiation of meniscal cells towards a cartilaginous phenotype (collagen 2, P < 0.01). The obtained data add new information on the changes that accompany meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep.

    PubMed

    Lee, Chang H; Rodeo, Scott A; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat; Mao, Jeremy J

    2014-12-10

    Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor-β3 (TGFβ3) from a three-dimensional (3D)-printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D-printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D-printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. Copyright © 2014, American Association for the Advancement of Science.

  8. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions.

    PubMed

    Croutze, Roger; Jomha, Nadr; Uludag, Hasan; Adesida, Adetola

    2013-12-13

    Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p < 0.05) and cartilage oligomeric matrix protein, (COMP) (p < 0.05) compared to hypoxic expanded and cultured constructs. Accumulation of ECM rich in collagen type II and sulfated proteoglycan was evident in normoxic cultured scaffolds compared to those under low oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro.

  9. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  10. Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus.

    PubMed

    Marsano, Anna; Wendt, David; Raiteri, Roberto; Gottardi, Riccardo; Stolz, Martin; Wirz, Dieter; Daniels, Alma U; Salter, Donald; Jakob, Marcel; Quinn, Thomas M; Martin, Ivan

    2006-12-01

    The aim of this study was to demonstrate that differences in the local composition of bi-zonal fibrocartilaginous tissues result in different local biomechanical properties in compression and tension. Bovine articular chondrocytes were loaded into hyaluronan-based meshes (HYAFF-11) and cultured for 4 weeks in mixed flask, a rotary Cell Culture System (RCCS), or statically. Resulting tissues were assessed histologically, immunohistochemically, by scanning electron microscopy and mechanically in different regions. Local mechanical analyses in compression and tension were performed by indentation-type scanning force microscopy and by tensile tests on punched out concentric rings, respectively. Tissues cultured in mixed flask or RCCS displayed an outer region positively stained for versican and type I collagen, and an inner region positively stained for glycosaminoglycans and types I and II collagen. The outer fibrocartilaginous capsule included bundles (up to 2 microm diameter) of collagen fibers and was stiffer in tension (up to 3.6-fold higher elastic modulus), whereas the inner region was stiffer in compression (up to 3.8-fold higher elastic modulus). Instead, molecule distribution and mechanical properties were similar in the outer and inner regions of statically grown tissues. In conclusion, exposure of articular chondrocyte-based constructs to hydrodynamic flow generated tissues with locally different composition and mechanical properties, resembling some aspects of the complex structure and function of the outer and inner zones of native meniscus.

  11. Method of making tapered capillary tips with constant inner diameters

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.

  12. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro

    PubMed Central

    Hennerbichler, Alfred; Moutos, Franklin T.; Hennerbichler, Diana; Weinberg, J. Brice; Guilak, Farshid

    2011-01-01

    OBJECTIVE Injury or removal of the knee meniscus leads to progressive joint degeneration, and current surgical therapies for meniscal tears seek to maximally preserve meniscal structure and function. However, the factors that influence intrinsic repair of the meniscus are not well understood. The goal of this study was to investigate the capacity of meniscus tissue to repair a simulated defect in vitro and to examine the effect of pro-inflammatory cytokines on this process. METHODS Cylindrical explants were harvested from the outer one-third of medial porcine menisci. To simulate a full-thickness defect, a central core was removed and reinserted immediately into the defect. Explants were cultured for 2, 4, or 6 weeks in serum-containing media in the presence or absence of interleukin-1 (IL-1) or tumor necrosis factor alpha (TNF-alpha), and meniscal repair was investigated using mechanical testing and fluorescence confocal microscopy. RESULTS Meniscal lesions in untreated samples showed a significant capacity for intrinsic repair in vitro, with increasing cell accumulation and repair strength over time in culture. In the presence of IL-1 or TNF-alpha, no repair was observed despite the presence of abundant viable cells. CONCLUSIONS This study demonstrates that the meniscus exhibits an intrinsic repair response in vitro. However, the presence of pro-inflammatory cytokines completely inhibited repair. These findings suggest that increased levels of pro-inflammatory cytokines post-injury or under arthritic conditions may inhibit meniscal repair. Therefore, inhibition of these cytokines may provide a means of accelerating repair of damaged or injured menisci in vivo. PMID:17448702

  13. Age-related modulation of angiogenesis-regulating factors in the swine meniscus.

    PubMed

    Di Giancamillo, Alessia; Deponti, Daniela; Modina, Silvia; Tessaro, Irene; Domeneghini, Cinzia; Peretti, Giuseppe Maria

    2017-11-01

    An in-depth knowledge of the native meniscus morphology and biomechanics in its different areas is essential to develop an engineered tissue. Meniscus is characterized by a great regional variation in extracellular matrix components and in vascularization. Then, the aim of this work was to characterize the expression of factors involved in angiogenesis in different areas during meniscus maturation in pigs. The menisci were removed from the knee joints of neonatal, young and adult pigs, and they were divided into the inner, intermediate and outer areas. Vascular characterization and meniscal maturation were evaluated by immunohistochemistry and Western blot analysis. In particular, expression of the angiogenic factor Vascular Endothelial Growth Factor (VEGF) and the anti-angiogenic marker Endostatin (ENDO) was analysed, as well as the vascular endothelial cadherin (Ve-CAD). In addition, expression of Collagen II (COLL II) and SOX9 was examined, as markers of the fibro-cartilaginous differentiation. Expression of VEGF and Ve-CAD had a similar pattern in all animals, with a significant increase from the inner to the outer part of the meniscus. Pooling the zones, expression of both proteins was significantly higher in the neonatal meniscus than in young and adult menisci. Conversely, the young meniscus revealed a significantly higher expression of ENDO compared to the neonatal and adult ones. Analysis of tissue maturation markers showed an increase in COLL II and a decrease in SOX9 expression with age. These preliminary data highlight some of the changes that occur in the swine meniscus during growth, in particular the ensemble of regulatory factors involved in angiogenesis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Cell-Based Strategies for Meniscus Tissue Engineering

    PubMed Central

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  15. Changes in MR Relaxation Times of the Meniscus With Acute Loading: An In Vivo Pilot Study in Knee Osteoarthritis

    PubMed Central

    Subburaj, Karupppasamy; Souza, Richard B.; Wyman, Bradley T.; Le Graverand-Gastineau, Marie-Pierre Hellio; Li, Xiaojuan; Link, Thomas M.; Majumdar, Sharmila

    2014-01-01

    Purpose To prospectively evaluate changes in T1ρ and T2 relaxation times in the meniscal body with acute loading using MRI in osteoarthritic knees and to compare these findings with those of age-matched healthy controls. Materials and Methods Female subjects above 40 years of age with (N1 = 20) and without osteoarthritis (OA) (N2 = 10) were imaged on a 3 Tesla MR scanner using a custom made loading device. MR images were acquired, with the knee flexed at 20°, with and without a compressive load of 50% of the subject's bodyweight. The subjects were categorized based on the radiographic evidence of OA. Three different zones (outer, middle, and inner) of meniscus body were defined (each occupying 1/3rd the width). After adjusting for age and body mass index in the general linear regression model, repeated measures analysis of variance was used to detect significant differences in T1ρ and T2 with and without loading. Results In the unloaded condition, the average T1ρ and T2 times were elevated in the outer and middle zones of the medial meniscus in OA subjects compared with the controls. In the loaded condition, T1ρ and T2 times of the outer zone of the medial meniscus was significantly elevated in OA subjects compared with controls. Finally the change (from unloaded to loaded) was significantly higher in controls than OA subjects (15.1% versus 8.3%; P = 0.039 for ΔT1ρ, and 11.5% versus 6.9%, P = 0.049 for ΔT2). Conclusion These findings suggest that while the OA process appears to affect the relaxation times of all regions within the meniscus, it may affect some regions sooner or to a greater degree. Furthermore, the differences in the change in relaxation times between unloaded and loaded conditions may reveal evidence about load transmission failure of the outer zone of the medial meniscus in subjects with knee OA. It is possible that these metrics (ΔT1ρ and ΔT2) may be valuable as an early biomechanical biomarker, which could be used to predict load transmission to the underlying articular cartilage. PMID:24347310

  16. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle [Theta] that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecularmore » forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan [Theta]=7.48 Ca[sup 1/3] for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca[sup 1/3] dependence occurs only at very low Ca, where the intermolecular forces become more important and tan [Theta] diverges slightly from the above asymptotic behavior toward lower values.« less

  17. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    PubMed

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  18. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    PubMed

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  19. Digital-Micromirror-Device Projection Printing System for Meniscus Tissue Engineering

    PubMed Central

    Grogan, Shawn P; Chung, Peter H; Soman, Pranav; Chen, Peter; Lotz, Martin K; Chen, Shaochen; D’Lima, Darryl D

    2013-01-01

    Meniscus degeneration due to age or injury can lead to osteoarthritis. Though promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal meniscus were seeded on the scaffolds. Cell viability was monitored, and neo-tissue formation was assessed by gene expression analysis and histology after two weeks in serum free culture with TGFβ1 (10ng/ml). Light, confocal and scanning electron microscopy was used to observe cell/GelMA interactions. Tensile mechanical testing was performed on unseeded, fresh scaffolds and two-week old cell-seeded and unseeded scaffolds. Two-week old cell/GelMA constructs were implanted into surgically created meniscus defects in an explant organ culture model. No cytotoxic effects were observed three weeks after implantation, and cells grew and aligned to the patterned GelMA strands. Gene expression profiles and histology indicated promotion of a fibrocartilage-like meniscus phenotype, and scaffold integration with repair tissue was observed in the explant model. We show that micropatterned GelMA scaffolds are non-toxic, produce organized cellular alignment, and promote meniscus-like tissue formation. Prefabrication of GelMA scaffolds with architectures mimicking meniscus collagen bundle organization shows promise for meniscal repair. Furthermore, the technique presented may be scaled to repair larger defects. PMID:23523536

  20. Digital micromirror device projection printing system for meniscus tissue engineering.

    PubMed

    Grogan, Shawn P; Chung, Peter H; Soman, Pranav; Chen, Peter; Lotz, Martin K; Chen, Shaochen; D'Lima, Darryl D

    2013-07-01

    Meniscus degeneration due to age or injury can lead to osteoarthritis. Although promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal meniscus were seeded on the scaffolds. Cell viability was monitored, and new tissue formation was assessed by gene expression analysis and histology after 2weeks in serum-free culture with transforming growth factor β1 (10ngml(-1)). Light, confocal and scanning electron microscopy were used to observe cell-GelMA interactions. Tensile mechanical testing was performed on unseeded, fresh scaffolds and 2-week-old cell-seeded and unseeded scaffolds. 2-week-old cell-GelMA constructs were implanted into surgically created meniscus defects in an explant organ culture model. No cytotoxic effects were observed 3weeks after implantation, and cells grew and aligned to the patterned GelMA strands. Gene expression profiles and histology indicated promotion of a fibrocartilage-like meniscus phenotype, and scaffold integration with repair tissue was observed in the explant model. We show that micropatterned GelMA scaffolds are non-toxic, produce organized cellular alignment, and promote meniscus-like tissue formation. Prefabrication of GelMA scaffolds with architectures mimicking the meniscus collagen bundle organization shows promise for meniscal repair. Furthermore, the technique presented may be scaled up to repair larger defects. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Tendon and ligament as novel cell sources for engineering the knee meniscus.

    PubMed

    Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A

    2016-12-01

    The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Tendon and ligament as novel cell sources for engineering the knee meniscus

    PubMed Central

    Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559

  3. Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus.

    PubMed

    Schumacher, Barbara L; Schmidt, Tannin A; Voegtline, Michael S; Chen, Albert C; Sah, Robert L

    2005-05-01

    Proteoglycan 4 (PRG4) is synthesized and secreted into the synovial fluid by articular chondrocytes and synovial cells, lining the cavity of joints. A thin layer of PRG4 is also present at the articular surface, where it appears to be involved in boundary lubrication. This study investigated if PRG4 is also synthesized and secreted by the cells within meniscus, and if PRG4 is also present in, and at the surface of, meniscus. PRG4 was visualized in sections of bovine calf menisci by immunohistochemistry. PRG4 was detected in two regions: (1) at the femoral and tibial surfaces of the meniscus, and within cells below these surfaces; and (2) within and near cells along the radial tie fibers and circumferential fibers. From meniscus tissue harvested from these surfaces, PRG4 was extracted with 4M GuHCl and quantified by ELISA. There was 0.20 +/- 0.01 and 0.25 +/- 0.04 microg PRG4/cm(2) area of lateral and medial meniscus surface, respectively. ELISA analysis of spent medium from other samples of meniscus surface tissue incubated in medium supplemented with serum and ascorbate showed that 8.1 +/- 1.1 microg PRG4/cm(2) area of meniscus surface was secreted over six days. These results demonstrate that PRG4 is synthesized and secreted by certain cell populations in the meniscus, and that PRG4 is present in the meniscus at surfaces and also internal fibers where it may contribute to boundary lubrication.

  4. Medial Meniscus Posterior Root Tear Repair Using a 2-Simple-Suture Pullout Technique.

    PubMed

    Samy, Tarek Mohamed; Nassar, Wael A M; Zakaria, Zeiad Mohamed; Farrag Abdelaziz, Ahmed Khaled

    2017-06-01

    Medial meniscus posterior root tear is one of the underestimated knee injuries in terms of incidence. Despite its grave sequelae, using simple but effective technique can maintain the native knee joint longevity. In the current note, a 2-simple-suture pullout technique was used to effectively reduce the meniscus posterior root to its anatomic position. The success of the technique depended on proper tool selection as well as tibial tunnel direction that allowed easier root suturing and better suture tensioning, without inducing any iatrogenic articular cartilage injury or meniscal tissue loss. Using anterior knee arthroscopy portals, anterolateral as a viewing portal and anteromedial as a working portal, a 7-mm tibial tunnel starting at Gerdy tubercle and ending at the medial meniscus posterior root bed was created. The 2 simple sutures were retrieved through the tunnel and tensioned and secured over a 12-mm-diameter washer at the tibial tunnel outer orifice. Anatomic reduction of the medial meniscus posterior root tear was confirmed arthroscopically intraoperatively and radiologically by postoperative magnetic resonance imaging.

  5. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    the development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be...cells, stem cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...changes that occur after injury. As a result, meniscal injuries are a common underlying cause of post-traumatic osteoarthritis . This is particularly

  6. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2016-09-01

    development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be key to...cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...common underlying cause of post- traumatic osteoarthritis . This is particularly striking in young, healthy individuals such as military personnel

  7. "Meniscus Sign" to Identify the Lenticule Edge in Small-Incision Lenticule Extraction.

    PubMed

    Titiyal, Jeewan S; Kaur, Manpreet; Brar, Anand S; Falera, Ruchita

    2018-06-01

    To describe our technique of lenticule edge identification in small-incision lenticule extraction using the "meniscus sign" to prevent lenticule misdissection. Femtosecond laser application for small-incision lenticule extraction was performed. A "double ring" was visible, signifying the edge of the cap cut (outer ring) and lenticule cut (inner ring). The anterior and posterior lamellar planes were delineated in 2 different directions. During creation of the posterior lamellar channel, the lenticule edge was slightly pushed away from the surgeon to create a gap between the inner ring (diameter of the lenticule cut) and the lenticule edge. The lenticule edge assumed a frilled wavy appearance, and the meniscus sign was observed as a gap between the lenticule edge and the inner ring. The meniscus-shaped gap served as a landmark to identify the lenticule edge, and the relationship between the frilled lenticule edge and surgical instruments further acted as a guide to identify the correct plane of dissection. This technique was successfully undertaken in 50 eyes of 25 patients. The meniscus sign was observed in all cases, and no case had cap lenticular adhesions. The meniscus sign helps to identify the lenticule edge and correct dissection planes and provides a visual landmark during the entire surgical procedure.

  8. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    pluripotent stem cells for osteoarthritis drug screening . Arthritis Rheumatol. 66, 3062–3072. Xia, Y., Zheng, S., Bidthanapally, A., 2008. Depth-dependent...the development of knee osteoarthritis (OA). New treatments centered on the stem /progenitor cell population resident within the adult meniscus will be...biology to develop a profile of repair cells in the adult meniscus, track meniscal stem /progenitor cell (MSPC) behavior within meniscus as function of

  9. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells

    PubMed Central

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E.; Du, Jiang; Jin, Sungho; Grogan, Shawn P.

    2016-01-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling “longitudinal tears” were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062

  10. Releasing the circumferential fixation of the medial meniscus does not affect its kinematics.

    PubMed

    Vrancken, A C T; van Tienen, T G; Hannink, G; Janssen, D; Verdonschot, N; Buma, P

    2014-12-01

    Meniscal functioning depends on the fixation between the meniscal horns and the surrounding tissues. It is unknown, however, whether the integration between the outer circumference of the medial meniscus and the knee capsule/medial collateral ligament also influences the biomechanical behavior of the meniscus. Therefore, we aimed to determine whether detaching and resuturing the circumferential fixation of the medial meniscus influence its kinematic pattern. Human cadaveric knee joints were flexed (0°-30°-60°-90°) in a knee loading rig, in neutral orientation and under internal and external tibial torques. Roentgen stereophotogrammetric analysis was used to determine the motion of the meniscus in anteroposterior (AP) and mediolateral (ML) directions. Three fixation conditions were evaluated: (I) intact, (II) detached and (III) resutured. Detaching and resuturing the circumferential fixation did not alter the meniscal motion pattern in either the AP or ML direction. Applying an additional internal tibial torque caused the medial meniscus to move slightly anteriorly, and an external torque caused a little posterior translation with respect to the neutral situation. These patterns did not change when the circumferential fixation condition was altered. This study demonstrated that the motion pattern of the medial meniscus is independent of its fixation to the knee capsule and medial collateral ligament. The outcomes of this study can be deployed to design the fixation strategy of a permanent meniscus prosthesis. As peripheral fixation is a complicated step during meniscal replacement, the surgical procedure is considerably simplified when non-resorbable implants do not require circumferential fixation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee. PMID:24592390

  12. Mechanobiology of the Meniscus

    PubMed Central

    McNulty, Amy L.; Guilak, Farshid

    2015-01-01

    The meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus. PMID:25731738

  13. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  14. Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus

    PubMed Central

    Vanderploeg, Eric J; Wilson, Christopher G; Imler, Stacy M; Ling, Carrie Hang-Yin; Levenston, Marc E

    2012-01-01

    A deeper understanding of the composition and organization of extracellular matrix molecules in native, healthy meniscus tissue is required to fully appreciate the degeneration that occurs in joint disease and the intricate environment in which an engineered meniscal graft would need to function. In this study, regional variations in the tissue-level and pericellular distributions of collagen types I, II and VI and the proteoglycans aggrecan, biglycan and decorin were examined in the juvenile bovine meniscus. The collagen networks were extensively, but not completely, colocalized, with tissue-level organization that varied with radial position across the meniscus. Type VI collagen exhibited close association with large bundles composed of type I and II collagen and, in contrast to type I and II collagen, was further concentrated in the pericellular matrix. Aggrecan was detected throughout the inner region of the meniscus but was restricted to the pericellular matrix and sheaths of collagen bundles in the middle and outer regions. The small proteoglycans biglycan and decorin exhibited regional variations in staining intensity but were consistently localized in the intra- and/or peri-cellular compartments. These results provide insight into the complex hierarchy of extracellular matrix organization in the meniscus and provide a framework for better understanding meniscal degeneration and disease progression and evaluating potential repair and regeneration strategies. PMID:22703476

  15. Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation?

    PubMed

    Zellner, Johannes; Pattappa, Girish; Koch, Matthias; Lang, Siegmund; Weber, Johannes; Pfeifer, Christian G; Mueller, Michael B; Kujat, Richard; Nerlich, Michael; Angele, Peter

    2017-10-10

    Treatment of meniscus tears within the avascular region represents a significant challenge, particularly in a situation of early osteoarthritis. Cell-based tissue engineering approaches have shown promising results. However, studies have not found a consensus on the appropriate autologous cell source in a clinical situation, specifically in a challenging degenerative environment. The present study sought to evaluate the appropriate cell source for autologous meniscal repair in a demanding setting of early osteoarthritis. A rabbit model was used to test autologous meniscal repair. Bone marrow and medial menisci were harvested 4 weeks prior to surgery. Bone marrow-derived mesenchymal stem cells (MSCs) and meniscal cells were isolated, expanded, and seeded onto collagen-hyaluronan scaffolds before implantation. A punch defect model was performed on the lateral meniscus and then a cell-seeded scaffold was press-fit into the defect. Following 6 or 12 weeks, gross joint morphology and OARSI grade were assessed, and menisci were harvested for macroscopic, histological, and immunohistochemical evaluation using a validated meniscus scoring system. In conjunction, human meniscal cells isolated from non-repairable bucket handle tears and human MSCs were expanded and, using the pellet culture model, assessed for their meniscus-like potential in a translational setting through collagen type I and II immunostaining, collagen type II enzyme-linked immunosorbent assay (ELISA), and gene expression analysis. After resections of the medial menisci, all knees showed early osteoarthritic changes (average OARSI grade 3.1). However, successful repair of meniscus punch defects was performed using either meniscal cells or MSCs. Gross joint assessment demonstrated donor site morbidity for meniscal cell treatment. Furthermore, human MSCs had significantly increased collagen type II gene expression and production compared to meniscal cells (p < 0.05). The regenerative potential of the meniscus by an autologous cell-based tissue engineering approach was shown even in a challenging setting of early osteoarthritis. Autologous MSCs and meniscal cells were found to have improved meniscal healing in an animal model, thus demonstrating their feasibility in a clinical setting. However, donor site morbidity, reduced availability, and reduced chondrogenic differentiation of human meniscal cells from debris of meniscal tears favors autologous MSCs for clinical use for cell-based meniscus regeneration.

  16. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    PubMed

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  17. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs.

    PubMed

    Koh, Rachel H; Jin, Yinji; Kang, Byung-Jae; Hwang, Nathaniel S

    2017-04-15

    Current meniscus tissue repairing strategies involve partial or total meniscectomy, followed by allograft transplantation or synthetic material implantation. However, allografts and synthetic implants have major drawbacks such as the limited supply of grafts and lack of integration into host tissue, respectively. In this study, we investigated the effects of conditioned medium (CM) from meniscal fibrochondrocytes and TGF-β3 on tonsil-derived mesenchymal stem cells (T-MSCs) for meniscus tissue engineering. CM-expanded T-MSCs were encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogels and cultured in chondrogenic medium containing TGF-β3. In vitro results indicate that CM-expanded cells followed by TGF-β3 exposure stimulated the expression of fibrocartilage-related genes (COL2, SOX9, ACAN, COL1) and production of extracellular matrix components. Histological assessment of in vitro and subcutaneously implanted in vivo constructs demonstrated that CM-expanded cells followed by TGF-β3 exposure resulted in highest cell proliferation, GAG accumulation, and collagen deposition. Furthermore, when implanted into meniscus defect model, CM treatment amplified the potential of TGF-β3 and induced complete regeneration. Conditioned medium derived from chondrocytes have been reported to effectively prime mesenchymal stem cells toward chondrogenic lineage. Type I collagen is the main component of meniscus extracellular matrix and hyaluronic acid is known to promote meniscus regeneration. In this manuscript, we investigated the effects of conditioned medium (CM) and transforming growth factor-β3 (TGF-β3) on tonsil-derived mesenchymal stem cells (T-MSCs) encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogel. We employed a novel source of conditioned medium, derived from meniscal fibrochondrocytes. Our in vitro and in vivo results collectively illustrate that CM-expanded cells followed by TGF-β3 exposure have the best potential for meniscus regeneration. This manuscript highlights a novel stem cell commitment strategy combined with biomaterials designs for meniscus regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    PubMed

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  19. New meniscus repair technique for peripheral tears near the posterior tibial attachment of the posterior horn of the medial meniscus.

    PubMed

    Park, In-Seop; Kim, Sung-Jae

    2006-08-01

    We introduce a suture technique to repair a peripheral tear near the posterior tibial attachment of the posterior horn. A suture hook was inserted through the posteromedial portal, and the peripheral capsular rim was penetrated from superior to inferior by the sharp hook. Both relay limbs were brought out through the posteromedial portal. The outer limb of the superior peripheral capsular rim was identified with a hemostat. An 18-gauge spinal needle loaded with a No. 0 polydioxanone suture (PDS) was introduced into the joint from the anteromedial portal; it was passed through the joint space until it penetrated the inner torn meniscus. The PDS suture loaded within the needle was pushed into the joint and picked up through the posteromedial portal. The needle was pulled out of the torn meniscus and readvanced over it while the suture was kept loaded. The other limb of the suture from the tip of the spinal needle was retrieved through the posteromedial portal. The initial PDS suture limb was hooked to the shuttle-relay system; it then was passed through the inner torn meniscus and the peripheral capsular rim. The suture limb exiting from the peripheral capsular rim was used as a post and was joined to the other suture limb to form a sliding knot.

  20. Continuous coating of silicon-on-ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.

    1980-01-01

    Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.

  1. A new method for meniscus repair using type I collagen scaffold and infrapatellar fat pad.

    PubMed

    Oda, Shuhei; Otsuki, Shuhei; Kurokawa, Yoshitaka; Hoshiyama, Yoshiaki; Nakajima, Mikio; Neo, Masashi

    2015-05-01

    The aim of this study was to investigate a new method for meniscal repair by combinative transplantation with type I collagen scaffold and infrapatellar fat pad. Two-mm cylindrical defects at the anterior part of bilateral medial menisci were prepared in nine Japanese white rabbits. The 18 knees were equally divided into three groups: I, no treatment; II, collagen scaffold transplantation; and III, collagen scaffold and infrapatellar fat pad transplantation. Another three rabbits (six knees) underwent sham surgery and served as controls. Rabbits were sacrificed at eight weeks after transplantation. Surface area of the medial meniscus was evaluated using macrophotographs. Ishida score for meniscal regeneration was used for assessment. To evaluate the composition of regenerated tissue, immunohistochemistry was analyzed with anti-type I and anti-type II collagen antibodies, and anti-Ki67 antibody. To investigate the effects of collagen scaffold on human meniscus, cells were isolated from human meniscus and infrapatellar fat pad, and cultured with collagen scaffold for three weeks. After that, gene expression was evaluated by using quantitative real-time polymerase chain reaction. In group I, the meniscus shrank anterior to posterior, and the surface area was significantly less than that of normal meniscus. However, the surface area was maintained in group III. Ishida score and Ki67-positive cell ratio in group III were significantly higher than that in any other group, and staining with type I and type II collagen was similar to that of the control. Expression of matrix metalloproteinase was significantly lower in cocultures of collagen scaffold, meniscus cell, and infrapatellar fat pad cell than in monocultured meniscus cell, and expression of interleukin-1β was not increased. This new method for meniscal repair by combinative transplantation with type I collagen scaffold and infrapatellar fat pad showed meniscal regeneration and potential for suppressing inflammation. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?

    PubMed Central

    Korpershoek, Jasmijn V.; de Windt, Tommy S.; Hagmeijer, Michella H.; Vonk, Lucienne A.; Saris, Daniel B. F.

    2017-01-01

    Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. Conclusion: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential. PMID:28321424

  3. Silicon Sheet Quality is Improved By Meniscus Control

    NASA Technical Reports Server (NTRS)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  4. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates.

    PubMed

    Kondo, Shimpei; Muneta, Takeshi; Nakagawa, Yusuke; Koga, Hideyuki; Watanabe, Toshifumi; Tsuji, Kunikazu; Sotome, Shinichi; Okawa, Atsushi; Kiuchi, Shinji; Ono, Hideo; Mizuno, Mitsuru; Sekiya, Ichiro

    2017-06-01

    Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Pauli's histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankin's score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1274-1282, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Transcriptome Analysis of Human Injured Meniscus Reveals a Distinct Phenotype of Meniscus Degeneration with Aging

    PubMed Central

    Rai, Muhammad Farooq; Patra, Debabrata; Sandell, Linda J.; Brophy, Robert H.

    2013-01-01

    Objective Meniscus tears are associated with a heightened risk for osteoarthritis. We aimed to advance our understanding of the metabolic state of human injured meniscus at the time of arthroscopic partial meniscectomy through transcriptome-wide analysis of gene expression in relation to patient age and degree of cartilage chondrosis. Methods The degree of chondrosis of knee cartilage was recorded at the time of meniscectomy in symptomatic patients without radiographic osteoarthritis. RNA preparations from resected menisci (N=12) were subjected to transcriptome-wide microarray and QuantiGene Plex analyses. The relative changes in gene expression variation with age and chondrosis were analyzed and integrated biological processes were investigated computationally. Results We identified a set of genes in torn meniscus that were differentially expressed with age and chondrosis. There were 866 genes differentially regulated (≥1.5-fold; P<0.05) with age and 49 with chondrosis. In older patients, genes associated with cartilage and skeletal development and extracellular matrix synthesis were repressed while those involved in immune response, inflammation, cell cycle, and cellular proliferation were stimulated. With chondrosis, genes representing cell catabolism (cAMP catabolic process) and tissue and endothelial cell development were repressed and those involved in T cell differentiation and apoptosis were elevated. Conclusion Differences in age-related gene expression suggest that in older adults, meniscal cells might de-differentiate and initiate a proliferative phenotype. Conversely, meniscal cells in younger patients appear to respond to injury, but maintain the differentiated phenotype. Definitive molecular signatures identified in damaged meniscus could be segregated largely with age and, to a lesser extent, with chondrosis. PMID:23658108

  6. Research progress on reconstruction of meniscus in tissue engineering.

    PubMed

    Zhang, Yu; Li, Pengsong; Wang, Hai; Wang, Yiwei; Song, Kedong; Li, Tianqing

    2017-05-01

    Meniscus damages are most common in sports injuries and aged knees. One third of meniscus lesions are known as white-white zone or nonvascular zones, which are composed of chondrocyte and extracellular matrix composition only. Due to low vascularization the ability of regeneration in such zones is inherently limited, leading to impossible self-regeneration post damage. Meniscus tissue engineering is known for emerging techniques for treating meniscus damage, but there are questions that need to be answered, including an optimal and suitable cell source, the usability of growth factor, the selectivity of optimal biomaterial scaffolds as well as the technology for improving partial reconstruction of meniscus tears. This review focuses on current research on the in vitro reconstruction of the meniscus using tissue engineering methods with the expectation to develop a series of tissue engineering meniscus products for the benefit of sports injuries. With rapid growth of clinical demand, the key breakthrough of meniscus tissue engineering research foundation is enlarged to a great extent. This review discusses aspects of meniscus tissue engineering, which is relative to the clinical treatment of meniscus injuries for further support and establishment of fundamental and clinical studies.

  7. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yuan, Zhiguo; Xi, Tingfei; Wei, Xiaojuan; Guo, Quanyi

    2016-06-01

    Menisci are fundamental fibrocartilaginous organs in knee joints. The injury in meniscus can impair normal knee function and predisposes patients to osteoarthritis. This study prepared decellularized meniscus scaffolds using a 1% (w/w) sodium dodecyl sulfate solution and sufficient rinsing steps. Complete cell removal was verified by hematoxylin and eosin staining and DNA content assay. Decellularized menisci had accordant tension properties to intact ones, but with declined compression properties. This occurred because the collagen fiber was not damaged but glycosaminoglycans was significantly lost during the decellularization process, which was confirmed by biochemical assay and histology staining. In vitro cytotoxicity assay demonstrated that decellularized meniscus scaffolds have no toxicity on L929 murine fibroblasts and porcine chondrocytes. Further experiment showed that porcine chondrocytes could adhere and proliferate on the scaffold surface, and some cells even could infiltrate into the scaffold. All results showed the potential of this decellularized meniscus to be the scaffolds in tissue engineering.

  8. The Use of Blood Vessel–Derived Stem Cells for Meniscal Regeneration and Repair

    PubMed Central

    OSAWA, AKI; HARNER, CHRISTOPHER D.; GHARAIBEH, BURHAN; MATSUMOTO, TOMOYUKI; MIFUNE, YUTAKA; KOPF, SEBASTIAN; INGHAM, SHEILA J. M.; SCHREIBER, VERENA; USAS, ARVYDAS; HUARD, JOHNNY

    2015-01-01

    Purpose Surgical repairs of tears in the vascular region of the meniscus usually heal better than repairs performed in the avascular region; thus, we hypothesized that this region might possess a richer supply of vascular-derived stem cells than the avascular region. Methods In this study, we analyzed 6 menisci extracted from aborted human fetuses and 12 human lateral menisci extracted from adult human subjects undergoing total knee arthroplasty. Menisci were immunostained for CD34 (a stem cell marker) and CD146 (a pericyte marker) in situ, whereas other menisci were dissected into two regions (peripheral and inner) and used to isolate meniscus-derived cells by flow cytometry. Cell populations expressing CD34 and CD146 were tested for their multi-lineage differentiation potentials, including chondrogenic, osteogenic, and adipogenic lineages. Fetal peripheral meniscus cells were transplanted by intracapsular injection into the knee joints of an athymic rat meniscal tear model. Rat menisci were extracted and histologically evaluated after 4 wk posttransplantation. Results Immunohistochemistry and flow cytometric analyses demonstrated that a higher number of CD34- and CD146-positive cells were found in the peripheral region compared with the inner region. The CD34- and CD146-positive cells isolated from the vascular region of both fetal and adult menisci demonstrated multilineage differentiation capacities and were more potent than cells isolated from the inner (avascular) region. Fetal CD34- and CD146-positive cells transplanted into the athymic rat knee joint were recruited into the meniscal tear sites and contributed to meniscus repair. Conclusions The vascularized region of the meniscus contains more stem cells than the avascular region. These meniscal-derived stem cells were multi-potent and contributed to meniscal regeneration. PMID:23247715

  9. Spontaneous rise in open rectangular channels under gravity.

    PubMed

    Thammanna Gurumurthy, Vignesh; Roisman, Ilia V; Tropea, Cameron; Garoff, Stephen

    2018-05-17

    Fluid movement in microfluidic devices, porous media, and textured surfaces involves coupled flows over the faces and corners of the media. Spontaneous wetting of simple grooved surfaces provides a model system to probe these flows. This numerical study investigates the spontaneous rise of a liquid in an array of open rectangular channels under gravity, using the Volume-of-Fluid method with adaptive mesh refinement. The rise is characterized by the meniscus height at the channel center, outer face and the interior and exterior corners. At lower contact angles and higher channel aspect ratios, the statics and dynamics of the rise in the channel center show little deviation with the classical model for capillarity, which ignores the existence of corners. For contact angles smaller than 45°, rivulets are formed in the interior corners and a cusp at the exterior corner. The rivulets at long times obey the one-third power law in time, with a weak dependence on the geometry. The cusp behaviour at the exterior corner transforms into a smooth meniscus when the capillary force is higher in the channel, even for contact angles smaller than 45°. The width of the outer face does not influence the capillary rise inside the channel, and the channel size does not influence the rise on the outer face. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Saturated fatty acid palmitate negatively regulates autophagy by promoting ATG5 protein degradation in meniscus cells.

    PubMed

    Mallik, Aritra; Yammani, Raghunatha R

    2018-07-20

    Obesity and associated metabolic factors are major risk factors for the development of osteoarthritis. Previously, we have shown that the free fatty acid palmitate induces endoplasmic reticulum (ER) stress and induces apoptosis in meniscus cells. However, the molecular mechanisms involved in these effects are not clearly understood. In our current study, we found that palmitate inhibits autophagy by modulating the protein levels of autophagy-related genes-5 (ATG5) that is associated with decreased lipidation of LC3 and increased activation of cleaved caspase 3. Pretreatment of meniscus cells with 4-phenyl butyric acid, a small molecule chemical chaperone that alleviates ER stress, or with MG-132, a proteasome inhibitor, restored normal levels of ATG5 and autophagosome formation, and decreased expression of cleaved caspase 3. Thus, our data suggest that palmitate downregulates autophagy in meniscus cells by degrading ATG5 protein via ER-associated protein degradation, and thus promotes apoptosis. This is the first study to demonstrate that palmitate-induced endoplasmic reticulum stress negatively regulates autophagy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  12. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2012-06-04

    A meniscus of plasma-beam boundary in H{sup -} ion sources largely affects the extracted H{sup -} ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H{sup -} ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H{sup -} ions penetrate into the bulk plasma, and, thus, themore » resultant meniscus has a relatively large curvature.« less

  13. Meniscus repair using mesenchymal stem cells - a comprehensive review.

    PubMed

    Yu, Hana; Adesida, Adetola B; Jomha, Nadr M

    2015-04-30

    The menisci are a pair of semilunar fibrocartilage structures that play an essential role in maintaining normal knee function. Injury to the menisci can disrupt joint stability and lead to debilitating results. Because natural meniscal healing is limited, an efficient method of repair is necessary. Tissue engineering (TE) combines the principles of life sciences and engineering to restore the unique architecture of the native meniscus. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential both in vitro and in vivo. This comprehensive review examines the English literature identified through a database search using Medline, Embase, Engineering Village, and SPORTDiscus. The search results were classified based on MSC type, animal model, and method of MSC delivery/culture. A variety of MSC types, including bone marrow-derived, synovium-derived, adipose-derived, and meniscus-derived MSCs, has been examined. Research results were categorized into and discussed by the different animal models used; namely murine, leporine, porcine, caprine, bovine, ovine, canine, equine, and human models of meniscus defect/repair. Within each animal model, studies were categorized further according to MSC delivery/culture techniques. These techniques included direct application, fibrin glue/gel/clot, intra-articular injection, scaffold, tissue-engineered construct, meniscus tissue, pellets/aggregates, and hydrogel. The purpose of this review is to inform the reader about the current state and advances in meniscus TE using MSCs. Future directions of MSC-based meniscus TE are also suggested to help guide prospective research.

  14. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo.

    PubMed

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M; Fleming, Braden C; Deng, Jin; Wei, Lei

    2016-03-01

    Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Controlled laboratory study. In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase-13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in culture. The conditioned medium was collected for sulfated glycosaminoglycan (GAG) release and Pi/PPi assay. In vivo guinea pig study: Meniscus size and area as well as intensity of meniscus calcification were significantly increased in the ACLT group compared with the control group. Both calcified area and intensity were correlated with cartilage damage in the ACLT group (meniscus calcified area: r = 0.925, P < .0001; meniscus calcified intensity: r = 0.944, P < .0001). Ihh, MMP-13, Col X, ANKH, ENPP1, and ALP expression were increased in the ACLT group compared with the control group. The Pi level and Pi/PPi ratio increased by 63% and 42%, respectively, in the ACLT group compared with the control group. In vitro bovine meniscus explant study: Cell death was found in the superficial zone of the bovine meniscus explants after loading for 3 hours. The mRNA expression and protein levels of MMP-13, ANKH, ENPP1, and ALP were up-regulated in all 3-hour loaded samples. The Pi/PPi ratio and sulfated GAG content in the culture medium were increased in the 3-hour loaded group. Meniscus hypertrophy and mineralization correlated to cartilage degeneration after ACL injuries. The study data suggest that the suppression of meniscus hypertrophy and calcification may decrease the risk of PTOA after ACL injuries. © 2016 The Author(s).

  15. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo

    PubMed Central

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M.; Fleming, Braden C.; Deng, Jin; Wei, Lei

    2016-01-01

    Background Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. Purpose/Hypothesis The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Study Design Controlled laboratory study. Methods In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase–13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase–1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in culture. The conditioned medium was collected for sulfated glycosaminoglycan (GAG) release and Pi/PPi assay. Results In vivo guinea pig study: Meniscus size and area as well as intensity of meniscus calcification were significantly increased in the ACLT group compared with the control group. Both calcified area and intensity were correlated with cartilage damage in the ACLT group (meniscus calcified area: r = 0.925, P < .0001; meniscus calcified intensity: r = 0.944, P < .0001). Ihh, MMP-13, Col X, ANKH, ENPP1, and ALP expression were increased in the ACLT group compared with the control group. The Pi level and Pi/PPi ratio increased by 63% and 42%, respectively, in the ACLT group compared with the control group. In vitro bovine meniscus explant study: Cell death was found in the superficial zone of the bovine meniscus explants after loading for 3 hours. The mRNA expression and protein levels of MMP-13, ANKH, ENPP1, and ALP were up-regulated in all 3-hour loaded samples. The Pi/PPi ratio and sulfated GAG content in the culture medium were increased in the 3-hour loaded group. Conclusion Meniscus hypertrophy and mineralization correlated to cartilage degeneration after ACL injuries. Clinical Relevance The study data suggest that the suppression of meniscus hypertrophy and calcification may decrease the risk of PTOA after ACL injuries. PMID:26792705

  16. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Nishioka, S.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less

  17. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds.

    PubMed

    Gunja, Najmuddin J; Athanasiou, Kyriacos A

    2010-03-01

    Hydrostatic pressure (HP) is an important component of the loading environment of the knee joint. Studies with articular chondrocytes and TMJ disc fibrochondrocytes have identified certain benefits of HP for tissue engineering purposes. However, similar studies with meniscus cells are lacking. Thus, in this experiment, the effects of applying 10 MPa of HP at three different frequencies (0, 0.1, and 1 Hz) to leporine meniscus cell-seeded PLLA scaffolds were examined. HP was applied once every 3 days for 1 h for a period of 28 days. Constructs were analyzed for cellular, biochemical, and biomechanical properties. At t = 4 weeks, total collagen/scaffold was found to be significantly higher in the 10 MPa, 0 Hz group when compared with other groups. This despite the fact that the cell numbers/scaffold were found to be lower in all HP groups when compared with the culture control. Additionally, the total GAG/scaffold, instantaneous modulus, and relaxation modulus were significantly increased in the 10 MPa, 0 Hz group when compared with the culture control. In summary, this experiment provides evidence for the benefit of a 10 MPa, 0 Hz stimulus, on both biochemical and biomechanical aspects, for the purposes of meniscus tissue engineering using PLLA scaffolds. (c) 2009 Wiley Periodicals, Inc.

  18. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study.

    PubMed

    Moradi, Lida; Vasei, Mohammad; Dehghan, Mohammad M; Majidi, Mohammad; Farzad Mohajeri, Saeed; Bonakdar, Shahin

    2017-05-01

    The meniscus has poor intrinsic regenerative capacity and its damage inevitably leads to articular cartilage degeneration. We focused on evaluating the effects of Polyvinyl alcohol/Chitosan (PVA/Ch) scaffold seeded by adipose-derived mesenchymal stem cell (ASC) and articular chondrocytes (AC) in meniscus regeneration. The PVA/Ch scaffolds with different molar contents of Ch (Ch1, Ch2, Ch4 and Ch8) were cross-linked by pre-polyurethane chains. By increasing amount of Ch tensile modulus was increased from 83.51 MPa for Ch1 to 110 MPa for Ch8 while toughness showed decrease from 0.33 mJ/mm 3 in Ch1 to 0.11 mJ/mm 3 in Ch8 constructs. Moreover, swelling ratio and degradation rate increased with an increase in Ch amount. Scanning electron microscopy imaging was performed for pore size measurement and cell attachment. At day 21, Ch4 construct seeded by AC showed the highest expression with 24.3 and 22.64 folds increase in collagen II and aggrecan (p ≤ 0.05), respectively. Since, the mechanical properties, water uptake and degradation rate of Ch4 and Ch8 compositions had no statistically significant differences, Ch4 was selected for in vivo study. New Zealand rabbits were underwent unilateral total medial meniscectomy and AC/scaffold, ASC/scaffold, AC-ASC (co-culture)/scaffold and cell-free scaffold were engrafted. At 7 months post-implantation, macroscopic, histologic, and immunofluorescent studies for regenerated meniscus revealed better results in AC/scaffold group followed by AC-ASC/scaffold and ASC/scaffold groups. In the cell-free scaffold group, there was no obvious meniscus regeneration. Articular cartilages were best preserved in AC/scaffold group. The best histological score was observed in AC/scaffold group. Our results support that Ch4 scaffold seeded by AC alone can successfully regenerate meniscus in tearing injury and ASC has no significant contribution in the healing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  20. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering

    PubMed Central

    Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-01-01

    Abstract The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration. PMID:23593566

  1. Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage.

    PubMed

    Kleinhans, Kelsey L; Jaworski, Lukas M; Schneiderbauer, Michaela M; Jackson, Alicia R

    2015-10-01

    Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure-function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.

  2. Evaporation from a meniscus within a capillary tube in microgravity

    NASA Technical Reports Server (NTRS)

    Hallinan, K. P.

    1993-01-01

    The following represents a summary of progress made on the project 'Evaporation from a Capillary Meniscus in Microgravity' being conducted at the University of Dayton during the period 1 Dec. 1992 to 30 Nov. 1993. The efforts during this first year of the grant focused upon the following specific tasks: (1) application of a 3-D scattering particle image velocimetry technique to thin film velocity field measurement; (2) modeling the thermo-fluid behavior of the evaporating meniscus in 0-g within large diameter capillaries; (3) conceptualization of the space flight test cell (loop) configuration; (4) construction of prototypes of the test loop configuration; (5) conduct of experiments in 0-g in the 2.2 second drop tower at NASA-LeRC to study evaporation from a capillary meniscus within a square cuvette; and (6) investigation of the effect of vibrations on the stability of the meniscus. An overview of the work completed within these six task areas is presented.

  3. Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair.

    PubMed

    Desando, Giovanna; Giavaresi, Gianluca; Cavallo, Carola; Bartolotti, Isabella; Sartoni, Federica; Nicoli Aldini, Nicolò; Martini, Lucia; Parrilli, Annapaola; Mariani, Erminia; Fini, Milena; Grigolo, Brunella

    2016-06-01

    Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidak's multiple comparison and Spearman's tests. BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are necessary to confirm its healing potential at long-term follow-up.

  4. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration

    PubMed Central

    Makris, Eleftherios A.; Hadidi, Pasha; Athanasiou, Kyriacos A.

    2011-01-01

    Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest towards the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest towards new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions. PMID:21764438

  5. Biological augmentation and tissue engineering approaches in meniscus surgery.

    PubMed

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and biochemical cues in this process, however, and it is hoped that this may lead to improvements in this strategy. There appears to be significant potential for biological augmentation and tissue engineering strategies in meniscus surgery to enhance options for repair and replacement. However, there are still relatively few clinical studies being reported in this regard. There is a strong need for improved translational activities and infrastructure to link the large amounts of in vitro and preclinical biological and tissue engineering data to clinical application. Level IV, systematic review of Level I-IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A.

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo ismore » significantly reduced to 6%. This value reasonably agrees with the experimental result.« less

  7. Fiber Development and Matrix Production in Tissue Engineered Menisci using Bovine Mesenchymal Stem Cells and Fibrochondrocytes

    PubMed Central

    McCorry, Mary Clare; Bonassar, Lawrence J.

    2017-01-01

    Mesenchymal stem cells (MSCs) have been investigated with promising results for meniscus healing and tissue engineering. While MSCs are known to contribute to ECM production, less is known about how MSCs produce and align large organized fibers for application to tissue engineering the meniscus. The goal of this study was to investigate the capability of MSCs to produce and organize extracellular matrix molecules compared to meniscal fibrochondrocytes (FCCs). Bovine FCCs and MSCs were encapsulated in an anatomically accurate collagen meniscus using mono-culture and co-culture of each cell type. Each meniscus was mechanically anchored at the horns to mimic the physiological fixation by the meniscal entheses. Mechanical fixation generates a static mechanical boundary condition previously shown to induce formation of oriented fiber by FCCs. Samples were cultured for 4 weeks and then evaluated for biochemical composition and fiber development. MSCs increased the GAG and collagen production in both co-culture and mono-culture groups compared to FCC mono-culture. Collagen organization was greatest in the FCC mono-culture group. While MSCs had increased matrix production they lacked the fiber organization capabilities of FCCs. This study suggests that GAG production and fiber formation are linked. Co-culture can be used as a means of balancing the synthetic properties of MSCs and the matrix remodeling capabilities of FCCs for tissue engineering applications. PMID:27925474

  8. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat

    PubMed Central

    Kloefkorn, Heidi E.; Allen, Kyle D.

    2017-01-01

    Aim of the Study The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. Materials and Methods To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). Results Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. Conclusions OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury. PMID:27797605

  9. [Clinical natural development in human meniscus injury].

    PubMed

    Hong-hai, X u; Zhang, Feng; Liu, Ning; Zheng, Jing-Jing; Zhang, Yin-Ping; Zhao, Quan-min; Guo, Xiong; Yu, Min; Liu, Zong-Zhi; Sun, Zheng-Ming; Zou, Qing-Yang; Liu, Cong

    2013-10-01

    To investigate the changes of clinic and wound edge of the meniscus without treatment in order to provide a theoretical basis for clinical treatment. From January 2001 to December 2011,68 patients with knee injury without diagnosis and treatment were selected in the study. According to clinical symptoms (pain,interlocking,instability, etc.) and knee MRI,32 patients were diagnosed as meniscus injury and underwent the arthroscopy. Total meniscectomy was performed in 32 cases on account of impossible repair of the meniscus. There were 21 males and 11 females,ranging in age from 15 to 49 years old with an average age of 25 years old,with an average time from diagnosis to arthroscopy for 46 weeks. Observation indexes included 1Preoperative and postoperative Lysholm scores of knee. 2Position,type and status of injury by arthroscopy. 3Observation of histology. With the procedure as follow: tissue samples were taken from different positions of the edge of the meniscus wound,and were divided into two parts. One part of sample was fixed with formalin, sliced with paraffin imbedding,and observed under an electron microscope after HE staining,and the other part of the sample was fixed with glutaraldehyde of 3%,sliced with ethoxyline imbedding ,and observed under an electron microscope after Lead Citrate staining. Thirty-two patients were followed up more than one year. There was significant differences in Lysholm scores bewteen preoperative and postoperative 3 months (t=15.6,P<0.01). Arthroscopy showed typical differences in 28 cases between the middle and the two ends of the wound edge and atypical differences in 4 cases. Light microscope showed typical manifestations in 26 cases, a few epithelioid cells could been seen fat the middle of the wound edge as well as cells tissue healing (such as fibroblasts) at the junction of each end,and atypical manifestations in 2 cases. Electron microscope showed typical manifestation in 25 cases and atypical manifestations in 3 cases. Typical manifestations in electron microscope showed the atrophic state tions in 25 cases and atypical manifestations in 3 cases. Typical manifestations electron microscope showed the atrophic state of nuclei and kytoplasm of cell (isogenous cells and epithelioid cells) at the middle of the wound edge; at the either junction of the wound edge, the fibroblasts exhibited an enlarged volume with many protuberances; the nuclei also increased in size, and the cytoplasm contained major rough endoplasmic reticulum, free ribosomes and Golgi complex; chondrocytes were round or oval with a large,round nucleus ; a large amount of rough endoplasmic reticulum and many free ribosomes could be observed in the cytoplasm;cartilage lacunae were observed surrounding chondrocytes. Weight loading activities with meniscus injury without treatment or before healing will increase the length of the wound and aggravate clinical symptoms. These findings indicate that early diagnosis and treatment combined with timely and effective immobilization is a key to the healing of meniscus injury and avoiding further surgery. The recent clinical effect of total meniscectomy is satisfacory in treating impossible repair meniscus.

  10. Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance.

    PubMed

    McCorry, Mary Clare; Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-03-12

    Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media. Co-culture of MSCs and FCCs was hypothesized to facilitate the transition of MSCs to a FCC cell phenotype as measured by matrix secretion and morphology. MSCs and FCCs were isolated from bovine bone marrow and meniscus, respectively. Cells were seeded in a 20 mg/mL high-density type I collagen gel at MSC:FCC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs were cultured for up to 2 weeks and then analyzed for cell morphology, glycosaminoglycan content, collagen content, and production of collagen type I, II, and X. Cells were homogeneously mixed throughout the scaffold and cells had limited direct cell-cell contact. After 2 weeks in culture, MSCs transitioned from a spindle-like morphology toward a rounded phenotype, while FCCs remained rounded throughout culture. Although MSC shape changed with culture, the overall size was significantly larger than FCCs throughout culture. While 75:25 and 100:0 (MSC mono-culture) culture groups produced significantly more glycosaminoglycan (GAG)/DNA than FCCs in mono-culture, GAG retention was highest in 50:50 co-cultures. Similarly, the aggregate modulus was highest in 100:0 and 50:50 co-cultures. All samples contained both collagen types I and II after 2 weeks, and collagen type X expression was evident only in MSC mono-culture gels. MSCs shift to a FCC morphology in both mono- and co-culture. Co-culture reduced hypertrophy by MSCs, indicated by collagen type X. This study shows that MSC phenotype can be influenced by indirect homogeneous cell culture in a three-dimensional gel, demonstrating the applicability of MSCs in meniscus tissue engineering applications.

  11. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-07-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

  12. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    PubMed Central

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O’Neil, Daniel; Szymanski, Paul; EI-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-01-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics. PMID:28685751

  13. Biological Strategies to Enhance Healing of the Avascular Area of the Meniscus

    PubMed Central

    Longo, Umile Giuseppe; Campi, Stefano; Romeo, Giovanni; Spiezia, Filippo; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Meniscal injuries in the vascularized peripheral part of the meniscus have a better healing potential than tears in the central avascular zone because meniscal healing principally depends on its vascular supply. Several biological strategies have been proposed to enhance healing of the avascular area of the meniscus: abrasion therapy, fibrin clot, organ culture, cell therapy, and applications of growth factors. However, data are too heterogeneous to achieve definitive conclusions on the use of these techniques for routine management of meniscal lesions. Although most preclinical and clinical studies are very promising, they are still at an experimental stage. More prospective randomised controlled trials are needed to compare the different techniques for clinical results, applicability, and cost-effectiveness. PMID:22220179

  14. Ipsilateral Medial and Lateral Discoid Meniscus with Medial Meniscus Tear

    PubMed Central

    Shimozaki, Kengo; Nakase, Junsuke; Ohashi, Yoshinori; Numata, Hitoaki; Oshima, Takeshi; Takata, Yasushi; Tsuchiya, Hiroyuki

    2016-01-01

    Introduction: Discoid meniscus is a well-documented knee pathology, and there are many cases of medial or lateral discoid meniscus reported in the literature. However, ipsilateral concurrent medial and lateral discoid meniscus is very rare, and only a few cases have been reported. Herein, we report a case of concurrent medial and lateral discoid meniscus. Case Report: A 27-year-old Japanese man complained of pain on medial joint space in his right knee that was diagnosed as a complete medial and lateral discoid meniscus. In magnetic resonance imaging, although the lateral discoid meniscus had no tear, the medial discoid meniscus had a horizontal tear. Arthroscopic examination of his right knee similarly revealed that the medial discoid meniscus had a horizontal tear. In addition, the discoid medial meniscus also had an anomalous insertion to the anterior cruciate ligament, and there was also mild fibrillation of the medial tibial cartilage surface. We performed arthroscopic partial meniscectomy for the torn medial discoid meniscus but not for the asymptomatic lateral discoid meniscus. The latest follow-up at 18 months indicated satisfactory results. Conclusion: We report a rare case of ipsilateral medial and lateral discoid meniscus with medial meniscus tear. The medial discoid meniscus with tear was treated with partial meniscectomy, whereas the lateral discoid meniscus without tear was only followed up. PMID:28164045

  15. A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study.

    PubMed

    Pillai, Mamatha M; Elakkiya, V; Gopinathan, J; Sabarinath, C; Shanthakumari, S; Sahanand, K Santosh; Dinakar Rai, B K; Bhattacharyya, Amitava; Selvakumar, R

    2016-10-01

    The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.

  16. Porous micropillar structures for retaining low surface tension liquids.

    PubMed

    Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E

    2018-03-15

    The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction of burst Laplace pressure obtained under quasi-static condition (i.e., equilibrium thermodynamic analysis under low capillary number) is not applicable to highly dynamic flow conditions, where the liquid meniscus shape deformation by flow perturbation cannot be restored by surface tension force instantaneously. Therefore, the critical burst pressure is dependent on the liquid velocity and viscosity under dynamic flow conditions. A numerical simulation using Surface Evolver also predicts that surface defects along the outer micropillar edge can yield up to 50% lower Laplace pressures than those predicted with ideal feature geometries. The liquid retention strategy developed here can facilitate the routing and phase management of dielectric working fluids for application in heat exchangers. Further improvements in the retention performance can be realized by optimizing the fabrication process to reduce surface defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus

    PubMed Central

    Cucchiarini, M.; McNulty, A.L.; Mauck, R.L.; Setton, L.A.; Guilak, F.; Madry, H.

    2017-01-01

    SUMMARY Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis. Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. PMID:27063441

  18. Augmentation of the Pullout Repair of a Medial Meniscus Posterior Root Tear by Arthroscopic Centralization.

    PubMed

    Koga, Hideyuki; Watanabe, Toshifumi; Horie, Masafumi; Katagiri, Hiroki; Otabe, Koji; Ohara, Toshiyuki; Katakura, Mai; Sekiya, Ichiro; Muneta, Takeshi

    2017-08-01

    The meniscus roots are critical for meniscus function in preserving correct knee kinematics and avoiding meniscus extrusion and, consequently, in the progression of osteoarthritis. Several techniques exist for medial meniscus posterior root tear repair; however, current surgical techniques have been proved to fail to reduce meniscus extrusion, which has been shown to be associated with development of osteoarthritis, although significant improvements in the postoperative clinical findings have been achieved. This Technical Note describes an arthroscopic technique for the medial meniscus posterior root tear in which a pullout repair is augmented by a centralization technique to restore and maintain the medial meniscus function by efficiently reducing meniscus extrusion.

  19. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, S.; Goto, I.; Hatayama, A.

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep intomore » the source plasma region when the effective confinement time is short.« less

  20. Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study.

    PubMed

    Weinand, Christian; Peretti, Giuseppe M; Adams, Samuel B; Randolph, Mark A; Savvidis, Estafios; Gill, Thomas J

    2006-11-01

    Successful treatment of tears to the avascular region of the meniscus remains a challenge. Current repair techniques, such as sutures and anchors, are effective in stabilizing the peripheral, vascularized regions of the meniscus, but are not adequate for promoting healing in the avascular region. The purpose of this study was to demonstrate the healing ability of a tissue-engineered repair technique using allogenic chondrocytes from three different sources for the avascular zone of the meniscus. Articular, auricular, and costal chondrocytes were harvested from 3-month-old Yorkshire swine. A 1-cm bucket-handle lesion was created in the avascular zone of each three swine. A cell-scaffold construct, composed of a single chondrocyte cell type and Vicryl mesh, was implanted into the lesion and secured with two vertical mattress sutures. Controls consisted of each three sutured unseeded mesh implants, suture only, and untreated lesions. The swine were allowed immediate post-operative full weight bearing. Menisci and controls were harvested after 12 weeks. In all experimental samples, lesion closure was observed. Gross mechanical testing with two Adson forceps demonstrated bonding of the lesion. Histological analysis showed formation of new tissue in all three experimental samples. None of the control samples demonstrated closure and formation of new matrix. We present preliminary data that demonstrates the potential of a tissue-engineered, allogenic cellular repair to provide successful healing of lesions in the avascular zone in a large animal model.

  1. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis.

    PubMed

    Bao, H R C; Zhu, D; Gong, H; Gu, G S

    2013-03-01

    In recent years, with technological advances in arthroscopy and magnetic resonance imaging and improved biomechanical studies of the meniscus, there has been some progress in the diagnosis and treatment of injuries to the roots of the meniscus. However, the biomechanical effect of posterior lateral meniscus root tears on the knee has not yet become clear. The purpose of this study was to determine the effect of a complete radial posterior lateral meniscus root tear on the knee contact mechanics and the function of the posterior meniscofemoral ligament on the knee with tear in the posterior root of lateral meniscus. A finite element model of the knee was developed to simulate different cases for intact knee, a complete radial posterior lateral meniscus root tear, a complete radial posterior lateral meniscus root tear with posterior meniscofemoral ligament deficiency, and total meniscectomy of the lateral meniscus. A compressive load of 1000 N was applied in all cases to calculate contact areas, contact pressure, and meniscal displacements. The complete radial posterior lateral meniscus root tear decreased the contact area and increased the contact pressure on the lateral compartment under compressive load. We also found a decreased contact area and increased contact pressure in the medial compartment, but it was not obvious compared to the lateral compartment. The lateral meniscus was radially displaced by compressive load after a complete radial posterior lateral meniscus root tear, and the displacement took place mainly in the body and posterior horn of lateral meniscus. There were further decrease in contact area and increases in contact pressure and raidial displacement of the lateral meniscus in the case of the complete posterior lateral meniscus root tear in combination with posterior meniscofemoral ligament deficiency. Complete radial posterior lateral meniscus root tear is not functionally equivalent to total meniscectomy. The posterior root torn lateral meniscus continues to provide some load transmission and distribution functions across the joint. The posterior meniscofemoral ligament prevents excessive radial displacement of the posterior root torn lateral meniscus and assists the torn lateral meniscus in transmitting a certain amount of stress in the lateral compartment.

  2. Attachment area of fibres from the horns of lateral meniscus: anatomic study with special reference to the positional relationship of anterior cruciate ligament.

    PubMed

    Fujishiro, Hitomi; Tsukada, Sachiyuki; Nakamura, Tomomasa; Nimura, Akimoto; Mochizuki, Tomoyuki; Akita, Keiichi

    2017-02-01

    Although studies support the clinical importance of the fibres from the horns of lateral meniscus (LM), few studies have investigated the detailed anatomy. This anatomic study was conducted to analyse the structural details of LM with special reference to (1) the attachment area of the fibres from the anterior and posterior horns and (2) the positional relationship between these fibres and the anterior cruciate ligament (ACL). A total of 24 cadaveric knees were used in the macroscopic investigation, and six knees were used in the histological investigation. Micro-computed tomography analysis was also performed to assess the anatomy of the posteriormost fibre from the posterior horn of LM. Based on the macroscopic investigations, the outer fibres from the anterior horn of LM extended to ACL and seemed to intermingle with ACL fibres. However, the histological investigations showed a distinct border between the fibres and ACL. The inner fibres from the anterior horn of LM attached to the lateral intercondylar tubercle serving as a lateral margin of ACL attachment. Fibres from the posterior horn of LM were separated into anterolateral and posteromedial crura which attached to the posterior aspect of the lateral and medial intercondylar tubercles, respectively. These two crura formed the posterior margin of the ACL attachment, except for the central part of ACL. The outer fibres from the anterior horn of LM adjoined ACL. The inner fibres from the anterior horn of LM and two crura from the posterior horn of LM formed the border of the attachment area of ACL. The distinctive fibre anatomy from LM could provide a surgical landmark during arthroscopic surgery.

  3. Evaluation of posterior lateral femoral condylar hypoplasia using axial MRI images in patients with complete discoid meniscus.

    PubMed

    Xu, Zhihong; Chen, Dongyang; Shi, Dongquan; Dai, Jin; Yao, Yao; Jiang, Qing

    2016-03-01

    Hypoplasia of the lateral femoral condyle has been reported in discoid lateral meniscus patients, but associated imaging findings in the axial plane have not been characterized. In this study, we aimed to identify differences in the lateral femoral condyle between patients with discoid lateral meniscus and those with normal menisci using axial MRI images. Twenty-three patients (24 knees) with complete discoid lateral meniscus, 43 (45 knees) with incomplete discoid lateral meniscus, and 50 with normal menisci (50 knees) were enrolled and distributed into three groups. Two new angles, posterior lateral condylar angle (PLCA) and posterior medial condylar angle (PMCA), were measured on axial MRI images; the posterior condylar angle (PCA) was also measured. Differences between the three groups in the PLCA, PMCA, PCA, and PLCA/PMCA were analysed. The predictive value of PLCA and PLCA/PMCA for complete discoid lateral meniscus was assessed. In the complete discoid lateral meniscus group, PLCA and PLCA/PMCA were significantly smaller compared with the normal meniscus group and the incomplete discoid lateral meniscus group (P < 0.001). A significantly larger PCA was identified in the complete discoid lateral meniscus group compared with the incomplete discoid lateral meniscus group (P < 0.05) and normal meniscus group (P < 0.05). Both PLCA and PLCA/PMCA showed excellent predictive value for complete discoid lateral meniscus. Hypoplasia of the posterior lateral femoral condyle is typically seen in patients with complete discoid lateral meniscus. PLCA and PLCA/PMCA can be measured from axial MRI images and used as excellent predictive parameters for complete discoid lateral meniscus. Diagnostic study, Level III.

  4. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    PubMed

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Improved arthroscopic one-piece excision technique for the treatment of symptomatic discoid medial meniscus.

    PubMed

    Wang, Hong-De; Li, Tong; Gao, Shi-Jun

    2017-10-30

    Discoid medial meniscus is an extremely rare abnormality of the knee. During arthroscopic meniscectomy for symptomatic discoid medial meniscus, it is difficult to remove the posterior portion of the meniscus because of the confined working space within the compartment and the obstruction caused by the anterior cruciate ligament and the tibial intercondylar eminence. To overcome these problems, we describe an improved arthroscopic technique for one-piece excision of symptomatic discoid medial meniscus through three unique portals. Three improved portals were made in the injured knee: a standard anteromedial portal, a central transpatellar tendon portal, and a high anterolateral portal. The anterior side of the discoid medial meniscus was cut 7 mm from the periphery of the meniscus. Next, the anterior portion of the free discoid meniscus fragment was pulled in the anterolateral direction with tension. A curve-shaped cut was made along the longitudinal tear to the posterior horn using basket forceps through the standard anteromedial portal. Then, the anterior portion of the free discoid meniscus was pulled in the anteromedial direction. Pulling the fragment under tension made it easier to cut the posterior side of the discoid meniscus. The posterior side of the discoid meniscus was cut 7 mm from the periphery of the meniscus with straight scissors or basket forceps through the central transpatellar tendon portal. This technique resulted in satisfactory results. Excellent visualization of the posterior part of the discoid medial meniscus was gained during the procedure, and it was easy to cut the posterior part of the discoid medial meniscus. No recurrent symptoms were found. This improved arthroscopic one-piece excision technique for the treatment of symptomatic discoid medial meniscus enables the posterior part of the meniscus to be cut satisfactorily. Moreover, compared with previous techniques, this novel technique causes less formation of foreign bodies and less damage to the anterior cruciate ligament, medial collateral ligament, and cartilage and requires a shorter procedural time.

  6. Near-critical density filling of the SF6 fluid cell for the ALI-R-DECLIC experiment in weightlessness

    NASA Astrophysics Data System (ADS)

    Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2018-05-01

    Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.

  7. Imaging the Postoperative Knee Meniscus: An Evidence-Based Review.

    PubMed

    Baker, Jonathan C; Friedman, Michael V; Rubin, David A

    2018-06-27

    Unenhanced MRI, indirect MR arthrography, direct MR arthrography, and CT arthrography are each currently used to evaluate patients with recurrent knee pain after meniscus surgery. The purpose of this study is to review the evidence for the use of these examinations in patients with suspected recurrent meniscus tear. Direct and indirect MR arthrography are superior to conventional MRI for the assessment of the postoperative meniscus after meniscus repair or partial meniscectomy involving more than 25% of the meniscus.

  8. What Is the Optimal Minimum Penetration Depth for "All-Inside" Meniscal Repairs?

    PubMed

    McCulloch, Patrick C; Jones, Hugh L; Lue, Jeffrey; Parekh, Jesal N; Noble, Philip C

    2016-08-01

    To identify desired minimum depth setting for safe, effective placement of the all-inside meniscal suture anchors. Using 16 cadaveric knees and standard arthroscopic techniques, 3-dimensional surfaces of the meniscocapsular junction and posterior capsule were digitized. Using standard anteromedial and anterolateral portals, the distance from the meniscocapsular junction to the posterior capsule outer wall was measured for 3 locations along the posterior half of medial and lateral menisci. Multiple all-inside meniscal repairs were performed on 7 knees to determine an alternate measure of capsular thickness (X2) and compared with the digitized results. In the digitized group, the distance (X1) from the capsular junction to the posterior capsular wall was averaged in both menisci for 3 regions using anteromedial and anterolateral portals. Mean distances of 6.4 to 8.8 mm were found for the lateral meniscus and 6.5 to 9.1 mm for the medial meniscus. The actual penetration depth was determined in the repair group and labeled X2. It showed a similar pattern to the variation seen in X1 by region, although it exceeded predicted distances an average 1.7 mm in the medial and 1.5 mm in the lateral meniscus owing to visible deformation of the capsule as it pierced. Capsular thickness during arthroscopic repair measures approximately 6 to 9 mm (X1), with 1.5 to 2 mm additional depth needed to ensure penetration rather than bulging of the posterior capsule (X2), resulting in 8 to 10 mm minimum penetration depth range. Surgeons can add desired distance away from the meniscocapsular junction (L) at device implantation, finding optimal minimal setting for penetration depth (X2 + L), which for most repairable tears may be as short as 8 mm and not likely to be greater than 16 mm. Minimum depth setting for optimal placement of all-inside meniscal suture anchors when performing all-inside repair of the medial or lateral meniscus reduces risk of harming adjacent structures secondary to overpenetration and underpenetration of the posterior capsule. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. Avulsion of the anterior medial meniscus root: case report and surgical technique.

    PubMed

    Feucht, Matthias J; Minzlaff, Philipp; Saier, Tim; Lenich, Andreas; Imhoff, Andreas B; Hinterwimmer, Stefan

    2015-01-01

    Injuries of the meniscus roots have become increasingly recognised as a serious pathology of the knee joint. However, the current available literature focuses primarily on posterior meniscus root tears. In this article, a case with an isolated avulsion of the anterior medial meniscus root is presented, and a new arthroscopic technique to treat this type of injury is described. The anterior horn of the medial meniscus was sutured with a double-looped nonabsorbable suture and reattached to the tibial plateau using a knotless suture anchor. This technique may also be useful to treat avulsion injuries of the anterolateral or posteromedial meniscus root, and symptomatic subluxation of the medial meniscus in case of a variant insertion anatomy with an absent attachment of the anterior horn of the medial meniscus to the tibial plateau. Level of evidence V.

  10. Arthroscopic Meniscectomy and Meniscoplasty for a Torn Discoid Medial Meniscus: Case Report, Surgical Technique, and Literature Review

    PubMed Central

    Abhay, Gokhale Nikhil; Ashwin, Samant; Sunil, Shahane; Hardik, Kapopara

    2016-01-01

    Introduction: Normal menisci of the knee are semilunar structures. Sometimes, a meniscus may be found to be thickened and disc like and is called a discoid meniscus. Such a discoid variant is usually found in the lateral meniscus. Its occurrence in the medial meniscus is extremely rare. Case Report: We report a case of an 18-year-old female, who presented to us with knee pain and was found to have a discoid medial meniscus with a tear. We operated on her arthroscopically and performed meniscectomy and meniscoplasty. Postoperatively, the patient was free of her knee pain. Conclusion: Discoid medial meniscus is a rare phenomenon which can present as a cause of knee pain. If discoid meniscus is symptomatic, the management includes arthroscopic meniscectomy and meniscoplasty. PMID:28164061

  11. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-06-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  12. Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint.

    PubMed

    Szarmach, Arkadiusz; Luczkiewicz, Piotr; Skotarczak, Monika; Kaszubowski, Mariusz; Winklewski, Pawel J; Dzierzanowski, Jaroslaw; Piskunowicz, Maciej; Szurowska, Edyta; Baczkowski, Bogusław

    2016-01-01

    Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Knee MRI examination was performed in 77 subjects (43 men and 34 women), mean age 34.99 years (range: 18-49 years), complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification), varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle) and the risk of extrusion. Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly. This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.

  13. Symptomatic Bilateral Torn Discoid Medial Meniscus Treated with Saucerization and Suture

    PubMed Central

    2016-01-01

    Discoid meniscus is an anatomical congenital anomaly more often found in the lateral meniscus. A discoid medial meniscus is a very rare anomaly, and even more rare is to diagnose a bilateral discoid medial meniscus although the real prevalence of this situation is unknown because not all the discoid medial menisci are symptomatic and if the contralateral knee is not symptomatic then it is not usually studied. The standard treatment of this kind of pathology is partial meniscectomy. Currently the tendency is to be very conservative so suture and saucerization of a torn discoid meniscus when possible are gaining support. We present the case of a 13-year-old patient who was diagnosed with symptomatic torn bilateral discoid medial meniscus treated by suturing the tear and saucerization. To the best of our knowledge this is the first case reported of bilateral torn discoid medial meniscus treated in this manner in the same patient. PMID:27656305

  14. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals

    PubMed Central

    Dhasmana, Renu; Nagpal, Ramesh Chander

    2016-01-01

    Introduction Dry eye is one of the most common ocular diseases in this cyber era. Despite availability of multiple tests, no single test is accurate for the diagnosis of dry eye. Anterior segment optical coherence tomography is the recent tool which can be added in the armentarium of dry eye tests. Aim To evaluate tear meniscus with anterior segment optical coherence tomography and its correlation with other tear variables in normal healthy individuals. Materials and Methods In this prospective cross-sectional observational study, right eye of 203 consecutive patients were studied. All the patients were divided into three groups Group 1, 2 and 3 according to their age ≤20 years, 21-40 years and >40 years respectively. All patients underwent routine ophthalmologic examinations along with slit-lamp bio-microscopy for tear meniscus height measurement, tear film break up time, Schirmer’s I test (with anaesthesia) and optical coherence tomography imaging of inferior tear meniscus height. After focusing of the instrument with a Cross Line (CL) centered on lower tear meniscus at 6’0 clock of cornea, a 6 mm long scan was obtained. The tear meniscus height (μm) and tear meniscus area (mm2) were measured manually with help of callipers by joining upper corneo-meniscus junction to the lower lid-meniscus junction and tear meniscus height and area within the plotted line respectively and calculated by using the integrated analysis available in the custom software. Results There was significant decrease in the all tear variables with the increase in the age. According to age groups in group 1, the mean Schirmer’s (24.0±4.9)mm, tear film break up time (11.1±1.9) sec, tear meniscus height on slit lamp (600.2±167.3)mm were higher but decreased in group 2 (21.5±5.4,10.8±1.4, 597.5±186.3) and group 3 (19.8 ± 5.1, 10.2 ± 1.6, 485.6 ± 157.7) respectively. Schirmer’s test values and tear film break up time were similar in both sexes (p=0.1 and p= 0.9). Tear meniscus height on slit lamp and Optical coherence based tear meniscus area were similar in both sexes (p=0.5 and p=0.1). However, tear meniscus height on optical coherence tomography was significantly higher in females (p=0.04). Value of Schirmer’s and tear film break up time (r =0.2; p= 0.001) and Schirmer’s and tear meniscus height on slit lamp (r=0.6; p<0.001) had positive correlation. Tear meniscus height and tear meniscus area on optical coherence tomography had positive correlation (r =.9; p<0.001). Conclusion On optical coherence tomography tear meniscus height and area significantly correlated. Despite higher values of Schirmer’s, tear film break up time, Slit lamp based tear meniscus height in younger age group the tear meniscus height and tear meniscus area with optical coherence tomography were lower. PMID:27437253

  15. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Measurement of meniscofemoral contact pressure after repair of bucket-handle tears with biodegradable implants.

    PubMed

    Becker, Roland; Wirz, Dieter; Wolf, Cornelius; Göpfert, Beat; Nebelung, Wolfgang; Friederich, Niklaus

    2005-05-01

    Biodegradable implants are frequently used for meniscus repair. Articular cartilage damage has been reported recently after meniscus repair with biodegradable implants. The aim of the study was to investigate the meniscofemoral contact pressure at the posterior horn of the medial and lateral meniscus after repair of bucket-handle lacerations. Specimens were mounted in a materials testing machine (Bionix 858, MTS) which was equipped with a load cell. The quadriceps tendon was attached to a hydraulic cylinder, and knee motion was controlled via tension of the quadriceps tendon. A piezo-resistive system (Tekscan, Boston, MA, USA) measured the meniscofemoral contact pressure. Five different types of biodegradable implants (Arrow, Dart, Fastener, Stinger and Meniscal Screw) and horizontal suture (no. 2 Ethibond) were tested. The knee was extended from 90 degrees of flexion to 0 degrees under a constant load of 350 N due to adjustment of the tension force of the quadriceps tendon. The femorotibial pressure and contact area were recorded at 0 degree, 30 degrees, 60 degrees and 90 degrees of flexion. The meniscofemoral pressure did not increase after meniscus repair with biodegradable implants or sutures. The meniscofemoral peak pressure at the posterior horn was 1.46+/-1.54 MPa in the medial compartment and 1.08+/-1.17 MPa in the lateral compartment at full knee extension. The meniscofemoral pressure increased significantly in both compartments with knee flexion from 0 degree to 90 degrees. Biodegradable implants for meniscus repair do not affect the meniscofemoral pressure. However, there remains a risk of damage to the cartilage when barbed implants are used. If the implant is not entirely advanced into the meniscus, the sharp head or some of the barbs at the column of the implant may come into direct contact with the articular cartilage of the femoral condyle or tibial plateau. The authors presume that incorrect positioning of the implant seems to be the major reason for cartilage damage.

  17. Societal and Economic Effect of Meniscus Scaffold Procedures for Irreparable Meniscus Injuries.

    PubMed

    Rongen, Jan J; Govers, Tim M; Buma, Pieter; Grutters, Janneke P C; Hannink, Gerjon

    2016-07-01

    Meniscus scaffolds are currently evaluated clinically for their efficacy in preventing the development of osteoarthritis as well as for their efficacy in treating patients with chronic symptoms. Procedural costs, therapeutic consequences, clinical efficacy, and future events should all be considered to maximize the monetary value of this intervention. To examine the socioeconomic effect of treating patients with irreparable medial meniscus injuries with a meniscus scaffold. Economic and decision analysis; Level of evidence, 2. Two Markov simulation models for patients with an irreparable medial meniscus injury were developed. Model 1 was used to investigate the lifetime cost-effectiveness of a meniscus scaffold compared with standard partial meniscectomy by the possibility of preventing the development of osteoarthritis. Model 2 was used to investigate the short-term (5-year) cost-effectiveness of a meniscus scaffold compared with standard partial meniscectomy by alleviating clinical symptoms, specifically in chronic patients with previous meniscus surgery. For both models, probabilistic Monte Carlo simulations were applied. Treatment effectiveness was expressed as quality-adjusted life-years (QALYs), while costs (estimated in euros) were assessed from a societal perspective. We assumed €20,000 as a reference value for the willingness to pay per QALY. Next, comprehensive sensitivity analyses were performed to identify the most influential variables on the cost-effectiveness of meniscus scaffolds. Model 1 demonstrated an incremental cost-effectiveness ratio of a meniscus scaffold treatment of €54,463 per QALY (€5991/0.112). A threshold analysis demonstrated that a meniscus scaffold should offer a relative risk reduction of at least 0.34 to become cost-effective, assuming a willingness to pay of €20,000. Decreasing the costs of the meniscus scaffold procedure by 33% (€10,160 instead of €15,233; an absolute change of €5073) resulted in an incremental cost-effectiveness ratio of €7876 per QALY. Model 2 demonstrated an incremental cost-effectiveness ratio of a meniscus scaffold treatment of €297,727 per QALY (€9825/0.033). On the basis of the current efficacy data, a meniscus scaffold provides a relative risk reduction of "limited benefit" postoperatively of 0.37 compared with standard treatment. A threshold analysis revealed that assuming a willingness to pay of €20,000, a meniscus scaffold would not be cost-effective within a period of 5 years. Most influential variables on the cost-effectiveness of meniscus scaffolds were the cost of the scaffold procedure, cost associated with osteoarthritis, and quality of life before and after the scaffold procedure. Results of the current health technology assessment emphasize that the monetary value of meniscus scaffold procedures is very much dependent on a number of influential variables. Therefore, before implementing the technology in the health care system, it is important to critically assess these variables in a relevant context. The models can be improved as additional clinical data regarding the efficacy of the meniscus scaffold become available. © 2016 The Author(s).

  18. Meniscus delivery: a maneuver for easy arthroscopic access to the posterior horn of the medial meniscus.

    PubMed

    Said, Hatem Galal; Goyal, Saumitra; Fetih, Tarek Nabil

    2016-03-16

    Pathology of posterior horn of medial meniscus is common and often presents a difficult approach during arthroscopy for various reasons. We describe an easy maneuver to facilitate "delivery of the medial meniscus" during arthroscopy.

  19. Double transosseous pull out suture technique for transection of posterior horn of medial meniscus.

    PubMed

    Ahn, Jin Hwan; Wang, Joon Ho; Lim, Hong Chul; Bae, Ji Hoon; Park, Joon Soo; Yoo, Jae Chul; Shyam, Ashok Kumar

    2009-03-01

    Transection injury (complete radial tear, root tear) in the posterior horn of medial meniscus will lead to loss of hoop strain, extrusion of the meniscus and early degenerative changes. The posterior horn of medial meniscus is amenable to repair due to its good blood supply and repair is the procedure of choice for these injuries. In cases of transection of the medial meniscus posterior horn, the meniscus can be repaired by a pull out suture technique using trans-septal portal. The single transosseous pull out suturing technique is a point fixation technique with limited contact area having low and inhomogeneous contact pressure. This article describes a double transosseous pull out suture technique using trans-septal portal for the repair of transection of posterior horn of medial meniscus. Use of double transosseous technique provides more secure fixation, more homogeneous and wider contact pressure area between meniscus and the bone, improving the healing potential of the repair.

  20. Is an electric field always a promoter of wetting? Electro-dewetting of metals by electrolytes probed by in situ X-ray nanotomography

    DOE PAGES

    Nave, Maryana I.; Gu, Yu; Karen Chen-Wiegart, Yu-Chen; ...

    2017-01-05

    We developed a special electrochemical cell enabling quantitative analysis andin situX-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus. Hence, an electric field favors dewetting rather than wetting of the newly formed surface. Finally, the discoveredmore » effect opens up new opportunities for the control of wetting phenomena and calls for the revision of existing theories of electrowetting.« less

  1. Measurement of the airway surface liquid volume with simple light refraction microscopy.

    PubMed

    Harvey, Peter R; Tarran, Robert; Garoff, Stephen; Myerburg, Mike M

    2011-09-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air-liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays.

  2. Medial meniscus anatomy-from basic science to treatment.

    PubMed

    Śmigielski, Robert; Becker, Roland; Zdanowicz, Urszula; Ciszek, Bogdan

    2015-01-01

    This paper focuses on the anatomical attachment of the medial meniscus. Detailed anatomical dissections have been performed and illustrated. Five zones can be distinguished in regard to the meniscus attachments anatomy: zone 1 (of the anterior root), zone 2 (anteromedial zone), zone 3 (the medial zone), zone 4 (the posterior zone) and the zone 5 (of the posterior root). The understanding of the meniscal anatomy is especially crucial for meniscus repair but also for correct fixation of the anterior and posterior horn of the medial meniscus.

  3. The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion

    PubMed Central

    Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Ferenc, Tomasz; Baczkowski, Boguslaw

    2018-01-01

    Objective The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. Methods One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. Results It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. Conclusions The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint. PMID:29447236

  4. The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion.

    PubMed

    Luczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Ferenc, Tomasz; Baczkowski, Boguslaw

    2018-01-01

    The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint.

  5. Revision 1 size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area- a cross-sectional study.

    PubMed

    Bloecker, Katja; Englund, Martin; Wirth, Wolfgang; Hudelmaier, Martin; Burgkart, Rainer; Frobell, Richard B; Eckstein, Felix

    2011-10-28

    Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity. Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded. The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011). These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.

  6. Revision 1 Size and position of the healthy meniscus, and its Correlation with sex, height, weight, and bone area- a cross-sectional study

    PubMed Central

    2011-01-01

    Background Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity. Methods Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded. Results The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011). Conclusions These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women. PMID:22035074

  7. Pullout failure strength of the posterior horn of the medial meniscus with root ligament tear.

    PubMed

    Kim, Young-Mo; Joo, Yong-Bum

    2013-07-01

    To evaluate the reparability of the posterior horn of the medial meniscus with root ligament tear by measuring the actual pullout failure strength of a simple vertical suture of an arthroscopic subtotal meniscectomized posterior horn of the medial meniscus. From November 2009 to May 2010, nine posterior horns of the medial meniscus specimens were collected from arthroscopic subtotal meniscectomy performed as a treatment for root ligament rupture of the posterior horn of the medial meniscus. Simple vertical sutures were performed on the specimens, and pullout failure load was tested with a biaxial servohydraulic testing machine (Model 8874; Instron Corp., Norwood, MA, USA). The degree of degeneration, extrusion, and medial displacement of the medial meniscus were evaluated with magnetic resonance imaging (MRI). The Kellgren-Lawrence classification was used in standing plain radiography, and mechanical alignment was measured using orthoroentgenography. Tear morphology was classified into ligament proper type or meniscoligamentous junctional type according to the site of the torn root ligament of the posterior horn of the medial meniscus during arthroscopy. The mean pullout failure strength of the posterior horn of the medial meniscus was 71.6 ± 23.2 N (range, 41.4-107.7 N). The degree of degeneration of the posterior horn of the medial meniscus on MRI showed statistically significant correlation with pullout failure strength and Kellgren-Lawrence classification. Pullout failure strength showed correlation with mechanical alignment and Kellgren-Lawrence classification (P < 0.05). The measurement of pullout failure strength of the posterior horn of the medial meniscus with root ligament tear showed a degree of repairability. The degree of degeneration of the posterior horn of the medial meniscus on MRI showed a significant correlation with the pullout failure strength. The pullout failure strength was also not only correlated with the degree of degeneration of the posterior horn of the medial meniscus, but also with mechanical alignment and Kellgren-Lawrence classification, which represent bony degenerative change.

  8. Arthroscopic and magnetic resonance imaging evaluation of meniscus lesions in the chronic anterior cruciate ligament-deficient knee.

    PubMed

    Naranje, Sameer; Mittal, Ravi; Nag, Hiralal; Sharma, Raju

    2008-09-01

    We performed this prospective study to evaluate the incidence of meniscus tears arthroscopically and the effectiveness of magnetic resonance imaging (MRI) in detecting these lesions in patients with chronic anterior cruciate ligament (ACL)-deficient knees. We reviewed 50 patients (46 male and 4 female) with a mean age of 27 years (range, 18 to 48 years) who underwent ACL reconstruction for chronic ACL tears. Injuries were classified as chronic because arthroscopy was performed after more than 6 weeks of injury. All 50 patients had clinical and MRI evaluation followed by knee arthroscopy. The MRI and arthroscopic findings were then analyzed by a single independent reviewer. The presence of meniscus tears and their morphologic types and locations were analyzed. The sensitivity, specificity, positive predictive value, and negative predictive value of MRI were calculated. On arthroscopy, a medial meniscus tear was found in 18 patients (36%), a lateral meniscus tear was found in 11 patients (22%), both menisci were torn in 8 patients (16%), and no meniscus lesion was found in 13 patients (26%). The most common morphologic type of tear seen in the medial meniscus was "complex" (n = 11 [42%]), and that in the lateral meniscus was "longitudinal" (n = 10 [53%]). The posterior horn of the meniscus was the most common tear site. The overall sensitivity, specificity, positive predictive value, and negative predictive value for detecting meniscus tears in chronic ACL-deficient knees on MRI were 90%, 89%, 87%, 93%, respectively. We conclude from our study that in chronic ACL-deficient patients, the prevalence of posterior horn medial meniscus tears seems to be high. Anterior horn tears and radial and horizontal patterns of meniscus tears seem to be rare in chronic ACL deficiency. MRI correlates well with arthroscopy and has high negative predictive values. Level I, prognostic prospective study.

  9. Meniscal allograft transplantation

    MedlinePlus

    ... transplant; Surgery - knee - meniscus transplant; Surgery - knee - cartilage; Arthroscopy - knee - meniscus transplant ... The meniscus transplant is usually performed using knee arthroscopy . The surgeon makes two or three small cuts ...

  10. Biomaterial-Mediated Delivery of Degradative Enzymes to Improve Meniscus Integration and Repair

    PubMed Central

    Qu, Feini; Lin, Jung-Ming G.; Esterhai, John L.; Fisher, Matthew B.; Mauck, Robert L.

    2013-01-01

    Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity present physical and biologic barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation, and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (p≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach of targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:23376132

  11. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study.

    PubMed

    Vangsness, C Thomas; Farr, Jack; Boyd, Joel; Dellaero, David T; Mills, C Randal; LeRoux-Williams, Michelle

    2014-01-15

    There are limited treatment options for tissue restoration and the prevention of degenerative changes in the knee. Stem cells have been a focus of intense preclinical research into tissue regeneration but limited clinical investigation. In a randomized, double-blind, controlled study, the safety of the intra-articular injection of human mesenchymal stem cells into the knee, the ability of mesenchymal stem cells to promote meniscus regeneration following partial meniscectomy, and the effects of mesenchymal stem cells on osteoarthritic changes in the knee were investigated. A total of fifty-five patients at seven institutions underwent a partial medial meniscectomy. A single superolateral knee injection was given within seven to ten days after the meniscectomy. Patients were randomized to one of three treatment groups: Group A, in which patients received an injection of 50 × 10⁶ allogeneic mesenchymal stem cells; Group B, 150 × 10⁶ allogeneic mesenchymal stem cells; and the control group, a sodium hyaluronate (hyaluronic acid/hyaluronan) vehicle control. Patients were followed to evaluate safety, meniscus regeneration, the overall condition of the knee joint, and clinical outcomes at intervals through two years. Evaluations included sequential magnetic resonance imaging (MRI). No ectopic tissue formation or clinically important safety issues were identified. There was significantly increased meniscal volume (defined a priori as a 15% threshold) determined by quantitative MRI in 24% of patients in Group A and 6% in Group B at twelve months post meniscectomy (p = 0.022). No patients in the control group met the 15% threshold for increased meniscal volume. Patients with osteoarthritic changes who received mesenchymal stem cells experienced a significant reduction in pain compared with those who received the control, on the basis of visual analog scale assessments. There was evidence of meniscus regeneration and improvement in knee pain following treatment with allogeneic human mesenchymal stem cells. These results support the study of human mesenchymal stem cells for the apparent knee-tissue regeneration and protective effects.

  12. [Meniscus transplantation as an option in case of painful arthrosis following meniscectomy].

    PubMed

    van Arkel, E R

    2004-01-17

    The menisci play a role as shock absorbers and distribute the pressure uniformly over the joint cartilage. Other functions are: the nutrition of the joint cartilage, secondary stability and proprioception. In case of a torn meniscus, one should first attempt to suture the meniscus, followed by arthroscopic partial meniscectomy if suturing is impossible. In a large proportion of patients, arthrosis with pain and loss of function of the knee develops several years after the meniscectomy. In order to alleviate the symptoms of such arthrosis, a trial of meniscus transplantation was undertaken. In two long-term studies without a control group, the results of meniscus transplantation were reasonable. The results of medial meniscus transplantation are dependent upon the presence of an intact anterior cruciate ligament. The accepted indication for meniscus transplantation after meniscectomy is: disabling pain following (sub)total meniscectomy in a patient younger than 45-50 years of age with a normal alignment and a stable knee joint.

  13. Inside-Out Meniscus Repair

    PubMed Central

    Nelson, Clay G.; Bonner, Kevin F.

    2013-01-01

    Meniscus repair over resection, when feasible, should be strongly considered in an effort to preserve meniscus integrity and function, especially in younger patients. Currently, a number of techniques and implants may be used to achieve a successful result. Although all-inside meniscus repair devices have evolved significantly since their introduction and have become the repair technique of choice for many surgeons, the classic inside-out repair technique is still very useful to have in one's armamentarium. Though less popular because of the ease of current-generation fixators, the inside-out technique can still offer advantages for those surgeons who are proficient. With the versatility to address most tear patterns, the ability to deliver sutures with smaller needle diameters, and proven long-term results, it has been considered the gold standard in meniscus repair. We review the inside-out repair technique for both a medial and lateral meniscus tear with some helpful tips when performing the technique, and we present a video demonstration of the lateral meniscus repair technique. PMID:24400199

  14. Medial meniscus posterior horn avulsion.

    PubMed

    Marzo, John M

    2009-05-01

    Avulsion of the posterior horn of the medial meniscus can occur from acute trauma or chronic degeneration, leading to meniscus extrusion, articular cartilage loss, osteophyte formation, and medial joint space narrowing. With meniscus extrusion, the meniscus is unable to resist hoop stresses and cannot shield the adjacent articular cartilage from excessive axial load. Over time, this can lead to symptomatic knee osteoarthritis. Patients typically report pain, swelling, mechanical symptoms, and general functional loss. Although nonsurgical care may relieve symptoms, it is unlikely to alter either the natural history of meniscal loss or the fate of the medial compartment. Surgical repair of posterior horn meniscal avulsion is done in an attempt to restore the anatomy and biomechanical function of the meniscus, and to slow or prevent degenerative joint disease. Meniscal transplantation is reserved for salvage situations.

  15. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.

    PubMed

    Visser, Jetze; Levett, Peter A; te Moller, Nikae C R; Besems, Jeremy; Boere, Kristel W M; van Rijen, Mattie H P; de Grauw, Janny C; Dhert, Wouter J A; van Weeren, P René; Malda, Jos

    2015-04-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.

  16. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    PubMed

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  17. Titration Techniques

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jerrold J.; Houston Jetzer, Kelly; Patani, Néha; Zimmerman, John; Zweerink, Gerald

    1995-07-01

    Significant attention is paid to the proper technique for reading a meniscus. Video shows meniscus-viewing techniques for colorless and dark liquids and the consequences of not reading a meniscus at eye level. Lessons are provided on approaching the end point, focusing on end point colors produced via different commonly used indicators. The concept of a titration curve is illustrated by means of a pH meter. Carefully recorded images of the entire range of meniscus values in a buret, pipet, and graduated cylinder are included so that you can show your students, in lecture or pre-lab discussion, any meniscus and discuss how to read the buret properly. These buret meniscus values are very carefully recorded at the rate of one video frame per hundredth of a milliliter, so that an image showing any given meniscus value can be obtained. These images can be easily incorporated into a computer-based multimedia environment for testing or meniscus-reading exercises. Two of the authors have used this technique and found the exercise to be very well received by their students. Video on side two shows nearly 100 "bloopers", demonstrating both the right way and wrong ways to do tasks associated with titration. This material can be used in a variety of situations: to show students the correct way to do something; to test students by asking them "What is this person doing wrong?"; or to develop multimedia, computer-based lessons. The contents of Titration Techniques are listed below: Side 1 Titration: what it is. A simple titration; Acid-base titration animation; A brief redox titration; Redox titration animation; A complete acid-base titration. Titration techniques. Hand technique variations; Stopcock; Using a buret to measure liquid volumes; Wait before reading meniscus; Dirty and clean burets; Read meniscus at eye level (see Fig. 1); Meniscus viewing techniques--light colored liquids; Meniscus viewing techniques--dark liquids; Using a magnetic stirrer; Rough titration; Significant figures; Approaching the end point; End point colors; Titration with a pH meter; Titration curves; Colors of indicators. Meniscus values. Buret meniscus values; Pipet meniscus values; Graduated cylinder meniscus values. Side 2"Bloopers". Introducing the people; Titration animation; Inspecting the buret; Rinsing the buret with water; Preparing a solid sample; Obtaining a liquid sample; Delivering a liquid sample with a Mohr pipet; Pipetting a liquid sample with a Mohr pipet; Rinsing the Mohr pipet with sample; Using the Mohr pipet to transfer sample; Delivering a liquid sample with a volumetric pipet; Pipetting a liquid sample with a volumetric pipet; Rinsing the volumetric pipet with sample; Using the volumetric pipet to transfer sample; Obtaining the titrant; Rinsing the buret with titrant; Filling the buret with titrant; Adding the indicator; The initial reading; Beginning the titration; Delivering titrant; The final reading. Figure 3. Near the end point a single drop of titrant can cause a lasting color change.

  18. Reliability of magnetic resonance imaging in evaluating meniscal and cartilage injuries in anterior cruciate ligament-deficient knees.

    PubMed

    Wong, Kenneth Pak Leung; Han, Audrey XinYun; Wong, Jeannie Leh Ying; Lee, Dave Yee Han

    2017-02-01

    The accuracy of magnetic resonance (MR) imaging in assessing meniscal and cartilage injuries in anterior cruciate ligament (ACL)-deficient knees as compared to arthroscopy was evaluated in the present study. The results of all preoperative MR imaging performed within 3 months prior to the ACL reconstruction were compared against intraoperative arthroscopic findings. A total of 206 patients were identified. The location and type of meniscal injuries as well as the location and grade of the cartilage injuries were studied. The negative predictive value, positive predictive value, sensitivity, specificity and accuracy of MR imaging for these 206 cases were calculated and analysed. In patients with an ACL injury, the highest incidence of concomitant injury was that of medial meniscus tears, 124 (60.2 %), followed by lateral meniscus tears, 105 (51.0 %), and cartilage injuries, 66 (32.0 %). Twenty-three (11.2 %) patients sustained injuries to all of the previously named structures. MR imaging was most accurate in detecting medial meniscus tears (85.9 %). MR imaging for medial meniscus tears also had the highest sensitivity (88.0 %) and positive predictive value (88.7 %), while MR imaging for cartilage injuries had the largest specificity (84.1 %) and negative predictive value (87.1 %). It was least accurate in evaluating lateral meniscus tears (74.3 %). The diagnostic accuracy of medial meniscus imaging is significantly influenced by age and the presence of lateral meniscus tears, while the duration between MR imaging and surgery has greater impact on the likelihood of lateral meniscus and cartilage injuries actually being present during surgery. The majority of meniscus tears missed by MR imaging affected the posterior horn and were complex in nature. Cartilage injuries affecting the medial femoral condyle or medial patella facet were also often missed by MR imaging. MR imaging remains a reliable tool for assessing meniscus tears and cartilage defects preoperatively. It is most accurate when evaluating medial meniscus tears. However, MR imaging should be used with discretion especially if there is a high index of suspicion of lateral meniscus tears. IV.

  19. Posterior meniscus root tears: associated pathologies to assist as diagnostic tools.

    PubMed

    Matheny, Lauren M; Ockuly, Andrew C; Steadman, J Richard; LaPrade, Robert F

    2015-10-01

    The purpose of this study was to investigate associated pathologies identified at arthroscopy in patients with meniscus root tears. This study was Institutional Review Board approved. All patients who underwent arthroscopic knee surgery where a complete meniscus root tear was identified were included in this study. Concurrent ligament tears and articular cartilage changes ≥Outerbridge grade 2 were recorded and stored in a data registry. Fifty patients (28 males, 22 females) [mean age = 36.5 years (range 17.1-68.1 years)] who were diagnosed with a medial or lateral meniscus root tear at arthroscopy were included in this study out of 673 arthroscopic surgeries (prevalence 7.4 %). Twenty-three (46 %) patients had a medial meniscus root tear, 26 (52 %) patients had a lateral meniscus root tear and one (2 %) patient had both. Thirty-four per cent of patients (n = 17) underwent partial meniscectomy, while 60 % (n = 31) underwent suture repair. During arthroscopy, 60 % (n = 30) of patients were diagnosed with an anterior cruciate ligament (ACL) tear. Patients with lateral meniscus root tears were 10.3 times (95 % CI 2.6-42.5) more likely to have ACL tears than patients with medial meniscus root tears (p = 0.012). Patients who had medial meniscus root tears were 5.8 times (95 % CI 1.6-20.5) more likely to have chondral defects than patients who had lateral meniscus root tears (p = 0.044). In this study, patients' preoperative functional scores and activity levels were low. Patients with lateral meniscal root tears were more likely to have an ACL tear. Patients with medial meniscal root tears were more likely to have an knee articular cartilage defect with an Outerbridge grade 2 or higher chondral defect. This study confirms the importance of comprehensive assessment of concurrent injuries to properly diagnose meniscus root tears. IV.

  20. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues.

    PubMed

    Nishimuta, James F; Bendernagel, Monica F; Levenston, Marc E

    2017-09-01

    Although osteoarthritis is widely viewed as a disease of the whole joint, relatively few studies have focused on interactions among joint tissues in joint homeostasis and degeneration. In particular, few studies have examined the effects of the infrapatellar fat pad (IFP) on cartilaginous tissues. The aim of this study was to test the hypothesis that co-culture with healthy IFP would induce degradation of cartilage and meniscus tissues. Bovine articular cartilage, meniscus, and IFP were cultured isolated or as cartilage-fat or meniscus-fat co-cultures for up to 14 days. Conditioned media were assayed for sulfated glycosaminoglycan (sGAG) content, nitrite content, and matrix metalloproteinase (MMP) activity, and explants were assayed for sGAG and DNA contents. Co-cultures exhibited increased cumulative sGAG release and sGAG release rates for both cartilage and meniscus, and the cartilage (but not meniscus) exhibited a substantial synergistic effect of co-culture (sGAG release in co-culture was significantly greater than the summed release from isolated cartilage and fat). Fat co-culture did not significantly alter the sGAG content of either cartilage or meniscus explants, indicating that IFP co-culture stimulated net sGAG production by cartilage. Nitrite release was increased relative to isolated tissue controls in co-cultured meniscus, but not the cartilage, with no synergistic effect of co-culture. Interestingly, MMP-2 production was decreased by co-culture for both cartilage and meniscus. This study demonstrates that healthy IFP may modulate joint homeostasis by stimulating sGAG production in cartilage. Counter to our hypothesis, healthy IFP did not promote degradation of either cartilage or meniscus tissues.

  1. Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients.

    PubMed

    Minami, Takao; Muneta, Takeshi; Sekiya, Ichiro; Watanabe, Toshifumi; Mochizuki, Tomoyuki; Horie, Masafumi; Katagiri, Hiroki; Otabe, Koji; Ohara, Toshiyuki; Katakura, Mai; Koga, Hideyuki

    2018-04-01

    The purposes of this study were to investigate (1) meniscus status and clinical findings in anterior cruciate ligament (ACL)-injured patients to clarify associations between the meniscus posterior root tear (PRT) and knee instability, and (2) magnetic resonance imaging (MRI) findings of the PRT to clarify sensitivity and specificity of MRI and prevalence of meniscus extrusion. Three hundred and seventeen patients with primary ACL reconstruction were included. PRTs for both medial and lateral sides were confirmed by reviewing surgical records. Preoperative MRI was reviewed to evaluate sensitivity and specificity of the PRT and meniscus extrusion width (MEW). Clinical information regarding the number of giving-way episodes, preoperative KT-1000 measurements and preoperative pivot shift was also assessed. Thirty-nine patients had a lateral meniscus (LM) PRT, whereas only four patients had a medial meniscus PRT. One hundred and seventeen patients had no meniscus tear (control). Twenty-eight patients (71.8%) showed positive signs of the LMPRT based on at least one view of MR images, with the coronal view showing the highest sensitivity. MEW in the LMPRT group was significantly larger than that in the control group. The preoperative pivot shift test grade in the LMPRT group was significantly greater than that in the control group. There were no significant differences in other parameters. In ACL-injured patients, the LMPRT was associated with ALRI as well as with meniscus extrusion. The coronal view of MRI was useful in identifying the LMPRT, although its sensitivity was not high. Therefore, surgeons should prepare to repair PRTs at the time of ACL reconstruction regardless of MRI findings, and they should make every effort to repair the LMPRT. III.

  2. Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system.

    PubMed

    Forkel, Philipp; Reuter, Sven; Sprenker, Frederike; Achtnich, Andrea; Herbst, Elmar; Imhoff, Andreas; Petersen, Wolf

    2015-01-01

    Posterior lateral meniscus root tears (PLMRTs) affect the intra-articular pressure distribution in the lateral compartment of the knee. The biomechanical consequences of these injuries are significantly influenced by the integrity of the meniscofemoral ligaments (MFLs). A newly introduced arthroscopic classification system for PLMRTs that takes MFL integrity into account has not yet been clinically applied but may be useful in selecting the optimal method of PLMRT repair. Prospective ACL reconstruction data were collected. Concomitant injuries of the lateral meniscus posterior horn were classified according to their shape and MFL status. The classifications were: type 1, avulsion of the root; type 2, radial tear of the lateral meniscus posterior horn close to the root with an intact MFL; and type 3, complete detachment of the posterior meniscus horn. Between January 2011 and May 2012, 228 consecutive ACL reconstructions were included. Lateral and medial meniscus tears were identified in 38.2% (n = 87) and 44.7% (n = 102), respectively. Of the 87 lateral meniscus tears, 32 cases had PLMRTs; the overall prevalence of PLMRTs was 14% (n = 32). Two medial meniscus root tears were detected. All PLMRTs were classified according to the classification system described above, and the fixation procedure was adapted to the type of meniscus tear. The PLMRT tear is a common injury among patients undergoing ACL repair and can be arthroscopically classified into three different types. Medial meniscus root tears are rare in association with ACL tears. The PLMRT classification presented here may help to estimate the injury's impact on the lateral compartment and to identify the optimal treatment. These tears should not be overlooked, and the treatment strategy should be chosen with respect to the type of root tear. IV.

  3. Diagnosis of the "large medial meniscus" of the knee on MR imaging.

    PubMed

    Samoto, Nobuhiko; Kozuma, Masakazu; Tokuhisa, Toshio; Kobayashi, Kunio

    2006-11-01

    Although several quantitative magnetic resonance (MR) diagnostic criteria for discoid lateral meniscus (DLM) have been described, there are no criteria by which to estimate the size of the medial meniscus. We define a medial meniscus that exceeds the normal size as a "large medial meniscus" (LMM), and the purpose of this study is to establish the quantitative MR diagnostic criteria for LMM. The MR imaging findings of 96 knees with arthroscopically confirmed intact semilunar lateral meniscus (SLM), 18 knees with intact DLM, 105 knees with intact semilunar medial meniscus (SMM) and 4 knees with torn LMM were analyzed. The following three quantitative parameters were measured: (a) meniscal width (MW): the minimum MW on the coronal slice; (b) ratio of the meniscus to the tibia (RMT): the ratio of minimum MW to maximum tibial width on the coronal slice; (c) continuity of the anterior and posterior horns (CAPH): the number of consecutive 5-mm-thick sagittal slices showing continuity between the anterior horn and the posterior horn of the meniscus on sagittal slices. Using logistic discriminant analysis between intact SLM and DLM groups and using descriptive statistics of intact SLM and SMM groups, the cutoff values used to discriminate LMM from SMM were calculated by MW and RMT. Moreover, the efficacy of these cutoff values and three slices of the cutoff values for CAPH were estimated in the medial meniscus group. "MW> or =11 mm" and "RMT> or =15%" were determined to be effective diagnostic criteria for LMM, while three of four cases in the torn LMM group were true positives and specificity was 99% in both criteria. When "CAPH> or =3 slices" was used as a criterion, three of four torn LMM cases were true positives and specificity was 93%.

  4. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis--data from the Osteoarthritis Initiative.

    PubMed

    Bloecker, Katja; Wirth, W; Guermazi, A; Hitzl, W; Hunter, D J; Eckstein, F

    2015-10-01

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8% to 29.9% (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10%; p < 0.001), width (7%; p < 0.001), and height (2%; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. • First longitudinal MRI-based measurements of change of meniscus position and size. • Quantitative longitudinal evaluation of meniscus change in knee osteoarthritis. • Improved sensitivity to change of 3D measurements compared with single slice analysis.

  5. Diagnosis and Treatment of Discoid Meniscus

    PubMed Central

    Kim, Jae-Gyoon; Han, Seung-Woo; Lee, Dae-Hee

    2016-01-01

    There is a greater incidence of discoid meniscus in Asian countries than in Western countries, and bilateral discoid menisci are also common. The discoid meniscus may be a congenital anomaly, and genetics or family history may play a role in the development of discoid menisci. Because the histology of discoid meniscus is different from that of normal meniscus, it is prone to tearing. Individuals with a discoid meniscus can be asymptomatic or symptomatic. Asymptomatic discoid menisci do not require treatment. However, operative treatment is necessary if there are symptoms. Total meniscectomy leads to an increased risk of osteoarthritis. Therefore, total meniscectomy is generally reserved for rare unsalvageable cases. Partial meniscectomy (saucerization) with preservation of a stable peripheral rim combined with or without peripheral repair is effective, and good short-, mid-, and long-term clinical results have been reported. PMID:27894171

  6. Tie-fibre structure and organization in the knee menisci

    PubMed Central

    Andrews, Stephen H J; Rattner, Jerome B; Abusara, Ziad; Adesida, Adetola; Shrive, Nigel G; Ronsky, Janet L

    2014-01-01

    The collagenous structure of the knee menisci is integral to the mechanical integrity of the tissue and the knee joint. The tie-fibre structure of the tissue has largely been neglected, despite previous studies demonstrating its correlation with radial stiffness. This study has evaluated the structure of the tie-fibres of bovine menisci using 2D and 3D microscopy techniques. Standard collagen and proteoglycan (PG) staining and 2D light microscopy techniques were conducted. For the first time, the collagenous structure of the menisci was evaluated using 3D, second harmonic generation (SHG) microscopy. This technique facilitated the imaging of collagen structure in thick sections (50–100 μm). Imaging identified that tie-fibres of the menisci arborize from the outer margin of the meniscus toward the inner tip. This arborization is associated with the structural arrangement of the circumferential fibres. SHG microscopy has definitively demonstrated the 3D organization of tie-fibres in both sheets and bundles. The hierarchy of the structure is related to the organization of circumferential fascicles. Large tie-fibre sheets bifurcate into smaller sheets to surround circumferential fascicles of decreasing size. The tie-fibres emanate from the lamellar layer that appears to surround the entire meniscus. At the tibial and femoral surfaces these tie-fibre sheets branch perpendicularly into the meniscal body. The relationship between tie-fibres and blood vessels in the menisci was also observed in this study. Tie-fibre sheets surround the blood vessels and an associated PG-rich region. This subunit of the menisci has not previously been described. The size of tie-fibre sheets surrounding the vessels appeared to be associated with the size of blood vessel. These structural findings have implications in understanding the mechanics of the menisci. Further, refinement of the complex structure of the tie-fibres is important in understanding the consequences of injury and disease in the menisci. The framework of meniscus architecture also defines benchmarks for the development of tissue-engineered replacements in the future. PMID:24617800

  7. Clinical and Radiographic Outcomes of Meniscus Surgery and Future Targets for Biologic Intervention: A review of data from the MOON Group

    PubMed Central

    Westermann, Robert W.; Jones, Morgan; Wasserstein, David; Spindler, Kurt P.

    2017-01-01

    Meniscus injury and treatment occurred with the majority of anterior cruciate ligament reconstructions (ACLR) in the multicenter orthopaedic outcomes (MOON) cohort. We describe the patient reported outcomes, radiographic outcomes and predictors of pain from meniscus injuries and treatment in the setting of ACLR. Patient reported outcomes improve significantly following meniscus repair with ACLR, but differences exist based on the meniscus injury laterally (medial or lateral). Patients undergoing medial meniscus repair have worse patient-reported outcomes and more pain compared to those with uninjured menisci. However, lateral meniscal tears can be repaired with similar outcomes as uninjured menisci. Medial meniscal treatment (meniscectomy or repair) results in a significant loss of joint space at 2 years compared to uninjured menisci. Menisci treated with excision had a greater degree of joint space loss compared to those treated with repair. Clinically significant knee pain is more common following injuries to the medial meniscus and increased in patients who undergo early re-operation after initial ACLR. Future research efforts aimed at improving outcomes after combined ACLR and meniscus treatment should focus on optimizing biologic and mechanical environments that promote healing of medial meniscal tears sustained during ACL injury. PMID:28282214

  8. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    PubMed

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  9. Effect of Leukocyte-Rich and Platelet-Rich Plasma on Healing of a Horizontal Medial Meniscus Tear in a Rabbit Model

    PubMed Central

    Shin, Kyun Ho; Lee, Haseok; Kang, Seonghyun; Ko, You-Jin; Lee, Seung-Yup; Park, Jung-Ho; Bae, Ji-Hoon

    2015-01-01

    There are limited reports on the effect of platelet-rich plasma (PRP) on meniscus healing. The purpose of this study was to investigate the effect of leukocyte-rich PRP (L-PRP) on potential healing of the horizontal medial meniscus tears in a rabbit model. A horizontal medial meniscus tear was created in both knees of nine skeletally mature adult rabbits. Left or right knees were randomly assigned to a L-PRP group, or a control group. 0.5 mL of L-PRP from 10 mL of each rabbit's whole blood was prepared and injected into the horizontal tears in a L-PRP group. None was applied to the horizontal tears in a control group. The histological assessment of meniscus healing was performed at two, four, and six weeks after surgery. We found that there were no significant differences of quantitative histologic scoring between two groups at 2, 4, and 6 weeks after surgery (p > 0.05). This study failed to show the positive effect of single injection of L-PRP on enhancing healing of the horizontal medial meniscus tears in a rabbit model. Single injection of L-PRP into horizontal meniscus tears may not effectively enhance healing of horizontal medial meniscus tears. PMID:26180783

  10. Radial tears associated with cleavage tears of the medial meniscus in athletes.

    PubMed

    Kidron, Amos; Thein, Rafael

    2002-03-01

    To evaluate the significance of a small radial tear in the root of the posterior horn of the medial meniscus in an otherwise normal-looking meniscus in individuals who play vigorous sports. Retrospective review. Arthroscopy was performed in 1,270 patients; 11 patients (0.86%) had a small radial tear in the root of the medial meniscus. Trimming of the tear revealed a large horizontal cleavage tear of the posterior horn and body of the meniscus. The average age of the affected patients was 29.6 years (range, 21 to 45 years), and all were active in sports. Magnetic resonance imaging was of dubious diagnostic value. Three patients had undergone previous arthroscopy at which time the small radial root tear had been noted but was not thought to warrant treatment. All 11 patients returned to their former levels of activity after adequate surgery. When a radial root tear in the medial meniscus is found in an athletic patient, the edges of the tear should be trimmed, the root of the medial meniscus examined, and any additional torn cartilage resected.

  11. Implantation of autogenous meniscal fragments wrapped with a fascia sheath enhances fibrocartilage regeneration in vivo in a large harvest site defect.

    PubMed

    Kobayashi, Yasukazu; Yasuda, Kazunori; Kondo, Eiji; Katsura, Taro; Tanabe, Yoshie; Kimura, Masashi; Tohyama, Harukazu

    2010-04-01

    Concerning meniscal tissue regeneration, many investigators have studied the development of a tissue-engineered meniscus. However, the utility still remains unknown. Implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect may significantly enhance fibrocartilage regeneration in vivo in the defect. Controlled laboratory study. Seventy-five mature rabbits were used in this study. In each animal, an anterior one-third of the right medial meniscus was resected. Then, the animals were divided into the following 3 groups of 25 rabbits each: In group 1, no treatment was applied to the meniscal defect. In group 2, the defect was covered with a fascia sheath. In group 3, after the resected meniscus was fragmented into small pieces, the fragments were grafted into the defect. Then, the defect with the meniscal fragments was covered with a fascia sheath. In each group, 5 rabbits were used for histological evaluation at 3, 6, and 12 weeks after surgery, and 5 rabbits were used for biomechanical evaluation at 6 and 12 weeks after surgery. Histologically, large round cells in group 3 were scattered in the core portion of the meniscus-shaped tissue, and the matrix around these cells was positively stained by safranin O and toluisin blue at 12 weeks. The histological score of group 3 was significantly higher than that of group 1 and group 2. Biomechanically, the maximal load and stiffness of group 3 were significantly greater than those of groups 1 and 2. This study clearly demonstrated that implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect significantly enhanced fibrocartilage regeneration in vivo in the defect at 12 weeks after implantation in the rabbit. This study proposed a novel strategy to treat a large defect after a meniscectomy.

  12. Nociceptive and sympathetic innervations in the abaxial part of the cranial horn of the equine medial meniscus: an immunohistochemical approach.

    PubMed

    Nemery, Elodie; Gabriel, Annick; Piret, Joëlle; Antoine, Nadine

    2016-12-01

    In athletic horses, diseases leading to lameness are of great importance due to the loss of performance and the resultant economic concerns. Although stifle lesions are frequent in the hindlimb, due to the large size and complexity of the joint, and although meniscal tears have been identified as the most common soft tissue injuries in this joint, little is known about the mechanism that causes the painful sensation and thus the lameness. The aim of our study was to highlight any peripheral fibres involved in meniscal nociception in five macroscopically sound cranial horns of the equine medial meniscus, which has been one of the most common sites reported for equine meniscal injuries. Immunohistochemical stainings were performed using antibodies against Substance P in order to identify nociceptive fibres; against tyrosine hydroxylase for detecting postganglionic sympathetic fibres; and against glial fibrillary acidic proteins in order to identify Schwann cells. Our work highlights for the first time the presence of nociceptive and sympathetic fibres in equine menisci. They were found in the abaxial part of the cranial horn of the equine medial meniscus. This study suggests that when the abaxial part is injured, the meniscus itself could be the source of pain. These findings could provide a better understanding of the clinical presentation of horses with meniscal injury and contribute towards improving therapeutic strategies to alleviate pain in cases of equine meniscal injury. © 2016 Anatomical Society.

  13. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone.

    PubMed

    Zellner, Johannes; Hierl, Katja; Mueller, Michael; Pfeifer, Christian; Berner, Arne; Dienstknecht, Thomas; Krutsch, Werner; Geis, Sebastian; Gehmert, Sebastian; Kujat, Richard; Dendorfer, Sebastian; Prantl, Lukas; Nerlich, Michael; Angele, Peter

    2013-10-01

    Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  14. Large meniscus extrusion ratio is a poor prognostic factor of conservative treatment for medial meniscus posterior root tear.

    PubMed

    Kwak, Yoon-Ho; Lee, Sahnghoon; Lee, Myung Chul; Han, Hyuk-Soo

    2018-03-01

    The purpose of this study was to find a prognostic factor of medial meniscus posterior root tear (MMPRT) for surgical decision making. Eighty-eight patients who were diagnosed as acute or subacute MMPRT without severe degeneration of the meniscus were treated conservatively for 3 months. Fifty-seven patients with MMPRT showed good response to conservative treatment (group 1), while the remaining 31 patients who failed to conservative treatment (group 2) received arthroscopic meniscus repair. Their demographic characteristics and radiographic features including hip-knee-ankle angle, joint line convergence angle, Kellgren-Lawrence grade in plain radiographs, meniscus extrusion (ME) ratio (ME-medial femoral condyle ratio, ME-medial tibial plateau ratio, ME-meniscus width ratio), the location of bony edema, and cartilage lesions in MRI were compared. Receiver operating characteristic (ROC) curve analysis was also performed to determine the cut-off values of risk factors. The degree of ME-medial femoral condyle and medial tibia plateau ratio of group 2 was significantly higher than group 1 (0.08 and 0.07 vs. 0.1 and 0.09, respectively, both p < 0.001). No significant (n.s.) difference in other variables was found between the two groups. On ROC curve analysis, ME-medial femoral condyle ratio was confirmed as the most reliable prognostic factor of conservative treatment for MMPRT (area under ROC = 0.8). The large meniscus extrusion ratio was the most reliable poor prognostic factor of conservative treatment for MMPRT. Therefore, for MMPRT patients with large meniscus extrusion, early surgical repair could be considered as the primary treatment option. III.

  15. Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    DTIC Science & Technology

    2017-07-01

    to rapid joint degeneration (i.e., osteoarthritis). Tissue engineering approaches, including the combination of cells, scaffolds, and bioactive...nano/microfibers comprising engineered scaffolds can mimic the ultrastructure of the native meniscal extracellular matrix (ECM); when seeded with adult...explant and in vivo goat model. 2. KEYWORDS: Provide a brief list of keywords (limit to 20 words). Meniscus tissue engineering , electrospun

  16. Structure—Function relationships of equine menisci

    PubMed Central

    Peham, Christian; Ade, Nicole; Dürr, Julia; Handschuh, Stephan; Schramel, Johannes Peter; Vogl, Claus; Walles, Heike

    2018-01-01

    Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site- and depth- specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site- and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field. PMID:29522550

  17. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    PubMed

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  18. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal.

    PubMed

    Markolf, Keith L; Jackson, Steven R; McAllister, David R

    2012-02-01

    Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.

  19. [Diagnostic value of MRI for posterior root tear of medial and lateral meniscus].

    PubMed

    Qian, Yue-Nan; Liu, Fang; Dong, Yi-Long; Cai, Chun-Yuan

    2018-03-25

    To explore diagnostic value of MRI on posterior root tear of medial and lateral meniscus. From January 2012 to January 2016, clinical data of 43 patients with meniscal posterior root tear confirmed by arthroscopy were retrospective analyzed, including 25 males and 18 females, aged from 27 to 69 years old with an average age of(42.5±8.3)years old;27 cases on the right side and 16 cases on the left side. MRI examinations of 43 patients with tear of posterior meniscus root confirmed by knee arthroscopies were retrospectively reviewed. MRI images were double-blinded, independently, retrospectively scored by two imaging physicians. Sensitivity, specificity and accuracy of MRI diagnosis of lateral and medial meniscus posterior root tear were calculated, and knee ligament injury and meniscal dislocation were calculated. Forty-three of 143 patients were diagnosed with meniscus posterior root tears by arthroscopy, including 19 patients with lateral tears and 24 patients with medial tears. The sensitivity, specificity and accuracy in diagnosis of posterior medial meniscus root tears for doctor A were 91.67%, 86.6% and 83.9% respectively, and for doctor B were 87.5%, 87.4% and 87.4%, 19 patients with medial meniscal protrusion and 2 patients with anterior cruciate ligament tear. The sensitivity, specificity and accuracy in diagnosis of posterior lateral meniscus root tears for doctor A were 73.7%, 79.9% and 79% respectively, and for doctor B were 78.9%, 82.3% and 82.5%, 4 patients with lateral meniscus herniation and 16 patients with cruciate ligament tear. Kappa statistics for posterior medial meniscus root tears and posterior lateral meniscus root tears were 0.84 and 0.72. MRI could effectively demonstrate imaging features of medial and lateral meniscal root tear and its accompanying signs. It could provide the basis for preoperative diagnosis of clinicians, and be worthy to be popularized. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  20. UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear

    PubMed Central

    Williams, A.; Qian, Y.; Golla, S.; Chu, C.R.

    2018-01-01

    SUMMARY Objective Meniscus tear is a known risk factor for osteoarthritis (OA). Quantitative assessment of meniscus degeneration, prior to surface break-down, is important to identification of early disease potentially amenable to therapeutic interventions. This work examines the diagnostic potential of ultrashort echo time-enhanced T2* (UTE-T2*) mapping to detect human meniscus degeneration in vitro and in vivo in subjects at risk of developing OA. Design UTE-T2* maps of 16 human cadaver menisci were compared to histological evaluations of meniscal structural integrity and clinical magnetic resonance imaging (MRI) assessment by a musculoskeletal radiologist. In vivo UTE-T2* maps were compared in 10 asymptomatic subjects and 25 ACL-injured patients with and without concomitant meniscal tear. Results In vitro, UTE-T2* values tended to be lower in histologically and clinically normal meniscus tissue and higher in torn or degenerate tissue. UTE-T2* map heterogeneity reflected collagen disorganization. In vivo, asymptomatic meniscus UTE-T2* values were repeatable within 9% (root-mean-square average coefficient of variation). Posteromedial meniscus UTE-T2* values in ACL-injured subjects with clinically diagnosed medial meniscus tear (n = 10) were 87% higher than asymptomatics (n = 10, P < 0.001). Posteromedial menisci UTE-T2* values of ACL-injured subjects without concomitant medial meniscal tear (n = 15) were 33% higher than asymptomatics (P = 0.001). Posterolateral menisci UTE-T2* values also varied significantly with degree of joint pathology (P = 0.001). Conclusion Significant elevations of UTE-T2* values in the menisci of ACL-injured subjects without clinical evidence of subsurface meniscal abnormality suggest that UTE-T2* mapping is sensitive to subclinical meniscus degeneration. Further study is needed to determine whether elevated subsurface meniscus UTE-T2* values predict progression of meniscal degeneration and development of OA. PMID:22306000

  1. Posterior root tear fixation of the lateral meniscus combined with arthroscopic ACL double-bundle reconstruction: technical note of a transosseous fixation using the tibial PL tunnel.

    PubMed

    Forkel, Philipp; Petersen, Wolf

    2012-03-01

    According to our observation in ACL reconstruction, we find root tears of the posterior horn of the lateral meniscus as a common concomitant injury in ACL-deficient knees. This might be a consequence of initial trauma or of the increased anterior-posterior translation of the tibia and an overload impact on the posterior meniscus root in ACL-deficient knees. A tear of the posterior horn of the medial meniscus causes a 25% increase in peak pressure in the medial compartment compared with that found in the intact condition. The repair restores the peak contact pressure to normal (Allaire et al. in J Bone Joint Surg Am 90(9):1922-1931, [2008]). A tear of the posterior horn of the lateral meniscus might have similar consequences. We hypothesize the surgical anatomical reattachment of the root at the tibia helping to restore knee joint kinematics and helping to advance ACL-graft function. This article presents an arthroscopical technique to reattach the posterior meniscus root in combination with ACL double-bundle reconstruction. The procedure uses the tibial PL tunnel to fix the meniscus suture.

  2. Influence of meniscus shape in the cross sectional plane on the knee contact mechanics.

    PubMed

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Zarzycki, Witold

    2015-06-01

    We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of meniscus tears of the knee by radionuclide imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marymont, J.V.; Lynch, M.A.; Henning, C.E.

    We compare the accuracy of radionuclide imaging of the knee with Tc99m-pyrophosphate with arthrography for the evaluation of meniscus tears in young athletes with clinically suspected knee injury. All patients had arthroscopy which was used as the standard against which the other two diagnostic procedures were compared. Radionuclide scintigraphy and arthrography were comparable in their ability to detect tears of the medial meniscus. Scintigraphy was superior for the detection of tears of the lateral meniscus and of both menisci.

  4. Tibial avulsion fracture of the posterior root of the medial meniscus in children.

    PubMed

    Iversen, Jonas Vestergård; Krogsgaard, Michael Rindom

    2014-01-01

    Few reports have described avulsion fractures of the posterior root of the medial meniscus in skeletally immature patients. This lesion should not be overlooked as it damages the load absorptive (distributive) function of the meniscus, increasing the risk of cartilage degeneration. Two cases of displaced avulsion fractures of the posterior root of the medial meniscus in children are presented along with a concise report of the literature regarding avulsion fractures of the posterior root of the medial meniscus. Both avulsions were reattached arthroscopically by trans-tibial pull-out sutures with a good clinical result at 2-years follow-up, and in one case, the avulsion was found at re-arthroscopy after 6 weeks to have healed.

  5. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    PubMed Central

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in ΔR1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes (p < 0.05). Conclusion It is feasible to examine undamaged meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a double dose of Gd-DTPA2- (0.2 mmol/kg body weight). PMID:25005036

  6. Quantitative analysis of the difference between an intact complete discoid lateral meniscus and a torn complete discoid meniscus on MR imaging: a feasibility study for a new classification.

    PubMed

    Lee, Mi Hee; Choi, Sang-Hee; Woo, Sook Young

    2010-12-01

    To determine the quantitative difference between an intact complete discoid lateral meniscus (CDLM) and a torn CDLM on MR imaging. Between May 2005 to November 2009, 137 patients with a CDLM (107 intact CDLM and 30 torn CDLM) and 92 patients with a normal meniscus were included in this study. The evaluated parameters were the height of the posterior horn of the lateral and medial menisci on the sagittal images and their ratio as assessed by two observers twice at an interval of 1 month. Each parameter was analyzed based on the Kruskal Wallis test, and the analysis using the mixed model. Intraclass correlation coefficient (ICC) was used to determine the interobserver reliabilities at session 2. The mean heights of the posterior horn of the lateral and medial menisci on the sagittal images for an intact CDLM, a torn CLDM, and a normal meniscus were 6.5, 7.3, 5.7 and 6.6, 6.4, 6.7 mm at session 1, respectively. The mean heights of the posterior horn of the lateral and medial menisci on the sagittal images for an intact CDLM, a torn CDLM, and a normal meniscus for both observers were 6.5, 7.2, 5.7 and 6.6, 6.3, 6.8 mm at session 2, respectively. The ratio of the height of the lateral to the height of the medial meniscus for an intact CDLM at both sessions for both observers was 1.0. The ratios were 1.2 and 0.8 for a torn CDLM and for a normal meniscus, respectively, at both sessions for observer 1. The ratios were 1.2 and 0.9 for a torn CDLM and for a normal meniscus, respectively, at session 2 for observer 2. The heights of the posterior horn of the lateral meniscus on the sagittal images and the ratios of the heights of the lateral to the medial menisci in all three groups were statistically significantly different for both sessions (p < 0.0001). The interobserver ICCs for each parameter of both an intact CDLM and a torn CDLM at session 2 showed high correlations (p < 0.0001). The height of the lateral meniscus and the ratio of the height of the lateral to the height of the medial meniscus for a torn CDLM were significantly higher than those for an intact CDLM.

  7. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1975-01-01

    Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.

  8. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    PubMed

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  9. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    PubMed

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P < 0.001 and r = 0.42, P < 0.001, respectively). In that respect, there was no correlation between ganglion cell complex to outer retinal thickness ratio and outer retinal thickness in the both groups (r = -0.07, P = 0.657, and r = 0.04, P = 0.677, respectively). The ganglion cell complex to outer retinal thickness ratio was 55.65% in the normal group, 45.07% in the glaucoma group. This difference was statistically significant. The ganglion cell complex thickness may be affected by outer retinal thickness, and there is individual variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  10. A novel suture technique using the FasT-Fix combined with Ultrabraid for pullout repair of the medial meniscus posterior root tear.

    PubMed

    Fujii, Masataka; Furumatsu, Takayuki; Kodama, Yuya; Miyazawa, Shinichi; Hino, Tomohito; Kamatsuki, Yusuke; Yamada, Kazuki; Ozaki, Toshifumi

    2017-05-01

    Medial meniscus posterior root has an important role in the maintenance of knee articular cartilage. Although pullout repair of the medial meniscus posterior root tear has become a gold standard, it has several difficulties for suturing. We have developed a modified Mason-Allen suture technique using the FasT-Fix all-inside suture device combined with Ultrabraid. The present suture technique allows a strong grasping of the medial meniscus posterior horn for arthroscopic pullout repair.

  11. [How good are clinical investigative procedures for diagnosing meniscus lesions?].

    PubMed

    Jerosch, J; Riemer, S

    2004-06-01

    The purpose of this study was to evaluate different clinical meniscus tests. During 13 months we evaluated 64 patients with a suspected meniscus lesion in a prospective study. The age ranged from 16 to 76 years (average: 38.5 years). 66 % were male patients. Between the clinical examination and the arthroscopy there was no additional trauma to the knee. All patients were clinically examined in a standard manner by two independent orthopaedic surgeons. Clinical findings of the menisci were documented according to 12 well-described and commonly used meniscus tests. The arthroscopy was performed by a single surgeon who was not aware of the results of the clinical examination. This surgeon documented the intraarticular findings in a standardized operating report. A meniscus lesion/degeneration was documented when this was evident either by inspection or by palpation. The results showed either clinical meniscus tests with a high specificity and a low sensitivity or tests with a high sensitivity, but only a low specificity. We were not able to identify meniscus tests which showed both a high sensitivity and a high specificity. Even with access to MRI the clinical findings in knee joint with injured menisci still have a high diagnostic value. However, it seems to be necessary to combine different tests.

  12. Low cost solar array project: Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.

  13. Pullout Fixation of Posterior Medial Meniscus Root Tears: Correlation Between Meniscus Extrusion and Midterm Clinical Results

    PubMed

    Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Nam, Gun Woo; Kim, Jin Goo

    2017-01-01

    Medial meniscus posterior root tears (MMPRTs) lead to extrusion of the meniscus during weightbearing as well as loss of the ability of the meniscus to generate hoop stress. This loss of load-sharing ability leads to progressive arthritic changes. However, there have been no studies that correlate the correction of meniscus extrusion with clinical outcomes. Decreased meniscus extrusion is associated with better clinical and radiographic outcomes compared with increased meniscus extrusion after MMPRT pullout fixation. Case-control study; Level of evidence, 3. A total of 39 patients who underwent MMPRT pullout fixation and had been observed for more than 5 years were recruited for this study. The mean follow-up period was 69.8 months. Participants were categorized into 2 groups according to the direction of meniscus extrusion: group A (increased extrusion; 23 patients) and group B (decreased extrusion; 16 patients). Meniscus extrusion was assessed in the coronal plane on magnetic resonance imaging preoperatively and at 1 year postoperatively. The postoperative clinical outcomes (Lysholm and International Knee Documentation Committee [IKDC] scores) and radiographic results (Kellgren-Lawrence [K-L] grade and medial joint space) were compared between groups. Meniscus extrusion in group A increased significantly from a mean (±SD) of 3.5 ± 0.9 mm preoperatively to 5.1 ± 1.4 mm at 1 year postoperatively ( P < .001), whereas in group B, it decreased significantly from 4.1 ± 1.3 mm preoperatively to 3.5 ± 1.4 mm at 1 year postoperatively ( P < .001). The K-L arthritis grade (0/1/2/3/4) significantly progressed in group A (from 2/12/9/0/0 preoperatively to 0/1/14/8/0 postoperatively, respectively; P = .009) but not in group B (from 1/11/4/0/0 preoperatively to 0/6/8/2/0 postoperatively, respectively; P = .274). The mean final Lysholm and IKDC scores in group B (88.1 ± 12.1 and 79.0 ± 11.4, respectively) were significantly better than those in group A (81.0 ± 9.0 and 71.1 ± 7.8, respectively) ( P < .05). There was less medial joint space narrowing at final follow-up in group B (0.6 ± 0.8 mm) than in group A (1.1 ± 0.6 mm) ( P = .015). Progression of the K-L arthritis grade was seen in 50% (8/16) of the patients in group B compared with 87% (20/23) of the patients in group A ( P = .027). The current study demonstrates that in patients with MMPRTs, pullout fixation leads to favorable midterm outcomes, regardless of meniscus extrusion at 1-year follow-up. However, patients with decreased meniscus extrusion at postoperative 1 year have more favorable clinical scores and radiographic findings at midterm follow-up than those with increased extrusion at 1 year. This study indicates that one of the main goals of the repair of MMPRTs is to reduce meniscus extrusion as much as possible.

  14. Structure-function relationships of human meniscus.

    PubMed

    Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K

    2017-03-01

    Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (p<0.05) of elastic parameters (equilibrium and instantaneous moduli) and strain-dependent biomechanical parameters (strain-dependent fibril network modulus and permeability) were observed in the anterior horn of the medial meniscus. This location had also higher (p<0.05) PG content in the deep meniscus, higher (p<0.05) collagen content in the entire tissue depth, and lower (p<0.05) collagen orientation angle at the superficial tissue, as compared to many other locations. On the other hand, in certain comparisons (such as anterior vs. middle sites of the medial meniscus) significantly higher (p<0.05) collagen content and lower orientation angle, without any difference in the PG content, were consistent with increased meniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simultaneous measurement of tear film dynamics using wavefront sensor and optical coherence tomography.

    PubMed

    Koh, Shizuka; Tung, Cynthia; Aquavella, James; Yadav, Rahul; Zavislan, James; Yoon, Geunyoung

    2010-07-01

    PURPOSE. To investigate tear film dynamics using simultaneous measurements of ocular aberrations and lower tear meniscus. METHODS. Simultaneous measurements of wavefront aberration and lower tear meniscus were performed for 11 normal eyes and 7 eyes with short tear film break-up time (SBUT) dry eye, with a tear film break-up time shorter than 5 seconds, using a wavefront sensor and an anterior segment optical coherence tomography (OCT). During the measurement, the subjects were instructed to blink every 6 seconds for a total of 30 seconds. From the measured aberration, root mean square (RMS) wavefront error and volume modulation transfer function (vMTF) induced by changes in tear film dynamics were calculated for a 5-mm pupil. Lower tear meniscus height (TMH) and area (TMA) were estimated from the cross-sectional OCT images of lower tear meniscus. RESULTS. There was a positive correlation between RMS and tear meniscus dimensions and a negative correlation between vMTF and tear meniscus in both groups. There were moderate negative correlations between the postblink initial RMS change and baseline TMH (R = -0.61) and TMA (R = -0.54) in SBUT dry eyes that were stronger than in normal eyes (R = -0.37, R = -0.38). CONCLUSIONS. Tear meniscus dimensions increase with RMS over time, and tear quantity before blink has a significant role in maintaining initial optical integrity, especially in SBUT dry eye. Simultaneous measurement of optical quality and tear meniscus has the potential to improve understanding of tear stability in normal eyes and dry eyes.

  16. An in vitro study of cartilage-meniscus tribology to understand the changes caused by a meniscus implant.

    PubMed

    Majd, Sara Ehsani; Rizqy, Aditya Iman; Kaper, Hans J; Schmidt, Tannin A; Kuijer, Roel; Sharma, Prashant K

    2017-07-01

    Active lifestyles increase the risk of meniscal injury. A permanent meniscus implant of polycarbonate urethane (PCU) is a promising treatment to postpone/prevent total knee arthroplasty. Study of the changes in articular cartilage tribology in the presence of PCU is essential in developing the optimum meniscus implant. Therefore, a cartilage-meniscus reciprocating, sliding model was developed in vitro, mimicking the stance and swing phases of the gait cycle. The meniscus was further replaced with PCU and surface-modified PCUs (with C18 chains, mono-functional polydimethylsiloxane groups and mono-functional polytetrafluoroethylene groups) to study the changes. The coefficient of friction (COF) was calculated, and cartilage wear was determined and quantified histologically. The cartilage-meniscus sliding resulted in low COF during both stance and swing (0.01< COF <0.12) and low wear of cartilage (scores <1). The cartilage-PCU sliding, during stance, revealed similar low COFs. But during swing, the COFs were high (average ∼1, maximum 1.6), indicating a breakdown in interstitial fluid pressurization lubrication and non-effective activation of the boundary lubrication. This may lead to wear of cartilage in long term. However, under the tested conditions the wear of cartilage against PCUs was not higher than its wear against meniscus, and the cartilage was occasionally damaged. The COF decreased with increasing the contact pressure (as-per a power equation) up to 1MPa. The changes in the surface modification of PCU did not affect PCU's tribological performance. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Study of role of meniscus and viscous forces during liquid-mediated contacts separation

    NASA Astrophysics Data System (ADS)

    Dhital, Prabin

    Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.

  18. Characteristics of radial tears in the posterior horn of the medial meniscus compared to horizontal tears.

    PubMed

    Choi, Chul-Jun; Choi, Yun-Jin; Song, In-Bum; Choi, Chong-Hyuk

    2011-06-01

    The clinical and radiologic features of radial tears of the medial meniscus posterior horn were compared with those of horizontal tears. From January 2007 to December 2008, 387 consecutive cases of medial meniscal tears were treated arthroscopically. Among these, 91 were radial tears in the medial meniscus posterior horn, and 95 were horizontal tears in the posterior segment of the medial meniscus. The patients' data (age, gender, duration of symptom, body mass index, and injury history), radiographic findings (Kellgren and Lawrence score, posterior tibial slope, and femorotibial angle), and chondral lesions were recorded. The patient factors of age, gender, and body mass index were related to radial tears of the medial meniscus posterior horn. Radial tears were significantly correlated with Kellgren and Lawrence score, varus alignment, posterior tibial slope, and severity of the chondral lesion. Radial tears of the medial meniscus posterior horn are a unique clinical entity that are associated with older age, females and obesity, and are strongly associated with an increased incidence and severity of cartilage degeneration compared to horizontal tears.

  19. Patterns of meniscal tears associated with anterior cruciate ligament lesions in athletes.

    PubMed

    Binfield, P M; Maffulli, N; King, J B

    1993-09-01

    In this study, 400 clinically anterior cruciate ligament (ACL) deficient knees were arthroscoped and studied prospectively in the period January 1986 to April 1992. An ACL tear was always confirmed, and 41 per cent of these patients did not have an associated meniscal tear. In 30.25 per cent the lateral meniscus was torn; in 21.25 per cent the ACL tear was associated with a medial meniscus tear, and in the remaining 7 per cent both menisci were torn. The most frequently associated meniscal injury was the bucket handle tear of the medial meniscus (9 per cent), followed by the posterior horn tear of the lateral meniscus, which showed the same frequency as the ragged (or degenerated) tear of the lateral meniscus (6 per cent). The horizontal tear of the posterior part of the lateral meniscus showed a prevalence of 4.3 per cent. This picture is probably dependent on a secondary referral nature of the centre surveyed, in which the average time between injury and arthroscopy was 23.3 months.

  20. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

  1. Surface tension determination using liquid sample micromirror property

    NASA Astrophysics Data System (ADS)

    Hošek, Jan

    2007-05-01

    This paper presents an application of adaptive optics principle onto small sample of liquid surface tension measurement. The principle of experimental method devised by Ferguson (1924) is based on measurement of pressure difference across a liquid sample placed into small diameter capillary on condition of one flat meniscus of the liquid sample. Planarity or curvature radius of the capillary tip meniscus has to be measured and controlled, in order to fulfill this condition during measurement. Two different optical set-ups using liquid meniscus micromirror property are presented and its suitability for meniscus profile determination is compared. Meniscus radius optical measurement, data processing and control algorithm of the adaptive micromirror profile set are presented too. The presented adaptive optics system can be used for focal length control of microsystems based on liquid micromirrors or microlenses with long focal distances especially.

  2. The Fate of Meniscus Tears Left in situ at the time of Anterior Cruciate Ligament Reconstruction: A 6-year Follow-up Study from the MOON Cohort

    PubMed Central

    Duchman, Kyle R.; Westermann, Robert W.; Spindler, Kurt P.; Reinke, Emily K.; Huston, Laura J.; Amendola, Annunziato; Wolf, Brian R.

    2016-01-01

    Background The management of meniscus tears identified at the time of primary ACL reconstruction is highly variable and includes repair, meniscectomy, and non-treatment. Hypothesis/Purpose The purpose of this study is to determine the reoperation rate for meniscus tears left untreated at the time of ACL reconstruction with minimum follow-up of 6 years. We hypothesize that small, peripheral tears identified at the time of ACL reconstruction managed with “no treatment” will have successful clinical outcomes. Study Design Retrospective study of a prospective cohort; Level of Evidence, 3 Methods Patients with meniscus tears left untreated at the time of primary ACL reconstruction were identified from a multicenter study group with minimum 6-year follow-up. Patient, tear, and reoperation data were obtained for analysis. Need for reoperation was used as the primary endpoint, with analysis performed to determine patient and tear characteristics associated with reoperation. Results There were 194 patients with 208 meniscus tears (71 medial; 137 lateral) left in situ without treatment with complete follow-up for analysis. Of these, 97.8% of lateral and 94.4% of medial untreated tears required no reoperation. Sixteen tears (7.7%) left in situ without treatment underwent subsequent reoperation: 9 tears (4.3%) underwent reoperation in the setting of revision ACL reconstruction and 7 tears (3.4%) underwent reoperation for isolated meniscus pathology. Patient age was significantly lower in patients requiring reoperation, while tears measuring ≥ 10 mm more frequently required reoperation. Conclusions Lateral and medial meniscus tears left in situ at the time of ACL reconstruction did not require reoperation at minimum 6-year follow-up for 97.8% and 94.4% of tears, respectively. These findings reemphasize the low reoperation rate following non-treatment of small, peripheral lateral meniscus tears while noting less predictable results for medial meniscus tears left without treatment. PMID:26430058

  3. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative

    PubMed Central

    Bloecker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; Englund, M.; Resch, H.; Eckstein, F.

    2013-01-01

    SUMMARY Introduction Meniscal extrusion is thought to be associated with less meniscus coverage of the tibial surface, but the association of radiographic disease stage with quantitative measures of tibial plateau coverage is unknown. We therefore compared quantitative and semi-quantitative measures of meniscus position and morphology in individuals with bilateral painful knees discordant on medial joint space narrowing (mJSN). Methods A sample of 60 participants from the first half (2,678 cases) of the Osteoarthritis Initiative cohort fulfilled the inclusion criteria: bilateral frequent pain, Osteoarthritis Research Society International (OARSI) mJSN grades 1–3 in one, no-JSN in the contra-lateral (CL), and no lateral JSN in either knee (43 unilateral mJSN1; 17 mJSN2/3; 22 men, 38 women, body mass index (BMI) 31.3 ± 3.9 kg/m2). Segmentation and three-dimensional quantitative analysis of the tibial plateau and meniscus, and semi-quantitative evaluation of meniscus damage (magnetic resonance imaging (MRI) osteoarthritis knee score – MOAKS) was performed using coronal 3T MR images (MPR DESSwe and intermediate-weighted turbo spin echo (IW-TSE) images). CL knees were compared using paired t-tests (between-knee, within-person design). Results Medial tibial plateau coverage was 36 ± 9% in mJSN1 vs 45 ± 8% in CL no-JSN knees, and was 31 ± 9% in mJSN2/3 vs 46 ± 6% in no-JSN knees (both P < 0.001). mJSN knees showed greater meniscus extrusion and damage (MOAKS), but no significant difference in meniscus volume. No significant differences in lateral tibial coverage, lateral meniscus morphology or position were observed. Conclusions Knees with medial JSN showed substantially less medial tibial plateau coverage by the meniscus. We suggest that the less meniscal coverage, i.e., less mechanical protection may be a reason for greater rates of cartilage loss observed in JSN knees. PMID:23220556

  4. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament.

    PubMed

    Forkel, Philipp; Herbort, Mirco; Schulze, Martin; Rosenbaum, Dieter; Kirstein, Lars; Raschke, Michael; Petersen, Wolf

    2013-05-01

    The purpose of this study was to evaluate the effects of different types of lateral meniscus root tears in terms of tibiofemoral contact stress. Ten porcine knees each underwent five different testing conditions with the menisci intact, a simulated lateral posterior root tear with and without cutting the meniscofemoral ligament and with an artificial tear of the posterior root of the medial meniscus. Biomechanical testing was performed at 30° of flexion with an axial load of 100 N. A pressure sensor (st Sensor Type S2042, Novel, Munich) was used to measure the tibiofemoral contact area and the tibiofemoral contact pressure. Data were analyzed to assess the differences in contact area and tibiofemoral peak contact pressure among the five meniscal conditions. There was no significant difference in mean contact pressure between the state with the menisci intact and an isolated posterior root tear of the lateral meniscus. In case of a root tear and a tear of the meniscofemoral ligament, the contact area decreased in comparison with the intact state of the menisci. After additional cutting of the meniscofemoral ligament, the tibiofemoral contact pressure was significantly higher in comparison with the intact state and the avulsion injury. In the medial compartment, joint compression forces were significantly increased in comparison with the intact state after cutting the posterior root of the medial meniscus (P < 0.05). The consequence of a medial meniscus root tear is well known and was verified by this analysis. The results of the present study show that the biomechanical consequences of a lateral meniscus root tear depend on the state of the meniscofemoral ligament. An increase in tibiofemoral contact pressure is only to be expected in combined injuries of the meniscus root and the meniscofemoral ligaments. Posterior lateral meniscus root tear might have a better prognosis in terms of the development of osteoarthritis when the meniscofemoral ligament is intact.

  5. The Fate of Meniscus Tears Left In Situ at the Time of Anterior Cruciate Ligament Reconstruction: A 6-Year Follow-up Study From the MOON Cohort.

    PubMed

    Duchman, Kyle R; Westermann, Robert W; Spindler, Kurt P; Reinke, Emily K; Huston, Laura J; Amendola, Annunziato; Wolf, Brian R

    2015-11-01

    The management of meniscus tears identified at the time of primary anterior cruciate ligament (ACL) reconstruction is highly variable and includes repair, meniscectomy, and nontreatment. The purpose of this study was to determine the reoperation rate for meniscus tears left untreated at the time of ACL reconstruction with a minimum follow-up of 6 years. The hypothesis was that small peripheral tears identified at the time of ACL reconstruction managed with "no treatment" would have successful clinical outcomes. Cohort study; Level of evidence, 3. Patients with meniscus tears left untreated at the time of primary ACL reconstruction were identified from a multicenter study group with a minimum 6-year follow-up. Patient, tear, and reoperation data were obtained for analysis. The need for reoperation was used as the primary endpoint, with analysis performed to determine patient and tear characteristics associated with reoperation. There were 194 patients with 208 meniscus tears (71 medial, 137 lateral) left in situ without treatment with a complete follow-up for analysis. Of these, 97.8% of lateral and 94.4% of medial untreated tears required no reoperation. Sixteen tears (7.7%) left in situ without treatment underwent subsequent reoperation: 9 tears (4.3%) underwent reoperation in the setting of revision ACL reconstruction, and 7 tears (3.4%) underwent reoperation for an isolated meniscus injury. The patient age was significantly lower in patients requiring reoperation, while tears measuring ≥10 mm more frequently required reoperation. Lateral and medial meniscus tears left in situ at the time of ACL reconstruction did not require reoperation at a minimum 6-year follow-up for 97.8% and 94.4% of tears, respectively. These findings re-emphasize the low reoperation rate after the nontreatment of small, peripheral lateral meniscus tears while noting less predictable results for medial meniscus tears left without treatment. © 2015 The Author(s).

  6. Bilateral discoid medial menisci: a rare phenomenon

    PubMed Central

    Samal, Puspak; Bhagwat, Kishan; Panigrahi, Tapas; Gopinathan, Nirmalraj

    2014-01-01

    Discoid medial meniscus is a relatively rare pathology of the knee joint, with bilateral cases even rarer. Herein, we report the case of a 25-year-old man diagnosed with discoid medial meniscus in the right knee with a horizontal tear. Increased cupping of the medial condyle of the tibia, widening of the medial joint space and the presence of discoid meniscus in the right knee prompted investigation of the asymptomatic left knee with magnetic resonance imaging. The contralateral asymptomatic knee also showed evidence of discoid medial meniscus. The symptomatic knee was successfully treated by arthroscopic partial meniscectomy, with excellent functional outcome. PMID:25273941

  7. An observational study on MR images of the effect of the discoid meniscus on articular cartilage thickness.

    PubMed

    Oni, David Babajide; Jeyapalan, K; Oni, Olusola O A

    2011-06-01

    The discoid meniscus is known to affect the morphology and mechanics of the knee compartment in which it is housed. To determine whether it also is determinative of the articular cartilage thickness, measurements were made on MR images. There was no statistically significant difference in femoral or tibial articular cartilage thickness between compartments with normal meniscus and compartments with discoid meniscus. These findings suggest that mechanical disturbances wrought by the discoid shape do not have a 'Wolff law' effect. Copyright © 2010. Published by Elsevier B.V.

  8. Cell-Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    DTIC Science & Technology

    2016-07-01

    STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this proposal is to develop a novel bio ...fibers. Secondly, the NFS will be bio -enhanced by impregnation with an extract derived from decellularized meniscus matrix, which contains molecules and...growth factors specific to this tissue, to increase the formation of fibrocartilage by adult stem cells seeded within the scaffold. This bio

  9. Meniscus tear surgery and meniscus replacement

    PubMed Central

    Vaquero, Javier; Forriol, Francisco

    2016-01-01

    Summary Objective the menisci are easily injured and difficult to repair. The aim of this study was to analyze the current state of meniscal surgery aimed at preserving morphology and conserving the biomechanics of the knee to prevent joint degeneration. Methodology a search of the electronic medical literature database Medline was conducted, from http://www.ncbi.nlm.nih.gov/pubmed. The search was not limited by language. Candidate articles were identified by searching for those that included the keywords meniscus, surgery, suture, implant, allograft. The limits were included for clinical research and clinical trials. Basic research was not included. The studies selected were evaluated and classified in three different categories: basic science, reconstruction (suture and meniscectomy) and implants (scaffolds and allograft). Results the consequences of meniscectomy performed at a young age can lead to a joint cartilage degeneration twenty years later. There are few surgical options for the repair of meniscal injuries in order both to preserve the meniscus and to ensure the long term survival of the knee joint, meniscectomy, repair, suturing the tear, or reconstruction, when a meniscal allograft or synthetic substitute is used to replace the meniscus, but the biomechanical properties of the native meniscus are not reproduced entirely by the scaffolds that exist today. Conclusion therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay osteoarthritis progression. PMID:27331034

  10. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  11. Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Meng, Xiangning; Wang, Ning; Zhu, Miaoyong

    2017-04-01

    Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.

  12. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications.

    PubMed

    Marzo, John M; Gurske-DePerio, Jennifer

    2009-01-01

    Avulsion of the posterior horn attachment of the medial meniscus can compromise load-bearing ability, produce meniscus extrusion, and result in tibiofemoral joint-space narrowing, articular cartilage damage, and osteoarthritis. Avulsion of the posterior horn of the medial meniscus will increase peak contact pressure and decrease contact area in the medial compartment of the knee, and posterior horn repair will restore contact area and peak contact pressures to values of the control knee. Controlled laboratory study. Eight fresh-frozen human cadaveric knees had tibiofemoral peak contact pressures and contact area measured in the control state. The posterior horn of the medial meniscus was avulsed from its insertion and knees were retested. The meniscal avulsion was repaired by suture through a transosseous tunnel and the knees were tested a third time. Avulsion of the posterior horn attachment of the medial meniscus resulted in a significant increase in medial joint peak contact pressure (from 3841 kPa to 5084 kPa) and a significant decrease in contact area (from 594 mm(2) to 474 mm(2)). Repair of the avulsion resulted in restoration of the loading profiles to values equal to the control knee, with values of 3551 kPa for peak pressure and 592 mm(2) for contact area. Posterior horn medial meniscal root avulsion leads to deleterious alteration of the loading profiles of the medial joint compartment and results in loss of hoop stress resistance, meniscus extrusion, abnormal loading of the joint, and early knee medial-compartment degenerative changes. The repair technique described restores the ability of the medial meniscus to absorb hoop stress and eliminate joint-space narrowing, possibly decreasing the risk of degenerative disease.

  13. Traumatic posterior root tear of the medial meniscus in patients with severe medial instability of the knee.

    PubMed

    Ra, Ho Jong; Ha, Jeong Ku; Jang, Ho Su; Kim, Jin Goo

    2015-10-01

    To examine the incidence and diagnostic rate of traumatic medial meniscus posterior root tear associated with severe medial instability and to evaluate the effectiveness of pullout repair. From 2007 to 2011, 51 patients who underwent operation due to multiple ligament injuries including medial collateral ligament rupture were reviewed retrospectively. The International Knee Documentation Committee (IKDC) subjective and Lysholm score were evaluated pre- and postoperatively. Postoperative magnetic resonance imaging (MRI) was performed, and if indicated, a second-look arthroscopic examination was conducted. Fourteen out of 51 patients were associated with severe medial instability. Seven patients were diagnosed with traumatic medial meniscus posterior root tear and underwent arthroscopic pullout repair. Five of them were missed at initial diagnosis using MRI. In seven patients, the mean Lysholm and IKDC subjective scores improved from 74.6 ± 10.3 and 47.6 ± 7.3 to 93.0 ± 3.7 and 91.6 ± 2.6, respectively. All showed complete healing of meniscus root on follow-up MRI and second-look arthroscopy. Medial meniscus posterior root tear may occur in severe medial instability from trauma. It is a common mistake that surgeons may not notice on the diagnosis of those injuries using MRI. Therefore, a high index of suspicion is required for the diagnosis of medial meniscus posterior root tear in this type of injuries. The traumatic medial meniscus posterior root tear could be healed successfully using arthroscopic pullout repair technique. The possibility of the medial meniscus posterior root tear should be considered in severe medial instability and arthroscopic pullout repair can be an effective option for treatment. Case series with no comparison group, Level IV.

  14. Predictive value of painful popping for a posterior root tear of the medial meniscus in middle-aged to older Asian patients.

    PubMed

    Bae, Ji-Hoon; Paik, Nak Hwan; Park, Gyu-Won; Yoon, Jung-Ro; Chae, Dong-Ju; Kwon, Jae Ho; Kim, Jong In; Nha, Kyung-Wook

    2013-03-01

    The purpose of this study was to determine the accuracy, sensitivity, specificity, and predictive values of a single event of painful popping in the presence of a posterior root tear of the medial meniscus in middle-aged to older Asian patients. We conducted a retrospective review of medical records of 936 patients who underwent arthroscopic surgeries for an isolated medial meniscus tear between January 2000 and December 2010. There were 332 men and 604 women with a mean age of 41 years (range, 25 to 66 years). The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of a painful popping sensation for a posterior root tear of the medial meniscus were calculated. Arthroscopy confirmed the presence of posterior root tears of the medial menisci in 237 of 936 patients (25.3%). A single event of a painful popping sensation was present in 86 of these 936 patients (9.1%). Of these 86 patients with a painful popping sensation, 83 (96.5%) were categorized as having an isolated posterior root tear of the medial meniscus. The positive predictive value of a painful popping sensation in identifying a posterior root tear of the medial meniscus was 96.5%, the negative predictive value was 81.8%, the sensitivity was 35.0%, the specificity was 99.5%, and the diagnostic accuracy was 77.9%. A single event of painful popping can be a highly predictive clinical sign of a posterior root tear of the medial meniscus in the middle-aged to older Asian population. However, it has low sensitivity for the detection of a posterior root tear of the medial meniscus. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    PubMed Central

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P < 0.01), so was the percent extrusion area of the medial meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P < 0.05). This finding was consistent for knees restricted to medial incidence. No significant differences were observed for the lateral meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  16. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers.

    PubMed

    Vega, E J; Acero, A J; Montanero, J M; Herrada, M A; Gañán-Calvo, A M

    2014-06-01

    We analyze both experimentally and numerically the formation of microbubbles in the jetting regime reached when a moderately viscous liquid stream focuses a gaseous meniscus inside a converging micronozzle. If the total (stagnation) pressure of the injected gas current is fixed upstream, then there are certain conditions on which a quasisteady gas meniscus forms. The meniscus tip is sharpened by the liquid stream down to the gas molecular scale. On the other side, monodisperse collections of microbubbles can be steadily produced in the jetting regime if the feeding capillary is appropriately located inside the nozzle. In this case, the microbubble size depends on the feeding capillary position. The numerical simulations for an imposed gas flow rate show that a recirculation cell appears in the gaseous meniscus for low enough values of that parameter. The experiments allow one to conclude that the bubble pinch-off comprises two phases: (i) a stretching motion of the precursor jet where the neck radius versus the time before the pinch essentially follows a potential law, and (ii) a final stage where a very thin and slender gaseous thread forms and eventually breaks apart into a number of micron-sized bubbles. Because of the difference between the free surface and core velocities, the gaseous jet breakage differs substantially from that of liquid capillary jets and gives rise to bubbles with diameters much larger than those expected from the Rayleigh-type capillary instability. The dependency of the bubble diameter upon the flow-rate ratio agrees with the scaling law derived by A. M. Gañán-Calvo [Phys. Rev. E 69, 027301 (2004)], although a slight influence of the Reynolds number can be observed in our experiments.

  17. Double PCL sign does not always indicate a bucket-handle tear of medial meniscus.

    PubMed

    Liu, Chen; Zheng, Hua Yong; Huang, Yan; Li, Hai Peng; Wu, Han; Sun, Tian Sheng; Yao, Jian Hua

    2016-09-01

    The discoid medial meniscus is an extremely rare anomaly. Bilateral discoid medial menisci are much more rare but intermittently reported. We report the first case of bilateral discoid medial menisci with positive double PCL sign, which typically indicates a bucket-handle tear of medial meniscus. A literature review was also conducted on bilateral discoid medial menisci.

  18. Direct measurement of hoop strains in the intact and torn human medial meniscus.

    PubMed

    Jones, R Spencer; Keene, G C R; Learmonth, D J A; Bickerstaff, D; Nawana, N S; Costi, J J; Pearcy, M J

    1996-07-01

    OBJECTIVE: To measure the circumferential or hoop strains generated in the medial meniscus during loading of the knee joint and to examine the effect of longitudinal and radial tears in the meniscus on these strain values. DESIGN: An in vitro investigation measuring the circumferential strains in the medial menisci of cadaveric human knees as they were loaded in a materials testing machine. BACKGROUND: The menisci transmit approximately 50% of the load through the knee, the rest being transmitted by direct contact of the articular cartilage. Damage to the menisci will alter the pattern of load transmission as will meniscectomy. This study examined the changes in the mechanics of the meniscus in situ as a result of simulated tears to assess the effect of its load carrying capacity and the implications of surgery to remove part or all of a damaged meniscus. METHODS: Nineteen human cadaveric knees were tested. Windows were made in the joint capsule and strain gauges inserted into the anterior, middle and posterior sections of the medial meniscus. The knees were then loaded to three times body weight at speeds of 50 and 500 mm/min, with the knee joint at 0 degrees and 30 degrees of flexion. The tests were repeated following the creation of a longitudinal or a radial tear in the meniscus. RESULTS: The intact menisci showed significantly less strain in the posterior section compared to the anterior and middle sections (P < 0.003, with strains of 1.54%, 2.86% and 2.65% respectively). With a longitudinal tear this pattern changed with strains decreasing anteriorly and increasing posteriorly. There were also significant differences at different angles of knee joint flexion not seen in the intact meniscus. 50% radial tears reduced the strains anteriorly whilst a complete radial tear completely defunctioned the meniscus. CONCLUSIONS: This study has shown that there are significantly different hoop strains produced in different sections of the medial meniscus under load and the patterns of strain distribution are disturbed by meniscal tears. RELEVANCE: These results provide important data for mathematical models which must include non-uniform behaviour. They also have implications for the surgical management of torn menisci. Undamaged portions should be preserved and the integrity of the circumferential fibres maintained to ensure the menisci retain a load bearing capability.

  19. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  20. [Meniscal lesion. A pre-osteoarthritic condition of the knee joint].

    PubMed

    Goebel, L; Reinhard, J; Madry, H

    2017-10-01

    A close relationship between meniscal damage and articular cartilage exist. Likewise, (partial) meniscectomy may lead to the development of osteoarthritis (OA). With a special emphasis on therapeutic consequences for orthopaedic surgeons, the structural and functional relationship between meniscal tears/extrusion and cartilage loss, and/or the effect of meniscectomy or meniscal repair on the development of OA, are emphasized. A selective literature review with implementation of own research findings. The close topographical and functional interplay between the menisci and the tibiofemoral cartilage is the basis for the clinically important relationship between meniscal damage and cartilage degeneration. In particular, due to its close connection to tibiofemoral OA, a degenerative meniscal lesion represents a pre-osteoarthritic condition. Meniscus extrusion is also often associated with tibiofemoral OA. Even large cartilage defects can cause meniscus lesions. Partial meniscectomy is strongly associated with the incidence and risk of progression of OA. Clinical results are particularly problematic after partial resection of the lateral meniscus. Although the use of arthroscopic partial resection for degenerative meniscal lesions has been controversially discussed, no long-term studies are available. A large number of studies emphasize the medium-term value of meniscus reconstruction compared to partial meniscus resection. Combined meniscus and cartilage damage are complex cases, and the value of a simultaneous therapy remains unclear. Preserving the meniscus is the first step towards cartilage repair. Randomized and controlled studies will provide better information on the long-term outcomes of meniscal resection and repair with regard to OA development.

  1. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Recent advances toward silicon growth stations and improved electronic quality of multiplesilicon are discussed. These advances were made in large measure by studies in which the composition of the gas environment around the meniscus area was varied. By introducing gases such as CO2, CO, and CH4 into this region, reproducible increases in diffusion length and cell performance were realized, with the best large area (5 cm x 10 cm) cells exceeding 11% efficiency.

  2. Acceleration of Ligament Healing with Cellular Attractants

    DTIC Science & Technology

    2008-07-01

    major cause of morbidity in the armed forces. type VI collagen is a haptotactic cell attractant. We have shown that type VI collagen with bound...heparin/FGF-2 or hyaluronan or fibronectin promotes migration of canine ACL and DET cells. Insertion of type VI collagen into a wound in the canine...1984). Type I collagen is known to be the predominant fibrillar collagen in the meniscus. Smaller amounts of type II collagen are also present. In

  3. Asymmetric Die Grows Purer Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Kalejs, J. P.; Chalmers, B.; Surek, T.

    1983-01-01

    Concentration of carbide impurities in silicon ribbon is reduced by growing crystalline ribbon with die one wall higher than other. Height difference controls shape of meniscus at liquid/crystal interface and concentrates silicon carbide impurity near one of broad faces. Opposite face is left with above-average purity. Significantly improves efficiency of solar cells made from ribbon.

  4. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    PubMed

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  5. Meniscal pathology associated with acute anterior cruciate ligament tears in patients with open physes.

    PubMed

    Samora, Walter P; Palmer, Ryan; Klingele, Kevin E

    2011-01-01

    The purpose of this study is to characterize meniscal pathology associated with anterior cruciate ligament (ACL) rupture in skeletally immature patients. We also evaluate the accuracy of preoperative magnetic resonance imaging (MRI) in predicting ACL and meniscus pathology. A retrospective chart review was performed on 124 skeletally immature patients who underwent arthroscopically assisted ACL reconstruction within 3 months of injury. Operative reports and arthroscopic images were reviewed to determine patterns of meniscal injury. The accuracy of preoperative MRI in predicting ACL rupture and meniscus pathology was also compared. One hundred twenty-four patients, including 80 males with an average age of 14.3 years, and 44 females with an average age of 14.1 years were included. The lateral meniscus was torn in 51 patients, the medial meniscus in 17 patients, and both menisci in 19. The prevalence of meniscus tear was 69.3%. Location of the tear occurred in the posterior horn in 69 tears (65.0%), the middle and posterior horn in 31 tears (29.2%), the middle horn in 4 tears (3.7%), and the anterior horn and posterior horn in 2 tears (1.8%). MRI showed 95.6% sensitivity in detecting complete ACL rupture. Further, MRI had a sensitivity of 58.6% and a specificity of 91.3% in characterizing meniscus tears. There are many studies that evaluate ACL rupture in the skeletally immature population, but few studies focus on the meniscus pathology that is associated with these injuries. We reinforce the fact that meniscal injury is commonly associated with ACL rupture in patients with open physes (prevalence of 69.3%). We were able to conclude that lateral meniscus tears are more common than medial meniscus tears, which were equally as common as combined tears in our patient population. The posterior horn is injured in most of patients, and is usually in a repairable configuration and vascular zone. These findings will help to guide surgeons in their clinical evaluation and treatment of skeletally immature patients with ACL rupture. Level IV, retrospective case series.

  6. Functional characterization of normal and degraded bovine meniscus: Rate-dependent indentation and friction studies

    PubMed Central

    Baro, Vincent J.; Bonnevie, Edward D.; Lai, Xiaohan; Price, Christopher; Burris, David L.; Wang, Liyun

    2013-01-01

    The menisci are known to play important roles in normal joint function and the development of diseases such as osteoarthritis. However, our understanding of meniscus’ load bearing and lubrication properties at the tissue level remains limited. The objective of this investigation was to characterize the site- and rate-dependency of the compressive and frictional responses of the meniscus under a spherical contact load. Using a custom testing device, indentation tests with rates of 1, 10, 25, 50, and 100 μm/s were performed on bovine medial meniscus explants, which were harvested from five locations including the femoral apposing surface at the anterior, central, and posterior locations and the central portion at the deep layer and at the tibial apposing surface (n=5 per location). Sliding tests with rates of 0.05, 0.25, 1, and 5 mm/s were performed on the central femoral aspect and central tibial aspect superficial samples (n=6 per location). A separate set of superficial samples were subjected to papain digestion and tested prior to and post treatment. Our findings are: i) the Hertz contact model can be used to fit the force responses of meniscus under the conditions tested; ii) the anterior region is significantly stiffer than the posterior region and tissue modulus does not vary with tissue depth at the central region; iii) the friction coefficient of the meniscus is on the order of 0.02 under migratory contacts and the femoral apposing surface tends to show lower friction than the tibial apposing surface; iv) the meniscus exhibits increased modulus and lubrication with increased indentation and sliding rates; v) matrix degradation impedes the functional load support and lubrication properties of the tissue. The site- and rate-dependent properties of the meniscus may be attributed to spatial variations of the tissue’s biphasic structure. These properties substantiate the role of the meniscus as one of the important bearing surfaces of the knee. These data contribute to an improved understanding of meniscus function, and its role in degenerative joint diseases. In addition, the results provide functional metrics for developing engineered tissue replacements. PMID:22449445

  7. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs.

    PubMed

    LaPrade, Christopher M; Jansson, Kyle S; Dornan, Grant; Smith, Sean D; Wijdicks, Coen A; LaPrade, Robert F

    2014-03-19

    An avulsion of the posterior root attachment of the lateral meniscus or a radial tear close to the root attachment can lead to degenerative knee arthritis. Although the biomechanical effects of comparable injuries involving the medial meniscus have been studied, we are aware of no such study involving the lateral meniscus. We hypothesized that in situ pull-out suture repair of lateral meniscus root avulsions and of complete radial tears 3 and 6 mm from the root attachment would increase the contact area and decrease mean and peak tibiofemoral contact pressures, at all knee flexion angles, relative to the corresponding avulsion or tear condition. Eight human cadaveric knees underwent biomechanical testing. Eight lateral meniscus conditions (intact, footprint tear, root avulsion, root avulsion repair, radial tears at 3 and 6 mm from the posterior root, and repairs of the 3 and 6-mm tears) were tested at five different flexion angles (0°, 30°, 45°, 60°, and 90°) under a compressive 1000-N load. Avulsion of the posterior root of the lateral meniscus or an adjacent radial tear resulted in significantly decreased contact area and increased mean and peak contact pressures in the lateral compartment, relative to the intact condition, in all cases except the root avulsion condition at 0° of flexion. In situ pull-out suture repair of the root avulsion or radial tear significantly reduced mean contact pressures, relative to the corresponding avulsion or tear condition, when the results for each condition were pooled across all flexion angles. Posterior horn root avulsions and radial tears adjacent to the root attachment of the lateral meniscus significantly increased contact pressures in the lateral compartment. In situ pull-out suture repairs of these tears significantly improved lateral compartment joint contact pressures. In situ repair may be an effective treatment to improve tibiofemoral contact profiles after an avulsion of the posterior root of the lateral meniscus or a complete radial tear adjacent to the root. In situ repairs should be further investigated clinically as an alternative to partial lateral meniscectomy.

  8. Repair of the posterior root of the medial meniscus.

    PubMed

    Jones, Christopher; Reddy, Sudheer; Ma, C Benjamin

    2010-01-01

    Tears of the posterior root of the medial meniscus are becoming increasingly recognized. Early identification and treatment of these tears help halt the progression of cartilage degeneration and osteoarthritis of the knee. Repair of these tears is essential for recreating the hoop stress of the medial meniscus. In this note, we describe a successful arthroscopic technique to repair this lesion. A posteromedial portal is established by which two 2-0 PDS sutures are placed through the meniscus root and pulled down through a trans-tibial tunnel and fixed using an EndoButton distally along the anterolateral cortex of the tibia. This has been performed successfully in five patients with no complications.

  9. Simultaneous avulsion fracture of the posterior medial and posterior lateral meniscus root: a case report and review of the literature.

    PubMed

    Feucht, Matthias J; Salzmann, Gian M; Pestka, Jan M; Südkamp, Norbert P; Niemeyer, Philipp

    2014-04-01

    Injuries of the meniscus roots are increasingly recognized as a serious knee joint pathology. An avulsion fracture of the meniscus root is a rare variant of this injury pattern. In this article, a case of a traumatic simultaneous avulsion fracture of both the posterior medial and posterior lateral meniscus root associated with a tear of the anterior cruciate ligament is presented. Both avulsion fractures were treated by indirect arthroscopic transtibial pullout fixation of the bony fragment. Based on the findings of our literature review, root avulsion fractures seem to be more common in young male patients after an acute trauma to the knee joint.

  10. Arthroscopic partial meniscectomy of a medial meniscus bucket-handle tear using the posteromedial portal.

    PubMed

    Ahn, Jin Hwan; Oh, Irvin

    2004-09-01

    Arthroscopic resection of irreparable bucket-handle tears of the medial meniscus is a commonly performed procedure. Adequate visualization of the posterior horn of the medial meniscus can be a challenging task with the conventional use of the anterior portal. An attempt to resect the posterior horn in a blind fashion may result in iatrogenic damage of the articular cartilage in the posterior compartment, over-resection of a remnant meniscus, or an insufficient resection of the torn fragment. We describe the use of the posteromedial portal for an accurate visualization and resection of the posterior attachment of a bucket-handle tear for arthroscopic partial meniscectomy, as well as detection of other injuries that may be involved in the posteromedial compartment, while avoiding injury to other intra-articular structures during the arthroscopic procedure. We found that the use of the posteromedial portal is a safe and efficient method in removing a bucket-handle tear of the medial meniscus in one piece.

  11. Meniscus formation in a capillary and the role of contact line friction.

    PubMed

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  12. Review: Modelling of meniscus of knee joint during soccer kicking

    NASA Astrophysics Data System (ADS)

    Azrul Hisham Mohd Adib, Mohd; Firdaus Jaafar, Mohd

    2013-12-01

    Knee is a part of the body that located between thigh and shank is one of the most complicated and largest joints in the human body. The common injuries that occur are ligaments, meniscus or bone fracture. During soccer games, the knee is the most critical part that will easily injure due to the shock from an external impact. Torn meniscus is one of the effects. This study will investigate the effect towards the meniscus within the knee joint during soccer ball kicking. We conduct a literary review of 14 journals that discuss the general view of meniscus and also soccer kicking. The selected topics for this review paper are meniscal function, meniscal movement, meniscal tears and also instep kick. As a finding, statistics show that most meniscal tears (73%) occurred in athletes who were soccer players, basketball players or skiers. The tear is frequently happening at the medial side rather than lateral side with a percentage of 70%.

  13. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    NASA Astrophysics Data System (ADS)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  14. Arthroscopic pullout repair of a complete radial tear of the tibial attachment site of the medial meniscus posterior horn.

    PubMed

    Kim, Young-Mo; Rhee, Kwang-Jin; Lee, June-Kyu; Hwang, Deuk-Soo; Yang, Jun-Young; Kim, Sung-Jae

    2006-07-01

    We developed an effective arthroscopic pullout technique for repairing complete radial tears of the tibial attachment site of the medial meniscus posterior horn (MMPH). In our technique, the torn meniscus is reattached to the tibial plateau immediately medial or anteromedial to the posterior cruciate ligament (PCL) using two No. 2 Ethibond sutures (Ethicon, Somerville, NJ). After a complete radial tear of the tibial attachment site of the MMPH and its reparability were confirmed, using a Caspari suture loaded with a suture shuttle, one No. 2 Ethibond suture is placed through the meniscus, through the red-red zone, 3 to 5 mm medial to the torn edge of the MMPH, and the other is passed through the meniscocapsular junction 3 to 5 mm medial to the torn edge of the meniscus. Then, a tibial tunnel, 5-mm in diameter, is made from the anteromedial aspect of the proximal tibia to the previously prepared tibial plateau, immediately medial or anteromedial to the PCL, and the two No. 2 Ethibond sutures are pulled out through the tibial tunnel and then fixed to the proximal tibia using a 3.5-mm cortical screw and washer. Firm reattachment of the torn meniscus was confirmed arthroscopically.

  15. A clinical sign to detect root avulsions of the posterior horn of the medial meniscus.

    PubMed

    Seil, Romain; Dück, Klaus; Pape, Dietrich

    2011-12-01

    The goal of the present report was to describe a new clinical sign to make a clinical diagnosis of meniscal extrusion related to medial meniscal root avulsion. Description of an easy clinical sign to detect extrusion of the medial meniscus at the anteromedial joint line. A varus stress test was applied in full extension before and after transosseous repair of an isolated traumatic avulsion of the posterior root of the medial meniscus in a 21-year-old patient. The clinical sign was verified by sectioning of the meniscotibial ligament during knee arthroplasty surgery in 3 patients. With a deficient posterior root, the clinical sign was positive, showing anteromedial extrusion under varus stress. After repair and at clinical follow-up, extrusion was normalized. Making the clinical diagnosis of medial meniscus extrusion after knee injury by applying a simple varus stress test to the knee and palpating the anteromedial meniscal extrusion might help physicians to suspect a medial meniscus root tear in the early stages after the injury as well as to evaluate its reduction after repair. A varus stress test in full extension should be performed systematically in patients where a root tear of the medial meniscus is suspected as well as after surgery to evaluate the success of the repair.

  16. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.

    PubMed

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens H; Zambrano, Harvey A

    2016-11-30

    Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.

  17. Cost effectiveness of meniscal allograft for torn discoid lateral meniscus in young women.

    PubMed

    Ramme, Austin J; Strauss, Eric J; Jazrawi, Laith; Gold, Heather T

    2016-09-01

    A discoid meniscus is more prone to tears than a normal meniscus. Patients with a torn discoid lateral meniscus are at increased risk for early onset osteoarthritis requiring total knee arthroplasty (TKA). Optimal management for this condition is controversial given the up-front cost difference between the two treatment options: the more expensive meniscal allograft transplantation compared with standard partial meniscectomy. We hypothesize that meniscal allograft transplantation following excision of a torn discoid lateral meniscus is more cost-effective compared with partial meniscectomy alone because allografts will extend the time to TKA. A decision analytic Markov model was created to compare the cost effectiveness of two treatments for symptomatic, torn discoid lateral meniscus: meniscal allograft and partial meniscectomy. Probability estimates and event rates were derived from the scientific literature, and costs and benefits were discounted by 3%. One-way sensitivity analyses were performed to test model robustness. Over 25 years, the partial meniscectomy strategy cost $10,430, whereas meniscal allograft cost on average $4040 more, at $14,470. Partial meniscectomy postponed TKA an average of 12.5 years, compared with 17.30 years for meniscal allograft, an increase of 4.8 years. Allograft cost $842 per-year-gained in time to TKA. Meniscal allografts have been shown to reduce pain and improve function in patients with discoid lateral meniscus tears. Though more costly, meniscal allografts may be more effective than partial meniscectomy in delaying TKA in this model. Additional future long term clinical studies will provide more insight into optimal surgical options.

  18. Second-look arthroscopic assessment and clinical results of modified pull-out suture for posterior root tear of the medial meniscus.

    PubMed

    Cho, Jin-Ho; Song, Jae-Gwang

    2014-06-01

    To identify the structural integrity of the healing site after arthroscopic repair of a posterior root tear of the medial meniscus by second-look arthroscopy and to determine the clinical relevance of the findings. From January 2005 to December 2010, 20 consecutive patients underwent arthroscopic modified pull-out suture repair for a posterior root tear of the medial meniscus. Thirteen patients were available for second-look arthroscopic evaluation. The healing status of the medial meniscus was classified as complete healing, lax healing, scar tissue healing, and failed healing. We evaluated the correlation between the clinical symptoms and second-look arthroscopic findings. Clinical evaluation was based on the Lysholm knee scores and Hospital for Special Surgery (HSS) scores. There were 4 cases of complete healing, 4 lax healing, 4 scar tissue healing, and 1 failed healing. The healing status of the repaired meniscus appeared to be related to the clinical symptoms. Patients who achieved complete tissue healing had no complaint. The healing status exhibited no relationship with age, mechanical axis, degree of subluxation, and symptom duration. The mean Lysholm score improved from 34.7 preoperatively to 75.6 at follow-up and the mean HSS score also significantly increased from 33.5 to 82.2. We achieved 4 complete and 8 partial healing (lax or scar) of the medial meniscus in this retrospective case series of posterior horn meniscus root repairs performed by 1 surgeon. Further research is needed to clarify why all patients showed clinical improvement despite findings of partial healing on second-look arthroscopy.

  19. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics

    PubMed Central

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J.

    2016-01-01

    Objective Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. Methods The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. Results In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. Conclusions We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint. PMID:27936066

  20. Effect of partial and complete posterior cruciate ligament transection on medial meniscus: A biomechanical evaluation in a cadaveric model.

    PubMed

    Gao, Shu-Guang; Zhang, Can; Zhao, Rui-Bo; Liao, Zhan; Li, Yu-Sheng; Yu, Fang; Zeng, Chao; Luo, Wei; Li, Kang-Hua; Lei, Guang-Hua

    2013-09-01

    The relationship between medial meniscus tear and posterior cruciate ligament (PCL) injury has not been exactly explained. We studied to investigate the biomechanical effect of partial and complete PCL transection on different parts of medial meniscus at different flexion angles under static loading conditions. TWELVE FRESH HUMAN CADAVERIC KNEE SPECIMENS WERE DIVIDED INTO FOUR GROUPS: PCL intact (PCL-I), anterolateral bundle transection (ALB-T), posteromedial bundle transection (PMB-T) and PCL complete transection (PCL-T) group. Strain on the anterior horn, body part and posterior horn of medial meniscus were measured under different axial compressive tibial loads (200-800 N) at 0°, 30°, 60° and 90° knee flexion in each groups respectively. Compared with the PCL-I group, the PCL-T group had a higher strain on whole medial meniscus at 30°, 60° and 90° flexion in all loading conditions and at 0° flexion with 400, 600 and 800 N loads. In ALB-T group, strain on whole meniscus increased at 30°, 60° and 90° flexion under all loading conditions and at 0° flexion with 800 N only. PMB-T exihibited higher strain at 0° flexion with 400 N, 600 N and 800 N, while at 30° and 60° flexion with 800 N and at 90° flexion under all loading conditions. Partial PCL transection triggers strain concentration on medial meniscus and the effect is more pronounced with higher loading conditions at higher flexion angles.

  1. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    PubMed Central

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  2. Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.

    PubMed

    Seyfi, Behzad; Fatouraee, Nasser; Imeni, Milad

    2018-01-01

    In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relaxation test scenario with different depths and preloads was designed to capture the mechanical characteristics of the tissue in different regions of the medial and lateral menisci. Thereafter, a FE simulation was performed considering experimental conditions. Constitutive parameters were optimized by solving a FE-based inverse problem using the heuristic Simulated Annealing (SA) optimization algorithm. These parameters were ranged according to previously reported data to improve the optimization procedure. Based on the results, the mechanical properties of meniscus were highly influenced by both superficial and main layers. At low indentation depths, a high percentage relaxation (p < 0.01) with a high relaxation rate (p < 0.05) was obtained, due to the poroelastic and viscoelastic nature of the superficial layer. Increasing both penetration depth and preload level involved the main layer response and caused alterations in hyperelastic and viscoelastic parameters of the tissue, such that for both layers, the shear modulus was increased (p < 0.01) while the rate and percentage of relaxation were decreased (p < 0.01). Results reflect that, shear modulus of the main layer in anterior region is higher than central and posterior sites in medial meniscus. In contrast, in lateral meniscus, posterior side is stiffer than central and anterior sides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adipokines induce catabolism of newly synthesized matrix in cartilage and meniscus tissues.

    PubMed

    Nishimuta, James F; Levenston, Marc E

    Altered synovial levels of various adipokines (factors secreted by fat as well as other tissues) have been associated with osteoarthritis (OA) onset and progression. However, the metabolic effects of adipokines on joint tissues, in particular the fibrocartilaginous menisci, are not well understood. This study investigated effects of several adipokines on release of recently synthesized extracellular matrix in bovine cartilage and meniscus tissue explants. After labeling newly synthesized proteins and sulfated glycosaminoglycans (sGAGs) with 3 H-proline and 35 S-sulfate, respectively; bovine cartilage and meniscus tissue explants were cultured for 6 days in basal medium (control) or media supplemented with adipokines (1 µg/ml of leptin, visfatin, adiponectin, or resistin) or 20 ng/ml interleukin-1 (IL-1). Release of radiolabel and sGAG to the media during culture and the final explant water, DNA, sGAG, and retained radiolabel were measured. Matrix metalloproteinase (MMP-2) and MMP-3 activities were assessed using gelatin and casein zymography, respectively. Water and DNA contents were not significantly altered by any treatment. Visfatin, adiponectin, resistin, and IL-1 stimulated sGAG release from meniscus, whereas only IL-1 stimulated sGAG release from cartilage. Release of 3 H and 35 S was stimulated not only by resistin and IL-1 in meniscus but also by IL-1 in cartilage. Retained 3 H was unaltered by any treatment, while retained 35 S was reduced by visfatin, resistin, and IL-1 in meniscus and by only IL-1 in cartilage. Resistin and IL-1 elevated active MMP-2 and total MMP-3 in meniscus, whereas cartilage MMP-3 activity was elevated by only IL-1. Resistin stimulated rapid and extensive catabolism of meniscus tissue, similar to IL-1, whereas adipokines minimally affected cartilage. Release of newly synthesized matrix was similar to overall release in both tissues. These observations provide further indications that meniscal tissue is more sensitive to pro-inflammatory factors than cartilage and also suggest further study of resistin's role in OA.

  4. Second-look arthroscopic findings after repairs of posterior root tears of the medial meniscus.

    PubMed

    Seo, Hee-Soo; Lee, Su-Chan; Jung, Kwang-Am

    2011-01-01

    A posterior root tear of the medial meniscus disrupts hoop tension and causes extrusion of the meniscus, which results in progressive cartilage degeneration. To identify the structural integrity of healing after arthroscopic repair of a posterior root tear of the medial meniscus by second-look arthroscopy and to determine the clinical relevance of the findings. Case series; Level of evidence, 4. From December 2006 to August 2008, 21 consecutive patients underwent arthroscopic pullout suture repair for a posterior root tear of the medial meniscus. Eleven were available for second-look arthroscopy evaluation (mean, 13.4 months; range, 10 to 22 months). The healing status of the repaired meniscus was classified as complete healing, lax healing, scar tissue healing, and failed healing. Chondral lesions were reviewed using arthroscopic photographs, and clinical evaluation was based on the Lysholm knee scores and the Hospital for Special Surgery scores. There was no case with complete healing. Five knees had lax healing (symptomatic in 2 and asymptomatic in 3); 4, scar tissue healing (asymptomatic in all 4); and 2, failed healing (symptomatic in 1 and asymptomatic in 1). Progression of the chondral lesion was found in 1 case. Mean Lysholm scores improved from 56.1 preoperatively (range, 41 to 71) to 83.0 at follow-up (range, 69 to 91; P = .003); mean Hospital for Special Surgery score also significantly increased, from 64.1 (range, 50 to 76) to 87.4 (range, 77 to 95; P = .003). Complete healing was not observed in this retrospective case series of posterior horn meniscus repairs performed by 2 surgeons using a single technique. Further research is needed to clarify why all patients showed clinical improvement despite findings of incomplete or failed healing on second-look arthroscopy. Treatment modalities for managing posterior root tears of the medial meniscus require further investigation to determine their efficacy.

  5. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    PubMed

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P < 0.01), so was the percent extrusion area of the medial meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P < 0.05). This finding was consistent for knees restricted to medial incidence. No significant differences were observed for the lateral meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Do Cartilage Repair Procedures Prevent Degenerative Meniscus Changes? Longitudinal T1ρ and Morphological Evaluation at 3.0T

    PubMed Central

    Jungmann, Pia M.; Li, Xiaojuan; Nardo, Lorenzo; Subburaj, Karupppasamy; Lin, Wilson; Ma, C. Benjamin; Majumdar, Sharmila; Link, Thomas M.

    2014-01-01

    Background Cartilage repair (CR) procedures are widely accepted for treatment of isolated cartilage defects at the knee joint. However, it is not well known whether these procedures prevent degenerative joint disease. Hypothesis/Purpose CR procedures prevent accelerated qualitative and quantitative progression of meniscus degeneration in individuals with focal cartilage defects. Study Design Cohort Study; Level of evidence 2b Methods A total of 94 subjects were studied. CR procedures were performed on 34 patients (n=16 osteochondral transplantation, n=18 microfracture); 34 controls were matched. An additional 13 patients received CR and anterior cruciate ligament (ACL) reconstruction (CR&ACL) and 13 patients received only ACL reconstruction. 3.0T MRI with T1ρ mapping and sagittal fat-saturated intermediate-weighted fast spin echo (FSE) sequences was performed to analyze menisci quantitatively and qualitatively (Whole-Organ Magnetic Resonance Imaging Score, WORMS). CR and CR&ACL patients were examined 4 months (n=34; n=13), 1 (n=21; n=8) and 2 (n=9; n=5) years post CR. Control subjects were scanned at baseline and after 1 and 2 years, ACL patients after 1 and 2 years. Results At baseline, global meniscus T1ρ values were higher in individuals with CR (14.2±0.6ms; P=0.004) and in individuals with CR&ACL (17.1±0.9ms; P<0.001) when compared to controls (12.8±0.6ms). After two years, there was a statistical difference between T1ρ at the overlying meniscus above cartilage defects (16.4±1.0ms) and T1ρ of the subgroup of control knees without cartilage defects (12.1±0.8ms; P<0.001) and a statistical trend to the CR group (13.3±1.0 ms; P=0.088). At baseline, 35% of subjects with CR showed morphological meniscus tears at the overlying meniscus; 10% of CR subjects showed an increase of WORMS meniscus score within the first year, none progressed in the second year. Control subjects with (without) cartilage defects showed meniscus tears in 30% (5%) at baseline; 38% (19%) increased within the first, and 15% (10%) within the second year. Conclusions This study identified more severe meniscus degeneration after CR surgery compared to controls. However, progression of T1ρ values was not observed from 1 to 2 years after surgery. These results suggest, that CR may prevent degenerative meniscus changes. PMID:23104606

  7. An allogenic cell-based implant for meniscal lesions.

    PubMed

    Weinand, Christian; Peretti, Giuseppe M; Adams, Samuel B; Bonassar, Lawrence J; Randolph, Mark A; Gill, Thomas J

    2006-11-01

    Meniscal tears in the avascular zones do not heal. Although tissue-engineering approaches using cells seeded onto scaffolds could expand the indication for meniscal repair, harvesting autologous cells could cause additional trauma to the patient. Allogenic cells, however, could provide an unlimited amount of cells. Allogenic cells from 2 anatomical sources can repair lesions in the avascular region of the meniscus. Controlled laboratory study. Both autologous and allogenic chondrocytes were seeded onto a Vicryl mesh scaffold and sutured into a bucket-handle lesion created in the medial menisci of 17 swine. Controls consisted of 3 swine knees treated with unseeded implants and controls from a previous experiment in which 4 swine were treated with suture only and 4 with no treatment. Menisci were harvested after 12 weeks and evaluated histologically for new tissue and percentage of interface healing surface; they were also evaluated statistically. The lesions were closed in 15 of 17 menisci. None of the control samples demonstrated healing. Histologic analysis of sequential cuts through the lesion showed formation of new scar-like tissue in all experimental samples. One of 8 menisci was completely healed in the allogenic group and 2 of 9 in the autologous group; the remaining samples were partially healed in both groups. No statistically significant differences in the percentage of healing were observed between the autologous and allogenic cell-based implants. Use of autologous and allogenic chondrocytes delivered via a biodegradable mesh enhanced healing of avascular meniscal lesions. This study demonstrates the potential of a tissue-engineered cellular repair of the meniscus using autologous and allogenic chondrocytes.

  8. Meniscus on a shaped fibre: singularities and hodograph formulation.

    PubMed

    Alimov, Mars M; Kornev, Konstantin G

    2014-08-08

    Using the method of matched asymptotic expansions, the problem of the capillary rise of a meniscus on the complex-shaped fibres was reduced to a nonlinear problem of determination of a minimal surface. This surface has to satisfy a special boundary condition at infinity. The proposed formulation allows one to interpret the meniscus problem as a problem of flow of a fictitious non-Newtonian fluid through a porous medium. As an example, the shape of a meniscus on a fibre of an oval cross section was analysed employing Chaplygin's hodograph transformation. It was discovered that the contact line may form singularities even if the fibre has a smooth profile: this statement was illustrated with an oval fibre profile having infinite curvature at two endpoints.

  9. Meniscus on a shaped fibre: singularities and hodograph formulation

    PubMed Central

    Alimov, Mars M.; Kornev, Konstantin G.

    2014-01-01

    Using the method of matched asymptotic expansions, the problem of the capillary rise of a meniscus on the complex-shaped fibres was reduced to a nonlinear problem of determination of a minimal surface. This surface has to satisfy a special boundary condition at infinity. The proposed formulation allows one to interpret the meniscus problem as a problem of flow of a fictitious non-Newtonian fluid through a porous medium. As an example, the shape of a meniscus on a fibre of an oval cross section was analysed employing Chaplygin's hodograph transformation. It was discovered that the contact line may form singularities even if the fibre has a smooth profile: this statement was illustrated with an oval fibre profile having infinite curvature at two endpoints. PMID:25104910

  10. Medial Meniscus Posterior Root Repair Using a Transtibial Technique.

    PubMed

    Woodmass, Jarret M; Mohan, Rohith; Stuart, Michael J; Krych, Aaron J

    2017-06-01

    The meniscal roots are critical in maintaining the normal shock absorbing function of the meniscus. If a meniscal root tear is left untreated, meniscal extrusion can occur rendering the meniscus nonfunctional resulting in degenerative arthritis. Two main repair techniques are described: (1) suture anchors (direct fixation) and (2) sutures pulled through a tibial tunnel (indirect fixation). Meniscal root repair using a suture anchor technique is technically challenging requiring a posterior portal and a curved suture passing device that can be difficult to manipulate within the knee. We present a technique for posterior medial meniscus root repair using 3 sutures (1 leader, 2 cinch), standard arthroscopy portals, and transtibial fixation. Overall, this technique simplifies a challenging procedure and allows for familiarity and efficiency.

  11. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    PubMed

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  12. The Degeneration of Meniscus Roots Is Accompanied by Fibrocartilage Formation, Which May Precede Meniscus Root Tears in Osteoarthritic Knees.

    PubMed

    Park, Do Young; Min, Byoung-Hyun; Choi, Byung Hyune; Kim, Young Jick; Kim, Mijin; Suh-Kim, Haeyoung; Kim, Joon Ho

    2015-12-01

    Fibrocartilage metaplasia in tendons and ligaments is an adaptation to compression as well as a pathological feature during degeneration. Medial meniscus posterior roots are unique ligaments that resist multidirectional forces, including compression. To characterize the degeneration of medial meniscus posterior root tears in osteoarthritic knees, with an emphasis on fibrocartilage and calcification. Cross-sectional study; Level of evidence, 3. Samples of medial meniscus posterior roots were harvested from cadaveric specimens and patients during knee replacement surgery and grouped as follows: normal reference, no tear, partial tear, and complete tear. Degeneration was analyzed with histology, immunohistochemistry, and real-time polymerase chain reaction. Uniaxial tensile tests were performed on specimens with and without fibrocartilage. Quantifiable data were statistically analyzed by the Kruskal-Wallis test with the Dunn comparison test. Thirty, 28, and 42 samples harvested from 99 patients were allocated into the no tear, partial tear, and complete tear groups, respectively. Mean modified Bonar tendinopathy scores for each group were 3.97, 9.31, and 14.15, respectively, showing a higher degree of degeneration associated with the extent of the tear (P < .05 for all groups). The characterization of root matrices revealed an increase in fibrocartilage according to the extent of the tear. Tear margins revealed fibrocartilage in 59.3% of partial tear samples and 76.2% of complete tear samples, with a distinctive cleavage-like shape. Root tears with a similar shape were induced within fibrocartilaginous areas during uniaxial tensile testing. Even in the no tear group, 56.7% of samples showed fibrocartilage in the anterior margin of the root, adjacent to the meniscus. An increased stained area of calcification and expression of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene were observed in the complete tear group compared with the no tear group (P < .0001 and P = .24, respectively). Fibrocartilage and calcification increased in medial meniscus posterior roots, associated with the degree of the tear. Both findings, which impair the ligament's resistance to tension, may play a pivotal role during the pathogenesis of degenerative meniscus root tears in osteoarthritic knees. Fibrocartilage and calcification may be useful as diagnostic markers as well as markers of degeneration, which may aid in determining the treatment modality in meniscus root tears. The presence of fibrocartilage in intact roots may suggest an impending tear in osteoarthritic knees. © 2015 The Author(s).

  13. Diagnostic accuracy of 3.0 T magnetic resonance imaging for the detection of meniscus posterior root pathology.

    PubMed

    LaPrade, Robert F; Ho, Charles P; James, Evan; Crespo, Bernardo; LaPrade, Christopher M; Matheny, Lauren M

    2015-01-01

    The purpose of this study was to determine the diagnostic accuracy of 3 T MRI, including sensitivity, specificity, negative and positive predictive values, for detection of posterior medial and lateral meniscus root tears and avulsions. All patients who had a 3 T MRI of the knee, followed by arthroscopic surgery, were included in this study. Arthroscopy was considered the gold standard. Meniscus root tears diagnosed at arthroscopy and on MRI were defined as a complete meniscus root detachment within 9 mm of the root. All surgical data were collected prospectively and stored in a data registry. MRI exams were reported prospectively by a musculoskeletal radiologist and reviewed retrospectively. There were 287 consecutive patients (156 males, 131 females; mean age 41.7 years) in this study. Prevalence of meniscus posterior root tears identified at arthroscopy was 9.1, 5.9% for medial and 3.5% for lateral root tears (one patient had both). Sensitivity was 0.770 (95% CI 0.570, 0.901), specificity was 0.729 (95% CI 0.708, 0.741), positive predictive value was 0.220 (95% CI 0.163, 0.257) and negative predictive value was 0.970 (95% CI 0.943, 0.987). For medial root tears, sensitivity was 0.824 (95% CI 0.569, 0.953), specificity was 0.800 (95% CI 0.784, 0.808), positive predictive value was 0.206 (95% CI 0.142, 0.238) and negative predictive value was 0.986 (95% CI 0.967, 0.996). For lateral meniscus posterior root tears, sensitivity was 0.600 (95% CI 0.281, 0.860), specificity was 0.903 (95% CI 0.891, 0.912), positive predictive value was 0.181 (95% CI 0.085, 0.261) and negative predictive value was 0.984 (95% CI 0.972, 0.994). This study demonstrated moderate sensitivity and specificity of 3 T MRI to detect posterior meniscus root tears. The negative predictive value of 3 T MRI to detect posterior meniscus root tears was high; however, the positive predictive value was low. Sensitivity was higher for medial root tears, indicating a higher risk of missing lateral root tears on MRI. Imaging has an important role in identifying meniscus posterior horn root tears; however, some root tears may not be identified until arthroscopy. Prognostic study (diagnostic), Level II.

  14. Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site: in situ pull-out repair restores derangement of joint mechanics.

    PubMed

    Padalecki, Jeffrey R; Jansson, Kyle S; Smith, Sean D; Dornan, Grant J; Pierce, Casey M; Wijdicks, Coen A; Laprade, Robert F

    2014-03-01

    Complete radial tears near the medial meniscus posterior root attachment site disrupt the circumferential integrity of the meniscus (similar to a posterior root avulsion). These tears can compromise the circumferential integrity, and they have been reported in biomechanical studies to be comparable with the meniscectomized state. To quantify the tibiofemoral contact pressure and contact area changes that occur in cadaveric knees from complete posterior horn radial tears and subsequent repairs of the medial meniscus adjacent to the posterior root attachment site. Controlled laboratory study. Six nonpaired fresh-frozen human cadaveric knees each underwent 45 different testing conditions: 9 medial meniscus conditions (intact, root avulsion, root repair, serial radial tear at 3, 6, and 9 mm from the root attachment site, and in situ repair at the same 3 distances from the root attachment site) at 5 flexion angles (0°, 30°, 45°, 60°, and 90°), under a 1000-N axial load. Tekscan sensors were used to measure contact area and pressure in the medial and lateral compartments. The medial meniscus root avulsion and all radial tear conditions resulted in significantly decreased contact area and increased mean contact pressure compared with the intact state for knee flexion angles beyond 0° (P < .05). The root repair and in situ repairs restored contact area and pressure to levels statistically indistinguishable from those of the intact meniscus and increased contact area and decreased contact pressure compared with the corresponding tear conditions. Posterior horn radial tears adjacent to the medial meniscus root that extend to the meniscocapsular junction can lead to derangement of the loading profiles of the medial compartment that are similar to a root avulsion. Repair of these radial tears with an in situ pull-out technique restored joint mechanics to the intact state. Complete radial tears of the posterior horn of the medial meniscus, which occur relatively frequently, are biomechanically equivalent to root avulsions and could potentially lead to medial compartment arthrosis. An in situ repair offers an alternative treatment to meniscectomy and can reestablish the posterior anchor point, thus improving load distribution in the medial compartment. Future clinical studies of these repairs are recommended.

  15. Complications in posteromedial arthroscopic suture of the medial meniscus.

    PubMed

    Jan, N; Sonnery-Cottet, B; Fayard, J-M; Kajetanek, C; Thaunat, M

    2016-12-01

    All-inside posteromedial suture for lesions of the posterior horn of the medial meniscus in anterior cruciate ligament (ACL) repair provides effective freshening and good healing. The posteromedial portal provides satisfactory healing rates without increasing morbidity or complications rates. Intra- and postoperative complications were collected for a consecutive single-center series of 132 patients undergoing posteromedial hook suture of the medial meniscus in ACL repair. Meniscal healing was assessed as the rate of recurrence of symptomatic medial meniscus lesions (Barret criteria) and on revision surgery, if any, in terms of the aspect and extent of the iterative lesion. The severity of any sensory disorder was assessed by questionnaire. The intraoperative complications rate was 1.5% (2 saphenous vein punctures). At a mean 31months (range, 28-35months), there was no loss to follow-up. Twelve patients (9%) showed symptomatic recurrence of the medial meniscus lesion, requiring 10 repeat surgeries. In 6 cases (4.5%), the iterative lesion involved a smaller, more central part of the meniscus anterior to the sutures, of "postage-stamp" effect, possibly implicating the suture hook and/or non-absorbable sutures. There were no cases of infection or fistula. Postoperative hematoma occurred in 7% of patients. In total, 1.8% reported dysesthesia areas equal to or greater than the size of a credit card (45cm 2 ). Some retears, or "partial failures", may implicate a new lesion caused by the suture hook and possibly prolonged by non-resorbable sutures. Hematoma and sensory disorder rates were comparable to those reported in isolated ACL repair without posteromedial portal. The present results show that posteromedial arthroscopic hook suture in posterior medial meniscus tear provides good healing rates without increased morbidity due to the supplementary portal. IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Second-Look Arthroscopic Assessment and Clinical Results of Modified Pull-Out Suture for Posterior Root Tear of the Medial Meniscus

    PubMed Central

    Song, Jae-Gwang

    2014-01-01

    Purpose To identify the structural integrity of the healing site after arthroscopic repair of a posterior root tear of the medial meniscus by second-look arthroscopy and to determine the clinical relevance of the findings. Materials and Methods From January 2005 to December 2010, 20 consecutive patients underwent arthroscopic modified pull-out suture repair for a posterior root tear of the medial meniscus. Thirteen patients were available for second-look arthroscopic evaluation. The healing status of the medial meniscus was classified as complete healing, lax healing, scar tissue healing, and failed healing. We evaluated the correlation between the clinical symptoms and second-look arthroscopic findings. Clinical evaluation was based on the Lysholm knee scores and Hospital for Special Surgery (HSS) scores. Results There were 4 cases of complete healing, 4 lax healing, 4 scar tissue healing, and 1 failed healing. The healing status of the repaired meniscus appeared to be related to the clinical symptoms. Patients who achieved complete tissue healing had no complaint. The healing status exhibited no relationship with age, mechanical axis, degree of subluxation, and symptom duration. The mean Lysholm score improved from 34.7 preoperatively to 75.6 at follow-up and the mean HSS score also significantly increased from 33.5 to 82.2. Conclusions We achieved 4 complete and 8 partial healing (lax or scar) of the medial meniscus in this retrospective case series of posterior horn meniscus root repairs performed by 1 surgeon. Further research is needed to clarify why all patients showed clinical improvement despite findings of partial healing on second-look arthroscopy. PMID:24944976

  17. Effect of posterior cruciate ligament rupture on the radial displacement of lateral meniscus.

    PubMed

    Lei, Pengfei; Sun, Rongxin; Hu, Yihe; Li, Kanghua; Liao, Zhan

    2015-06-01

    The relationship between lateral meniscus tear and posterior cruciate ligament injury is not well understood. The present study aims to investigate and assess the effect of posterior cruciate ligament rupture on lateral meniscus radial displacement at different flexion angles under static loading conditions. Twelve fresh human cadaveric knee specimens were divided into four groups such as posterior cruciate ligament intact, anterolateral band rupture, posteromedial band rupture and posterior cruciate ligament complete rupture groups, according to the purpose and order of testing. Radial displacement of lateral meniscus was measured under different loads (200-1000N) at 0°, 30°, 60°, and 90° of knee flexion. Compared with posterior cruciate ligament intact group, the displacement values of lateral meniscus in anterolateral band rupture group increased at 0° flexion with 600N, 800N, and 1000N and at 30°, 60° and 90° flexion under all loading conditions. Posteromedial band rupture group exhibited higher displacement at 0° flexion under all loading conditions, at 30° and 60° flexion with 600, 800N and 1000N, and at 90° flexion with 400N, 600N, 800N, and 1000N than the posterior cruciate ligament intact group. The posterior cruciate ligament complete rupture group had a higher displacement value of lateral medial meniscus at 0°, 30°, 60° and 90° flexion under all loading conditions, as compared to the posterior cruciate ligament intact group. The study concludes that partial and complete rupture of the posterior cruciate ligament can trigger the increase of radial displacement on lateral meniscus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. In-vivo evaluation of the kinematic behavior of an artificial medial meniscus implant: A pilot study using open-MRI.

    PubMed

    De Coninck, Tineke; Elsner, Jonathan J; Linder-Ganz, Eran; Cromheecke, Michiel; Shemesh, Maoz; Huysse, Wouter; Verdonk, René; Verstraete, Koenraad; Verdonk, Peter

    2014-09-01

    In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant. Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior-posterior meniscal movement, radial displacement, and meniscal height. No difference (P>0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P>0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior-posterior movement during flexion was observed between the two groups. In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior-posterior movement was slightly different between the implant and the normal meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  20. Arthroscopic suture anchor repair of posterior root attachment injury in medial meniscus: technical note.

    PubMed

    Kim, Jae-Hwa; Shin, Dong-Eun; Dan, Jin-Myong; Nam, Ki-Shik; Ahn, Tae-Keun; Lee, Dong-Hoon

    2009-08-01

    A root attachment injury (root tear) of the meniscus can abolish the ability of the meniscus to bear hoop stress and predispose to increase articular contact stress which contribute to femorotibial degenerative changes. A pull out suture technique to repair the root tear has been described, but the procedure making the tibial tunnel may be difficult and troublesome. This article describes a repair technique using a suture anchor and posterior trans-septal portal.

  1. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H

    2013-08-01

    The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.

  2. The Meniscus-Deficient Knee

    PubMed Central

    Rao, Allison J.; Erickson, Brandon J.; Cvetanovich, Gregory L.; Yanke, Adam B.; Bach, Bernard R.; Cole, Brian J.

    2015-01-01

    Meniscal tears are the most common knee injury, and partial meniscectomies are the most common orthopaedic surgical procedure. The injured meniscus has an impaired ability to distribute load and resist tibial translation. Partial or complete loss of the meniscus promotes early development of chondromalacia and osteoarthritis. The primary goal of treatment for meniscus-deficient knees is to provide symptomatic relief, ideally to delay advanced joint space narrowing, and ultimately, joint replacement. Surgical treatments, including meniscal allograft transplantation (MAT), high tibial osteotomy (HTO), and distal femoral osteotomy (DFO), are options that attempt to decrease the loads on the articular cartilage of the meniscus-deficient compartment by replacing meniscal tissue or altering joint alignment. Clinical and biomechanical studies have reported promising outcomes for MAT, HTO, and DFO in the postmeniscectomized knee. These procedures can be performed alone or in conjunction with ligament reconstruction or chondral procedures (reparative, restorative, or reconstructive) to optimize stability and longevity of the knee. Complications can include fracture, nonunion, patella baja, compartment syndrome, infection, and deep venous thrombosis. MAT, HTO, and DFO are effective options for young patients suffering from pain and functional limitations secondary to meniscal deficiency. PMID:26779547

  3. Viability of cumulus cells is associated with basal AMH levels in assisted reproduction.

    PubMed

    Ebner, Thomas; Shebl, Omar; Holzer, Sandra; Oppelt, Peter; Petek, Erwin; Schappacher-Tilp, Gudrun; Mayer, Richard B

    2014-12-01

    An interesting non-invasive approach to select embryos for transfer is analyzing the health state of somatic granulosa cells surrounding the oocyte addressing their mutual dependence. This prospective study was set up to analyse whether the DNA integrity of cumulus cells correlates with preimplantation development and basal AMH levels. Therefore, 56 patients who gave written consent were enrolled. Sequential denudation of the cumulus-oocyte-complexes was performed in order to separate corona radiata from outer cumulus cells. DNA integrity of both cell types was analysed using a modified chromatin dispersion test. The percentage of viable corona radiata cells per patient showed a linear correlation to blastulation (P<0.05). These innermost cells showed significantly lower rates of strand breaks (P<0.01) as compared to outer cumulus cells. Age-corrected AMH was significantly associated with the DNA integrity of outer cumulus cells (P<0.05). For the first time it could be shown that in fact clinical embryologists deal with two different entities of cumulus cells, inner and outer ones. It seems that any protective mechanism of the female gamete follows an outward gradient, so that negative effects, e.g. apoptosis, may impair outer cumulus cells first. Age-corrected AMH reflects quality of these outer cumulus cells. AMH; Corona radiata cells; DNA fragmentation; Outer cumulus cells; SCD test. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Meckelin 3 Is Necessary for Photoreceptor Outer Segment Development in Rat Meckel Syndrome

    PubMed Central

    Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H.; Miller, Caroline; Chernoff, Ellen A. G.; Belecky-Adams, Teri L.

    2013-01-01

    Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626

  5. Knee Injuries

    MedlinePlus

    ... when bending, extending, or lifting a leg. Meniscus Tears Damage to the menisci is a really common ... side-to-side movements can cause them to tear. Meniscus injuries often occur together with severe sprains, ...

  6. Arthroscopic Medial Meniscus Posterior Root Fixation Using a Modified Mason-Allen Stitch.

    PubMed

    Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Kim, Jin Goo

    2016-02-01

    A complete radial tear of the meniscus posterior root, which can effectively cause a state of total meniscectomy via loss of hoop tension, requires that the torn root be repaired. Several methods have been used to repair medial meniscus posterior root tears, most of which are based on a simple stitch technique that is known to have stitch-holding strength. We applied a modified version of the Mason-Allen stitch technique, which is recognized as a method for rotator cuff repair surgery because its locking effect overcomes the potential weakness of simple stitches. This article introduces the medial meniscus posterior root tears repair procedure based on a modified Mason-Allen stitch technique in which 2 strands (i.e., 1 simple horizontal and 1 simple vertical stitch) are used.

  7. Successful anterior cruciate ligament reconstruction and meniscal repair in osteogenesis imperfecta.

    PubMed

    Park, Jae-Young; Cho, Tae-Joon; Lee, Myung Chul; Han, Hyuk-Soo

    2018-03-20

    A case of anterior cruciate ligament (ACL) reconstruction with meniscal repair in an osteogenesis imperfecta patient is reported. A 24-year-old female with osteogenesis imperfecta type 1a suffered from a valgus extension injury resulting in tear of ACL and medial meniscus. She underwent an arthroscopic-assisted ACL reconstruction and medial meniscus repair. Meniscal tear at the menisco-capsular junction of the posterior horn of medial meniscus was repaired with three absorbable sutures via inside-out technique. ACL reconstruction was then performed with a bone-patellar tendon-bone allograft. The patient was followed up for 1 year with intact ACL grafts and healed medial meniscus. This case report showed that successful ACL reconstruction and meniscal repair is possible in an osteogenesis imperfecta patient.Level of evidence V.

  8. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds

    PubMed Central

    Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc

    2017-01-01

    The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031

  9. Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function.

    PubMed

    Bansal, Sonia; Mandalapu, Sai; Aeppli, Céline; Qu, Feini; Szczesny, Spencer E; Mauck, Robert L; Zgonis, Miltiadis H

    2017-07-01

    The meniscus is comprised of circumferentially aligned fibers that resist the tensile forces within the meniscus (i.e., hoop stress) that develop during loading of the knee. Although these circumferential fibers are severed by radial meniscal tears, tibial contact stresses do not increase until the tear reaches ∼90% of the meniscus width, suggesting that the severed circumferential fibers still bear load and maintain the mechanical functionality of the meniscus. Recent data demonstrates that the interfibrillar matrix can transfer strain energy to disconnected fibrils in tendon fascicles. In the meniscus, interdigitating radial tie fibers, which function to stabilize and bind the circumferential fibers together, are hypothesized to function in a similar manner by transmitting load to severed circumferential fibers near a radial tear. To test this hypothesis, we developed an engineered fibrous analog of the knee meniscus using poly(ε-caprolactone) to create aligned scaffolds with variable amounts of non-aligned elements embedded within the scaffold. We show that the tensile properties of these scaffolds are a function of the ratio of aligned to non-aligned elements, and change in a predictable fashion following a simple mixture model. When measuring the loss of mechanical function in scaffolds with a radial tear, compared to intact scaffolds, the decrease in apparent linear modulus was reduced in scaffolds containing non-aligned layers compared to purely aligned scaffolds. Increased strains in areas adjacent to the defect were also noted in composite scaffolds. These findings indicate that non-aligned (disorganized) elements interspersed within an aligned network can improve overall mechanical function by promoting strain transfer to nearby disconnected fibers. This finding supports the notion that radial tie fibers may similarly promote tear tolerance in the knee meniscus, and will direct changes in clinical practice and provide guidance for tissue engineering strategies. The meniscus is a complex fibrous tissue, whose architecture includes radial tie fibers that run perpendicular to and interdigitate with the predominant circumferential fibers. We hypothesized that these radial elements function to preserve mechanical function in the context of interruption of circumferential bundles, as would be the case in a meniscal tear. To test this hypothesis, we developed a biomaterial analog containing disorganized layers enmeshed regularly throughout an otherwise aligned network. Using this material formulation, we showed that strain transmission is improved in the vicinity of defects when disorganized fiber layers were present. This supports the idea that radial elements within the meniscus improve function near a tear, and will guide future clinical interventions and the development of engineered replacements. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  10. Meniscus tears - aftercare

    MedlinePlus

    ... are younger in age, you may need knee arthroscopy (surgery) to repair or trim the meniscus. In ... Saunders; 2015:chap 96. Phillips BB, Mihalko MJ. Arthroscopy of the lower extremity. In: Azar FM, Beaty ...

  11. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.; Yang, K.

    1977-01-01

    The crystal-growth method under investigation is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable dye. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. The configuration of the technique used in our initial studies is shown. The crystal-growth method has been applied to silicon ribbons it was found that substantial improvements in ribbon surface quality could be achieved with a higher melt meniscus than that attainable with the EFG technique.

  12. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1976-01-01

    The crystal growth method described is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. A capillary die is so designed that the bounding edges of the die top are not parallel or concentric with the growing ribbon. The new dies allow a higher melt meniscus with concomitant improvements in surface smoothness and freedom from SiC surface particles, which can degrade perfection.

  13. Arthroscopic all-inside repair for a tear of posterior root of the medial meniscus: a technical note.

    PubMed

    Choi, Nam-Hong; Son, Kyung-Mo; Victoroff, Brian N

    2008-09-01

    This technical note describes a new arthroscopic technique to repair a tear of posterior root of the medial meniscus. Cartilage at the insertion area of the posterior horn of the medial meniscus (PHMM) was removed using a curved curette inserted through an anteromedial portal. A metal anchor loaded with two FiberWires (Arthrex, Naples, FL) was placed at the insertion area of the PHMM through a high posteromedial portal. A PDS suture was passed the PHMM by curved suture hook through the anteromedial portal. Two limbs of the PDS were then used to pass two limbs of the FiberWire through the meniscus. The same procedure was repeated for the second FiberWire suture. The sutures were tied, achieving secure fixation of the posterior meniscal root at the anatomic insertion.

  14. Mean curvature model for a quasi-static advancing meniscus: a drop tower test

    NASA Astrophysics Data System (ADS)

    Chen, Yongkang; Tavan, Noel; Weislogel, Mark

    A critical geometric wetting condition resulting in a significant shift of a capillary fluid from one region of a container to another was recently demonstrated during experiments performed aboard the International Space Station (the Capillary Flow Experiments, Vane Gap test units, bulk shift phenomena). Such phenomena are of interest for advanced methods of control for large quantities of liquids aboard spacecraft. The dynamics of the flows are well understood, but analytical models remain qualitative without the correct capillary pressure driving force for the shifting bulk fluid—where one large interface (meniscus) advances while another recedes. To determine this pressure an investigation of the mean curvature of the advancing meniscus is presented which is inspired by earlier studies of receding bulk menisci in non-circular cylindrical containers. The approach is permissible only in the quasi-static limit. It will be shown that the mean curvature of the advancing bulk meniscus is related to that of the receding bulk meniscus, both of which are highly sensitive to container geometry and wetting conditions. The two meniscus curvatures are identical for any control parameter at the critical value identified by the Concus-Finn analysis. However, they differ when the control parameter is below its critical value. Experiments along these lines are well suited for drop towers and comparisons with the analytical predictions implementing the mean curvature model are presented. The validation opens a pathway to the analysis of such flows in containers of great geometric complexity.

  15. Arthroscopic partial meniscectomy of a posteriorly flipped superior leaflet in a horizontal medial meniscus tear using a posterior transseptal portal.

    PubMed

    Jang, Ki-Mo; Ahn, Jin Hwan; Wang, Joon Ho

    2012-03-07

    This article describes a case of an arthroscopic partial meniscectomy of a posteriorly flipped superior leaflet in a horizontal medial meniscus tear using the posterior transseptal portal. An arthroscopic partial meniscectomy for bucket handle or flap tears in medial or lateral compartments using ordinary portals is a relatively common procedure in irreparable cases. However, the posterior compartment of the knee is not readily accessible through ordinary arthroscopic portals. Therefore, it has been considered a blind spot. Through the posterior transseptal portal, surgeons can achieve excellent arthroscopic visualization of the posterior compartment and easily perform arthroscopic procedures of the posterior compartment of the knee. A 48-year-old woman presented with a 1-year history of pain in the medial aspect of the right knee joint. Preoperative magnetic resonance imaging revealed a thinning of the medial meniscus posterior horn in coronal images and a sharp-edged triangle arising from the medial meniscus posterior horn between the medial femoral condyle and medial meniscus posterior horn on sagittal images (flipped-over sign). During the arthroscopic procedure, we found that the flipped leaflet was displaced posteriorly and was not mobile between the medial femoral condyle and medial meniscus posterior horn. Partial meniscectomy for a posteriorly displaced fragment can be performed successfully using the posterior transseptal portal. The posterior transseptal portal is useful for an arthroscopic partial meniscectomy of a posteriorly flipped leaflet in the posterior compartment of the knee. Copyright 2012, SLACK Incorporated.

  16. A Prospective, Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Study Evaluating Meniscal Healing, Clinical Outcomes, and Safety in Patients Undergoing Meniscal Repair of Unstable, Complete Vertical Meniscal Tears (Bucket Handle) Augmented with Platelet-Rich Plasma.

    PubMed

    Kaminski, Rafal; Kulinski, Krzysztof; Kozar-Kaminska, Katarzyna; Wielgus, Monika; Langner, Maciej; Wasko, Marcin K; Kowalczewski, Jacek; Pomianowski, Stanislaw

    2018-01-01

    The present study aimed to investigate the effectiveness and safety of platelet-rich plasma (PRP) application in arthroscopic repair of complete vertical tear of meniscus located in the red-white zone. This single center, prospective, randomized, double-blind, placebo-controlled, parallel-arm study included 37 patients with complete vertical meniscus tears. Patients received an intrarepair site injection of either PRP or sterile 0.9% saline during an index arthroscopy. The primary endpoint was the rate of meniscus healing in the two groups. The secondary endpoints were changes in the International Knee Documentation Committee (IKDC) score, Knee Injury and Osteoarthritis Outcome Score (KOOS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and analog scale (VAS) in the two groups at 42 months. After 18 weeks, the meniscus healing rate was significantly higher in the PRP-treated group than in the control group (85% versus 47%, P = 0.048). Functional outcomes were significantly better 42 months after treatment than at baseline in both groups. The IKDC score, WOMAC, and KOOS were significantly better in the PRP-treated group than in the control group. No adverse events were reported during the study period. The findings of this study indicate that PRP augmentation in meniscus repair results in improvements in both meniscus healing and functional outcome.

  17. A Prospective, Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Study Evaluating Meniscal Healing, Clinical Outcomes, and Safety in Patients Undergoing Meniscal Repair of Unstable, Complete Vertical Meniscal Tears (Bucket Handle) Augmented with Platelet-Rich Plasma

    PubMed Central

    Kulinski, Krzysztof; Kozar-Kaminska, Katarzyna; Wielgus, Monika; Langner, Maciej; Wasko, Marcin K.; Kowalczewski, Jacek; Pomianowski, Stanislaw

    2018-01-01

    Objective The present study aimed to investigate the effectiveness and safety of platelet-rich plasma (PRP) application in arthroscopic repair of complete vertical tear of meniscus located in the red-white zone. Methods This single center, prospective, randomized, double-blind, placebo-controlled, parallel-arm study included 37 patients with complete vertical meniscus tears. Patients received an intrarepair site injection of either PRP or sterile 0.9% saline during an index arthroscopy. The primary endpoint was the rate of meniscus healing in the two groups. The secondary endpoints were changes in the International Knee Documentation Committee (IKDC) score, Knee Injury and Osteoarthritis Outcome Score (KOOS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and analog scale (VAS) in the two groups at 42 months. Results After 18 weeks, the meniscus healing rate was significantly higher in the PRP-treated group than in the control group (85% versus 47%, P = 0.048). Functional outcomes were significantly better 42 months after treatment than at baseline in both groups. The IKDC score, WOMAC, and KOOS were significantly better in the PRP-treated group than in the control group. No adverse events were reported during the study period. Conclusions The findings of this study indicate that PRP augmentation in meniscus repair results in improvements in both meniscus healing and functional outcome. PMID:29713647

  18. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  19. Meniscal healing after meniscal repair: a CT arthrography assessment.

    PubMed

    Pujol, Nicolas; Panarella, Ludovico; Selmi, Tarik Ait Si; Neyret, Philippe; Fithian, Donald; Beaufils, Philippe

    2008-08-01

    Studies evaluating healing of repaired meniscus are rare and primarily retrospective. The aim of this study was to assess whether there were different healing rates for arthroscopic meniscal repair with respect to the different zones of the meniscus. This study was conducted to assess outcomes and to document anatomic characteristics of the repaired meniscus with postoperative arthrography combined with computed tomography (arthro-CT), particularly the dimensions and healing of the repaired meniscus. Case series; Level of evidence, 4. Fifty-three arthroscopic meniscal repairs were prospectively evaluated between 2002 and 2004 in 2 orthopaedic departments. There were 36 medial and 17 lateral torn menisci. All ACL tears (n = 31, 58.5%) underwent reconstruction. Patients were preoperatively evaluated by magnetic resonance imaging. Clinical evaluation included International Knee Documentation Committee (IKDC) scores before the operation and 6 and 12 months afterward. Healing criteria were evaluated at 6 months by arthro-CT scan. Three parameters were evaluated--healing in thickness (Henning criteria), overall healing rate, and reduction in the width of the remaining meniscus. According to the objective IKDC score, 26 patients were graded A, 20 B, and 4 C (92% good results). The mean subjective IKDC score was 78.9 (standard deviation [SD], 16.2). According to Henning's criteria, 58% of the menisci healed completely, 24% partially, and 18% failed. The overall healing rate was 73.1% (SD, 38.5). Twenty tears located in the posterior part had a healing rate of 59.8% (SD, 46.0). Nineteen tears extending from the posterior to the middle part had a healing rate of 79.2% (SD, 28.2). Isolated tears located in the posterior part had a lower healing rate (P < .05). There was a 9% +/- 1.2% reduction in the width of the remaining medial meniscus in the middle and posterior repaired portions (P < .02). There was a 15% +/- 14% reduction in the width of the remaining lateral meniscus in the middle repaired portion (P < .01). Complete healing of the posterior segment was associated with reduction in the width of the meniscus (P < .04). A modern technique using all-inside fixation or outside-in sutures provided good clinical and anatomic outcomes. No statistically significant effect on ACL reconstruction or laterality (medial vs lateral) on overall healing after meniscal repair was identified. Partial healing occurred often, with a stable tear on a narrowed and painless meniscus. The posterior segment healing rate remained low, suggesting a need for further technical improvements.

  20. The Influence of Meniscal and Anterolateral Capsular Injury on Knee Laxity in Patients With Anterior Cruciate Ligament Injuries.

    PubMed

    Musahl, Volker; Rahnemai-Azar, Ata A; Costello, Joanna; Arner, Justin W; Fu, Freddie H; Hoshino, Yuichi; Lopomo, Nicola; Samuelsson, Kristian; Irrgang, James J

    2016-12-01

    The role of the anterolateral capsule (ALC) as a secondary restraint to quantitative rotatory laxity of patients with an anterior cruciate ligament (ACL) injury is currently debated. The purpose was to determine the influence of concomitant ALC injuries as well as injuries to other soft tissue structures on rotatory knee laxity in patients with an ACL injury. It was hypothesized that a concomitant ALC injury would be associated with increased rotatory knee laxity as measured during a quantitative pivot-shift test. Cross-sectional study; Level of evidence, 3. Forty-one patients with an ACL injury (average age, 23 ± 6.9 years) were enrolled. Two blinded musculoskeletal radiologists reviewed magnetic resonance imaging (MRI) scans for the presence of ACL injuries and concomitant soft tissue injuries including the ALC, medial collateral ligament, lateral collateral ligament, posterolateral corner, medial meniscus, and lateral meniscus. A standardized pivot-shift test was performed under anesthesia, and rotatory laxity was quantified according to anterior translation of the lateral tibial compartment during the pivot-shift maneuver. The Student t test was used to analyze the data. Statistical significance was set at P < .05. A complete ACL rupture was confirmed in all of the patients. MRI evidence of an ALC injury was observed in 21 (51%) of the patients. Patients with MRI evidence of an ALC injury had significantly higher rotatory knee laxity (3.6 ± 1.5 mm) compared with those without an ALC injury (2.7 ± 1.5 mm; P = .04). Lateral and medial meniscus injuries were detected in 17 (41%) and 19 (46%) patients, respectively. Patients with MRI evidence of either a medial meniscus injury or lateral meniscus injury had significantly higher rotatory knee laxity compared with patients without these injuries (medial meniscus: 3.7 ± 1.4 mm vs 2.7 ± 1.6 mm, respectively; lateral meniscus: 3.7 ± 1.7 mm vs 2.7 ± 1.3 mm, respectively) (P = .03 for both). MRI evidence of a concomitant injury to the ALC, medial meniscus, or lateral meniscus is associated with increased knee rotatory laxity in patients with an ACL injury. These structures may function as important secondary stabilizers in an ACL-injured knee. Careful assessment and proper treatment of injuries to these secondary stabilizers should be considered, especially in knees with a high level of the pivot shift. © 2016 The Author(s).

  1. Piercing the water surface with a blade: Singularities of the contact line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimov, Mars M.; Kornev, Konstantin G.

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contactmore » line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.« less

  2. The FasT-Fix Repair Technique for Ramp Lesion of the Medial Meniscus.

    PubMed

    Li, Wei-Ping; Chen, Zhong; Song, Bin; Yang, Rui; Tan, Weiquan

    2015-03-01

    This technical note describes a new arthroscopic technique to repair the peripheral attachment lesion of the posterior horn of the medial meniscus. The operation was performed under arthroscopy using a standard anterior portal. A FasT-Fix needle was inserted obliquely close to the tibial plateau and the first implant was inserted into the joint capsule depending on its bending angle underneath the meniscus. The second implant was inserted through 1/3 periphery of the meniscus into the meniscocapsular area. The pre-tied self-sliding knot was tensioned to achieve secure fixation of the posterior meniscal peripheral attachment at the original attachment point. From August 2011 to February 2014, 23 knees were diagnosed as ramp lesion, underwent meniscal repair using FasT-Fix technique. All patients were followed up for average 14 months. The Lysholm score improved from preoperative 64.4±4.52 to postoperative 91.2±4.60. We believe that the FasT-Fix technique via the standard anterior portal can be a more convenient and less traumatic alternative for repair of the peripheral attachment lesion of the posterior horn of the medial meniscus in the anterior cruciate ligament deficient knee.

  3. Articular contact pressures of meniscal repair techniques at various knee flexion angles.

    PubMed

    Flanigan, David C; Lin, Fang; Koh, Jason L; Zhang, Li-Qun

    2010-07-13

    Articular cartilage injury can occur after meniscal repair with biodegradable implants. Previous contact pressure analyses of the knee have been based on the tibial side of the meniscus at limited knee flexion angles. We investigated articular contact pressures on the posterior femoral condyle with different knee flexion angles and surgical repair techniques. Medial meniscus tears were repaired in 30 fresh bovine knees. Knees were mounted on a 6-degrees-of-freedom jig and statically loaded to 200 N at 45 degrees, 70 degrees, 90 degrees, and 110 degrees of knee flexion under 3 conditions: intact meniscus, torn meniscus, and meniscus after repair. For each repair, 3 sutures or biodegradable implants were used. A pressure sensor was used to determine the contact area and peak pressure. Peak pressures over each implant position were measured. Peak pressure increased significantly as knee flexion increased in normal, injured, and repaired knees. The change in peak pressure in knees with implant repairs was significantly higher than suture repairs at all knee flexion angles. Articular contact pressure on the posterior femoral condyle increased with knee flexion. Avoidance of deep knee flexion angles postoperatively may limit increases in articular contact pressures and potential chondral injury. Copyright 2010, SLACK Incorporated.

  4. Posterior medial meniscus-femoral insertion into the anterior cruciate ligament. A case report.

    PubMed

    Bhargava, A; Ferrari, D A

    1998-03-01

    Medial meniscal anomalies are rare. The anterior horn insertion into the anterior cruciate ligament is the most common. In the course of an arthroscopy for torn lateral meniscus, an anomalous band in continuity with the posterior horn of the medial meniscus was observed to insert into the anterior cruciate ligament. Although the tibial portion of the anterior cruciate was redundant, the anomalous band provided tension to the anterior cruciate ligament and a negative pivot shift. A previously unreported posterior medial meniscal femoral insertion is described.

  5. A nonlinear cochlear model with the outer hair cell piezoelectric activity

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoai; Grosh, Karl

    2003-10-01

    In this paper we present a simple cochlear model which captures the most important aspect of nonlinearity in the cochlea-the nonlinearity caused by the piezoelectric-like activity of outer hair cells and the variable conductance of the outer hair cell stereocilia. A one-dimensional long-wave model is built to simulate the dynamic response of the fluid-loaded basilar membrane. The basilar membrane is simulated as isolated linear oscillators along the cochlear length, and its motion is coupled with the fluid pressure and the nonlinear force produced by the outer hair cells. As the basilar membrane moves, the fluid shears stereocilia, and the resulting ion flow changes the transmembrane potential of the outer hair cells and subsequently their length, leading to further movement of the basilar membrane. The piezoelectric-like activity of the outer hair cell is simulated by a current source, and stereocilia motion is modeled as a varying conductance that changes as the basilar membrane moves. A solution in the time domain will be presented. [Work supported by NIH.

  6. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression

    NASA Astrophysics Data System (ADS)

    Yin, Jianhua; Xia, Yang

    2014-12-01

    Fourier transform infrared imaging (FTIRI) combining with principal component regression (PCR) analysis were used to determine the reduction of proteoglycan (PG) in articular cartilage after the transection of the anterior cruciate ligament (ACL). A number of canine knee cartilage sections were harvested from the meniscus-covered and meniscus-uncovered medial tibial locations from the control joints, the ACL joints at three time points after the surgery, and their contralateral joints. The PG loss in the ACL cartilage was related positively to the durations after the surgery. The PG loss in the contralateral knees was less than that of the ACL knees. The PG loss in the meniscus-covered cartilage was less than that of the meniscus-uncovered tissue in both ACL and contralateral knees. The quantitative mapping of PG loss could monitor the disease progression and repair processes in arthritis.

  7. Meniscus root repair.

    PubMed

    Vyas, Dharmesh; Harner, Christopher D

    2012-06-01

    Root tears are a subset of meniscal injuries that result in significant knee joint pathology. Occurring on either the medial or lateral side, root tears are defined as radial tears or avulsions of the posterior horn attachment to bone. After a root tear, there is a significant increase in tibio-femoral contact pressure concomitant with altered knee joint kinematics. Previous cadaver studies from our institution have shown that root repair of the medial meniscus is successful in restoring joint biomechanics to within normal limits. Indications for operative management of meniscal root tears include (1) a symptomatic medial meniscus root tear with minimal arthritis and having failed non-operative treatment, and (2) a lateral root tear in associated with an ACL tear. In this review, we describe diagnosis, imaging, patient selection, and arthroscopic surgical technique of medial and lateral meniscus root injuries. In addition we highlight the pearls of repair technique, associated complications, post-operative rehabilitation regimen, and expected outcomes.

  8. Modified Pull-out Suture in Posterior Root Tear of the Medial Meniscus: Using a Posteromedial Portal.

    PubMed

    Cho, Jin Ho

    2012-06-01

    In cases with root tear of the medial meniscus posterior horn, the meniscus usually can be repaired by a pull out suture technique. However, there is difficulty in manipulating a suture hook via the anteromedial portal and looking through the arthroscopic camera via anterolateral portal in the narrow medial joint space at the same time. This article describes a modified simple pull out suture technique for root tear of the medial meniscus posterior horn using a posteromedial portal that provides a safe and easy handling of the suture hook. Our indications of this technique used in patients with Outerbridge 1-2 arthritic change and minimal varus axis change. Benefits of this technique are simple, less invasive, and reduced operation time by simultaneous suture with a hook via posteromedial portal and pulling of a string with grasper. It may reduce the possibility of an additional chondral or meniscal injury.

  9. Static length changes of cochlear outer hair cells can tune low-frequency hearing

    PubMed Central

    Ciganović, Nikola; Warren, Rebecca L.; Keçeli, Batu; Jacob, Stefan

    2018-01-01

    The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the stimulus to the inner hair cells remains unclear. Here, we combine theoretical modeling and experimental measurements near the cochlear apex to study the way in which length changes of the outer hair cells deform the organ of Corti. We develop a geometry-based kinematic model of the apical organ of Corti that reproduces salient, yet counter-intuitive features of the organ’s motion. Our analysis further uncovers a mechanism by which a static length change of the outer hair cells can sensitively tune the signal transmitted to the sensory inner hair cells. When the outer hair cells are in an elongated state, stimulation of inner hair cells is largely inhibited, whereas outer hair cell contraction leads to a substantial enhancement of sound-evoked motion near the hair bundles. This novel mechanism for regulating the sensitivity of the hearing organ applies to the low frequencies that are most important for the perception of speech and music. We suggest that the proposed mechanism might underlie frequency discrimination at low auditory frequencies, as well as our ability to selectively attend auditory signals in noisy surroundings. PMID:29351276

  10. The Pathobiology of the Meniscus: A Comparison Between the Human and Dog

    PubMed Central

    Krupkova, Olga; Smolders, Lucas; Wuertz-Kozak, Karin; Cook, James; Pozzi, Antonio

    2018-01-01

    Serious knee pain and related disability have an annual prevalence of approximately 25% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA). While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1) to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2) to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3) to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making. PMID:29713636

  11. Validation of a semi-automatic protocol for the assessment of the tear meniscus central area based on open-source software

    NASA Astrophysics Data System (ADS)

    Pena-Verdeal, Hugo; Garcia-Resua, Carlos; Yebra-Pimentel, Eva; Giraldez, Maria J.

    2017-08-01

    Purpose: Different lower tear meniscus parameters can be clinical assessed on dry eye diagnosis. The aim of this study was to propose and analyse the variability of a semi-automatic method for measuring lower tear meniscus central area (TMCA) by using open source software. Material and methods: On a group of 105 subjects, one video of the lower tear meniscus after fluorescein instillation was generated by a digital camera attached to a slit-lamp. A short light beam (3x5 mm) with moderate illumination in the central portion of the meniscus (6 o'clock) was used. Images were extracted from each video by a masked observer. By using an open source software based on Java (NIH ImageJ), a further observer measured in a masked and randomized order the TMCA in the short light beam illuminated area by two methods: (1) manual method, where TMCA images was "manually" measured; (2) semi-automatic method, where TMCA images were transformed in an 8-bit-binary image, then holes inside this shape were filled and on the isolated shape, the area size was obtained. Finally, both measurements, manual and semi-automatic, were compared. Results: Paired t-test showed no statistical difference between both techniques results (p = 0.102). Pearson correlation between techniques show a significant positive near to perfect correlation (r = 0.99; p < 0.001). Conclusions: This study showed a useful tool to objectively measure the frontal central area of the meniscus in photography by free open source software.

  12. [Arthroscopic repair of meniscus injury with Fast-fix under local anesthesia].

    PubMed

    Wang, Jiang-tao; Liu, Yu-jie; Wang, Jun-liang; Qu, Feng; Yuan, Bang-tuo; Zhao, Gang; Shen, Xue-zhen; Zhu, Juan-li; Liu, Yang

    2014-08-01

    To evaluate the clinical outcome of arthroscopic repair method of meniscus injury with Fast-fix under local anesthesia. From October 2005 to September 2012,106 patients with meniscus injuries admitted into our - hospital were studied, including 74 males and 32 females, ranging in age from 13 to 71 years old, averaged 27.6 years old. The duration of the disease ranged from 15 days to 5 years. The main clinical manifestations included knee joint pain after exercise, joint locking, pressing pain of knee joint and positive McMurray signs. The MRI showed meniscus tear or degeneration. Arthroscopic repairing surgeries were performed with Fast-fix under local anesthesia. Each patient was assessed with VAS pain evaluation and Lysholm knee-joint score system before and after operation. All the patients were followed up more than 1 year. One hundred and 2 patients were followed up by recording subjective symptoms, clinical examinations and questions naires for an average of 2.6 years (ranged, 1.1 to 8 years), and 4 patients lost follow-up. All the 102 patients had no anesthetic complications. Ninety-six patients had normal subjective symptom and clinical examinations. Four patients had a mild ache with activities,2 patients had moderate pain after activities with joint space pressing pain. VAS pain evaluation and Lysholm knee-joint score after operation both were much better than that before operation. onclusion: Local anesthesia can provide nice circumstances for surgeries. Arthroscopic repair using Fast-fix is an idea method for meniscus injury, especially for the posterior horn tear of medial meniscus, which is simple and convenient with less complications, and satisfactory results.

  13. Squat Winnowing: Cause of Meniscus Injuries in Non-Athletic Females.

    PubMed

    Kamal, Younis; Ahmad Khan, Hayat; Ahmad Latoo, Irfan; Gani, Naseemul; Farooq, Munir; Gul, Snobar

    2016-02-01

    Sports activities were thought to be the major cause of meniscus injury in both men and woman, but our observations of non-athletic females show that the cause of meniscus injury was unrelated to any type of sports activity. This study revealed squat winnowing to be a major cause of meniscus injury in non-athletic females. This retrospective study was conducted in a tertiary care orthopaedic hospital which caters to a population of 10 million people. We assessed 120 non-athletic females who had received treatment in our hospital over a period of 2 years. The most probable cause of knee injury, per initial patient history, was recorded for all non-athletic females who presented clinical signs and symptoms of meniscus injury. The diagnoses were confirmed by relevant MRI and arthroscopy of patients' knees. All females who engaged in athletic activity and other females with unrelated, non-traumatic knee pathologies were excluded from the study. Through our study, we found that 42% (n = 50) of females suffered an injury during squat winnowing of rice, either at home or at work. Another 29% (n = 35) of females cited a history of slipping and spraining their knee as a cause of knee injury, while 19% (n = 16) of females suffered a knee injury during complex accidents such as a traffic accident. Finally, 13% (n = 16) of the females had no definite history of knee injury. Our observations add to the knowledge base of the various causes of meniscus tears; this study also revealed that socio-cultural factors influence and contribute to the mechanism of various types of knee injury.

  14. Rupture of posterior cruciate ligament leads to radial displacement of the medial meniscus.

    PubMed

    Zhang, Can; Deng, Zhenhan; Luo, Wei; Xiao, Wenfeng; Hu, Yihe; Liao, Zhan; Li, Kanghua; He, Hongbo

    2017-07-11

    To explore the association between the rupture of posterior cruciate ligament (PCL) and the radial displacement of medial meniscus under the conditions of different flexion and various axial loads. The radial displacement value of medial meniscus was measured for the specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle (ALB), 6 ruptures of the postmedial bundle (PMB), and 12 complete ruptures. The measurement was conducted at 0°, 30°, 60°, and 90° of knee flexion angles under 200 N, 400 N, 600 N, 800 N and 1000 N of axial loads respectively. The displacement values of medial meniscus of the ALB rupture group increased at 0° flexion under 800 N and 1000 N, and at 30°, 60° and 90° flexion under all loads in comparison with the PCL intact group. The displacement values of the PMB rupture group was higher at 0° and 90° flexion under all loads, and at 30° and 60° flexion under 800 N and 1000 N loads. The displacement of the PCL complete rupture group increased at all flexion angles under all loads. Either partial or complete rupture of the PCL can increase in the radial displacement of the medial meniscus, which may explain the degenerative changes that occuring in the medial meniscus due to PCL injury. Therefore, early reestablishment of the PCL is necessarily required in order to maintain stability of the knee joint after PCL injury.

  15. [Relevance of proton spin tomographic meniscus diagnosis in correlation with arthroscopy].

    PubMed

    Imhoff, A; Buess, E; Hodler, J; Schreiber, A

    1994-04-01

    Arthroscopy of the menisci is considered the gold standard by which all noninvasive imaging procedures of the knee are measured. In a prospective study we evaluated the use of MRI in 50 patients in whom a disorder of the meniscus was suspected clinically; this was followed by an arthroscopic examination by an experienced arthroscopist. The MR studies were performed after clinical evaluation and were interpreted by an experienced radiologist, who had no knowledge of the clinical findings. The accuracy of the diagnosis from MRI was 78% for the medial meniscus (sensitivity 79% and specificity 78%) and 94% for the lateral meniscus (sensitivity 50% and specificity 98%). The average age of the patients was 34 years, with a range of 3-73 years. The imaging studies revealed 9 false-positive tests and suggested that the meniscus was either degenerated or torn in the horizontal plane. In all 9 menisci the abnormal MR imaging signal was limited to the posterior horns. The positive predictive value was 59% and the negative predictive value was 94%, representing a moderate level of diagnostic certainty both in patients who had a positive result and in those who had a negative result. The high predictive negative value of MRI indicates that a negative MRI is quite reliable for meniscal lesions. The problem areas in MR imaging are the popliteal tendon sheath and the transverse ligament. This ligament is seen in association with a large branch of the lateral inferior geniculate artery and may be mistaken for a grade 3 signal intensity in the anterior horn of the lateral meniscus.

  16. Resection of Grade III cranial horn tears of the equine medial meniscus alter the contact forces on medial tibial condyle at full extension: an in-vitro cadaveric study.

    PubMed

    Fowlie, Jennifer; Arnoczky, Steven; Lavagnino, Michael; Maerz, Tristan; Stick, John

    2011-12-01

    To evaluate the magnitude and distribution of joint contact pressure on the medial tibial condyle after grade III cranial horn tears of the medial meniscus. Experimental study. Cadaveric equine stifles (n = 6). Cadaveric stifles were mounted in a materials testing system and electronic pressure sensors were placed between the medial tibial condyle and medial meniscus. Specimens were loaded parallel to the longitudinal axis of the tibia to 1800 N at 130°, 140°, 150°, and 160° stifle angle. Peak pressure and contact area were recorded from the contact maps. Testing was repeated after surgical creation of a grade III cranial horn tear of the medial meniscus, and after resection of the simulated tear. In the intact specimens, a significantly smaller contact area was observed at 160° compared with the other angles (P < .05). Creation of a grade III cranial horn tear in the medial meniscus did not significantly alter the pressure or contact area measurements at any stifle angle compared with intact specimens (P > .05). Resection of the tear resulted in significantly higher peak pressures in the central region of the medial tibial condyle at a stifle angle of 160° relative to the intact (P = .026) and torn (P = .012) specimens. Resection of grade III cranial horn tears in the medial meniscus resulted in a central focal region of increased pressure on the medial tibial condyle at 160° stifle angle. © Copyright 2011 by The American College of Veterinary Surgeons.

  17. Physical Therapy to Treat Torn Meniscus Comparable to Surgery for Many Patients

    MedlinePlus

    ... to Surgery for Many Patients Spotlight on Research Physical Therapy to Treat Torn Meniscus Comparable to Surgery ... to avoid surgery and achieve comparable relief from physical therapy, according to a recent, multisite study funded ...

  18. Robust ion current oscillations under a steady electric field: An ion channel analog.

    PubMed

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum.

  19. Capillary rise between planar surfaces

    NASA Astrophysics Data System (ADS)

    Bullard, Jeffrey W.; Garboczi, Edward J.

    2009-01-01

    Minimization of free energy is used to calculate the equilibrium vertical rise and meniscus shape of a liquid column between two closely spaced, parallel planar surfaces that are inert and immobile. States of minimum free energy are found using standard variational principles, which lead not only to an Euler-Lagrange differential equation for the meniscus shape and elevation, but also to the boundary conditions at the three-phase junction where the liquid meniscus intersects the solid walls. The analysis shows that the classical Young-Dupré equation for the thermodynamic contact angle is valid at the three-phase junction, as already shown for sessile drops with or without the influence of a gravitational field. Integration of the Euler-Lagrange equation shows that a generalized Laplace-Young (LY) equation first proposed by O’Brien, Craig, and Peyton [J. Colloid Interface Sci. 26, 500 (1968)] gives an exact prediction of the mean elevation of the meniscus at any wall separation, whereas the classical LY equation for the elevation of the midpoint of the meniscus is accurate only when the separation approaches zero or infinity. When both walls are identical, the meniscus is symmetric about the midpoint, and the midpoint elevation is a more traditional and convenient measure of capillary rise than the mean elevation. Therefore, for this symmetric system a different equation is fitted to numerical predictions of the midpoint elevation and is shown to give excellent agreement for contact angles between 15° and 160° and wall separations up to 30mm . When the walls have dissimilar surface properties, the meniscus generally assumes an asymmetric shape, and significant elevation of the liquid column can occur even when one of the walls has a contact angle significantly greater than 90°. The height of the capillary rise depends on the spacing between the walls and also on the difference in contact angles at the two surfaces. When the contact angle at one wall is greater than 90° but the contact angle at the other wall is less than 90°, the meniscus can have an inflection point separating a region of positive curvature from a region of negative curvature, the inflection point being pinned at zero height. However, this condition arises only when the spacing between the walls exceeds a threshold value that depends on the difference in contact angles.

  20. The popliteus tendon provides a safe and reliable location for all-inside meniscal repair device placement.

    PubMed

    Ouanezar, Hervé; Blakeney, William G; Latrobe, Charles; Saithna, Adnan; Fernandes, Levi Reina; Delaloye, Jean Romain; Thaunat, Mathieu; Sonnery-Cottet, Bertrand

    2018-03-03

    Repairs of the posterior horn of the lateral meniscus can be technically challenging. In contrast to medial meniscus repairs, the capsule around the posterior segment attachment of the lateral meniscus is quite thin. This study evaluates the clinical results of an arthroscopic all-inside repair technique for unstable, vertical, lateral meniscus tears, using a suture repair placed directly into the popliteus tendon. A retrospective analysis of prospectively collected data from the SANTI database was performed. All patients who had undergone combined ACL reconstruction with lateral meniscus all-inside repair, using sutures placed in the popliteus tendon, between 2011 and 2015, were included. Patients were reviewed clinically at 1 and 2 years' follow-up. At final follow-up, all patients were contacted to identify if they underwent further surgery or had knee pain, locking or effusion. Symptomatic patients were recalled for clinical evaluation by a physician and Magnetic Resonance Imaging of the knee. Operative notes for those undergoing further surgery were reviewed and rates and type of re-operation, including for failed lateral meniscal repair were recorded. Two hundred patients (mean age 28.6 ± 10.2 years) with a mean follow-up of 45.5 ± 12.8 months (range 24.7-75.2) were included. The mean Subjective International Knee Documentation Committee (IKDC) at final follow-up was 85.0 ± 11.3. The post-operative mean side-to-side laxity measured at 1 year was 0.6 ± 1.0 mm. Twenty-six patients underwent re-operation (13%) at a mean follow-up of 14.8 ± 7.8 months. The ACL graft rupture rate was 5.0%. Other causes for re-operation included medial meniscus tear (2.5%), cyclops lesion (1.5%) and septic arthritis (0.5%). The lateral meniscus repair failure rate was 3.5%. No specific complications relating to placement of sutures in the popliteus tendon were identified. Arthroscopic all-inside repair of unstable, vertical, lateral meniscus tears using a suture placed in the popliteus tendon is a safe technique. It is associated with a very low failure rate with no specific complications. Level IV.

  1. High-grade rotatory knee laxity may be predictable in ACL injuries.

    PubMed

    Musahl, Volker; Burnham, Jeremy; Lian, Jayson; Popchak, Adam; Svantesson, Eleonor; Kuroda, Ryosuke; Zaffagnini, Stefano; Samuelsson, Kristian

    2018-06-21

    Lateral compartment acceleration and translation have been used to quantify rotatory knee laxity in the setting of anterior cruciate ligament (ACL) injury; however, their relationship remains elusive. The purpose of this study was to examine the correlation between lateral compartment acceleration and translation during pivot shift testing. It was hypothesized that a correlation would exist in ACL-injured and uninjured knees, irrespective of sex, but would be greatest in knees with combined ACL and lateral meniscus tear. Seventy-seven patients (34 females, 25.2 ± 9.0 years) undergoing primary single-bundle ACL reconstruction were prospectively enrolled in a 2-year study across four international centers. Patients underwent preoperative examination under anesthesia of the injured and uninjured knee using Image Analysis software and surface mounted accelerometer. A moderate correlation between lateral compartment acceleration and translation was observed in ACL-injured knees [ρ = 0.36, p < 0.05), but not in uninjured knees (ρ = 0.17, not significant (n.s.)]. A moderate correlation between acceleration and translation was demonstrated in ACL-injured knees with lateral meniscus tears (ρ = 0.53, p < 0.05), but not in knees with isolated ACL-injury (ρ = 0.32, n.s.), ACL and medial meniscus tears (ρ = 0.14, n.s.), or ACL and combined medial and lateral meniscus tears (ρ = 0.40, n.s.). A moderate correlation between acceleration and translation was seen in males (ρ = 0.51, p < 0.05), but not in females (ρ = 0.21, n.s.). Largest correlations were observed in males with ACL and lateral meniscus tears (ρ = 0.75, p < 0.05). Lateral compartment acceleration and translation were moderately correlated in ACL-injured knees, but largely correlated in males with combined ACL and lateral meniscus tears. ACL and lateral meniscus injury in males might, therefore, be suspected when both lateral compartment acceleration and translation are elevated. Surgeons should have a greater degree of suspicion for high-grade rotatory knee laxity in ACL-injured males with concomitant lateral meniscus tears. Future studies should investigate how these two distinct components of rotatory knee laxity-lateral compartment acceleration and translation-are correlated with patient outcomes and affected by ACL surgery. Prospective cohort study; Level of evidence II.

  2. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  3. Arthroscopic repair of the posterior root of the medial meniscus using knotless suture anchor: A technical note.

    PubMed

    Eun, Sang Soo; Lee, Sang Ho; Sabal, Luigi Andrew

    2016-08-01

    There are numerous methods for repairing posterior root tears of the medial meniscus (PRTMM). Repair techniques using suture anchors through a high posteromedial portal have been reported. The present study found that using a knotless suture anchor instead of suture anchor seemed easier and faster because it avoided passing the sutures through the meniscus and tying a knot in a small space. This study describes a knotless suture anchor technique through a high posteromedial portal, and its clinical results. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Arthroscopic Medial Meniscus Posterior Root Reconstruction Using Auto-Gracilis Tendon.

    PubMed

    Lee, Dhong Won; Haque, Russel; Chung, Kyu Sung; Kim, Jin Goo

    2017-08-01

    There have been several techniques to repair the medial meniscus posterior root tears (MMPRTs) with the goal of restoring the anatomic and firm fixation of the meniscal root to bone. Many anatomic studies about the menisci also have been developed, so a better understanding of the anatomy could help surgeons perform correct fixation of the MMPRTs. The meniscal roots have ligament-like structures that firmly attach the menisci to the tibial plateau, and this structural concept is important to restore normal biomechanics after anatomic root repair. We present arthroscopic transtibial medial meniscus posterior root reconstruction using auto-gracilis tendon.

  5. Classification and Surgical Repair of Ramp Lesions of the Medial Meniscus.

    PubMed

    Thaunat, Mathieu; Fayard, Jean Marie; Guimaraes, Tales M; Jan, Nicolas; Murphy, Colin G; Sonnery-Cottet, Bertrand

    2016-08-01

    Ramp lesions of the medial meniscus are commonly associated with anterior cruciate ligament ruptures and consist of longitudinal peripheral tears of the posterior horn of the medial meniscus. Given the frequency of partial-thickness tears, they can be difficult to diagnose arthroscopically from the anterior compartment. We describe a classification of the different types of ramp lesions depending on both tear pattern (partial- or full-thickness tear) and associated meniscotibial ligament disruption. An original technique of arthroscopic suture placement through a single posteromedial portal with a 25° curved suture hook device is described.

  6. Cruciate ligament replacement using a meniscus. An experimental study.

    PubMed

    Mitsou, A; Vallianatos, P; Piskopakis, N; Nicolaou, P

    1988-11-01

    In 30 rabbits, the medial meniscus was used to replace the anterior or posterior cruciate ligament. The changes that took place were followed in histological sections, obtained both from the area of insertion into bone and from the intra-articular part of the graft. There was a gradual differentiation to chondroid tissue, with subsequent calcific deposition and no appearance of normal ligamentous tissue. The strength of the graft after 52 weeks was only one-quarter of that of the normal ligament. Our results do not justify the use of the meniscus to replace a torn cruciate ligament.

  7. Discoid Meniscus Associated With Achondroplasia.

    PubMed

    Hoernschemeyer, Daniel G; Atanda, Alfred; Dean-Davis, Ellen; Gupta, Sumit K

    2016-05-01

    Achondroplasia is the most common skeletal dysplasia. This form of dwarfism is caused by a point mutation in the fibroblast growth factor receptor 3 (FGFR3) gene, leading to inhibition of endochondral ossification for these patients. This results in a normal trunk height but shortened limbs. The discoid meniscus may be an important associated finding to better understand the common complaints of leg pain for these patients. Although the incidence for a discoid meniscus is between 3% and 5% for the general population, it is unknown with achondroplasia. This case series includes 4 patients, with ages ranging from adolescence to early adulthood, with symptoms of knee pain that were not attributable to some of the more common findings seen in this patient population. Typically, patients with achondroplasia who experience knee pain are evaluated for more common and well-known etiologies such as genu varum, ligamentous instability, and neurogenic claudication. However, the authors propose that symptomatic discoid lateral meniscus should be added to the differential diagnosis for lower-extremity pain in the achondroplasia population. A thorough history and physical examination, in combination with magnetic resonance imaging, can aid in making the diagnosis. Treatment with arthroscopic debridement, saucerization of the meniscus, and repair for unstable injuries has yielded good outcomes for this patient population. [Orthopedics. 2016; 39(3):e498-e503.]. Copyright 2016, SLACK Incorporated.

  8. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOEpatents

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  9. Clinical Evaluation of the Root Tear of the Posterior Horn of the Medial Meniscus in Total Knee Arthroplasty for Osteoarthritis.

    PubMed

    Choi, Eui-Sung; Park, Sang-Jun

    2015-06-01

    To investigate the incidence of root tears of the posterior horn of the medial meniscus in total knee replacement arthroplasty for knee osteoarthritis and retrospectively analyze clinical results and factors associated with root tears. There were 197 knees of 140 enrolled patients who had undergone total knee replacement arthroplasty between September 2010 and May 2014. The presence of a root tear of the posterior horn of the medial meniscus was confirmed in all patients. Statistical analysis was performed to investigate the correlation between root tears and the possible factors of meniscal tears including gender, age, severity of symptoms (visual analogue scale [VAS] score and medial joint line tenderness), grade of osteoarthritis (Kellgren-Lawrence grading scale), body mass index (BMI), varus deformity, and mechanical axis deviation. Meniscal tears were observed in 154 knees (78.17%). The root tear had correlation with the severity of osteoarthritis (p<0.05), varus deformity (p<0.05), mechanical axis deviation (p<0.05), and BMI (p<0.05). Factors considered to represent the severity of osteoarthritis were found to be associated with root tears of the medial meniscus posterior horn. Increased BMI seemed to be associated with the increased incidence of root tears of the medial meniscus posterior horn.

  10. Acute torn meniscus combined with acute cruciate ligament injury. Second look arthroscopy after 3-month conservative treatment.

    PubMed

    Ihara, H; Miwa, M; Takayanagi, K; Nakayama, A

    1994-10-01

    The purpose of this study was to evaluate arthroscopically the natural healing of an acute torn meniscus combined with an acute cruciate ligament injury treated nonoperatively. There were 30 lateral and 10 medial meniscus tears associated with 25 acute anterior cruciate ligament and 7 posterior cruciate ligament injuries in 32 patients. There was more than 1 tear on some menisci for a total of 51 tear sites. Injuries to the menisci and ligaments were allowed to heal without surgery, but were given protective mobilization immediately in order to stimulate stress oriented healing of injured collagen fibers and promote circulation of synovial fluid to the meniscus and ligament. A Kyuro knee brace with a coil spring traction system was used to add adequate but not excessive stress to the associated injured cruciate ligament. All knees were examined and arthroscoped before and after a 3-month treatment period. Results indicated that 69% of the lateral menisci healed completely and 18% healed partially, whereas 58% of the medial menisci healed completely and none healed partially. Twenty of 25 anterior cruciate ligaments and 3 of 7 posterior cruciate ligaments healed satisfactorily. This study indicated that acute tears of the meniscus, even when they occur in association with a cruciate ligament injury, can heal morphologically with nonsurgical treatment.

  11. Meniscus Imaging for Crystal-Growth Control

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  12. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee.

    PubMed

    Lee, Stephen J; Aadalen, Kirk J; Malaviya, Prasanna; Lorenz, Eric P; Hayden, Jennifer K; Farr, Jack; Kang, Richard W; Cole, Brian J

    2006-08-01

    There is no consensus regarding the extent of meniscectomy leading to deleterious effects on tibiofemoral contact mechanics. The meniscus aids in optimizing tibiofemoral contact mechanics, increasing contact area, and decreasing contact stress. Controlled laboratory study. Twelve fresh-frozen human cadaveric knees each underwent 15 separate testing conditions-5 serial 20-mm posterior medial meniscectomy conditions (intact, 50% radial width, 75% radial width, segmental, and total meniscectomy) at 3 flexion angles (0 degrees , 30 degrees , and 60 degrees )-under an 1800-N axial load. Tekscan sensors were used to measure total force and medial force, contact area, mean contact stress, and peak contact stress. All posterior medial meniscectomy conditions resulted in significantly decreased contact areas and increased mean and peak contact stresses compared with the intact state (P < .05). The changes in contact mechanics after segmental and total posterior medial meniscectomies were not statistically different (P > .05). Incremental changes in contact area and mean contact stress increased as more peripheral portions of the medial meniscus were removed, whereas peak contact stresses exhibited similar incremental changes throughout all meniscectomy conditions. The meniscus is a crucial load-bearing structure, optimizing contact area and minimizing contact stress. Loss of hoop tension (ie, segmental meniscectomy) is equivalent to total meniscectomy in load-bearing terms. The peripheral portion of the medial meniscus provides a greater contribution to increasing contact areas and decreasing mean contact stresses than does the central portion, whereas peak contact stresses increase proportionally to the amount of meniscus removed. Because the degree of meniscectomy leading to clinically significant outcomes is unknown, a prudent strategy is to preserve the greatest amount of meniscus possible.

  13. Posterior root tear of the medial meniscus in multiple knee ligament injuries.

    PubMed

    Kim, Young Jae; Kim, Jin Goo; Chang, Seok Hwan; Shim, Jae Chan; Kim, Sang Bum; Lee, Mi Young

    2010-10-01

    The purposes of the present study were to examine the frequency and characteristics of root tears of the medial meniscus associated with ligament injuries of the knee and to evaluate the effectiveness of pull-out repair for restoring meniscus function. We retrospectively analyzed the 9 patients (10 knees) with posterior root tears of the medial meniscus and ligament injuries of the knee treated between August 2004 and February 2007. All the patients were male, with average age of 29.8 years, and the mean follow-up period was 29.7 months. The pull-out suture technique was used to repair the root tears. Clinical outcomes were evaluated using the Lysholm, IKDC, and Tegner scores, as well as the McMurray and Apley tests. The mean follow-up period was 41.1 months (range, 30 to 63 months). The incidence of root tears of the medial meniscus with ligament injuries was 2.74% (10 cases in 365 ligament surgeries). All clinical results showed significant improvement. At the final follow-up, McMurray test showed one positive and nine negative cases, and the Apley test revealed two positive and eight negative cases. There were no positive findings in anterior drawer test, posterior drawer test, valgus and varus stress test, and posterolateral instability test. Healing of the root tear was confirmed by arthroscopy in five patients and by MR in four patients. Root tears of the medial meniscus may occur in multiple knee ligament injuries. It is important not to miss them. Our results indicate that pull-out repair provides satisfactory results and evidence of healing. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Posterior root tear of the medial and lateral meniscus.

    PubMed

    Petersen, Wolf; Forkel, Philipp; Feucht, Matthias J; Zantop, Thore; Imhoff, Andreas B; Brucker, Peter U

    2014-02-01

    An avulsion of the tibial insertion of the meniscus or a radial tear close to the meniscal insertion is defined as a root tear. In clinical practice, the incidence of these lesions is often underestimated. However, several biomechanical studies have shown that the effect of a root tear is comparable to a total meniscectomy. Clinical studies documented progredient arthritic changes following root tears, thereby supporting basic science studies. The clinical diagnosis is limited by unspecific symptoms. In addition to the diagnostic arthroscopy, MRI is considered to be the gold standard of diagnosis of a meniscal root tear. Three different direct MRI signs for the diagnosis of a meniscus root tear have been described: Radial linear defect in the axial plane, vertical linear defect (truncation sign) in the coronal plane, and the so-called ghost meniscus sign in the sagittal plane. Meniscal extrusion is also considered to be an indirect sign of a root tear, but is less common in lateral root tears. During arthroscopy, the function of the meniscus root must be assessed by probing. However, visualization of the meniscal insertions is challenging. Refixation of the meniscal root can be performed using a transtibial pull-out suture, suture anchors, or side-to-side repair. Several short-term studies reported good clinical results after medial or lateral root repair. Nevertheless, MRI and second-look arthroscopy revealed high rates of incomplete or absent healing, especially for medial root tears. To date, most studies are case series with short-term follow-up and level IV evidence. Outerbridge grade 3 or 4 chondral lesions and varus malalignment of >5° were found to predict an inferior clinical outcome after medial meniscus root repair. Further research is needed to evaluate long-term results and to define evident criteria for meniscal root repair.

  15. Squat Winnowing: Cause of Meniscus Injuries in Non-Athletic Females

    PubMed Central

    Kamal, Younis; Ahmad Khan, Hayat; Ahmad Latoo, Irfan; Gani, Naseemul; Farooq, Munir; Gul, Snobar

    2016-01-01

    Background: Sports activities were thought to be the major cause of meniscus injury in both men and woman, but our observations of non-athletic females show that the cause of meniscus injury was unrelated to any type of sports activity. Objectives: This study revealed squat winnowing to be a major cause of meniscus injury in non-athletic females. Patients and Methods: This retrospective study was conducted in a tertiary care orthopaedic hospital which caters to a population of 10 million people. We assessed 120 non-athletic females who had received treatment in our hospital over a period of 2 years. The most probable cause of knee injury, per initial patient history, was recorded for all non-athletic females who presented clinical signs and symptoms of meniscus injury. The diagnoses were confirmed by relevant MRI and arthroscopy of patients’ knees. All females who engaged in athletic activity and other females with unrelated, non-traumatic knee pathologies were excluded from the study. Results: Through our study, we found that 42% (n = 50) of females suffered an injury during squat winnowing of rice, either at home or at work. Another 29% (n = 35) of females cited a history of slipping and spraining their knee as a cause of knee injury, while 19% (n = 16) of females suffered a knee injury during complex accidents such as a traffic accident. Finally, 13% (n = 16) of the females had no definite history of knee injury. Conclusions: Our observations add to the knowledge base of the various causes of meniscus tears; this study also revealed that socio-cultural factors influence and contribute to the mechanism of various types of knee injury. PMID:27218040

  16. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    PubMed

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  17. Sequential Change in T2* Values of Cartilage, Meniscus, and Subchondral Bone Marrow in a Rat Model of Knee Osteoarthritis

    PubMed Central

    Tsai, Ping-Huei; Lee, Herng-Sheng; Siow, Tiing Yee; Chang, Yue-Cune; Chou, Ming-Chung; Lin, Ming-Huang; Lin, Chien-Yuan; Chung, Hsiao-Wen; Huang, Guo-Shu

    2013-01-01

    Background There is an emerging interest in using magnetic resonance imaging (MRI) T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA). However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX). Materials and Methods Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group). Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. Results Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001). In the ACLX group (compared to the sham and control groups), T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001), then in the anterior horn of the medial meniscus at 13 weeks (p<0.001), and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043). Conclusion Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression. PMID:24204653

  18. Expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Antol, Ronald F.; Zafred, Paolo R.

    2002-01-01

    A solid oxide fuel assembly is made, wherein rows (14, 24) of fuel cells (16, 18, 20, 26, 28, 30), each having an outer interconnection (36) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh (22) between each row of cells, the corrugated mesh (22) having top crown portions (40) and bottom shoulder portions (42), where the top crown portion (40) contacts outer interconnections (36) of the fuel cells (16, 18, 20) in a first row (14), and the bottom shoulder portions (42) contacts outer electrodes (32) of the fuel cells in a second row (24), said mesh electrically connecting each row of fuel cells, and where there are no metal felt connections between any fuel cells.

  19. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance.

    PubMed

    Ciganović, Nikola; Wolde-Kidan, Amanuel; Reichenbach, Tobias

    2017-06-15

    The mammalian sense of hearing relies on two types of sensory cells: inner hair cells transmit the auditory stimulus to the brain, while outer hair cells mechanically modulate the stimulus through active feedback. Stimulation of a hair cell is mediated by displacements of its mechanosensitive hair bundle which protrudes from the apical surface of the cell into a narrow fluid-filled space between reticular lamina and tectorial membrane. While hair bundles of inner hair cells are of linear shape, those of outer hair cells exhibit a distinctive V-shape. The biophysical rationale behind this morphology, however, remains unknown. Here we use analytical and computational methods to study the fluid flow across rows of differently shaped hair bundles. We find that rows of V-shaped hair bundles have a considerably reduced resistance to crossflow, and that the biologically observed shapes of hair bundles of outer hair cells are near-optimal in this regard. This observation accords with the function of outer hair cells and lends support to the recent hypothesis that inner hair cells are stimulated by a net flow, in addition to the well-established shear flow that arises from shearing between the reticular lamina and the tectorial membrane.

  20. Effects of tip-substrate gap, deposition temperature, holding time, and pull-off velocity on dip-pen lithography investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2012-05-01

    The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.

  1. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    DTIC Science & Technology

    2016-11-29

    nonlinear oscillations of outer hair cells. We obtained analytical forms for auditory tuning curves of both unidirectionally and bidirectionally coupled...oscillations of outer hair cells in the cochlea, mode-locking of chopper cells to sound in the cochlear nucleus, and entrainment of cortical...oscillations of outer hair cells (e.g., Fredrickson-Hemsing, Ji, Bruinsma, & Bozovic, 2012), mode-locking of choppers in the cochlear nucleus (e.g., Laudanski

  2. Comparison of Medial and Lateral Meniscus Root Tears

    PubMed Central

    Koo, Ji Hyun; Choi, Sang-Hee; Lee, Seung Ah; Wang, Joon Ho

    2015-01-01

    The meniscus root plays an essential role in maintaining the circumferential hoop tension and preventing meniscal displacement. Studies on meniscus root tears have investigated the relationship of osteoarthritis and an anterior cruciate ligament tear. However, few studies have directly compared the medial and lateral root tears. To assess the prevalence of meniscal extrusion and its relationship with clinical features in medial and lateral meniscus root tears, we performed a retrospective review of the magnetic resonance imaging (MRI) results of 42 knee patients who had meniscus posterior horn root tears and who had undergone arthroscopic operations. The presence of meniscal extrusion was evaluated and the exact extent was measured from the tibial margin. The results were correlated with arthroscopic findings. Clinical features including patients’ ages, joint abnormalities, and previous trauma histories were evaluated. Twenty-two patients had medial meniscus root tears (MMRTs) and twenty patients had lateral meniscus root tears (LMRTs). Meniscal extrusion was present in 18 MMRT patients and one LMRT patient. The mean extent of extrusion was 4.2mm (range, 0.6 to 7.8) in the MMRT group and 0.9mm (range, -1.9 to 3.4) in the LMRT group. Five patients with MMRT had a history of trauma, while 19 patients with LMRT had a history of trauma. Three patients with MMRT had anterior cruciate ligament (ACL) tears, while 19 patients with LMRT had ACL tears. The mean age of the patients was 52 years (range: 29–71 years) and 30 years (range: 14–62 years) in the MMRT and LMRT group, respectively. There was a significant correlation between a MMRT and meniscal extrusion (p<0.0001), and between an ACL tear and LMRT (p<0.0001). A history of trauma was significantly common in LMRT (p<0.0001). LMRT patients were significantly younger than MMRT patients (p<0.0001). Kellgren-Lawrence (K-L) grade differed significantly between MMRT and LMRT group (p<0.0001). Meniscal extrusion is common in patients with MMRTs. However, it is rare in patients with LMRTs, which are more commonly associated with a history of trauma and ACL tears. PMID:26488288

  3. Prognostic factors of arthroscopic pull-out repair for a posterior root tear of the medial meniscus.

    PubMed

    Moon, Hong-Kyo; Koh, Yong-Gon; Kim, Yong-Chan; Park, Young-Sik; Jo, Seung-Bae; Kwon, Sae-Kwang

    2012-05-01

    Repair of a posterior root tear of the medial meniscus (MRT) decreases peak contact pressure by restoring hoop tension and is expected to prevent progression to osteoarthritis. The purposes of this study were (1) to report the clinical and magnetic resonance imaging (MRI) results of arthroscopic pull-out repair of the MRT and (2) to identify prognostic factors of poor outcome. Case series; Level of evidence, 4. Fifty-one patients (47 women, 4 men) who underwent arthroscopic pull-out repair of the MRT by a single surgeon were enrolled. Mean follow-up after surgery was 33 months (range, 24-44 months). To identify factors affecting final outcome, patient-specific factors, such as gender, age, body mass index, meniscus extrusion, extrusion increase, subchondral edema, degree of varus alignment (<5° or >5°), and cartilage status in the medial compartment (Outerbridge grade 1 or 2 lesion vs grade 3 or 4 lesion), were investigated. Final clinical outcomes were determined using a visual analog scale (VAS) for pain and patient satisfaction scores, American Knee Society (AKS) scores, and Lysholm scores, and MRI outcomes were determined by evaluating meniscus extrusion and articular cartilage status. Multiple regression analysis was performed to identify variables that independently affected clinical and MRI-determined outcomes. All clinical outcome measures significantly improved after surgery. Patients with Outerbridge grade 3 or 4 chondral lesions had poorer results than those with grade 1 or 2 lesions in terms of AKS function and Lysholm scores. Patients with varus alignment of >5° had poorer results than those with varus alignment of <5° in terms of VAS satisfaction, AKS function, and Lysholm scores. Mean meniscus extrusion increased from 3.6 mm preoperatively to 5.0 mm postoperatively. Chondral lesions progressed in 3 (9.7%) of 31 patients. Preoperative meniscus extrusion was found to be positively correlated with final extrusion. At a mean follow-up of 33 months after pull-out repair, extrusion of the meniscus was found to have progressed. Nevertheless, this technique provided patients with a clinical benefit. Outerbridge grade 3 or 4 chondral lesions and varus alignment of >5° were found to independently predict an inferior clinical outcome.

  4. Meniscal Repair with Concurrent Anterior Cruciate Ligament Reconstruction: Operative Success and Patient Outcomes at 6-Year Follow-up

    PubMed Central

    Westermann, RW; Wright, RW; Huston, LJ; Wolf, BR

    2015-01-01

    BACKGROUND Meniscus repairs are commonly performed concurrently with anterior cruciate ligament reconstruction (ACLR) in the acutely injured knee. No large-scale, prospective, multicenter studies have evaluated long-term success and patient-oriented outcomes after combined ACLR and meniscus repair. PURPOSE To define operative success and patient-oriented outcome scores 6 years after combined meniscus repair and ACLR. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS All ipsilateral primary ACLR and meniscus repair cases from a multicenter study group between 2002 and 2004 were selected. Validated patient-oriented outcome instruments were completed at 3 time points: preoperatively, 2 years and 6 years following the index procedure. Subsequent ipsilateral knee re-operation was confirmed by operative reports to evaluate for failure of meniscal repairs. RESULTS In total, 286 patients of 1440 primary ACLR’s underwent concurrent meniscus repair (298 meniscal repairs). 235/286 (82.2%) were available for follow-up at 6 years (154 medial, 72 lateral and 9 both lateral and medial meniscal repairs). Repaired menisci most commonly involved the peripheral 1/3 of the meniscus (84%); patterns were typically longitudinal (84%) or displaced bucket-handle (10%), with mean length of 16.5 ±5.8mm. Overall, the meniscal repair failure rate was 14% (medial, 21/154; lateral, 10/72; both 2/9) at 6 years. Medial repairs failed earlier than lateral repairs (2.1 versus 3.7 years; p=0.01). Significant improvements in outcome instruments were sustained at 6-year follow-up. No differences in suture number or type were detected between repair failures and successes. Meniscal reoperation was higher in patients who underwent repair compared to those who did have an identified meniscal injury at the time of ACLR (p<0.01). CONCLUSIONS Concurrent meniscal repair with ACLR is associated with failure rates approximating 14% at 6-year follow-up. Improvements in patient-oriented outcome instruments were sustained at 6-year follow-up. Surgeons may expect good clinical outcomes 6 years after combined ACLR and meniscus repairs. PMID:25023440

  5. Comparison of Medial and Lateral Meniscus Root Tears.

    PubMed

    Koo, Ji Hyun; Choi, Sang-Hee; Lee, Seung Ah; Wang, Joon Ho

    2015-01-01

    The meniscus root plays an essential role in maintaining the circumferential hoop tension and preventing meniscal displacement. Studies on meniscus root tears have investigated the relationship of osteoarthritis and an anterior cruciate ligament tear. However, few studies have directly compared the medial and lateral root tears. To assess the prevalence of meniscal extrusion and its relationship with clinical features in medial and lateral meniscus root tears, we performed a retrospective review of the magnetic resonance imaging (MRI) results of 42 knee patients who had meniscus posterior horn root tears and who had undergone arthroscopic operations. The presence of meniscal extrusion was evaluated and the exact extent was measured from the tibial margin. The results were correlated with arthroscopic findings. Clinical features including patients' ages, joint abnormalities, and previous trauma histories were evaluated. Twenty-two patients had medial meniscus root tears (MMRTs) and twenty patients had lateral meniscus root tears (LMRTs). Meniscal extrusion was present in 18 MMRT patients and one LMRT patient. The mean extent of extrusion was 4.2mm (range, 0.6 to 7.8) in the MMRT group and 0.9mm (range, -1.9 to 3.4) in the LMRT group. Five patients with MMRT had a history of trauma, while 19 patients with LMRT had a history of trauma. Three patients with MMRT had anterior cruciate ligament (ACL) tears, while 19 patients with LMRT had ACL tears. The mean age of the patients was 52 years (range: 29-71 years) and 30 years (range: 14-62 years) in the MMRT and LMRT group, respectively. There was a significant correlation between a MMRT and meniscal extrusion (p<0.0001), and between an ACL tear and LMRT (p<0.0001). A history of trauma was significantly common in LMRT (p<0.0001). LMRT patients were significantly younger than MMRT patients (p<0.0001). Kellgren-Lawrence (K-L) grade differed significantly between MMRT and LMRT group (p<0.0001). Meniscal extrusion is common in patients with MMRTs. However, it is rare in patients with LMRTs, which are more commonly associated with a history of trauma and ACL tears.

  6. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study

    PubMed Central

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Objective Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. Methods We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Results Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1–5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6–10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. Conclusions The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture resembles that of highly loaded areas. PMID:28797093

  7. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship.

    PubMed

    Tachibana, Yuta; Mae, Tatsuo; Fujie, Hiromichi; Shino, Konsei; Ohori, Tomoki; Yoshikawa, Hideki; Nakata, Ken

    2017-02-01

    To clarify the effect of the radial tear of the lateral meniscus on the in situ meniscus force and the tibiofemoral relationship under axial loads and valgus torques. Ten intact porcine knees were settled to a 6-degree of freedom robotic system, while the force and 3-dimensional path of the knees were recorded via Universal Force Sensor (UFS) during 3 cycles of 250-N axial load and 5-Nm valgus torque at 15°, 30°, 45°, and 60° of knee flexion. The same examination was performed on the following 3 meniscal states sequentially; 33, 66, and 100% width of radial tears at the middle segment of the lateral meniscus, while recording the force and path of the knees via UFS. Finally, all paths were reproduced after total lateral meniscectomy and the in situ force of the lateral meniscus were calculated with the principle of superposition. The radial tear of 100% width significantly decreased the in situ force of the lateral meniscus and caused tibial medial shift and valgus rotation at 30°-60° of knee flexion in both testing protocols. Under a 250-N axial load at 60° of knee flexion, the in situ force decreased to 36 ± 29 N with 100% width of radial tear, which was 122 ± 38 N in the intact state. Additionally, the tibia shifted medially by 2.1 ± 0.9 mm and valgusrotated by 2.5 ± 1.9° with the complete radial tear. However, the radial tear of 33 or 66% width had little effect on either the in situ force or the tibial position. A radial tear of 100% width involving the rim significantly decreased the in situ force of the lateral meniscus and caused medial shift and valgus rotation of the tibia, whereas a radial tear of up to 66% width produced only little change. The clinical relevance is that loss of meniscal functions due to complete radial tear can lead to abnormal stress concentration in a focal area of cartilage and can increase the risk of osteoarthritis in the future.

  8. Osteoarthritis Year in Review 2015: Mechanics

    PubMed Central

    Varady, Nathan H.; Grodzinsky, Alan J.

    2015-01-01

    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poroviscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA. PMID:26707990

  9. Outside-In Deep Medial Collateral Ligament Release During Arthroscopic Medial Meniscus Surgery.

    PubMed

    Todor, Adrian; Caterev, Sergiu; Nistor, Dan Viorel

    2016-08-01

    Arthroscopic partial medial meniscectomy is a very common orthopaedic procedure performed for symptomatic, irreparable meniscus tears. It is usually associated with a very good outcome and minimal complications. In some patients with tight medial compartment, the posterior horn of the medial meniscus can be difficult to visualize, and access in this area with instruments may be challenging. To increase the opening of the medial compartment, after valgus-extension stress position of the knee, different techniques of deep medial collateral ligament release have been described. The outside-in pie-crusting technique shown in this technical note has documented effectiveness and good outcomes with minimal or no morbidity.

  10. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M

    2013-08-06

    Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Surgical Management of Degenerative Meniscus Lesions: The 2016 ESSKA Meniscus Consensus

    PubMed Central

    Beaufils, P.; Becker, R.; Kopf, S.; Englund, M.; Verdonk, R.; Ollivier, M.; Seil, R.

    2017-01-01

    Purpose  A degenerative meniscus lesion is a slowly developing process typically involving a horizontal cleavage in a middle-aged or older person. When the knee is symptomatic, arthroscopic partial meniscectomy has been practised for a long time with many case series reporting improved patient outcomes. Since 2002, several randomised clinical trials demonstrated no additional benefit of arthroscopic partial meniscectomy compared to non-operative treatment, sham surgery or sham arthroscopic partial meniscectomy. These results introduced controversy in the medical community and made clinical decision-making challenging in the daily clinical practice. To facilitate the clinical decision-making process, a consensus was developed. This initiative was endorsed by ESSKA. Methods  A degenerative meniscus lesion was defined as a lesion occurring without any history of significant acute trauma in a patient older than 35 years. Congenital lesions, traumatic meniscus tears and degenerative lesions occurring in young patients, especially in athletes, were excluded. The project followed the so-called formal consensus process, involving a steering group, a rating group and a peer-review group. A total of 84 surgeons and scientists from 22 European countries were included in the process. Twenty questions, their associated answers and an algorithm based on extensive literature review and clinical expertise, were proposed. Each question and answer set was graded according to the scientific level of the corresponding literature. Results  The main finding was that arthroscopic partial meniscectomy should not be proposed as a first line of treatment for degenerative meniscus lesions. Arthroscopic partial meniscectomy should only be considered after a proper standardised clinical and radiological evaluation and when the response to non-operative management has not been satisfactory. Magnetic resonance imaging of the knee is typically not indicated in the first-line work-up, but knee radiography should be used as an imaging tool to support a diagnosis of osteoarthritis or to detect certain rare pathologies, such as tumours or fractures of the knee. Discussion  The present work offers a clear framework for the management of degenerative meniscus lesions, with the aim to balance information extracted from the scientific evidence and clinical expertise. Because of biases and weaknesses of the current literature and lack of definition of important criteria such as mechanical symptoms, it cannot be considered as an exact treatment algorithm. It summarises the results of the “ESSKA Meniscus Consensus Project” ( http://www.esska.org/education/projects ) and is the first official European consensus on this topic. The consensus may be updated and refined as more high-quality evidence emerges. Level of Evidence  I. PMID:29114633

  12. [The correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK].

    PubMed

    Zhang, Luyan; Sun, Xiyu; Yu, Ye; Xiong, Yan; Cui, Yuxin; Wang, Qinmei; Hu, Liang

    2016-01-01

    To investigate the correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK (FS-LASIK) surgery. In this prospective clinical study, 31 patients undergoing FS-LASIK for myopia were recruited. The upper and lower tear meniscus volumes (UTMV and LTMV) were measured by customized anterior segment optical coherence tomography, tear film osmolarity was measured by a TearLab Osmolarity test device, central corneal sensation was measured by a Cochet-Bonner esthesiometer preoperatively, at 1 week, 1 and 3 months postoperatively. Repeated measures analysis of variance was used to evaluate whether the tear film osmolarity, tear meniscus volume, and corneal sensation were changed after surgery. The correlations between these variables were analyzed by the Pearson correlation analysis. The tear film osmolarity was (310.03 ± 16.48) mOsms/L preoperatively, (323.51 ± 15.92) mOsms/L at 1 week, (319.93 ± 14.27) mOsms/L at 1 month, and (314.97±12.91) mOsms/L at 3 months. The UTMV was (0.42±0.15), (0.25± 0.09), (0.30±0.11), and (0.35±0.09) μL, respectively; the LTMV was (0.60±0.21),(0.37±0.08), (0.44± 0.14), and (0.52±0.17) μL, respectively. The tear film osmolarity was significantly higher at 1 week and 1 month postoperatively compared with the baseline (P=0.001, 0.004), and reduced to the preoperative level at 3 months (P=0.573). The UTMV, LTMV, and corneal sensation values presented significant decreases at all postoperative time points (all P<0.05). The Pearson correlation analysis showed the postoperative UTMV had a weak relationship with corneal sensation at 1 week after surgery (r=0.356,P=0.005). There were significant correlations between the preoperative LTMV and corneal sensation at 1 week, 1 and 3 months (respectively, r=0.422, 0.366, 0.352;P=0.001, 0.004, 0.006). No significant correlations were found between the tear film osmolarity, tear meniscus volume, and corneal sensation after surgery (all P>0.05). The tear film osmolarity, tear meniscus volume, and corneal sensation became aggravated due to the FS-LASIK surgery procedures. There were significant correlations between the preoperative tear meniscus volume and recovery of corneal sensation early after surgery. A higher tear meniscus volume before surgery may contribute to a faster corneal sensation recovery.

  13. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, Robert S.; Campbell, Steven L.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  14. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, R.S.; Campbell, S.L.

    1997-07-29

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  15. Surface Structure Formation in Direct Chill (DC) Casting of Al Alloys

    NASA Astrophysics Data System (ADS)

    Bayat, Nazlin; Carlberg, Torbjörn

    2014-05-01

    The aim of this study is to increase the understanding of the surface zone formation during direct chill (DC) casting of aluminum billets produced by the air slip technology. The depth of the shell zone, with compositions deviating from the bulk, is of large importance for the subsequent extrusion productivity and quality of final products. The surface microstructures of 6060 and 6005 aluminum alloys in three different surface appearances—defect free, wavy surface, and spot defects—were studied. The surface microstructures and outer appearance, segregation depth, and phase formation were investigated for the mentioned cases. The results were discussed and explained based on the exudation of liquid metal through the mushy zone and the fact that the exudated liquid is contained within a surface oxide skin. Outward solidification in the surface layer was quantitatively analyzed, and the oxide skin movements explained meniscus line formation. Phases forming at different positions in the segregation zone were analyzed and coupled to a cellular solidification in the exudated layer.

  16. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites.

    PubMed

    Smirnov, Konstantin S

    2017-08-30

    The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH 4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite.

  17. Effects of matrix stabilization when using glutaraldehyde on the material properties of porcine meniscus.

    PubMed

    Hunter, Shawn A; Noyes, Frank R; Haridas, Balakrishna; Levy, Martin S; Butler, David L

    2003-12-15

    Meniscus transplantation frequently is one of the only options available for treating symptomatic younger patients with tibiofemoral pain and early arthrosis after a prior meniscectomy. However, clinical results indicate that current meniscal allografts may undergo degenerative changes due to enzymatic degradation during the remodeling phase. The objective of this study was to evaluate the effects of glutaraldehyde-induced matrix stabilization on the material properties of porcine meniscus prior to surgical implantation. Protocols for fabricating heart-valve replacements were examined, followed by an exploration of the effects of reducing glutaraldehyde concentration and exposure time. Cylindrical meniscus specimens were tested in uniaxial confined compression under a 0.196 MPa compressive stress, and aggregate modulus (H(A)), permeability (k), and compressive strains at equilibrium (epsilon(eq)) were calculated from the creep response. Compared to controls, the mean values for H(A) and k increased, on average, by 213 and 709%, respectively, and epsilon(eq) decreased by 57% for all "heart-valve" treatments. Reducing tissue exposure time to glutaraldehyde had little effect, but decreasing glutaraldehyde concentration to 0.02% resulted in tissues with material properties no different from the untreated controls. We conclude that minimal concentrations of glutaraldehyde (less than 0.2%) should be used in future studies to preserve normal meniscus properties. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 1245-1254, 2003

  18. Function of the medial meniscus in force transmission and stability.

    PubMed

    Walker, Peter S; Arno, Sally; Bell, Christopher; Salvadore, Gaia; Borukhov, Ilya; Oh, Cheongeun

    2015-06-01

    We studied the combined role of the medial meniscus in distributing load and providing stability. Ten normal knees were loaded in combinations of compressive and shear loading as the knee was flexed over a full range. A digital camera tracked the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the centre of the meniscus. For the three types of loading; compression only, compression and anterior shear, compression and posterior shear; between 40% and 80% of the total load was transmitted through the meniscus. The overall average was 58%, the remaining 42% being transmitted through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, but played a role in controlling anterior femoral displacement. The central body was loaded 10-20% which would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load, especially after 30 degrees flexion when a posterior shear force was applied, where the meniscus was estimated to carry 50% of the shear force. This study added new insights into meniscal function during weight bearing conditions, particularly its role in early flexion, and in transmitting shear forces. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Efficacy of therapeutic ultrasound treatment of a meniscus tear in a severely disabled patient: a case report.

    PubMed

    Muché, Julie A

    2003-10-01

    This report focuses on diagnosis and management of a meniscus tear of unknown etiology in a functionally impaired patient. The patient was a 21-year-old man diagnosed with viral meningoencephalitis and postvaccinal central pontine myelinolysis, who experienced respiratory failure and required prolonged mechanical ventilation. He was in a comatose state for approximately 1.5 months. He presented to our facility 3 weeks after coma complaining of left knee pain and limited range of motion (ROM). Diagnostic workup, including magnetic resonance imaging, showed a grade II posterior horn medial meniscus tear and lateral tibial stress injury of the left knee. Management of the meniscus tear included the RICE protocol (rest, ice, compression, elevation), therapeutic ultrasound, and physical therapy. The patient responded extremely well to initial ultrasound therapy, with decreased pain and increased ROM of the left knee, which allowed him to make significant functional gains and to make overall progress in our comprehensive acute rehabilitation program. To date, nonoperative care of acute meniscal injury is commonly considered to be unsatisfactory; however, in this patient it led to rapid functional gains. Thus, therapeutic ultrasound may be a beneficial modality to decrease pain and increase ROM of the knee in an acutely torn meniscus, which, in turn, would likely promote good functional progress in any rehabilitation program.

  20. Clinical Evaluation of the Root Tear of the Posterior Horn of the Medial Meniscus in Total Knee Arthroplasty for Osteoarthritis

    PubMed Central

    Park, Sang-Jun

    2015-01-01

    Purpose To investigate the incidence of root tears of the posterior horn of the medial meniscus in total knee replacement arthroplasty for knee osteoarthritis and retrospectively analyze clinical results and factors associated with root tears. Materials and Methods There were 197 knees of 140 enrolled patients who had undergone total knee replacement arthroplasty between September 2010 and May 2014. The presence of a root tear of the posterior horn of the medial meniscus was confirmed in all patients. Statistical analysis was performed to investigate the correlation between root tears and the possible factors of meniscal tears including gender, age, severity of symptoms (visual analogue scale [VAS] score and medial joint line tenderness), grade of osteoarthritis (Kellgren-Lawrence grading scale), body mass index (BMI), varus deformity, and mechanical axis deviation. Results Meniscal tears were observed in 154 knees (78.17%). The root tear had correlation with the severity of osteoarthritis (p<0.05), varus deformity (p<0.05), mechanical axis deviation (p<0.05), and BMI (p<0.05). Conclusions Factors considered to represent the severity of osteoarthritis were found to be associated with root tears of the medial meniscus posterior horn. Increased BMI seemed to be associated with the increased incidence of root tears of the medial meniscus posterior horn. PMID:26060607

  1. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: Analysis of the lateral meniscus.

    PubMed

    Madry, Henning; Ziegler, Raphaela; Orth, Patrick; Goebel, Lars; Ong, Mei Fang; Kohn, Dieter; Cucchiarini, Magali; Pape, Dietrich

    2013-01-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep. Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red-red and white-white zones of the anterior, middle and posterior third were determined. Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red-red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups. Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red-red zone of the middle third in the sheep model.

  2. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  3. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  4. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  5. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development.

    PubMed

    Mihajlović, Aleksandar I; Bruce, Alexander W

    2016-09-01

    The differential activity of the Hippo-signalling pathway between the outer- and inner-cell populations of the developing preimplantation mouse embryo directs appropriate formation of trophectoderm and inner cell mass (ICM) lineages. Such distinct signalling activity is under control of intracellular polarization, whereby Hippo-signalling is either supressed in polarized outer cells or activated in apolar inner cells. The central role of apical-basolateral polarization to such differential Hippo-signalling regulation prompted us to reinvestigate the role of potential upstream molecular regulators affecting apical-basolateral polarity. This study reports that the chemical inhibition of Rho-associated kinase (Rock) is associated with failure to form morphologically distinct blastocysts, indicative of compromised trophectoderm differentiation, and defects in the localization of both apical and basolateral polarity factors associated with malformation of tight junctions. Moreover, Rock-inhibition mediates mislocalization of the Hippo-signalling activator Angiomotin (Amot), to the basolateral regions of outer cells and is concomitant with aberrant activation of the pathway. The Rock-inhibition phenotype is mediated by Amot, as RNAi-based Amot knockdown totally rescues the normal suppression of Hippo-signalling in outer cells. In conclusion, Rock, via regulating appropriate apical-basolateral polarization in outer cells, regulates the appropriate activity of the Hippo-signalling pathway, by ensuring correct subcellular localization of Amot protein in outer cells. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  7. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    PubMed Central

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  8. [Usefulness of arthrography of the knee in assessing the unfavorable outcome from a meniscectomy intervention].

    PubMed

    Corbetti, F; Camposampiero, A; Pellicano, A; Meneghello, A

    1983-03-01

    Knee arthrography was performed in 22 patients suffering from persistent articular symptoms after meniscectomy. In 3 cases a surgically proved tear of the opposite meniscus was assessed. In 4 cases no meniscal tear was found, but 3 out of these patients had a significant anatomic lesion. In 15 cases meniscectomy was found to be incomplete, and a residual posterior horn of the medial meniscus was observed, normal in shape in 7 cases, torn or detached in 8. It is suggested that the persistence of the posterior horn of the medial meniscus after meniscectomy may cause the persistent symptoms; the value of knee arthrography before surgery is emphasized.

  9. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellerman, Peter L.; Thronson, Gregory D.

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  10. Electrochemical cell design

    DOEpatents

    Arntzen, John D.

    1978-01-01

    An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.

  11. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermodynamics of Capillary Rise: Why Is the Meniscus Curved?

    ERIC Educational Resources Information Center

    Henriksson, Ulf; Eriksson, Jan Christer

    2004-01-01

    The thermodynamics of capillary rise is explained as the gravitational elevation of the whole column of liquid caused by the positive connection between the liquid, and the solid wall of the capillary tube. The curvature of the meniscus is ascribed to the maintenance of a physiochemical balance throughout the gravitational column of liquid.

  13. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    NASA Astrophysics Data System (ADS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  14. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    PubMed

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  15. Accuracy of diagnoses from magnetic resonance imaging of the knee. A multi-center analysis of one thousand and fourteen patients.

    PubMed

    Fischer, S P; Fox, J M; Del Pizzo, W; Friedman, M J; Snyder, S J; Ferkel, R D

    1991-01-01

    Magnetic resonance images of the knee were made for 1014 patients, and the diagnosis was subsequently confirmed arthroscopically. The accuracy of the diagnoses from the imaging was 89 per cent for the medial meniscus, 88 per cent for the lateral meniscus, 93 per cent for the anterior cruciate ligament, and 99 per cent for the posterior cruciate ligament. The magnetic resonance examinations were done at several centers, and the results varied substantially among centers. The accuracy ranged from 64 to 95 per cent for the medial meniscus, from 83 to 94 per cent for the lateral meniscus, and from 78 to 97 per cent for the anterior cruciate ligament. The results from different magnetic-resonance units were also compared, and the findings suggested increased accuracy for the units that had a stronger magnetic field. Of the menisci for which the magnetic resonance signal was reported to be Grade II (a linear intrameniscal signal not extending to the superior or inferior meniscal surface), 17 per cent were found to be torn at arthroscopy.

  16. Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1994-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.

  17. Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    exposure significantly reduced noise-induced auditory threshold shifts in our mouse model of NIHL. Additionally, protection against outer hair cell...and at 6 hours post-noise exposure. ‐ Perform analysis of outer auditory hair cells and synaptic ribbons from the different treatment groups...have made progress towards the completion of the outer hair cell counts (OHC) for this Subtask, particularly for study groups (1) mdivi-1/vehicle, and

  18. Vertical tears of the cranial horn of the meniscus and its cranial ligament in the equine femorotibial joint: 7 cases and their treatment by arthroscopic surgery.

    PubMed

    Walmsley, J P

    1995-01-01

    Five horses with a vertical tear in the cranial horn and cranial ligament of the medial meniscus and 2 horses with a similar injury in the lateral meniscus were diagnosed from a series of 126 horses which were examined arthroscopically for stifle lameness. All the lesions had similar characteristics. The tear was about 1 cm from the axial border of the meniscus and its ligament and, in all but one case in which it was incomplete, much of the torn tissue was loosely attached in the axial part of the joint from where it was removed. The remaining meniscus, abaxial to the tear, was displaced cranially and abaxially and its torn edges were debrided. Radiographically, 6 cases had proliferative new bone on the cranial aspect of the intercondylar eminence of the tibia and 3 had calcified soft tissue densities in the cranial, medial or lateral femorotibial joint. Following surgery and a 6 month period of rest and controlled exercise, 3 horses returned to full competition work, one was usable for hacking, 2 are convalescing and one is lame after one year. It is postulated that this could be a characteristic meniscal injury in horses which can benefit from arthroscopic surgery. Better techniques for accessing the body and caudal pole of the menisci are needed if a more complete diagnosis and treatment of meniscal injuries are to be achieved.

  19. Establishment of dermal sheath cell line from Cashmere goat and characterizing cytokeratin 13 as its novel biomarker.

    PubMed

    Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua

    2018-05-01

    To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.

  20. Location of the tibial tunnel aperture affects extrusion of the lateral meniscus following reconstruction of the anterior cruciate ligament.

    PubMed

    Kodama, Yuya; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Tanaka, Takaaki; Inoue, Hiroto; Ozaki, Toshifumi

    2017-08-01

    The anterior root of the lateral meniscus provides functional stability to the meniscus. In this study, we evaluated the relationship between the position of the tibial tunnel and extrusion of the lateral meniscus after anterior cruciate ligament reconstruction, where extrusion provides a proxy measure of injury to the anterior root. The relationship between extrusion and tibial tunnel location was retrospectively evaluated from computed tomography and magnetic resonance images of 26 reconstructed knees, contributed by 25 patients aged 17-31 years. A measurement grid was used to localize the position of the tibial tunnel based on anatomical landmarks identified from the three-dimensional reconstruction of axial computed tomography images of the tibial plateaus. The reference point-to-tibial tunnel distance (mm) was defined as the distance from the midpoint of the lateral edge of the grid to the posterolateral aspect of the tunnel aperture. The optimal cutoff of this distance to minimize post-operative extrusion was identified using receiver operating curve analysis. Extrusion of the lateral meniscus was positively correlated to the reference point-to-tibial tunnel distance (r 2  = 0.64; p < 0.001), with a cutoff distance of 5 mm having a sensitivity to extrusion of 83% and specificity of 93%. The mean extrusion for a distance >5 mm was 0.40 ± 0.43 mm, compared to 1.40 ± 0.51 mm for a distance ≤5 mm (p < 0.001). Therefore, a posterolateral location of the tibial tunnel aperture within the footprint of the anterior cruciate ligament decreases the reference point-to-tibial tunnel distance and increases extrusion of the lateral meniscus post-reconstruction. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1625-1633, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Clinical, radiological, and morphological evaluations of posterior horn tears of the lateral meniscus left in situ during anterior cruciate ligament reconstruction.

    PubMed

    Lee, Dhong Won; Jang, Hyoung Won; Lee, Sung Rak; Park, Jung Ho; Ha, Jeong Ku; Kim, Jin Goo

    2014-02-01

    Recent studies have shown that lateral menisci have a higher healing potential and that they can be treated successfully without symptoms by being left in situ during anterior cruciate ligament (ACL) reconstruction. However, few studies have reported morphological results. Stable posterior horn tears of the lateral meniscus left in situ during ACL reconstruction could be healed spontaneously and would result in not only successful clinical outcomes but also morphological restoration. Cohort study; Level of evidence, 3. Among 367 patients who underwent primary ACL reconstruction between 2008 and 2010, 53 patients who had lateral meniscus tears that were left in situ were analyzed. These patients were evaluated subjectively and radiologically and compared with a matched control group that underwent ACL reconstruction without any other structural disorders. Of the 53 patients with stable posterior horn tears of the lateral meniscus left in situ, 28 patients were assessed by second-look arthroscopic surgery and magnetic resonance imaging (MRI). The mean follow-up of the study group and the control group was 36.47 and 37.26 months, respectively. There were no statistical differences in postoperative clinical outcomes between the 2 groups. Clinical results of both groups including the Lysholm score, Tegner activity score, and International Knee Documentation Committee (IKDC) score significantly improved. In the subgroup composed of 28 patients, follow-up MRI showed 25 (89%) and 24 (86%) healed menisci in sagittal and coronal views, respectively. Twenty-one (75%) were considered to be completely healed, and 5 (18%) were incompletely healed on second-look arthroscopic surgery. Stable posterior horn tears of the lateral meniscus left in situ at the time of ACL reconstruction revealed successful clinical outcomes compared with isolated ACL injuries and showed considerable healing and functional restoration of tears with repeat MRI and second-look arthroscopic surgery. Therefore, leaving stable posterior horn tears of the lateral meniscus in situ during ACL reconstruction should be considered.

  2. Magnetic Resonance Imaging Findings in Symptomatic Patients After Arthroscopic Partial Meniscectomy for Torn Discoid Lateral Meniscus.

    PubMed

    Lee, Chang-Rack; Bin, Seong-Il; Kim, Jong-Min; Kim, Nam-Ki

    2016-11-01

    To evaluate the change in the thickness and width of the residual meniscus using magnetic resonance imaging (MRI) in patients who underwent arthroscopic partial meniscectomy for discoid lateral meniscus (DLM), to assess whether the degeneration of the articular cartilage in the lateral compartment of the knee progressed, and to evaluate clinical results. Among the patients who underwent arthroscopic partial meniscectomy for DLM between January 1997 and December 2011, those who were aged 40 or below at surgery were followed up for at least 3 years, and received at least 2 follow-up MRIs that were retrospectively reviewed. MRIs were done in symptomatic knees. Using MRI, the relative thickness and width were measured in the anterior horn, midportion, and posterior horn. To determine whether the degeneration of the lateral compartment would progress, the articular cartilage was graded based on the Outerbridge classification in MRIs. The clinical results were evaluated using the Lysholm score. A total of 20 patients (21 knees) were included. The average follow-up period was 6.8 years. In residual meniscus, the relative thickness of the midportion decreased from 9.0% ± 2.4% to 7.3% ± 2.3% (P < .001), the relative thickness of the anterior horn decreased from 15.6% ± 4.3% to 14.3% ± 6.7% (P = .030), and the relative thickness of the posterior horn decreased from 20.0% ± 4.4% to 16.7% ± 6.7% (P = .019). A decrease in the relative width was observed in the midportion (12.4% ± 4.8% to 10.9% ± 4.9%, P = .003). No significant changes in size were observed in the medial meniscus. A progression of degeneration in the lateral compartment was observed. However, the clinical results did not present significant changes. In symptomatic patients after arthroscopic partial meniscectomy for DLM, the thickness and width of the residual meniscus decreases over time. The arthritic change of the lateral compartment of the knee progressed. However, the change in the size of the residual meniscus was of unknown clinical significance. Level IV, therapeutic case series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Relationship of age and body mass index to the expression of obesity and osteoarthritis-related genes in human meniscus.

    PubMed

    Rai, M F; Sandell, L J; Cheverud, J M; Brophy, R H

    2013-09-01

    Aging and obesity contribute to the initiation and progression of osteoarthritis with little information on their relation to gene expression in joint tissues, particularly the meniscus. Here, we test the hypothesis that patient age and body mass index (BMI) correlate with the expression of osteoarthritis- and obesity-related gene signatures in the meniscus. Meniscus was obtained from patients (N=68) undergoing arthroscopic partial meniscectomy. The mRNA expression of 24 osteoarthritis-related and 4 obesity-related genes in meniscus was assessed by quantitative real-time PCR. The relationship between gene expression and patient age and BMI was analyzed using Spearman's rank-order correlation. Hierarchical cluster dendrogram and heat map were generated to study inter-gene associations. Age was negatively correlated (P<0.05) with the expression of MMP-1 (r=-0.447), NFκB2 (r=-0.361), NFκBIA (r=-0.312), IκBA (r=-0.308), IL-8 (r=-0.305), ADAMTS-4 (r=-0.294), APLN (apelin) (r=-0.250) and IL-6 (r=-0.244). Similarly, BMI was negatively correlated with the expression of APLN (r=-0.328), ACAN (r=-0.268) and MMP-1 (r=-0.261). After adjusting for the correlation between age and BMI (r=0.310; P=0.008), the only independent effect of BMI on gene expression was for APLN (r=-0.272). However, age had an independent effect on the expression on ADAMTS-4 (r=-0.253), MMP-1 (r=-0.399), IL-8 (r=-0.327), COL1A1 (r=-0.287), NFκBIA (r=-0.278), NFκB2 (r=-0.312) and IκBA (r=-0.299). The gene correlation analysis identified four clusters of potentially relevant genes: transcription factors, matrix-degrading enzymes, cytokines and chemokines, and obesity genes. Age and BMI were negatively correlated with several osteoarthritis- and obesity-related genes. Although the bulk of these changes appeared to be driven by age, expression of APLN was related to BMI. Inter-gene correlation analysis implicated a common role for strongly correlated genes. Although age-related variations in gene expression appear to be more relevant than obesity-related differences for the role of the meniscus in osteoarthritis development, further investigation into the role of APLN in meniscus and joint health is warranted.

  4. A Novel Repair Method for Radial Tears of the Medial Meniscus: Biomechanical Comparison of Transtibial 2-Tunnel and Double Horizontal Mattress Suture Techniques Under Cyclic Loading.

    PubMed

    Bhatia, Sanjeev; Civitarese, David M; Turnbull, Travis Lee; LaPrade, Christopher M; Nitri, Marco; Wijdicks, Coen A; LaPrade, Robert F

    2016-03-01

    Complete radial tears of the medial meniscus have been reported to be functionally similar to a total meniscectomy. At present, there is no consensus on an ideal technique for repair of radial midbody tears of the medial meniscus. Prior attempts at repair with double horizontal mattress suture techniques have led to a reportedly high rate of incomplete healing or healing in a nonanatomic (gapped) position, which compromises the ability of the meniscus to withstand hoop stresses. A newly proposed 2-tunnel radial meniscal repair method will result in decreased gapping and increased ultimate failure loads compared with the double horizontal mattress suture repair technique under cyclic loading. Controlled laboratory study. Ten matched pairs of male human cadaveric knees (average age, 58.6 years; range, 48-66 years) were used. A complete radial medial meniscal tear was made at the junction of the posterior one-third and middle third of the meniscus. One knee underwent a horizontal mattress inside-out repair, while the contralateral knee underwent a radial meniscal repair entailing the same technique with a concurrent novel 2-tunnel repair. Specimens were potted and mounted on a universal testing machine. Each specimen was cyclically loaded 1000 times with loads between 5 and 20 N before experiencing a load to failure. Gap distances at the tear site and failure load were measured. The 2-tunnel repairs exhibited a significantly stronger ultimate failure load (median, 196 N; range, 163-212 N) than did the double horizontal mattress suture repairs (median, 106 N; range, 63-229 N) (P = .004). In addition, the 2-tunnel repairs demonstrated decreased gapping at all testing states (P < .05) with a final measured gapping of 1.7 mm and 4.1 mm after 1000 cycles for the 2-tunnel and double horizontal mattress suture repairs, respectively. The 2-tunnel repairs displayed significantly less gapping distance after cyclic loading and had significantly stronger ultimate failure loads compared with the double horizontal mattress suture repairs. Complete radial tears of the medial meniscus significantly decrease the ability of the meniscus to dissipate tibiofemoral loads, predisposing patients to early osteoarthritis. Improving the ability to repair medial meniscal radial tears in a way that withstands cyclic loads and heals in an anatomic position could significantly improve patient healing rates and result in improved preservation of the articular cartilage of the medial compartment of the knee. The 2-tunnel repair may be a more reliable and stronger repair option for midbody radial tears of the medial meniscus. Clinical studies are warranted to further evaluate these repairs. © 2015 The Author(s).

  5. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration

    PubMed Central

    2011-01-01

    Introduction Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair. Methods A micro-wound assay was used to assess meniscal cell migration and proliferation in response to the following treatments for 0, 24, or 48 hours: 0 to 10 ng/mL IL-1, TNF-α, or TGF-β1, in the presence or absence of 10% serum. Proliferated and total cells were fluorescently labeled and imaged using confocal laser scanning microscopy and the number of proliferated, migrated, and total cells was determined in the micro-wound and edges of each image. Meniscal cell proliferation was also assessed throughout meniscal repair model explants treated with 0 or 10 ng/mL IL-1, TNF-α, or TGF-β1 for 14 days. At the end of the culture period, biomechanical testing and histological analyses were also performed. Statistical differences were assessed using an ANOVA and Newman-Keuls post hoc test. Results IL-1 and TNF-α decreased cell proliferation in both cell and tissue models of meniscal repair. In the presence of serum, TGF-β1 increased outer zone cell proliferation in the micro-wound and in the cross section of meniscal repair model explants. Both IL-1 and TNF-α decreased the integrative shear strength of repair and extracellular matrix deposition in the meniscal repair model system, while TGF-β1 had no effect on either measure. Conclusions Meniscal cell proliferation in vivo may be diminished following joint injury due to the up-regulation of inflammatory cytokines, thereby limiting native cellular repair of meniscal lesions. Therefore, therapies that can promote meniscal cell proliferation have promise to enhance meniscal repair and improve tissue engineering strategies. PMID:22087734

  6. Analysis of high-speed growth of silicon sheet in inclined-meniscus configuration

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.; Brown, R. A.

    1985-01-01

    The study of high speed growth of silicon sheet in inclined-meniscus configurations is discussed. It was concluded that the maximum growth rates in vertical and inclined growth are set by thermal-capillary limits. Also, the melt/crystal interface was determined to be flat. And, vertical growth is qualitatively modelled by one dimensional heat transfer.

  7. 75 FR 9422 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... repair of soft tissue injuries of the medial meniscus. In repairing and reinforcing medial meniscal... zone of the meniscus to provide sufficient vascularization. The CS reinforces soft tissue and provides a resorbable scaffold that is replaced by the patient's own soft tissue. The CS is not a prosthetic...

  8. Arthroscopic pullout repair of posterior root tear of the medial meniscus: the anterior approach using medial collateral ligament pie-crusting release.

    PubMed

    Park, Young-Sik; Moon, Hong-Kyo; Koh, Yong-Gon; Kim, Yong-Chan; Sim, Dong-Sik; Jo, Seung-Bae; Kwon, Se-Kwang

    2011-08-01

    Posterior root tears of the medial meniscus are frequently encountered and should be repaired if possible to prevent osteoarthritis of the medial compartment. Various surgical techniques have been proposed to repair posterior root tears. The anterior arthroscopic approach can cause an iatrogenic chondral injury due to the narrow medial joint space. The posterior approaches might be technically unfamiliar to many surgeons because they require the establishment of a posteromedial or trans-septal portal. This paper describes the medial collateral ligament pie-crusting release technique for arthroscopic double transosseous pullout repair of posterior root tears of the medial meniscus through the anterior approach to provide the good visualization of the footprint and sufficient working space.

  9. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1977-01-01

    Substantial improvements in ribbon surface quality are achieved with a higher melt meniscus than that attainable with the film-fed (EFG) growth technique. A capillary action shaping method is described in which meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. Topics discussed cover experimental apparatus and growth procedures; die materials investigations, fabrication and evaluation; process development for 25 mm, 38 mm, 50 mm and 100 mm silicon ribbons; and long grain direct solidification of silicon. Methods for the structural and electrical characterization of cast silicon ribbons are assessed as well as silicon ribbon technology for the 1978 to 1986 period.

  10. Chondrocyte-based intraoperative processing strategies for the biological augmentation of a polyurethane meniscus replacement.

    PubMed

    Vedicherla, Srujana; Romanazzo, Sara; Kelly, Daniel J; Buckley, Conor T; Moran, Cathal J

    2017-11-28

    Purpose/aim of study: Menisectomies account for over 1.5 million surgical interventions in Europe annually, and there is a growing interest in regenerative strategies to improve outcomes in meniscal replacement. The overall objective of this study was to evaluate the role of intraoperatively applied fresh chondrocyte (FC) isolates compared to minced cartilage (MC) fragments, used without cell isolation, to improve bioactivity and tissue integration when combined with a polyurethane replacement. First, to optimize the intraoperative cell isolation protocol, caprine articular cartilage biopsies were digested with 750 U/ml or 3000 U/ml collagenase type II (ratio of 10 ml per g of tissue) for 30 min, 1 h or 12 h with constant agitation and compared to culture-expanded chondrocytes in terms of matrix deposition when cultured on polyurethane scaffolds. Finally, FCs and MC-augmented polyurethane scaffolds were evaluated in a caprine meniscal explant model to assess the potential enhancements on tissue integration strength. Adequate numbers of FCs were harvested using a 30 min chondrocyte isolation protocol and were found to demonstrate improved matrix deposition compared to standard culture-expanded cells in vitro. Upon evaluation in a meniscus explant defect model, both FCs and MC showed improved matrix deposition at the tissue-scaffold interface and enhanced push-out strength, fourfold and 2.5-fold, respectively, compared with the acellular implant. Herein, we have demonstrated a novel approach that could be applied intraoperatively, using FCs or MC for improved tissue integration with a polyurethane meniscal replacement.

  11. Osteoarthritis year in review 2015: mechanics.

    PubMed

    Varady, N H; Grodzinsky, A J

    2016-01-01

    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  13. Cardiolipin Synthesis and Outer Membrane Localization Are Required for Shigella flexneri Virulence.

    PubMed

    Rossi, Rachael M; Yum, Lauren; Agaisse, Hervé; Payne, Shelley M

    2017-08-29

    Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro , and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA , which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface. IMPORTANCE The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15%. Antibiotic treatment of Shigella infections is compromised by increasing antibiotic resistance, and there is no approved vaccine to prevent future infections. This has created a growing need to understand Shigella pathogenesis and identify new targets for antimicrobial therapeutics. Here we show a previously unknown role of phospholipids in S. flexneri pathogenesis. We demonstrate that cardiolipin is required in the outer membrane for proper surface localization of IcsA and in the inner membrane for cell division during growth in the host cell cytoplasm. Copyright © 2017 Rossi et al.

  14. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  15. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  16. [Effects of creating a tunnel through intercondylar fossa under arthroscopy for the treatment of complex tears at the medial meniscus posterior horn].

    PubMed

    Dong, Ling-Dai; Bing, Chang-Jian; Li, Jian-Lin; Cai, Yue

    2017-04-25

    To discuss the advantages of the arthroscopic treatment for complex tears of the medial meniscus posterior horn by creating a tunnel passageway through the intercondylar fossa. All 127 patients including 24 males and 103 females with complex tears at the medial meniscus posterior horn were reviewed. The age of all patients ranged from 45 to 78 years old, with an average of 67 years old. All 127 patients were treated with partial meniscectomy, in which 112 patients were treated with partial meniscectomy smoothly with three incisions (anterior medial incision, anterior lateral incision, high anterior lateral incision), and 15 patients were treated with four incisions (anterior medial incision, anterior lateral incision, high anterior lateral incision, posterior medial incision). Four aspects were estimated:whether the meniscus posterior horns could be observed totally and conveniently, whether tools could be pushed to target area conveniently, the damage of adjacent cartilages, operation time(the operation time of partial meniscectomy). Posterior horns of all patients were totally and conveniently observed, tools were conveniently pushed to the target area in all cases, and all the cases had no iatrogenic injuries at adjacent cartilages. The operation time of partial meniscectomy at posterior horns with three incisions ranged from 5 to 10 minutes, and it ranged from 10 to 30 minutes with four incisions. It is very convenient and fast of the arthroscopy to treat complex tears of the medial meniscus posterior horn by creating a tunnel through the intercondylor fossa. Iatrogenic injuries of the adjacent cartilages were prevented to the greatest extent.

  17. Noninvasive Dry Eye Assessment Using High-Technology Ophthalmic Examination Devices.

    PubMed

    Yamaguchi, Masahiko; Sakane, Yuri; Kamao, Tomoyuki; Zheng, Xiaodong; Goto, Tomoko; Shiraishi, Atsushi; Ohashi, Yuichi

    2016-11-01

    Recently, the number of dry eye cases has dramatically increased. Thus, it is important that easy screening, exact diagnoses, and suitable treatments be available. We developed 3 original and noninvasive assessments for this disorder. First, a DR-1 dry eye monitor was used to determine the tear meniscus height quantitatively by capturing a tear meniscus digital image that was analyzed by Meniscus Processor software. The DR-1 meniscus height value significantly correlated with the fluorescein meniscus height (r = 0.06, Bland-Altman analysis). At a cutoff value of 0.22 mm, sensitivity of the dry eye diagnosis was 84.1% with 90.9% specificity. Second, the Tear Stability Analysis System was used to quantitatively measure tear film stability using a topographic modeling system corneal shape analysis device. Tear film stability was objectively and quantitatively evaluated every second during sustained eye openings. The Tear Stability Analysis System is currently installed in an RT-7000 autorefractometer and topographer to automate the diagnosis of dry eye. Third, the Ocular Surface Thermographer uses ophthalmic thermography for diagnosis. The decrease in ocular surface temperature in dry eyes was significantly greater than that in normal eyes (P < 0.001) at 10 seconds after eye opening. Decreased corneal temperature correlated significantly with the tear film breakup time (r = 0.572; P < 0.001). When changes in the ocular surface temperature of the cornea were used as indicators for dry eye, sensitivity was 0.83 and specificity was 0.80 after 10 seconds. This article describes the details and potential of these 3 noninvasive dry eye assessment systems.

  18. Meniscus Induced Cartilaginous Damage and Non-linear Gross Anatomical Progression of Early-stage Osteoarthritis in a Canine Model

    PubMed Central

    Kahn, David; Mittelstaedt, Daniel; Matyas, John; Qu, Xiangui; Lee, Ji Hyun; Badar, Farid; Les, Clifford; Zhuang, Zhiguo; Xia, Yang

    2016-01-01

    Background: The predictable outcome of the anterior cruciate ligament transection (ACLT) canine model, and the similarity to naturally occurring osteoarthritis (OA) in humans, provide a translatable method for studying OA. Still, evidence of direct meniscus-induced cartilaginous damage has not been identified, and gross-anatomical blinded scoring of early-stage OA has not been performed. Objective: A gross anatomical observation and statistical analysis of OA progression to determine meniscus induced cartilaginous damage, to measure the macroscopic progression of OA, and to address matters involving arthroscopic and surgical procedures of the knee. Method: Unblinded assessment and blinded scoring of meniscal, tibial, femoral, and patellar damage were performed for control and at four time points following unilateral ACLT: 3-week (N=4), 8-week (N=4), 12-week (N=5), and 25-week (N=4). Mixed-model statistics illustrates damage (score) progression; Wilcoxon rank-sum tests compared time-point scores; and Wilcoxon signed-rank tests compared ACLT and contralateral scores, and meniscus and tibia scores. Result: Damage was manifest first on the posterior aspect of the medial meniscus and subsequently on the tibia and femur, implying meniscal damage can precede, coincide with, and aggravate cartilage damage. Damage extent varied chronologically and was dependent upon the joint component. Meniscal damage was evident at 3 weeks and progressed through 25-weeks. Meniscal loose bodies corresponded to tibial cartilage damage location and extent through 12 weeks, followed by cartilage repair activity after complete meniscal degeneration. Conclusion: This study provides additional information for understanding OA progression, identifying OA biomarkers, and arthroscopic and meniscectomy procedures. PMID:28144379

  19. Anatomical mapping of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in outer hair cell efferents in adult rats.

    PubMed

    Dannhof, B J; Roth, B; Bruns, V

    1991-10-01

    The distribution of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in the cochleae of 15 adult Wistar white rats was investigated using the peroxidase-antiperoxidase (PAP) technique. A monoclonal antibody to ChAT and a polyclonal antiserum to GAD were used. Immunoreaction was investigated quantitatively, in the electron microscope, on tangential sections of the tunnel of Corti and the rows of outer hair cells. ChAT-like and GAD-like immunoreactivity was found in all efferent nerve fibres in the tunnel of Corti and in all efferent synapses on the outer hair cells. A coexistence of ChAT and GAD in the efferent system to the outer hair cells of the rat is therefore assumed.

  20. Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim Y

    2010-11-01

    Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.

  1. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.

    PubMed

    Lee, Shong-Leih; Yang, Chao-Fu

    2008-11-24

    It is very difficult to fabricate tunable optical systems having an aperture below 1000 micrometers with the conventional means on macroscopic scale. Krogmann et al. (J. Opt. A 8, S330-S336, 2006) presented a MEMS-based tunable liquid micro-lens system with an aperture of 300 micrometers. The system exhibited a tuning range of back focal length between 2.3mm and infinity by using the electrowetting effect to change the contact angle of the meniscus shape on silicon with a voltage of 0-45 V. However, spherical aberration was found in their lens system. In the present study, a numerical simulation is performed for this same physical configuration by solving the Young-Laplace equation on the interface of the lens liquid and the surrounding liquid. The resulting meniscus shape produces a back focal length that agrees with the experimental observation excellently. To eliminate the spherical aberration, an electric field is applied on the lens. The electric field alters the Young-Laplace equation and thus changes the meniscus shape and the lens quality. The numerical result shows that the spherical aberration of the lens can be essentially eliminated when a proper electric field is applied.

  2. The imaging features of the meniscal roots on isotropic 3D MRI in young asymptomatic volunteers.

    PubMed

    Wang, Ping; Zhang, Cheng-Zhou; Zhang, Di; Liu, Quan-Yuan; Zhong, Xiao-Fei; Yin, Zhi-Jie; Wang, Bin

    2018-05-01

    This study aimed to describe clearly the normal imaging features of the meniscal roots on the magnetic resonance imaging (MRI) with a 3-dimensional (3D) proton density-weighted (PDW) sequence at 3T. A total of 60 knees of 31 young asymptomatic volunteers were examined using a 3D MRI. The insertion patterns, constitution patterns, and MR signals of the meniscal roots were recorded. The anterior root of the medial meniscus (ARMM), the anterior root of the lateral meniscus (ARLM), and the posterior root of the medial meniscus (PRMM) had 1 insertion site, whereas the posterior root of the lateral meniscus (PRLM) can be divided into major and minor insertion sites. The ARLM and the PRMM usually consisted of multiple fiber bundles (≥3), whereas the ARMM and the PRLM often consisted of a single fiber bundle. The ARMM and the PRLM usually appeared as hypointense, whereas the ARLM and the PRMM typically exhibited mixed signals. The meniscal roots can be complex and diverse, and certain characteristics of them were observed on 3D MRI. Understanding the normal imaging features of the meniscal roots is extremely beneficial for further diagnosis of root tears.

  3. Anatomical risk evaluation of iatrogenic injury to the infrapatellar branch of the saphenous nerve during medial meniscus arthroscopic surgery.

    PubMed

    Koch, Guillaume; Kling, Agathe; Ramamurthy, Nitin; Edalat, Faramarz; Cazzato, Roberto Luigi; Kahn, Jean-Luc; Garnon, Julien; Clavert, Philippe

    2017-06-01

    To determine the relationship of the medial meniscus with the infrapatellar branches of the saphenous nerve, the primary goal is to define and characterize different risk areas for these nerves during medial meniscus surgery. After dissecting 20 embalmed cadaver knees, we defined 7 readily identifiable anatomical landmarks. For each knee, we recorded 2 morphological criteria and 16 measurements. The most common anatomical course is a main trunk that is 8 mm anterior to the tuberculum adductorium and 60 mm posterior to the midpoint of the medial patellar margin. It has two main infrapatellar branches. The nerve division is 23 mm above the joint line. The path is oblique with an angle of 55.5°. The anterior meniscal landmark is 24 mm from the upper branch and 42.5 mm from the lower branch. The posterior meniscal landmark is 55 mm from the upper branch and 38 mm from the lower branch. We defined a common anatomical course for the saphenous nerve and its infrapatellar branches. Then, three different areas were defined at risk for iatrogenic nerve injuries during medial meniscus.

  4. Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DasGupta, S.; Schonberg, J.A.; Kim, I.Y.

    1993-05-01

    The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamakermore » constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.« less

  5. Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration

    PubMed Central

    Guo, Weimin; Liu, Shuyun; Zhu, Yun; Yu, Changlong; Lu, Shibi; Yuan, Mei; Huang, Jingxiang; Yuan, Zhiguo; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Chen, Jifeng; Zhang, Li; Sui, Xiang; Xu, Wenjing; Guo, Quanyi

    2015-01-01

    The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal. Untreated meniscal lesions lead to meniscal extrusions in the long-term and gradually trigger the development of knee osteoarthritis (OA). The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods. PMID:26199629

  6. A lateral meniscus tear incarcerated behind the popliteus tendon: a case report.

    PubMed

    Eskander, Mark S; Drew, Jacob M; Osuch, Daniel B; Metzmaker, Jeff

    2010-10-01

    A 51-year-old male, sustained an injury to his left knee after being pinned between his motorcycle and a road barrier. In the ER, the patient complained of medial knee pain, and had a significant joint effusion. MRI demonstrated an ACL injury, medial meniscal tear, bone bruising and impaction at the lateral femoral condyle and tibial plateau, and a tear of the posterior horn of the lateral meniscus that was displaced behind the popliteus. Unfortunately, the patient also presented with a deep vein thrombosis and thus could not proceed to the operating room for two months. During this time, scar tissue developed around the lateral meniscus. The purpose of this report is to present an unusual variant of a common injury pattern previously unreported where the posterior horn of the lateral meniscus became incarcerated behind the popliteus tendon and was left in place. It is likely that our patient will develop osteoarthritis in the future, but considering the circumstances he received a favorable early clinical outcome. Early recognition and a mobile fragment are essential restoring a patient's original anatomical features and achieving an optimal clinical outcome. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Active Outer Hair Cells Affect the Sound-Evoked Vibration of the Reticular Lamina

    NASA Astrophysics Data System (ADS)

    Jacob, Stefan; Fridberger, Anders

    2011-11-01

    It is well established that the organ of Corti uses active mechanisms to enhance its sensitivity and frequency selectivity. Two possible mechanisms have been identified, both capable of producing mechanical forces, which can alter the sound-evoked vibration of the hearing organ. However, little is known about the effect of these forces on the sound-evoked vibration pattern of the reticular lamina. Current injections into scala media were used to alter the amplitude of the active mechanisms in the apex of the guinea pig temporal bone. We used time-resolved confocal imaging to access the vibration pattern of individual outer hair cells. During positive current injection the the sound-evoked vibration of outer hair cell row three increased while row one showed a small decrease. Negative currents reversed the observed effect. We conclude that the outer hair cell mediated modification of reticular lamina vibration patterns could contribute to the inner hair cell stimulation.

  8. Interconnection of bundled solid oxide fuel cells

    DOEpatents

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  9. Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss

    DTIC Science & Technology

    2017-10-01

    protection against outer hair cell loss at the high frequency responsive region of the organ of Corti was observed. Importantly, these findings demonstrated...a high dose would be detrimental to hearing sensitivity or to outer hair cell viability. The 25 and 100 µM doses were similar to the 50 µM dose in...Completion of outer hair cell counts on the 200 µM study group revealed that this higher dose did not reduce OHC survival in the treated ear

  10. What tissue bankers should know about the use of allograft meniscus in orthopaedics.

    PubMed

    McDermott, Ian D

    2010-02-01

    The menisci of the knee are two crescent shaped cartilage shock absorbers sitting between the femur and the tibia, which act as load sharers and shock absorbers. Loss of a meniscus leads to a significant increase in the risk of developing arthritis in the knee. Replacement of a missing meniscus with allograft tissue can reduce symptoms and may potentially reduce the risk of future arthritis. Meniscal allograft transplantation is a complex surgical procedure with many outstanding issues, including 'what techniques should be used for processing and storing grafts?', 'how should the allografts be sized?' and 'what surgical implantation techniques might be most appropriate?' Further clinical research is needed and close collaboration between the users (surgeons) and the suppliers (tissue banks) is essential. This review explores the above subject in detail.

  11. Retropatellar chondromalacia associated with medial osteoarthritis after meniscus injury. One year of observations in sheep.

    PubMed

    Burger, C; Kabir, K; Mueller, M; Rangger, C; Minor, T; Tolba, R H

    2006-01-01

    In an ovine meniscal repair model, the patellofemoral (PF) osteoarthritis due to a non-sutured tear or failed repair was investigated. A radial meniscus tear was either sutured with polydioxanone (PDS), with a slow degrading polylactide long-term suture(LTS) or left without treatment. Knee joint cartilage in the PF and medial compartment was evaluated compared to normal knees (healthy controls). Retropatellar osteoarthritis in the non-sutured and sutured animals was intense in contrast to the control knees after 6 months in all groups (p < 0.001), and after 12 months in the PDS group (p < 0.001), LTS group and non-sutured animals (p < 0.05). Non-sutured meniscus tears and failed repair lead fast to intense PF osteoarthritis corresponding with tibial damage of the injured compartment.

  12. Arthroscopic meniscal repair with use of the outside-in technique.

    PubMed

    Rodeo, S A

    2000-01-01

    The outside-in technique of arthroscopic repair is effective for repair of most meniscal tears. The overall indications for the use of this technique are similar to those for the commonly used inside-out technique. The outside-in technique is especially useful for suturing the anterior horn of the meniscus as well as for suturing meniscal replacement devices such as a collagen meniscal implant or a meniscal allograft. Other specific advantages of this technique include the ability to predictably avoid neurovascular injury without the need for a large posterior incision. A particular disadvantage is the difficulty of achieving perpendicular orientation of sutures when a tear is adjacent to the site of attachment of the posterior horn. Use of the inside-out technique or an all-inside implant is suggested for these tears. The use of this suturing technique is facilitated by attention to several technical points. The knee should be maintained in flexion for repair of tears of the lateral meniscus (to avoid injury to the peroneal nerve) and in nearly full extension for repair of the posterior aspect of the medial meniscus (to avoid injury to the saphenous nerve and its branches). Care must be taken to avoid tying the sutures around a branch of the saphenous nerve during repair of the medial meniscus. The sutures should be retrieved through a cannula in the anterior portal to avoid the entrapment of the sutures in soft tissue. A probe can be used to prevent displacement of the inner fragment of a bucket handle tear when the needles are placed across the tear, as the entering needles may push the torn fragment into the knee. A vertical suture orientation is preferred in order to evenly co-apt the meniscus to the capsule. If knot-end sutures (so-called Mulberry knots) are used, 2 sutures can be vertically stacked, with 1 on each surface of the meniscus. If a mattress suture is used, a vertical orientation is easily achieved with the outside-in technique. Use of an exogenous fibrin clot is suggested for isolated tears. The clot can be secured to the site of repair by a suture that has been placed through a spinal needle with the outside-in method. Delayed weightbearing should be considered as postoperative management for patients who have had repair of a tear with a radial component or repair of a complex tear in which a fibrin clot was used. Previous studies have demonstrated that the location of the tear and the condition of the anterior cruciate ligament are important factors in determining the success of meniscal repair. The overall results with use of the outside-in technique are comparable with those reported with use of the inside-out method. Patients with concomitant tears of the medial meniscus and the anterior cruciate ligament should have combined meniscal repair and reconstruction of the anterior cruciate ligament. As healing was demonstrated in 8 of 13 patients with an unrepaired tear of the anterior cruciate ligament, consideration should still be given to meniscal repair in patients who refuse reconstruction of the anterior cruciate ligament. In this setting, it may be advisable to use multiple permanent sutures, and the patient must be counseled regarding the higher rate of failure with this approach. Repairs of the lateral meniscus have a higher rate of success, and repair of the lateral meniscus should be considered even in the presence of injury of the anterior cruciate ligament.

  13. A Deficiency in Arabinogalactan Biosynthesis Affects Corynebacterium glutamicum Mycolate Outer Membrane Stability▿

    PubMed Central

    Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas

    2010-01-01

    Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942

  14. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    PubMed

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  15. Consequences of Location-Dependent Organ of Corti Micro-Mechanics

    PubMed Central

    Liu, Yanju; Gracewski, Sheryl M.; Nam, Jong-Hoon

    2015-01-01

    The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location. PMID:26317521

  16. Repair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First-in-Human Study.

    PubMed

    Whitehouse, Michael R; Howells, Nicholas R; Parry, Michael C; Austin, Eric; Kafienah, Wael; Brady, Kyla; Goodship, Allen E; Eldridge, Jonathan D; Blom, Ashley W; Hollander, Anthony P

    2017-04-01

    Meniscal cartilage tears are common and predispose to osteoarthritis (OA). Most occur in the avascular portion of the meniscus where current repair techniques usually fail. We described previously the use of undifferentiated autologous mesenchymal stem cells (MSCs) seeded onto a collagen scaffold (MSC/collagen-scaffold) to integrate meniscal tissues in vitro. Our objective was to translate this method into a cell therapy for patients with torn meniscus, with the long-term goal of delaying or preventing the onset of OA. After in vitro optimization, we tested an ovine-MSC/collagen-scaffold in a sheep meniscal cartilage tear model with promising results after 13 weeks, although repair was not sustained over 6 months. We then conducted a single center, prospective, open-label first-in-human safety study of patients with an avascular meniscal tear. Autologous MSCs were isolated from an iliac crest bone marrow biopsy, expanded and seeded into the collagen scaffold. The resulting human-MSC/collagen-scaffold implant was placed into the meniscal tear prior to repair with vertical mattress sutures and the patients were followed for 2 years. Five patients were treated and there was significant clinical improvement on repeated measures analysis. Three were asymptomatic at 24 months with no magnetic resonance imaging evidence of recurrent tear and clinical improvement in knee function scores. Two required subsequent meniscectomy due to retear or nonhealing of the meniscal tear at approximately 15 months after implantation. No other adverse events occurred. We conclude that undifferentiated MSCs could provide a safe way to augment avascular meniscal repair in some patients. Registration: EU Clinical Trials Register, 2010-024162-22. Stem Cells Translational Medicine 2017;6:1237-1248. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Evaporator film coefficients of grooved heat pipes

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.

    1978-01-01

    The heat transfer rate in the meniscus attachment region of a grooved heat pipe evaporator is studied theoretically. The analysis shows that the evaporation takes place mainly in the region where the liquid changes its shape sharply. However, comparisons with available heat transfer data indicate that the heat transfer rate in the meniscus varying region is substantially reduced probably due to groove wall surface roughness.

  18. Lateral femoral notch depth is not associated with increased rotatory instability in ACL-injured knees: a quantitative pivot shift analysis.

    PubMed

    Kanakamedala, Ajay C; Burnham, Jeremy M; Pfeiffer, Thomas R; Herbst, Elmar; Kowalczuk, Marcin; Popchak, Adam; Irrgang, James; Fu, Freddie H; Musahl, Volker

    2018-05-01

    A deep lateral femoral notch (LFN) on lateral radiographs is indicative of ACL injury. Prior studies have suggested that a deep LFN may also be a sign of persistent rotatory instability and a concomitant lateral meniscus tear. Therefore, the purpose of this study was to evaluate the relationship between LFN depth and both quantitative measures of rotatory knee instability and the incidence of lateral meniscus tears. It was hypothesized that greater LFN depth would be correlated with increased rotatory instability, quantified by lateral compartment translation and tibial acceleration during a quantitative pivot shift test, and incidence of lateral meniscus tears. ACL-injured patients enrolled in a prospective ACL registry from 2014 to 2016 were analyzed. To limit confounders, patients were only included if they had primary ACL tears, no concurrent ligamentous or bony injuries requiring operative treatment, and no previous knee injuries or surgeries to either knee. Eighty-four patients were included in the final analysis. A standardized quantitative pivot shift test was performed pre-operatively under anesthesia in both knees, and rotatory instability, specifically lateral compartment translation and tibial acceleration, was quantified using tablet image analysis software and accelerometer sensors. Standard lateral radiographs and sagittal magnetic resonance images (MRI) of the injured knee were evaluated for LFN depth. There were no significant correlations between LFN depth on either imaging modality and ipsilateral lateral compartment translation or tibial acceleration during a quantitative pivot shift test or side-to-side differences in these measurements. Patients with lateral meniscus tears were found to have significantly greater LFN depths than those without on conventional radiograph and MRI (1.0 vs. 0.6 mm, p < 0.05; 1.2 vs. 0.8 mm, p < 0.05, respectively). There was no correlation between lateral femoral notch depth on conventional radiographs or MRI and quantitative measures of rotatory instability. Concomitant lateral meniscus injury was associated with significantly greater LFN depth. Based on these findings, LFN depth should not be used as an indicator of excessive rotatory instability, but may be an indicator of lateral meniscus injury in ACL-injured patients. Prognostic level IV.

  19. Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee.

    PubMed

    Sonnery-Cottet, Bertrand; Conteduca, Jacopo; Thaunat, Mathieu; Gunepin, François Xavier; Seil, Romain

    2014-04-01

    Anterior cruciate ligament (ACL) tears are frequently associated with meniscal lesions. Despite improvements in meniscal repair techniques, failure rates remain significant, especially for the posterior horn of the medial meniscus. To determine whether a systematic arthroscopic exploration of the posterior horn of the medial meniscus with an additional posteromedial portal is useful to identify otherwise unrecognized lesions. Case series; Level of evidence, 4. In a consecutive series of 302 ACL reconstructions, a systematic arthroscopic exploration of the posterior horn of the medial meniscus was performed. The first stage of the exploration was achieved through anterior visualization via a standard anterolateral portal. In the second stage, the posterior horn of the medial meniscus was visualized posteriorly via the anterolateral portal with the scope positioned deep in the notch. In the third stage, the posterior horn was probed through an additional posteromedial portal. A χ2 test and logistic regression analysis were performed to determine if the time from injury to surgery was associated with the meniscal tear pattern. A medial meniscal tear was diagnosed in 125 of the 302 patients (41.4%). Seventy-five lesions (60%) located in the meniscal body were diagnosed at the first stage of the arthroscopic exploration. Fifty lesions located in the ramp area were diagnosed: 29 (23.2%) at the second stage and 21 lesions (16.8%) at the third stage after minimal debridement of the superficial soft tissue layer. The latter type of lesion is called a "hidden lesion." Altogether, the prevalence of ramp lesions in this population was 40%. Meniscal body lesions (odds ratio, 2.6; 95% confidence interval, 1.18-5.18; P < .02) were found to be significantly correlated with a longer delay between injury and surgery. Posterior visualization and posteromedial probing of the posterior horn of the medial meniscus can help in discovering a higher rate of lesions that could be easily missed through a standard anterior exploration. In numerous cases, these lesions were "hidden" under a membrane-like tissue and were discovered after minimal debridement through a posteromedial portal.

  20. Anatomical significance of a posterior horn of medial meniscus: the relationship between its radial tear and cartilage degradation of joint surface.

    PubMed

    Kan, Akinori; Oshida, Midori; Oshida, Shigemi; Imada, Masato; Nakagawa, Takumi; Okinaga, Shuji

    2010-01-12

    Traumatic injury and surgical meniscectomy of a medial meniscus are known to cause subsequent knee osteoarthritis. However, the difference in the prevalence of osteoarthritis caused by the individual type of the medial meniscal tear has not been elucidated. The aim of this study was to investigate what type of tear is predominantly responsible for the degradation of articular cartilage in the medial compartment of knee joints. Five hundred and forty eight cadaveric knees (290 male and 258 female) were registered in this study. The average age of cadavers at death was 78.8 years old (range: 52-103 years). The knees were macroscopically examined and their medial menisci were classified into four groups according to types of tears: "no tear", "radial tear of posterior horn", "other types of tear" and "worn-out meniscus" groups. The severity of cartilage degradation in their medial compartment of knee joints was evaluated using the international cartilage repair society (ICRS) grading system. We statistically compared the ICRS grades among the groups using Mann-Whitney U test. The knees were assigned into the four groups: 416 "no tear" knees, 51 "radial tear of posterior horn" knees, 71 "other types of tear" knees, and 10 "worn-out meniscus" knees. The knees with substantial meniscal tears showed the severer ICRS grades of cartilage degradation than those without meniscal tears. In addition, the ICRS grades were significantly severer in the "radial tear of posterior horn" group than in the "other types of tear" group, suggesting that the radial tear of posterior horn in the medial meniscus is one of the risk factors for cartilage degradation of joint surface. We have clarified the relationship between the radial tear of posterior horn in the medial meniscus and the severer grade of cartilage degradation. This study indicates that the efforts should be made to restore the anatomical role of the posterior horn in keeping the hoop strain, when patients' physical activity levels are high and the tear pattern is simple enough to be securely sutured.

  1. The potential effect of anatomic relationship between the femur and the tibia on medial meniscus tears.

    PubMed

    Bozkurt, Murat; Unlu, Serhan; Cay, Nurdan; Apaydin, Nihal; Dogan, Metin

    2014-10-01

    The anatomic and the kinematical relationships between the femur and the tibia have been previously examined in both normal and diseased knees. However, less attention has been directed to the effect of these relationships on the meniscal diseases. Therefore, we aimed to investigate the impact of femorotibial incongruence on both lateral and medial meniscal tears. A total of 100 images obtained from MRI of 100 patients (39 males and 61 females) were included in the study. Diameters of the medial and the lateral femoral condyles, thicknesses of the menisci, and diameters of the medial and the lateral tibial articular surfaces were measured. The medial meniscus tear was detected in 40 (40 %) patients. However, no lateral meniscus tear was found. Significant relationships were found between the diameters of the posterior medial femoral condyle and the medial tibial superior articular surface and between the diameters of the posterior lateral femoral condyle and the lateral tibial superior articular surface. The mean values for the diameter of the medial condyle of the femur, the lateral condyle of the femur, the medial superior articular surface of the tibia, and the lateral superior articular surface of the tibia were found to be significantly higher in cases with meniscus tear compared to cases without meniscus tear. However, no significant difference was present regarding the thicknesses of the medial and the lateral menisci. A positive relationship between the diameter of the posterior medial femoral condyle and the tibial medial superior articular surface was found in cases with (n = 40) (r (2) = 0.208, p = 0.003) and without tear (n = 60) (r (2) = 0.182, p = 0.001). In addition, a significant positive relationship was found between the diameter of the posterior medial femoral condyle and the medial tibial superior articular surface in cases with and without tear. The impact of femorotibial incongruence on the medial meniscus tear is important for the understanding of the lesions.

  2. High Rate of Missed Lateral Meniscus Posterior Root Tears on Preoperative Magnetic Resonance Imaging

    PubMed Central

    Krych, Aaron J.; Wu, Isabella T.; Desai, Vishal S.; Murthy, Naveen S.; Collins, Mark S.; Saris, Daniel B.F.; Levy, Bruce A.; Stuart, Michael J.

    2018-01-01

    Background: Lateral meniscus posterior root tears (LMPRTs), if left untreated, can cause devastating effects to the knee, with rapid articular cartilage degeneration and loss of the meniscus as a secondary stabilizer. Detection and surgical repair of these defects have been linked to favorable outcomes, but preoperative identification of LMPRTs continues to be challenging. Purpose: To determine the rate of LMPRTs diagnosed preoperatively on magnetic resonance imaging (MRI) in a consecutive series of arthroscopically confirmed LMPRTs. Study Design: Case series; Level of evidence, 4. Methods: A retrospective cohort of 45 consecutive patients with arthroscopically confirmed LMPRTs between 2010 and 2017 were included in this study. The preoperative MRI report for each patient was evaluated and compared with intraoperative findings. Each preoperative MRI study was then reviewed by 2 fellowship-trained musculoskeletal radiologists who worked in consensus. Results: A total of 45 patients (32 males, 13 females) with arthroscopically confirmed LMPRTs and a mean age of 27 years (range, 14-54 years) were included in the study. Only 15 of 45 LMPRTs (33%) were initially diagnosed on preoperative MRI. Past or concurrent anterior cruciate ligament (ACL) reconstruction was present in 37 of 45 cases (82%). Upon retrospective review, 15 of the 30 missed LMPRTs were “clearly evident,” 12 “subtly evident,” and 3 “occult” (unavoidably missed). There were no significant differences in the rate of LMPRT diagnosis based on history of prior knee surgery, meniscus extrusion, or tearing of the meniscofemoral ligament. Conclusion: Despite improved identification of other meniscus tear patterns on MRI, a high percentage of LMPRTs were still missed. In the setting of previous ACL reconstruction, if the root cannot be confidently identified, the MRI interpretation should indicate that “the root is poorly visualized” to alert the surgeon to thoroughly evaluate this structure. The surgeon should maintain a high index of suspicion and carefully probe the posterior root of the lateral meniscus at the time of arthroscopy, especially in cases of ACL injury. PMID:29662913

  3. Meniscal tears missed on MR imaging: relationship to meniscal tear patterns and anterior cruciate ligament tears.

    PubMed

    De Smet, A A; Graf, B K

    1994-04-01

    MR imaging of the knee is a valuable technique for diagnosing meniscal tears, but some tears found at arthroscopy are not shown on MR imaging. The purpose of this study was to determine whether or not tears were more frequently missed in the presence of an anterior cruciate ligament tear or when tears had certain locations or configurations. We reviewed the original MR reports and surgical records of 400 patients who had both an MR examination and arthroscopy of the knee. Using chi 2 analysis, we examined how the sensitivity for detecting meniscal tears varied with the presence of a tear of the anterior cruciate ligament, with the location of the tear within the meniscus, and among six configurations of meniscal tears. We also studied whether sensitivity decreased with an increasing delay between MR examination and arthroscopy. In the presence of a tear of the anterior cruciate ligament, the sensitivity decreased from 0.97 to 0.88 (p = .016) for medial meniscal tears and from 0.94 to 0.69 (p = .0005) for lateral tears. The overall sensitivity for lateral meniscal tears was significantly less for posterior (p = .001) and peripheral (p = .005) tears than for other tear locations or configurations. The sensitivities did not significantly differ between tear locations and configurations in the medial meniscus or with an increasing delay until arthroscopy. Patients with a torn anterior cruciate ligament were more likely to have peripheral tears of the medial meniscus (p = .00004) and posterior (p = .0004) and peripheral (p = .04) tears of the lateral meniscus. Because of their location and configuration, meniscal tears associated with an anterior cruciate ligament injury are more difficult to detect on MR images than are tears in knees with an intact ligament. If a tear of the anterior cruciate ligament is detected, special attention should be given to the subtle peripheral tears that may be present in either meniscus, but most commonly in the posterior horn of the lateral meniscus. These tears are especially difficult to detect on MR images.

  4. Topological control of life and death in non-proliferative epithelia.

    PubMed

    Martinand-Mari, Camille; Maury, Benoit; Rousset, François; Sahuquet, Alain; Mennessier, Gérard; Rochal, Sergei; Lorman, Vladimir; Mangeat, Paul; Baghdiguian, Stephen

    2009-01-01

    Programmed cell death is one of the most fascinating demonstrations of the plasticity of biological systems. It is classically described to act upstream of and govern major developmental patterning processes (e.g. inter-digitations in vertebrates, ommatidia in Drosophila). We show here the first evidence that massive apoptosis can also be controlled and coordinated by a pre-established pattern of a specific 'master cell' population. This new concept is supported by the development and validation of an original model of cell patterning. Ciona intestinalis eggs are surrounded by a three-layered follicular organization composed of 60 elongated floating extensions made of as many outer and inner cells, and indirectly spread through an extracellular matrix over 1200 test cells. Experimental and selective ablation of outer and inner cells results in the abrogation of apoptosis in respective remaining neighbouring test cells. In addition incubation of outer/inner follicular cell-depleted eggs with a soluble extract of apoptotic outer/inner cells partially restores apoptosis to apoptotic-defective test cells. The 60 inner follicular cells were thus identified as 'apoptotic master' cells which collectively are induction sites for programmed cell death of the underlying test cells. The position of apoptotic master cells is controlled by topological constraints exhibiting a tetrahedral symmetry, and each cell spreads over and can control the destiny of 20 smaller test cells, which leads to optimized apoptosis signalling.

  5. Total resection of any segment of the lateral meniscus may cause early cartilage degeneration: Evaluation by magnetic resonance imaging using T2 mapping.

    PubMed

    Murakami, Koji; Arai, Yuji; Ikoma, Kazuya; Kato, Kammei; Inoue, Hiroaki; Nakagawa, Shuji; Fujii, Yuta; Ueshima, Keiichiro; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2018-06-01

    The aim of this study was to perform quantitative evaluation of degeneration of joint cartilage using T2 mapping in magnetic resonance imaging (MRI) after arthroscopic partial resection of the lateral meniscus.The subjects were 21 patients (23 knees) treated with arthroscopic partial resection of the lateral meniscus. MRI was performed for all knees before surgery and 6 months after surgery to evaluate the center of the lateral condyle of the femur in sagittal images for T2 mapping. Ten regions of interest (ROIs) on the articular cartilage were established at 10-degree intervals, from the point at which the femur shaft crossed the lateral femoral condyle joint to the articular cartilage 90° relative to the femur shaft. Preoperative and postoperative T2 values were evaluated at each ROI. Age, sex, body mass index, femorotibial angle, Tegner score, and amount of meniscal resection were evaluated when the T2 value increased more than 6% at 30°.T2 values at approximately 10 °, 20 °, 30 °, 40 °, 50 °, and 60 ° degrees relative to the anatomical axis of the femur were significantly greater postoperatively (3.1, 3.6, 5.5, 4.4, 5.0, 6.4%, respectively) than preoperatively. A >6% increase at 30° was associated with total resection of any segment of the meniscus.Degeneration of the articular cartilage, as shown by the disorganization of collagen arrays at positions approximately 10 °, 20 °, 30 °, 40 °, 50 °, and 60 ° relative to the anatomical axis of the femur, may start soon after arthroscopic lateral meniscectomy. Total resection of any segment of the lateral meniscus may cause T2 elevation of articular cartilage of lateral femoral condyle.

  6. Fatigue Life of Bovine Meniscus under Longitudinal and Transverse Tensile Loading

    PubMed Central

    Creechley, Jaremy J.; Krentz, Madison E.; Lujan, Trevor J.

    2017-01-01

    The knee meniscus is composed of a fibrous matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loads either longitudinal or transverse to the principal fiber direction. Fatigue experiments consisted of cyclic loads to 60, 70, 80 or 90% of the predicted ultimate tensile strength until failure occurred or 20,000 cycles was reached. The fatigue data in each group was fit with a Weibull distribution to generate plots of stress level vs. cycles to failure (S-N curve). Results showed that loading transverse to the principal fiber direction gave a two-fold increase in failure strain, a three-fold increase in creep, and a nearly four-fold increase in cycles to failure (not significant), compared to loading longitudinal to the principal fiber direction. The S-N curves had strong negative correlations between the stress level and the mean cycles to failure for both loading directions, where the slope of the transverse S-N curve was 11% less than the longitudinal S-N curve (longitudinal: S=108–5.9ln(N); transverse: S=112–5.2ln(N)). Collectively, these results suggest that the non-fibrillar matrix is more resistant to fatigue failure than the collagen fibers. Results from this study are relevant to understanding the etiology of atraumatic radial and horizontal meniscal tears, and can be utilized by research groups that are working to develop meniscus implants with fatigue properties that mimic healthy tissue. PMID:28088070

  7. Failure strength of a new meniscus arrow repair technique: biomechanical comparison with horizontal suture.

    PubMed

    Albrecht-Olsen, P; Lind, T; Kristensen, G; Falkenberg, B

    1997-04-01

    A new method for arthroscopic all-inside repair of vertical meniscus lesions by use of a biodegradable fixation device ("meniscus arrow") has been developed, including a set of cannulas for easy insertion via standard arthroscopic portals. The technique is described. A study to test the fixation properties was performed in the laboratory. Twenty-four fresh frozen bovine medial menisci were defreezed and divided into three groups. In all menisci an artificial vertical lesion was created with a scalpel 3mm from the peripheral rim. Repair in group I was done with a single horizontal Maxon-O suture using an Acufex double-barrel cannula (Acufex Meniscal Stitcher; Acufex Microsurgical, Norwood, MA). A knot was tied on the capsular side. Repair in group II was made with one 13 mm Biofix Meniscus arrow (Bioscience Ltd, Tampere, Finland). In group III repair was performed like in group II but the menisci were incubated in isotonic saline at 21 degrees C for 24 hours before testing. Menisci in group I and II were tested within 3 hours after defreezing. Prior to testing total separation of central and peripheral part of meniscus was performed. Thus only the repair site was tested. Pull-out tests to failure were made in a computer-based Nene M5 testing machine with a cross-head speed of 5 mm/min. Median failure load in group I: 49 N (range 43 to 77 N), in group II: 53 N (range 42 to 65 N) and in group III: 54 N (range 35 to 74 N). No statistically significant differences in failure load was found between the groups. Thus initial failure strength for arrow-repaired bovine menisci is comparable to that of a horizontal suture.

  8. Usability and reproducibility of tear meniscus values generated via swept-source optical coherence tomography and the slit lamp with a graticule method.

    PubMed

    Imamura, Hitoshi; Tabuchi, Hitoshi; Nakakura, Shunsuke; Nagasato, Daisuke; Baba, Hiroaki; Kiuchi, Yoshiaki

    2018-04-01

    To investigate the usability and the reproducibility of the tear meniscus values via swept-source optical coherence tomography (SS-OCT) and the conventional slit lamp microscope method with a graticule. The right eye was examined in 90 healthy adult subjects who were grouped according to age (group 1: 20-39 years; group 2: 40-59 years; group 3: ≥60 years). The tear meniscus height (TMH) and tear meniscus area were measured using SS-OCT and TMH by the slit lamp microscope method. The reproducibility of each method was calculated using intraclass correlation coefficients (ICCs) in additionally enrolled 30 healthy young subjects. We also evaluated TMH at 3 mm from the corneal center in both temporal and nasal directions using SS-OCT. The mean of the TMH values measured by SS-OCT was significantly higher than those measured by the slit lamp method (328 vs. 212 μm, P < 0.001, respectively). High reproducibility was observed for each method (ICC > 0.75 for both). No statistically significant differences were found in TMH among the age groups using both SS-OCT and slit lamp methods (P = 0.985, 0.380, respectively). TMH values at both sides of the corneal center were significantly smaller than those at the corneal center (P < 0.0001). TMH values obtained by the slit lamp method were lower than those obtained by SS-OCT. However, both methods yielded highly reproducible TMH measurements, suggesting that they are clinically useful. Tear meniscus values did not vary by age but by measurement points in our cohort.

  9. Changes in Tear Volume after 3% Diquafosol Treatment in Patients with Dry Eye Syndrome: An Anterior Segment Spectral-domain Optical Coherence Tomography Study.

    PubMed

    Lee, Kwan Bok; Koh, Kyung Min; Kwon, Young A; Song, Sang Wroul; Kim, Byoung Yeop; Chung, Jae Lim

    2017-08-01

    To evaluate changes in the tear meniscus area and tear meniscus height over time in patients with dry eye syndrome, using anterior segment spectral-domain optical coherence tomography after the instillation of 3% diquafosol ophthalmic solution. Sixty eyes from 30 patients with mild to moderate dry eye syndrome were included. Tear meniscus images acquired by anterior segment spectral-domain optical coherence tomography were analyzed using National Institutes of Health's image-analysis software (ImageJ 1.44p). Tear meniscus area and tear meniscus height were measured at baseline, 5 minutes, 10 minutes, and 30 minutes after instillation of a drop of diquafosol in one eye and normal saline in the other eye. Changes in ocular surface disease index score, tear film break-up time, corneal staining score by Oxford schema, and meibomian expressibility were also evaluated at baseline, and after 1 week and 1 month of a diquafosol daily regimen. Sixty eyes from 30 subjects (mean age, 29.3 years; 8 men and 22 women) were included. In eyes receiving diquafosol, tear volume was increased at 5 and 10 minutes compared with baseline. It was also higher than saline instilled eyes at 5, 10, and 30 minutes. Changes in tear volume with respect to baseline were not statistically different after the use of diquafosol for 1 month. Ocular surface disease index score, tear film break-up time, and Oxford cornea stain score were significantly improved after 1 week and 1 month of daily diquafosol instillation, but meibomian expressibility did not change. Topical diquafosol ophthalmic solution effectively increased tear volume for up to 30 minutes, compared to normal saline in patients with dry eye syndrome. © 2017 The Korean Ophthalmological Society

  10. The Meniscus: Review of Basic Principles With Application to Surgery and Rehabilitation

    PubMed Central

    Brindle, Timothy; Johnson, Darren L.

    2001-01-01

    Objective: To review basic meniscal anatomy, histology, and biomechanical principles as they apply to surgery and rehabilitation. Data Sources: We searched MEDLINE and CINAHL for the years 1960–1999 using the terms meniscus, surgery, rehabilitation, meniscal repair, and arthroscopy. Data Synthesis: Injuries to a healthy meniscus are usually produced by a compressive force coupled with transverse-plane tibiofemoral rotation as the knee moves from flexion to extension during rapid cutting or pivoting. The goal of meniscal surgery is to restore a functional meniscus to prevent the development of degenerative osteoarthritis in the involved knee. The goal of rehabilitation is to restore patient function based on individual needs, considering the type of surgical procedure, which meniscus was repaired, the presence of coexisting knee pathology (particularly ligamentous laxity or articular cartilage degeneration), the type of meniscal tear, the patient's age, preoperative knee status (including time between injury and surgery), decreased range of motion or strength, and the patient's athletic expectations and motivations. Progressive weight bearing and joint stress are necessary to enhance the functionality of the meniscal repair; however, excessive shear forces may be disruptive. Prolonged knee immobilization after surgery can result in the rapid development of muscular atrophy and greater delays in functional recovery. Conclusions/Recommendations: Accelerated joint mobility and weight-bearing components of rehabilitation protocols represent the confidence placed in innovative surgical fixation methods. After wound healing, an aquatic therapy environment may be ideal during all phases of rehabilitation after meniscal surgery (regardless of the exact procedure), providing the advantages of controlled weight bearing and mobility progressions. Well-designed, controlled, longitudinal outcome studies for patients who have undergone meniscectomy, meniscal repair, or meniscal reconstruction are lacking. PMID:16558666

  11. Loading of the Medial Meniscus in the ACL deficient knee: a Multibody Computational Study

    PubMed Central

    Razu, Swithin

    2017-01-01

    The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100 N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5 Nm external tibial torque was applied about the long axis of the tibia. Combining a 100 N anterior tibial force and a 5 Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. PMID:28089224

  12. Loading of the medial meniscus in the ACL deficient knee: A multibody computational study.

    PubMed

    Guess, Trent M; Razu, Swithin

    2017-03-01

    The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5Nm external tibial torque was applied about the long axis of the tibia. Combining a 100N anterior tibial force and a 5Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Identification and characterization of Vibrio cholerae surface proteins by radioiodination.

    PubMed Central

    Richardson, K; Parker, C D

    1985-01-01

    Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride-lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides. Images PMID:3980099

  14. Otoancorin Knockout Mice Reveal Inertia is the Force for Hearing

    NASA Astrophysics Data System (ADS)

    Weddell, Thomas; Legan, P. Kevin; Lukashkina, Victoria A.; Goodyear, Richard J.; Welstead, Lindsy; Petit, Chistine; Russell, Ian J.; Lukashkin, Andrei N.; Richardson, Guy P.

    2011-11-01

    We demonstrate that in Otoa-/- mice, in which the inner-ear-specific protein otoancorin is absent, excitation of the outer hair cells and cochlear amplification is normal. This finding is remarkable because the tectorial membrane (TM), although remaining functionally attached to the outer hair cell bundles, is completely detached from the spiral limbus. Therefore, as in ancestral vertebrate auditory organs, where inertia provides the excitatory force to the hair cells, it is the inertia of the TM that must be important for exciting the outer hair cells, setting the sensitivity of their transducer conductance, and determining the precise timing of cochlear amplification.

  15. Enhanced cellular infiltration of human adipose-derived stem cells in allograft menisci using a needle-punch method.

    PubMed

    Nordberg, Rachel C; Charoenpanich, Adisri; Vaughn, Christopher E; Griffith, Emily H; Fisher, Matthew B; Cole, Jacqueline H; Spang, Jeffrey T; Loboa, Elizabeth G

    2016-10-28

    The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo.

  16. New understanding of the complex structure of knee menisci: implications for injury risk and repair potential for athletes.

    PubMed

    Rattner, J B; Matyas, J R; Barclay, L; Holowaychuk, S; Sciore, P; Lo, I K Y; Shrive, N G; Frank, C B; Achari, Y; Hart, D A

    2011-08-01

    Menisci help maintain the structural integrity of the knee. However, the poor healing potential of the meniscus following a knee injury can not only end a career in sports but lead to osteoarthritis later in life. Complete understanding of meniscal structure is essential for evaluating its risk for injury and subsequent successful repair. This study used novel approaches to elucidate meniscal architecture. The radial and circumferential collagen fibrils in the meniscus were investigated using novel tissue-preparative techniques for light and electron microscopic studies. The results demonstrate a unique architecture based on differences in the packaging of the fundamental collagen fibrils. For radial arrays, the collagen fibrils are arranged in parallel into ∼10 μm bundles, which associate laterally to form flat sheets of varying dimensions that bifurcate and come together to form a honeycomb network within the body of the meniscus. In contrast, the circumferential arrays display a complex network of collagen fibrils arranged into ∼5 μm bundles. Interestingly, both types of architectural organization of collagen fibrils in meniscus are conserved across mammalian species and are age and sex independent. These findings imply that disruptions in meniscal architecture following an injury contribute to poor prognosis for functional repair. © 2010 John Wiley & Sons A/S.

  17. Meniscal Extrusion Progresses Shortly after the Medial Meniscus Posterior Root Tear.

    PubMed

    Furumatsu, Takayuki; Kodama, Yuya; Kamatsuki, Yusuke; Hino, Tomohito; Okazaki, Yoshiki; Ozaki, Toshifumi

    2017-12-01

    Medial meniscus posterior root tears (MMPRT) induce medial meniscus extrusion (MME). However, the time-dependent extent of MME in patients suffering from the MMPRT remains unclear. This study evaluated the extent of MME after painful popping events that occurred at the onset of the MMPRT. Thirty-five patients who had an episode of posteromedial painful popping were investigated. All the patients were diagnosed as having an MMPRT by magnetic resonance imaging (MRI) within 12 months after painful popping. Medial meniscus body width (MMBW), absolute MME, and relative MME (100×absolute MME/MMBW) were assessed among three groups divided according to the time after painful popping events: early period (〈1 month), subacute period (1-3 months), and chronic period (4-12 months). In the early period, absolute and relative MMEs were 3.0 mm and 32.7%, respectively. Absolute MME increased up to 4.2 mm and 5.8 mm during the subacute and chronic periods, respectively. Relative MME also progressed to 49.2% and 60.3% in the subacute and chronic periods, respectively. This study demonstrated that absolute and relative MMEs increased progressively within the short period after the onset of symptomatic MMPRT. Our results suggest that early diagnosis of an MMPRT may be important to prevent progression of MME following the MMPRT.

  18. Combining μX-ray fluorescence, μXANES and μXRD to shed light on Zn2+ cations in cartilage and meniscus calcifications.

    PubMed

    Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang-Korng; Rouzière, Stephan; Foy, Eddy; Hannouche, Didier; Réguer, Solene; Picca, Frederic-Emmanuel; Thiaudière, Dominique; Lioté, Frédéric; Daudon, Michel; Bazin, Dominique

    2013-10-01

    We aimed to examine the presence of Zn, a trace element, in osteoarthritis (OA) cartilage and meniscus from patients undergoing total knee joint replacement for primary OA. We mapped Ca(2+) and Zn(2+) at the mesoscopic scale by X-ray fluorescence microanalysis (μX-ray) to determine the spatial distribution of the 2 elements in cartilage, μX-ray absorption near edge structure spectroscopy to identify the Zn species, and μX-ray diffraction to determine the chemical nature of the calcification. Fourier transform infrared spectroscopy was used to determine the chemical composition of cartilage and meniscus. Ca(2+) showed a heterogeneous spatial distribution corresponding to the calcifications within cartilage (or meniscus) or at their surface. At least 2 Zn(2+) species were present: the first may correspond to Zn embedded in protein (different Zn metalloproteins are known to prevent calcification in biological tissues), and the second may be associated with a Zn trap in or at the surface of the calcification. Calcification present in OA cartilage may significantly modify the spatial distribution of Zn; part of the Zn may be trapped in the calcification and may alter the associated biological function of Zn metalloproteins. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Surgical Marking Pen Dye Inhibits Saphenous Vein Cell Proliferation and Migration in Saphenous Vein Graft Tissue

    PubMed Central

    Kikuchi, Shinsuke; Kenagy, Richard D; Gao, Lu; Wight, Thomas N; Azuma, Nobuyoshi; Sobel, Michael; Clowes, Alexander W

    2014-01-01

    Objective Markers containing dyes such as crystal violet (CAS 548-62-9) are routinely used on the adventitia of vein bypass grafts to avoid twisting during placement. Since little is known about how these dyes affect vein graft healing and function, we determined the effect of crystal violet on cell migration and proliferation, which are responses to injury after grafting. Methods Fresh human saphenous veins were obtained as residual specimens from leg bypass surgeries. Portions of the vein that had been surgically marked with crystal violet were analyzed separately from those that had no dye marking. In the laboratory, they were split into easily dissected inner and outer layers after removal of endothelium. This f cleavage plane was within the circular muscle layer of the media. Cell migration from explants was measured daily as either 1) % migration positive explants, which exclusively measures migration, or 2) the number of cells on the plastic surrounding each explant, which measures migration plus proliferation. Cell proliferation and apoptosis (Ki67 and TUNEL staining, respectively) were determined in dye-marked and unmarked areas of cultured vein rings. The dose-dependent effects of crystal violet were measured for cell migration from explants as well as proliferation, migration, and death of cultured outer layer cells. Dye was extracted from explants with ethanol and quantified by spectrophotometry. Results There was significantly less cell migration from visibly blue, compared to unstained, outer layer explants by both methods. There was no significant difference in migration from inner layer explants adjacent to blue-stained or unstained sections of vein, because dye did not penetrate to the inner layer. Ki67 staining of vein in organ culture, which is a measure of proliferation, progressively increased up to 6 days in non-blue outer layer and was abolished in the blue outer layer. Evidence of apoptosis (TUNEL staining) was present throughout the wall and not different in blue-stained and unstained vein wall segments. Blue outer layer explants had 65.9±8.0 ng dye/explant compared to 2.1±1.3 for non-blue outer layer explants. Dye applied in vitro to either outer or inner layer explants dose-dependently inhibited migration (IC50=8.5 ng/explant). The IC50s of crystal violet for outer layer cell proliferation and migration were 0.1 and 1.2 μg/ml, while the EC50 for death was between 1 and 10 μg/ml. Conclusion Crystal violet inhibits venous cell migration and proliferation indicating that alternative methods should be considered for marking vein grafts. PMID:25935273

  20. [Simultaneous staining with fluorescein diacetate-propidium iodide to determine isolated cochlear outer hair cell viability of guinea pig].

    PubMed

    Yu, Q; Shi, H; Wang, J

    1995-01-01

    A simultaneous double-staining procedure using fluorescein diacetate (FDA) and propidium iodide (PI) is discribed for use in the determination of isolated cochlear outer hair cell viability. With exciter light, viable cells fluoresce bright green, while nonviable cells are bright red. In cell culture and cytotoxicity studies, double-staining with FDA-PI is a accurate method to discriminate between live and nonviable cells.

  1. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.

    PubMed

    Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T

    2016-12-15

    Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.

    PubMed

    Spector, Alexander A

    2005-06-01

    Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.

  3. On Favorable Thermal Fields for Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Stelian, Carmen; Volz, Martin P.; Derby, Jeffrey J.

    2009-01-01

    The thermal fields of two Bridgman-like configurations, representative of real systems used in prior experiments for the detached growth of CdTe and Ge crystals, are studied. These detailed heat transfer computations are performed using the CrysMAS code and expand upon our previous analyses [14] that posited a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. Computational results indicate that heat transfer conditions that led to successful detached growth in both of these systems are in accordance with our prior assertion, namely that the prevention of crystal reattachment to the crucible wall requires the avoidance of any undercooling of the melt meniscus during the growth run. Significantly, relatively simple process modifications that promote favorable thermal conditions for detached growth may overcome detrimental factors associated with meniscus shape and crucible wetting. Thus, these ideas may be important to advance the practice of detached growth for many materials.

  4. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Arthroscopic direct repair for a complete radial tear of the posterior root of the medial meniscus.

    PubMed

    Wang, Kook Hyun; Hwang, Dae Hee; Cho, Jin Ho; Changale, Sachin D; Woo, Sung Jong; Nha, Kyung Wook

    2011-12-01

    We report here on a new arthroscopic direct repair technique for a radial tear of the posterior root of the medial meniscus (PRMM) using a posterior trans-septal portal. Radial tears of the PRMM are commonly observed in the elderly population of Korea and Japan, and the life style of these people requires squatting and kneeling down in daily life. A radial tear of the PRMM results in the loss of hoop tension and this accelerates degenerative changes in the knee joint and causes early osteoarthritis. Several reports in the medical literature have focused on various repair techniques for these tears by using pull out sutures. These techniques result in nonanatomic fixation of the meniscus, which may lead to disturbed meniscal excursion and failure to restore hoop tension. Arthroscopic direct repair may contribute to restoring hoop tension and preventing accelerated degenerative changes in the knee joint of these patients.

  6. Pullout repair of a medial meniscus posterior root tear using a FasT-Fix® all-inside suture technique.

    PubMed

    Kodama, Y; Furumatsu, T; Fujii, M; Tanaka, T; Miyazawa, S; Ozaki, T

    2016-11-01

    A medial meniscus posterior root tear (MMPRT) may increase the tibiofemoral contact pressure by decreasing the tibiofemoral contact area. Meniscal dysfunction induced by posterior root injury may lead to the development of osteoarthritic knees. Repair of a MMPRT can restore medial meniscus (MM) function and prevent knee osteoarthritis progression. Several surgical procedures have been reported for treating a MMPRT. However, these procedures are associated with several technical difficulties. Here, we describe a technique to stabilize a torn MM posterior root using the FasT-Fix ® all-inside meniscal suture device and a new aiming device. The uncut free-end of the FasT-Fix ® suture can be used as a thread for transtibial pullout repair. Our procedure might help overcome the technical difficulties in arthroscopic treatment of a MMPRT. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Repair of a complete radial tear in the midbody of the medial meniscus using a novel crisscross suture transtibial tunnel surgical technique: a case report.

    PubMed

    James, Evan W; LaPrade, Christopher M; Feagin, John A; LaPrade, Robert F

    2015-09-01

    Complete radial meniscus tears have been reported to result in deleterious effects in the knee joint if left unrepaired. An emphasis on meniscal preservation is important in order to restore native meniscal function. In this case report, a complete radial tear of the medial meniscus midbody was repaired using a novel crisscross suture transtibial technique. This technique secured the anterior and posterior meniscal horns, which were released from their extruded and scarred position along the capsule, using crisscrossing sutures passed through two transtibial tunnels and secured over a bone bridge on the anterolateral tibia. In addition, the repair was supplemented with the injection of platelet-rich plasma and bone marrow aspirate concentrate to promote the healing of the meniscal tissue. Complete healing on second-look arthroscopy is presented, including in the previously unreported white-white meniscal zone.

  8. Posterior medial meniscus detachment: a unique type of medial meniscal tear.

    PubMed

    Rubinstein, Richard A; DeHaan, Alex; Baldwin, James L

    2009-10-01

    Patients with posterior medial meniscal detachment, as determined at knee arthroscopy, were evaluated retrospectively. Mean follow-up was 5.3 years for 8 men and 20 women (30 knees; mean age, 57 years). Most patients had acute onset of pain with a minor specific incident. Seventeen patients were obese, 9 were overweight, and 2 were normal. Eleven of 22 magnetic resonance imaging evaluations detected a tear at the site of the posterior medial meniscus root. Nine of 16 bone scan evaluations showed moderate uptake medially. Arthroscopic treatment included partial medial meniscectomy or meniscal repair. Twelve knees (40%) showed significant progression of arthritis. Of the 7 patients with severe arthritic knees, 5 have subsequently undergone total knee arthroplasty, 1 is considering total knee arthroplasty, and the other has minimal symptoms. Patients should be counseled about the clinical course of posterior medial meniscus detachment and its potential for progressive arthritis in the joint.

  9. Growth Angle: A Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Croll, Arne; Volz, Martin P.

    2017-01-01

    A microscopic continuum mechanical model of the growth angle is proposed. It is based on the van der Waals type framework that is used for surface force phenomena. The obtained augmented Laplace type integro-differential equations are, in general, difficult to analyze. Here we focused primarily on the particular case of equal melt and crystal surface energies. We derived an approximate equation for the meniscus shape, and obtained an analytical relationship between the contact and the growth angle. Interestingly, the same result can be obtained using the macroscopic model of Herring. The case of a macroscopically sharp corner is also considered. For this case, the macroscopic angle is not defined and it can be any angle between the contact angles of both flat surfaces. The microscopic model yields the smooth shape for the meniscus that also is not unique, but depends on the initial position of the meniscus.

  10. Arthroscopic Direct Repair for a Complete Radial Tear of the Posterior Root of the Medial Meniscus

    PubMed Central

    Wang, Kook Hyun; Hwang, Dae Hee; Cho, Jin Ho; Changale, Sachin D.; Woo, Sung Jong

    2011-01-01

    We report here on a new arthroscopic direct repair technique for a radial tear of the posterior root of the medial meniscus (PRMM) using a posterior trans-septal portal. Radial tears of the PRMM are commonly observed in the elderly population of Korea and Japan, and the life style of these people requires squatting and kneeling down in daily life. A radial tear of the PRMM results in the loss of hoop tension and this accelerates degenerative changes in the knee joint and causes early osteoarthritis. Several reports in the medical literature have focused on various repair techniques for these tears by using pull out sutures. These techniques result in nonanatomic fixation of the meniscus, which may lead to disturbed meniscal excursion and failure to restore hoop tension. Arthroscopic direct repair may contribute to restoring hoop tension and preventing accelerated degenerative changes in the knee joint of these patients. PMID:22162797

  11. Fabricating metal-oxide-semiconductor field-effect transistors on a polyethylene terephthalate substrate by applying low-temperature layer transfer of a single-crystalline silicon layer by meniscus force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo

    2013-12-02

    A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less

  12. Correlation between spectral-domain OCT findings and visual acuity in X-linked retinoschisis.

    PubMed

    Yang, Hyun Seung; Lee, Jung Bok; Yoon, Young Hee; Lee, Joo Yong

    2014-05-08

    To investigate the tomographic characteristics of the outer retina and choroid and their relationship with visual acuity in X-linked juvenile retinoschisis (XLRS) patients using spectral-domain optical coherence tomography (SD-OCT). In this retrospective, observational, case-control study, we analyzed 20 eyes of 10 patients with XLRS using SD-OCT. The clinical and tomographic features of the outer retina, including the external limiting membrane (ELM), inner segment/outer segment (IS/OS) junction, cone cell outer segment tips (COST) line, photoreceptor outer segment (PROS) length, and choroid, were evaluated. As controls, 40 age-, sex-, and refraction-matched healthy eyes (1:2 matched) were randomly selected and imaged in parallel. The most prevalent area of abnormality in the outer retina layer of our patients was the outer plexiform layer (OPL; 60% of all affected eyes) and COST line (75% of all affected eyes). On average, the subfoveal choroid and PROS lengths were 35 μm thicker and 19 μm thinner, respectively, in XLRS patients (P = 0.084 and P < 0.001, respectively). A dominant IS/OS junction, COST line defects, and PROS length were related to patient best-corrected visual acuity (BCVA; P = 0.029, P = 0.001, and P < 0.001, respectively) by univariate analysis. Cone cell outer segment tips line defect and PROS length were the only factors related to BCVA in multivariate analysis (P = 0.028 and 0.003, respectively). Outer plexiform layer and photoreceptor microstructure defects are frequent in XLRS patients. Cone cell outer segment tips line defects and shortened PROS lengths as well as other photoreceptor microstructure defects may be closely related to poor vision in XLRS.

  13. Does Medial Meniscal Allograft Transplantation With the Bone-Plug Technique Restore the Anatomic Location of the Native Medial Meniscus?

    PubMed

    Kim, Nam-Ki; Bin, Seong-Il; Kim, Jong-Min; Lee, Chang-Rack

    2015-12-01

    Previous work has shown the importance of restoring the normal structure of the native meniscus with meniscal allograft transplantation. The purpose of this study was to compare the anatomic positions of the anterior horn and posterior horn between the preoperative medial meniscus and the postoperative meniscal allograft after medial meniscal allograft transplantation with the bone-plug technique. The hypothesis was that the bone-plug technique could restore the preoperative structure of the native medial meniscus. Case series; Level of evidence, 4. Between December 1999 and December 2013, a total of 59 patients (49 male, 10 female) underwent medial meniscal allograft transplantation by use of the bone-plug technique. The anatomic positions of both horns in the native medial meniscus and in the meniscal allograft were measured via MRI. The percentage reference method was used to measure the locations of both horns. On coronal MRI, the mean absolute distance of the posterior horn from the lateral border of the tibial plateau changed from 45.2 ± 3.3 to 48.1 ± 4.2 mm (P < .05), and the percentage distance of the posterior horn changed from 59.6% to 63.0% (P < .05). On sagittal MRI, the mean absolute distance of the posterior horn from the anterior reference point changed from 40.3 ± 3.0 to 42.0 ± 3.5 mm (P < .05), and the mean percentage distance of the posterior horn changed from 76.5% to 79.4% (P <.05). On coronal MRI, the mean absolute distance of the anterior horn from the lateral border of the tibial plateau changed from 41.3 ± 4.2 to 48.5 ± 5.6 mm (P < .05), and the mean percentage distance of the anterior horn changed from 54.5% to 63.8% (P < .05). On sagittal MRI, the mean absolute distance of the anterior horn from the anterior reference point changed from 5.5 ± 1.0 to 9.9 ± 2.9 mm (P < .05), and the mean percentage distance of the anterior horn changed from 10.6% to 19.0% (P < .05). Despite attempts to place the meniscal allograft in the same position as the native meniscus, the anatomic locations of both horns were shifted posteromedially compared with those of the native medial meniscus. There were significant differences, attributed to several limitations in the bone-plug technique, between the preoperative and postoperative values of both horns. However, the posterior horn showed a location change of <5 mm, on average, in both the coronal and sagittal planes, whereas the anterior horn showed a location change of ≥ 5 mm in the coronal plane but <5 mm in the sagittal plane. © 2015 The Author(s).

  14. Human dermal papilla cells and outer root sheath cells: no follicular differentiation in nude mice and chicken embryos.

    PubMed

    Chiu, H C; Chang, C H; Jee, S H; Chang, C C; Wu, Y C

    1994-09-01

    Human scalp specimens were incubated in 5 U/ml dispase solution at 4 degrees C overnight before the isolation of dermal papillae and follicle epithelium. This pretreatment not only facilitated the attachment and cell outgrowth of dermal papillae but also made it easier to pluck out hairs with intact follicle epithelium. The outer root sheath cells were released from the follicle epithelium and grown on a feeder layer of mitomycin C-treated human dermal fibroblasts. The subcultured outer root sheath cells were grown in a serum-free medium. When the mixtures of early-passage dermal papilla cells and outer root sheath cells were injected into the subcutis of nude mice, an epidermal cyst surrounded by layers of fibrous tissue was found in three weeks. No hair follicles were found when the mixtures were implanted onto the chorioallantoic membrane of nine-day-old chicken embryos. A keratinized mass lying on the chorionic epithelium with or without smaller similar masses in the chorioallantoic membrane was found in eight days. No hair follicle-like structure could be found. Possible factors contributing to the failure to undergo follicular differentiation in this study are discussed.

  15. Rescue of Outer Hair Cells with Antisense Oligonucleotides in Usher Mice Is Dependent on Age of Treatment.

    PubMed

    Ponnath, Abhilash; Depreux, Frederic F; Jodelka, Francine M; Rigo, Frank; Farris, Hamilton E; Hastings, Michelle L; Lentz, Jennifer J

    2018-02-01

    The absence of functional outer hair cells is a component of several forms of hereditary hearing impairment, including Usher syndrome, the most common cause of concurrent hearing and vision loss. Antisense oligonucleotide (ASO) treatment of mice with the human Usher mutation, Ush1c c.216G>A, corrects gene expression and significantly improves hearing, as measured by auditory-evoked brainstem responses (ABRs), as well as inner and outer hair cell (IHC and OHC) bundle morphology. However, it is not clear whether the improvement in hearing achieved by ASO treatment involves the functional rescue of outer hair cells. Here, we show that Ush1c c.216AA mice lack OHC function as evidenced by the absence of distortion product otoacoustic emissions (DPOAEs) in response to low-, mid-, and high-frequency tone pairs. This OHC deficit is rescued by treatment with an ASO that corrects expression of Ush1c c.216G>A. Interestingly, although rescue of inner hairs cells, as measured by ABR, is achieved by ASO treatment as late as 7 days after birth, rescue of outer hair cells, measured by DPOAE, requires treatment before post-natal day 5. These results suggest that ASO-mediated rescue of both IHC and OHC function is age dependent and that the treatment window is different for the different cell types. The timing of treatment for congenital hearing disorders is of critical importance for the development of drugs such ASO-29 for hearing rescue.

  16. Cooperation of Pd-1 and LAG-3 contributes to T-cell exhaustion in anaplasma marginale-infected cattle

    USDA-ARS?s Scientific Manuscript database

    The CD4+ T-cell response is central for control of Anaplasma marginale infection in cattle. However, the infection induces a functional exhaustion of antigen-specific CD4+ T cells in cattle immunized with A. marginale outer membrane proteins or purified outer membranes (OM), which presumably facilit...

  17. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker.

    PubMed

    Smith, Susan M; Shu, Cindy; Melrose, James

    2010-09-01

    We undertook a comparative immunolocalisation study on type II collagen, aggrecan and perlecan in a number of 12- to 14-week-old human foetal and postnatal (7-19 months) ovine joints including finger, toe, knee, elbow, hip and shoulder. This demonstrated that perlecan followed a virtually identical immunolocalisation pattern to that of type II collagen in the foetal tissues, but a slightly divergent localisation pattern in adult tissues. Aggrecan was also localised in the cartilaginous joint tissues, which were clearly delineated by toluidine blue staining and the type II collagen immunolocalisations. It was also present in the capsular joint tissues and in ligaments and tendons in the joint, which stained poorly or not at all with toluidine blue. In higher power microscopic views, antibodies to perlecan also stained small blood vessels in the synovial lining tissues of the joint capsule; however, this was not discernable in low power macroscopic views where the immunolocalisation of perlecan to pericellular regions of cells within the cartilaginous rudiments was a predominant feature. Perlecan was also evident in small blood vessels in stromal connective tissues associated with the cartilage rudiments and with occasional nerves in the vicinity of the joint tissues. Perlecan was expressed by rounded cells in the enthesis attachment points of tendons to bone and in rounded cells in the inner third of the meniscus, which stained prominently with type II collagen and aggrecan identifying the chondrogenic background of these cells and local compressive loads. Flattened cells within the tendon and in the surface laminas of articular cartilages and the meniscus did not express perlecan. Collected evidence presented herein, therefore, indicates that besides being a basement membrane component, perlecan is also a marker of chondrogenic cells in prenatal cartilages. In postnatal cartilages, perlecan displayed a pericellular localisation pattern rather than the territorial or interterritorial localisation it displayed in foetal cartilages. This may reflect processing of extracellular perlecan presumably as a consequence of intrinsic biomechanical loading on these tissues or to divergent functions for perlecan and type II collagen in adult compared to prenatal tissues.

  18. A diffusive ink transport model for lipid dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b

  19. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique.

    PubMed

    Harner, Christopher D; Mauro, Craig S; Lesniak, Bryson P; Romanowski, James R

    2009-10-01

    Tears of the posterior root of the medial meniscus are becoming increasingly recognized. They can cause rapidly progressive arthritis, yet their biomechanical effects are not understood. The goal of this study was to determine the effects of posterior root tears of the medial meniscus and their repairs on tibiofemoral joint contact pressure and kinematics. Nine fresh-frozen cadaver knees were used. An axial load of 1000 N was applied with a custom testing jig at each of four knee-flexion angles: 0 degrees , 30 degrees , 60 degrees , and 90 degrees . The knees were otherwise unconstrained. Four conditions were tested: (1) intact, (2) a posterior root tear of the medial meniscus, (3) a repaired posterior root tear, and (4) a total medial meniscectomy. Fuji pressure-sensitive film was used to record the contact pressure and area for each testing condition. Kinematic data were obtained by using a robotic arm to record the position of the knees for each loading condition. Three-dimensional knee kinematics were analyzed with custom programs with use of previously described transformations. The measured variables were axial rotation, varus angulation, lateral translation, and anterior translation. In the medial compartment, a posterior root tear of the medial meniscus caused a 25% increase in peak contact pressure compared with that found in the intact condition (p < 0.001). Repair restored the peak contact pressure to normal. No difference was detected between the peak contact pressure after the total medial meniscectomy and that associated with the root tear. The peak contact pressure in the lateral compartment after the total medial meniscectomy was up to 13% greater than that for all other conditions (p = 0.026). Significant increases in external rotation and lateral tibial translation, compared with the values in the intact knee, were observed in association with the posterior root tear (2.98 degrees and 0.84 mm, respectively) and the meniscectomy (4.45 degrees and 0.80 mm, respectively), and these increases were corrected by the repair. This study demonstrated significant changes in contact pressure and knee joint kinematics due to a posterior root tear of the medial meniscus. Root repair was successful in restoring joint biomechanics to within normal conditions.

  20. Biomechanical evaluation of a transtibial pull-out meniscal root repair: challenging the bungee effect.

    PubMed

    Cerminara, Anthony J; LaPrade, Christopher M; Smith, Sean D; Ellman, Michael B; Wijdicks, Coen A; LaPrade, Robert F

    2014-12-01

    A common treatment for posterior meniscal root tears is transtibial pull-out repair, which has been biomechanically reported to restore tibiofemoral contact mechanics to those of the intact knee. Biomechanical data suggest that there is significant displacement of the repaired meniscal root with cyclic loading, which may be responsible for the poor healing and meniscal extrusion demonstrated in some clinical studies. The purpose of this study was to quantify the time-zero displacement of the posterior meniscal root in response to cyclic loading after transtibial pull-out repair and to quantify the individual contributions to displacement of the following: (1) suture elongation, (2) button-bone interface, and (3) meniscus-suture interface. The meniscus-suture interface was hypothesized to result in significantly more displacement than the button-bone interface or suture elongation. Descriptive laboratory study. Transtibial pull-out repair of the posterior medial meniscal root was performed in 6 porcine knees, and cyclic displacement was measured using a loading protocol representative of postoperative rehabilitation. Displacement from (1) suture elongation, (2) the button-bone interface, and (3) the meniscus-suture interface was determined by cyclically loading 6 specimens for each construct using the same loading protocol to determine the contribution of each component to the overall displacement of the repair construct. After 1000 cycles, the repair construct displaced by a mean of 3.28 mm (95% CI, 2.07-4.49). The meniscus-suture component (mean, 2.52 mm; 95% CI, 2.21-2.83) displaced significantly more than the button-bone component (mean, 0.90 mm; 95% CI, 0.64-1.15; P = .006) and suture elongation component (mean, 0.71 mm; 95% CI, 0.36-1.06; P = .006) after 1000 cycles. Displacement of the button-bone and suture elongation components was not significantly different after 1000 cycles (P = .720). There was substantial displacement of the posterior medial meniscal root repaired with the transtibial pull-out technique under a cyclic loading protocol simulating postoperative rehabilitation. The meniscus-suture interface contributed to significantly more displacement than the button-bone interface and suture elongation in the transtibial pull-out repair construct. The results provide a framework for optimizing the transtibial pull-out repair technique. Future studies should focus on improving suture fixation strength within the meniscus-suture interface. © 2014 The Author(s).

  1. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy.

    PubMed

    Allaire, Robert; Muriuki, Muturi; Gilbertson, Lars; Harner, Christopher D

    2008-09-01

    Tears of the posterior root of the medial meniscus are becoming increasingly recognized. They can cause rapidly progressive arthritis, yet their biomechanical effects are not understood. The goal of this study was to determine the effects of posterior root tears of the medial meniscus and their repairs on tibiofemoral joint contact pressure and kinematics. Nine fresh-frozen cadaver knees were used. An axial load of 1000 N was applied with a custom testing jig at each of four knee-flexion angles: 0 degrees, 30 degrees, 60 degrees, and 90 degrees. The knees were otherwise unconstrained. Four conditions were tested: (1) intact, (2) a posterior root tear of the medial meniscus, (3) a repaired posterior root tear, and (4) a total medial meniscectomy. Fuji pressure-sensitive film was used to record the contact pressure and area for each testing condition. Kinematic data were obtained by using a robotic arm to record the position of the knees for each loading condition. Three-dimensional knee kinematics were analyzed with custom programs with use of previously described transformations. The measured variables were axial rotation, varus angulation, lateral translation, and anterior translation. In the medial compartment, a posterior root tear of the medial meniscus caused a 25% increase in peak contact pressure compared with that found in the intact condition (p < 0.001). Repair restored the peak contact pressure to normal. No difference was detected between the peak contact pressure after the total medial meniscectomy and that associated with the root tear. The peak contact pressure in the lateral compartment after the total medial meniscectomy was up to 13% greater than that for all other conditions (p = 0.026). Significant increases in external rotation and lateral tibial translation, compared with the values in the intact knee, were observed in association with the posterior root tear (2.98 degrees and 0.84 mm, respectively) and the meniscectomy (4.45 degrees and 0.80 mm, respectively), and these increases were corrected by the repair. This study demonstrated significant changes in contact pressure and knee joint kinematics due to a posterior root tear of the medial meniscus. Root repair was successful in restoring joint biomechanics to within normal conditions.

  2. Comparison of Tibiofemoral Contact Mechanics After Various Transtibial and All-Inside Fixation Techniques for Medial Meniscus Posterior Root Radial Tears in a Porcine Model.

    PubMed

    Chung, Kyu Sung; Choi, Choong Hyeok; Bae, Tae Soo; Ha, Jeong Ku; Jun, Dal Jae; Wang, Joon Ho; Kim, Jin Goo

    2018-04-01

    To compare tibiofemoral contact mechanics after fixation for medial meniscus posterior root radial tears (MMPRTs). Seven fresh knees from mature pigs were used. Each knee was tested under 5 conditions: normal knee, MMPRT, pullout fixation with simple sutures, fixation with modified Mason-Allen sutures, and all-inside fixation using Fastfix 360. The peak contact pressure and contact surface area were evaluated using a capacitive sensor positioned between the meniscus and tibial plateau, under a 1,000-N compression force, at different flexion angles (0°, 30°, 60°, and 90°). The peak contact pressure was significantly higher in MMPRTs than in normal knees (P = .018). Although the peak contact pressure decreased significantly after fixation at all flexion angles (P = .031), it never recovered to the values noted in the normal meniscus. No difference was observed among fixation groups (P = .054). The contact surface area was significantly lower in MMPRTs than in the normal meniscus (P = .018) and increased significantly after fixation at all flexion angles (P = .018) but did not recover to within normal limits. For all flexion angles except 60°, the contact surface area was significantly higher for fixation with Mason-Allen sutures than for fixation with simple sutures or all-inside fixation (P = .027). At 90° of flexion, the contact surface area was significantly better for fixation with simple sutures than for all-inside fixation (P = .031). The peak contact pressure and contact surface area improved significantly after fixation, regardless of the fixation method, but did not recover to the levels noted in the normal meniscus after any type of fixation. Among the fixation methods evaluated in this time 0 study, fixation using modified Mason-Allen sutures provided a superior contact surface area compared with that noted after fixation using simple sutures or all-inside fixation, except at 60° of flexion. However, this study had insufficient power to accurately detect the differences between the outcomes of various fixation methods. Our results in a porcine model suggest that fixation can restore tibiofemoral contact mechanics in MMPRT and that fixation with a locking mechanism leads to superior biomechanical properties. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Does high knee flexion cause separation of meniscal repairs?

    PubMed

    Lin, David L; Ruh, Sarah S; Jones, Hugh L; Karim, Azim; Noble, Philip C; McCulloch, Patrick C

    2013-09-01

    Previous clinical studies comparing nonrestrictive and restrictive protocols after meniscal repair have shown no difference in outcomes; however, some surgeons still limit range of motion out of concern that it will place undue stress on the repair. Large acute medial meniscal tears will gap during simulated open chain exercises at high flexion angles, and a repaired construct with vertical mattress sutures will not gap. Controlled laboratory study. Tantalum beads were implanted in the medial menisci of 6 fresh-frozen cadaveric knees via an open posteromedial approach. Each knee underwent 10 simulated open chain flexion cycles with loading of the quadriceps and hamstrings. Testing was performed on 3 different states of the meniscus: intact, torn, and repaired. Biplanar radiographs were taken of the loaded knee in 90°, 110°, and 135° of flexion for each state. A 2.5-cm tear was created in the posteromedial meniscus and repaired with inside-out vertical mattress sutures. Displacement of pairs of beads spanning the tear was measured in all planes by use of radiostereometric analysis (RSA) with an accuracy of better than 80 μm. With a longitudinal tear, compression rather than gapping occurred in all 3 regions of the posterior horn of the meniscus (mean ± standard deviation for medial collateral ligament [MCL], -321 ± 320 μm; midposterior, -487 ± 256 μm; root, -318 ± 150 μm) with knee flexion. After repair, meniscal displacement returned part way to intact values in both the MCL (+55 ± 250 μm) and root region (-170 ± 123 μm) but not the midposterior region, where further compression was seen (-661 ± 278 μm). Acute posteromedial meniscal tears and repairs with vertical mattress sutures do not gap, but rather compress in the transverse plane at higher flexion angles when subjected to physiologic loads consistent with active, open kinetic chain range of motion rehabilitation exercises. The kinematics of the repaired meniscus more closely resemble that of the intact meniscus than that of the torn meniscus in regions adjacent to the MCL and the root but not in the midposterior region, where meniscal repair led to increased compression across the tear plane. This study supports the idea that nonrestrictive unresisted open chain range of motion protocols do not place undue stress on meniscal repairs.

  4. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    NASA Astrophysics Data System (ADS)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (<10 microm thick), ordered films with engineered compositions, thicknesses, and particle packing that offer several advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing <10 microm thick colloid coatings---monodispersed latex particle or cell suspensions, bimodal blends of latex particles or live cells and microspheres, and trimodal formulations of biomodal latex and live cells on substrates such as aluminum foil, glass, porous Kraft paper, polyester, and polypropylene. Continuous convective-sedimentation assembly (CSA) is introduced to enable fabrication of larger surface area and long coatings by constantly feeding coating suspension to the meniscus, thus expanding the utility of convective assembly to deposit monolayer or very thin films or multi-layer coatings composed of thin layers on a large scale. Results show thin, tunable coatings can be fabricated from diverse coating suspensions and critical coating parameters that control thickness and structure. Particle size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. Microbes behave like colloidal particles during CSA, allowing for deposition of very thin stable biocomposite coatings of latex-live cell blends. CSA of particle-cell blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-cell interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Tunable process parameters, such as particle concentration, fluid sonication, and fluid density, influence coating homogeneity when the meniscus is continuously supplied. Fluid density modification and fluid sonication affect particle sedimentation and distribution in the coating growth front whereas the suspended particle concentration strongly affects coating thickness, but has almost no effect on void space. Changing the suspension delivery mode (topside versus underside CCSA) yields disparate meniscus volumes and uneven particle delivery to the drying front, which enables control of the coating microstructure by varying the total number of particles available for deposition. The judicious combination of all these parameters will enable deposition of uniform, thin, latex-cell monolayers over areas on the order of tens of square centimeters or larger. To demonstrate the utility of biocomposite coatings, this dissertation investigated photoreactive coatings (artificial leaves) from suspensions of latex particles and nitrogen-limited Rps. palustris CGA009 or sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  5. The Morphological Anatomy of the Menisci of the Knee Joint in Human Fetuses

    PubMed Central

    Koyuncu, Esra; Özgüner, Gülnur; Öztürk, Kenan; Bilkay, Cemil; Dursun, Ahmet; Sulak, Osman

    2017-01-01

    Background: Development of the foetal period of the meniscus has been reported in different studies. Aims: Evaluation of lateral and medial meniscus development, typing and the relationship of the tibia during the foetal period. Study Design: Anatomical dissection. Methods: We evaluated 210 knee menisci obtained from 105 human foetuses ranging in age from 9 to 40 weeks’ gestation. Foetuses were divided into four groups, and the intra-articular structure was exposed. We subsequently acquired images (Samsung WB 100 26X Optical Zoom Wide, Beijing, China) of the intra-articular structures with the aid of a millimetric ruler. The images were digitized for morphometric analyses and analysed by using Netcad 5.1 Software (Ak Mühendislik, Ankara, Turkey). Results: The lateral and medial meniscal areas as well as the lateral and the medial articular surface areas of the tibia increased throughout gestation. We found that the medial articular surface areas were larger than the lateral articular surface areas, and the difference was statistically significant. The ratios of the mean lateral and medial meniscal areas to the lateral and medial articular surface areas, respectively, of the tibia decreased gradually from the first trimester to full term. The most common shape of the medial meniscus was crescentic (50%), and that of the lateral meniscus was C-shaped (61%). Conclusion: This study reveals the development of morphological changes and morphometric measurements of the menisci. PMID:28832324

  6. Medial Meniscus Posterior Root Tear: A Comprehensive Review

    PubMed Central

    Lee, Dhong Won; Ha, Jeong Ku

    2014-01-01

    Damage to the medial meniscus root, for example by a complete radial tear, destroys the ability of the knee to withstand hoop strain, resulting in contact pressure increases and kinematic alterations. For these reasons, several techniques have been developed to repair the medial meniscus posterior root tear (MMPRT), many of which have shown complete healing of the repaired MMPRT. However, efforts to standardize or optimize the treatment for MMPRT are much needed. When planning a surgical intervention for an MMPRT, strict surgical indications regarding the effect of pullout strength on the refixed root, bony degenerative changes, mechanical alignment, and the Kellgren-Lawrence grade should be considered. Although there are several treatment options and controversies, the current trend is to repair the MMPRT using various techniques including suture anchors and pullout sutures if the patient meets the indications. However, there are still debates on the restoration of hoop tension and prevention of arthritis after repair and further biomechanical and clinical studies should be conducted in the future. The aim of this article was to review and summarize the recent literature regarding various diagnosis and treatment strategies of MMPRT, especially focusing on conflict issues including whether repair techniques can restore the main function of normal meniscus and which is the best suture technique to repair the MMPRT. The authors attempted to provide a comprehensive review of previous studies ranging from basic science to current surgical techniques. PMID:25229041

  7. Medial meniscus posterior root tear: a comprehensive review.

    PubMed

    Lee, Dhong Won; Ha, Jeong Ku; Kim, Jin Goo

    2014-09-01

    Damage to the medial meniscus root, for example by a complete radial tear, destroys the ability of the knee to withstand hoop strain, resulting in contact pressure increases and kinematic alterations. For these reasons, several techniques have been developed to repair the medial meniscus posterior root tear (MMPRT), many of which have shown complete healing of the repaired MMPRT. However, efforts to standardize or optimize the treatment for MMPRT are much needed. When planning a surgical intervention for an MMPRT, strict surgical indications regarding the effect of pullout strength on the refixed root, bony degenerative changes, mechanical alignment, and the Kellgren-Lawrence grade should be considered. Although there are several treatment options and controversies, the current trend is to repair the MMPRT using various techniques including suture anchors and pullout sutures if the patient meets the indications. However, there are still debates on the restoration of hoop tension and prevention of arthritis after repair and further biomechanical and clinical studies should be conducted in the future. The aim of this article was to review and summarize the recent literature regarding various diagnosis and treatment strategies of MMPRT, especially focusing on conflict issues including whether repair techniques can restore the main function of normal meniscus and which is the best suture technique to repair the MMPRT. The authors attempted to provide a comprehensive review of previous studies ranging from basic science to current surgical techniques.

  8. Posterior medial meniscus root ligament lesions: MRI classification and associated findings.

    PubMed

    Choi, Ja-Young; Chang, Eric Y; Cunha, Guilherme M; Tafur, Monica; Statum, Sheronda; Chung, Christine B

    2014-12-01

    The purposes of this study were to determine the prevalence of altered MRI appearances of "posterior medial meniscus root ligament (PMMRL)" lesions, introduce a classification of lesion types, and report associated findings. We retrospectively reviewed 419 knee MRI studies to identify the presence of PMMRL lesions. Classification was established on the basis of lesions encountered. The medial compartment was assessed for medial meniscal tears in the meniscus proper, medial meniscal extrusion, insertional PMMRL osseous changes, regional synovitis, osteoarthritis, insufficiency fracture, and cruciate ligament abnormality. PMMRL abnormalities occurred in 28.6% (120/419) of the studies: degeneration, 14.3% (60/419) and tear, 14.3% (60/419). Our classification system included degeneration and tearing. Tearing was categorized as partial or complete with delineation of the point of failure as entheseal, midsubstance, or junction to meniscus. Of all tears, 93.3% (56/60) occurred at the meniscal junction. Univariate analysis revealed significant differences between the knees with and without PMMRL lesions in age, medial meniscal tear, medial meniscal extrusion, insertional PMMRL osseous change, regional synovitis, osteoarthritis, insufficiency fracture (p=0.017), and cruciate ligament degeneration (p<0.001). PMMRL lesions are commonly detected in symptomatic patients. We have introduced an MRI classification system. PMMRL lesions are significantly associated with age, medial meniscal tears, medial meniscal extrusion, insertional PMMRL osseous change, regional synovitis, osteoarthritis, insufficiency fracture, and cruciate ligament degeneration.

  9. Tubular screen electrical connection support for solid oxide fuel cells

    DOEpatents

    Tomlins, Gregory W.; Jaszcar, Michael P.

    2002-01-01

    A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

  10. Two passive mechanical conditions modulate power generation by the outer hair cells

    PubMed Central

    Gracewski, Sheryl M.

    2017-01-01

    In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884

  11. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability

    PubMed Central

    Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki

    2017-01-01

    ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is markedly less permeable to organic nutrients, with >20-fold lower permeability than the outer membrane of Escherichia coli. Such permeability appears to fit the cyanobacterial lifestyle, in which the diffusion pathway for inorganic solutes may suffice to sustain the autotrophic physiology, illustrating a link between outer membrane permeability and the cellular lifestyle. PMID:28696278

  12. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells.

    PubMed Central

    Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.

    2015-01-01

    The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478

  13. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy.

    PubMed

    Zhang, Alan L; Miller, Stephanie L; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T

    2015-10-01

    To test contact pressures in the knee after treatment of a radial meniscus tear with an all-inside meniscal repair technique and compare the results with inside-out repair and partial meniscectomy. Six non-paired cadaveric knees were analyzed with intra-compartment pressures measured at loads of 250 N, 500 N and 1000 N at 0°, eight degrees, 15°, and 30° of knee flexion. Compartmental contact pressures were measured for the intact medial meniscus, radial tear in the posterior horn, all-inside repair using the NovoStitch suture passer device (Ceterix Orthopaedics Inc., Menlo Park, CA), inside-out repair method, and partial meniscectomy. One-way ANOVA was used for statistical analysis. The greatest differences in peak pressures between treatments were observed under 1000 N load at 30° flexion (0.8± (SD) 0.1 MPa (intact meniscus), 0.8± (SD) 0.1 MPa (all-inside), 0.9± (SD) 0.1 MPa (inside-out) and 1.6± (SD) 0.2 MPa (partial meniscectomy)). Treatment with partial meniscectomy resulted in the highest peak pressures compared to all other states (p<0.0001 at each angle). Repair of the radial tear using the all-inside technique as well as the inside-out technique resulted in significantly decreased compartment pressures compared to partial meniscectomies (p<0.0001 at each angle). There were no significant differences between peak pressures in the intact state and after repair with the all-inside or inside-out techniques. An all-inside repair technique using the NovoStitch suture passer can decrease contact pressures for a radial meniscus tear similarly to the inside-out repair technique when compared to partial meniscectomy. This novel arthroscopic suture passer warrants further analysis in the clinical setting as it may be a reliable method for repair of radial meniscal tears through an arthroscopic all-inside technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear.

    PubMed

    Choi, Chul-Jun; Choi, Yun-Jin; Lee, Jae-Jeong; Choi, Chong-Hyuk

    2010-12-01

    The purpose of this study was to evaluate the relation between meniscal extrusion on magnetic resonance imaging (MRI) and tearing of the posterior root of the medial meniscus, as well as to understand the relation between meniscal extrusion and chondral lesions. From January 2007 to December 2008, 387 consecutive cases of medial meniscal tears were treated arthroscopically. Of these cases, 248 (64.1%) with MRI were reviewed. Arthroscopic findings were reviewed for the type of tear and medial compartment cartilage lesion. Root tear was defined as a radial tear in the posterior horn of the medial meniscus near the tibial spine (i.e., within 5 mm of the root attachment). An MRI scan of the knee was used to evaluate the presence and extent of meniscal extrusion. Meniscal extrusion of 3 mm or greater was considered pathologic. Arthroscopic findings were compared with respect to the extent of meniscal extrusion. There were 98 male patients and 150 female patients. The mean age was 53.5 years (range, 15 to 81 years). The results showed 127 cases (51.2%) in which the medial meniscus had meniscal extrusion of 3 mm or greater. Posterior root tears were found in 66 (26.6%) of the 248 knees. The mean meniscal extrusion in patients with root tear was 3.8 ± 1.4 mm, whereas the mean extrusion of those who had no root tear was 2.7 ± 1.3 mm. We found an association between pathologic meniscal extrusion and root tear (P < .001). Meniscal extrusion showed a low positive predictive value (39%) and specificity (58%) with regard to the meniscal root tear. Meniscal extrusion was also significantly correlated with severity of chondral lesions (P < .001). Considerable extrusion (≥3 mm) can be associated with tearing of the medial meniscus root and chondral lesion of the medial femoral condyle. Level IV, therapeutic case series. Copyright © 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. Long-term evaluation of posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction.

    PubMed

    Shelbourne, K Donald; Roberson, Troy A; Gray, Tinker

    2011-07-01

    The long-term radiographic and subjective results of patients with posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction has not been reported. The authors hypothesized that patients who had posterior lateral meniscus root tears left in situ would have statistically significantly lower subjective scores and greater joint-space narrowing as compared with a control group. Cohort study; Level of evidence, 3. Thirty-three patients who had isolated posterior lateral meniscus root tear and >5 years objective and subjective follow-up were evaluated and compared with a matched control group without meniscal tears based on sex, chronicity of tear, age, and follow-up time. Patients were evaluated subjectively and objectively using the International Knee Documentation Committee criteria. The mean objective follow-up time was 10.6 ± 4.5 years. The mean subjective total score was 84.6 ± 14 in the study group versus 90.5 ± 13 in the control group (P = .09). Radiographs showed lateral joint-space narrowing rated as normal in 19, mild in 10, moderate in 3, and severe in 1 versus the control group, which was normal in 28 and mild in 5 patients. The measured amount of lateral joint-space narrowing compared with the other knee was 1.0 ± 1.6 mm in the study group versus 0 ± 1.1 mm in the controls on 45° flexed posteroanterior radiographs (P < .006). At a mean of 10 years' follow-up of posterior lateral meniscus root tears left in situ, mild lateral joint-space narrowing was measured without significant differences in subjective or objective scores compared with controls. This study provides a baseline that can be used to compare the results of procedures used to treat these tears in other manners.

  16. Histological Comparisons of Parasitism by Schistonchus spp. (Nemata: Aphelenchoididae) in Neotropical Ficus spp.

    PubMed Central

    Center, Barbara J.; Giblin-Davis, Robin M.; Herre, E. Allen; Chung-Schickler, Genevieve C.

    1999-01-01

    Syconia (enclosed infructescences) infested with host-specific species of Schistonchus (Aphelenchoididae) were collected from six species of Ficus (Moraceae) native to Florida or Panama. They were sectioned and histologically examined to assess the effects of parasitism. Parasitism by Schistonchus spp. was associated with hypertrophied cells, tissue necrosis, and the presence of an exudate in all species. Occasional hypertrophy of the outer epidermal cells occurred on seed florets, wasp florets, and on the endothecial cells of male florets in F. aurea (subgenus Urostigma) from Florida. Aberrations of the inner mesocarp occurred under the hypertrophied cells on seed florets. In F. laevigata (subgenus Urostigma) from Florida, Schistonchus sp. infested immature male florets and was associated with hypertrophy of endothecial cells, epidermal cells of the anther filaments, and anthers. Schistonchus sp. also caused aberrations of the anther filament, anthers, and pollen. Ficus poponoei (subgenus Urostigma) and F. glabrata (subgenus Pharmacosycea), both from Panama, had hypertrophied outer epidermal cells on seed florets. Ficus poponoei also had Schistonchus sp. within the pedicel of an aborted floret, with hypertrophy of the cortical parenchyma. Ficus trigonata (subgenus Urostigma) from Panama had hypertrophy of the outer epidermis of seed florets. When the outer epidermis on these florets was missing, the inner mesocarp was hypertrophied. Ficus maxima (subgenus Pharmacosycea) from Panama had hypertrophy on the outer epidermis of seed and aborted florets. Schistonchus spp. were not found in wasp larvae or pupae in any of the Ficus spp. examined. Hypertrophy was never observed in the absence of Schistonchus spp. PMID:19270912

  17. Glycolytic reliance promotes anabolism in photoreceptors

    PubMed Central

    Chinchore, Yashodhan; Begaj, Tedi; Wu, David; Drokhlyansky, Eugene; Cepko, Constance L

    2017-01-01

    Vertebrate photoreceptors are among the most metabolically active cells, exhibiting a high rate of ATP consumption. This is coupled with a high anabolic demand, necessitated by the diurnal turnover of a specialized membrane-rich organelle, the outer segment, which is the primary site of phototransduction. How photoreceptors balance their catabolic and anabolic demands is poorly understood. Here, we show that rod photoreceptors in mice rely on glycolysis for their outer segment biogenesis. Genetic perturbations targeting allostery or key regulatory nodes in the glycolytic pathway impacted the size of the outer segments. Fibroblast growth factor signaling was found to regulate glycolysis, with antagonism of this pathway resulting in anabolic deficits. These data demonstrate the cell autonomous role of the glycolytic pathway in outer segment maintenance and provide evidence that aerobic glycolysis is part of a metabolic program that supports the biosynthetic needs of a normal neuronal cell type. DOI: http://dx.doi.org/10.7554/eLife.25946.001 PMID:28598329

  18. Variable-focus liquid lens for portable applications

    NASA Astrophysics Data System (ADS)

    Kuiper, Stein; Hendriks, Benno H.; Huijbregts, Laura J.; Hirschberg, A. Mico; Renders, Christel A.; van As, Marco A.

    2004-10-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were studied, such as optical performance, electrical characteristics and dynamic behavior. We designed and constructed a miniature camera module based on this tunable lens and show that it is very well suited for use in portable applications.

  19. Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films.

    PubMed

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm 2 V -1 s -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Discoid Medial Meniscus Tear, with a Literature Review of Treatments

    PubMed Central

    Song, In Soo; Kim, Jun Bum; Lee, Jong Keun; Park, Byeong-Seop

    2017-01-01

    The present study reports our experience of treating four cases of symptomatic discoid medial meniscus, three of which were bilateral. We performed partial meniscectomy with a four-portal technique using a knife leaving a 6 mm peripheral margin after confirmation of magnetic resonance imaging findings. Clinical results were assessed at the end of 2-year follow-up using the Knee Injury and Osteoarthritis Outcome Score and a visual analogue scale. We obtained satisfactory clinical results without recurrence of the symptoms in all cases. PMID:28854771

  1. Cartilage Delamination Flap Mimicking a Torn Medial Meniscus

    PubMed Central

    Bin Abd Razak, Hamid Rahmatullah; Amit Kanta, Mitra

    2016-01-01

    We report a case of a chondral delamination lesion due to medial parapatellar plica friction syndrome involving the medial femoral condyle. This mimicked a torn medial meniscus in clinical and radiological presentation. Arthroscopy revealed a chondral delamination flap, which was debrided. Diagnosis of chondral lesions in the knee can be challenging. Clinical examination and MRI have good accuracy for diagnosis and should be used in tandem. Early diagnosis and treatment of chondral lesions are important to prevent progression to early osteoarthritis. PMID:28070434

  2. Free-surface phenomena under low- and zero-gravity conditions

    NASA Technical Reports Server (NTRS)

    Coles, D.

    1985-01-01

    An apparatus to measure contact angle was constructed to exploit the proposed internal-corner criterion. If 2 alfa is the internal angle between two intersecting vertical planes and gamma is the contact angle, a meniscus at the corner rises to a finite height if alfa + gamma pi/2 and to an infinite height if alfa + gamma pi/2. The apparatus operates by decreasing the angle alfa from pi/2 until the meniscus height changes abruptly. A number of liquids are tested on glass and plexiglas.

  3. Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines.

    PubMed

    Grancara, Silvia; Ohkubo, Shinji; Artico, Marco; Ciccariello, Mauro; Manente, Sabrina; Bragadin, Marcantonio; Toninello, Antonio; Agostinelli, Enzo

    2016-10-01

    Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.

  4. The potential use of low-frequency tones to locate regions of outer hair cell loss.

    PubMed

    Kamerer, Aryn M; Diaz, Francisco J; Peppi, Marcello; Chertoff, Mark E

    2016-12-01

    Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies. Published by Elsevier B.V.

  5. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells.

    PubMed

    Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M; Mitchell, Claire H

    2014-01-01

    Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4(-/-) mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

  6. Engineering functional anisotropy in fibrocartilage neotissues.

    PubMed

    MacBarb, Regina F; Chen, Alison L; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-12-01

    The knee meniscus, intervertebral disc, and temporomandibular joint (TMJ) disc all possess complex geometric shapes and anisotropic matrix organization. While these characteristics are imperative for proper tissue function, they are seldom recapitulated following injury or disease. Thus, this study's objective was to engineer fibrocartilages that capture both gross and molecular structural features of native tissues. Self-assembled TMJ discs were selected as the model system, as the disc exhibits a unique biconcave shape and functional anisotropy. To drive anisotropy, 50:50 co-cultures of meniscus cells and articular chondrocytes were grown in biconcave, TMJ-shaped molds and treated with two exogenous stimuli: biomechanical (BM) stimulation via passive axial compression and bioactive agent (BA) stimulation via chondroitinase-ABC and transforming growth factor-β1. BM + BA synergistically increased Col/WW, Young's modulus, and ultimate tensile strength 5.8-fold, 14.7-fold, and 13.8-fold that of controls, respectively; it also promoted collagen fibril alignment akin to native tissue. Finite element analysis found BM stimulation to create direction-dependent strains within the neotissue, suggesting shape plays an essential role toward driving in vitro anisotropic neotissue development. Methods used in this study offer insight on the ability to achieve physiologic anisotropy in biomaterials through the strategic application of spatial, biomechanical, and biochemical cues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Engineering Functional Anisotropy in Fibrocartilage Neotissues

    PubMed Central

    MacBarb, R.F.; Chen, A.L.; Hu, J.C.; Athanasiou, K.A.

    2013-01-01

    The knee meniscus, intervertebral disc, and temporomandibular joint (TMJ) disc all possess complex geometric shapes and anisotropic matrix organization. While these characteristics are imperative for proper tissue function, they are seldom recapitulated following injury or disease. Thus, this study’s objective was to engineer fibrocartilages that capture both gross and molecular structural features of native tissues. Self-assembled TMJ discs were selected as the model system, as the disc exhibits a unique biconcave shape and functional anisotropy. To drive anisotropy, 50:50 co-cultures of meniscus cells and articular chondrocytes were grown in biconcave, TMJ-shaped molds and treated with two exogenous stimuli: biomechanical (BM) stimulation via passive axial compression and bioactive agent (BA) stimulation via chondroitinase-ABC and transforming growth factor-β1. BM+BA synergistically increased Col/WW, Young’s modulus, and ultimate tensile strength 5.8-fold, 14.7-fold, and 13.8-fold that of controls, respectively; it also promoted collagen fibril alignment akin to native tissue. Finite element analysis found BM stimulation to create direction-dependent strains within the neotissue, suggesting shape plays an essential role toward driving in vitro anisotropic neotissue development. Methods used in this study offer insight on the ability to achieve physiologic anisotropy in biomaterials through the strategic application of spatial, biomechanical, and biochemical cues. PMID:24075479

  8. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  9. Modeling the Effect of Olivocochlear Efferents on the Subcortical Envelope Following Response in Humans

    DTIC Science & Technology

    2016-11-28

    olivocochlear reflex (MOCR), a feedback mechanism that controls gain of the outer hair cells, is thought to provide protection and enhancement for a listener in...effectively reduce the outer hair cell gain, depending on the stimulus frequency, level, and timing. Human Envelope Following Responses (EFRs

  10. Double interconnection fuel cell array

    DOEpatents

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  11. Liquid-vapor rectilinear diameter revisited

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.

    2018-02-01

    In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.

  12. The effects of geometric uncertainties on computational modelling of knee biomechanics

    NASA Astrophysics Data System (ADS)

    Meng, Qingen; Fisher, John; Wilcox, Ruth

    2017-08-01

    The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.

  13. The Content of Structural and Trace Elements in the Knee Joint Tissues.

    PubMed

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-11-23

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.

  14. The Content of Structural and Trace Elements in the Knee Joint Tissues

    PubMed Central

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-01-01

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758

  15. Weightbearing Versus Nonweightbearing After Meniscus Repair.

    PubMed

    VanderHave, Kelly L; Perkins, Crystal; Le, Michael

    2015-01-01

    Optimal rehabilitation after meniscal repair remains controversial. To review the current literature on weightbearing status after meniscal repairs and to provide evidence-based recommendations for postoperative rehabilitation. MEDLINE (January 1, 1993 to July 1, 2014) and Embase (January 1, 1993 to July 1, 2014) were queried with use of the terms meniscus OR/AND repair AND rehabilitation. Included studies were those with levels of evidence 1 through 4, with minimum 2 years follow-up and in an English publication. Systematic review. Level 4. Demographics and clinical and radiographic outcomes of meniscus repair at a minimum of 2 years follow-up were extracted. Successful clinical outcomes ranged from 70% to 94% with conservative rehabilitation. More recent studies using an accelerated rehabilitation protocol with full weightbearing and early range of motion reported 64% to 96% good results. Outcomes after both conservative (restricted weightbearing) protocols and accelerated rehabilitation (immediate weightbearing) yielded similar good to excellent results; however, lack of similar objective criteria and consistency among surgical techniques and existing studies makes direct comparison difficult. © 2015 The Author(s).

  16. Assessment of Corneal and Tear Film Parameters in Rheumatoid Arthritis Patients Using Anterior Segment Spectral Domain Optical Coherence Tomography.

    PubMed

    El-Fayoumi, Dina; Youssef, Maha Mohamed; Khafagy, Mohamed Mahmoud; Badr El Dine, Nashwa; Gaber, Wafaa

    2018-01-01

    To study the corneal changes in rheumatoid arthritis (RA) patients in vivo, using spectral domain anterior segment optical coherence tomography (AS-OCT). A case-control study was done on 43 RA patients and 40 controls. The disease activity score (DAS28-ESR) was calculated and all participants had lower tear meniscus, corneal thickness, and epithelial thickness evaluation using AS-OCT. The lower tear meniscus height (LTMH) and the lower tear meniscus area (LTMA) were significantly lower in the RA patients than in controls (p < 0.001). RA patients also had a significantly thinner central corneal thickness (p = 0.02) and their epithelium was found to be thinner in the superotemporal peripheral sector. The LTMH and LTMA are significantly reduced in RA patients, despite the absence of clinical diagnosis of dry eye. RA patients have thinner corneal thickness and epithelial thickness than controls, which did not correlate with either disease duration or activity.

  17. Apparatus for monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  18. Method of monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  19. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells

    PubMed Central

    Hadis, Mohammed; Alderwick, Luke

    2017-01-01

    Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191

  20. Study of Power Options for Jupiter and Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  1. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology.

    PubMed

    Brodziak-Dopierała, Barbara; Roczniak, Wojciech; Jakóbik-Kolon, Agata; Kluczka, Joanna; Koczy, Bogdan; Kwapuliński, Jerzy; Babuśka-Roczniak, Magdalena

    2017-10-01

    Iron as a cofactor of enzymes takes part in the synthesis of the bone matrix. Severe deficiency of iron reduces the strength and mineral density of bones, whereas its excess may increase oxidative stress. In this context, it is essential to determine the iron content in knee joint tissues. The study objective was to determine the level of iron in the tissues of the knee joint, i.e., in the femoral bone, tibia and meniscus. Material for analysis was obtained during endoprosthetic surgery of the knee joint. Within the knee joint, the tibia, femur and meniscus were analyzed. Samples were collected from 50 patients, including 36 women and 14 men. The determination of iron content was performed with the ICP-AES method, using Varian 710-ES. The lowest iron content was in the tibia (27.04 μg/g), then in the meniscus (38.68 μg/g) and the highest in the femur (41.93 μg/g). Statistically significant differences were noted in the content of iron in knee joint tissues. In patients who underwent endoprosthesoplasty of the knee joint, statistically significant differences were found in the levels of iron in various components of the knee joint. The highest iron content was found in the femoral bone of the knee joint and then in the meniscus, the lowest in the tibia. The differences in iron content in the knee joint between women and men were not statistically significant.

  2. Novel technique for repairing posterior medial meniscus root tears using porcine knees and biomechanical study.

    PubMed

    Wu, Jia-Lin; Lee, Chian-Her; Yang, Chan-Tsung; Chang, Chia-Ming; Li, Guoan; Cheng, Cheng-Kung; Chen, Chih-Hwa; Huang, Hsu-Shan; Lai, Yu-Shu

    2018-01-01

    Transtibial pullout suture (TPS) repair of posterior medial meniscus root (PMMR) tears was shown to achieve good clinical outcomes. The purpose of this study was to compare biomechanically, a novel technique designed to repair PMMR tears using tendon graft (TG) and conventional TPS repair. Twelve porcine tibiae (n = 6 each) TG group: flexor digitorum profundus tendon was passed through an incision in the root area, created 5 mm postero-medially along the edge of the attachment area. TPS group: a modified Mason-Allen suture was created using no. 2 FiberWire. The tendon grafts and sutures were threaded through the bone tunnel and then fixed to the anterolateral cortex of the tibia. The two groups underwent cyclic loading followed by a load-to-failure test. Displacements of the constructs after 100, 500, and 1000 loading cycles, and the maximum load, stiffness, and elongation at failure were recorded. The TG technique had significantly lower elongation and higher stiffness compared with the TPS. The maximum load of the TG group was significantly lower than that of the TPS group. Failure modes for all specimens were caused by the suture or graft cutting through the meniscus. Lesser elongation and higher stiffness of the constructs in TG technique over those in the standard TPS technique might be beneficial for postoperative biological healing between the meniscus and tibial plateau. However, a slower rehabilitation program might be necessary due to its relatively lower maximum failure load.

  3. Medial Meniscal Extrusion Relates to Cartilage Loss in Specific Femorotibial Subregions- Data from the Osteoarthritis Initiative

    PubMed Central

    Bloecker, K.; Wirth, W.; Guermazi, A.; Hunter, DJ; Resch, H.; Hochreiter, J.; Eckstein, F.

    2015-01-01

    Objective Medial meniscal extrusion is known to be related to structural progression of knee OA. However, it is unclear whether medial meniscal extrusion is more strongly associated with cartilage loss in certain medial femorotibial subregions than to others. Methods Segmentation of the medial tibial and femoral cartilage (baseline; 1-year follow-up) and the medial meniscus (baseline) was performed in 60 participants with frequent knee pain (age 61.3±9.2y, BMI 31.3±3.9 kg/m2) and with unilateral medial radiographic joint space narrowing (JSN) grade 1–3, using double echo steady state MR-images. Medial meniscal extrusion distance and extrusion area (%) between the external meniscal and tibial margin at baseline, and longitudinal medial cartilage loss in eight anatomical subregions were determined. Results A significant association (Pearson correlation coefficient) was seen between medial meniscus extrusion area in JSN knees and cartilage loss over one year throughout the entire medial femorotibial compartment. The strongest correlation was with cartilage loss in the external medial tibia (r=−0.34 [p<0.01] in JSN, and r=−0.30 [p=0.02] in noJSN knees). Conclusion Medial meniscus extrusion was associated with subsequent medial cartilage loss. The external medial tibial cartilage may be particularly vulnerable to thinning once the meniscus extrudes and its surface is “exposed” to direct, non-physiological, cartilage-cartilage contact. PMID:25988986

  4. Influence of partial meniscectomy on attachment forces, superficial strain and contact mechanics in porcine knee joints.

    PubMed

    Freutel, Maren; Seitz, Andreas M; Ignatius, Anita; Dürselen, Lutz

    2015-01-01

    Numerous studies investigated the reasons for premature osteoarthritis due to partial meniscectomy (PM). However, the influence of meniscectomy on attachment forces and superficial strain of the tibial meniscus is unclear. It is hypothesised that these parameters depend on the degree of PM. Six porcine medial menisci were placed in a custom made apparatus, and each meniscal attachment was connected to a force sensor. After printing markers onto the tibial meniscal surfaces, the menisci were positioned on a glass plate enabling optical superficial strain measurement. Additionally, contact area and pressure were investigated. Each meniscus was axially loaded up to 650 N using its respective femoral condyle. Testing was conducted intact and after 50 and 75% PM of the posterior horn and extending 75% PM to the anterior horn. With increasing meniscectomy, the attachment forces decreased anteriorly by up to 17% (n.s.) and posteriorly by up to 55% (p = 0.003). The circumferential strain in the peripheral meniscal zones was not affected by the meniscectomy, while in some meniscal zones the radial strain changed from compression to tension. Contact area decreased by up to 23% (p = 0.01), resulting in an increase in 40% (p = 0.02) for the maximum contact pressure. Partial meniscectomy significantly alters the loading situation of the meniscus and its attachments. Specifically, the attachment forces decreased with increasing amount of meniscal tissue loss, which reflects the impaired ability of the meniscus to transform axial joint load into meniscal hoop stress.

  5. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  6. Cytologic appearance of retinal cells included in a fine-needle aspirate of a meningioma around the optic nerve of a dog.

    PubMed

    Tvedten, Harold; Hillström, Anna

    2013-06-01

    A 6-year-old Wirehair Dachshund had a meningioma around the optic nerve that caused exophthalmos. A benign mesenchymal tumor was suspected based on the cytologic pattern of a fine-needle aspirate, and a meningioma was diagnosed by histopathologic examination. In addition to the meningioma cells, the cytologic smears included groups of cells from apparently 4 layers of normal retina. In particular, uniform rod-shaped structures in the cytologic sample could suggest rod-shaped bacteria, but these structures were identified as cylindrical outer segments of photoreceptor rod cells. Other retinal structures recognized included pigmented epithelial layer cells with their uniquely formed pigment granules, the characteristic bi-lobed, cleaved nuclei from the outer nuclear layer, and nerve tissue likely from the outer plexiform layer of the retina. © 2013 American Society for Veterinary Clinical Pathology.

  7. Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation.

    PubMed

    Kim, Jin Goo; Lee, Yong Seuk; Bae, Tae Soo; Ha, Jeong Ku; Lee, Dong Hoon; Kim, Young Jae; Ra, Ho Jong

    2013-09-01

    The purposes of this study were to evaluate the effect on tibiofemoral contact mechanics of repair of the posterior root of the medial meniscus and the effect of meniscal allograft transplantation (MAT) with medial collateral ligament (MCL) release at different flexion angles. Ten fresh-frozen human cadaveric knees (five pairs) were used. A digital pressure sensor was inserted by capsulotomy, and experiments were performed serially under the following six conditions, that is, with an intact medial meniscus (normal controls), with a root tear, after root repair, after total meniscectomy, after MAT, and after MAT plus MCL release. During each experiment, knees were positioned at 0°, 30°, 60°, and 90° of flexion, and peak pressure (kPa) and contact area (cm2) were measured. At 0° of flexion, contact pressure did not differ among the six experimental settings. However, at 30° and 60° of flexion, contact pressure differed significantly between root tear and root repair specimens (p = 0.04 and 0.03, respectively), and between total meniscectomy and MAT specimens (p = 0.02 and 0.03, respectively). On the other hand, mean contact pressures were different between normal (476.7 ± 473.1 and 573.3 ± 479.1 kPa) and root repair (575.7 ± 357.8 and 598.6 ± 415.8), and between normal and MAT (635.7 ± 437.4 and 674.3 ± 533.2). At 0°, 30°, 60°, and 90° of flexion, contact areas differed significantly between normal and total meniscectomy specimens (p = 0.02, 0.01, 0.02, and 0.02, respectively), and between MAT and total meniscectomy specimens (p = 0.03, 0.02, 0.02, and 0.03, respectively). Contact areas differed significantly between root tear and root repair specimens at 60° of flexion (p = 0.04), and between normal control and root repair specimens at 60° and 90° of flexion (p = 0.03 and 0.04, respectively). The effects of MAT plus MCL release on contact mechanics were not different from the effects of MAT alone (n.s.). Both meniscal root repair and transplantation of meniscus improved contact mechanics, but it did not appear that repair of the meniscal root or transplantation of meniscus restores the biomechanical function back to normal level. The MAT plus MCL release was similar to those after MAT alone. Therefore, it is better to preserve meniscus and MCL release could be done during the MAT.

  8. THE STRUCTURE AND CONCENTRATION OF SOLIDS IN PHOTORECEPTOR CELLS STUDIED BY REFRACTOMETRY AND INTERFERENCE MICROSCOPY

    PubMed Central

    Sidman, Richard L.

    1957-01-01

    Fragments of freshly obtained retinas of several vertebrate species were studied by refractometry, with reference to the structure of the rods and cones. The findings allowed a reassessment of previous descriptions based mainly on fixed material. The refractometric method was used also to measure the refractice indices and to calculate the concentrations of solids and water in the various cell segments. The main quantitative data were confirmed by interference microscopy. When examined by the method of refractometry the outer segments of freshly prepared retinal rods appear homogeneous. Within a few minutes a single eccentric longitudinal fiber appears, and transverse striations may develop. These changes are attributed to imbibition of water and swelling in structures normally too small for detection by light microscopy. The central "core" of outer segments and the chromophobic disc between outer and inner segments appear to be artifacts resulting from shrinkage during dehydration. The fresh outer segments of cones, and the inner segments of rods and cones also are described and illustrated. The volumes, refractive indices, concentrations of solids, and wet and dry weights of various segments of the photoreceptor cells were tabulated. Rod outer segments of the different species vary more than 100-fold in volume and mass but all have concentrations of solids of 40 to 43 per cent. Cone outer segments contain only about 30 per cent solids. The myoids, paraboloids, and ellipsoids of the inner segments likewise have characteristic refractive indices and concentrations of solids. Some of the limitations and particular virtues of refractometry as a method for quantitative analysis of living cells are discussed in comparison with more conventional biochemical techniques. Also the shapes and refractive indices of the various segments of photoreceptor cells are considered in relation to the absorption and transmission of light. The Stiles-Crawford effect can be accounted for on the basis of the structure of cone cells. PMID:13416308

  9. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

    PubMed

    Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred

    2014-02-01

    The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    PubMed

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  11. Variable-focus liquid lens for miniature cameras

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.

    2004-08-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centered lens with a high optical quality. The motion of the lens during a focusing action was studied by observation through the transparent tube wall. Finally, a miniature achromatic camera module was designed and constructed based on this adjustable lens, showing that it is excellently suited for use in portable applications.

  12. Integral edge seals for phosphoric acid fuel cells

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  13. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  14. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  15. Host cell interactions of outer membrane vesicle-associated virulence factors of Enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury

    USDA-ARS?s Scientific Manuscript database

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, confocal laser...

  16. Risk Factors and Predictors of Significant Chondral Surface Change From Primary to Revision Anterior Cruciate Ligament Reconstruction: A MOON and MARS Cohort Study.

    PubMed

    Magnussen, Robert A; Borchers, James R; Pedroza, Angela D; Huston, Laura J; Haas, Amanda K; Spindler, Kurt P; Wright, Rick W; Kaeding, Christopher C; Allen, Christina R; Anderson, Allen F; Cooper, Daniel E; DeBerardino, Thomas M; Dunn, Warren R; Lantz, Brett A; Mann, Barton; Stuart, Michael J; Albright, John P; Amendola, Annunziato; Andrish, Jack T; Annunziata, Christopher C; Arciero, Robert A; Bach, Bernard R; Baker, Champ L; Bartolozzi, Arthur R; Baumgarten, Keith M; Bechler, Jeffery R; Berg, Jeffrey H; Bernas, Geoffrey A; Brockmeier, Stephen F; Brophy, Robert H; Bush-Joseph, Charles A; Butler, J Brad; Campbell, John D; Carey, James L; Carpenter, James E; Cole, Brian J; Cooper, Jonathan M; Cox, Charles L; Creighton, R Alexander; Dahm, Diane L; David, Tal S; Flanigan, David C; Frederick, Robert W; Ganley, Theodore J; Garofoli, Elizabeth A; Gatt, Charles J; Gecha, Steven R; Giffin, James Robert; Hame, Sharon L; Hannafin, Jo A; Harner, Christopher D; Harris, Norman Lindsay; Hechtman, Keith S; Hershman, Elliott B; Hoellrich, Rudolf G; Hosea, Timothy M; Johnson, David C; Johnson, Timothy S; Jones, Morgan H; Kamath, Ganesh V; Klootwyk, Thomas E; Levy, Bruce A; Ma, C Benjamin; Maiers, G Peter; Marx, Robert G; Matava, Matthew J; Mathien, Gregory M; McAllister, David R; McCarty, Eric C; McCormack, Robert G; Miller, Bruce S; Nissen, Carl W; O'Neill, Daniel F; Owens, Brett D; Parker, Richard D; Purnell, Mark L; Ramappa, Arun J; Rauh, Michael A; Rettig, Arthur C; Sekiya, Jon K; Shea, Kevin G; Sherman, Orrin H; Slauterbeck, James R; Smith, Matthew V; Spang, Jeffrey T; Svoboda, Steven J; Taft, Timothy N; Tenuta, Joachim J; Tingstad, Edwin M; Vidal, Armando F; Viskontas, Darius G; White, Richard A; Williams, James S; Wolcott, Michelle L; Wolf, Brian R; York, James J

    2018-03-01

    Articular cartilage health is an important issue following anterior cruciate ligament (ACL) injury and primary ACL reconstruction. Factors present at the time of primary ACL reconstruction may influence the subsequent progression of articular cartilage damage. Larger meniscus resection at primary ACL reconstruction, increased patient age, and increased body mass index (BMI) are associated with increased odds of worsened articular cartilage damage at the time of revision ACL reconstruction. Case-control study; Level of evidence, 3. Subjects who had primary and revision data in the databases of the Multicenter Orthopaedics Outcomes Network (MOON) and Multicenter ACL Revision Study (MARS) were included. Reviewed data included chondral surface status at the time of primary and revision surgery, meniscus status at the time of primary reconstruction, primary reconstruction graft type, time from primary to revision ACL surgery, as well as demographics and Marx activity score at the time of revision. Significant progression of articular cartilage damage was defined in each compartment according to progression on the modified Outerbridge scale (increase ≥1 grade) or >25% enlargement in any area of damage. Logistic regression identified predictors of significant chondral surface change in each compartment from primary to revision surgery. A total of 134 patients were included, with a median age of 19.5 years at revision surgery. Progression of articular cartilage damage was noted in 34 patients (25.4%) in the lateral compartment, 32 (23.9%) in the medial compartment, and 31 (23.1%) in the patellofemoral compartment. For the lateral compartment, patients who had >33% of the lateral meniscus excised at primary reconstruction had 16.9-times greater odds of progression of articular cartilage injury than those with an intact lateral meniscus ( P < .001). For the medial compartment, patients who had <33% of the medial meniscus excised at the time of the primary reconstruction had 4.8-times greater odds of progression of articular cartilage injury than those with an intact medial meniscus ( P = .02). Odds of significant chondral surface change increased by 5% in the lateral compartment and 6% in the medial compartment for each increased year of age ( P ≤ .02). For the patellofemoral compartment, the use of allograft in primary reconstruction was associated with a 15-fold increased odds of progression of articular cartilage damage relative to a patellar tendon autograft ( P < .001). Each 1-unit increase in BMI at the time of revision surgery was associated with a 10% increase in the odds of progression of articular cartilage damage ( P = .046) in the patellofemoral compartment. Excision of the medial and lateral meniscus at primary ACL reconstruction increases the odds of articular cartilage damage in the corresponding compartment at the time of revision ACL reconstruction. Increased age is a risk factor for deterioration of articular cartilage in both tibiofemoral compartments, while increased BMI and the use of allograft for primary ACL reconstruction are associated with an increased risk of progression in the patellofemoral compartment.

  17. Caprine articular, meniscus and intervertebral disc cartilage: an integral analysis of collagen network and chondrocytes.

    PubMed

    Vonk, Lucienne A; Kroeze, Robert Jan; Doulabi, Behrouz Zandieh; Hoogendoorn, Roel J; Huang, Chunling; Helder, Marco N; Everts, Vincent; Bank, Ruud A

    2010-04-01

    Cartilage is a tissue with only limited reparative capacities. A small part of its volume is composed of cells, the remaining part being the hydrated extracellular matrix (ECM) with collagens and proteoglycans as its main constituents. The functioning of cartilage depends heavily on its ECM. Although it is known that the various (fibro)cartilaginous tissues (articular cartilage, annulus fibrosus, nucleus pulposus, and meniscus) differ from one each other with respect to their molecular make-up, remarkable little quantitative information is available with respect to its biochemical constituents, such as collagen content, or the various posttranslational modifications of collagen. Furthermore, we have noticed that tissue-engineering strategies to replace cartilaginous tissues pay in general little attention to the biochemical differences of the tissues or the phenotypical differences of the (fibro)chondrocytes under consideration. The goal of this paper is therefore to provide quantitative biochemical data from these tissues as a reference for further studies. We have chosen the goat as the source of these tissues, as this animal is widely accepted as an animal model in orthopaedic studies, e.g. in the field of cartilage degeneration and tissue engineering. Furthermore, we provide data on mRNA levels (from genes encoding proteins/enzymes involved in the synthesis and degradation of the ECM) from (fibro)chondrocytes that are freshly isolated from these tissues and from the same (fibro)chondrocytes that are cultured for 18 days in alginate beads. Expression levels of genes involved in the cross-linking of collagen were different between cells isolated from various cartilaginous tissues. This opens the possibility to include more markers than the commonly used chondrogenic markers type II collagen and aggrecan for cartilage tissue-engineering applications. Copyright 2009 Elsevier B.V. All rights reserved.

  18. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage.

    PubMed

    MacBarb, Regina F; Makris, Eleftherios A; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-01-01

    The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as knee meniscus, intervertebral disc and temporomandibular joint disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on a par with native tissue, resulting in constructs unsuitable for clinical applications. The objective of this study was to engineer a spectrum of biomimetic fibrocartilages representative of the distinct functional properties found in native tissues. Using the self-assembly process, different co-cultures of meniscus cells and articular chondrocytes were seeded into agarose wells and treated with the catabolic agent chondroitinase-ABC (C-ABC) and the anabolic agent transforming growth factor-β1 (TGF-β1) via a two-factor (cell ratio and bioactive treatment), full factorial study design. Application of both C-ABC and TGF-β1 resulted in a beneficial or positive increase in the collagen content of treated constructs compared to controls. Significant increases in both the collagen density and fiber diameter were also seen with this treatment, increasing these values by 32 and 15%, respectively, over control values. Mechanical testing found the combined bioactive treatment to synergistically increase the Young's modulus and ultimate tensile strength of the engineered fibrocartilages compared to controls, with values reaching the lower spectrum of those found in native tissues. Together, these data demonstrate that C-ABC and TGF-β1 interact to develop a denser collagen matrix better able to withstand tensile loading. This study highlights a way to optimize the tensile properties of engineered fibrocartilage using a biochemical and a biophysical agent together to create distinct fibrocartilages with functional properties mimicking those of native tissue. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Iodination of Escherichia coli with chloramine T: selective labeling of the outer membrane lipoprotein.

    PubMed Central

    Munford, R S; Gotschlich, E C

    1977-01-01

    Iodination of Escherichia coli cells with chloramine T preferentially labels the free and murein-bound forms of the outer membrane lipoprotein. Iodination for 15 s at 15 degrees C labels the two forms of the lipoprotein almost exclusively, whereas iodination for 60 s at 25 degrees C also labels the other major outer membrane proteins. Chloramine T iodination is a rapid, simple technique for labeling the outer membrane lipoprotein. PMID:400793

  20. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions and electrons, agree rather well with the experiment.

  1. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    PubMed

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P < .01) and the MR group (P < .05) compared with that of the MI group, while there was no significant difference in articular cartilage T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values compared with the knees with an intact meniscus. © 2015 The Author(s).

  2. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye.

    PubMed

    Gaffney, E A; Tiffany, J M; Yokoi, N; Bron, A J

    2010-01-01

    Tear hyperosmolarity is thought to play a key role in the mechanism of dry eye, a common symptomatic condition accompanied by visual disturbance, tear film instability, inflammation and damage to the ocular surface. We have constructed a model for the mass and solute balance of the tears, with parameter estimation based on extensive data from the literature which permits the influence of tear evaporation, lacrimal flux and blink rate on tear osmolarity to be explored. In particular the nature of compensatory events has been estimated in aqueous-deficient (ADDE) and evaporative (EDE) dry eye. The model reproduces observed osmolarities of the tear meniscus for the healthy eye and predicts a higher concentration in the tear film than meniscus in normal and dry eye states. The differential is small in the normal eye, but is significantly increased in dry eye, especially for the simultaneous presence of high meniscus concentration and low meniscus radius. This may influence the interpretation of osmolarity values obtained from meniscus samples since they need not fully reflect potential damage to the ocular surface caused by tear film hyperosmolarity. Interrogation of the model suggests that increases in blink rate may play a limited role in compensating for a rise in tear osmolarity in ADDE but that an increase in lacrimal flux, together with an increase in blink rate, may delay the development of hyperosmolarity in EDE. Nonetheless, it is predicted that tear osmolarity may rise to much higher levels in EDE than ADDE before the onset of tear film breakup, in the absence of events at the ocular surface which would independently compromise tear film stability. Differences in the predicted responses of the pre-ocular tears in ADDE compared to EDE or hybrid disease to defined conditions suggest that no single, empirically-accessible variable can act as a surrogate for tear film concentration and the potential for ocular surface damage. This emphasises the need to measure and integrate multiple diagnostic indicators to determine outcomes and prognosis. Modelling predictions in addition show that further studies concerning the possibility of a high lacrimal flux phenotype in EDE are likely to be profitable.

  3. Comparative Biomechanical Study on Contact Alterations After Lateral Meniscus Posterior Root Avulsion, Transosseous Reinsertion, and Total Meniscectomy.

    PubMed

    Perez-Blanca, Ana; Espejo-Baena, Alejandro; Amat Trujillo, Daniel; Prado Nóvoa, María; Espejo-Reina, Alejandro; Quintero López, Clara; Ezquerro Juanco, Francisco

    2016-04-01

    To compare the effects of lateral meniscus posterior root avulsion left in situ, its repair, and meniscectomy on contact pressure distribution in both tibiofemoral compartments at different flexion angles. Eight cadaveric knees were tested under compressive 1000 N load for 4 lateral meniscus conditions (intact, posterior root avulsion, transosseous root repair, and total meniscectomy) at flexion angles 0°, 30°, 60°, and 90°. Contact area and pressure distribution were registered using K-scan pressure sensors inserted between menisci and tibial plateau. In the lateral compartment, root detachment decreased contact area (P = .017, 0° and 30°; P = .012, 60° and 90°) and increased mean (P = .012, all angles) and maximum (P = .025, 0° and 30°; P = .017, 60°; P = .012, 90°) pressures relative to intact condition. Repair restored all measured parameters close to intact at 0°, but effectiveness decreased with flexion angle, yielding no significant effect at 90°. Meniscectomy produced higher decreases than root avulsion in contact area (P = .012, 0° and 90°; P = .05, 30° and 60°) and increases in mean (P = .017, 0° and 30°; P = .018, 90°) and maximum pressure (P = .012, 0°; P = .036, 30°). In the medial compartment, lesion changed the contact area at high flexion angles only, while meniscectomy induced greater changes at all angles. Lateral meniscus posterior root avulsion generates significant alterations in contact area and pressures at lateral knee compartment for flexion angles between full extension and 90°. Meniscectomy causes greater disorders than the avulsion left in situ. Transosseous repair with a single suture restores these alterations to conditions close to intact at 0° and 30° but not at 60° and 90°. Altered contact mechanics after lateral meniscus posterior root avulsion might have degenerative consequences. Transosseous repair with one suture should be revised to effectively restore contact mechanics at high flexion angles. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    PubMed

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus.

    PubMed

    Ziegler, Raphaela; Goebel, Lars; Seidel, Roland; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2015-09-01

    First, to evaluate whether medial open wedge high tibial osteotomy (HTO) induces alterations of the microstructure of the lateral tibial subchondral bone plate of sheep. Second, to test the hypothesis that specific correlations exist between topographical structural alterations of the subchondral bone, the cartilage and the lateral meniscus. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction) and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the non-osteotomised contralateral proximal tibiae. After 6 months, subchondral bone structure indices were measured by computed tomography. Correlations between the subchondral bone, the articular cartilage and the lateral meniscus were determined. Increased loading by valgus overcorrection led to an enlarged specific bone surface (BS/BV) in the subarticular spongiosa compared with unloading by varisation. The subchondral bone plate was 3.9-fold thicker in the central region of the lateral tibial plateau than in the submeniscal periphery. Its thickness in the central region significantly correlated with the thickness of the articular cartilage. In the submeniscal region, such correlation did not exist. In general, a higher degree of osteoarthritis (OA) correlated with alterations of the subchondral bone plate microstructure. OA of the submeniscal articular cartilage also correlated with worse matrix staining of the lateral meniscus. Osteoarthritis changes are associated with alterations of the subchondral bone plate microstructure. Specific topographical relationships exist in the central region between the articular cartilage and subchondral bone plate thickness, and in the submeniscal periphery between and the articular cartilage and lateral meniscus. From a clinical perspective, the combined follow-up data from this and the previous two investigations suggest that open wedge valgus HTO is a safe procedure for the lateral compartment to manage medial osteoarthritis of the knee with varus malalignment in the short term.

  6. Subcellular localization based comparative study on radioresistant bacteria: A novel approach to mine proteins involve in radioresistance.

    PubMed

    Vishambra, Divya; Srivastava, Malay; Dev, Kamal; Jaiswal, Varun

    2017-08-01

    Radioresistant bacteria (RRB) are among the most radioresistant organisms and has a unique role in evolution. Along with the evolutionary role, radioresistant organisms play important role in paper industries, bioremediation, vaccine development and possibility in anti-aging and anti-cancer treatment. The study of radiation resistance in RRB was mainly focused on cytosolic mechanisms such as DNA repair mechanism, cell cleansing activity and high antioxidant activity. Although it was known that protein localized on outer areas of cell play role in resistance towards extreme condition but the mechanisms/proteins localized on the outer area of cells are not studied for radioresistance. Considering the fact that outer part of cell is more exposed to radiations and proteins present in outer area of the cell may have role in radioresistance. Localization based comparative study of proteome from RRB and non-radio resistant bacteria was carried out. In RRB 20 unique proteins have been identified. Further domain, structural, and pathway analysis of selected proteins were carried out. Out of 20 proteins, 8 proteins were direct involvement in radioresistance and literature study strengthens this, however, 1 proteins had assumed relation in radioresistance. Selected radioresistant proteins may be helpful for optimal use of RRB in industry and health care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window

    PubMed Central

    Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.; Thomas, Megan L. A.; Kamerer, Aryn M.; Peppi, Marcello

    2014-01-01

    The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels. PMID:25190395

  8. Infiltration of Slag Film into the Grooves on a Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Jeong, Hee-Tae

    2013-02-01

    An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.

  9. Incidence and treatment of intra-articular lesions associated with anterior cruciate ligament tears.

    PubMed

    Todor, Adrian; Nistor, Dan; Buescu, Cristian; Pojar, Adina; Lucaciu, Dan

    2014-01-01

    The aim of the study is to retrospectively review the patients admitted and treated in the "Alexandru Rădulescu" Orthopedics and Traumatology Clinic, Cluj-Napoca for an anterior cruciate ligament tear over a 2-year period and document the intra-articular lesions found at arthroscopy as well as the treatment used for these associated lesions. The case records of 88 patients operated for anterior cruciate ligament tear over a period of 2 years were reviewed. There were 67 males and 21 females with a mean age of 28.9 years, ranging from 14 to 49 years. After recording the patient demographics, we documented all the intra-articular lesions found during knee arthroscopy, as well as all procedures undertaken concomitant with the ACL reconstruction. 50 of the 88 patients (56.8%) had associated intra-articular lesions at the time of anterior cruciate ligament reconstruction. The most common injury found was a meniscus tear, 48 patients (54.5%) had a meniscal pathology at the time of ligament reconstruction, medial meniscus being the most frequent injured one, found in 37 patients. Meniscectomy and meniscus suture were the procedures performed for these lesions, meniscectomy being more frequent. Chondral defects were the next associated injuries found with an incidence of 15.9% of the cases. The medial side of the knee was the most common site of chondral pathology. ACL tears are frequently associated with other intra-articular lesions, especially medial meniscus tears and chondral defects affecting the medial compartment. Such pathology most often needs surgical attention during the anterior cruciate ligament reconstruction.

  10. The Relationship between Body Mass Index and Risk of Failure following Meniscus Repair.

    PubMed

    Sommerfeldt, Mark F; Magnussen, Robert A; Randall, Kyle L; Tompkins, Marc; Perkins, Bryan; Sharma, Avijit; Blackwell, Ryan; Flanigan, David C

    2016-11-01

    It is unknown whether body mass index (BMI) influences outcomes of meniscus repair. We hypothesized that increased BMI would be associated with increased risk of failure. A retrospective study was performed involving patients who had undergone meniscus repair between 2008 and 2012. Chart review and phone interviews were conducted to determine which patients required additional surgery. Patients were categorized as normal BMI (<25) or increased BMI (≥25). Of the 305 patients who met study criteria, 216 (70.8%) were available for follow-up at a mean of 19 months postoperatively. A total of 100 patients (46.3%) had a BMI <25 and 116 (53.7%) patients had a BMI ≥25. BMI was less than 35 in 90% of patients. Thirty-four patients (15.7%) required further surgery for a repair failure. Failure occurred in 20 patients (20%) in the normal BMI group and 14 patients (12%) in the increased BMI group ( p  = 0.14). Logistic regression revealed a trend toward decreased odds of repair failure in the increased BMI group (odds ratio: 0.46; 95% confidence interval: 0.20-1.05; p  = 0.065). Patients with a BMI ≥25 did not have a higher risk of meniscus repair failure relative to those with a BMI <25. Given these findings, surgeons should not consider moderately increased BMI as a contraindication to meniscal repair. The effect of BMI greater than 35 on outcomes of meniscal repair remains unclear and warrants further study. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Articular cartilage scores in cranial cruciate ligament-deficient dogs with or without bucket handle tears of the medial meniscus.

    PubMed

    Kaufman, Kathryn; Beale, Brian S; Thames, Howard D; Saunders, W Brian

    2017-01-01

    To compare articular cartilage scores in cranial cruciate ligament (CCL)-deficient dogs with or without concurrent bucket handle tears (BHT) of the medial meniscus. Retrospective case series. Client-owned dogs treated with arthroscopy and tibial plateau leveling osteotomy or extracapsular repair for complete CCL rupture (290 stifles from 264 dogs). Medical records and arthroscopic images were reviewed. Medial femoral condyle (MFC) and medial tibial plateau (MTP) cartilage was scored using the modified Outerbridge scale. Periarticular osteophytosis (PAO) and injury to the medial meniscus were recorded. Data were analyzed using Student's t-tests, Wilcoxon rank-sum test, and Fisher's exact test for changes in the stifle based on meniscal condition, body weight, and duration of lameness. PAO, MFC, and MTP articular cartilage scores were not significantly different in dogs with or without BHT. There were no significant differences in MFC or MTP scores when dogs were evaluated based on bodyweight and the presence or absence of a BHT. However, PAO formation was significantly increased in dogs weighing >13.6 kg and concurrent meniscal injury vs. dogs weighing <13.6 kg and concurrent meniscal injury (P < .001). Significantly more stifles with chronic lameness (40 of 89; 44.9%) had the highest PAO score of 2 reported compared to only 42 of 182 stifles (23.1%) with acute lameness (P < .001). The presence of a BHT of the medial meniscus was not associated with more severe arthroscopic articular cartilage lesions in the medial joint compartment at the time of surgery. © 2016 The American College of Veterinary Surgeons.

  12. Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate

    NASA Astrophysics Data System (ADS)

    Luo, Jiasai; Guo, Yongcai; Wang, Xin; Fan, Fenglian

    2017-04-01

    Miniaturized artificial compound eyes with a large field of view (FOV) have potential application in the area of micro-optical-electro-mechanical-system (MOEMS). A new non-uniform microlens array (MLA) on a negative meniscus substrate, fabricated by the melting photoresist method, was proposed in this paper. The multi-focusing MLA reduced the defocus effectively, which was caused by the uniform array on a spherical substrate. Moreover, like most ommatidia in compound eyes, each microlens of the multi-focusing MLA was arranged in one of the eleven concentric circles. In order to match with the multi-focusing MLA and avoid the total reflection, the negative meniscus substrate was fabricated by a homebuilt mold with a micro-hole array and polydimethylsiloxane coelomic compartment attached. The coelomic compartment is capable of offering an excellent injection environment without bubbles and impurities. Due to the direct 3D implementation of the MLA, rich available materials can be used by this method without substrate reshaping. As the molding material, the ultraviolet curing adhesive NOA81 can be cured within ten few seconds under ultraviolet which relieve intensive labor and protect the stereolithography apparatus effectively. The experimental results show that this new MLA has a better imaging performance, higher light usage efficiency and larger FOV because of the negative meniscus and multi-focusing MLA. Moreover, due to the homebuilt mold, more accurate geometrical parameters and shorter processing cycle were realized. Accordingly, together with an appropriate hardware, this MLA has diverse potential applications in medical imaging, military and machine vision.

  13. A meta-analysis of clinical and radiographic outcomes of posterior horn medial meniscus root repairs.

    PubMed

    Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Kim, Jin Goo

    2016-05-01

    Although interest in medial meniscus posterior root tear (MMPRT) repair has increased, few case series have been reported. This meta-analysis aimed to examine the clinical and radiological effects of MMPRT repair by pooling pre- and post-operative data from case-series reports. A literature search was performed using MEDLINE/PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE databases. Pre- and post-operative data were pooled to investigate the effects of MMPRT repair, including the Lysholm score improvement, meniscal extrusion (mm) reduction, progression of the Kellgren-Lawrence (K-L) grade, and cartilage status according to the Outerbridge classification. Treatment effects included paired standardized mean differences (difference in the pre- and post-operative mean outcomes divided by the standard deviation) for the Lysholm score and meniscal extrusion, as well as the pooled event rates of progression of K-L grade and cartilage status. As treatment effects, the Lysholm score increased by as much as 3.675 (P < 0.001), whereas meniscus extrusion was not reduced (n.s.). The overall pooled event rates of progression of K-L grade and cartilage status were 10.6 and 17.3 % (P < 0.001), respectively. According to the current literature, MMPRT repair resulted in significant improvements in the post-operative clinical subjective scores compared with the preoperative status. However, meniscus extrusion was not reduced. Considering the occurrence of progression of K-L grade and cartilage status, it did not prevent the progression of arthrosis completely. Based on these results, repair results in favourable outcomes for MMPRT. Meta-analysis, Level IV.

  14. Root avulsion of the posterior horn of the medial meniscus in skeletally immature patients.

    PubMed

    Sonnery-Cottet, Bertrand; Mortati, Rafael; Archbold, Pooler; Gadea, François; Clechet, Julien; Thaunat, Mathieu

    2014-12-01

    Meniscal root avulsion has been predominantly reported in an adult population but little is known about this meniscal lesion in children and adolescents. The of this article is to describe the clinical symptoms and a new MRI sign of a medial meniscus posterior root avulsion in skeletally immature patients, and to report the arthroscopic procedure for its reinsertion in the presence of open physes. We report two skeletally immature patients who had a medial meniscus posterior root avulsion [MMPRA]. Diagnosis of a MMPRA was suspected on MRI by intense T2 hypersignal located at the postero-medial part of the tibial plateau reflecting trabecular bone oedema ("Bone bruise") at the level of the medial meniscal posterior root attachment. Arthroscopic reduction and fixation of the posterior root of the medial meniscus with transosseous sutures was performed. The patients returned to sport at the end of 6 months without residual symptoms. At one year, the radiographs showed no modification of the physis. Healing of the medial meniscal posterior root was noted on MRI. In a skeletally immature patient it is important that this rare meniscal lesion is diagnosed early and adequately treated. We emphasize the importance of the indirect MRI signs that can lead a clinician to suspect the diagnosis of MMPRA. The aim of the surgery was to restore the anatomical footprint of the meniscal root and to re-establish its function thus preventing future chondral damage without damage to the tibial physeal growth plate. Level IV. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Protruding anterior medial meniscus-An indirect sign of posterior cruciate ligament deficiency.

    PubMed

    Parkar, Anagha P; Bleskestad, Kristiane; Løken, Susanne; Adriaensen, Miraude E A P M; Solheim, Eirik

    2018-02-01

    to examine if PROTruding of the Anterior Medial Meniscus (PROTAMM) could be an indirect sign of PCL deficiency by comparing PROTAMM to passive posterior tibial sagging (PSS) for chronic PCL rupture on routine MRI. Patients with PCL reconstruction between 2011 and 2016 were included in a case control study. Primarily cases with combined ACL/PCL injury were excluded. Secondary exclusion criteria were bony fractures, medial meniscus pathology and poor quality MRIs. Three (blinded) observers reviewed the pre-operative MRIs according to a pre-defined protocol. After applying the inclusion and primary exclusion criteria 16 patients were identified in the PCL rupture group. The control group consisted of 15 patients. After reviewing the MRIs, 6 were excluded due to secondary exclusion criteria. Mean PPS measured 4.8 mm (± 4.4 mm) in the PCL rupture group and 1.8 mm (±2.9 mm) in the control group, p = 0.05. Mean PROTAMM was 3.6 mm (±0.6 mm) in the PCL rupture group and 0.7 mm (±0.9 mm) in the control group, p = 0.004. We found a mean PROTAMM of 3.6 mm in patients with PCL rupture. We suggest that this sign, after knee injury in an otherwise normal medial meniscus, is a promising indirect sign of PCL deficiency compared to PPS. Implementation of this sign in clinical practice may improve the sensitivity of routine non-weight bearing MRI in identifying PCL deficient knees. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Medial meniscus extrusion correlates with disease duration of the sudden symptomatic medial meniscus posterior root tear.

    PubMed

    Furumatsu, T; Kamatsuki, Y; Fujii, M; Kodama, Y; Okazaki, Y; Masuda, S; Ozaki, T

    2017-12-01

    Medial meniscus posterior root tear (MMPRT) leads to abnormal biomechanics of the knee by inducing the medial meniscus extrusion (MME). However, a time-dependent increase of the MME is not fully elucidated in patients suffering from the acute MMPRT. The aim of this study was to investigate the relationships among disease duration of the MMPRT and severity of the MME. We hypothesized that MME measurement correlates with disease duration after a sudden onset of the minor traumatic MMPRT during the short-term follow-up period. Forty-six patients who had an accurate episode of the posteromedial painful popping were investigated. All the patients were diagnosed having a symptomatic MMPRT with magnetic resonance imaging (MRI) examinations. Absolute MME was measured using MRI scans within 12 months after painful popping events. A correlation coefficient between duration from injury to MRI examination and absolute MME was evaluated. Mean absolute MME was 4.5±1.6mm (range, 1.1-8.8mm) on MRI measurements. A good correlation was observed between MME measurement and duration from injury to MRI examination (R 2 =0.612). The best-fit equation for predicting each value was: MME=0.014×disease duration+3.288mm. This study demonstrated that absolute MME increases progressively within the short duration after the onset of symptomatic MMPRT. Our results suggest that preoperative MME assessment may be important in determining disease duration and treatment strategy of the MMPRT. Retrospective cohort study level IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Degenerative meniscus: Pathogenesis, diagnosis, and treatment options

    PubMed Central

    Howell, Richard; Kumar, Neil S; Patel, Nimit; Tom, James

    2014-01-01

    The symptomatic degenerative meniscus continues to be a source of discomfort for a significant number of patients. With vascular penetration of less than one-third of the adult meniscus, healing potential in the setting of chronic degeneration remains low. Continued hoop and shear stresses upon the degenerative meniscus results in gross failure, often in the form of complex tears in the posterior horn and midbody. Patient history and physical examination are critical to determine the true source of pain, particularly with the significant incidence of simultaneous articular pathology. Joint line tenderness, a positive McMurray test, and mechanical catching or locking can be highly suggestive of a meniscal source of knee pain and dysfunction. Radiographs and magnetic resonance imaging are frequently utilized to examine for osteoarthritis and to verify the presence of meniscal tears, in addition to ruling out other sources of pain. Non-operative therapy focused on non-steroidal anti-inflammatory drugs and physical therapy may be able to provide pain relief as well as improve mechanical function of the knee joint. For patients refractory to conservative therapy, arthroscopic partial meniscectomy can provide short-term gains regarding pain relief, especially when combined with an effective, regular physiotherapy program. Patients with clear mechanical symptoms and meniscal pathology may benefit from arthroscopic partial meniscectomy, but surgery is not a guaranteed success, especially with concomitant articular pathology. Ultimately, the long-term outcomes of either treatment arm provide similar results for most patients. Further study is needed regarding the short and long-term outcomes regarding conservative and surgical therapy, with a particular focus on the economic impact of treatment as well. PMID:25405088

  18. Development of a fast curing tissue adhesive for meniscus tear repair.

    PubMed

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  19. Complex Meniscus Tears Treated with Collagen Matrix Wrapping and Bone Marrow Blood Injection

    PubMed Central

    Piontek, Tomasz; Ciemniewska-Gorzela, Kinga; Naczk, Jakub; Jakob, Roland; Szulc, Andrzej; Grygorowicz, Monika; Slomczykowski, Michal

    2015-01-01

    Objective To collect and analyze the 2-year follow-up clinical and MRI results of patients treated with an arthroscopic technique of collagen membrane-based meniscus repair. Design 53 consecutive patients with combined (horizontal and radial or longitudinal component) and complex meniscal tears (tear extended through avascular zones or/and composed with two or more morphological tear pattern) were treated with an “all-inside” arthroscopic suture of meniscus and wrapping with a collagen membrane (Chondro-Gide) technique with bone marrow blood injection. The IKDC 2000 subjective score, IKDC 2000 clinical evaluation score, Lysholm score and Barret clinical criteria of meniscal healing were recorded. All patients were examinated by MRI 2 years postoperatively, using modified WORMS criteria for meniscal integrity. Results The 2 year follow-up was achieved in 50 cases. Of these, 2 patients were excluded from the evaluation due to incomplete data and 2 patients underwent partial meniscectomy and were classified as failures. In 46 patients (86.8% of the intended to treat cases), a statistically significant improvement in IKDC 2000 subjective, Lysholm scores and IKDC 2000 clinical assessment between preoperative and the 2-year follow-up time points were obsereved. Barret criteria demonstrated an improved clinical outcome between pre- and post-operative values. MRI revealed a non-homogeneous signal without meniscal tear (WORMS grade 1) in 76% of the operated menisci (13% WORMS grade 2). Conclusions The 2-year follow-up data demonstrate that this technique is safe and can offer an additional tool to save the meniscus in the patients otherwise scheduled for meniscal removal. Level of evidence IV PMID:27047635

  20. Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses.

    PubMed

    Zhang, Yue; Potter, Richard; Zhang, William; Fakhraai, Zahra

    2016-11-09

    Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion. Developing new probes that can readily measure surface diffusion can help study the effect of parameters such as chemical structure, intermolecular interaction, molecules' shape and size on the enhanced surface diffusion. In this study, we develop a novel probe that significantly simplifies these types of studies. Tobacco mosaic virus (TMV) is used as probe particle to measure surface diffusion coefficient of molecular glass N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD). The evolution of the meniscus formed around TMV is probed as a function of time at various temperatures. TMV has a well-defined, mono-dispersed, cylindrical shape, with a large aspect-ratio (average diameter of 16.6 nm, length of 300 nm). As such, the shape of the meniscus around the center of TMV is semi-two dimensional, which compared to using a nanosphere as probe, increases the driving force for meniscus formation and simplifies the analysis of surface diffusion. We show that under these conditions, after a short transient time the shape of the meniscus is self-similar, allowing accurate determination of the surface diffusion coefficient. Measurements at various temperatures are then performed to investigate the temperature dependence of the surface diffusion coefficient. It is found that surface diffusion is greatly enhanced in TPD and has a lower activation barrier compared to the bulk counterpart. These observations are consistent with previous studies of surface diffusion on molecular glasses, demonstrating the accuracy of this method.

  1. Modeling 3-D deformation of outer hair cells and their production of the active force in the cochlea.

    PubMed

    Spector, A A; Ameen, M; Schmiedt, R A

    2002-10-01

    We analyze the deformation of the outer hair cell and its production of active force under physiological conditions. The active force has two components. One results from the strain caused by loading in the organ of Corti in the cochlea and depends on the level of the acoustic signal; the other is related to the intrinsic active properties of the cell membrane. We demonstrate our approach by considering, as a basic model of an outer hair cell in the organ of Corti, a cylindrical shell that is filled with an incompressible fluid and located between two planes that move relative to each other. These planes represent the basilar membrane and tectorial membrane complexes. We show that the deformed state of the cell has a 3-D nature, including bending and twisting components. This is different from the experimental conditions in which the active force is usually measured. We estimate the active force as a function of the relative position of the planes, angle of the cell's inclination, and the cell length.

  2. Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice

    PubMed Central

    Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.

    2014-01-01

    Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582

  3. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. © 2015 International Federation for Cell Biology.

  4. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer

    PubMed Central

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  5. Phagocytosis of photoreceptor outer segments by transplanted human neural stem cells as a neuroprotective mechanism in retinal degeneration.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; McGill, Trevor J; Lu, Bin; Wang, Shaomei; Lund, Raymond; Huhn, Stephen; Capela, Alexandra

    2013-10-15

    Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor-bipolar-horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.

  6. Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye.

    PubMed

    Zheng, Wenjing; Ma, Mingming; Du, Ergang; Zhang, Zhengwei; Jiang, Kelimu; Gu, Qing; Ke, Bilian

    2015-11-01

    The aim of the present study was to investigate the therapeutic efficacy of fibroblast growth factor 10 (FGF10) in the promotion of healing, survival and expression of mucin in corneal epithelial cells in a rabbit dry eye model. A total of 12 healthy female New Zealand white rabbits were divided randomly into three groups. The lacrimal glands were injected with saline either alone (normal control group) or with concanavalin A (Con A), with either topical phosphate‑buffered saline (PBS; PBS control group) or 25 µg/ml FGF10 (FGF10 treatment group). Lacrimal gland inflammation, tear function, corneal epithelial cell integrity, cell apoptosis and mucin expression were subsequently assessed. Lacrimal gland tissue biopsies were performed in conjunction with histology and electron microscopy observations. Tear meniscus height (TMH) and tear meniscus area (TMA) were measured using Fourier domain‑optical coherence tomography. Tear membrane break‑up time (TBUT) was also assessed and corneal fluorescein staining was performed. The percentages of apoptotic corneal and conjunctival (Cj) epithelial cells (ECs) were counted using a terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling method. The mRNA expression levels of Muc1 were determined using reverse transcription‑quantitative polymerase chain reaction analyses. The TMH and TMA values of the PBS and treatment groups were found to be significantly reduced, compared with those of the normal control group 3 days after Con A injection. However, the TMH and TMA of the FGF10 treatment group were higher, compared with those of the PBS group 3 and 7 days after treatment, respectively. Furthermore, the FGF10 treatment group exhibited prolonged TBUT, reduced corneal fluorescein staining and repaired epithelial cell ultrastructure7 days after treatment. The percentages of apoptotic corneal‑ and Cj‑ECs in the FGF10 treatment group were significantly reduced, compared with those in the PBS group. FGF10 significantly induced the mRNA expression of Muc1 in the corneal epithelial cells, compared with the normal control group, and induced higher mRNA expression levels of Muc1 in the Cj‑ECs, compared with the PBS control group. In the present study, the rabbit dry eye model was successfully established 3 days after lacrimal gland Con A injection. FGF10 eye drops increased TMH and TMA, promoted corneal epithelial healing, reduced apoptosis of the corneal- and Cj-ECs and led to increased expression of Muc1.

  7. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  8. A diffusive ink transport model for lipid dip-pen nanolithography.

    PubMed

    Urtizberea, A; Hirtz, M

    2015-10-14

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.

  9. Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube-Polymer Composites.

    PubMed

    Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon

    2018-06-13

    Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.

  10. The effects of geometric uncertainties on computational modelling of knee biomechanics

    PubMed Central

    Fisher, John; Wilcox, Ruth

    2017-01-01

    The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models. PMID:28879008

  11. Influence of Vertical Electromagnetic Brake on the Steel/Slag Interface Behavior in a Slab Mold

    NASA Astrophysics Data System (ADS)

    Li, Zhuang; Wang, Engang; Zhang, Lintao; Xu, Yu; Deng, Anyuan

    2017-10-01

    The steel/slag interface behavior under a new type of electromagnetic brake (EMBr), vertical electromagnetic brake (V-EMBr), was investigated. The influence of the magnetic induction intensity, the submerged entry nozzle (SEN) immersion depth, and the port angle of the SEN are investigated numerically. The effect of magnetic induction intensity on the meniscus fluctuation of molten alloy is further studied by the experiments. The results show that the meniscus fluctuation is depressed as the magnetic induction intensity is increased, especially for the region in the vicinity of the narrow face of the slab mold. This result is validated by the following experiments. For the influence of the SEN immersion depth and the port angle, the results show that the meniscus fluctuation is suppressed as the values of the immersion depth and the port angle are increased (absolute values for the port angle). However, the influence of the immersion depth and the port angle are not as sensitive as those in the other type of EMBr, e.g., EMBr Ruler. The industrial application of V-EMBr could benefit from this result.

  12. Measuring contact angle and meniscus shape with a reflected laser beam.

    PubMed

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  13. Numerical Analysis of the Heat Transfer Characteristics within an Evaporating Meniscus

    NASA Astrophysics Data System (ADS)

    Ball, Gregory

    A numerical analysis was performed as to investigate the heat transfer characteristics of an evaporating thin-film meniscus. A mathematical model was used in the formulation of a third order ordinary differential equation. This equation governs the evaporating thin-film through use of continuity, momentum, energy equations and the Kelvin-Clapeyron model. This governing equation was treated as an initial value problem and was solved numerically using a Runge-Kutta technique. The numerical model uses varying thermophysical properties and boundary conditions such as channel width, applied superheat, accommodation coefficient and working fluid which can be tailored by the user. This work focused mainly on the effects of altering accommodation coefficient and applied superheat. A unified solution is also presented which models the meniscus to half channel width. The model was validated through comparison to literature values. In varying input values the following was determined; increasing superheat was found to shorten the film thickness and greatly increase the interfacial curvature overshoot values. The effect of decreasing accommodation coefficient lengthened the thin-film and retarded the evaporative effects.

  14. Arthroscopic Decompression for a Giant Meniscal Cyst.

    PubMed

    Ohishi, Tsuyoshi; Suzuki, Daisuke; Matsuyama, Yukihiro

    2016-01-01

    The authors report the case of a giant medial meniscal cyst in an osteoarthritic knee of an 82-year-old woman that was successfully treated with only arthroscopic cyst decompression. The patient noticed a painful mass on the medial side of the right knee that had been gradually growing for 5 years. Magnetic resonance imaging showed an encapsulated large medial cystic mass measuring 80×65×40 mm that was adjacent to the medial meniscus. An accompanying horizontal tear was also detected in the middle and posterior segments of the meniscus. The medial meniscus was resected up to the capsular attachment to create bidirectional flow between the joint and the cyst with arthroscopic surgery. Magnetic resonance imaging performed 14 months postoperatively showed that the cyst had completely disappeared, and no recurrence was observed during a 2-year follow-up period. An excellent result could be obtained by performing limited meniscectomy to create a channel leading to the meniscal cyst, even though the cyst was large. Among previously reported cases of meniscal cysts, this case is the largest to be treated arthroscopically without open excision. Copyright 2016, SLACK Incorporated.

  15. Microjet formation in a capillary by laser-induced cavitation

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  16. Measuring contact angle and meniscus shape with a reflected laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibach, T. F.; Nguyen, H.; Butt, H. J.

    2014-01-15

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collectedmore » on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.« less

  17. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  18. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells.

    PubMed

    Lipin, Mikhail Y; Vigh, Jozsef

    2018-05-01

    Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔV m ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca 2+ influx (Q Ca ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔC m ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔV m /Q Ca ratio equally at a given light intensity and inhibition did not alter the overall relation between Q Ca and ΔC m . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔC m unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between Q Ca and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities. © 2018 Wiley Periodicals, Inc.

  19. Cell surface physiology and outer cell envelope impermeability for hydrophobic substances in Burkholderia multivorans.

    PubMed

    Ruskoski, Sallie A; Champlin, Franklin R

    2017-07-01

    The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.

  20. The Strength of Transosseous Medial Meniscal Root Repair Using a Simple Suture Technique Is Dependent on Suture Material and Position.

    PubMed

    Robinson, James R; Frank, Evelyn G; Hunter, Alan J; Jermin, Paul J; Gill, Harinderjit S

    2018-03-01

    A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair. (A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load. Controlled laboratory study. In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro-computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map. In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%. The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs. The results provide insight into material and location for optimal repair strength.

Top